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ABSTRACT

In this thesis an investigation is given of the

dynamical electrical properties of the excitable
membrane without assumj-ng that the ionic conductivities
within the membrane are dependent on the electric
field or tíme, and the extent to which a variable
conductivity can be inferred from the statistical
mechanics of irreversible processes.

The dynamical theory of ionized media is applied

to the semi-electrolyte component of an excitable

membrane, and the adjacent electrolytes. The relevant

equations are the conservation laws of charge and

momentum for the ions, and Poissonrs equation for the

el-ectrostatic potential. These equations are linearized
and are applied. first to investigate the steady state

of the membrane, and then transient effects in the

membrane. A dispersion equation is derived, and the

characterístic modes of relaxation within the rnembrane

are determined. These include oscillatorv mocLes which

are associated with the condition that the dispersion

equation has two equal roots, and which have frequencies

and amplitudes of the correct order of magnitude to

account for the observed excitatíon phenomena.

By applying the appropriate boundarlr conditions

at the electrodes an expression for the voltage clamp

current is clerived, an<1 its depend.ence on the properties

of the intracellular and extracellular electrolytes and

also the type of excitable cell is examined. An analysis

of the oscillations in the potential difference across

the membrane for a subthr:eshotd stimulus is also given



by mod.ifying the boundary conditions at the electrodes.

By taking into account the nonlinearity of
Poisson's equation, a pair of coupled nonlinear equations

in the ionic potentials ís derived, and these have

oscillatory solutions which are similar in shape to

the action potential.

Although the previous analysis can account

qualitatively for excitable ceII behaviour without
assuming that the ionic conductivity is dependent on

the electric fielcl within the membrane, it is necessary

to assume such a dependence to explain the large steady

state currents of certain ions which are observed

during the voltage clamp of the axon membrane. Therefore

r^¡e examine the extent to which such a variable ionic
conductivity can be inferred from statistical mechanics,

and finally consider the effect of irreversible processes

on the Hamiltonian parameters À anrl U which appear

ín the Triffet-Green model of the neuron.
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CHAPTER. 1 ITTTRODUCTION

1.1 THE DEVELOPMET{T OF MODELS OF EXCITABLE MEMBRANE PHENOMENA

The characterization of the equilibria of ions in
solution by Nernstl in terms of electrical and diffusive
forces, and its subsequent application by Planck2 to the

computation of the potential across a constrained boundary

between electrolytes, established the theoretical framework

within which subsequent electrodiffusion models of the

electrical properties of excitable membranes have developed.

The l{ernst concepts \dere first applied to biological phenomena

by Bernstein3 who assumed that:
(i) the living cell is composed. of an electrolytic interior
surrounded by a thin membrane rvhich has a low permeability

to ions

(ii) the resting potential across biological- membranes is
a diffusion potential- resulting from the setective permeability

to potassium and the large internal concentration of potassium

ions relative to that in the extracellular fluid
(iii) during excitation the membrane is depolarized by a

nonspecific increase of permeability to sma1l ions

This membrane theory was able to account f.or the sígn and

the approximate magnitude of the resting potential, its

dependence on the external potassium concentration and, in

addition, the approximate equatity between the resting
potential and the depolarization which occurred during

excitation.

Fricke (see Coleq) confirmed BernsLein's first assumption

and also measured the e-Lectrical capacity of the membrane
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(lufrlcm2). From this value and the assumption of a membrane

dielectric constant of value 3, he estimated the thickness

of the membrane to be of the order of 334,. Fo1lowing the

determination of the conducLance of the cell membrane in
NiteLLa, transverse alternat-ì:rg current impedance measurements

on the axon of Lolîgo in the resting state gave data that
could be represented in t.erms of an electrical equivalent
circuit. consisting of a resistance and a capacity in paralrel
(curtis and Coles). It was then d.emonstrated that the actj-on

potentiar is associated rvith a transient d.ecrease in the

equivalent circuit resistance to a value of 250cm2, with
a small decrease in the membrane capacity (Cole and Curtis.).
The resting state axon membrane resistance was determined

from a longitudinal measurement of the direct current
resistance and this yielded a value of t00Oftcmt (CoIu and

HodgkinT ) .

This transient decrease in the resistance of the

membrane \^ras interpreted as a measure of the increase in
membrane permeability to ions, and hence was initially
considered to support Bernstein's hypothesis concerning

membrane excitation. Ho\^rever, with the advent of micro-

erectrodes, which courd be inserted in the interior of the

squid giant axon, it was possible to demonstrate that the

action potential exceeded. the resting potential b1' approximately

3Ornv, and so was not associated with a non-specific increase

of permeability to ionsr âs had been postulated by Bernstein
(uodgfin and Huxley, CoIe and Curtisu).

The electrical properties of the axon membrane trere
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further characterized by det.ermining its longitudinal

alternating current impedance over a wide range of frequencies.

Below a frequency of the order of 200 c.p.s., the impedance

properties of the membrane could only be reproduced by

assuming that its equivalent circuit contained a capacity

shunted by a resistance and conductance (approximately

.2 henry-cm2 ) in series. This circuit was also able to

account for the und,erdamped and overdamped oscillatory
phenomena which were observed to occur during measurements

of the AC transverse impedance changes resulting from the

application of a polarizing current (CoIe and Bakere ) .

The irnportance of the presence of extracellular sodium

ions for propagation of the nervous irnpulse was first
recognised by Overton. l4any years later, it was shown that

the magnitude of the action potential was reduced by partially

replacing sodium chloride by choline chloride in the external

solution. In order to explain this observation, as well as

the bransient reversal of the potential difference across

the membrane during excitation, Hod.gkin and Katzl 0 proposed

the sodium hypothesis, which postulated that the active

membrane undergoes a large selective increase in permeability

to sodium. It was also suggested that during the falling
phase of the action potential, the high membrane selectivity

for sodium ions was replaced by a large membrane permeability

to potassium. This qualitatively explained the positive
phase of the action potent.ial, which is the decrease in active

membrane potential belor¿ the resting potential, and the

associated refractory state of the squid axon.

a
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An important contribution to the el-ucídation of the

ionic processes underlying the generation of the action

potential r,vas the development of the "voltage c1amp" technique.

An initial- step in this direction \^ras provided by l4armontrl,

who proposed a method of quantitatively controlling and

measuring the current uniformly across a kno.¡m area of the

axon membrane. He employed a long internal needle electrode

of negligible resistance and a large concentric external

electrode that is guardedr so that current flow in the axial
direction is minimized. At any given instant, the active

membrane response to a short threshold current stimulus is
identical over the controlled area, and its magnitude and

wave-form are similar to that of a propagated impulse (and

hence is termed a space-clamped action potential).

Coler I employed a similar experimental arrangement to

apply a constant uniform potential difference across the

membrane ("voltage clamp"), by using an electronic feedl:ac.k

circuit to supply a current of appropriate magnitude to the

electrodes, and the latter, in the absence of axial current,
v¡as identified with the current through the membrane. Despite

efforts to reduce the surface impedance of the electrodes,

for large membrane currents electrode polarization introd.uced

considerable errors in the regulation of the membrane

potential, and this limited the effective duration of the

clamp.

Hodgkin, Huxley and Katzl2 minimized the errors associated

with this difficulty by introducing two internal electrodes;

one which recordecl the membrane potential and the other whi.ch
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supplied the current to maintain the potential difference
across the membrane at a pre-determined. Ievel (after being
suddenly changed from the pre-clamp lever). rn addition,
the effect of the resis't,an"" b"t*""r, the potential electrodes
and the membrane was red.uced somewhat by use of compensated

feedback.

Hodgkin and Huxleyl 3 applied this improved. voltage
clamp technique to squid giant axons surrounded by solutions
with a reduced sodium concentration and., on the basis of
their results, were able to conclude that when the membrane

is depolarized, the resulting ionic current consists of
two independent components an earry transient currenr-
carried by sodium ions and. a delayed current carried by
potassium ions. They estimated the magnitudes and time
courses of each of these components by making the forrowing
assumptions:

(1) the time course of the potassium current is unaffected
by changes in the externar sodium concentration
(2) the time course of the sodium current is not greatly
affected by the external sodium concentration even though
its magnitude and direction may change

(3) there j-s a delay in the rise of the potassium current
for a period about one third of that taken by the sodium
current to reach its maximum.

on the basis of the observations that the early current
was zero when the voltage clamp potential was equal to the
sod.ium equilibrium potential EN", and that the late current
vanished when v was equal to EK, where E" is defined
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by

it was assumed that

constant and. equal

the ath ion, ga,

fora=NarK,

the driving force for the ath ion was

to V - E . The chord cond.uctance for
a

defined by

E"=Ët"( tal * \1ü)

aaa EI I (v )

\^ras then consid.ered to be a measure of the membrane

permeability to a. It was convenient to express ttre

clamp sodium and potassium currents in terms of gN"

9K, respectively, because the j-nstantaneous values of

ionic conductances are independent of the magnitude of

voltage step (but only when the external solution is
physiological saline) .

The voltage and time dependence of 9N" and gK

described (Hodgkin and. Huxleyt') by assuming

voltage

and

these

the

was

mr n

solutions

9N" 3tl
9Nu. m

l+

9w". and 9K

h are functions

gK gK

are

of

n

where

and

of

constants, and the variables

V and t and are given as

the differential equations

ds
AE =0 (v) (I-s) þ (V) s s=m, n rh,S

The rate constants

analytical functions of

S

cr and Þ" are chosen to be

which give a closethe clamp voJ-tage
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fit to the experimental data. These empirical equations

were given a physical interpretation by assuming that the

chord conductance for a particular ion depend-s on the

distribution of mobile charged molecules confined to the

membrane, and that a change in the potential dj-fference

across the membrane results in a new distribution and hence

a "gating current". Specifically, it was assumed that the

variables m and n are associated with "activation" of

the sodium and potassium ions, respectively, and that the

variable h is associated with sodium "inactivation".
By assuming that the total membrane current is equal

to the sum of the capacity current and the ionic current

dV
arI=c +

that the ionic current is composed of sodium ions, potassium

ions and leakage ions, and that current is continuous at the

membrane surf ace, Hod.gkin and iluxley used the empirical

expressions for ionic conductance to compute the threshold,

time course and amplitude of the space-clamped (or membrane)

action potential, and its associated impedance changes, the

exchange of sodium and potassium ions during the impulse,

the electrical response during the refractory period, the

anode break response, subthreshold oscill-ations and the

form, amplitude and velocity of the propagated action

potential, and obtained good agreement with experimental

resul.ts.

Early confirmation of the Hodgkin-Huxley predictions

I.
1 ,
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of sodium and potassium fluxes duríng the voltage clamp and

the action potential by tracer measurements (see ttodgkinla)

\Âras strengthened by a series of experiments in which the

magnitude and time course of the sodium flux during the

voltage clamp and the action potential was determined by

direct measurements with tracers using more elaborate

electronic equipmentl s Also, the ilodgkin-Huxley equations

have been extended and adapted to various smooth and

myelinated nerves, skeletal and cardiac muscte with modified

intracellular and extracellular solutions (for a review,

see cole4 ) .

Following the unsuccessful attempts by Nernstl 6 and

others to invoke diffusiori polarization at the membrane to
explain excitation phenomena, consideration was given to
developing mathematical models which reproduced important

electrical properties of excitable ceIls. One approach is
to define the model in terms of a number of variables of
state (or factors) which correspond to neurophysiological

concepts such as excitation and inhibition (Rashevskyt t ) ,

loca1 potential and threshold (HiI1r7) or state of excitation
(MonnierlT). The time constants of these factors are

specified by linear first-order differential equations,

from which various properties of nerve may be catculated.
YounglT showed that the Rashevsky and HilI moclels are

equivalent and are special cases of a more general modet.

Another approach is to model the nerve by an electric
circuit and then derive differential equations by applying

conventional circuit theory and an appropriate criterion for
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excitation. Rashevskyl I appried the one-factor theory of
Brair to a pure-resistance network to describe the spread

of excitation in a nerve, whereas Rushtonls assumed that
excitation was associated r¡¡ith the sudden appearance of an

E.M.F. in series with nerve sheath and applÍed this criterion
to a resistance-capacitance network. The equivalence of this
particular conduction model of Rashevsky and that of Rushton

\^ras demonstrated by Weinberg2 o .

offner, I^treinberg and youngi2l developed another erectric
circuit conduction model by consid.ering excitation to be

accompanied by a decrease in membrane permeability (Bernsteín

hypothesis), which was consistent with the interpretation
placed upon the impedance measurements on nerve (curtis and

Coles). The expression for the conduction velocity so

derived was similar to that of Rashevsky and Rushton.

The similarities between the properties of the passivated

iron-wire and the nerve cert axon (r,ittie22) were made more

expricit by Bonhoeffer2 3, who described the kinetics of the

activation of an iron-wire by a set of two first-order
differential equations in the variables "d.egree of activation"
(x) and 'lrefractoriness" (y). The functional form of the

equations \^¡as specified graphicalty on an x vs y plane and

with this representation, many of the iron-wire properties,
including its activation and response to a stimulus, \^/ere

described by trajectories on the phase-p]ane diagram. This

model is a non-linear generalization of the Rashevsky-Monnier-

Hill two-factor theories of nerve excitation.
By adding appropriate terms to a pair of first-order
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differential equations in two variables, obtained by

transforming van der PoI¡s equation, Fitzhugh'u constructed.

a model representative of a class of non-Iinear systems

of equations which exhibits a stable state and threshold

phenomena in addition to stable oscillations. The model

r¡ras recognised to have a similar phase-nlane form to those

of the Benhoeffer iron-wire model, Teorell's model2s of the

fixed.-charge membrane oscillations ancl a reduced. Hodgkin-

Huxley model obtained by projecting the four-dimensional

Hodgkin-Iluxley model onto a plane. A tunnel-dj-ode equivalent

circuit for the Fitzhugh model was proposed by }tragumo,

Arimoto and. YoshLzawaz6 .

More recently, Triffet and Green2T developed an

electrochemical model of the neuron based upon a Hamiltonian

formulation of the conservaLion laws and expressed in terms

of a dynamical variable defined to be the number of ion

pairs inside the nerve ce1I. The resulting equations can

be reduced to modified forms of the van der PoI and Fitzhugh

equations, and their solutions exhibit the presence of a

resting state, a threshold potential and stable oscillations
with a waveform appropriate to repetítive action potentials.

