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ABSTRACT

In this thesis an investigation is given of the
dynamical electrical properties of the excitable
membrane without assuming that the ionic conductivities
within the membrane are dependent on the electric
field or time, and the extent to which a variable
conductivity can be inferred from the statistical
mechanics of irreversible processes.

The dynamical theory of ionized media is applied
to the semi-electrolyte component of an excitable
membrane, and the adjacent electrolytes. The relevant
equations are the conservation laws of charge and
momentum for the ions, and Poisson's equation for the
electrostatic potential. These equations are linearized
and are applied first to investigate the steady state
of the membrane, and then transient effects in the
membrane. A dispersion equation is derived, and the
characteristic modes of relaxation within the membrane
are determined. These include oscillatory modes which
are associated with the condition that the dispersion
equation has two equal roots, and which have frequencies
and amplitudes of the correct order of magnitude to
account for the observed excitation phenomena.

By applying the appropriate boundary conditions
at the electrodes an expression for the voltage clamp
current is derived, and its dependence on the properties
of the intracellular and extracellular electrolytes and
also the type of excitable cell is examined. An analysis
of the oscillations in the potential difference across

the membrane for a subthreshold stimulus is also given



by modifying the boundary conditions at the electrodes.

By taking into account the nonlinearity of
Poisson's equation, a pair of coupled nonlinear equations
in the ionic potentials is derived, and these have
oscillatory solutions which are similar in shape to
the action potential.

Although the previous analysis can account
qualitatively for excitable cell behaviour without
assuming that the ionic conductivity is dependent on
the electric field within the membrane, it is necessary
to assume such a dependence to explain the large steady
state currents of certain ions which are observed
during the voltage clamp of the axon membrane. Therefore
we examine the extent to which such a variable ionic
conductivity can be inferred from statistical mechanics,
and finally consider the effect of irreversible processes
on the Hamiltonian parameters X and u which appear

in the Triffet-Green model of the neuron.
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CHAPTER 1 INTRODUCTION

1.1 THE DEVELOPMENT OF MODELS OF EXCITABLE MEMBRANE PHENOMENA

The characterization of the equilibria of ions in
solution by Nernst! in terms of electrical and diffusive
forces, and its subsequent application by Planck? to the
computation of the potential across a constrained boundary
between electrolytes, established the theoretical framework
within which subsequent electrodiffusion models of the
electrical properties of excitable membranes have developed.
The Nernst concepts were first applied to biological phenomena
by Bernstein® who assumed that:

(i) the living cell is composed of an electrolytic interior
surrounded by a thin membrane which has a low permeability

to ions |

(ii) the resting potential across biological membranes is

a diffusion potential resulting from the selective permeability
to potassium and the large internal concentration of potassium
ions relative to that in the extracellular fluid

(iii) during excitation the membrane is depolarized by a
nonspecific increase of permeability to small ions.

This membrane theory was able to account for the sign and

the approximate magnitude of the resting potential, its
dependence on the external potassium concentration and, in
addition, the approximate equality between the resting
potential and the depolarization which occurred during
excitation.

Fricke (see Cole") confirmed Bernstein's first assumption

and also measured the electrical capacity of the membrane



(luf/cm?). From this value and the assumption of a membrane
dielectric constant of value 3, he estimated the thickness
of the membrane to be of the order of 33A. Following the
determination of the conductance of the cell membrane in
Nitella, transverse alternatiung current impedance measurements
on the axon of Loligo in the resting state gave data that
could be represented in terms of an electrical equivalent
circuit consisting of a resistance and a capacity in parallel
(curtis and Cole®). It was then demonstrated that the action
potential is associated with a transient decrease in the
equivalent circuit resistance to a value of 25Qcm?, with

a small decrease in the membrane capacity (Cole and Curtis®).
The resting state axon membrane resistance was determined
from a longitudinal measurement of the direct current
resistance and this yielded a value of 1000fcm? (Cole and
Hodgkin’) .

This transient decrease in the resistance of the
membrane was interpreted as a measure of the increase in
membrane permeability to ions, and hence was initially
considered to support Bernstein's hypothesis concerning
membrane excitation. However, with the advent of micro-
electrodes, which could be inserted in the interior of the
squid giant axon, it was possible to demonstrate that the
action potential exceeded the resting potential by aporoximately
30mV, and so was not associated with a non-specific increase
of permeability to ions, as had been postulated by Bernstein
(Hodgkin and Huxley, Cole and Curtis?®).

The electrical properties of the axon membrane were



further characterized by determining its longitudinal
alternating current impedance over a wide range of frequencies.
Below a frequency of the order of 200 c.p.s., the impedance
properties of the membrane couid only be reproduced by
assuming that its equivalent circuit contained a capacity
shunted by a resistance and conductance (approximately

.2 henry-cm?) in series. This circuit was also able to
account for the underdamped and overdamped oscillatory
phenomena which were observed to occur during measurements
of the AC transverse impedance changes resulting from the
application of a polarizing current (Cole and Baker?).

The importance of the presence of extracellular sodium
ions for propagation of the nervous impulse was first
recognised by Overton. Many years later, it was shown that
the magnitude of the action potential was reduced by partially
replacing sodium chloride by choline chloride in the external
solution. In order to explain this observation, as well as
the bransient reversal of the potential difference across

° proposed

the membrane during excitation, Hodgkin and Katz'
the sodium hypothesis, which postulated that the active
membrane undergoes a large selective increase in permeability
to sodium. It was also suggested that during the falling
phase of the action potential, the high membrane selectivity
for sodium ions was replaced by a large membrane permeability
to potassium. This qualitatively explained the positive

phase of the action potential, which is the decrease in active

membrane potential below the resting potential, and the

associated refractory state of the squid axon.
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An important contribution to the elucidation of the
ionic processes underlying the generation of the action
potential was the development of the "voltage clamp" technique.
An initial step in this direction was provided by Marmont!!,
who proposed a method of quantitatively controlling and
measuring the current uniformly across a known area of the
axon membrane. He employed a long internal needle electrode
of negligible resistance and a large concentric external
electrode that is guarded, so that current flow in the axial
direction is minimized. At any given instant, the active
membrane response to a short threshold current stimulus is
identical over the controlled area, and its magnitude and
wave-form are similar to that of a propagated impulse (and
hence is termed a space-clamped action potential).

Cole!'! employed a similar experimental arrangement to
apply a constant uniform potential difference across the
membrane ("voltage clamp"), by using an electronic feedback
circuif to supply a current of appropriate magnitude to the
electrodes, and the latter, in the absence of axial current,
was identified with the current through the membrane. Despite
efforts to reduce the surface impedance of the electrodes,
for large membrane currents electrode polarization introduced
considerable errors in the regulation of the membrane
potential, and this limited the effective duration of the
clamp.

Hodgkin, Huxley and Katz'!? minimized the errors associated
with this difficulty by introducing two internal electrodes;

one which recorded the membrane potential and the other which
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supplied the current to maintain the potential difference
across the membrane at a pre-determined level (after being
suddenly changed from the pre—clamp level). In addition,

the effect of the resistance bétween the potential electrodes
and the membrane was reduced somewhat by use of compensated
feedback.

Hodgkin and Huxley!? applied this improved, voltage
clamp technique to squid giant axons surrounded by solutions
with a reduced sodium concentration and, on the basis of
their results, were able to conclude that when the membrane
is depolarized, the resulting ionic current consists of
two independent components - an early transient current
carried by sodium ions and. a delayed current carried by
potassium ions. They estimated the magnitudes and time
courses of each of these components by making the following
assumptions:

(1) the time course of the potassium current is unaffected
by changes in the external sodium concentration

(2) the time course of the sodium current is not greatly
affected by the external sodium concentration even though
its magnitude and direction may change

(3) there is a delay in the rise of the potassium current
for a period about one third of that taken by the sodium
current to reach its maximum.

On the basis of the observations that the early current
was zero when the voltage clamp potential was equal to the
sodium equilibrium potential E_ , and that the late current

Na

vanished when V was equal to E where E_  is defined

K’



it was assumed that the driving force for the ath ion was
constant and equal to V - Ea. The chord conductance for
the ath ion, 9o defined by

I=ga(V"Ea)r

was then considered to be a measure of the membrane
permeability to a. It was convenient to express the voltage
clamp sodium and potassium currents in terms of INa and
I+ respectively, because the instantaneous values of these
ionic conductances are independent of the magnitude of the
voltage step (but only when the external solution is
physiological saline).

The voltage and time dependence of Iya and gy Wwas

described (Hodgkin and Huxley!®’) by assuming

—_ 3y
gNa - gNa m°h

gy = 9g N

where 9y, and EE are constants, and the variables m, n
and h are functions of V and t and are given as solutions

of the differential equations
aE - us(V)(l—s) - BS(V)S , s=m,n,h .

The rate constants o and BS are chosen to be

analytical functions of the clamp voltage which give a close



fit to the experimental data. These empirical equations
were given a physical interpretation by assuming that the
chord conductance for a particular ion depends on the
distribution of mobile charged molecules confined to the
membrane, and that a change in the potential difference
across the membrane results in a new distribution and hence
a "gating current". Specifically, it was assumed that the
variables m and n are associated with "activation" of
the sodium and potassium ions, respectively, and that the
variable h is associated with sodium "inactivation".

By assuming that the total membrane current is equal

to the sum of the capacity current and the ionic current

av , 1.,

I=cg i

that the ionic current is composed of sodium ions, potassium
ions and leakage ions, and that current is continuous at the
membrane surface, Hodgkin and Huxley used the empirical
expressions for ionic conductance to compute the threshold,
time course and amplitude of the space-clamped (or membrane)
action potential, and its associated impedance changes, the
exchange of sodium and potassium ions during the impulse,
the electrical response during the refractory period, the
anode break response, subthreshold oscillations and the
form, amplitude and velocity of the propagated action
potential, and obtained good agreement with experimental
results.

Early confirmation of the Hodgkin-Huxley predictions
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of sodium and potassium fluxes during the voltage clamp and
the action potential by tracer measurements (see Hodgkin!*)
was strengthened by a series of experiments in which the
magnitude and time course of the sodium flux during the
voltage clamp and the action potential was determined by
direct measurements with tracers using more elaborate
electronic equipment!® Also, the Hodgkin-Huxley equations
have been extended and adapted to various smooth and
myelinated nerves, skeletal and cardiac muscle with modified
intracellular and extracellular solutions (for a review,
see Cole").

Following the unsuccessful attempts by Nernst!® and
others to invoke diffusion polarization at the membrane to
explain excitation phenomena, consideration was given to
developing mathematical models which reproduced important
electrical properties of excitable cells. One approach is
to define the model in terms of a number of variables of
state (or factors) which correspond to neurophysiological
concepts such as excitation and inhibition (Rashevsky!’),
local potential and threshold (Hill!’) or state of excitation
(Monnier'!’). The time constants of these factors are
specified by linear first-order differential equations,
from which various properties of nerve may be calculated.
Young'!’ showed that the Rashevsky and Hill models are
equivalent and are special cases of a more general model.

Another approach is to model the nerve by an electric
circuit and then derive differential equations by applying

conventional circuit theory and an appropriate criterion for



® applied the one-factor theory of

excitation. Rashevsky!
Blair to a pure-resistance network to describe the spread

of excitation in a nerve, whereas Rushton'!® assumed that
excitation was associated with the sudden appearance of an
E.M.F. in series with nerve sheatﬁ and applied this criterion
to a resistance-capacitance network. The equivalence of this
particular conduction model of Rashevsky and that of Rushton
was demonstrated by Weinberg??.

! developed another electric

Offner, Weinberg and Young?
circuit conduction model by considering excitation to be
accompanied by a decrease in membrane permeability (Bernstein
hypothesis), which was consistent with the interpretation
placed upon the impedance.measurements on nerve (Curtis and
Cole®). The expression for the conduction velocity so
derived was similar to that of Rashevsky and Rushton.

The similarities between the properties of the passivated
iron-wire and the nerve cell axon (Lillie??) were made more
explicit by Bonhoeffer®’?®, who described the kinetics of the
activation of an iron-wire by a set of two first-order
differential equations in the variables "degree of activation"
(x) and "refractoriness" (y). The functional form of the
equations was specified graphically on an x vs y plane and
with this representation, many of the iron-wire properties,
including its acti&ation and response to a stimulus, were
described by trajectories on the phase-plane diagram. This
model is a non-linear generalization of the Rashevsky-Monnier-

Hill two-factor theories of nerve excitation.

By adding appropriate terms to a pair of first—order
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differential equations in two variables, obtained by
transforming van der Pol's equation, Fitzhugh?" constructed
a model representative of a class of non-linear systems

of equations which exhibits a stable state and threshold
phenomena in addition to stable oscillations. The model
was recognised to have a similar phase-plane form to those
of the Benhoeffer iron-wire model, Teorell's model?® of the
fixed-charge membrane oscillations and a reduced Hodgkin-
Huxley model obtained by projecting the four-dimensional
Hodgkin-Huxley model onto a plane. A tunnel-diode equivalent
circuit for the Fitzhugh model was proposed by Nagumo,
Arimoto and Yoshizawa?®.

More recently, Triffet and Green’?’ developed an
electrochemical model of the neuron based upon a Hamiltonian
formulation of the conservation laws and expressed in terms
of a dynamical variable defined to be the number of ion
pairs inside the nerve cell. The resulting equations can
be reduced to modified forms of the van der Pol and Fitzhugh
equations, and their solutions exhibit the presence of a
resting state, a threshold potential and stable oscillations
with a waveform appropriate to repetitive action potentials.

The simple electrodiffusion model (homogeneous membrane
without fixed charge) of excitable membranes has been
successful in calculating membrane potentials across
biological membranes in the resting state, and their dependence
on changes of ionic concentrations in the external medium,
but solutions of the electrodiffusion equations have not

exhibited a steady state negative conductance region, which
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is observed when the squid axon is immersed in iso-osmotic
potassium chloride, and have not been able to account for
the voltage clamp curves of excitable cells (see Cole").

An analytical solution of the steady-state electrodiffusion
equations (that is, the Nernst-Planck and Poisson equations)
for a 1-1 univalent electrolyte was first obtained by
Planck? by assuming that the microscopic electroneutrality
condition is satisfied in the membrane phase, that is, that
the total charge density at each point is equal to zero.

The general solution to this problem for electrolytes with
several ionic valence types was given by Schldgl?®. The
difficulties associated with the electroneutrality
assumption have been considered by Agin®’, and Arndt, Bond

and Roper??

have given a criterion for this solution to be
a good approximate solution.

Goldman®! also obtained an analytical solution of these
equations by assuming that the electric field was constant
within the membrane. Hodgkin and Katz®? rederived this
result by introducing explicitly for each ion a concentration
partition coefficient between the membrane and aqueous phases.
The validity of this assumption has been examined by Zelman,
Agin, and Zelman and Sshih®3%., It has also been shown that
the electroneutrality and constant field assumptions are
limiting cases which obtain when the ratio of the Debye
length in the membrane to the membrane thickness is << 1
and >>1, respectively. (Cole", MacGilliway®"*, MacGilliway
and Hared®").

Offner®® has solved the steady state electrodiffusion

equations directly as a boundary value problem by use of a
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difference equation method, and has considered the effect
of the spatial dependence ‘of the
mobility in the membrane on ion flow, ion distribution and
boundary potentials. On the other hand, Michaelis and
Chaplain®® have obtained asymptotic solutions of an equation
which was derived from the electrodiffusion equations by
use of the Painlevé transformation, and these coincide with
the numerical solutions in a given domain.

Walz et al., Neumcke and Lauger, and Neumcke et al.?’
have examined three mechanisms by which nonlinear current-
voltage characteristics could arise in lipid bilayer
membranes:

(1) the injection 6f ions into the membrane
resulting from the dependence of the Boltzmann concentration
profiles on the applied potential difference across the
membrane.

(ii) the effect of an electric field on the potential
energy profile of an ion in the membrane.

(iii) the Wien dissociation effect within the membrane.
However, these mechanisms are in general more appropriate
to the consideration of lipidsoluble ions than to the
transport of ions through nerve membranes. The latter has
been examined by Bas¢®in considering the significance of
electrodiffusion theory in predicting both linear and
nonlinear instantaneous current-voltage characteristics in
squid and toad, respectively.

Although it has not been demonstrated that a steady-

state negative conductance region is a consequence
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of theH@croscopic homogeneous electrodiffusion equations,
a kinetic theory approach to the transport of ions across
membranes which has been adopted by Mackey®®, has shown that
for certain types of interactions between ions and the
membrane molecules the slope conductance becomes negative
for a range of electric field strengths.

Numerical solutions to the time-dependent electro-
diffusion equations (that is, the Nernst-Planck, the
Poisson and the continuity equations) were obtained by

Cohen and Cooley"?®

by assuming microscopic electroneutrality.
The response of the membrane system to a step-function

rise in the current was expressed as space and time variations
in the concentrations and electric potential. Their

solutions were similar to the responses obtained from

systems with a combination of inductive and capacitative

properties. Arndt and Roper‘'

considered the general
voltage clamp problem and obtained numerical solutions in
terms of the current densities, but_they do not exhibit a
transient negative resistance for electrolytes with a
variety of ionic concentrations and mobilities and, in
particular, for those which exist in the environment of the
squid axon membrane.

The diffusion of ions across the membrane may also bec
described as a series of jumps across potential barriers.
This description has been used by Offner“? to obtain a
numerical solution of the voltage clamp problem. By choosing

a fixed charge distribution and mobility contour within the

membrane, which results in an appropriate dependence of
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boundary potential on total membrane potential, and suitable
ion permeability functions of boundary potential and

external interface calcium concentration, then it is possible
to model many of the observed properties of nerve cells.

In addition, an attempt has been given to justify the
particular choice of the boundary permeability functions in
the context of the theory of rate processes.

It is clear that on the one hand the empirical Hodgkin-
Huxley model of current flow across the axon membrane has
been successful in explaining a wide range of electrical
properties of nerve but their equations are rather cumbersome.
This has been remedied to some extent by the FitzHugh model
which although it has similar properties to the Hodgkin-
Huxley model, its mathematical form is more tractable. It
has the additional virtues of being a nonlinear extension of
the Ra shevsky-Monnier-Hill two-factor theories of nerve
excitation and also a generalization of the van der Pol
equation which describes the relaxation oscillations of the
heart."?

On the other hand, the simplest physical model of the
excitable membrane as a homogeneous regime governed by the
laws of ionized media, although giving a good description
of various steady state properties, has not been successful
in accounting for the dynamical phenomena associated with
excitable cells., The discrepancies between the analytical
steady state solutions and experimental results have been
attributed to the existence of a biochemical pump mechanism

for certain ions (e.g. sodium). However, its operation is
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over a longer time scale than one millisecond and hence is
not considered important in the consideration of the action
potential.

An indication of a possibie connection between these
mathematical and physical approaches was provided by Triffet
and Green?’ who formulated an expression for the Hamiltonian
of the neuron and its environment and used this to derive
a set of dynamical equations which had the same form as the
FitzHugh equations. A more detailed consideration of the
physical processes involved in the transport of ions through
the membrane will show (see Chapter 4) that similar equations
can be derived from the macroscopic conservation laws of
charge and momentum and the laws of electrostatics and
thermodynamics but the interpretation of the dynamical
variable in the Triffet-Green equations as the number of
ion pairs within the neuron needs to be revised. The
macroscopic equations obtained in this way can be based on
either classical or guantum statistical mechanics. The
transition from classical to quantum mechanics can be made
formally by replacing the classical velocity distribution
function by a Wigner phase space distribution function. A
detailed consideration of quantal effects will be given in
Chapter 5.

In sections 1.2 and 1.3 we shall consider various ionic
theories that have been developed to describe the equilibrium
properties of electrolytes and some of the general problems

in the microscopic theory of transport processes which are
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relevant to the statistical derivation of macroscopic
equations for ionic systems. Expressions for relevant
thermodynamic quantities and the conservation laws of charge,
momentum and energy, which will be used to determine the
normal modes of the excitable membrane in Chapter 2, are

derived in 1.4 and 1.5.
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1,2 STATISTICAL MECHANICS OF IONIC SOLUTIONS IN EQUILIBRIUM

The first successful molecular theory of electrolyte
solutions was developed by Debye and Hueckel'"' by combining
Poisson's equation from electrostatics with the Boltzmann
factor from statistical mechanics. The resulting equation
was then linearized to yield a differential equation which
was solved to calculate the thermodynamic properties of the
electrolyte, It was subsequently shown by Fowler and Onsager"®
that the Debye-Hueckel theory is exact in the limit of small
concentrations. Although the theory has been substantiated
by comparison with numerous experiments, its applicability
is limited to concentrations less than .0l1M for aqueous
1-1 electrolytes.

fhis small range of application is the result of the
linearization procedure as well as the inconsistency of
the nonlinear Poisson-Boltzmann equation itself (Kirkwood
and Poirier“®). The inconsistency in this equation derives
from equating the potential of average force between the
ions in solution with the mean electrostatic potential
around each ion.

An important contribution to the theory of electrolytes
was provided by the reformulation of the cluster expansion
theory of nonideal gases for ionic solutions by McMillan
and Mayer'’. The mathematical difficulties associated with
the long-range nature of the Coulomb force were overcome
by an appropriate rearrangement and cancellation of divergent

terms in the cluster expansion (Mayer“®), with the lowest
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order term corresponding to the Debye-Hueckel theory. The
results which were obtained compared favourably with
experiment in the concentration range up to .1IM for 1-1
electrolytes (Poirier"®; Meeron“®). However, the convergence
of the Mayer expansion for aqueous electrolytes is slow, so
that estimates of the thermodynamic properties of an
electrolyte at higher concentrations are difficult to obtain.
Further progress in the theory of electrolytes was
provided by developments in the theory of fluids in
obtaining integral equation approximationé for the radial
distribution function. The first equations of this type
to be introduced were the Kirkwood and Born-Green approximations
which were derived by use of the Kirkwood and Born-Green-
Yvon hierarchy of equations, respectively, in conjunction
with the superposition approximation (Kirkwood?®?; Born and
Green®?). By expressing the two-particle velocity
distribution function as a functional of the one-particle

!l a1so obtained the Born-

distribution function Bogoliubov®
Green approximation from the first hierarchy equation and
used it to verify the Debye-Hueckel limiting laws.

The radial distribution function may also be determined
from the hypernetted chain (HNC) and Percus-Yevick (PY)
integral equations. These equations may be derived using
functional Taylor series expansions (Percus®?) or graphical

methods (Morita and Hirioke®?) but may also be based upon

the Ornstein-Zernike®" equation

g, - l=c,. +]n, J(gck—l)ckj d_,
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which can be considered as a definition of the direct
correlation function cij (between ions i and 3j) 1in
terms of the radial distribution function gij (nk is
the number density of the k-th ion). This system of integral
equations can be closed by the HNC approximation

c =g,, -1 = 1n gij - Bu

ij ij iJ

or the Percus-Yevick approximation

cij = gij[l - eXp(Buij)]

where uij is the pair potential between ions i and j
and B = 1/KkT.

These equations have been reformulated by Allnatt?®®
in an attempt to overcome the difficulties associated with
the long-range nature of the Coulomb face. When these
modified equations (which replace the Coulomb potential by
the Debye-Hueckel shielded potential) were applied to a
model of the electrolyte which consists of hard spheres in
a dielectric continuum (primitive model) and the thermo-
dynamic properties were calculated and compared directly
with Monte Carlo results, the modified HNC equation was
determined to be more appropriate (Rasaiah and Friedman®®).

The mean spherical model (MSM) integral equation for
the primitive electrolyte (Waisman and Lebowitz®’) is obtained
by supplementing the Ornstein-Zernike equation with the

approximations

id
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cij(r) = —Beiej/er ;, ¥ > Rij
where Rij is the distance of closest approach between
ions i and j. Although it is more approximate than the
PY and HNC integral equations, it has the advantage of
being exactlyrfg}qg;e for the restricted primitive model
(that is, charged hard spheres of equal size) and hence
yields analytic expressions for the thermodynamic quantities.
Also, the osmotic and activity coefficients computed from
the energy equation were in good agreement with Monte Carlo
results for 1-1 electrolytes.

Another recent development is the mode expansion
theory of Andersen and Chandler®®. They avoided the
divergence difficulties arising from the long-range nature
of the Coulomb potential by expressing the partition function
in terms of collective variables which were chosen to be
Fourier transforms of the number density (c.f. the BOhm-

Pines?®?®

method for the electron gas). Also the divergences
at small r were overcome by considering the Coulomb
interactions as perturbations to a reference system which
is dominated by short range repulsions. The free energy
was expanded in an infinite series in which each term is
determined by the perturbing potentials and the n-body
distribution functions for the reference system, and
convergence was enhanced by a suitable choice of the
perturbation within the hard core. The calculation of just

the first two terms of this series for the symmetrical

restricted primitive model required only the free energy
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and the pair distribution function for the reference system,
and the results have an accuracy comparable with the
modified HNC approximation for monovalent ions.

They also described a criterion for optimizing the
convergence of the mode expansion which ensured that the
radial distribution function inside the hard spheres was
zero. When the criterion was applied to the perturbation
series truncated at n=1 (the optimized random phase
approximation) the result was shown to be equivalent to the
mean spherical model ‘'if the reference system obeys the
Percus-Yevick Theory exactly (Andersen and Chandler®®). An
improvement over the mean spherical model was then obtained
by including the next mode (termed the ORPA+a, theory).

Although the accuracy of the ORPA+a, approximation
is good for most 1-1 electrolytes, when it is applied to
2-2 electrolytes, the osmotic coefficient does not exhibit
the anomalous effects at high dilution which are shown by
Mayer's theory of electrolytes (Debye-Hueckel limiting law +
renormalized second v};ial coefficient) or the modified
HNC approximation (Rasaiah®’). This has been remedied®' by
transforming the Mayer cluster series for the Helmholtz free
energy and the pair distribution function into a form
involving a renormalized potential which is just.the shielded
Debye potential if the perturbation potential is chosen to
be Coulombic within the hard cores. The convergence for
this choice of perturbation is prohibitively slow at higher

concentrations but can be considerably improved if instead
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the perturbation is chosen so that the renormalized potential
is zero within the physically inaccessible regions. In

this case, there is good agreement with Monte Carlo
calculations of the internal energy for a 2-2 symmetric

primitive model electrolyte of concentration up to 2M.
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1.3 NONEQUILIBRIUM STATISTICAL MECHANICS OF IONIZED AND

UN-IONIZED FLUIDS

Hodgkin and Huxlev described their experimental results
in terms of conductances which may undergo large transient
variations during the voltage clamp or the action potential,
and interpreted the membrane ion conductance as a measure
of the ionic mobility. We shall show in Chapters 3 and 4
that even if the mobility in the membrane is assumed to be
constant, the magnitude of ionic currents across the membrane
may still be large during excitation because of the non-
linearity which appears in the time-dependent electrodiffusion
equations. However, it is important to determine the extent
to which a large variable ionic mobility can be inferred
from the statistical mechanics of irreversip%g processes,
and this investigation will appear in Chapter 5. The
application of irreversible statistical mechanics to other
physical systems has given no hint of such behaviour.

In this section, we shall consider the various approaches
in nonequilibrium statistical mechanics for ionized and
un-ionized fluids and, in particular, the derivation of
kinetic and macroscopic transport equations from the equations
of molecular dynamics, which will be examined in more detail
for an electrolyte in Section 1.5, and the calculation of
transport coefficients in terms of microscopic variables
which will be applied to the resistance of the membrane in
Chapter 5.

The Boltzmann equation, a kinetic equation which describes
the properties of a monotomic dilute gas, was first solved
by Chapman and Enskog (see Chapman and Cowling®?) who used

its normal solutions to derive the Navier-Stokes and Burnett
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equations. The method depends on obtaining a series
approximation to the distribution function and then
truncating the series when the.gradients of the dynamical
variables are small. Good agreement was obtained between
their calculation of transport coefficients and experimental
values for dilute gases.

Early attempts to generalize the Boltzmann equation by
Born and Green, Bogoliubov and Kirkwood®®’®! depended on the
derivation of hierarchy equations from Liouville's equation.
A kinetic equation was then obtained by introducing an
appropriate approximation to truncate the infinite set of
equations - either the superposition approximation or the
functional ansatz of Bogoliubov. An examination of the
latter approximation using cluster expansion techniques has
revealed divergences in the density expansions of the transport
coefficients (see Cohen®™ and these have been attributed to
collision sequences occurring over an infinite volume in
phase space. In order to eliminate a large class of divergences,
resummation methods have been introduced and these result
in a logarithmic dependence of the transport coefficients
on density.

When the Boltzmann equation and its higher density

generalizations are applied to plasmas the collision integral

—

diverges because of the long range of the Coulomb force
interaction. This divergence may be avoided by replacing
the Coulomb potential by the equilibrium Deybe-Hueckel
screened potential, but a more rigorous kinetic equation

which takes into account screening effects and which can be
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derived from the Bogoliubov ansatz has been given by
Balescu and Lenard®". For a plasma of low density where
collisions of intermediate range are important, it can be
reduced to the Landau equation.

Instead of obtaining the macroscopic equations for
a fluid from a kinetic equation an alternative method is
to proceed directly from Liouville's equation. This approach
has been adopted by Irving and Kirkwood®® in deriving the
equations of continuity and the equations of momentum and
energy conservation for a classical system of particles
interacting through two-body short-range forces, and hence
is not applicable to a plasma.In a similar way, Brittin®®
derived the hydromagnetic equation and Maxwell's equations
for a system of charged particles interacting via the
electromagnetic field. H.S. Green®’ has also obtained a
complete set of macroscopic equafions which overcomes some
of the difficulties associated with the long-range nature
of the Coulomb force, and in particular, a form of the
generalized Ohm's law which is correct when thermoelectric
effects are not small.

Expressions for transport coefficients based upon
solutions to a kinetic equation were first obtained by
Chapman and Enskog ®? by constructing normal solutions as
expansions around the local equilibrium state and substituting
back into the Boltzmann equation. In this way, the
calculation of transport coefficients is reduced to the
solution of two linear integral equations in terms of Sonine

polynomials. However, the range of validity of this method
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is restricted to dilute gases with particles interacting
through short-range forces, and hence is not suitable for
plasmas.

A more recent method of aeriving expressions for the
transport coefficients is due to Resibois®® and depends on
establishing a one-to-one correspondence between the
normal modes of a linear kinetic equation and its corresponding
macroscopic equation. When applied to the Boltzmann
equation, it yields the same results as the Chapman-Enskog
theory, but is in general applicable to fluids of arbitrary
density.

An alternative method of obtaining transport coefficients,
without using a kinetic equation, was developed by
M.S. Green®® and Kubo’’. Here, the transport coefficient
is expressed as the time integral of an equilibrium time
correlation function by considering the response of an
equilibrium system to either an external or thermodynamic
force. The equivalence between this method and the kinetic
equation approach to transport coefficients has been shown
by H.S. Green’! and Resibois’?.

The Green-Kubo formulae can be used to give a density
expansion of the transport coefficients by developing an
integral equation for the time-correlation function from
Liouville's equation in one of two ways. The first uses
the lowest order hierarchy equation to obtain an integral
equation in the time variable which is analogous to the
generalized Boltzmann equation’?®. The other method formulates

the integral equation in terms of the Laplace transform of
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the time variable and makes use of the binary collision
expansion’", Each of these methods leads to divergences
in the naive density expansion of the transport coefficients
but a resummation of the most divergent terms to all orders
in the density gives a finite contribution (Kawasaki and
Oppenheim’®). An extension of the Zwanzig method to
plasmas has been given by expanding the binary-collision
operator in terms of short-range binary collision operators
and Coulomb interaction operators and then removing the
short-range and long-range divergence by appropriate
resummation techniques (Bartis and Oppenheim?’®).

An important development in the understanding of
transport coefficients was the discovery by Alder and
Wainwright” of the slow decay of the self-diffusion correlation
function for a hard sphere systeﬁ through molecular
dynamical calculations. It had been generally assumed on
the basis of simple models like Brownian motion, that the
autocorrelation functions decay exponentially but the long

tails of the form t—d/2

where d 1is the dimension of
the system, have since been accounted for theoretically
by a number of different approaches.

One method of describing this phenomenon uses the
equations of macroscopic hydrodynamics but is internally
inconsistent because it assumes_. the existence of transport
coefficients which are later shown to diverge (Ernst et al.’?).
Another treatment applies the generalized Iangevin equation

and its associated mode-mode coupling ideas to the transport

problem and attributes the long time decay to a nonlinear
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coupling among the slowly varying hydrodynamic modes
(Kawasaki’?®).

The kinetic theory of dense gases has also been
successful in describing FEis4 phenomenon by analyzing the
relevant many-body events and considering the long-wavelength
limit (Dorfman and Cohen®?). 1In this case, the description
of the long time tail and the calculation of the logarithmic
term in the density expansion of the transport coefficients
both depend on the consideration of the same class of
correlated binary collision events. Recent work on the
viscous flow of a moderately dense system of hard spheres
and disks has indicated that it is necessary to take into
account the nonlinear effects of the velocity field in order

to obtain a finite correction to the Boltzmann value of the

viscosity coefficient (Ernst et al.®!).
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1.4 STATISTICAL THERMODYNAMICS OF ELECTROLYTES

In this section, we shall derive approximate expressions
for the partial pressure and the chemical potential for
each ion and these will be used in Section 2.1 to develop
the dynamical equations for an ionized medium.

The thermodynamic properties of a system can be
evaluated from the Helmholtz free energy A and for a
system which may exchange both particles and energy with
its surroundings, A can be expressed in terms of the

grand canonical partition function 2* as follows:

A = - kTlog Z* (4.1)

where k 1s Boltzmann's constant and

1 N
Z* =} R !J...Jexp(—8¢(x1,...,xN) o z,d%x, (4.2)
N a a — —_— i=1
where ) denotes Y I ses
N N1=0 N2=0

Na is the number of particles of the a-th type,

z, = (2m mi/B)3/2 exp(Bu;) 1is the activity, my

the mass and My the chemical potential of the i-th particle
respectively,
¢(x1,...,xN) is the total potential energy of a

group of N particles whose centre of masses are at the

points fi""'xN'

B = 1/(kT).
The equation of state may now be obtained from equations

(4.1), (4.2) and the thermodynamic relation between the
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pressure p and the free energy A

aA)
- [9A (4.3)
().

or, alternatively, it may be derived from Liouville's

g}

equation and an appropriate definition of the partial
pressure tensor (see equation (5.46) of section 1.5). The

result is

1

p = E(nakT - 2 n_ng Iab) (4.4)
a b -
— _ ] 3
Tab = J[gab(rab) U 50 (Fap) 47y (4.5)
wab'(rab) is the derivative with respect to the distance
I = |xa - x, | Dbetween particles of the a-th and b-th

types, of their interaction energy wab(rab),

gab(rab) is the radial distribution function, and n_ is

the number density of the a-th particle.
The chemical potentials U, may be calculated from

the radial distribution functions in two different

gab

ways. The first was proposed by Kirkwood and Buff®? and

uses the result

(Bna) mb 2 5
= —(n_S§_ _+)n_n J[g -1]1d°r) (4.6)
3ub v,T,n, kT “a ab L @ b ab

where the number densities n, are regarded as functions
of the Wy V and T. Expressions for the chemical

potentials follow by inverting the matrix
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The second method is due in principle to Glintelberg??®

and assumes that the interaction energy wab(r ) of one

ab

particular particle of type a at the point X with any

other particle of type b at the point is reduced

*p’

by a factor ea, where 0 < ea < 1. It may then be shown

that if (r 0 ) 1is the radial distribution function

Jab'Tab’"a

for this particle, with its charge reduced by a factor ea,

and any other particle of the b-th type, then

1 kT 1og(nao> + E n, J_, (4.7)
where naO is a constant, and
([t ]
Sapy T EJJ (9,5 (Fapr8,) = 1le  (x,))d0 d%x (4.8)

We shall now evaluate the above expressions for the
pressure and the chemical potential by using the Debye-
Hueckel approximation“*. That is, the effect of the solvent
on the interactions between the ions is accounted for by
introducing a dielectric constant «k in the interaction

between two ions

eaeb
wab(r) - == (a#0, b#0) (4.9)

where e, is the charge of an ion of the a-th type and
the water molecule is denoted by the subscript zero. To
take account of the finite size of the ions, we assume that
equation (4.9) is only valid when r = ary where a; is

the ionic diameter. Also, the pair correlation function g_,
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of ions of the a-th and b-th types is approximated by

g.(r) =0 r < a
ab ' - X (4.10)
where wab is correlation energy and satisfies
) 417eb
Vi (x) = - ) e n g, (4.11)
K c
The function wab may be normalized by assuming that
v '(a) = '(a) = - 2B, (4.12)
ab "I ab I K ag :
Then we have
e_ey r-a_
wab(r) = ETagiazT exp[- ( A )] (4.13)
=%
where a, = (478 z eazna/K) (4.14)

is the Debye shielding length. To determine gab(r,ea)

we replace e by Gaea in (4.11) and obtain

9,.(r/0) =1 -86_1v_ (r) (4.15)

a ac

With the help of these results, we find from (4.5) and

(4.8) :
2 2 2
I, = 4“BKf?a ig )aD (4.16)
a D E
-2m3 e %2 e %2 a_?
J . = N - N ) (4.17)