The simple el-ectrodiffusion model (homogeneous rnembrane

without fixed charge) of excitable membranes has been

successful in calculating membrane potent.ials across

biological membranes in Lhe resting state, and their dependence

on changes of ionic concentrations in the external medium,

but solutions of the electrodiffusion equations have not

exhibited a steady state negative conductance region, which
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is observed when the squid axon is immersed in iso-osmotic

potassium chloride, and have not been able to account for

the voltage clamp curves of excitable cells (see Co1e4 ) .

An anatytical solution of the steady-state electrodiffusion

equations (that is, the Nernst-Planck and Poisson equations)

for a 1-1 univalent electrolyte was first obtained by

P1anck2 by assuming that the microscopic electroneutrality

condition is satisfied in the membrane phase, that is, that

the totalcharge clensity at each point is equal to zeto-

The general solution to this problem for electrolytes with

several ionic valence types was given by Schtög12 s. The

difficul-ties assocj-ated with the electroneutrali-ty

assumption have been consid.ered by Agin3 0, and Arndt, Bond

and Roper3 0 have given a crj-terion for this solution to be

agood approximate solution.

Goldman3 I also obtained an analytical solution of these

equations by assuming that the electric field was constant

within the membrane. Hodgkin and Katz32 rederived this

result by introducing explicitly for each ion a concentration

partition coefficient between the membrane and aqueous phases.

The validity of this assumption has been examined by Zelman,

Agin, and Ze1man and Shih3 3. It has also been shown that

the electroneutratity and constant field assumptions are

Iimiting cases which obtain when the ratio of the Debye

length in the membrane to the membrane thickness is <<

and >> l" respectively. (CoIea , MacGillirray3 a , MacGiIlirnay

and Hare3q).

Offner3 s has solved the steady state electrodiffusion

equations directly as a þounclary value problem by use of a
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difference equation method, and has considered the effect

of the spatial dependence ,of the

mobility Ln the membrane on ion flow, ion distribution and

boundary potentials. On the other hand, Michaelis and

Chaplain3 6 have obtainecl asymptotic solutions of an equation

which was derived from the electrodiffusion equations by

use of the Painlevé transformation, and these coincide with

the numerical solutions in a given domain.

WaLz et aI., Neumcke and Läuger, and Neumcke et a1.37

have examined three mechanisms by which nonlinear current-

voltage characteristi.cs could arise in Iipid bilayer

membranes:

(i) the injection of ions into the membrane

resulting from the cLependence of the Boltzmann concentration

profiles on the applied potential difference across the

membrane.

(ii) the effect of an electric field on the potential

energy profile of an ion in the membrane.

(iif) the WÌen dissociation effect within the membrane.

However, these nrechanisms are in general more appropriate

to the consideration of lipid soluble ions than to the

transport of ions through nerve membranes. The latter has

been examined by Bass€8in considering the significance of

electrodiffusion theory in predicting both linear and

nonlinear instantaneous current-voltage characteristics in

squid and toad, respectÍveIy.

Although it has not been demonstrated that a steady-

state negative conductance region is a consequence
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of the macroscopic ìromogeneous el-ectrodif fusion eguations,

a kinetic theory approach to the transport of ions across

membranes which has been adopted by Mackey3 e, has shown that

for certain types of interactions between ions and the

membrane molecules the slope conductance becomes negative

for 4 range oî electric field strengths.

Numerical solutions to the time-clependent electro-

d.iffusion equations (that is, the Nernst-Planck, the

Poisson and the continuity equations) were obtained by

Cohen and Cootey4 0 by assuming microscopig electroneutrality.

The response of the membrane system to a step-function

rise in the current was expressed as space and time variations

in the concentrations and electric potentiaÌ. Their

solutions were similar to the responses obtained from

systems with a combination of inductive and capacÍtative

properties. Arndt and Roperq,t considered the general

voltage clamp problem and obtaj-ned numerical solutions in

terms of the current densities, but they do not exhibit a

transient negative resistance for electrolytes with a

variety of ionic concentrations and mobilities and, in

particular, for those which exist in the environment of the

squid axon membrane.

The cliffusiou of ions across the membrane may also bc

described as a series of jumps across potential barriers.

This description has been used by Offnera 2 to obtain a

numerical solution of the voltage clamp problem. By choosing

a fixed charge distribution and mobility contour within the

membrane, which results in an appropriate dependence of
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boundary potential on total membrane potential, and suitable

ion permeability functions of boundary potential and

external Ínterface calcium concentration, then it is possible

to model many of the observed properties of nerve ce1Is.

In additionr âD attempt has been given to justify the

particular choice of the boundary permeabÌIit.y functions in

the context of the theory of rate processes.

It is clear that on the one hand the empirical Hodgkin-

Huxley model of current flow across the axon membrane has

been successful in explaining a wid.e range of electrical

properties of nerve but their equations are rather cumbersome.

ThÍs has been remedied to some extent by the Fitztlugh model

which although it has similar properties to Èfre Hodgkin-

lluxley model, its mathematical form is more tractable. It

has the additional virtues of being a nonlinear extension of

the Ra shevsky-Monnier-Hill two-factor theories of nerve

excitation and also a generalization of the van der Po1

equation which describes the rel-axation oscil-lations of the

heart. q 3

On the other hand, the simplest physical model of the

excitable membrane as a homogeneous regime governed by the

laws of ionized medj-a, although giving a good description

of various steady state properties, has not been successful

in accounting for the dynamical phenomena associated with

excitable ce1ls. The discrepancies between the analytlcal

steady state solutions and experimental results have been

attributed to the existence of a biochemical- pump mechanism

for certain ions (e.g. sodium). However, its operation is
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over A longer time scale than one millisecond and hence is
not considered important in the consideration of the action

potential.

An indication of a possible connection between these

mathematical and physical approaches was provided by Triffet

and Green2 7 who formulated an expression for the Hamiltonian

of the neuron and its environment and used this to derive

a set of dynamical equations whi.ch had the same form as the

Fitzl{ugh equations. A more detailed consideration of the

physical processes involved in the transport of ions through

the menrbrane will show (see Chapter 4) that similar equations

can be derived from the macroscopic conservation laws of

charge and momentum and the laws of electrostatics and

thermodynamics but the interpretation of the dynamical

variable in the Triffet-Green equations as the number of

ion pairs within the neuron needs to be revised. The

macroscopic equations obtained in this way can be based on

either classical or quantum statistical mechanics. The

transition from classical to quantum mechanics can be made

formally by replacing the classical velocity distribution

functÍon by a Wigner phase space distribution function. A

detailed consideration of quantal effects will be given in

Chapter 5.

In sections I.2 and 1.3 \^/e shall cons-ider various ionic

theorj-es that have been developed to describe the equilibrium

properties of electrolytes and some of the general problems

in the microscopic theory of transport processes which are
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relevant to the statistical derivation of macroscopic

equat,ions for ionic systems. Expressions for relevant

thermodynamic quantities and the conservation laws of charge,

momentum and energy, which will be used to determine the

normal modes of the excitable membrane in Chapter 2, are

derived in L.4 and 1.5.
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T,2 STATISTICAL MECHAI TCS OF IO}ITC SOLUTIONS IN EQUTLIBRIUM

The first successful molecular theory of electrolyte

solutions was developed by Debye and Hueckela a by combining

Poisson's equation from electrostatics with the Boltzmann

factor from statistical mechanics. The resulting equation

was then linearized to yield a differential equation which

was solved to calculate the thermodynamic properties of the

electrolyte, ft was subsequently shown by Fowler and onsagerq s

that the Debye-Hueckel theory ls exact in the limit of smal1

concentrations. Although the theory has been substantiated

by comparison with numerous experiments, its applicability

is limited to concentrations less than .OIM for aqueous

1-I el-ectrolytes

This small range of application is the result of the

linearization procedure as well as the inconsistency of

the nonlinear Poisson-Boltzmann equation itself (Kirkwood

and Poiriera6). The inconsistency in this equation derives

from equating the potential of average force between the

ions in solution with the mean electrostatic potential

around each ion.

An important contribution to the theory of electrolytes

was provid.ed by the reformulation of the cluster expansion

theory of nonideal gases for ionic solutions by McMillan

and Mayer\'- The mathematical difficulties associated with

the long-range nature of the Coulomb force were overcome

by an appropriate rearrangement and cancellation of divergent

terms in the cluster expansion (Mayeru t ) , with the lowest
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order term corresponding to the Debye-Hueckel theory. The

results which were obtained compared favourably with

experiment in the concentratio¡ range up to -lM for 1-1

electrolytes (Poirierq s; Meerona s ) . However, the convergence

of the Mayer expansion for aqueous electrolytes is slowr So

that estimates of the thermodynamic properties of an

electrolyte at higher concentrations are difficult to obtain.

Further progress in the theory of electrolytes was

provided by developments in the theory of fluids in

obtaining integral equation approximations for the radial

distribution function. The first equations of this type

to be introduced were the Kirkwood and Born-Green approximations

which hlere derived by use of the Kirkwood and Born-Green-

Yvon hierarchy of equations, respectively, in conjunction

with the superposition approximation (Kirkwoods o; Born and

Greens0). By expressing the two-particle velocity

distribution function as a functional of the one-particle

distribution function Bogoliubovs I also obtained the Born-

Green approximation from the first hierarcl:y equation and

used it to verify the Debye-Hueckel limiting laws.

The radial distribution function may also be determined

from the hype::netted chain (HNC) and Percus-Yevick (PY)

integral equations. These equations may be derivecl using

functional Taylor series expansions (Percuss2) or graphical

methods (Morita and Hiriokes 3 ) but may also be based upon

the Ornstein-Zernikesq equation

f ,o"o-r) "r.iCI.-]-J + I n.
k

1 c rJ drk



which can be considered as a definition of the direct

correlation function "ij 
(between ions i and j)

terms of the radial distribution function gtj {nu

the number density of the k-th ion). This system of

equations can be closed by the HNC approximation

19.

is
integraJ-

l_n

c g t rng ßu1J iJ ij ij

or the Percus-Yevick approximation

c g tr exp ( ßu )lij ij ij

where u.. is the pair potential between ions i and )1J

and ß = L/kT

These eguations have lceen reformulated by Allnatts s

in an attempt to overcome the difficulties associated with

the long-range nature of the Coulom.b face. I¡Ihen these

modified equations (which replace the Coulomb potential by

the Debye-Hueckel shielded potential) were applied to a

model of the electrolyte which consists of hard spheres in

a dielectric continuum (primitive model) and the thermo-

dynamic properties l^¡ere calculat.ed and compared directly

with Monte Carlo results, the modified HNC equation was

determined to be more appropriate (Rasaiah and Friedmans 6 ) .

The mean spherical model (MSM) integral equation for

the primitive electrolyte (Waisman and LebowitzsT) is obtained

by supplementing the Ornstej-n-Zernike equation with the

approximations

0rr<RI ij (r) ij
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c (r) -ße e /¿r I r >R
1 j 1 j ij

where R=. is the distance of closest approach between
1J

ions i and ). Although it is more approximate than the

PY and HNC integral equations, it has the advantage of

being exactly 
.111uþ=f-e 

for the restricted pri:nitive model

(that is, charged hard spheres of equal síze) and hence

yields analytic expressions for the thermodynamic quantitíes.

AIso, the osmotic and activity coefficients computed from

the energy equatíon were in good agreement \^/ith Monte Carlo

results for 1-1 electrolytes

Another recent development is the mode expansion

theory of Andersen and Chandlerss. They avoided the

divergence difficulties arising from the 1ong-range nature

of the Coulomb potential by expressing the partition function

in terms of cotlective variables whích were chosen to be

Fourier transforms of the number densitlr (c.f. the Böhm-

Pinesse methocl for the'electron gas). AIso the divergences

at small r were overcome by considering the Coulomb

interactions as perturbations to a reference system which

is dominated by short range repulsions. The free energy

was expanded in an infinite series in which each term is

determined by the perturbing potentials and the n-body

distribution functions for the reference system, and.

convergence was enhanced by a suitable choice of the

perturbation within the hard core. The calculation of just

the first two terms of this series for the symmetrical

restricted primiti-ve model required only the free energy
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and the pair distribution function for the reference system,

and the results have an accuracy comparable with the

mod.ified HNC approximation for monovalent ions.

They also described a criterion for optimizing the

convergence of the mode expansion which ensured that the

radial distribution function inside the hard spheres was

zero. I¡Ihen the criterion was applied to the perturbation

series truncated at n=I (tfre optimized random phase

approximation) the result was shown to be equivalent to the

mean spherical model :'.if the reference system obeys the

Percus-Yevick Theory exactly (Andersen and chandlerso). An

improvement over the mean spherical model was then obtained

by including the next mode (termed the ORPA*az theory) -

Although the accuracy of the ORPA*a2 approximation

is good for most l-1 electrolytes, when it is applied to

2-2 electrolytes, the osmotic coefficient does not exhíbit

the anomalous effects at high dilution which are shown by

Mayer's theory of electrolytes (Oebye-fiueckel limiting 1aw +

renormal ízed, second virial coefficient) or the modífied

IINC approxj-mation (Rasaiah60). This has been remediedGl by

transforming the Mayer cluster series for the He1mholtz ftee

energy and the pai-r distribution function into a form

involving a renormalized potential which is just the shielded

Debye potential if the perturbation potential is chosen to

be Coutombic within the hard cores. The convergence for

this choice of perturbation is prohibitively slow at higher

concentrations but can be considerably improved if instead
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the perturbation is chosen so that the renormalized potential

is zero within the physically inaccessible regions. In

this case, there is good agreement with Monte Carlo

calculations of the internal energy for a 2-2 symmeÈric

primitive model electrolyte of concentration up to 2M.
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I.3 NONEQUTLIBRIUM STATISTICAL MECHANICS OF TONTZED AND

UN-TONIZED FLUTDS

Hod.gkin and Huxlelz clescribed their experimentaL results

in terms of conductances which may undergo large transient

variations during the voltage clamp or the action potential,

and interpreted the membrane ion conductance as a measure

of the ionic mobility. We shaIl show in Chapters 3 and 4

that even if the mobility in the membrane is assumed to be

constant, the magnitucle of ionic currents across the memlcrane

may stil1 be large during excitation because of the non-

linearity which appears in the time-dependent electrodiffusion

equations . Hor^¡ever, it is important to determine the extent

to which a large variable ionic mobility can be inferred

from the statj-stical mechanics of irreversible processes,

and this investigation will appear in Chapter 5. The

application of irreversible statistical mechanics to other

physical systems has given no hint of such behaviour.

In this section, wê shall consider the various approaches

j-n nonequilibrium statistical mechanics for ionized and

un-ionized fluids and, in particular, the derivation of

kinetic and macroscopic transport equations from the equations

of molecular dynarnics, whi-ch will be examined in more detail

for an electrolyte in Section 1.5, and the calculation of

transport coefficients in terms of rnicroscopic variables

which will be applied to the resistance of the membrane in

Chapter 5.

The Boltzmann equation, a kinetic equation which describes

the properties of a monotonic clilute 9âs, \^7as f irst solved

by Chapman and. Enskog (see Chapman and Cowlittg") who used

its normal solutions to derive the lrlavier-Stokes and Burnett
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equations. The method depends on obtaining a series

approximation to the distribution function and then

truncating the series when the, gradients of the dynamical

variables are small. Good agreement was obtained between

their calculation of transport coefficients and experimental

values for dilute gases.

Early attempts to generalize the Boltzmann equation by

Born and Green, Bogoliubov and Kirkwoods 0 r 5 I depended on the

d.erivation of hierarchy equations from Liouvillets equation.

A kinetic eguation was then obtained by introducing an

appropriate approximation to truncate the infinite set of

equations either the superposit.ion approximation or the

functional ansatz of Bogoliubov. An examination of the

Iatter approximation using cluster expansion techniques has

revealed divergences in the density expansions of the transport

coefficients (see Cohen6l and these have been attributed to

collision sequences occurring over an infinite volume in

phase space. In order to eliminate a large class of divergences'

resummation method.s have been introduced and these result

in a logarithmic dependence of the transport coefficients

on density.

When the Boltzmann equation and its higher density

gj,"9ig.l_izations are applied to plasrnas the collision integral

diverges because of the long range of the Coulomb force

interaction. This divergence may be avoided by replacing

the Coulomb potential by the equilibrium Deybe-Hueckel

screenecL potent.ial, but a more rigorous kinetic equation

which takes into account screening' effects and which can be
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derived. from the Bogoliubov ansatz has been given by

Balescu and Lenard6a. For a plasma of lorr¡ density where

collisions of intermedia,te rang'e are important, it can be

reduced to the Landau equation.

fnstead of obtaining the macroscopic equations for

a fIuid. from a kinetic equation an alternative method is

to proceed directly from Liouvil}e's equation. This approach

has been adopted by Irving and Kirkwood.6 s in deriving the

equations of continuity and. the equations of momentum and

energy conservation for a classical system of particles

interacting through two-body short-range forces, and hence

is not applicable'to a plasma. In a similar wây, Brittin66
derived the hydromagnetic equation and ltaxr,¡ell's equations

for a system of charged particles interactl-ng via the

electromagnetic field. H.S. Green6T has also obtained a

complete set of macroscopic equat.ions which overcomes some

of the difficulties associated with the long-range nature

of the Coulomb force, and in particular, a form of the

generalized Ohm's law which is correct rvhen thermoelectric

effects are not small.

Expressions for transport coefficients based upon

solutions to a kinetic equation were first obtained by

Chapman and Enskog'2 by constructing normal solutions as

expansions around the local equilibrium state and substituting
back into the Boltzmann equation. In this wây, the

calculation of transport coefficients is reduced to the

solution of two linear integral equations in terms of Sqnine

polynomials. However, the range of validity of this method
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is restricted to dilute gases with particles interacting

through short-range forces, and hence is not suitable for

plasmas.

A more recent method of deriving expressions for the

transport coefficients is due to Resibois6s and depends on

establishing a one-to-one correspondence between the

normal modes of a linear kinetic equation and. its corresponding

macroscopic equation. I¡Ihen applied to the Boltzmann

equation, it yields the same results as the Chapman-Enskog

theory, but is in general applicable to fluids of arbitrary

density.

An alternative method of obtaining transport coefficients,

without using a kinetic equation, was developed by

M.S. Green6e and Kubo70. Here, the transport coefficient

is expressed as the time integral of an equilibrium time

correlation function bv considering the response of an

equilibrium system to either an external or thermodl,namic

force. The equivalence between this method and the kinetic

equation approach to transport coefficients has been shown

by H.S. GreenTt and ResiboisT2.

The Green-Kubo formulae can be used to give a density

expansion of the transport coefficients by developing an

integral equation for the time-correlation function from

Liouville's equation in one of two ways. The first uses

the lowest orcler hierarchy equation to obtain an integral

equation in the time variable which is analogous to the

generalized Boltzmann equationT 3 . The other method formulates

the integral equation in terms of the Laplace transform of
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the time variable and makes'use of the binary collision

expansionT4. Each of these methods leads to d.ivergences

in the naive density expansion of the transport coefficients

but a resummation of the most divergent terms to all orders

in the density gives a finite contribution (Kawasaki and.

OppenheimTs). An extension of the Zwanzig method to

plasmas has been given by expanding the binary-collision
operator in terms of short-range binary collision operators

and Cor-rlomb interaction operators and then removing the

short-range and long-range divergence by appropriate

resummation techniques (sartis and OppenheimT6) .

An important development in the understanding of

transport coefficients was the discovery by Alder and

Wainwrigb{ of the slow decay of the self-diffusion correlation

function for a hard sphere system through molecular

dynamical calculations. It had been generally assurned on

the basis of simple models like Brownian motion, that the

autocorrelation functions decay exponentially but the long

tails of the form L-d/2 where d is the dimension of

the system, have since been accounted for theoretically

by a number of different approaches.

One method of describing this phenomenon uses the

equations of macroscopic hydrodynamics but is internally

inconsistent because it assumes- the existence of transport

coeffj-cients which are later shown to diverge (Ernst et aI.78).
Another treatment applies the generalized I-angevin equation

and its associated mode-mode coupling ideas to the transport
problem and attributes the long tirne decay to a nonlinear
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coupling among th-e slowly varying hydrodynamic modes

(KawasakiT s ) .

The kinetic theory of dense gases has also been

successful in describing !li"_ phenomenon by analyzing the

relevant many-body events and considering the long-wavelength

limit (Dorfman and Cohens0). rn this case, the description

of the long time tail and the calculation of the logarithmic

term in the density expansion of the transport coefficients

both depend on the consideration of the same class of

correlated binary collision events. Recent work on the

viscous flow of a moderately dense system of hard spheres

and disks has indicated that it is necessary to take int,o

account the nonlinear effects of the velocity field. in order

to obtain a finite correction to tT¡.e Boltzmann val-ue of the

viscosity coefficient (Ernst et aI.8r).
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L. 4 STAT,ÏSTTCAL THERMODYNAI4ICS OF ELECTROLI'TES

fn this sectionr wê shall derive approximate expressions

for the partial pressure and the chemical potential for
each ion and these will be used in Section 2.L to develop

the dynamical equations for an ionized medium.

The thermodynamic properties of a system can be

evaluated from the Helmholtz free energy A and for a

system which may exchange both particles and energy with

its surroundings, A can be expressed in terms of the

grand canonical partition function Z* as follows:

A kTlog Z* (4.r)

where k is Boltzmann's constant and

z* t'

J
exp(-ß0 (x1 r. . . rX*) z. d.3x.

l- l-
(4.2)

aa

where denotes

^ is the number of particles of the a-th type,a

N
ÎT

i=I

l_

1TT-T=I
N

0

æ

I
2N

I
Nr=0

T
N

N

z. = (2t m]-'
the mass and Ui

respectively,

i/9¡'/' exp(ßui) is the activitv, fri

the chemical potential of the i-th particle

0 (xr ,.. . ,**) is the total potential energy of a

group of N particles whose centre of masses are at the

points X, r... rX*r

$ = I,/ (tr) .

The equation of state may now be obtained from equations

(4.I) 
' 

(4.2) and the thermodynamic relation between the
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pressure p and the free energy A

\
)*

p = I(r, tr - ] F -- ã a 6åt"tbrrb)

p âA
ãt (4.3)

The

(4. q)

(4.s)

ott alt.ernatively, it may be derived from Liouville's

equation and an appropriate definition of the partial
pressure tensor (see equation (5.¿0) of section 1.5).
result is

ls"o (r.o) -IJ r-¡aå¡ (roo)d'tooI
ab

Q"b' (t.ol is the derivative with respect to the distance

r . = I x - x. I between particles of the a-th and b-thab br

types, * tfrJr interactio: n energy e"¡ (r.b) ,

g.¡(r.¡) is the radial distribution function, and ." is

the number density of the a-th particle.

The chemical potentials Ua may be calculated. from

the radial distribution functions gau in two different
hrays. The f irst was proposed by Kirkwood and 

'guf 
f s 2 and

uses the result

(4.6)
VrTrn"

where the number densities r. are regarded as functions

of the Ub, V and T. Expressions for the chemical

potentials fol1ow by inverting the matrix

ðn
aq þ, "-ô "r*|'""o f 

Is-o-t] d.3 r)

B ab
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The seconcl method is due in principle to Güntelberge3

and assumes that the interaction energy e.¡ (r.¡) of one

particular particle of type i at the point Xa, with any

other particle of type b at the point xb, is reduced

by a factor 0., rvhere 0 < 0. < 1. It may then be shown

that if gr¡(t.b,0r) is the radial distribution function

for this particle, wi-th its charge red.uced by a factor 0r,

and any other particle of the b-th type, then

kr r"s(þ ).1ua= tb J.b

where no isa constant, and.

(4.7)

(4.e)

a

(4.8)

We shall now evaluate the above expressions for the

pressure and the chemical potential by using the Debye-

Hueckel approxima'l-ionaa. That is, the effect of the solvent

on the interactions betr^¡een the ions is accounted for by

introducing a dielectric constant K in the interaction

between two ions

'-J[:rø.o ('-b'o-)
ab

J 1le . (r . )do d3raþ aÞ a a.o

(a10, bl))a (r)
ab

ee_ab
KT

where e- is the charge of an ion of the a-th type and
a

the water molecule is denoted by the subscript zero. To

take account of the finite size of the ionsr \¡trê assume that

equation (4.9) is only valid when r 2 dr, where "r is

the ionic diameter. Also, the pair correlation function 9ab
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of ions of the a-th and b-th types is approximated by

g"o (r) = 0 r<a r

g"o(r) = 1 ß rl"o(r) f r2 ar

where ü_, is correlation energy and. satisfies' al)

4reb

-a '(aab I

( 4.10)

(4.11)

(4.]-2)

( 4 .13)

(4.14)

(4.16)

v'v"o (t) I encfc c-acKc

The function ü"¡ may be normalized by assuming that

V"o' (ar)

Then we have

where

ee-a'b
ü"o (r)

a

ç (ao+á, )
exp [-

(4nß I ""'nu/r)-\D
a

is the Debye shielding length. To determine 9.¡(rr0.)
we replace "" by 0""" in (4.1I) and obtain

s (r,0 ) - I ß e {, (r) (4.15)-ac a a 'ac

VÍith the help of th-ese resultsr wê find from (4.5) and

(4.8) :

4rB e 2 e-2 a 2'abD
T

2

ab

ab

É2 (a )+a
D I

-2rß e e-ba
2

)
J

r< 2 (a
D

+a I

to'
(4.L7)
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and hence, from (4.4) and (4.7) , we have

2¡n\
u^ = kT log{-" \, a _ \rrT/

e
a ( 4. 1B)

(4.Ie)

(4.20)

(4.2r)

r+atD

and

p=In,
a

where pa is the partial pressure of the a-th ion and

is given by

nezaaÞ =nkT-'a a

If a system comprising a thin membrane which separates

two electrolyte solutions (denoted by the subscripts I and 2,

say) is in a state of chemical and electrical equilibrium

then, f-or each ionic component, the electrochemical potentials

in the electrolytes are equal:

6< (ao+ar)

(u +e a)r = (u +e A)z-a a a a

where tp is the electrical potential. Hence, using the

expression (4.18) for the chemical potential and assuming

ideal-gas behaviour (tfrat is, neglecting the first-order

Debye term) and the absence of a temperature gradient, the

difference in electrical potential across the membrane is

- kT ro.,lt"r\Qz Qr=ã-
a -\n.r/

and. this is well knorvn to physiologists as the ltrernst

equation.

(4 .22)
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Although it has been slrown that the Debye-Hueckel

theory is the correct approximation to first order of a

more exact set of integral equations (Kirkwood and poiniersa,

Mayeras, Greenss), the agreement between the theoretical
expressions for thermodynamic quantities and those obtained

experi-mentally is only satisfactory for smalr etectrolyte
concentrations. The range of validity of the theory has

been extended to electrolytes with an ionic strength of
about .114 by including correction terms as follows
(Guggenheim and Turgeons6, ScatchardsT) :

9.6 (r) I ß ü.o (r) + 6gr¡ (r) (4.23',)

do not depend. strongly on

Thus, equations (4.1-B) and

+ ) Ò.J n-þabb (4.24)

9a¡ (rro) I ß0 úro (r) + 69.o (rr 0.)
a

where ôg.o (r) and. ôgro (r,0.)

the ionic number densities na.

(4.20) may be replaced by

e
U. = kT log

where

and
n

2
(n^
\"tn

a

a

2,.r< ( ao+a, )

6 rc (ao+a, )

6 r< ( ao+a, )

b

IIlun", ('.b, o a) do.d''.o6J
a.b

2e
aa

n
nkT

a
D=ta tbI

b

a

6
6I (4.25)

ab

2e
ß

a
å¡6r

By defining

a =kT -n_ab,J.
(4.26)
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equation (4.25) becomes

p (4.271

where ß. = ß - 1/ (kTI in ttre limit of small concentrations,

but d.epends weakly on the ionic densities for the concentrations

attained in the membrane environment (of the order of 100mM).

nu/9 
^

aL
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I.5 MACROSCOPIC EOUATTONS T'OR AN ELECTROLY'TE

In this sectionr wê shall derive a set of macroscopic

conservation laws for an electrolyte from Liouville's
equation following the approach of Green6 7. These equations

will be used in Section 2.L to analyze the dynamics of a

general ionized medium and then applied in subsequent

sections to the membrane region and the surrounding electrolytes.