K2 +
ab (aD aI)
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and hence, from (4.4) and (4.7), we have

2
= kT lo (Za ) _ Ca (4.18)
Ha g\n o) 2K(aD+aI) °
a

and

P=1]p, (4.19)
a

where P, is the partial pressure of the a-th ion and
is given by
ne?
p, = n_kT - T SO (4.20)
6K(aD+aI)
If a system comprising a thin membrane which separates
two electrolyte solutions (denoted by the subscripts 1 and 2,
say) is in a state of chemical and electrical equilibrium
then, for each ionic component, the electrochemical potentials

in the electrolytes are equal:
(w_te w)1 = (u +e 02 (4.21)

where ¢ 1is the electrical potential. Hence, using the
expression (4.18) for the chemical potential and assuming
ideal-gas behaviour (that is, neglecting the first-order
Debye term) and the absence of a temperature gradient, the

difference in electrical potential across the membrane is

n
Q2 = @ = =—— 109( al) (4.22)
a

and this is well known to physiologists as the Nernst

equation.
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Although it has been shown that the Debye-Hueckel
theory is the correct approximation to first order of a
more exact set of integral equations (Kirkwood and Poinier?®",
Mayer"®, Green®®), the agreement between the theoretical
expressions for thermodynamic quantities and those obtained
experimentally is only satisfactory for small electrolyte
concentrations. The range of validity of the theory has
been extended to electrolytes with an ionic strength of
about .1M by including correction terms as follows

(Guggenheim and Turgeon®®, Scatchard®’):
g

It

9p (¥) 1 -8y () + Ggab(r) (4.23)

gab'(r,e) =1 - B ea wab(r) + Sgab(r,6a)

where 6gab(r) and Sgab(r,ea) do not depend strongly on
the ionic number densities n_. Thus, equations (4.18) and
(4.20) may be replaced by

2

na \ ea
M, = kT log\n S

a } 2F(an+a1)

+§ 83 ,n, (4.24)

where
1 3
GJab = deégab(rab,ea)dead r.p
and
na ea2 na Z
p. = n kT - - = §I _n (4.25)
a ab™'b
6K(aD+aI) 6 b
By defining
e 2 1
= -2 - Lx
B, = kT z g 6Iabnb (4.26)
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equation (4.25) becomes

p, = na/Ba (4.27)

where Ba =8 =1/(kT] in the limit of small concentrations,
but depends weakly on the ionic densities for the concentrations

attained in the membrane environment (of the order of 100mM).
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1.5 MACROSCOPIC EQUATIONS FOR AN ELECTROLYTE

In this sectioh, we shall derive a set of macroscopic
conservation laws for an electrolyte from Liouville's
equation following the approach of Green®’. These equations
will be used in Section 2.1 to analyze the dynamics of a
general ionized medium and then applied in subsequent
sections to the membrane region and the surrounding electrolytes.

As we shall be considering electrolyte solutions at
normal physiological temperatures it is possible to neglect
quantum effects except for the justification of the
existence of a lower bound to the energy of a system of
charged particles of opposite sign. Similarly, relativistic
effects will be small and hence radiation damping can be
neglected, and also it may be assumed that the interactions
between neighbouring particles are instantaneous.

Consider a system of N particles such that the
number of particles of the a-th type (with mass m_ and
charge ea) is Na (a=1,2,...) and Z Na = N. Then,

' a

given a function G of the particle velocities and

coordinates, the mean value of G may be defined as

<G> = ) J G F dfy (5.1)
N
where 2 means N | ==z
N N; N2
Fe is the N-particle phase space distribution function
QN is the normalized volume element in phase space.

From Liouville's theorem we may write
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dx. dn.

i =i - .
I and Ei = 35 are the 1-th particle

velocity and acceleration, respectively.

where Ei =

If G does not depend explicitly on the time then

oF
<G> _ N
ot ) J 5 ¢ Ay
N
BFN BFN
=} I[-X(§§—-€i *ogpoen; )16 ang (5.2)
N i %1 = i

On integrating by parts and with the use of Gauss's theorem,

we obtain

<G> _ [ dG 3G
st = L Py L (g -+ By *ogEs - ngdafy 2 )
N 1. i — 1 —_—
By setting G =Y 8, S(x—x.)8(g-¢,) (5.4)
i e i
equation (5.3) becomes
f 9f 5

where £= <l &, S(x-x,)68(g-¢,)> (5.7)

i

is the velocity distribution function of a particle of the
a-th type and is defined in such a way that fad3§ a’t is
the probability of finding a particle of the a-th type in
the volume element d3§, with velocity in the range d3§,

and

a —a

£, 0, = <) 8y, 0y 8(x-x;)8(E-5;)> (5.8)
1

and n, is the mean acceleration of a particle of the a-th

type at the point x and moving with velocity £.
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The velocity distribution function fa satisfies
3, = b
I fa d gt n (5.9)
Jf £ 0 4%t =n_ <6> (5.10)

where n_ is the number density of the a-th particle,

and be written as
n = <Jz. 6ia 6(§-§i)> , (5.11)

6 1is a function of £, the velocity of a particle of the
a-th kind at x, and <6>a is the mean value of 0.
Now, neglecting radiation damping

mn; =e;(E;" + E;xB/c) (5.12)

where Ei' and B.' are the microscopic electric field

intensity and magnetic induction at the point X respectively.

The corresponding macroscopic fields are

E. = <E,'> and B, = <B,'> (5.13)
2l —]1 —]
and the residual fields are defined as

= E - E, (5.14)

We can now write equation (5.8) in terms of the field

variables as
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e

+ <§ 5, . ﬁi—(-vi@iugi_ x B /o) 6 (x-x,) 6 (£-E,)> (5.15)

with the use of equations (5.13) and (5.14), where E and
B are the macroscopic values at the point x, wir = wi'—wi
is the residual electric potential at the point x, and
wi' and ®, are the microscopic and macroscopic electric
potentials at the same point, respectively.

For particles not too distant from the point X

retardation may be neglected and hence the microscopic

electric potential wi‘ is given by

0. ' =) —3 4+ 0 ' (5.16)

* i |x,-x.|

where wio is the external electric potential at x,, and

the corresponding macroscopic variable is

0, = <o,
[[17-—= :
= < —_— 8§, S(x'-x.)8(E'-£.)A%x'dE"'>
b j |x.-x"| b o -
-—-l —
e. £ !
— 2 JJ b ™b d¥x' ag! (5.17)
b |x. -x"|

Also, using equation (5.16)
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e,
S ] 85, = (- Vy0 "8 (x-x,)6(E-E)>
1 m

e, e, 6,
i mi b j Ei‘—i

x 6 (x-x,)6(E-g,)d°x" a’g'>

Voo
= -3 JJ ab £ gixr qg (5.18)
b a
where Ve = — (—22, (5.19)

and

fab = <§ Sia 6(§f§i)6(§'§i) g 6jb 6(§|—§j)6(§'-§j)> (5.20)

is the two-particle velocity distribution function, and is

defined in such a way that £_, d’x d’x' d’g d%¢' is the
probability of finding a particle of the a-th type in
the volume element d3§, with velocity in the range d3§,
and a particle of the b-th type in the volume element

d3§', with velocity in the range dsg'. It satisfies

[ 3 Iy —
| fap L AE =0y (5.21)
r 3 LI
| fap © Q7L QPE' =n_ <> (5.22)
where n is the two-particle distribution function, and

ab

may be written as

n_ = <§ 8ia S(xX;) 6, 8(x'-x,)> (5.23)
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and <6>_, 1is the mean value of a function 6 of the
velocities § and §£' of two distinct particles.
With the help of equations (5.17) and (5.18), we can

now write

e,
< 8, == (- V0, ") 8 (x-x,)6(E-E,)>
i mi
Voo
= -3 JJ 22 (g, - £, £,1) dx' ag’ (5.24)
b ma
E
=¥ j] ‘a_p (f. - £ £') d3x'dg’
ab a b
b m

Neglecting retardation, the microscopic vector potential
Ai' is given by
e E.

=] ——3-+a° (5.25)

i elx.-x.]| -+
puiak, '_J

where éio is the external vector potential at -gi. Hence,

with the relation

r _ r
B,” = V X é-i (5.26)
it may also be shown that
€ r
<} 85, — (B; X Bj/o) S(x-x;)8(E-E;)>
i m,
1
ea Bb 3
= . - 1 1 '
E IJ - (£, - £, £.") a°x' dg (5.27)

Equation (5.15) now becomes
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+ ¥ (fab . J(E. + £ x B _/c) d’x" a’¢' (5.28)
Iy £ E, + £ X By/c & .

We shall now derive the conservation equations for the
number density and the momentum of a particle of the a-th
type. The continuity equation follows immediately from
equation (5.6) by integrating with respect to & and using

equations (5.9) and (5.10):

)
—Z 4+ — (na ua ) =20 (5.29)

where u, = <E> .,
The equation of motion may be obtained by multiplying
equation (5.6) by the velocity & of a particle of the

a-th type and then integrating over §

— (na u) + == . (na <§§>a) =n_ <na>a (5.30)
Now, the assumption that relativistic effects are small

allows the force between neighbouring particles,

ea(Eb + £ X Eb/C)’ to be approximated by the Coulomb force

alone, and so equation (5.28) becomes

m o<n > =e (E+u xB/c)
+ [vab L 3
e ) e j (=) a°r (5.31)
b nr’
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where r = x - E' and

v =n_. -n n " (5.32)

To determine the contribution of the force m <na>a

to the partial pressure of the a-th particle, write

v =V ey ) (5.33)

where
\)ab(+) = %(Vab+\)ba) ' vab(—) %(Vab-\)ba) (5.34)
By expressing vab(+) and Vab(-) in terms of y = %(g}g')

and r = x-xX' then vab(X,E) can be expanded in a Taylor

series as follows

NI

)
= v
Vo (yrx) vab(§,£) 5"T>_{_ ab(§,£) S (5.35)
This series may be truncated at the first order term in «r
by assuming that the gradients of macroscopic quantities are
small relative to the microscopic correlation length. With

this expansion, equation (5.31l) becomes

My Na”a = €,(E + 1, * B/O)
e e 9 r
e o ol A N
b n 9% r?
a =
(-) = 3
+ J Vap () d'r] (5.36)
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where we have used the odd and even function of r properties

(=) (+)

of v b- ’

ab respectively. The partial pressure

and Vv
a

tensor p_ =~ may now be defined by

1=) =m n_ <(§--1_1_) (.‘_E_—P_) >a

r r

1 [ (+) = = 43
+ z 2 e e J Vab (—‘—3 ) d’r (5'37)
b r

where the fluid velocity u is given by

pE:Ema RPN
and (5.38)
p=2ma na
"a

is the mass density.

Equation (5.31) may now be written

) 9
5 (Pa B) * 3z - (B, te(u, utuu, - uul
(=) =y a3
=eE+ ] X E/c + ) e, e J V.b (—?) d’r (5.39)
b r
where
pa = ma na
€ = e_n (5.40)
a a a
= e n
=a a a —a

By summing equation (5.39) with respect to a, the total
conservation of momentum equation results,

d 3 , .
3¢ (PW) + 5 . [p + puul = €E + j X B | (5.41)
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where

p=1r,
a

e =1 e, (5.42)
a.-

i=11,
a

and p = z < is the total pressure tensor.
= a:

It may be noted that an expression for the isotropic

pressure may be obtained from equation (5.37) and

p° = %(Pll + p22 + pasz). (5.43)

Hence,

1 N
b= 3 2 My Ma <(g—u)2/a

d wab

1 2 2 J 3

- = V r a’r (5.44)
s ab . dr

Now, the temperature Ta of the a-th component of the

electrolyte is defined by (see Green®(1952))

3kT, = m_ <(£—u)2>a | (5.45)

where k 1is Boltzmann's constant. In equilibrium, T, is

equal to the uniform temperature T, and so equation (5.44)

becomes

p® = ] (n kT - Z (5.46)

a

|
T ~1
=]
o]
=]

where

adr (5.47)

Iab = J (gab -l r

and 9.1 is the radial distribution function. If the
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volume viscosity can be neglected then the isotropic part
of the pressure is the same as the hydrostatic pressure and
hence (5.46) reduces to (4.4) in Section 1.4.

In the non-relativistic approximation, the partial
conservation of momentum équation (5.39) may be simplified
because |5a| << ¢ and so the term j_x B, may be
neglected. If we further take the fluid velocity u to

be equal to zero then (5.39) becomes

o(p_u) 3 ( (o) E
——2—+ —.p =€c¢E+})e_ e Vo (—) d°r (5.48)
Bt T r?
If we define
- ' r
(=) _ v (=) =ygq3
F v =e_ e, I ab (r3)d r (5.49)
then Eab(—) is the force per unit volume exerted by the

b-th species on the a-th species, and so should be

proportional to the relative velocities of the particles of

(-)

is an odd
ab

type a and b (Spitzer®®, p. 28). As Vv

function of r, it has the general form

(-) _ _
Vb = r.(u - u) f(r)

By expanding the symmetric tensor r r into an isotropic
part and a non-divergent part and neglecting the latter,
(5.49) becomes

p (5 _

—ab - eab pa(E-b - Ea) (5.50)

where eab is the number of collisions in a volume per unit
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time between particles of types a and b.

In a strong electrolyte, the interactions between
charged species are mediated by the aqueous dielectric, and
so if the water molecule is denoted by the subscript zero,
then for each a#0, b#0, eab << eao. We shall subsequently

write ea for eao. With the further assumption that there

is no osmotic flow, that is u, = 0, we may write

Jr =0 o u . (5.51)
b

p (5.52)

where P, is the thermodynamical partial pressure of the
a-th component. Writing

il

E=.—a§-

é (5.53)

where ¢ 1is the electric potential, equation (5.48) becomes

d Ip 20 _
7EPaa) Toxt ffatx t fafa B 7O Ratitd

and this is the form of the partial conservation of momentum
equation that will be used in subsequent chapters to
investigate the dynamics of excitable membranes.

The partial equation of energy transport may be derived
in a similar way by multiplying eqguation (5.6) by % m_ £?

and then integrating with respect to £&:
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> (L rny b (L g
§E{2ma na<€ > ) + B§:(2ma n, N >)
=Inalna <§_ . r_]_a> (5.55)

By defining the internal energy per unit mass of the a-th

particle U, by

e e

v . ax! (5.56)

_ 1 R | ©
Ua—z <(§-E)>a+21§ ab

a b
p, Ix-x"|

and using the expression for n, given by equation (5.28),

equation (5.55) becomes

Wab 43
3(p_U) 3 . 1 [ %2 % ——%—d x'
—2 2 + —(p_u_.u-op 52/2)'52J
ot - at & 7@ @ b | x-x" |
0 2
+ ik (p, <v ¥v°/2>) = p u_ .E
+ ) e e [ (u ., n,_ -—u n_n_") (ji} a’r  (5.57)
, @& b ) "=ab "ab  =a Ta b 7 L2 ’

The form of this equation may be simplified with the help
of the partial and total conservation of momentum equations

(5.39) and (5.41) and also the two-particle continuity

equation:
anab 9 3
St K g; : (nab Eab) * g;} ' (nab Eab) =0 LN

This equation may be derived from equation (5.2) by setting
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—_ -— —_ | I ¢ |
G = z §,, S(x—x,)8(E-E;) g‘ sjb § (x §j)6(§ gj) (5.59)
and defining
Mgy = SoALp
(5.60)
T — t
—ab <§ >ab
FPinally, n_, and n_ nb' can be expressed as functions
of y = %(gfi‘) and r = x-x' and expanded in Taylor series
around (x,r) (see equation (5.38)) to obtain
a du d
P dt (ana/O) + pa‘ia dt (Ea Eg) u
+ 9 Q = (J - g_u) E - u J %X B
0X =a —a a— - —_ —a —/c
(=)
+ E Cop (5.61)
where
-y _ _ ( (-) 3y 43
Gab - €2 % J Vab (E'E/r ) d =
l [ (=) (v ' 3 3
tge, e | ong,y  (Gptng)-lg/rT) 4
e o [ tmonny ) urun) . (x/r) a'r (5.62)
2 "a b a b —a —b’ "~ :
and
9-a - anawa * (ga - pavlav—qa)'vla
F 2o <(v-u)lv-u)?>
2 "a - —a’ '— —a a

-]-' l 1oy —=11" 3
T3 E €a ®p j etz (8-, - (z 2/
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+ (u_p-u )/r} d’r (5.63)

and w_= u_ - u.

Summing with respect to a, we obtain the equation

of energy transport

= (J -¢€u) . E-u.JX E/c (5.64)
where Q =} Q.
a
Now, from (5.49) and (5.62)
(-) (=) _ 1 [ (-) : 3 3
Cop -t REp T e, ey | Rgp (BTl z/r) A%
=0 (n n')(-)(u +u') . (r/r?) a3r (5.65)
2 "a b | a'b —a =p’ "= :

and is the energy per unit volume transferred from the b-th
species to the a-th species when the fluid velocity is
equal to zero. In equilibrium, the following conditions

must be satisfied:

a » (5.66)

where T, is defined by (5.45), and so we may write

(—) [] = 1 (-)
n (Eab+Eab) (nanb)

+ ]
ab (Ea Eb)

= f(r)(ga+gb)£.(gb—ga) + g(r)(Tb—Ta)£ (5.67)
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where f(r) and g(r) are appropriate functions of r.

Again, by retaining only the isotropic part of r r, as
in (5.50), we have from (5.65)

(=) _ _ 2 .. 2
Gab - eabpa(‘\—l-b Ea)'}—l- e wab('u—b LI )

+ Y, (,Tb-Ta) (5.68)

where Wy and wab

and g(r).

can be expressed in terms of £(r)

If the fluid velocity u 1is equal to zero in the

electrolyte, then the partial equation of energy transport

(5.61) may be simplified to

d 0 _ _ 2
P at (ana/p) + 52" 9a - Ea'E waoga (5.69)

where we have assumed a uniform ion temperature.
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1.6 OUTLINE OF THESIS

In this thesis we develop a macroscopic treatment of
the dynamical process within thin lipid membranes which
can account for the electrical properties of excitable
cells, and in particular, the time course and magnitude
of the currents which flow across the membrane during
the voltage and current clamp experiments, and the action
potential.

In Chapter 2, we develop a set of nonlinear equations
in the ionic potentials. These eguations are linearized,
and following the determination of the steady states of
the membrane, their solutions are obtained by deriving
a dispersion equation which can be used to characterize
the modes of oscillation within each ionized medium. These
include oscillatory modes in the membrane which have the
correct frequencies and amplitudes (when small) to explain
the observed excitation phenomena.

In Chapter 3 an expression for the voltage clamp
current is derived by considering appropriate boundary
conditions at the electrodes. The characteristic
frequencies of the currents are determined by a polynomial
equation generated by the condition that the dispersion
has two equal roots, and hence are dependent on the
concentrations of the permeable ions in the membrane and
the resistance these ions experience in their passage
through the membrane phase. It is shown that the voltage
clamp data for the normal squid giant axon are explicable
in terms of the linearized electrodiffusion equations.

The dependence of the characteristic freguencies of the

voltage clamp currents on the temperature of the medium,
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the concentrations of ions in the intracellular and
extracellular fluids and the type of excitable membrane
(whether nerve, muscle, electroplaque or Chara) is in
qualitative agreement with experimental data.

In Chapter 4 we investigate the nature of the
singularities and associated normal modes which are
relevant to observable dynamical events, and then examine
the oscillations in the potential difference across the
membrane for a subthreshold stimulus. When the magnitude
of the stimulus which is applied to an excitable axon
membrane is sufficiently large (a threshold stimulus)
the character of the potential oscillations across the
membrane changes dramatically. Their amplitude for the
normal axon is considerably greater (approximately 100mV)
than that of subthreshold oscillations (of the order of
a few millivolts), and the oscillation waveform no longer
resembles harmonic variation but is characterized by
sharp peaks or spikes (a repetitive action potential). By
taking into account the nonlinearity of Poisson's equation,
the dynamical equations for an ionized medium with just
two ions can be solved to yield nonlinear potential
oscillations which have a similar shape to that of the axon
action potential. However, these equations only exhibit
threshold behaviour if the coefficient of the ionic
potential in the exponential terms is sufficiently large,
and this value is attained in the presence of calcium ions.

The previous analysis has shown how to account
qualitatively for excitable cell behaviour without assuming
that the ion mobility is dependent on the electric field

in the membrane. However, it is in fact necessary to assume
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such a dependence in order to explain the large steady
state currents of certain ions (viz. potassium) which
are observed during the voltage clamp of the axon
membrane, and also to describe the variations in shape
of the action potential for different excitable cells.
In Chapter 5 we examine the extent to which an electric
field-dependent ion mobility can be inferred from the
application of irreversible statistical mechanics to
the Triffet-Green neuron model. We also consider the
effect of irreversible processes on the Hamiltonian
parameters A and which, provisionally, were

assumed to be constants in the model.
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CHAPTER 2

THE ELECTRODIFFUSION MODEL OF MEMBRANE DYNAMICS

2.1 THE LINEARIZED ELECTRODIFFUSION EQUATIONS

There have been many attempts to account for
excitation phenomena in terms of the macroscopic equations
with little success. 1In most cases, the starting point
has been the time-dependent electrodiffusion equationsze,
that is, the continuity equations, the Nernst-Planck
equation (or the steady-state conservation of momentum
equation) and Poisson's equation. This absence of an
electrodiffusion description of the dynamical properties
of excitable cells has been understood by most investigators
as a confirmation of the Hodgkin-Huxley interpretation
of the large trans-membrane currents during excitation
in terms of electric field controlled ion-specific
gating mechanisms, and as an indication of the irrelevance
of the electrodiffusion equations to an understanding of
excitation phenomena.

The neuron model of Triffet and Green?’ suggested,
however, that the action potential could be simulated by
a set of equations derivable from physical principles.

The limitations of the model were that, being a microscopic
quantum description of ionic events, its physical
interpretation was not a priori clear and also, comparison
with the numerous experiments on excitable cells was
difficult. These shortcomings were overcome by a
macroscopic description of ionic processes within the

excitable membrane and surrounding electrolytes which
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included the additional effects of irreversibility (and,
in particular, ionic diffusion), spatial gradients and
the interactions between ions of different types.

The macroscopic equatioﬁs which are necessary to
describe the behaviour of an ionized medium, including
the irreversible effects of heat conduction as well as
chemical diffusion and viscous flow, are the continuity
equation, the conservation laws of momentum and energy
and Maxwell's equations. It is well-known that this set
of equations, supplemented by the thermodynamic equations
of state, constitutes a basis for a general theory of
irreversible processes which is an alternative to the
theory of irreversible thermodynamics®?. However, in
examining the physical basis for excitable behaviour in
biological cells, it is not necessary to retain all of
the above equations. More specifically, although rapid
developments in the experimental technigque of measuring
magnetic effects in the central nervous system have
occurred in recent years®?, the magnitude of such magnetic
fields is extremely small (of the order of 10 !2? Tesla).
It is therefore reasonable to neglect magnetic effects
to a first approximation and so, in this case, Maxwell's
equations reduce to a single equation - Gauss's law or
Poisson's equation.

During the action potential, heat is generated
during the rising phase (approximately 20 pcal./gm for
the rabbit vagus nerve) and mostly reabsorbed during the

falling phase (about ninety per cent).’ A detailed account
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of these changes would include the effect of temperature
gradients but if we consider only isothermal changes,

then it is possible to describe the dynamics of the system
in terms of the conservation laws of mass and momentum,
without the additional equation of energy transport.

Having decided upon which macroscopic eqguations are
important for a description of excitable cell dynamics,

a microscopic justification of these laws should be
given, especially since even their applicability has been
questioned to a large extent. This has been done in
Section 1.5, where we presented an account of how the
conservation laws of mass, momentum and energy for each
ion may be derived from the microscopic Liouville equation.
The derivation of the macroscopie Maxwell equations from
the microscopic field equations, although originally
given by Lorentz in the context of his electron theory,
has also been considered in terms of statistical ensemble
averages by Brittin®® and de Groot?®?,

In this section, we shall first linearize the dynamical
equations for an ionized medium and in Section 2.2 the time-
independent form of these equations will be considered in
determining the steady states of the excitable membrane
and its surrounding electrolytes. In Section 2.3,
solutions of the time-~dependent linearized dynamical
equations are obtained by deriving a dispersion equation
which can be used to characterize the modes of oscillation
within each ionized medium. These include oscillatory modes

within the membrane which have the correct frequencies
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and amplitudes in order to explain the observed excitation
phenomena in various excitable cells (neurons, muscle
cells and excitable cells in the algae Chara and Nitella).
This analysis will be applied to the voltage clamp
experiments in Chapter 3, and to electric potential
oscillations across the membrane, both subthreshold and
threshold, in Chapter 4.

We now consider the dynamical equations of an ionized
medium in more detail. It can be characterized generally
by a dielectric constant and a resistance to the passage
of the various kinds of ions present. The charge density
and the current density associated with the a-th kind of
ion are denoted by €, and ia =€u_, respectively
(a-1,2,...), so that, to secure conservation of ions

of the a-th type,

e

a

ot

This equation is just (5.29) of Section 1.5.

It may be shown from Maxwell's equations that the
electric potential ¢ satisfies the nonhomogeneous wave
equation

1 924 2, _ 4w am
22 T

= L e,
a

where «k 1is the dielectric constant of the medium. As
the velocity of propagation, V, of the electric potential
is large, and as we are concerned primarily with low

frequency oscillations, then this equation reduces to
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Poisson's equation

V2 = = — ¢ (1L.2)

Now, if we neglect the effects of viscosity, heat
conduction and the magnetic field, the ions of the a-th
kind are subject to forces of three types: a force - Vp,
per unit volume due to the partial pressure Pyr ~ eaV¢
due to the electric field, and a resistance - 0_p_u_»
where Pa is the mass density of the hydrated ions,
and ea the friction constant associated with the
motion of the ions relative to the solvent, or the material
of the membrane. This is expressed by the equation of

the conservation of ions of the a-th kind, which was

derived in Section 1.5 as (5.54), and is written here as
3(p_u )
e R, e Ve 00, (1.3)

As Spitzer®® has recognized, this conservation law may

be used to derive a correct generalization of Ohm's law
for ionized media. TIf m is the effective mass and e,
the charge of the a-th kind of ions,

p, = maea/ea, pu_=m j /e (1.4)

a—a a=a a

and on account of the Gibbs-Duhem relation, which in the

absence of a temperature gradient is

Vo = op_  Vu_ , (1.5)
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where M, is the chemical potential of the a-th kind
of ion, equation (1.3) may be written as
9]

S e _ _—a
6,3, = - e Vlu_ +e_¢/m) + _ (1.6)

This yields the usual form of Ohm's law in a steady state
37
=a

with = 0. As we are concerned with transient

phenomena we shall retain the inertial term, though,
because of the large resistance, the associated relaxation
effects are of very short duration in the membrane.

Still another form of the equation of conservation
of momentum results from expressing the partial pressure,
on the chemical potential, in terms of the number

density ea/ea, thus:

Bana = Vea/ea (1.7)

where Ba =8 =1/(kT) in the limit of small concentrations,
but depends weakly on the ionic densities for the
concentrations attained in the electrolytes surrounding
the membrane (see equation (4.26) of Section 1.4). In
this form, the Nernst-Planck expression for the current
J is obtained by neglecting the inertial term.

The resulting equations are nonlinear, but for small
amplitude solutions may be linearized without serious

error by neglecting quadratic deviations from equilibrium,

thus:
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—2 4 _.a__+._av¢=—6u (1.8)

By elimination of the diffusion velocity 4_, we

obtain

(° "a a 3ooq_ =
Bama\""__ + 6 + V(¢ ¢a) = 0 (1.9)
where ¢a is the ionic potential, defined by
. 0
B e ¢ = log(sa/ea ) (1.10)

a a a

and sao is a constant which depends on the ionized

medium, and is chosen in such a way as to minimize the
magnitude of the potentials ¢a. This usually implies
that ¢a will be small throughout the medium, and under

such circumstances Poisson's equation

kVZ¢p = — 4m g an exp (-B_e_¢_) (1.11)

may also be linearized as follows:

KVZ2¢ = 4 ] B e e %% (1.12)
a

The linearized version of the equation will éenerally be
used in this and subsequent chapters, except when the
nonlinearity is considered to be important, as it is
during the action potential and for large perturbations

from the holding potential during the voltage clamp.
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The pair of equations (1.9) and (1.11) or (1.12)
are sufficient to determine the ionic and electric potentials,
with the help of suitable boundary conditions. If the
ionized medium under considération is the membrane phase
of a biological cell, then at the membrane surfaces, ¢
and the normal component of kVé must be continuous, and,
at the microscopic level, £, must also be continuous,
so that ¢a - lOgan/Baea is also continuous, though
¢ has a discontinuity.

When ¢a and ¢ have been determined, the ionic
currents may be obtained with the help of the relation

Bia e_€
* 81" V(¢ _-9) ©(1.13)

ot a—a m

Within the membrane phase, the time derivative is usually

negligible.
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2.2 STEADY STATES OF THE CONDUCTING MEMBRANE

In this section we determine the steady states of
the excitable membrane and the surrounding electrolytes
by considering the time-independent form of the equations
of the previous section. Excitable cells have a large
variation in shape, size and ionic composition but the
excitable membrane is generally composed of an ultra-
thin lipid bilayer membrane (50A-100A) within which are
embedded large protein molecules. When these molecules
extend across the thickness of the membrane, it is thought
that they provide a passage through which ions (and other
molecules) may diffuse from one side of the membrane to
the other.

The determination of the steady states of a membrane
will clearly depend on the geometry of the cell, but in
what follows we shall generally restrict our attention to
the simplest case - that of a plane membrane. However,
with a cylindrical geometry, the solution of the time-
independent forms of equations (1.9) and (1.12) are easily
enough obtained in terms of the modified Bessel function
I,(vr), where Vv is the inverse of the Debye shielding

“

length, given by
= o L
\V (4m g Baeaea /K) (2.1)

and for physiological concentrations this has a value of
about 5A. Now, this is considerably less than the

diameter of the smallest mammalian nerve fibres (of the
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order of 1000A). We may therefore neglect the curvature
of the membrane in considering ion transport which is
uniform over the membrane surface. However, the diameter
of the axon is an important variable in the analysis of
the conduction of the nervous impulse longitudinally
down the axon, and this will be Adiscussed in Chapter 4.

The membrane phase (denoted by Rm), which is comprised
of essentially rigid components as well as the various
kinds of ions which are able to diffuse through it, is
considered to be an infinite slab of uniform thickness
§ which separatesthe electrolyte interior of the cell
(denoted by Rn) from the electrolyte exterior to the
cell (denoted by Rl). -Each of these regions is characterized
by a different dielectric constant and a different
resistance to the flow of ions through it. If we measure
radial distances outwards from an origin midway between
the membrane surfaces at x = *§/2, and if flat electrodes
are positioned symmetrically on each side of the membrane
so that their separation is p (see figure 2.1), then
the solutions for the external region, the membrane and

the interior of the cell are of the form

by = X (expl-v (x-8/2)] - explv, (x~p+8/2)1)

¢, = x'(expl-v (x-8/2)] ~ explv (x-p+5/2)]) + V'
— . L. X 14 X

¢am = Xp expl vmx] + xmexp[vmx] + Va(i 6) + Va(1+6)

dm = Xy €xpl-v_x) + yx expl[v x] + V(%—%) + V'(%+§)

¢ = X, (explv (x+8/2)] - expl-v (x+p-3/2)1])

an



Rn Rm Ry
P -0 ) L
2 2 2 2
FIGURE 2.1: The geometry of the membrane.
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¢n = xn(exp[vn(x+d/2)] - exp[—vn(x+p—6/2)] + Vv (2.2)
where
= o - 0
Va (lOg eam/sam lOg Ean/Ban)/ea
(2.3)
| S o} = o}
Va (log eam/Bam o 8aZ/BaJL)/ea
and € % and €_9 have been chosen so that ¢_ = 0 at
an af a
= ~ o = 0 o
X tp/2, whereas e %(san + eal).

The continuity of ¢ at x = *§/2 requires that

- 1 '
X expl vm6/2] & o exp[vm6/2]

= X, (1 - expl[-v (p-6)]

X exp[vm6/2] + XA exp[—vm6/2]

= X, (1 - explv (6-p)1) ,  (2.4)

and the continuity of «kV¢ at x = *§/2 requires that

KV Xy €XP[-v /2] = x! explv_8/2]1) + k_(V'-V)/6

= Knvnxn(l + exp[—vn(p—G)]
Kmvm(xm exp[vmd/Z] - XA exp[—vm6/2]) + Km(V'—V)/G

= - szgxi(l + exp[vz(d—p)]) (2.5)
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If the separation between the electrodes, p >> the membrane
thickness, §, then the terms involving exp[—vn(p—d)]
and exp[—vl(p—é)] can be neglected, and equations (2.4)

and (2.5) have the solution

Em(v-v') [(c-1)2m+szn]/3

X~ (R24k_ K )s+k_(k_+K )¢
‘- - ET:VZVL)[(c:l)Em+fE£]/3
(Km+KnK2)S+Km(Kn+K2)C
Xg ¥ Xp = %(x,+X})/cosh (%8)
Xy = Xg = %(xi—xn)/sinh(%g) (2.6)

where

K =KV, , K =KWV , K =K.V (2.7)
m n

If we take the dielectric constant within the membrane,
Kn = 10,. which is intermediate between the value for an
aqueouskelectrolyte (= 80) and that for a lipid phase
(= 5), then for physiological concentrations of ions in
the surrounding electrolytes, v;l ~ 2A and as § ~ 804,
then & ~ 40, and so the following approximations are

adequate
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Kk _(V=-V")
X, = - (2.8)
n G(Km+Kn)

The currents in the steady state, according to

equation (1.13) with the help of (2.2), are given by

eaearcr)1
1 = i ! _yy o 1
J_ = (v'=v Va +va) (2.9)

mo6e ¢

a am

and this is in agreement with the result obtained by
integrating (1.13) across the thickness of the membrane.
We note here that (2.9) can be used to recover the Nernst

equation by assuming ja = 0, whence

[0}
" €
AV = V-V o= o 1og(—3&> (2.10)

a g O
an

where we have used (2.3) and the approximations

an al

am

Experimental measurements in the steady state indicate a
certain degree of variation of the resistances eam with
the poténtial difference across the membrane, AV =V-V',
but on a scale which is quite unable to explain the
generation of the action potential on the transient
currents of the voltage clamp, even though it is important
in accounting for the shape of the action potential. We
shall therefore treat the eam as constants in most of
the following, and seek some other dynamical explanation

of these phenomena.
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2.3 TRANSIENT EFFECTS IN THE MEMBRANE

There is at present a considerable amount of
experiﬁental data (see Cole") concerning the transient
currents at the membrane arising either from small changes
of potential similar to those occurring naturally in
excitable cells, or from the artificial conditions
imposed by the voltage clamp. It is known that there
are currents of very short duration associated with
changes in the polarization of the membrane surfaces, and
also currents persisting for several milliseconds which
are accompanied by the transfer of ions across the membrane
under a variety of circumstances. In this section, it
will be shown in a preliminary way how to account for
such currents without invoking the large variations in
the ionic permeabilities of the membrane postulated by
Hodgkin, Huxley and Katz!?. These transient currents
will in fact be attributed to plasma oscillations of the
type which are known to occur in other ionized systems.