As we shall be considering electrolyte solutions at

normal physiological temperatures it is possible to neglect

quantum effects except for the justification of the

existence of a lower bound. to the energy of a system of
charged particles of opposite sign. Similarly, relativistic
effects will be small and hence radiation damping can be

neglected, and also it may be assumed that the interactions
between neighbouring particles are instantaneous.

Consider a system of N particles such that the

number of particles of the a-th Èype (with mass *. and

charge e_ ) is N. (a=1 ,2 , . . .) and I N. - N. Then,-aaa

given a function G of Lhe particle velocities and

coordinates, the mean value of G may be defined as

<G> d0 ( s.1)
N

where means ITNr Nz

N-particle phase

normalized. volume

is the space distribution function

element in phase space"

theorem we may write

ðl-

F*=I Ic
NJ

I
N

F
N

CI* is the

From Liouville's

N
N

I
i=l

AF
N .ã. +-L
].

AF
N

ãr +
ãx tr'ni 0
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where E. = + an¿-r clt

a <G>-ãr
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are ttre i-th- particle

velocity and acceleration, respectively.
rf G does not depend. explicitly on the time then

uli
æ-ni

AG

E.I

rf
N

ãF*

ã'r-

AF AF
r-tr*|.e , + 

"f.ni) 
lG dCI*

]. I -I

G dCI*

(5.2)

On integrating by parts and with the use of Gauss's theorem,

w-e obtain

=lJ

a <G>Tr- + âG
oÇi ni) dQN ( 5.3)

(5.4)

(5.6)

Ìj I
F

N

6.IA

I
i

( t

Bysetting c-l ô (x-x. ) ô (E-Ei)
t

equation (5.3) becomes

af af
a

ãL
+et'*g. a

ãE
(r ) -oaIa

r^¡hefe f =.I 6. ô(x-x.)ô(E-ã.)>
AiIA-_I¿¿I

I
(5.7)

is the velocity distribution function of a particle of the

a-th type and ís defined in such a \^/ay that f.d'x d3E is

the probability of finding a particle of the a-th type in

the volume element d'*, with velocíty in the range dtE,

and

n
-a

(s"8)

and t_ is the mean acceleration of a particle of the a-th¿a

type at the point x and moving rvith velocity E.

.l
ia

f
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The vefocity d.istribution function f- satisfies

It d3E-¡
Jaa

(5.e)

(5.10)

( s. 1r)

where n- is the number density of the a-th particle,
a

and be written as-

!red3Ë=n<e>
Ja4aa

ô (x-x. ) >
--r

n ô,l-a
.I
ia ,

0 is a function of L, the velocity of a particle of the

a-th kind at x, and a0>a is th,e mean value of e.

Now, neglecting radiation damping

*i !-i = "i(Ei' 
+ åite-:í/c) (s.12)

where E.' and B, t are the microscopic electríc field
-r -a

intensity and magnetic induction at the point Ii' respectively.

The corresponding macroscopic fields are

<8. | > and
-a

<B. r>
-I

( 5. 13)

and the residual fields are d.efined as

T (s.14)

B.r = !.t - B.
-a -l -r

lfe can now write equation (5.8) in terms of the field

variables as

B. =
-I

E. =
-I

- E.
-I

E.
-l

E._I
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f n = <Ï0.a¿a?r
I

e

am
I (e.

-l].

e

a

e.
+ .l ôi" *i(-vr,o.'+E. " s_i¡ò 6 (><-Ii) ô (6-Ei) >

t1
(5.1s)

with the use of equations (5.13) and (5.14), where E and

B_ are the macroscopic values at the point x, trt = eit-ei
is the residual electric potential at the point *i and

Qi t and ei are the microscopic and. macroscopic electric
potentials at the same point, respectively.

For particles not too distant from the point Ii,
retardation may be neglected and hence the microscopic

electric potential ei' is given by

e
a +Qi o (s.16)

I

where o.o is the external electric potential at Xi,.I

the corresponding macroscopic variable is

and

Qi = 'pi't

e,
l

l*i-*'l

Tj
j

x
].-x.

-J

=.JI I I

ç ll_ i JJ
dE'

AIso, using equation (5.16)

( s.17)
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.I
i

e.
or" 

t' 
(- Viei'I ô (5-Ii) ô (E-ti) >

L

vrp

m

X

V(p

I ab f - d.3xt d.3ã'aÞ
(s.18)

b
a

where

and

(5.le)

Ij
(s.20)I ur" ô (f5i) 6 (E-Ei)

I

Í t"o e d3E d'å,

ab

f ab ô..lþ

is the two-particle velocity distributi-on function, and is
d.efined in such a \^ray that f"¡ d3x d3x' dt.g. dt.g-t is the

probability of find.ing a particle of the a-th type in

the volume element dt5, with velocity in the range d3E,

and a particle of the b-th type in the volume element

d3x', with velocity in the range d3E'. It satisfies

t'

J
f. d3E d3E'

ab .= -!- =ll ab
(s.21)

=Il <e>
ab

(s.22)
ab

where nab is the two-particle distribution function, and

may be writ'Len as

ôT
iba

n
IA

(s.23)
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and <0> is the mean value of a function 0 of theab

velocities L and L' of two distinct partícles.
r¡Iith the help of equat.ions (5.17) and (5.I8) , we can

now write

õ
ô,, r' (- vrer')6(1-5i)ô(å-Ëi)>*om:

l_

.I
i

T fo') d3x' dE tf (5.241

Hence,

(s.26)

ab ab

a
f=III fo') d3x'df '

A._I

3
B-
-b

m
ab

Neglecting retardation, the microscopic vector potential

is given by

e E oA. l =
-I

I
j (s.2s)

) clx.-x.lr_r _] r

where A* o is the external vector potential at x- .-r--i
with the relation

a

A.
-l-

I +

r r

it may aISo be shown that

e.
I

m.
l-

e
(r

m
a

B.
-t

ô.IA.I
i

a
ff=l

b
xab

Equation (5.15) now becomes

d dE' (5.27',)
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m n-e-=E+'ExB/ea-aa

) (E- + { x B-/c) d3x' d3g' (5.28)
a

lfe shall now derive the conservation equations for the

number density and the momentum of a particle of the a-th

type. The continuity equation follorvs immediately from

equation (5.6) by integrating with respect to 6 and using

equations (5.9) and (5.10):

ab

ân
aãr

ã:E
(n

a
u
-a

+

f f f
a b

ðx

a
(n ) -o

a

+I
b ff

u
-a

+ (s.2e)

(s.30)

where u = <E>
-a¿a

The equation of motion may be obtained by multiplying

equation (5.6) by the velocity 9 of a particle of the

a-th type and then integrating over t,

a â

E (n<EE>)=n
a-a a

<n>'a a

Now, the assumption that relativistic effects are small

allows the force between neighbouring particles,

u. (9¡ + E x B_o/"1 I to be approximated by the coulomb force

alone, and so equat.ion (5.28) becomes

m <n ) = e (g + u x B/c)
ctctcld--d

V abI
J

L
rt

a+e ta; x

a

e,b n
d (s.3r)
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\nrhere

where

r=x-x and

ab ab

v ab

To determine the contribution of the force *. .1.t,

to the partial pressure of the a-ttr particle, write

(+) +v (-)

(-) I
2

(v
ab b a

+

( 5. 32)

( 5. 33)

( 5. s¿)

( s. 3s)

In_
.ba

nn

v"o (¿, r)

å 
( u.o*uo.)

ab

V

\)

v ab

(+)
V ab ab

By expressing vab and v

and !=I-Ir then

series as foLlows

v"5 (¿r r) = v.o (x, r)

. (-) in terms of v = *(***')aO-¿--

can be expanded in a Taylor

(+)

This series may be truncated at the first order term in r

by assuming that the gradients of macroscopic quantities are

smaIl relative to the microscopic correlation length. t/üith

this expansion, equation (5.31) becomes

m <n) =e(E+u xg/c)a -:a a a-- -a

e.
l) (+) r

:¡
ar"

d3r
ð

xa

I
z

ae+I
b

t rV
a-b

(
na

(-)( 5)
d3 rl+ vab

r3
(5.36)
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\^rhere we have used th-e odd and even function of t oropert,ies

of u .o 
(-) and u .o 

(*) , respectivery. The partial pressure

tensor p^ may now be defined by

"b
v

ab
(+)

where the ftuid velocity u is given by

and
p

is the mass density.

Equation (5.3I) may no$r be written

+

+ X

where

uu*uu uo(u'a -a

p_ = m_ n_ <(g-u) (E-u) >_
-ct 

d cL cl

1.rou=)mnu a-a
a

a
n=ImL^

d'a

+å¡"' t
J

(
tr
--) d
r3

r ( s. 37)

( 5.38)

(5.40)

lp+
=a

a

Eu
-a

(0"a

FT

+Ie
;a

e

o =m n'a a a

l

Ea- j. B,
-/c

e_b
\)

aþ

t
-)
r3

d3r (5.39)( -)

eÊ n

n u
-a

a

a

aa

=e a

By summing equation (5.39) with respect to at the total

conservation of momentum equation results,

a

E+ (pu)
OL

+ lg * puul ( s. 41)
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where

(5 .42)

and is the total pressure tensor.

It may be noted that an expression for the isotropic

pressure may be obtained from equation (5.37) and

(s.43)

Hence,

rl
P - Ì 0.

a

e=IebA
4..

i = I j.
a
Fr)=)l)

LL

= -_aa

oIP" = i(nrr * Pzz f Psa).

po = å I *, ,r, <(E-u) 2>,
a

åI¡f vab
dto'ab -rr--d-r

d.r
(5 .44)

Now, the temperature T"

electrolyte is defined by

of the a-th component of the

(see Greenss(1952) )

3kTa = *. <(E-u) 2>"

where k is Boltzmann's constant. In equilibrium,

equal to the uniform temperature l, and so eguation

becomes

(q 1)-aD

da.aÞ -1r 

- 

cl-r
dr

( s. 4s)

Tis
a

(5.44)

( s.46)

(5.47)

po=I(n.kr *l'u tb r.¡)

where

=I

urd g.b is the radial distribution function. If the

I ab
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volume viscosity can be neglected then the isotropic part

of the pressure is th-e same as the hydrostatic pressure and

hence (5.46) reduces to (4.4) ,in Section 1.4.

In the non-relativistic approximation, the partial

conservation of momentum equation (5.39) may be simplified

because llt. | <<

neglected. If we further take the fluid velocity u to

be equal to zero then (5.39) becomes

a (p ua-a )

a

a

ðx
I

J

t

t
+ V

abar

If we define

L-l

-ab

(-)

I -\then I"¡' ' is the force per unit volume

b-th species on the a-th species, and so

proportional to the relative velocities of

type a and b (Spitzer88, p. 28). As v'

function of r I it has the general form

(-)

p e-beE+Iea-ba
( -) ) d3r (5.48)

(5.4e)

exerted by the

should be

the parti-cles of
(-) is an odd

ab

into an isotropic

the latter,

(s.s0)

r

t3d="".bfu"ot-',

ab ) f(r)

By expanding the symmetric tensor

part and a non-dj-vergent part and

(5.49 ) becomes

neglecting

u
-a

V

rY

( -)F
-ab

0
ab

u-
-bt

u
-a

o('a

where Orn is the number of collisions in a volume per unit
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time between particles of types a and b.

In a strong electrolyte, the interactions between

charged species are mediated by the aqueous dielectric, and

so if the water molecule is denoted by the subscript zero I

then for each al1, bl}, 0.¡ <<

write 0^ for 0__. V[ith the further assumption that thereaao

is no osmotic f low, that is u0 = 0, we may r^¡rite

( 5. 51)I r' (-)
! -atnb

FinalIy, if we neglect viscosity effects then

(s.52)

where is the thermodynamical partial pressure of the

Wrítinga-th component.

( 5. s3)

where 0 is the electric potential, equation (5.48) becomes

a âp (5.54)

u
-a

pa
a

0

ota
a

ðxa
pa

ãx

pa

ãE
(p u ) +a-a

ó
a

ãxg

u
-a

o"a
0

a
Ð___L

ðx
â0
ãE+ + 0

and this 1s the form of the partial conservation

equation that wilI be used in subsequent chapters

investigate the dynamics of excitable membranes.

The partial equation of energy transport may

in a similar way by multiplying equation (5.6) by

and then i,ntegrating with respect to Ez

of momentum

to

be derived
I
=IÍlza

r2
Ç
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â ,I
ãELZ* n <E'> )

a .1+ fr. (å*. .. ,9_ E'rla a

=m n <8. n >
d. ci.

By defining the internal energy per unit mass of the a-th

particle U" by

e e
V d x (s.56)

ab

(5. s5)

lu = * <(ã-u)>2
a ¿ z- a

++I
4b

3ba

ly*' I

and using the expression f.or n^ given by equation (5.28\ ,

equation (5.55) becomes

o'a

à(p u ) aaa +_(p u.u p u2/2)
at ðt a-a- a-

e- âu'?¡d, 
* ,

.bt'a

r
T"

'). ((un
-aD aþ

f'

J

e

x-x

â

+ _ (p
âx a

<v v2 /2>) o u .E
ð--cL 

-

+Ie
be

un
-aa

tb

(n u'. ) = 0aþ -aþ

d r ( s. s7)

(5.s8)

ã

eb

The form of this equation may be simplified with the help

of the partial and total conservation of momentum equaLions

(5.39) and (5.41) and also the two-particle continuity

equation:

(n u.)a-o -aI)

â
+-

ðxt

This equation nray be derived fr:om equation (5.2) by setting
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rl

and defining

9a¡ = <?.¡

tl¡- = <El>
-aþ .-= ab

p # (ourru/o) (9. . fir
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(s. se )

(s.60)

( s. 61)

d3r (5.62)

Finally, n and nab

and

(x,r) (see equation (5.38) ) to obtain

can be expressed as functions

and expanded. in Taylor series
a

tb

xlof y.=

around

x-t[1+x1
2

+p wa-a
du
dr +

JX

u

"-/
+ O = (,f eu) E u

=a --a a-
ð

E -a c

+lc
b

(-)
ab

where

and.

Í"G

I
¿a

(+ i pa <(y

(-) =-e e_b . (-) e.u/rs) d3raoab a

tb

u
-a

g

I+=e¿a I ^"o(-) 
(g"o*9åo) .ft/r') 3d r

tb J ,"" ,{) 
(-) (g"*gi ) . Q-/rs)
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-a

) 2>
a

t ltu.å¡""
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-a

"b f '"o{}tg"o*g'o-u.-gi) . (
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and w =lf
-a -a

u

Summing with respect to a, \^re obtain the equation

of energy transport

(u : -u ) /rj d3r
-âD -a

(.s.63)

( s.64)

d3r (5.65)

g.

50.

d

ðE+udU
dt

where e=I9..
a

Now, from (5.49) and (5.621

p +(p

( -)

L¡ c
XJ

r3I
Za* u.F

- -a.b

( -)G
"b f r"o (-) (g.o*9åo) . (4t')

ab

I
¿a "b

i

l

and is the energy. per unit volume transferred from the b-th

species to the a-th species when the fluid velocity is

equal to zera. In equilibrium, the following conditions

must be satisfied:

u
( s.66)

b

a

a

ob
f

T T

where T is defined by (5.45), and so we may writea

(-) (n n.')aþ
(-)

ab
(u . *u'. )
-ap -aÞ

(u +u.')
-a -þ

(

n

u. -u ) + q(r) (T. -T ) r (5.67)
-þ-a-Da-



where f(rl and g(r) are aPpropriate functions of

Again, by retaining only the isotropic part of T t t

in (5.50), we have from (5.65i

51.

as

r

G =0 u_
-ò -u tg ,)

ab ab

+u
ab

.T (s.68)

where oab and ú"¡ can be expressed in terms of f(r)

and g (r) .

If the ftuid. velocity u is equal to zero in the

electrolyte, then the partial equation of energy transport

(5.6f) may be simplified to

e6¡ (p -u -/ p)
ct d.

2 (s.6e)

(-)

+ u)uao-a

where we have assumed a uniform ion temperature.

2
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a
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I.6 OUTLINE OF TI]ESIS

In this thesis we deveJ-op a macroscopic treatment of

the dynamical process wíthin thin lipid membranes which

can account for the electrical properties of excitable

cells, and in particular, the time course and magnitude

of the currents which flow across the membrane during

the voltage and current clamp experiments, and the action

potential.

In Chapter 2, we develop a set of nonlinear eguations

in the ionic potentials. These equations are linearized,

and following the determination of the steady states of

the membrane, their solutions are obtained by deriving

a dispersion equation. which can be used to characteríze

the modes of oscillation within each ionized medium. These

include oscillatory modes in the membrane which have the

correct frequencies and amplitudes (when small) to explain

the observed excitation phenomena.

In Chapter 3 an expression for the voltage clamp

current is derived by considering appropriate boundary

conditions at the electrodes. The characteristic

frequencies of the currents are determined by a pol-ynomial

equation generated by the condition that the dispersion

has two equal roots, and hence are dependent on the

concentrations of the permeable ions in the membrane and

the resistance these ions experience in their passage

through the membrane phase. It is shown that the voltage

clamp data for the normal squid gíant axon are explicable

in terms of the l-inearized electrodiffusion eguaLions.

The dependence of the characteristic freguencies of the

voltage clamp currents on the temperature of the medium,
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the concentrations of ions in the intracellular and

extracellular fluíds and the type of excitable membrane

(whether nerve, muscle, electroplaque or Chara) is in
qualitative agreement with experimental data.

In Chapter 4 we investigate the nature of the

singularities and associated normal modes which are

relevant to observable cì.ynamical events, and then examine

the oscillations in the potential d.ifference across the

membrane for a subthreshold stimulus. I¡trhen the magnitude

of the stimulus which is applied. to an excitable axon

membrane ís sufficiently large (a threshol<l stimulus)

the character of the potential oscillations across the

membrane changes drarnatically. Their amplitucle for the

normal axon is considerabty greater (approximately 100mV)

than that of subthreshold oscillations (of the order of

a ferv millivolts), and the oscillation waveform no longer

resembles harmonic variat.ion but is characterized by

sharp peaks or spikes (a repetitive action potential). By

taking into account the nonlinearity of Poisson's equation,

the d.ynamical equations for an ionízed medium with just

two íons can be solvecl to yield nonlinear potential

oscillations which have a similar shape to that of the axon

action potential. However, these eguations only exhibit

threshold behaviour if the coefficient of the ioníc

potential in the exponent.ial terms ís suf f iciently 1arge,

ancl this value is attained in the presence of calcium ions.

The previous analysis has shown how to account

qualitatively for excitable ceIl behaviour without assuming

that the ion mobility is dependent on the electric field

in the membrane. However, it is in fact necessary to assume
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such a dependence in order to explain the large steady

state currents of certain ions (ví2. potassium) which

are observeà during the voltage clarnp of the axon

membrane, and also to describe the variations in shape

of the action potential for different excitable ce1Is.

In Chapter 5 we examine the extent to which an electric
field-dependent ion mobility can be inferred from the

application of irreversible statistical mechanics to

the Triffet-Green neuron model. We also consider the

effect of irreversible processes on the Hamiltonian

parameters À and U which, provisionally, were

assumed to be constants in the model.
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CHAPTER 2

THB ELECTIìODTFFUSION MODEL OF' ME]{BRAT{E DYNAT.TICS

2.1 TI]E LINEARTZED ELECTRODIFFUSTOTT UATIO}IS

There have been many attempts to account for
excitation phenomena in terms of the macroscopic equations

with little success. In most cases, the starting point
28has been the time-depenclent erectrodiffusion equations ,

that is, the continuity equations, the Nernst-planck

equation (or the steadv-state conservation of momentum

equation) and Poisson's equation. This absence of an

electrodiffusion description of the dynamical pr:operties

of excital¡le ce1ls has been understood blz most investigators
as a confirmation of the Hodgkin-I-Iuxley interpretation
of l-he large trans-rnernbrane currents during excitation
in terms of electric field controlled ion-specific
gati-ng mechanisms, and as an indication of the irrelevance
of the erectrod.iffusion equations to an unclerstanding of
excitation phenomena.

The neuron nrodel of Triffet a.nd Green2T suggested,

however, that the action potent-iarl could be simulated by

a set of equati-ons cLerivable f rom physical principles.
The limitations of the moder were that, being a microscopic
quantum description of ionic events, its physical
inte::pr:etation r.,'¡as not a priori clear and arso, compari-son

with the numerous experiments on excitable cells was

diff-icult. These shortcomings were overcome by a

macroscopic description of ionic processes within the

excitabl-e mernbrane and surround.ing electrolytes which
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included the additional effects of irreversibility (and,

in particular, ionic dÍffusion), spatial- gradients and

the interactions between îons of different types.

The macroscopic equations which are necessary to

describe the behaviour of an ìonized medium, including
the irreversible effects of heat conduction as well as

chemical diffusion and viscous flow, are the continuity
equation, the conservation laws of momentum and energy

and Maxwell's equations. It is well_-known that this set

of equations, supplemented by the thermodynamic equations

of state, constitutes a basis for a general theory of
irreversible processes which is an alternative to thc

theory of irreversible thermodynamicsse. However, in
examining the physical basis for excitabl-e behaviour in
bioJ-ogical ceÌIs, it is not necessary to retain alt of
the above equations. Ivlore specifically, although rapid
developments in the experimental technique of measuring

magnetic effects in the central nervous system have

occurred in recent yearss 0, the magnitude of such magnetic

fields is extremely small (of the order of 10-r2 Tes1a).

It is therefore reasonable to neglect magnetic effects
to a first approximation and sor in this case, Maxwellrs

equations reduce to a single equation Gauss's law or

Poisson's equation.

During the action potential, heat is generated

during the rising phase (approximately 2A Ucal ./gm f.or

the rabbit vagus nerve) and most.ly reabsorbed. during the

falling phase (about ninety per cent).tt A detailed account
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of these changes would include the effect of temperature

gradÌents but if we consìder only isothermal changes '
then it is possible to describe the dynamics of the system

in Lerms of the conservation laws of mass an<l momentum,

without the ad.ditional equation of energy transport.

Having decided upon which macroscopic equations are

important for a description of excitable cell dynamics,

a microscopic justífication of these laws should be

given, especially since even their applicabitity has been

quesLioned to a 1arç¡e extent. This has been done in

Section 1.5, where we presented an account of how the

conservation larvs of mass, momentum and energy for each

ion may be derived from the microscopic Liouville equation.

The derivation of the macroscopie Maxwel-l equations from

the ¡nicroscopic field equations, although oríginally

given by Lorentz in the context of his electron theo::y,

has also been considered in terms of statistical ensembfe

averages by Brittin6 6 and d.e Groots 2.

In this sectíonr rde shall first linearize the dynamical

equations for an ionized medium and in Section 2.2 the time-

independent form of these equations will be considered j.n

determihj-ng the steady states of the excitable membrane

and íts surrounding electrolytes. In Section 2.3 ,

solutions of the time-dependent linear.ized dynamical

equations are obtained by derivlng a dispersion equatj-on

which can be used to characterize the modes of oscillation

v¡ithj.n each ionized medium" These include oscillat.ory modes

within the membrane ivlrich have the correct frequencies
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and amplitudes in order to explain the observed excitation

phenomena in various excitable cel1s (neurons, muscle

cells and excitable cells in the algae Chara and Ní.teLLa).

This anal-ysis will be applied to the voltage clamp

experiments in Chapter 3, and to electric potential

oscÌllations across the membrane, both subthreshold and

threshold, in Chapter 4.

We no\^/ consider the dynamical equations of an ionized

medium in more detail. It can be characterized. generally

by a dielectric constant and a resistance to the passage

of the various l<inds of ions present. The charge density

and the current density associated with the a-th kind of

ion are denoted by r. and j. = r.A., respectively
(a-I ,2r...') , so that, to secure conservation of ions

of the a-th type t

âe
. t+v.i"=o (r.1)
ðt

This equation is just (5.29) of Section 1.5.

It may be shown from }{axwellrs equations that the

electric potential $ satisfies the nonhomogeneous \^rave

equatiop

4r 4r
K K

where K is the dielectric constant of the medium. As

tlre velocity of propagation, V, of the electric potential

is large, and as v/e are concerned primarily wit.h low

frequency oscillations, then this equab.ion reduces to

I
w

a'o
ã:8"¡ v'o I t"

a
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Poisson's equation

v2o _ 4t¡
K

(1.2)

(r.¡)

Now, ìf we neglect the effects of vj-scosity, heat

conduction and the magnetic field, the ions of the a-th

kind are subject to forces of three types: a force VPa

per unit volume due to the partial pressure Pa, t-VQ

due to the electric field, and a resistance 0.Prr.u.,

where pa is the mass density of the hydrated ions,

and 0 the friction constant associatecl with the
a

motion of the ions relative to the solvent t ox the material

of the membrane. This is expressed by the equation of

the conservation of ions of the a-th kind, which was

derived in Section 1.5 as (5.54), and is written here as

ð(p u ), a-a +vp + -e o
<1

c Vóa
ua-aar a

As Spitzerss has recognized, this conservation l.aw may

be used to derive a correct generalization of Ohmrs lar^¡

for ionized media. If *" is the effective mass and e.

the charge of the a-th kind of ions,

ua-a

account of the Gibbs-Duhem

of a temperature gradient

p =mi/ea¿a' a
(r. ¿)

relation, which in the

ís

pa =ms /ea a' a'

and on

absence

pa vur 'Vp
d

(r.s)
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wtrere u_ is the- chemical potential of the a-th kind.'a

of ion, equation (1.3) may be written as

äi
-cIJa e v(u +

a
(1.6)

a a ôr

This yields the usual form of Ohm's law in a steady state
aj

with _: = 0. As r^re are concerned with transient
ar

phenomena we shall retain the inertial term, though'

because of the large resistance, the associated relaxation

effects are of very short duration in the membrane.

Stil1 another form of the equation of conservation

of momentum results from expressing the par'tial pl:essure,

on the chemical potential, in terms of the number

dens ity thus:

Vp (r.7)

0 /meó
da

, u/" u,

ß Ve /ea'aaa

where ß. = ß - L/ (kT) in the limit of s¡naIl concentrations,

but depends weakly on the ionic densities for the

concentrations attained in the electrolytes surrounding

the membrane (see equation (4.26) of Section 1.4). In

this foYm, the Nernst-Planck expression for the current

j - is obtained by neglecting the inertial term.
-á

The resulting equations are nonlinear, but for small

amplitude solutions may be linearized without serious

error by neglecting quadratic deviations from equilibrium,

thus:

1
0

s

ö¿
u
-a

a
ðt

a + v.
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âu Ve e
-a¿a-arò

At ßme maaaa
-0 u

a-a (1"8)

By elimination of the diffusion velocity ü^, $re
-a

obtain

).a
0ßm'a a

a2o(
\

ð0
aa v2 (o-oa) 0+

âr ar

where 0 - is the ionic potential, defined by
a

(1.e)

(1. r0)

(1. rr )

(1.12 )

1og (e
a

and. , o is a constant which depends on the ionized
a

medj-um, and is chosen in such a way as to minimize the

magnitude of the potentials 0.. This usually implies

that 0a will be small throughout the med.ium, and under

such circumstances Poisson's equation

ßeô'a a'a /.uo)

4¡r

may also be linearized as follows:

KV2 4) I
a

KV2 O Ieo
d

a
exp(-ß-e^0 )

d- c¿ ct

4r

The linearj-zed version of the equation will generally be

used in this and subsequent chapters, except when the

nonlinearity is considered to be important, as it is

during the action potential and for large perturbations

from the holding potential during the voltage clamp.

ßeeoóaaaa
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The pair of equations (1.9) and (1.11) or (1.12)

are sufficient to determine the ionic and electric potentials,

with the help of suitable boundary conditions. ff the

ionized medium under consideration is the membrane phase

of a biological celI, then at the membrane surfaces' Q

and the normal component of KVQ must be continuous, and,

at the microscopic level, t" must also be continuous,

so that 0a Logeuo/ß... is also continuous, though

0a has a discontinuity.

When 0a and Q have been determined, the ionic

currents may be obtained with the help of the relation

d-t
-cl + la v (0a-0) (1. 13 )

e e
aa

m
a

0

at a

Within the membrane phase, the time derivative is usually

negligible.
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2.2 STEADY STATES OF THE CONDUCTING MEMBRANE

In this section we determine the steady states of

the excitable membrane and the surrounding electrolytes

by considering the time-independent form of the equations

of the previous section. Excitable cells have a large

variation in shape, size and ionj-c composition but the

excitable membrane is generally composed of an ultra-

thin lipid bilayer membrane (50,e-100Å) within which are

embedded large protein molecules. When these molecules

extend across the thickness of the membrane, it is thought

that thelz prov.ide a passage through which ions (and other

molecules) may diffuse from one side of the membrane to

the other.