The time-dependent behaviour of the potentials can
be studied in linearized approximation by first eliminating
the electric potential ¢ between equations (1.9) and

.~

(1.12), thus:

/32¢a 3¢

where

v2 = 4rmg. e, e2/x (3.2)
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2 2 2

takes different values v ¢V and v in the three
b s bm bn

regions RQ, Rm and Rn, and the same applies to ea,

and, to a lesser extent, to Ba. Suppose ¢as is a

solution of equation (3.1) for the steady state approached
asymptotically as t - «, of the type obtained in the

previous section, and write

oo

6. = 0, + orr J v_(netax (3.3)

so that wa(k) satisfies

Vo= w2(A)y o+ g Vi (3.4)
where
w2 = B_m_X(A+6 ) (3.5)
As ¢as already has the required discontinuity at the

membrane surfaces, wa is continuous at the common
boundaries of the three regions. The solution within

each region can be obtained in the form

Céj)féj)
v, = ] i (3.6)
ok, -w_ (A)
where the féj) (3=1,2,...) are independent solutions
of
2(3) _ 2 =(3)
VeE, = My fk (3.7)
and the ui are the roots of the algebraic eqgquation
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2

v
b

 Smaa—— = 1 (3.8)
b py-wp (A)

The last equation may be regarded as a dispersion
equation, relating the imaginary wave number u, to
the imaginary frequency A. There are clearly as many
solutions as there are different kinds of ions, and we
can identify a particular root uﬁ uniquely as an
analytic function of A by supposing that

Bim; < Rpamy < ... < B (where N is the number of

m
N N

different kinds of ions) and requiring that
2 2 2 2 2 2
wid) <up < wy(R) < up <ol < we(d) < oug (3.9)

for sufficiently large values of |A].

Within the membrane, féj) depends only on the
coordinate x measuring distances in a direction
perpendicular to the outer membrane surface, and there are
only two independent solutions for each value of k,

corresponding to opposite values of Uy So

c, (M exp(uy, x)+c'lexp(~-u, x)
k k k k (3.10)

b= 7
k ui—w;(k)

We shall see in Chapter 3 that, in the regions R, and
R~ the corresponding solutions are determined by the
initial conditions at t = 0 and the boundary conditions
at the electrodes under the conditions of the voltage

clamp. We may therefore suppose that the values wa(tﬁ/z)

of wa at the membrane surfaces x = *§/2 are known, SO
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that the wvalues of ck(A) and cﬁ(k) are to be determined

by the solution of the linear equations.

ck(A)exp(iukS/Z)+c£(l)exp(luk6/2)

_ =y (£8/2) (3.11)
k uﬁ—w;(A) =

These equations can, in fact, be solved explicitly in

the form
d . +4d ! da _ -a'
c, = <_E£__i£>Lak ; cﬂ - 2(.35__E5>Lak (3.12)
a 2 ; a 2
where
a = (+8 + v (= $1secn s
ak a 2 u)a 3/ isec: 2
at = [y (+3) -y (- ) h ()
ak wa 2 l‘Ua 2 oSS 2
w2-n? n2-w?
L, = (Z-w?) T ( . f) i (-’;—w{’—) (3.13)
L$k il T4 ba W)

It should be noticed that the time dependence of the
complex integral in equation (3.3), when evaluated by
the theory of residues is determined by the singularities
(poles and branch points) of ck(X) and cﬁ(x) in the
left half of the complex A-plane, excluding the origin.
For large values of 1}, My is of the order (Bkmk)%k,
when chosen in accordance with equaticn (3.9), so that
the contour along the imaginary axis can certainly be
closed with a large semi-circle in the left half of the
complex plane, when t/x 1s greater than each of the

1
small quantities (Bkmk)i. Also, as ¢as has been defined
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as the limiting value of ¢a as t = «, the pole at

A =0 is to be excluded by deforming the path of
integration in equation (3.3) to the left of the origin

in the A-plane. Finally, it is clear that the denominators
pi—w:(k) in equation (3.10) are removed by one or other

of the factors of ck(k) and ck(k'), so that only the
singularities of ck(k) and ci(x) need be considered.
These singularities are of four types:

(1) There are branch points in the integrand of equation
(3.3) associated with the denominators ui—uz in L.
We shall study the effects of these singularities in
Chapter 3, and show that they correspond to plasma
oscillations, which can produce transient currents in the
membrane over periods of several milliseconds (with
physiological concentrations in nerve cells). They are
consequently implicated as responsible for such phenomena
as the action potential and the voltage clamp. For the
present, we note that the characteristic frequencies are
determined by the condition that the dispersion equation
should have two equal roots (uﬁ = ui).

(2) There are two infinite sequences of simple poles, at
the values Akn of A given by uk6 = 2nmi and

uké = (2n+l)wi (where n is any integer), associated
with the factors cosech(ukG/Z) and sech(ukG/Z) of
(3.13), respectively. The first of these sequences yields
a contribution

e2ﬂinx/6

-2minx/¢§
akn . )

Y exp (1, t) (a

+ aa
k,n

kn
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to the potential ¢a, in the form of a Fourier series.
The term with n = 0, corresponding to u; = 0, ©xrequires
separate consideration. The remaining terms make no
contribution to the currents ja derived from equation
(1.13) , when averaged over the cross-section of the
membrane, because their period is the same as the thickness
§ of the membrane. The associated currents are therefore
capacity currents, whose only effect is to polarize the
membrane. The A, =~ are easily computed from the dispersion
equation (3.8), and are real and negative, with assorted
magnitudes corresponding to time constants the largest
of which is 1lOmsec. The occurrence of capacity currents
with similar characteristics is well known experimentally®.
The second infinite sequence of poles does not
contribute to the net current through the membrane and it
will be seen in Chapter 3 that the term with n = 0 makes
no contribution to the voltage clamp currents.
(3) There are also, in general, some poles associated

with the denominators w;-w2 in L

b Apart from the

ak *

pole at the origin, which, as already explained, does not
contribute to the value of the integral of equation (3.3),

there are poles for

) am (Bamaea B Bbmbeb) (3.14)
i, 5 o) Ty,

These are, however, either in the right half of the
complex plane, or, if in the left, so far from the origin

that they have no effect on observable phenomena. For
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example, the resting nerve membrane resistance to potassium

93,94

ions can be obtained from radicactive flux data and

yields a value for 6, of the order of 10%'sec”'. The
resulting extremely small time constants evidently
correspond to the times required for the ions to respond
to an abrupt change in the forces acting on them.

(4) Since the factors wa(ié/Z) are influenced by ionic
relaxation effects in the electrolyte outside the membrane,
they are functions of A and therefore have poles and
branch points corresponding to such effects. As the
external resistances are very much smaller than those in
the membrane (by a factor of about 10°%), the time
constants associated with these singularities are in
general much smaller than those considered under (1) and
(2) above, so that they have little or no effect on the
action potential or voltage clamp.

The contributions to the voltage clamp currents from
the singularities of type (1) and (2) above, will be
considered in Chapter 3, but for the remainder of this
section we shall examine how ionic processes within the
membrane affect the currents in the external electrolytes
and henée the potential difference across the membrane,
both of which are amenable to experimental determination.
In particular, we shall show that time-dependent processes
are transmitted from one region to another through their
effect on the electric potential.

As in equation (3.3) we may write the electric

potential ¢ as
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At

b= b, + ooy [_w b et ax (3.15)

where ¢s is a steady state solution of the type obtained
in Section 2.2. It then follows from equations (1.12)

and (3.3), with the help of (3.8) and (3.10), that

viy = E [e, (Mexp(u,x) + ¢ (A)exp (-, x)] (3.16)

within the membrane, so
— v = 2
Y = E [ck(l)exP(ukx) + o (M exp (-u, x) 1/u;

e (s -3 + (5 + 3, (3.17)

where c¢c(A) and c'(}) are integration constants.

The corresponding solutions in the external regions
R, and R are, assuming that the linear x-dependence
can be neglected for the low-resistance electrolyte

solutions,

ckz(k)eXp(ukR(x-6/2))+cki(k)exp(-uk2(x-6/2))\

wl=]2{(

)}
Mg
+ cé())
) = 2 /ckn(k)exp(ukn(x+6/2))+c£n(x)exp(—ukn(x+6/2))\
n o\ 2 /
kn
+ cn(k) (3.18)

The boundary conditions require the continuity of both ¢

and «xV¢ at x = *§/2, and are sufficient to determine
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not only c(A} and c'()), but also ci(k) and cn(x),
in terms of ck(A) and cﬁ(k) and their external
counterparts. So the time dependence of the external
electric potential has features determined by the ionic
potentials within the membrane, as might be expected.
The external current is given by equation (1.13), and is
therefore also determined in part by processes within the
membrane. It is worth noticing also that the integrand
of equation (3.15) has singularities for W = 0, and
these are associated with relaxation processes within the
membrane.

To complete the above analysis, it is necessary to

c, and c¢.' from the boundary

3 1
determine Cro’ ks’ Skn Xn

conditions at the electrodes and the initial conditions,

and clearly these depend on the particular experimental
situation that is under consideration - the voltage clamp,
subthreshold oscillations or the action potential. However,
the singularities of ck(k) and cﬁ(l) of type (1) and

(2) above are clearly not affected by the boundary
conditions, and in the next chapter they will be used to
compute the contributions to the currents which are observed
during the voltage clamp, but, as will be seen in Chapter 4,

they are equally relevant to a consideration of sub-

threshold oscillations or the action potential.
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CHAPTER 3

THE VOLTAGE CLAMP

3.1 THE VOLTAGE CLAMP' CURRENT

The "voltage clamp" is the term which has been used
to describe the experimental techniques in which the
potential difference across an excitable cell membrane
is changed in a very short time from one value to another
and maintained at this value (by use of an electronic
feedback system) for a period of time during which the
measured ionic current relaxes towards a new steady state.

 separated this current into its

Hodgkin and Huxley!
sodium and potassium components for the squid giant axon,
and used empirical expressions for these components to
reconstruct the action potential and other properties of
the axon. It has been recognised (Cole") that despite
the success in describing most of the important electrical
phenomena associated with squid axon, the Hodgkin-Huxley
analysis is only a sufficient description of membrane
behaviour.

In this section an expression will be derived for
the current of each ionic species which depends on the
concentrations of all the permeable ions within the
membrane phase and the resistance these ions experience
in their passage through the membrane. With the aid of
this expression, it will be shown in Section 3.2 that the
voltage clamp data obtained from the squid giant axon

with physiological intracellular and extracellular solutions,
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are explicable in terms of the linearized electrodiffusion
equations. However, quantitative agreement between
theory and experiment for large deviations of the clamp
potential from the holding potential is only obtained
when nonlinear effects are taken into account.
Measurements of asymmetries in the capacity current
for voltage clamps of equal and opposite magnitude from
a given holding potential have been interpreted by most
investigators as an experimental manifestation of the
hypothetical ionic gates proposed by Hodgkin and Huxley'?®.
In Section 3.2 it is also shown that such experiments are
amenable to a simple alternative explanation which is
consistent with the electrodiffusion model of excitable
cells. This is followed by a brief consideration of how
the effect of temperature on the time constants of the
voltage clamp currents can be accounted for by the present
model.
In section 3.3 the previous analysis is applied to
the calculation of the time constants of the currents
observed from the squid giant axon with perfused solutions.
We first consider an axon with large concentrations of
external calcium ions and an internal solution of cesium
fluoride and then one with an intracellular fluid diluted
with sucrose. Finally, there is a discussion of the
theoretical analysis of voltage clamp data from other
excitable cells - muscle fibres and the excitable cells

in the electric eels and certain freshwater algae.
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The clamping procedure described above makes use of
electrodes on either wide of the membrane, and these may
be idealized by supposing that they are plane and have
the effect of clamping the ionic, as well as the electric
potentials, at the points x = -p/2 and +p/2, relative
to an origin midway between the (plane) membrane surfaces
at x = +§/2. Consequently, the potentials ¢, and ¢
between the electrodes at the initial time t = 0 are
everywhere those (d)a0 and ¢0) characteristic of a steady
state, but that following this time the potentials at the
electrodes are held steady at values (¢as and ¢S)
characteristic of some other steady state. As time
progresses, the potentials will then approach ¢as and

b

S everywhere between the electrodes.

We shall first determine the solution in regions
R, and R . The general solutions of equation (3.4) of

Section 2.3 for these regions are:

e, (MNexp(u, (x=6/2))+c_ ' (N exp(-n,_  (x=6/2))
v = ( K2 K& K2 K2 >
ag K u 2 _ W 2
K2 afg
(1.1)
(Crn (M) exp (M (x+8/2) ) ke, ! (M) exp (—uy  (x+6/2))
l’)al’l B K< u 2 _ W 2 )
Kn an

The boundary conditions at the electrodes x = *§/2 imply

that

Cy g (M)

- CKE(K)exp(uKz(—p+5))
(1.2)

il

Crp (A - cKn(k)eXP(uKn(—o+5))
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These expressions can be used with the steady state
solutions (2.2) of Section 2.2, to specify the initial

conditions in R, and R , thus:

1 (i°° cKJ'L[eXp(—uM(x-G/Z))—exp(uKi(x-p+6/_2))]
) L ( . ; )‘“
TS & UKK - wa2
= 8x,[lexp(-v (x=8/2))-exp (v (x-p+5/2))]
1 (i® cKn[eXp(uKn(x+6/2))—exp(-uKn(x+p—6/2))]
7?IJ ) ( 2 2 ) ar
-ie K 1JK]’]. B wan
= Gxn[exp(vn(x+6/2))—exp(-vn(x+p—6/2))] (1.3)
where
5, = (o - ()

(1.4)
GXn = (Xn)O - (Xn)s

With the solutions to the equations of (1.3) (see Appendix
A) it is then possible to determine Cy and cé from
the continuity of b, at x = +8§/2 (see equation (3.11)
of Section 2.3).

Denote the initial potential difference between
x = *¥p/2 (internal potential relative to an external
ground) by Vh and the clamped potential difference by
Vc. The time derivative of the ionic current can be

neglected in equation (1.13) of Section 2.1 because of

the large value of ea for the membrane (approximately 1021!),
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and so with the help of (3.3) and (3.15) of Section 2.3,
an expression for the ionic current of the a-th component

can be obtained as follows:

eaE.a 1 1 1t
la = -J—as + i (mj ) V(wa-ll))e d>\> (1.5)
m —-joo
a a
where
eaea
las - 0 m v(d)as—cbs) (1.6)
a a

Now from equations (3.10), (3.12) and (3.17) of Section
(2.3) we may write (with £ the unit vector in the

positive x direction)

L

_ . K~ bK ~
vy = K)jb[(de sinhu,x + d & coshu, x) —-2—_——-;]:{ (1.7)
’ Y W
K a
Vg = ) [(d__ sinhu, x+d. ' coshp, x) ;EEJQ (1.8)
bK PR bK K 7 )
K,b %
- e R
m
where
_c(A)-c'(\)

and may be determined from the continuity of k'Vy at

x = x8§/2:

(1.10)



82.

where, from (3.18) of Section 2.3 and (1.2), the left

hand side of each equation may be determined from

v =3 (—CK;L()\) [exp (-, (x=6/2)) _+Aexp(UKQ;(_X_"-,D"‘;G;/;Z))]>
'8 )
K ]JK,Q,
c, (A} [exp(u, (x+6/2))+exp(-u, (x+p-6/2))]
vwo=7J ( Kn Kn : -~ "kn ) (1.11)
n = UK
n

The solution to the equations in (1.10) may be written as

(fbx(l) Ly k)

sinh (Egﬁ-) ]

e, = 1 (1.12)

\
b ul(

where fbK(A) depends on Vh and Vc.

If the total current density is denoted by 3J then

i=13, - & 5 (7 (1.13)
a

where ) j, 1is the total ion current density and
a

%% g% (V) 1is the displacement current density.

From equations (1.1l) and (1.11) of Section 2.1, it is

clear tﬁat

V.j =0 (1.14)

2

By approximating W by Bamaeak (as 6_ >> A for

a
low frequency oscillations in the membrane), we obtain
from (1.13), with the help of (3.8) and (3.15) of Section

2.3, and (1.5) and (1.12) of this section:
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. 2
B ) 1 ['l /szK}(:A',) LbK \/ '\)'a' ‘ \Kekt
)= 2 Jas * 271 | Z G . Uk S }\A+E( )} 4t P
a -i® K,b ‘u_ sinh (55 a vy
K 2 a
(1.15)
where
Ya = Bam ea
The only singularities of the integrand in equation
(1.15) which aré associated with observable currents
occur at those values of A for which
2 = 2
(1) Me™ = Uy K # 2 (1.16)
(2) uKG = 2nTi, n 1is a non-zero integer. (1.17)

Note that the non-zero value of A for which uK2 =0
is

(23—> (1.18)

and hence is not a singularity.

Two Ionic Components

If there are only two ionic components in the membrane

the condition for equal roots of the dispersion equation

+ — =1 (1.19)

reduces to a quadratic equation in A (if we approximate

wa2 by samaeax) and this can be solved to yield

complex conjugate branch point singularities A = axiB.
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By denoting the contribution to the integral in equation

(1.15) from the singularities of type (i) by S.,

1

i=1,2, we may write

e S H( M
R I _ a) (1.20)
~io [A-(0+iB)1Z[A-(a—iB)]™

The contour can be closed with a large semi-circle in
the left half of the complex plane and hence, by the
definition of S;, it can be reduced to an integration
around the branch cut joining «o+iB and o-if. Equation

(1.20) then becomes

L i Horiy) e 0T fup(a-iyy (0TI
S, = o= J dy (1.21)
e (B2-y2)*
By defining u(y) and wv(y) by
H(o+iy) = u(y) + iv(y) (1.22)

equation (1.21) becomes

: oot B8 u(y)cos(yt)-v(y)sin(yt)
S, = 3 J - dy (1.23)
-8 (B%-y2) ™%
Let Yy = B8 sin 6 and change the variable of integration
to ©0:
B

eat [2 .

S, = 7 [u(B sinB) cos (Bt sinbB)-v(B sinB) sin(Bt sinb)]de

m
2 (1.24)
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By expanding u(B sin®) and v(f sin6) as Fourier series
in the variable 6 over the interval (- g, g) and noting
that u and v are even and odd functions of 0,

respectively, we have
u=u, + ¥ u_ cos no (1.25)
oo
v = X v sin nb6 (1.26)

The Bessel function of the first kind of the n-th order

Jn(x) can be written as:

T
1

_ & 2 _ .
Jn(x) il J_E~cos(ne X sin6)deo (1.27)
2

Hence, equation (1.24) becomes

s; =e* ] z_ J_(8t) (1.28)
where

un, n even
Z = {
n

-v_ , n odd
n
To a first approximation, we may write

vy
H(A) = u, + 1 2 (1.29)
B

Then equation (1.28) becomes

S; = &%t (20T, + z1J1) (1.30)
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We shall now consider the contribution to the integral
in equation (1.15) from type (2) singularities. 1In the

two component, the dispersion equation (1.19) may be

written
. a2
"12 . ":\).‘2'.,‘
Vi o =1 (1.31)
uZ=yid  pi-yal
where
2 4n?m?
T

Solving for A in equation (1.31) we have

_ 1 2 , 4n’w%, 1 2 , 4n®u?
A==yt ) = gVt =)
2 2
L oLfrVe V2 dn?n?, 1 1, ]2
! Ao B L o 7
Ya Y2
4\)1 \)22 5
-+ } (1.32)
Y1 Y2
when
2. 2
I vi2 , i=1,2
62
then
2 2
~ V1 V2 \
Aon-1 <y1 Ty
(1.33)
A ~ 4n2’lT2{/ \)12+\)22
2n §2 \Vi%ya2+v2iya
and when




87.

then
A 4n?n?
7
2n—1 8 Y1
(1.34)
\ an%?
2n §°Ya

By evaluating the residue of the integrand in (1.15) for

each of the poles ln, n=1,2,... we may write

S, = } R_e'n (1.35)
n
n=1

Hence, there is a sequence of time constants associated
with the terms in S,, and is analogous to that obtained
from the one-dimensional heat equation (Cole", p. 188).