The determination of the steady states of a membrane

will clearly depend on the geometry of the cell, but in

what follows rve shal1 generally rest::ict our attention to

the sirnplest case that of a plane rnembrane. However,

with a cylindrical geornetry, the solution of the time-

independent forms of equations (1.9) and (L.L2) are easily

enough obtained. in terms of the modified Bessel function

Io (vr) , - 
where v is the inverse of the Debye shielding

length, given by

o /*)\ (2 "L)aa

and for physiological concentrations this has a value of

about 5Â,. Now, this is considerably less than the

diameter of the smal-lest rnammalian nerve fibres (of the

(4r I
a

v ßea e
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order of 1000Â). We may therefore neglect the curvature

of the membrane in consÍdering ion transport which is
uniform over the membrane surface. However, the diameter

of the axon is an important variable in the analysis of
the conduction of the nel:vous impulse longítudinally
down the axon, and this wirl be discussed ín chapter 4.

The membrane phase (clenoted by R*) , which is comprised

of essentially rigid components as well as the various

kinds of ions which are able to diffuse through it, is
considered to be an infinite slab of uniform thickness

ô which separa'tes the electrolyte interior of the ce11

(deno'Led by Rr,) from the electrolyte exteríor to the

cell (denoted by *u). Each of these regions is characterized

by a different dielectric constant and a different
resistance to the flow of ions through it. If we measure

radial distances outwards from an origin rnidway between

the membrane surfaces at x = !õ/2, and if flat electrodes

are positioned symmetrically on each side of the membrane

so that their separation j-s p (see figure 2.I) ¡ then

the solutions for the external region, the membrane and

the interi-or of the cell are of the form

Xi (exp [-v, (x- 6121] expIv.c, (*-.p+ô12)))0.¿

am

m

0r ¡r (exp [-ur (x-6/2) J

0 x' exp [-v x]'-m-m X*exp Iv*x] n v. ( t-ä) * uå (à+ã)

expIv.e, (*-p+6/2)])

+

+

+ v!

v'(L+Ë)0 exp [-v*x) + X*exp Iv**] + V (%-ä)X m

0., = X,, (exp Ivr, (x+ô/2 ) J exp [-v n
(x+p-6/2)1)
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FIGURE 2.I: The geometrv of the membrane'
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0 = Xr, (exp Ivr, (x+ô/Z ¡ ] - exp [-vr, (xtP -6/2) ] tv (2.2)n

where

V (1o9 r.fl/ß.* - 1og r"l/ß"rr)/eaa

(2 .3)

(2.4)

a

and go
an

x = !g/2,

vr

and cO'a 
.1,

have been chosen so that Q. =0 at
whereas e = r, (eafl + t.?).

ó at x = !6/2 requires that

X^ exp[-v*ô/21 + Xå explv*612]

X* exp [v*ôrl2 ] + Xå exp [-v*ô/2 ]

o
am

The continuity of

and the continuity of KVQ at x = !6/2 requires that

**u*(X*'expl-v^6/Z) - Xå explv*ö/21) + rc*(V,-v)/6

= *rrurXr, (I + exp [-vr, (p-ô) ]

( exp [v*ô,/21 - xå exp [-v*6 /2]) + r* (v'-v) /ôVK
m m m

= rcuvuXf(1 + explvu(ô-p)]) (2.s)
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If the separation between the electrodes, p >> the membrane

thickness, 6 , then the terms involving exp [-ur, ( p-6 ) ]

and exp [-vu (o-6) J can be neglected, and equat.ions (2.4)

and (2.5) have the solution

E* {v-v' ) [ (c-t) E*+sËrr],2õ
X;

(12+<,r[u ) s+E* {[rr+Ëu) c

(Ë2+[,r[u ) s+E* {rcrr+lu ) c

K.(v-v') t (c-1)[*+sr L]/6
xn

where

X^ * X; = L (X,r+Xi) rzcosh (L6)

xm - xå = t (x;-xn)/sinh(t6)

s = sinh(õ), c = cosh(õ), õ ô V

(2.6)

(2.7)

m

mm
KK¿vr'

L
K K,=KV vK nnnm

If we take the dielectric constant within the membrane,

K = l-0, which is intermediate between the value for an
m

agueous electrolyte (= 80) and that for a lipid phase

(æ 5), then for physiological concentrations of ions in

the surrounding electrolytes, ,it o 2h and as $ az 80Ä.,

then õ N 40, and so the following approximations are

adequate

K (v-v' )m
X

I

L ô (rc*+rcu)

\
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K
m

(v-v')
^

(2.8)

(2.10)

6(rc +K )mn

The currents in the steady state, according to

equation (I.f3) wìth the hetp of (2.2), ate given

n

by

ee o
ama (r/'-v-v ) (2.e)

0 ô
a

and this is in agreement with the result olctained by

integrating (1.13) across the thickness of the membrane.

tr{e note here that (2.9) can be used to recover the Nernst

equation by assuming j. = 0r whence

g o

j +v
aa

m
ama

I (
\

a9,\
)AV = V-Vl ße a

rog
e o

an

where we have used (2.3) and the approximatíons

ß ßan a9,

ß ßam

Experimental rneasurements in the steady state indicate a

certain degree of variation of the resistances 0.^ rvith

the potèntial difference across the membrane, AV = V-V',

but on a scale which is quite unable to explain the

generation of the action potential on the transient

currents of the voltage clamp, even though it is important

in accounting for the shape of the action potential. We

shall therefore treat the 0.rn as constants in most of

the following, and seek some other dynamical explanation

of these phenomena.
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2.3 TRANSIENT EFFECTS IN THE MEMBRANE

There is at present a considerable amount of

experimental data (see Colea) concerning the transient

currents at the membrane arising either from small changes

of potential similar to those occurring naturally in

excitable cells t ot from the artificial conditions

imposed by the voltage clamp. It is known that there

are currents of very short duration associated '¿ith
changes in the polarization of the membrane surfaces, and

also currents persisting for several milliseconds which

are accompanied by the transfer of ions across the membrane

under a variety of circumstances. In this sectionr it

will be shown in a prelíminary way how to account for

such currents without invoking the la::ge variations in

the ionic permeabilities of the membrane postulated by

Hodgkin, Huxley and Katz12. These transient cnrrents

will in fact be attributed to plasma oscillatíons of the

type which are known to occur in other ionized systems.

The ti-me-dependent behaviour of the potentials can

be studied in linearized appr:oximation by first eliminating

the electric potential 0 between equations (I.9) and

(1.12) , thus:

a'o
+ (3.1)

ât2
(
\

a
0v'o- + I u'4ba

4nßoeo efl/rc

ßm'a a
0

2

bv

0b

where

ß.2)



takes different values uå* , v

regions Rg, R* and Rrr,

and, to a lesser extent, to

solution of equation (3.I)

asymptotically as t -+ -r
previous section, and write

AS
+ ñi {, (À) e dÀ

a

so that {i (À) satisfiesa

wt(À),,a '4.

where

op m À(À+0
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and v? in the threebn

same applies to 0.,

Suppose ö is a'as
steady state approached

type obtained in the

and.

2

bm

the

for the

of the

ß'a

J:-
I

Óu. = 0
Àt

v2,ú'a + I uåüo

(3.3)

(3.4)

(3.s)

(3.6)

2

aw aa a

As 0"" already has the required discontinuity at the

mernbrane surf aces, ü" is continuous at the coÍrmon

boundaries of the three regions. The solution within
each region can be obtained in the form

(j) (j)c f
I k k

-(j)tk

i;ku .'-w'(l)KA

(j=l ,2,...) are independent solutions

va

v'rlj )

where the

of

'1, 
,ui

2

kand the U are the roots of the algebraic equation

(3.7)
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(3.8)

u (3.e)

are

(3.10)

2v
I
b

b I
uf-wi crl

The last equation may be regarded as a dispersion

equation, relating the imaginary wave number Uk to

the imaginary frequency À. There are clearly as many

solutions as there are different kinds of ions, a.nd we

can identify a particular root ui uniquel¡¡ as an

analytic function of À by supposing that

ßrmr < ßzmz < ... <

different kinds of ions) and requíring that

wf (r) 2
I

2

N
1^I

2 ( À)
N

for sufficiently large values of I I I .

within the membrane, tfj' depends only on the

coordinate x measuring distances in a direction

perpendicular to the oul-er membrane surface, and there

only tr¡¡o independent solutions for each value of k,

corresponding to opposite values of Uk. So

co ( À) exp ( unx) +ciexn (-uox)

ufl-'] t I I
=I

k
,l,a

lVe shall see in Chapter 3 that, in the regions Ru and

R_ the corresponding solutions are determined by then

initial conditions at t - 0 and the boundary conditions

at the electrodes under the conditions of the voltage

cIamp. I{e may therefore suppose that the values \þa(!6/21

of Va at the membrane surfaces x = t6/2 are knownr so
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that. the values of co (À) and c[ (À) are to be determined

by the solution of the lÌnear equations.

cu (À) exp(turð /2) +c;(À) exp (lpo6/2\
ú (!6/2) ( 3. r1)T

k ufl-w] t u a

These equations can, in fact, ,be solved explicitly in
the form

d +d d -d
2

ci"k=I(

l
¡*"

ak ak

2

lr!" {+ }l

"ak t I(

\
)

ak ak (3.12)

( 3. r3)

I,ak

where

d_=ak

d_t
ai<

-wuika
L

tú (+'a Ir + ü"(- !t t =".r',#,

tl,^ (-
d

ô

2 ) I cosech (
u.ô
_-K-_

2

( 2 iI
s*ta

It should be noticed that the time dependence of the

complex integral in equation (3.3), rvhen evaluated by

the theory of residues is determined by the singularities
(poles and branch points ) of c,. ( À) and c{ ( À) in the

left fraìf of the complex À-plane, excluding the origin.
For large values of À, uk is of the order (ßo*o)àÀ,

when chosen in accordance with equaLion (3.9) r so that
the contour along the imaginary axis can cert.ainly be

closed with a large semi-circle in the left half of the

compJ-ex plane, when t/x is greater than each of the
Lsmal1 quantitíes (ßomo)'. Alsor âs 0"" has been defined
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as the limiting value of óa as t -+ -, the pole at

À - 0 is to be excluded by deforming the path of

integration in equation (3.3) to the left of the origin
in the À-plane. Finally, it is clear that the denominators

Ufl-rvl{,f ) in equation (3.f 0) are removed by one or other

of the factors of co(À) and co(À'), so that only ttre

singularities of co(À) and ci(L) need be considered.

These singularities are of four types:
(1) There are branch points in the integrand of equation

( 3 . 3 ) as sociated with the denorninators uí-u 'u in L.k .

We shall study the effects of these singulariÈies in

Chapter 3, and shov¡ that ther¿ correspond to plasma

oscillations, which can produce transient currents in the

membrane over periods of several milliseconds (v¡ith

physiological concentrations in nerve cells) . They are

consequently implicated as responsible for such phenomena

as the action potential and the voltage clamp. For the

presentr wê note that the characteristic frequencies are

determined by the condition that the dispersion equation

should have two equal roots (uí

(2) There are two inf inite sequences of sJ-mple poles, ât

the values Ào' of À given by Urô = 2nri and

Unô = (2n+1) ri (where n is any integer) , associated

with the f actors cosech (Vo6 /Z) and sech (¡:o6 /2) of
(3.13), respectively. The first of these sequences yields

a contribution

I
krn

exp (^o,_,a) (o"on e 2r Lnx/ 6 +o¿ -2ninx/8,
akn 

e 'ttLL'^/ v)
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to the potential 0., in the form of a Fourier series.

The term with n = O, corresponding to Ui = 0, requires

separate considerat.îon. The remaining terms make no

contribution to the currents j. derivecl from equation

(I.13), when averaged over the cross-section of the

membrane, because their period. is the same as the thickness

ö of the membrane. The associated currents are therefore

capacity currents, whose only effect is to polarize the

membrane. The Ào., are easilv computed from the dispersion

equation (3.8), and are real and negative, with assorted

magnitudes corresponding to time constants the largest

of which is 1Omsec. The occurrence of capacity currents

with similar characteristics is well known experimentallya.

The second infinite sequence of poles does not

contribute to the net currenL through the membrane and it

will be seen in Chapter 3 that the term with lt = 0 makes

no contribution to the voltage clamp currents.
(3) There are also, in general, some poles associated

with the denominators *?-*î in L.k. Apart from the

pole at the origin, whichr âs already explained, does not

contribute to the value of the integral of equation ( 3.3) ,

there are poles for

(ß m 0 ßo*o oo)
aa

À
a ( 3.14)
ß¡*u ßmaa

These are, however, either in the right half of the

complex planer or, if in the left, so far from the origin

that they have no effect on observable phenomena. For
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example, the resting nerve mernbrane resistance to potassium

ions can be obtained from radioactive flux datae 3 r e 4 and

yields a value for 0r of the order of 102r"".-t. The

resulting extremely small time constants evidently
correspond to the times required for the ions to respond

to an abrupt change in the forces acting on them.

(4) Since the factors úu(t}¡21 are influenced by ionic
relaxati.on effects in the electrolyte outside the membrane,

they are functions of ). and therefore have poles and

branch points corresponding to such effects. As the

external resistances are very much smaller than those in
the membrane (by a factor of about 108), the time

constants associated with these singularities are in
general much smaller than those considered under (I) and

(2) abover so that they have little or no effect on the

action potential or voltage cIamp.

The contributions to the voltage clamp currents from

the singularities of type (f) and (2) above, will be

considered in Chapter 3, but for the remainder of this
section we shall examine how ionic processes within the

membrane affect the currents in the external electrolytes
and henàe the potential difference across the membrane,

both of which are amenable to experimental determination.

In particular, \ì/e shall show that time-dependent processes

are transmitted from one region to another through their
effect on the electric potential.

As in equation (3.9) we may write the el.ectric
potential ô as



75.