If we consider unit area of the membrane and denote
current by the symbol I, equation (1.15) may be written

as

D At -
I = nzl R e n- 4 (% Ias)
+ et (zoT, (Bt) + z1J: (BE)) (1.36)

N TIonic Components

In the case where there are three ionic components
in the membrane then the condition for equal roots of

the dispersion equation

2
+ T, = 1 (1.37)

2 2 2 2 2 2
ne=w) U —wa H-=Ws

\)12 \)22

is a sextic polynomial in A (its form will be examined
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in Chapter 4). The roots of this polynomial will include

two pairs of complex conjugate branch point singularities

and a pole singularity at A = 0 (see AppendixB). If
there are four ionic components in the membrane then the

condition for equal roots of the dispersion equation
N
) b (1.38)

is a polynomial of twelfth degree in A with roots which
include three pairs of complex conjugate branch point

singularities

A, = a, % iBi , 1i=1,2,3

1 1

and also a pole singularity at X = 0 (see Appendix B).
In general, for an N component electrolyte within
the membrane, the equal root condition will generate

(N-1) pairs of complex conjugate branch point singularities

Ai = o, ¢ iBi , 1i=1,2,...N-1

Hence, the generalization of (1.36) for an electrolyvte

with N ionic species is
I =T + I, (1.39)

where
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I = } R e'nt (1.40)
C n
n=1
N N-1 5
= O ) )
I, = L I+ 1 e I(za) Jo(Byt) + (21) 31 (B t)] (1.41)
a=1 b=1
Here R, n=1,2,... is the sequence of residues of the

integrand in equation (1.15) for the poles An which are

obtained from the N component dispersion equation

‘g s (1.42)
& 2___ 2
b=1 U Wb
with
2.2
2 dn“
u o= - .
62

I, may be interpreted as the capacity current which is
the term that has been used to describe the current
observed in voltage clamp records when the trans-membrane
ionic current has been eliminated by the application of
various chemical agents, whereas I, may be identified

with the observable ionic current.



90.

3.2 THE SQUID GIANT AXON

In this section we consider the voltage clamp currents
which flow across a squid giant axon membrane surrounded
by physiological electrolyte solutions. It will be shown
that the expression for the ionic current derived in the
last section (equation (1.41)) may be reduced to a sum of
two terms having a magnitude and time course that are in
qualitative agreement with those which appear in the
interpretation of the voltage clamp experiments by Hodgkin
and Huxley'?®. The expression for the capacity current is
also in agreement with experimental observations and can
be used to explain the presence of "gating" current in
experiments where the ibnic current is considerably
reduced. Finally, consideration is given to the temperature
dependence of the time constants of the voltage clamp
currents.

Suppose physiological concentrations of K+, Na+ and
Cl~ are present in a squid giant axon and its environment
(without ca™™ or other polyvalent ions) and choose

GK : eNa : eCl : eCa =1 : 10 : 12.5 : 100 (2.1)

with GK = 5 x 102° sec”'. These are representative
values for the resistance of the membrane to these ions
and are obtained from steady-state ionic flux data
(Hurlbut®®; Lakshminaravanaiah?®). We can now solve the
sextic equation obtained from the condition for equal

roots of equation (1.37) and, to a first approximation,

the branch point singularities specified by o1 * iB;
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and oy * iB2, may be associated with the sodium and
potassium currents respectively. If B8; and B2 are
determined from the concentrations which are present at

the outer and inner membrane boundaries, respectively, then

we obtain
B, = 1 msec ! and B, = .5 msec” | (2.2)

and so the time constants for the sodium and potassium
currents are in good agreement with those observed
experimentally. The electronic feedback system ensures
that the electric field oscillations in the membrane are
more strongly damped than in the case of free subthreshold
oscillations, and this may be represented by choosing

correspondingly larger inverse time constants:

oy = -1 msec ' and ap = -1 nsec” (2.3)

In comparison, the damping constants for undamped
subthreshold currents are less than (in magnitude)

.1 msec .

Each of the sodium, potassium and chloride currents
will, in general, have contributions from the J, and J,
terms in equation (1.41) (and also higher order terms).
However, Hodgkin and Huxley have observed that the steady
state current has a larger contribution from kKt than
Na+, whereas the inward current consists mainly of Na+.
Therefore, to a first approximation, it may be assumed

that the steady state current consists only of K+ and
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the current associated with the J: terms consist only
of Na+. If the difference between the clamped potential
and the holding potential is not too large, then one can

see from equations (1.15) and (1.29) that these currents

are about of the same order of magnitude and are determined

by the membrane resistances to these ions.

From (2.2) and (2.3) and the above assumptions, a

typical small voltage clamp record is obtained as follows:

i Na K
where
INa = = 6 Ji1(t) exp(-t)
IK =1 - Jo(t/2) exp(-t)

These curves are plotted in Figure 3.1. The absence of
the delay in the rise of the potassium current indicates
that the delay in the rise of the voltage clamp current
when the clamping potential is equal to the sodium
equilibrium potential may be explained by assuming that
initially the sodium current is equal and opposite to
that of the potassium current, with resultant mutual
damping. However, for large voltage clamps, a precise
determination of the magnitudes and time courses of the
ionic currents requires an examination of nonlinear
effects.

If we now consider the above system with increasing
concentrations of Ca++ and solve the equal root

polynomial in A for the four component case, then the
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result is increased damping of the voltage clamp currents.
This is consistent with the experimental studies of the
effects of Ca'' on membrane excitability: these
demonstrate that increasing the external calcium concentration
increases the threshold for firing (Frankenhaueser and
Hodgkin; Blaustein and Goldman; Narahashi®®) and decreasing
the external calcium concentration is associated with
oscillating membrane potentials. It has also been observed
that when calcium ions are removed from the external
solution the frog node becomes excitable (Frankenhaueser®?).
The necessity of the presence of small concentrations of
polyvalent ions in the external solution can be understood
in terms of the electrodiffusion model if one assumes that
the membrane has a fixed negative charge. The effect of
this fixed charge is to displace the branch cut associated
with the inward sodium current, somewhat to the right,
and if the real part of the branch cut becomes positive
then the large inward current vanishes and the cell loses
its excitability. This is because, for large times, the
contour along the imaginary axis in equation (3.3) of
Section 2.3 can only be closed in the left half of the
complex plane, and hence singularities in the right half
do not contribute to the ionic potentials or currents.

We now consider the capacity current which is observed
when a voltage clamp is applied to the squid giant axon.
It usually has a time constant of the order of 10 usec

but under some circumstances it has a considerably larger

relaxation time of the order of 10 msec (Hodgkin, Huxley
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and Katz'?; Meves and Vogel®®). This "tail" in the
capacity transient is not explained by the presence of
a series resistance but instead has been attributed to
imperfections in the membrane capacity. In the present
theory, the exponential terms have a sequence of time
constants given by (1.33) and (1.34), the largest of
which (about 10 msec) corresponds to small values of n.
Also, the magnitude of the capacity current is in
agreement with that obtained from RC-circuit model of
the membrane, as can be seen from the expression for the
voltage clamp current (equation (1.15)).

When the ionic current across the membrane is
blocked by the addition of certain chemical agents
(e.g. tetrodotoxin) or by the presence of impermeant ions
(e.qg. Cs+) and hyperpolarizing and depolarizing voltage
clamp pulses of equal size are applied to the axon, the
resulting capacity currents exhibit asymmetry. Now, it
was assumed by Hodgkin and Huxley!'?® that a change in the
electric field across the membrane caused a reorientation
and redistribution of certain charged membrane molecules
("gates") which determined the resistance to ions, and
that this was the only factor responsible for a nonlinear
change in the current. Consistent with this hypothesis,
the capacity current asymmetry was assumed to be a
manifestation of "gating current" (Armstrong and Bezanilla;
Keynes and Rojas®?).

In the present model, we are assuming that the

resistance of the membrane to ions does not depend on
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time explicitly but is a function of the steady state
electric field within the membrane. Consequently, the
time constants associated with the exponential terms in
the expression for the capacity current (equation (1140))
will also depend on the magnitude of the voltage clamp.
Let the capacity current for a positive step in the
voltage be represented by a single exponential term

I, =R exp(-at)

and similarly for an equal negative step in the voltage

Ic_ = - R exp(-bt)

where R 1is a constant determined by the characteristics

of the membrane phase. Then I the sum of the

crt’
positive step and negative step capacity transients, is
given by

IcZ = Rl[exp(-at) - exp(-bt)]

This is plotted in Figure 3.2 (with a = 5 msec—l,

b = 6.5 msec”. and R = 1 mamp) and may be compared
with the experimental records of the "gating current"
100).

(Armstrong

Temperature

The effect of temperature on a biological variable
or parameter may be described by specifying its temperature

coefficient Qi¢ which is defined to be
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_ x(T+10)
Qg T T x(T)

where T is measured in °

C. The temperature coefficients
for the rate constants o and BS of the giant axon
are of the order of 3 whereas Qio values for éNa -
and §K are about 1.3, where §Na and §K are the
maximum conductances for sodium and potassium (Hodgkin
and Huxley'?).

The temperature dependence of the magnitude of the

sodium and potassium currents follows from the Q;, value

(about 1.4) for the steady state membrane resistance to

these ions (see Cohen and Landowne!%!) . TIf one considers
equation (3.8) of Section 2.3 and notes that vb2 and wa
are both proportional to Bbz, then one can see that in

the linear theory, the temperature dependence of the time
constants of the ionic currents also arises from the
temperature coefficients of the membrane resistances eb,
and these are too small by a factor of two. However, in

a nonlinear theory one would expect that the time constants
would include, in addition, an explicit temperature
dependence resulting from the Boltzmann factor in the
charge density (equation (1.11) of Section 2.1). 1In
particular, if eb¢b had a value of about 30kT then

the ionic current relaxation time would have the correct
temperature coefficient of 3. Recent calculations of

the electrostatic energy of ions in aqueous channels have

demonstrated that the energy of n ions in a channel

(n=1,2,3,...) increases rapidly with n (Levitt!??),
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so that if there is a negative fixed charge within the

channels, then it is reasonable to expect that eb¢b

does in fact approach the value 30kT.
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3.3 THE PERFUSED AXON AND OTHER EXCITABLE CELLS

In this section we consider the application of the
electrodiffusion model firstly to the squid giant axon
with non-physiological solutions and then to other
excitable cells.

The experimental results obtained with squid axons both
in large calcium concentration solutions are important
because of the significance of polyvalent ions, and in
particular calcium ions, for cell excitability. If the
axon is perfused with an isotonic solution of 25mM-CsF+
sucrose and placed in a solution of 100mM CaC}2+sucrose
then the resting potential is about -30mV. By clamping
the potential difference across the axon membrane to a
more positive value, a small Ca++ inward current with
a time constant of 10-20 msec is usually observed. When
small amounts of Na+ (10-50 mM) are added to the external
solution and a small clamp is again applied to the axon
then the inward current is composed of Na© (the "fast"

component) and Ca++

(the "slow" component) with time
constants 2.5 msec. and 14 msec. respectively (Meves and
Vogel?®) .

Now if we consider a four-component system consisting

++

+ - . .
of Na , C1L , ca and Cs+ in the above concentrations

and assume that

which are the accepted steady state membrane resistances

for these ions, then the condition for equal roots of the



Appendix 3). When this is solved to calculate the time
constants of the voltage clamp currents, we find that
those associated with the Na' and Ca++ currents are
of the same order of magnitude as those observed
experimentally, that is, 1 msec and 20 msec, respectively.
The "fast" component would be interpreted as the movement
of Nat with respect to €1~ and the other ions present,
and the "slow" component as the movement of catt with
respect to these ions. This would explain why the "fast"
component is never observed without the presence of NaCl
in the external solution (which is not explained by the
"gating" theory).

Further confirmation of the electrodiffusion model of
excitable cells is obtained from experiments on squid
giant axons with low ionic strength solutions. If the
axons are perfused with solutions diluted with an isotonic
sugar solution then action potentials can still be elicited
even though the resting potential is near zero (Tasaki
and Shimamura; Baker, Hodgkin and Shaw; Narahashi; Baker,

Hodgkin and Meves!®3),

This result was not expected
because, according to the Hodgkin-Huxley theory, there
should be extensive inactivation at low resting potentials.
However, a shift in the sodium activation and inactivation
versus membrane potential curves was observed (Moore,
Narahashi and Ulbricht:; Chandler, Hodgkin and Meves?!®")

and, by assuming the existence of a negative fixed charge

at the inner membrane surface, it was suggested that the
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resulting double layer potential caused a change in the
kinetic characteristics of the sodium channel (Baker,
Hodgkin and Meves; Chandler, Hodgkin and Meves!?®3). 1In
the present theory, if a voitage clamp is applied to an
axon, the resulting sodium current depends on the difference
between the holding potential vy and the clamp potential
Vs and not directly on the resting potential. The
generation of an action potential depends on the nonlinear
coupling of the ionic currents with the electric field
within the membrane and this operates independently of

the magnitude of the resting potential.

It has also been observed that the action potentials
from axons perfused with low ionic strength solutions or
axons with low external potassium concentrations have a
long duration (Narahashi; Baker, Hodgkin and Meves; Adelman,
Dyro and Senft'°®). This has been accounted for by
assuming that a low potassium concentration is associated
with incomplete sodium inactivation and an increase in
the sodium inactivation time constant. By solving the
equal root polynomial, we find that the effect of a
decreased membrane concentration of potassium is to increase
the potassium current time constant and reduce the damping
of the sodium current, and this is consistent with the
above observations.

The solution of the linearized electrodiffusion
equations has, previously in this chapter, only been applied
to squid giant axons, but we shall now give a brief
consideration to its application to a number of other

excitable cells.
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For barnacle muscle fibres, the upstroke of the
action potential is the result of an inward calcium
current and its amplitude is independent of the external

107y, A discussion of

concentration of sodium (Hagiwara
the corresponding voltage clamp records would be similar

to that already given for calcium currents across the

squid axon membrane. In heart muscle fibres, depolarization
is accompanied by an inward sodium current and
repolarization by a slow outward potassium current which
results in the characteristic cardiac action potentials

(Draper and Weidmann®°®).

More detailed analysis of the

voltage records obtained from Purkinje fibres indicates

that the transient inward current is carried mainly by

sodium ions but also has contributions from calcium ions

with a time constant (about 50 msec) similar to that

associated with calcium currents across the axon membrane.

The plateau is principally the result of an increased

resistance to potassium ions as the membrane becomes

depolarized (Noble and Tsienj McAllister, Noble and Tsien'??).
The electric eel is capable of producing electric

currents in the water surrounding it and these are

generated by specialized cells called electroplaques.

However, in contrast to the squid giant axon, the spikes

are characterized by an increased sodium current but a

reduced potassium steady state current (Keynes and

Martins-Ferreira, Nakamura, Nakajima and Grundfest!!'?).

The voltage clamp records obtained from the fresh-water

plants Chara and Nitella are also similar to those



104.

obtained from the squid axon, except that the inward
current corresponds to the outward flux of chloride ions,
the time constants are about a thousand times larger
(1 second) and the magnitude of the currents are reduced
by approximately the same factor (Gaffey and Mullins;

Mullins; Kishimoto!'?l).

From the condition for equal
roots of the dispersion equation and the expression
derived for the voltage clamp current (equation (1.15)),
one would expect such a result if the resistance of the
plasmalemma to the active ions is approximately a thousand
times larger than that for the axon membrane.

Although the detailed description of the voltage clamp
ionic currents varies considerably from one cell to
another, and has only been accounted for in the Hodgkin-
Huxley model of the squid axon and its extensions by
postulating a separate gate for each class of ions with
similar dynamics with respect to a given excitable membrane,
this variation can be explained faithfully in the electro-
diffusion model by application of the condition for equal
roots of the n-component dispersion equation. This leads
to the conclusion that a change in the potential difference
across a cell membrane results in a capacity current and,
in general, two kinds of current for each permeable ion -

a damped oscillatorv current (for the voltage clamp, a
transient peak current) and a relaxation to a new steady

state current.
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CHAPTER 4

SUBTHRESHOLD OSCILLATIONS AND THE ACTION

POTENTIAL

4.1 PLASMA OSCILLATIONS IN THE MEMBRANE

Plasma oscillations in an ionized medium are
oscillatory motions of the charged particles which are
coupled to the electromagnetic field and arise from the
long-range nature of the Coulomb force. They may be
generated in the cell membrane by a stimulus which is
applied to the surrounding electrolytes and which then
propagates to the membrane where the Debye layers are
disturbed. This perturbation is accompanied by relaxation
oscillations within the membrane, and with the appropriate
membrane resistance to these ions and sufficiently large
concentration gradients across the membrane, the
amplitude of the plasma oscillations is enhanced by non-
linear coupling effects, and this in turn facilitates
propagation of these oscillations to adjacent regions.

In this section we consider the normal modes of
oscillation in an ionized medium of two ions, and the
nature of the singularities associated with the equal
root condition for the three and four-ion dispersion
equation. In the next section we examine the oscillations
in the potential difference across the membrane for a
subthreshold stimulus, and in Section 4.3 we extend the

previous analysis to the nonlinear plasma oscillations



106.

which characterize the action potential.

We begin by considering the interaction of just
two different kinds of ions within the membrane. 1In
this case the dispersion equation (3.8) of Chapter 2
becomes

V12 V22

‘_ 2 i 2
TRECR wi-w,

=1 . (1.1)

As shown in Section 2.3 the normal modes of oscillation
within the membrane are to be expected when the roots
2

;> and u, are equal and in this case the condition

for equal roots is

(W2 = v,2 = w2 = v, %)% + 4v,%v,% =0 (1.2)
where
Wo?2 = w, P o= B,myA(A+6,) - B mA(A+0,)
= v,% = v,2 t 2i v,v, . (1.3)

One of the solutions of this quadratic equation is given

by

0162 (Y2-Y1) viZ-v,2+2iv,v,
A = - =2 1.4
' Y201-Y102 ( Y2-Y1 ( )

and represents very strongly damped oscillations and so
can be disregarded (for the squid giant axon, 6 is of
the order of 102!, y =~ 10'2 and v? =~ 19!% in the

membrane region). The other solution is
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2 2 .
V] =V +t2iv;V,
A = 1.5
Y2—Y1 ( )
and corresponds to observable oscillations of frequency
10%Hz. for the voltage clamp, subthreshold oscillations
and the action potential.
If the ions are monovalent, it is evident from

equation (3.2) of Chapter 2 that, to secure electrical

neutrality, vi2 = v,? so that, provided v:? - v,? and
Y» - Y1 do not have the same sign, almost undamped
oscillations of angular frequency
. 2V1Vs
w= +il = ——= 1.6
Y2=Y1 ( )
will result.
The value of u? corresponding to the condition
in equation (1.2) is
u2 = 1/2(W12 + W22 + \)12 + \)22) (1.7)

so that the associated normal modes of oscillation are

obtained by setting

3,
= x¢a (1.8a)

ot
v2¢a = 1/2(w1?2 + wa? + vi?% + v22)¢a (1.8Db)

in equation (3.1) of Chapter 2. We thus obtain the

equations

1/2(wz2? + v22 = w12 = vi?) = v,y %¢,

1/2(w 2 + vi?2 = wa? = vp?) vi2¢, (1.9)
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and hence when v12 = sz ’

Vid:y + ivod, = vo, exp(tiwt) (1.10)

where v¢i is independent of time, though it depends on
X in a manner determined by equation (1.8b).

With three different kinds of ions in interaction
within the membrane, the condition for equal roots of

the dispersion equation (3.8) of Chapter 2 is (see Appendix

B) :
3 2

| S q -

5 + ) 0 (1.11)
where
P=n1n2+ﬂ2n3+n3ﬂ1-V12V22—V22V32-V32V12
q=ﬂ1NZn3-V12V22ﬂ3‘V22V32ﬂ1-v32V12ﬂ2+2V12V22V32

Ng = YA+ v, % = [ly1 +v2 +vs)) + viZ 4+ va? 4+ v3?1/3  (1.12)

and wa2 has been approximated by yax. In this case

equation (1.11) is a sextic equation in A and there are
therefore six singularities affecting the integral in
equation (3.3) of Chapter 2, associated with the vanishing

of the denominators ukz—uzz. It is easily shown (see

Appendix B) that when ukz—ulz is small,
Ay B+ L%y —w,)
; (2g?)°
where (w;,w.,ws;) = (l,w,w?) and w is a complex root

of unity, and that equation (1.11) has a double root at

A =0, and so the four remaining singularities are
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quadratic branch points.
Although equation (l1.11l) can in general be reduced
to a quartic and solved exactly by quadratures, the

roots can also be determined approximately by setting

2 {6W2 \)32\

\F =W = \—_z'\)22+\)3 /
2 _ 2 _ (SW2 \)22\
W3 = w (m/ (1.14)

so that 6w? = w3? - w,2, and neglecting terms quadratic

in 6&w?, the dispersion equation then reduces to the

quadratic

\)12 + \)224-\)32

UZ-w, 2 nZ = w2 = 1 (1.15)

which is similar to equation (1.1). Two other quadratics
are obtained by permuting the subscripts 1,2 and 3.

In this way one sees that the roots are in general complex,
and that one pair is almost pure imaginary when the
condition for electrical neutrality is satisfied, and
hence corresponds to almost undamped oscillations. One
can also see from equation (1.15) and equation (3.2) of
Chapter 2, that polyvalent cations have a more pronounced
damping effect on the electrolyte system than monovalent
cations (and this is confirmed by consideration of the
exact equations - see Chapter 3), and this suggests

why calcium ions on similar polyvalent cations are required
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for excitability (Frankenhaeuser?®’).
Finally, with four ionic composents in the membrane
the condition for equal roots of the dispersion equation

is a polynomial (D) of the twelfth degree. Again, it

may be shown (see Appendix B) that when ukz—uzz is
small,
, ) + %)D (w —wJ)
u _u = 1 2 1 J/ r (1'16)
P @)@ -2 (@3

where a,b, and g can be expressed in terms of Yy
and vi2 (i=1,...,4), and that the polynomial D has
a root of order 6 at X = 0. Hence, the other six

roots are again quadratic branch points.
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4.2 SUBTHRESHOLD OSCILLATIONS

When a constant current is applied to an axon
membrane then there is in general a damped oscillatory
response in the trans-membrane potential difference

112y mThis oscillation

(Sabah and Leibovic; Mauro et al.

has been described in terms of the voltage and time-

dependent membrane conductances for sodium and potassium

ions, which were first determined from the voltage clamp

experiments by Hodgkin and Huxley!®. 1In this approach

the axon membrane is modelled by an equivalent electrical

circuit which includes a capacitance, an inductance and a

resistance, and variations in the potential difference

across the membrane are attributed to voltage-dependent

membrane ion permeabilities. In Chapter 3 we described

the voltage clamp currents across the excitable membrane

in terms of damped plasma oscillations within the membrane

phase, and in this section we show that a similar treatment

is also successful in accounting for subthreshold oscillations.
The geometry of the experimental system is assumed to

be the same as that considered for the voltage clamp (see

Figure 2.1 of Section 2.2), but in this case the electrodes

maintain a constant current at the points x = -p/2 and

x = +p/2 for the duration of the current clamp. Initially

(at £t = 0) the potentials ¢a and ¢ between the

electrodes have wvalues (¢a0 and ¢,) characteristic of

a steady state, but following the application of a

constant current at the electrodes, these potentials will

approach the new steady state values ¢as and ¢S.
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The steady state solutions of Section 2.2 were
appropriate for voltage clamp boundary conditions but if
a constant current is maintained at the electrodes then
they require a minor modification in regions R and Rn

2
as follows:

0.0 = X' (expl-v (x-8/2)] + explv (x-p+6/2)])

¢, = X,'(expl-v (x-8/2)] + explv, (x-p+§/2)]) + V"

¢,y = X, (explv (x+8/2)] + expl-v (x+p=-8/2)1)

¢n = xn(exp[vn(x+6/2)]‘+ exp[—vn(x+p—6/2)]) + Vv (2.1)

The general solutions wa and y of equations (3.4) and
(3.16), respectively, of Section 2.3 for the regions
Rl and Rn are given by (1.1) of Section 3.1 and (3.18)

of Section 2.3, and so we may write, with the help of

(1.5) of Chapter 3:

z laJL = Z(iasz,)s i
a a,
. qu(X—G/Z)_ ' ~Hy , (x-68/2) o
[ 1 4]1 (Cx2® ke © )XKe il
\2m1 ) . \ Hyo 4
Ldan = 1 Gap)o *
} ukn(x+a/2)_ 'e—uk (x+8/2) .
1 [t Ckn® “kn X ke ar
2ni |, T AT
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The constant current at the electrodes x = *p/2 implies

that

= ' —
iy Cy exp(ukz( p+38))

ckn' = Cp . exp(ukn(—p+6)) (2.3)

The initial conditions for ¢a in R and R can

now be written as

1 ico /ckg'[exp(—ukg(x"G/Z))+exp(uk2(x-p+6/2))]
e e )
k& al

= ze'[eXP(—vg(x—d/Z)) + eXp(vZ(x—o+6/2))]

1 (1% o Cpn [OXP (g, (x48/2)) bexp (-uy , (x40=8/2))1
2TL) . z\ 2 2 , £l
~isk Llkn - wan
= dxn[exp(vn(x+6/2)) + exp(—vn(x+p—6/2))] (2.4)
where
1 — 1 — 1
6xy" = (xp")o (Xy ') g
6x, = (Xpdo = (X )g (2.5)
Again, Ch and ck' can be determined from the solutions

to the equations in (2.4) (see Appendix A) and the
continuity of wa at x = *6/2 .
Now, if we denote the constant current per unit area

at the electrodes by I and the potential difference
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across the membrane by V (that is, take the electric

potential V' in R to be zero) then from (1.13) of

L
Section 3.1 we have
vy =2 71 - 1 (01a (2.6)
c Jo e i )
where
C = 4t (2.7)
is the capacity of unit area of the membrane, and I. is

1

the ionic current and is given by an expression of the form
(1.41) of Section 3.1 ((ZO)b and (Zl)b will clearly
depend on the boundary conditions of the current clamp).
We now show that the expression for the potential
variation during a current clamp given by equation (2.6)
is in agreement with experimental observation. In Chapter
3 we considered the case of three ions in interaction
within the axon membrane (sodium, potassium and chloride
ions) and, as the extracellular concentration of K+ and
the intracellular concentration of Na+ are small, we
assumed that the branch point singularities o;*if; and
0,*ifB, could be associated with the sodium and potassium
currents, respectively, and calculated the oscillation
frequencies B; and R, from the concentrations of ions
at the membrane surfaces. If instead, o and Bi,
i=1,2 are determined from the average ion concentrations

within the membrane then we find that
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By, = lmsecP1 (2.8)

R

B1

and

o, = —-lmsec ', a, = ~.lmsec” (2.9)

In general, the integration around each branch cut will
contribute to each of the ionic currents through the
membrane, but for the squid giant axon, as |ai] > |a2],
the contribution from the branch cut joining a, + iB»
and o, - iB; will dominate.

If the constant current at the electrodes is small
(about 1lpamp cm?) then there will be little change in the
steady state sodium current and so we may assume that the
clamp current is equal to the steady state potassium
current. Therefore, the ionic current response I; may

be written as
I. =1 + I (2.10)
where

-1 _t
I, =-1.5J; (t)exp( 10) (2.11)
is the damped oscillatory current and has contributions
from both sodium and potassium ions, and

D=1 - -t
Ir =1 Jo(t)exp( lO) (2.12)

is the relaxation of the potassium current to a new steady
state value. With these expressions the variation in the

potential difference across the membrane is given by

I t
vie) = = JO [3_(1)+153, (1) Jexp(~{5)dr (2.13)
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where I_ = luamp cm® and C = lufarad cm?. Equation
(2.13) 1is plotted in Figure 4.1. We

can see from equation (2.13) that the subthreshold
oscillation about the resting potential is symmetrical
with respect to positive and negative applied/currents.
Although approximate symmetry is certainly evident in the
experimental record of small subthreshold oscillations,
there are several reasons why this is not exact.

The first depends on the fact that increases in the
potential difference across the membrane are associated
with predominantly inward sodium currents, whereas downward
excursions in the potential are associated with outward
- potassium currents, and the magnitude of these currents
are determined by the ion concentration gradients and the
resistances of these ions relative to other permeable ions.
This will be shown in the next section where we analyze
the action potential in an excitable cell with only two
ionic species in the electrolyte solutions. In the squid
giant axon this effect is manifested as a slight increase
in the amplitude of the oscillation for positive current
clamps as compared with those which are equal in magnitude
but opposite in sign (see Mauro et al.!l!?).

A second source of asymmetry is the nonlinear relation
between the ionic currents and the electric field within
the membrane, and this becomes more prominent as the

amplitude of the subthreshold oscillations increases. When
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a large negative clamp current is applied to the resting
axon, the response is characterized by a non-oscillatory
relaxation to the new steady state potential. In contrast
to this, if the constant clamp current at the electrode

Ie is progressively increased to a more positive value
then, when the threshold current is attained, a large-
amplitude potential variation (the action potential) will

be elicited. 1In the next section we show that the existence
of a threshold potential and the shape and amplitude of

the action potential can be accounted for in terms of the

nonlinear electrodiffusion equations.
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4.3 THE ACTION POTENTIAL

3 the mechanism

In the theory of Hodgkin and Huxley'
of the action potential was explained in terms of the
results obtained from the study of the voltage clamp,
and it is clear both from an experimental point of view
as well as a theoretical one, that these phenomena are
indeed related. However, there are two important
differences between the currents associated with the
action potential and the voltage clamp. While the latter
is a transient effect in which the exponential decay of
the associated currents strongly suggests irreversible
diffusion across the membrane, the action potential under
suitable conditions can be repeated indefinitely, and,
disregarding a small but noticeable assymetry in the
potential profile, has many of the characteristics of a
reversible process. Also, while the currents of the
voltage clamp are predominantly transverse to the membrane,
the most important property of the normal axon action
potential from the biological point of view is its
propagation without appreciable loss of amplitude in the
longitudinal direction. These striking differences have
not previously been reconciled satisfactorily with a
common mechanism involving the transport of ions through
a membrane phase governed by electrodiffusion processes.
The analyses of Chapter 2, however, suggests that all
excitation phenomena with relaxation times which range

from a millisecond for the squid giant axon to one second
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for excitable plant cells, are associated with plasma
oscillations in the membrane and do not require the
hypothesis of large variations in the ionic permeabilities.
This is particuiarly true for large voltage clamps and

the action potential where the presence of nonlinear
plasma oscillations is associated with the transfer of

ions through the membrane at a rate very much greater than
could be achieved steadv state diffusion.

Although the possibility of undamped plasma
oscillations within the membrane is necessary, it is not
however sufficient to guarantee the appearance of an
action potential. With only two different kinds of ions,
for instance, the regquirement of electrical neutrality is
sufficient to prevent the generation of large amplitude
oscillations within the membrane. Other factors which
influence the excitability properties of biological cells
are temperature, ion concentration gradients across the
membrane, and the presence of small electrolyte concentrations
of certain polyvalent cations (for example, calcium ions).
Each of these environmental constants has an effect on
the solutions of the dispersion equation (and hence on
the branch point singularities which can be obtained from
the condition for equal roots of this equation) and the
amplitude of the relaxation oscillations within the membrane.

We have shown in Chapter 3 and the previous section
that the linearized theory developed in Chapter 2 is able
to account qualitatively for the observed phenomena

associated with a small voltage clamp across the membrane



from a given holding potential,

oscillations. However,
features as the existence of a
almost invariable amplitudé of
the variations in the shape of

different excitable cells. We
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and for subthreshold

it cannot account for such

threshold potential, the
the action potential and
the action potential for

shall therefore consider

the consequences of non-linearity of the exact form of

Poisson's equation.

Neglecting the inertial term in

equation (1.9) of Chapter 2, which as we have seen is

nearly always possible within the membrane, we obtain

0¢ am

—fa . y2 S e

Yo ot v ¢a K Z o
b

where Y, = Bamaea

eXP(-Bbeb¢b) (3.1)

As the non-linearity is expected to affect the time

dependence, rather than the spatial dependence of the

solution of these equations, we adopt for

expressions derived from the linearized theory.

v2¢a the

In the

application to just two different kinds of ions, we

substitute from equatiocns (1.8)

obtain
Jv° B = 391+ T

+ %ég(e—se(¢1s+$1)
Loy iﬁf = 202Fs + V2455

v, -
+ 2--gé(e

where

Be(dpr1s+d1)

into equation (3.1) and

- eBe(¢ZS+$2))

_ e86(¢2s+¢2)) (3.2)
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avV: = Y1 = Y2
€% = g,° = —g,0

e = e = e (3.3)

and $i (i=1,2) are the deviations from the steady state
ionic potentials. From equation (1.9) of Chapter 2 it
follows, under the same conditions, that the electric and

ionic potentials are related hy

av2d = c(y1d2 = Y2¢1) (3.4)

where

v w? (ya-y2) 2

= v“i-uﬂ(yl—l-Yz)E . (3-5)

By addition and subtraction of equations (3.2), we

have

G§E($1 + ¢2) = $1 - B2

agE($1 - 52) = 1 + 52 + é%(e'se(¢ls+$l) - ese(¢28+$2))
(3.6)

where V2(¢1s+¢zs) has been absorbed into the exponential
terms.

This pair of equations is the macroscopic counterpart
of a pair of equations derived by Triffet and Green?’ in
their model of the neuron, and has similar properties,
but whereas the oscillation frequency of the former is
of the order of 10%Hz, the frequency of the microscopic
polarization oscillations is considerably greater
(approximately 10!?Hz). The effect of the non-linearity
is to cause a rapid reversal in the rate of change of
the potentials when the exponent of either of the exponential

terms attains a magnitude appreciably in excess of 1.
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Consider a two-ion membrane system with

Vi = V, = -30mV

‘and assume that the mobility of the anion (ion 2) is
greater than that of the cation (ion 1) within the
membrane :

6y = 206, .

Equations (3.2) may now be solved numerically and the
solution curve for the electric potential has been plotted
in Figure 4.2 (from equation (3.4) with potential changes
relative to -70mV). Although its shape and time course
is similar to the squid axon action potential, its
amplitude is dependent on the initial conditions, and
equations (3.2) only exhibit threshold behaviour if the
coefficient of 51 (i=1,2) in the exponential terms is
sufficiently large. In a physical membrane system with
just two ions in the surrounding electrolytes, this value
is never attained, and hence provides an explanation for
the excitability of a two-ion system.