0=ó + Àr
S ñl t1.,(À) e dÀ

æ

-CO

(3. rs)

(3.r0)

where ó" is a steady state solution of the type obtained

in Section 2.2. ft then follows from equations (1.12)

and (3.3), with the help of (3.8) and (3.10), that

V',Jl = I lcu(À)exp(uox) + ci(f) exp(*uox) l
k

within the membrane, SO

+ ci(À)exp(-uox) l/vi

+ c(r) (à - ft + c'(r) (% + ä

where c(À) and c'(À) are integration constants.

The corresponding solutions in the external regions

R¿ and R' are, assuming that the linear x-dependence

can be neglected for the low-resistance electrolyte

solutions,

.r.r, ( À) exp (uun (x-6 /2) ) +cri ( À) exp (-uo n&-6 /2) \

ú = I I.o ( À) exp (uox)
k

, ( 3.17)

\)L = I ( \
)

\
)

u
2

k1,

+ ci (À)

un=l( "r.r, 
(À) exp (uur, (x+ô /2) ) +cin( À) exp (-uo' G+6/2) )

u
2

kn
+c (À) (3.18)

n

The boundary conditions require the continuity of both ú

and KV{, at x = t6/2, and are suffic.ient to determine
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not only c ( À) and c' (-À) , but also ci ( À) and, cr, (À) '
in terms of co(À) and. c[(r) and their external

counterparts. So th-e time dependence of the external

electric potential has features determine<l by the ionic

potentials within the membraner âs might be expected.

The external current is given by equation (I.I3) r and is

therefore also determined in part by processes within the

membrane. It is worth noticing also that the integrand

of equation (3.15) has singularities for Uk = 0' and

these are associated r¡¡ith relaxation processes within the

membrane.

To complete the above analysis, it is necessary to

determine ckL, .Li,, "; and .:.,1 from the boundarv

conditions at the electrodes and the initial conditions '
and clearly these depend. on the particular experimental

situation that is under consideration - the voltage clamp'

subthreshold osciltations or the action potential. However,

the singularities of cu(À) and c[(À) of type (I) and

(2) above are clearly not affected by the boundary

conditions, and in the next chapter they will be used to

compute- the contributions to the currents which are observed

during the voltage clamp, but, âs will be seen in chapter 4,

they are equally relevant to a consideration of sub-

thresholcl oscillations or the action potential '
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CHAPTER 3

TI]E VOLTAGE CLAMP

3.1 THE, VOLTAGE CLAMP. CURRENT

The "voltage cIamp" is the term which has been used.

to describe the experimental l-echniques in which the

potential difference a-cross atl excitable ce11 membrane

is ch.anged in a very short time from one value to another

and maintained at this value (by use of an electronic
feedback system) for a period of time during which the

measured ionic current relaxes towards a nertr steady state.
Hodgkin and Huxleyl' separated this current into its
sodium and potassium components for the squid giant axon,

and used empirical expressions for these components to

reconstruct the action potentíal and other properties of

the axon. It has been recognised (CoIe4¡ that despite

the success in descri-bing most of the important electri-cal
phenomena associated with squid axon, the Hodgkin-Hux1ey

analysis is only a sufficient description of mernbrane

behaviour.

In this section an expression will be derived for
the curient of each ionic species which depends on the

concentrations of all the permeable ions within the

membrane phase and the resistance these ions experience

in their passage through the rnembrane. !üith the aid of
this expression, it will be shown in Section 3.2 that the

voltage clamp data obtained from th,e squid giant axon

with physiological intracellular and extracell.ular solutions,
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are explicable in terms of the linearized electrodiffusion

equations. Irowever, quantitative agreement between

theory and experiment for large deviations of the clamp

potential from the holding potential is only obtained

rvhen nonlinear effects are taken into account.

Measurements of asymmetries in the capacity current

for voltage clamps of equal and opposite magnitude from

a given holding potential have been interpreted by most

investigators as an experimental manifestation of the

hypothetical ionic gates proposed by Hodgkin and IIuxIeyl 3.

In Section 3.2 it is also shown that such experj-ments are

amenable to a simple alternative explanation which is

consistent with the electrodiffusion model of excitable

cells. This is followed by a brief consideration of how

the effect of temperature on the, time constants of the

voltage clamp currents can be accounted for by the present

model.

In section 3.3 the previous analysis is applied to

the calculation of the time constants of the currents

observed from the squid giant axon with perfused solutions.

tr{e first consider an axon with large concentrations of

externai calcium ions and an internal solution of cesium

fluoride and then one with an intracellular fluid diluted

with sucrose. Finally, there is a discussion of the

t.heoretical analysis of voltage clamp data from other

excitable cell-s - muscle fibres and the excitable cells

in the electric eels and certain freshwater algae.
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The clamping procedure d.escril¡ed. ahove makes use of

electrodes on either wide of the membrane, and these may

be idealized by supposing that th-ey are plane and have

the effect of clamping the ionicr âs well as the electric
potentials, at the points x = -p/2 and +p/2, relative
to an origin midway between the (plane) membrane surfaces

at x = t6/2. Consequently, the potentials 0a and 0

between the electrodes at the initial tíme t - 0 are

everywhere those (ó"0 and. 0o) characteristic of a steady

state, but that f ollor¡¡ing this time the potentials at the

electrodes are held steady at value= (0." and 0")

characteristic of some other steady state. As time

progresses, the potentials will then approach 0." and

0" everlnnrhere between the electrodes.

We shaIl first determine the solution in regions

Rg and Rn . The general solutions of equatj-on ( 3 . 4 ) of

Section 2.3 for these regions are:

"ou 
( L) exp (u*u (x- õ/2) ) *"*i, ( À ) exp (-u*.s, $-6/2) )

ü.f, =l(
2

u
2

K1, a9,

(1. r)

u"
u2'Kn an

The boundary conditions at the electrod.es x = x6/2 imply

that

- \4I

.rr, (À)exp(u",, (x+6/2)) *"*i (À)exp(-uu' G+6/2\)
In w2K

c*u (À)

c*i (À)

(L .2)
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These expressions can be used with the steady state

solutions (2.2) of Section 2.2, to specify the initial

conditÌons in R
x!

and Rn , thus:

I "*i,lexp 
(-pKr G-6/2) ) -exp (uou (x-p+ô/2) ) laoo

2ri I
-ioo K

jco

t

J 2 2
u

dÀ

dÀ

(1.4)

\^/
a1,

= ôxi Iexp (-v ,,(x-õ/2) ) -exp (vu (x- p+6/2) ) l

I cxr, Iexp (þr,. (r* 6/2) ) -exp (-u^r, (x+p- 6/2) ) 1

K1,

ITIT -iæ K 2 w an
2

(xi) 
=

u Kn

= ôX.,Iexp(v,r(x+ô/2) )-exp(-vr,(x+p-õ/2))] (1.3)

tghefe

ôx; = (xi) 
o

ôXn : (xn) 
o

(Xrr) 
"

i''Iith the solut.ions to the equations of (1.3) (see Appendix

A) it. is then possible to determine cK and ci from

the continuity of {ra at x = !6/2 (see equation (3.11)

of Section 2.3).

Denote the initial potential difference between

x = tp/2 (internal potential relative to an exLernal

ground) by Un and the clamped potential dj-fference by

V The time derivative of the ionic current can be
c

neglected in equation (1"13) of Section 2.L because of

the large value of 0u. for the membrane (approximately 102 I ) ,



and. so r^rith the h.elp of (3.3) and (3. f 5) of Section 2.3,

an expression for the ionic current of the a-th component

can be obtained as follows:

81.

at

(1.s)

(1.7)

(1.8)

(r.e)

(#fee

e=
m

roo

-I@

ee

aa

ef
m

c(À)-c'(À)_-õ--

v (üa-u) 
"Àtar )

aa

where

Now from equations (3.I0),

(2.3) we may write (with

positive x direction)

K b

where

(1.6)

(3.L2) and (3.17) of Section

* the unit vector in the

i."=r_ v(oa"-Qr)

Vil,'a [(dbK sinhuox + dor| coshpox)

vü= [ (doo sinhp* x+doi cosh¡r* x)

bK 2
u K

_w2
a

L 'bK
l*

uK

and may be determined. from the c'ontinuity of K'Vü

x = t6/22

K Vü
m

K VÚn 'n

*gVrl)L=**Vü ,

( 1. 10)
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\nrhere, frorn (3.18) of Section 2.3 ancl (I.2), the left

hand sìde of each equation may be determined from

vrfr=I(
K\

-.*i, (À) [exp (-u"u l.x-6 /2) ) +exp (uou, &-p+6/2)'l ]

)u
K.Q,

cr<,., (À) [exp (Þo' k+6/2) )+exp (-]rrn (x+p-6/2) ) l
)

=l(Vi],l,n ( 1. rr)

(1.12)

(r.13)

uKn

The solution to the equations in (I.10) may be written as

e I
Krbm

where fbK(À) depends on Vn and Vc.

If the total current density is denoted by j then

lai= I
a

aK

TTl ãE
( vol

where I l- is the total ion current density anduza
a

-KA
ZlT ãE

(Vô) is the di-splacement current density.

From equations (f.f) and (1.11) of Section 2.L, it is
cl-ear that

v.j : 0 (1.14)

By approximating *r' by ßr*"OuÀ (as 0. >>

1ow frequency oscillations in the membrane) r \d€ obtain

from (1.13), with the help of (3.8) and (3.15) of Section

2.3, and (I.5) and (L.L2) of this section:
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Àt
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where

The onl1r singularities of the integrand. in equat.ion

(1.15) which are associated with observable currents

occur at those values of À for which

UK sÍnh (

=ßm0aaaYa

2 ,r" I Kle" (1. 16)

( 1. 17)

( 1. r8)

(1.re)

u.K

(21 u $ = 2mi, n is a non-zero integer.
K

P

Note that the non-zero value of

is

I for which U*' = O

v2
a(

\
T T0

a Y a

and hence is not a singularity.

Two Ionic Components

If there are only two ionic components in the membrane

the condition for equal roots of the dispersion equation

o2
v.. - v2

_L_=]_

u2-wr 2 vz-w 22

reduces to a quadratic equation in À (if we approximate

*r' by ß"*-0.À) and this can be solved to yield

complex conjugate branch point singularities À : stiß.
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By denoting the contribution to the integral in equation

(1.15) from the singularities of type (i) by Sí,

i=L 12 , we may write

acrt
Àr

Sr= rl
Z1Tï J -!æ IÀ-(a+i3) I tll-(cr-iß) I t

H(I) e
dÀ (1.20)

The contour can be closed with a large semi-circle in

the left half of the complex plane and hence, by the

definÌtion of Sr r it can be reduced to an integration

around the branchr cut joining cx+iß and o-iß, Equation

(1.20) then becomes

ico H(c¿+iy) e
( o+iy) t +H ( o'iy) e

( o-iy) t
dy (I.2I')

-ioo (.gz -y') \

By defining u(y) and v(y) by

H (o+iY) = u (Y) + iv (Y) (L.221

equation (1.2I) becomes

s1 =+l

Sr =
ate

ñ-
ß u(Y) cos (yt) -v(y) sin (yt)

Let

to

-ß (g'-y') \

y = $ sin 0 and. change the varíable of integration

0:

eqt

dy ( 1.23)

lu(ß sin0)cos(ßt sin0)-v(ß sin0) sin(ßt sinO)ld0

(L.24)

II
2

1T

I
J

2

Sl
T
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By expanding u(ß sin0) and v(ß sinO) as Fourier series

in the variable 0 over tlre interval (- L, [l and. noting

that u and v are even and odd functions of 0,

respectivelyr wê h.ave

ü=üo+ u cos n0 (r. 25)
n

v= sin n0 (L.261

Tfre Bessel function of the first kind of the n-th ord.er

J (x) can be written as 3
n

J (x) (t.27)
n

Hence, equation (I.24) becomes

sr = "ot i
n=0

zJ ( ßr) (r. 28)nn

where

i
n=1

TT

115= = l- cos (n0 - x sinO) d0T J-I
2

oo

Yv
nn=I

nu

,n
even

odd
nz

n -vn

To a f irst approximation, \rre may write

v
H(À) = uo+í

ß

Then equatíon (1.28) becomes

Y (L.2e)

S¡ =e at (zoJo + ztJt) (r.30)
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We shall now consider the contribution to the integral

in equation (1.f5) from type (2) singularities. rn the

two component, the dispersi-on equation (1.19) may be

wrÌtten

. -. 2 vz2vl + ------- = l-
u2-Yrl lt2-yz\

(1.31)

( 1. 32)

( 1.33)

wtrere

Solving for I in equation (I.31) we have

4n2'r2

l2

+

I
ñ

I
ñ

(v 2 +(vr 2 +
-¡-r 2

vz2 .Vzz 11
Yr '(z

2

å{[ ,
Yr \z

Wtren

then

4n2n2 ,. vr2
ô2

i--l. 12

4n2 12 t) t2 +v z2
V1 \ z*t) z

2n-1 --(#.#)À

À 2n

and when

#,, vr2

ô

L=L r2

Yr



then

By evaluating the

each of the poles

residue of the

1 D=Lr2r...

87.

(r.34)

integrand in (I.15) for

we may write

2n-IÀ

À 2n

n

s2
" 

Àt'i
n=1

R
n

( r. 3s)

(1.36)

( r. 37)

H.ence, there is a sequence of time constants associated

wÍth the terms in Sz t and is analogous to that obtained

from the one-dimensional heat equation (Co1eq, p. 188) .

If we consider unit area of the membrane and denote

current by the symbol f, equation (1.15) may be written
AS

+r=In"Àr'
nn=l

T)
AS,

(I
a

+

N fonic Components

In the case where there are three ionic components

in the membrane then the condition for equal roots of
the dispersion equation

eot(zoJo (ßt) + ztJt (ßt) )

2
'uz2Vr +

u2-wr', u'-wr'
I

is a sextic poJ-ynornial in À (its form witl be examined



88.

in Chapter 4). The roots of this polynomial will include

two pairs of complex conjugate branch point singularities

À
I

oi 1 iß1r i=I,2

and a pole singularity at | = 0 (see AppendixB).

there are four ionic components in the membrane then

cond.ition for equal roots of the dispersion equation

Tf

the

l+ uo'
T

=oi*ißi- ' L

( 1.38)
b=1 r'-wb'

twelfth degree in À with roots which

of complex conjugate branch point

is a polynomial of

incl-ude three pairs

singularities

2)
I

I ,3I

and also a pole singularity at À - 0 (see Appendix B) .