For a three—ion or four-ion membrane system which
includes the calcium ion, it has been shown by Green and

Triffet!!?® that

bog = Clog ¥ dgq)

where c¢ 1is large for a range of calcium concentrations,
and this ensures that the membrane system is excitable,
and that the generalization of the pair of eguations (3.2)
. + - ++ +
for a four-ion axon membrane system (K , C1 , Ca ', Na ),

has an action potential solution with a magnitude and

waveform that is in good agreement with experiment.
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We shall now consider the significance of the
analyses of previous sections for an understanding of
the propagation of the action potential along the axon
to either another nerve cell, a muscle cell or an effector
organ. The propagating nervous impulse depends on the
generation of sufficiently large potential oscillations
across the membrane which induce adjacent regions to
undergo similar changes. However although the subthreshold
oscillation is rapidly attenuated in a longitudinal
direction along the axon, its velocity of propagation is
almost the same as that of the action potential.''®
Therefore, the study of propagation does not depend on an
understanding of the ionic mechanism of the space-clamped
action potential, and this has permitted attempts to
estimate the propagation velocity of the nervous impulse
based upon the cable properties of fibre (see Taylor''®).
Such an analysis can account for the dependence of the
propagation velocity on the square root of the diameter
of the unmyelinated fibre, and also its linear dependence
on the diameter for the myelinated axon (Mackey'!'®). The
importance of the dynamical theory of excitable membranes
is in calculating the oscillation frequencies of the

currents across the membrane, in terms of which the

velocity of propagation can be expressed.
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CHAPTER 5

MICROSCOPIC TRANSPORT PHEENOMENA AT THE

EXCITABLE MEMBRANE

5.1 CORRELATION-FUNCTION EXPRESSION FOR THE IONIC

CONDUCTIVITY OF THE MEMBRANE

In previous chapters we have shown how to account
qualitatively for the voltage clamp ionic currents,
subthreshold oscillations and the action potential,
without assuming that the ionic conductivity is dependent
on the electric field within the membrane. However, it
is in fact necessary to assume such a dependence in order
to explain the non-Ohmic steady state currents of certain
ions (for example, potassium) which are conserved during
large voltage clamps of the axon membrane, and also to
describe the variations in shape of the action potential
for different excitable cells. In this chapter we shall
examine the microscopic basis of the electric field-
dependence of the ionic conductivity within the membrane,
and in view of the correspondence between the Triffet-
Green?’ quantum mechanical model of the neuron and the
macroscopic theory of excitable membranes developed in
this thesis, this can be determined by applying correlation
function methods to the Hamiltonian characterizing the
energy of a nerve cell and its environment.

In this section we give a non-perturbative derivation
of the time correlation function expressions for the

transport coefficients, and deduce the Einstein relation
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between the ionic conductivity and the corresponding
diffusion coefficient. By considering the time evolution
of the microscopic currents across the membrane, the
nonlinear dependence of the ionic conductivity on the
membrane potential difference can be calculated, and may
be compared with the voltage-dependence of the ion

3 from

conductance as determined by Hodgkin and Huxley'
the voltage clamp experiments. However, the dependence
of the ionic conductivity on the electric field within
the membrane is expected to show only moderate deviations
from linearity when the magnitude of the field is large
within the membrane.

The thermodynamié properties of an equilibrium
system can be evaluated from the partition function which
depends on the Hamiltonian of the system and the thermo-
dynamic properties of the reservior with which it is in
contact, such as the chemical potential, pressure and
temperature. When an equilibrium system is perturbed by
an external or mechanical force which can be represented
by an additional term in the Hamiltonian, then the
evolution of the thermodynamic quantities can be described
by applying Kubo's linear response formula.!'!’ When the
perturbation is instead due to an inhomogeneity in the
system, there are several alternative methods which can
be applied to yield analogous expressions for the
transport coefficients (M.S. Green!!®, Kubo et al.!!?,

0

Mori???, McLennan!??).

In the next section we derive a

set of integral equations which can be used to determine
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the time-dependence of the equilibrium parameters in the
Triffet-Green model.

The expressions for the transport coefficients
which are obtained by applying correlation function
methods are in agreement with those obtained from kinetic

71172  yowever, van Kampen'?? has claimed that the

theory.
usual method of deriving Kubo's formula is dependent on
assumptions which are not in agreement with the fundamental
randomization hypothesislof statistical mechanics. More
specifically, he claims that the usual derivation assumes
that the microscopic motion is linearly dependent on the
driving force when the latter is sufficiently small, but
this condition is not satisfied for macroscopic forces.
The perturbation to a many-body system may be
considered to have two distinct effects. The first is
to change the microscopic orbit of each particle, and
the second is to alter the density matrix which depends
on the ensemble used to describe the system. Although it
is not legitimate to assume that individual particle
orbits are linearly dependent on a small perturbation,
it is however valid to assume that a small macroscopic
perturbation will result in a correspondingly small change
in the density matrix describing the system, and so it
appears that his objection cannot be sustained.
In response to van Kampen's critique there have
been attempts to derive response formulae by alternative

methods. Edwards!?® derived a formula for the electrical

resistivity by expanding the electric field in terms of
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the current, whereas Xenkre'!?" has attempted to avoid
linearization of the Liouville equation by use of the
projection techniques of Mori and Zwanzig. However,
both derivations make a linear assumption which is
equivalent to that used by Xubo.

In considering the correlation function expression
for the ionic conductivity during the action potential,
one cannot assume that the change in the electric field
is small, and so we now derive a response formula which
is independent of the magnitude of the driving force, and
is similar in some respects to that used by Mori'?° in
obtaining thermal transport coefficients (see also
125y

Visscher

If we write the Hamiltonian H of the system as
H=H + JV(x)Q(x)dx (1.1)

where H? is the non-electromagnetic part of the
Hamiltonian, V(x) -is the electrostatic potential and
0(x) 1is the charge densitvy at a point in phase space,

then the observable A(t) satisfies Heisenberg's equation
A(t) = [A(t),H] (1.2)
ih d : *

If we consider the statistical average of A(t) in the
Heisenberg picture (instead of the Schrodinger picture

which is used by Kubo!!7) we have
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<A(t)> = Tr(p(0)A(t))
-t
= <a(0)> + f% Tr p(0) [A(t"') ,H]dt"
-o .
1 (T
= <A(0)> + Tr{[H,p(0)]JA(t") }dt' (1.3)
‘0

where p(0) is the density matrix of the system at
time t=0, and, for a grand canonical ensemble, is

given by

p(0) = e-IB(X)[h(x)'“(x)n(x)-V(X)Q(x)]dx (1.4)

where h(x) is the total Hamiltonian density, n(x) is
the number density and up(x) 1is the chemical potential.
" Now, if A is any operator, it is easily shown that

[a, e B(H’-uN),

1
0 0
- o8 '““’J e B LE =) 16 6 (%) [h(x) —u (%) n(x) =0 (x) V(x) 1dx} ,A]
0

0
e~ MBUH -uN) 45 (1.5)
Also,

I[s(x)[h(x)—u(x)n(x)-Q(x)V(x)]dx,Hl

- in[s(x)[ﬁ(x)—u(x)ﬁ(x)—é(x)V(x)1dx

thVB(x)(thVJQ)dx—thV(B(x)u(x))Jndx
- thBVV(x)Jde (1.6)

where we have used the operator conservation laws for

the energy, number and charge densities:
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h
n+ V3 =0 (1.7)
O+ VI =0
& Q
and Jh’ Jn and JQ are the corresponding currents.

If we now assume that the gradients VB(x), V(BRu)
and VV(x) are constant, then the average response in

the dynamical variable A is

<VA(t)>

t 1

0 0
= vsj J rr e Bl ‘“N)JHe‘*S(H M)A (£') 0 (0) ]ardL"
0

0

t 1
- v(eu)J J Tr[e*B(Ho‘”N)Jne'*B(HO"“N)A(t')p(O)]dxdt'
070

t .1
+ EI [ p (o8B -uN) g -AB(H"-uN)

J Q A(t")p(0)ldxdat' (1.8)
070 R

where J_ = J, - VJ

and, if in addition, the temperature gradient is zero,

the response in the current JQ is

<AJQ(t)>

= pe(® - W[ [ prper8 (B -uM)y =2e(H -uN) 5 iy o (0)1drat’ (1.9)
' e JoJo Q Q

If this is compared with the phenomenological transport

law

<AJQ> = -eDVn + OE (1.10)

where D 1is the diffusion coefficient and ¢ 1is the

ionic conductivity, we obtain
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o = gel [ mr[er®(H ~uN) g ~28(H°-uN) 1 (vy or0)1arae’ (1.11)
).t Q Q
1 v AR(H?-—uW) AB(H?-uN)
— - = -H t
D = ;e— JOJOTr[e JQe JQ(t )p(O)]dAdt' (1.12)

and hence the relation between ¢ and D is given by

o = Bne?D , (1.13)

which is just the Einstein relation.
The above expression for ¢ can now be applied to
the Triffet-Green neuron model with its Hamiltonian

given by

H = E(a*a + A*A) + A(a*A + A*a) + uN exp(-aN) (1.14)

where E 1is the dissoication energy of an ion-pair,

A and y are parameters which determine the unit of
time and the magnitude of the electrostatic energy in
the model, and o 1is dependent upon the temperature and
the mean potential energy associated with an ion and its
screening charge. The number of excitons within the
neuron is N = a*a and the number outside is A*A, and

so the current across the membrane is (with h=1)

_ dN
JQ—ed—t'
= e(-1i) [N,H]
= e(-i}) (a*A - A*a) (1.15)

where e 1is the charge associated with the exciton. 1In
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the resting state JQ(t') depends weakly on the:
electrostatic energy term in the Hamiltonian of (1.14),
but during the action potential, although it would be
difficult to evaluate precisely from the integral over

the operators in equation (1.11), it is clear that

there is an exponential dependence of the ion conductivity
on the potential difference across the neural membrane,

which has been defined in the model as

¢ = o + ¢ N (1.16)

where ¢, is a uniform negative background potential
and ¢ is the mean potential associated with the exciton.

3 described the current across

Hodgkin and Huxley'
the squid giant axon membrane in terms of ion conductances
which are also defined with respect to the potential
difference across the membrane ¢, and from the voltage
clamp experiments they were determined to have an
exponential dependence on ¢ and t which is similar
to that expected from the Triffet-Green model. If,
however, the electrostatic energy term is expressed, not
in terms of the potential difference across the membrane,
but instead in terms of the electric field within the
membrane & (which also has an exponential dependence on
time) then the extent of the variation of the ion
conductivity with respect to & 1is considerably reduced.
We may therefore conclude that the application of
irreversible statistical mechanics to the Triffet-Green

model permits the calculation of conductivities which

are in agreement with experimental determinations both
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from excitable cells and other physical systems.
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5.2 THE TIME-DEPENDENCE OF THE EQUILIBRIUM PARAMETERS

IN THE TRIFFET-GREEN MODEL.

In this section we derive a set of integro-
differential equations which can be solved to determine
the time-dependence of the equilibrium parameters in
the Triffet-Green neuron model. The model is characterized

by the Hamiltonian

H = E(a*a + A*A) + A(a*A + a*A) + pa*a exp(-aa*a) (2.1)

which describes the energy of a neuron and its environment.
In general, the parameters A and U are dependent on
thermodynamic variables of state and hence vary with

time according to the nature of the irreversible

processes within the system. The above Hamiltonian

must therefore be considered to have an explicit time
dependence H(t), say, and hence the non-equilibrium

density matrix p(t) may be written as

p(t) = p%(t) + p'(t) (2.2)

where p%(t) 1is the reversible part of the density
matrix which only contributes to time-dependent statistical
averages of dynamical variables, and in a grand canonical

ensemble it may be expressed as
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0
p0(t) o e—B(H (t)—UINl—UzNZ) (2-3)
where
HY(t) = H(t) - pa*a exp(-oca*a)
(2.4)
= d1N1 + d,N,
Ni = Bi*Bi, i=1,2 are quasi-particles which can be

defined in terms of a and A, and u; are the
chemical potentials of the i-th quasi-particle (i=1,2),
and the di (i=1,2) and u are functions of yu:1,u2 and
B.

The irreversible part of the density matrix is
p'(t) and is used to compute the irreversible currents.
The non-equilibrium density matrix p(t) satisfies

Liouville's equation

2 p(t) = 3 [H(E),0 (1)) (2.5)
which has the solution
t ¢t
t ~if. JH(t")at'h ife H(E")dt"h
p'(t) = j e t R(t")e at' (2.6)
where
R(e') = - 220(E) 1 ey, et (e)]. (2.7)

at! ih

The average number of quasi-particles of type 1

is given by

<Ny> Tr(p® (t)B1*B1)

1 :
5 5o Tr(p (£)



i
Wi

s
du1 [

exp(-B8(di1-u1)) _
[T-exp (-6(d1-11)) 12 [1=exp (=B (Ao =107 - T2 (HirkzsB)

and, similarly, the average number of quasi-particles

of type 2 is

_ exp (=8 (dz=115) )
No> = o5 (=B (ds-12)) 172 (1-exp (<B (d1-y1)) ]

= f2(U1,U2,8). (2.9)

The energy associated with the interaction between

excitons (denoted by HI) is

Hy

ra*a exp(-oaa*a)
(2.10)

F( ) B *B.) for some function F.
r,s

The average interaction energy in the grand canonical

ensemble is

<H;> = Tr(p® Hy) = £3(u1,u2,8) , say . (2.11)

Now, the conservation laws for the number of quasi-

particles and their interaction energy are

0 r i _ .

B_‘E<Ni> + <Ji> + <Ji> =0 , i=1,2 (2.12)
3, r iz

3¢ <Hp> + <Q>" + <0>" =0 (2.13)

where Ji = Ni , 1=1,2 and QI = H
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r o _ 0 .
and <J;> = Tr(e” (£)J,> i=1,2

<Ji>i = Tr(p'(£)J,> , i=1,2 (2.14)
r 0

< > = [ >

QI r(p (t)QI
i

< > = T ' t >

QI r(p ( )QI

are the reversible and irreversible currents of guasi-
particles and interaction energy, respectively. The
conservation equations (2.12) and (2.13) are integro-
differential equations in the parameters u;,u, and B8
and hence given an appropriate set of initial conditions,
their time dependence may be determined. However, the
complexity of the structure of the above equations would
make their numerical solution somewhat difficult.

The variation of p;,u2 and B in the resting
state of the neuron will be small, but during the action
potential, the irreversible process of ionic diffusion
(and to some extent heat conduction) will induce a
relatively much larger change in these parameters, and
hence also in X and u . Changes in the latter
parameters were shown to be associated with an increase
in the information content of the system?’, and hence
justified describing A and u as memory parameters.
Hence, it seems reasonable to conclude that the rate of
change of the information content of a collection of
neurons is strongly influenced by the rate of firing
of the individual neurons, which in turn depends on the

nature of the interconnections between them.
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CONCLUSION

In this thesis we have attempted to account for
the electrical properties of excitable membranes, and in
particular, the existence of a threshold potential and
the large transient currents which are observed during
excitation, without invoking the assumption of a large
variable ionic permeability. Instead, we have assumed
that the excitable membrane is an ionized medium through
which each permeable ion may diffuse with a resistance
to flow which depends weakly on the electric field and
the extent of hydration within the membrane.

It was argued in Section 5.1 that the weak dependence
of the ion conductivity on the electric field followed
from the application of correlation function methods to
a Hamiltonian neuron model which is a microscopic
counterpart of the present theory. Also, although there
is reduced shielding of the ions within the membrane
during the action potential, its effect on the ion
conductivity would not be sufficient to account for the
large variations in ion conductances for sodium and
potassium determined experimentally by Hodgkin and Huxley.

There is considerable evidence to suggest that ion
transport through the membrane is mediated by isolated
protein molecules which extend across the thickncss of
the membrane (largely composed of lipid), but the model
of ion transport adopted in this thesis is to a large
extent independent of the detailed structure of the

membrane. The membrane resistance to each permeable ion



. = (A4)
215 Jete ¥ 02 - w P0i(s - S TV
where 0 < ¢ < v, and
c, (u) = ¢ (W) dr/du,
2 _ 2
L (uk) =w, (A . (A5)

We thus obtain a singular integral egquation of Cauchy's

type (Mushkhelishvili!?7) which has the obvious solution

c, (u) X"
.4 = . (A6)

2 _ 2
x M W (n)

T?fg ii a set of linear equations from which the Ek(u),r
e Ll T L
and hence the ck(k), can be determined.

The second integral equation, obtained by subtracting
(a2) from (Al), is solved in the same way, except that

in applying the Laplace transformation, the integration

is from - to 0 instead of from 0 to .



APPENDIX B

In this appendix we show that the condition for
equal roots of the N-component dispersion equation for
N=3 and 4, can be expressed as the non-zero solutions
of a polynomial of degree 2(N-1) (if we neglect
strongly damped oscillations), and that these correspond
to quadratic branch points of the integrand in (3.3) of
Chapter 2.

The three-component dispersion equation is

3 2
AY)
J o (=2~) =1 (B1)
pe1  FYp?

with solutions given by the roots of the cubic equation

x¥ +ax? +bx+c=0 (B2)
where
a = —aiiA - ap
b = A(b1A + by)

c = =-A%2(ciA + cyp) _ (B3)

Equation (B2) has solutions

1

1
x; = A + B> - a/3
1 1
x, = wA® + w?B?® - a/3
1 1
%3 = w?A’> + wB® - a/3 (B4)

where ®w is a complex root of unity, and

+
o
N

w

w
1
1% og Mg
|
o
Nt

+
(S]]
~J



p=Db-a?/3

c - ab/3 + 2a%/27 (B5)

lof
I

From equations (B3) and (B5) we may write

6
p= J A"D (B6)

and it is easily shown that Ds = Dg = 0. Now, (Bl) and
(B2) have equal roots when D = 0, and if x, - x

(k # 2) 1is small then

1
2

4 D
x, - x, = t(23) -2 _ (0 - w) (B7)

where w k=1,2,3 are the cubic roots of unity, and

kl
so there are four non-zero branch point singularities.

The four-component dispersion equation is

i
¥ (——E—XQ =1 (B8)

b=1

with solutions given by

x" + rx® + sx? + tx +u=20 (B9)

where
r = -(ri1A + ry)
s = A(s1X + sy)
t = =22 (t12 + to)

u = A¥(uiA + uy) (B10)

The resolvent of the quartic equation (B9) is defined to
be

vy  +ay? +by+c=0 (B11)

where



a = =-s
b = rt - 4u

c = 4su - r?u - t?2 (B12)

The solutions of the resolvent (Bll) are

1 1|
y1 = A® + B® - a/3
1
y2 = wA® + w?B® - a/3
i 1
ys = w?A® + wB® - a/3 (B13)

and A,B,D,p and q are given by equation (B5). From

(B5) and (Bl2) we can write
Dn) (B14)

where D, # 0.

The solutions of the quartic (B9) are

X1 %+%(e1 + e, + e3)

%§-+ %(61 - e - e3)

W
N
Il

X3 = 2 + %("el + e - es)

4
Xy = %? + %(—el - e, + e3) (B15)
where
1 1
e1? = o + A° + B’
1 1
e2? = o + wA® + w?B?
1 1
es? = o + w?A® + wB’®
2
=9 _ 2b \
o ) 3 (B16)

Equations (B8) and (B9) have equal roots when D=0, and

if X, - X, (k # 2) 1is small then



2 D% (ws = ws)
X, - X, = (3) o7 . TT (B17)
S R S - R C R

and so in this case there are six non-zero branch point

singularities.
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