In general, for an N component electrolyte within
the membrane, the equal root condj-tion will generate

(N-I) pairs of complex conjugate branch point singularities

Ài = oi t ißl , i:lr2r...N-I

Hence, the generalization of (1.36) for an electrolvte
with N ionic species is

c
I+II

where

l_
(1.3e)
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integrand in equation

obtained. from the N

with
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R eÀttt (,1.40)

ea¡t I(zo)o.lq(ßot) + (zr)oJr(ßot¡l (r.41)

is the seguence of residues of the

(I.I5) for the poles Àr, which are

component dispersion equation

ni
n=1c

I

N-1
T

b=I

Nr. = I r +I '_ asa=I

2

b
N

T
b=I

V (L.42)
2 2u -\^rb

2
u

I. may be interpreted as the capacity current which is

the term that h,as been used to describe the current

observed in voltage clamp records when the trans-mernbrane

ionic current has been eliminated by the application of

various chemicat agents, whereas Ii may be identified

with the observable ionic current.
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3.2 THE SOUID GIANT AXON

fn this section we consider the voJ-tage clamp currents

which flow across a squÍd giant axon membrane surrounded

by physiological electrolyte solutions. ft will be shown

that the expression for the ionic current derived in the

Iast section (equation (1.41) ) may be reduced to a sum of
two terms having a magnitude and time course that are in
qualitative agreement with those which appear in the

interpretation of the voltage clamp experi.ments by Hodgkin

and Huxleyl 3. The expression for the capacity current is
also Ín agreement r^¡ith experimental observations and can

be used to explain the presence of "gating" current in
experiments where the ionic current is considerabty

reduced. FinaIIy, consideration is given to the temperature

dependence of the time constants of the voltage ctamp

currents.

Suppose physiological concentrations of K*, Na* and

Cl- are present in a squid giant axon and its environment

(without ca** or other polyvalent ions) and choose

0o t 0r, t 0", t 0., = I : 10 z L2.5 : 100 (2.I)

with 0o - ! x 1020 "."-t. These are representative

values for the resistance of the membrane to these ions

and are obtained from steady-state ionic flux data

(Hurlbuts s ; Lakshminaravanaiahe 3 ) . I{e can no\^/ solve the

sextic equation obtained from the condition for equal

roots of equation (L.37) and, to a first approximation,

the branch point singularities specified by o{,r t ißr



and ez !

potassium

determined

the outer

we obtaìn

iß2, may be associated with Lhe

currents respectively. If ßr

from the concentrations which

and inner membrane boundaries,

9r.

sodium and

and ßz are

are present at

respectively, then

ßr 1 msec-l and 3z 5 msec -l (2.2)

(2.3)

and so the time constants for the sodium and pot'assium

currents are in good agreement with those observed

experimentally. The electronic feedback system ensures

that the electric fietd oscillations in the membrane are

more strongly damped than in the case of free subthreshold

oscillations, and this may be represented by choosing

correspond.ingly larger inverse time constants:

el - -1 msec I and a"z -l msec -I

In comparison, the damping constants for undamped

subthreshold currents are less than (in magnitude)

-t. I msec

Each of the sodium, potassium and chloride currents

will, in general, have contributions from the Jo and J1

terms in equation (1.4I) (and also higher order terms).

However, Hodgkin and Huxley have observed that the steady

state current has a larger: contribution from K+ than
-LrNa*, whereas the inward current consists mainly of Na'.

Therefore, to a first approximation, it may be assumed

that the steady state current consists only of K+ and
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the current associated. with the Jr terms consist only

of Na*. If the difference between th-e clamped potential

and the holding potential is not too large, then one can

see from equations (1.15) and (L.29) that these currents

are about of the sane orcler of magnitud.e and are determined

by the membrane resistances to these ìons.

From (2.2'l and (2.3) and the above assumptions, a

typical small voltage clamp record is obtained as follows:

I
Na

where

T 6 Jr (t) exp(-t)Na

J a (L/2) exp (-¡¡

These curves are plotted in Figure 3.1. The absence of

the delay in the rise of the potassium current indicates

that the delay in the rise of the voltage clamp currenL

when the clamping potential is equal to the sodíum

equilibrium potential may be explained by assuming that

initially the sodium current is equal and opposite to

that of the potassium current, with resultant mutual

d.amping.. However, for large voltage clamps, a precise

determination of the magnitudes and time courses of the

ionic currents requires an examination of nonlinear

effects.

If we now consider the above system with increasing

concentrations of ca*+ and solve the equal root

polynornial in À for the four component case, then the

ï.
t_

+I
K

r
K =1
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FIGURE 3.1: A typical low voltage clamp record-
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result is increased. damping of the voltage clamp currents.

This is consistent with the experimental studies of the

effects of ca** on membrane excitability: these

demonstrate that increasing the external calcium concentration

increases the threshold for firing (Frankenhaueser and

Hodgkin; Blaustein and Goldman; Narahashis6) and decreasing

the external calcium concentration is associated with

oscillating membrane potentials. It has also been observecl

that when calcium ions are removed from the external

solution the frog node becomes excitable (Frankenhauesere 7) .

The necessity of the presence of small concentrations of

polyvalent ions in the external- solution can be understood

in terms of the electrodiffusion model if one assumes that

the membrane has a fixed negative charge. The effect of

this fixed charge is to displace the branch cut associated.

with the inward sodium current, somewhat to the right,

and if the real part of the branch cut becomes positive

then the large inward current vanishes and the cell- Ioses

its excitability. This ís because, for large times, the

contour along the imaginary axis in equatJ-on (3.3) of

Section 2.3 can only be closed in the left half of the

complex plane, and hence singularities in the right half

do not contribute to the ionic potentials or currents.

We no\^/ consider the capacity current which is observed

when a voltage clamp is applied to the squid giant axon.

It usually has a time constant of the order of 10 USec

but under some circumstances it has a considerably larger

relaxation time of th-e order of 10 msec (godgkin, Huxley
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and l(atzr2; Meves and vogelet). This "taiI" ín the

capacity transient is not explained by the presence of

a series resistance but instead has been attril¡uted to

imperfections in the membrane capacity. In the present

theory, the exponential terms have a sequence of time

constants given by (1.33) and (1.34), the largest of

which (about 10 msec) corresponds to small values of n.

AIso, the magnitude of the capacity current is in

agreement with that obtained from RC-circuit model of

the membraner âs can be seen from the expression for the

voltage clamp current (equation (1.15)).
t¿ühen the ionic current across the membrane is

blocked by the addition of certain chemical agents

(e.9. tetrodotoxin) or by the presence of impermeant ions
J-(e.g. Cs') and hyperpolarizing and depolarizLng voltage

clamp pulses of equal size are applied to the axon, the

resulting capacity currents exhibit asymmetry. Now, it

\^ras assumed by llod.gkin and Huxleyl3 that a change in the

electric field across the membrane caused a reorientation

and redistribution of certain charged mem]:rane molecules

("gates") which determi.ned the resistance to ions, and

that this was the only factor responsible for a nonlinear

change in the current. Consistent. r^¡ith this hypothesis,

the capacity current asymmetry was assumed to be a

manifestation of "gating current" (Armstrong and Bezani-lla;

Keynes and

In the

resistance

Rojast t ) .

present model, we are assuming that the

of the membrane to ions does not depend on
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time explicitly but is a function of the steady state

electrÌc field within the membrane. Consequently, the

time constant.s associated with the exponential terms in
the expression for the capacity current (equation (f.40))

will also depend on the magnitude of the voltage c1amp.

Let the capacity current for a positive st.ep in the

voltage be represented by a single exponentiat term

I c+ R exp (-atl

and similarly for an equal negative step in the voltage

T R exp (-bt)c-

where R is a constant determined by the characteristics
of the membrane phase. Then I.X, the sum of the

positive step and negatíve step capacity transients, is
given by

ï RIexp (-at) exp (-bt) lcX

This is plotted in Figure 3.2 (with a = 5 msec-I ,

b = 6.5 msec-l and Q = 1 mamp) and may be

with the experimental records of the "gating
(Armstrongl o o) .

Temperature

compared

current"

The effect of temperature on a biological variable

or parameter may be described by specifying its temperature

coef f icj-ent Qr o wh-ich is def ined to be
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voltage.
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Qr x
x (_T+I0)

x Fr-

r¡rhere T is measured Ìn oc. The temperature coefficients
for the rate constants o" and ßs of the giant axon

are of the order of 3 whereas er o values for õr.
and go are about 1.3, where õ*. and g* are the

maximum conductances for sodíum and potassium (Hodgkin

and Huxleyl 3).

The temperature dependence of the magnitude of the

sodium and potassium currents forrows from the er o value
(about 1.4) for the steady state membrane resistance to
these ions (see cohen and r,andowne r o I ¡ . rf one considers

equation (3.8) of Section 2.3 and notes that uo, and *o,
are both proportional to Bo', then one can see that in
the l-inear theory, the temperature dependence of the time

constants of the ionic currents also arises from the

temperature coefficients of the membrane resistances 0b,

and these are too small by a factor of two. However, in
a nonlinear theory one woul-d expect that the time constants

would j-nclud.e, in addition r ân explicit temperature

dependence resulting from the Bortzmann factor in the

charge density (equation (1.11) of Section 2.L\. In
particular, if "¡0¡ had a value of about 30kT then

the ionic current reraxation time would have the correct
temperature coef f icient of 3. R.ecent carcur-ations of
the electrostatic energy of ions in aqueous channers have

demonstrated that the energy of n ions in a channel

(n=1 ,2 ,3 , . . .) increases rapidly wíth n (Levi-tt r 0') 
,
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so that if there is a negative fixed charge within the

channels, then it ìs reasonable to expect that .¡ô¡

does in fact approach the value 30kT.
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3.3 TI{E PERFUSED AXON AND OTHER EXCITABLE CELIS

In this section we consider the application of the

electrodiffusion model firstly to the squid giant axon

with non-physiological solutions and then to other

excitable ce1Is.

The experimental results obtained with squid axons both

in large calcium concentration solutions are important

because of the significance of polyvalent ions, and in
particular calcium ions, for cell excitability. ff the

axon is perfused with an isotonic solution of 2SrnM-CsF+

sucrose and placed in a solution of 100mM CaClz+sucrose

then the resting potential is about -30mV. By clamping

the potential difference across the axon membrane to a

more positive value, a smal1 ca*J' inward current with

a time constant of 10-20 msec is usually observed. I{hen

small amounts of Na* (IO-50 ml4) are added to the external

solution and a sma1l clamp is again applied to the axon

then the inward current is composed of Na* (tfre "fast"
component) and ca** (tfre "sIoiv" component) with time

constants 2.5 msec. and 14 msec. respectívely (Meves and

vogels I ) .

Now if we consider a four-component system consisting
.L J-! .Lof Na', Cl , câ" and Cs' in the above concentrations

and assllme that

0 e :0 :0 IzL.25:10:l-5Na CI Ca Cs

which are the accepted steady state membrane

for these ions, then the condition for equal

resistances

roots of the



four-component d.ispersion equation can be reduc

sextic polynomial rvith, in general, non-zero roots see

Appendix 3 ) . When this is solved to calculate the time

constants of the voltage clamp currents, we find that
those associated with the NaÌ and Ca*Ì currents are

of the same order of magnitude as those observed

experimentally, that is, I msec and 20 msec, respectively.

The "fast" component would be interpreted as the movement

of Na* with respect to' CI- and the other ions present,

and the "slov/" component as the movement of ca** with

respect to these ions. This would explain why the "fast"
component is never observed without the presence of NaCl

in the external solution (whích is not explained by the

"gating" theory).

Further confirmation of the electrodiffusion model of

excitable cells is obtained from experiments on squid

giant axons with low ionic strength solutions. If the

axons are perfused lvith solutions diluted with an isotonic

sugar solution then action potentials can stilI be elicited

even though the resting potential is near zero (Tasaki

and Shimamura; Baker, Hodgkin and Shaw; Narahashi; Baker,

Hodgkin and Mevesl 0 3) . This result was not expected

because, according to the Hodgkin-Huxley theory, there

should be extensive inactivation at low resting potentials.

However, a shift in the sodium activation and inactivation

versus membrane potentJ-a1 curves was observed (Moore,

Narahashi and Ulbricht; Chandl-er, Hodgkin and Meve=r011

and, by assurning the existence of a negative fixed char:ge

at the inner meml-¡rane surf ace, it was suggested that the
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resulting double layer pot.entJ-al caused a ch-ange in th-e

kinetic characteristics of the sodium channel (Baker,

Hodgkin and Meves; Chandler, Hodgkin and Mevesl0s). In

the present theory, if a voltage clamp is applied to an

axon, the resulting sc¡dium current depends on the difference
between the holding potential Vf, and the clamp potential

V", and not directly on the resting potential. The

generation of an action potential depends on the nonlinear

coupling of the ionic currents rn¡ith the electric field
within the membrane and this operates índependently of

the magnitude of the resting potential.
It has also been observed. that the action potentials

from axons perfused rvith low ionic strength solutions or

axons wj.th low external potassium concentrations Lrave a

long duration (Narahashi; Baker, I{odgkin and Meves; Adelman,

Dyro and Senftt o u ) . This has been accounted for by

assuming that a low potassium concentration is associated.

with incompJ-ete sodium inactivation and an increase in
the sodium inactivation time constant. By solving the

equal root polynomial, \^/e f ind that the ef f ect of a

decreased membrane concentration of potassium is to increase

the potassium current time constant and reduce the damping

of the sodium current, and. this is consistent with the

above observations.

The solution of the linearized electrodiffusion
equations has, previously in this chapter, only been applied

to squid giant- axons, but we shall now gíve a brief
consideration to its application to a number of other

excitable celIs.
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For barnacle muscle fibres, tlre upstroke of the

action potentìa1 is the result of an inward calcium

current and its amplitude is independent of the external

concentration of sodium (Hagiwaral 0 7) . A discussion of

the correspond.ing voltage clamp records would be similar

to that already given for calcium currents across the

squid axon membrane. In heart muscle fibres, depolarization

is accompanied. by an inward sodj-um current and

repolarÍzation by a sl.ow outward potassium current rvhich

results in the characteristic cardiac action potentials
(Draper and Weidmannl08). More detailed analysis of the

voltage records obtained from Purkinje fibres indicates

that the transient inward current is carried mainly by

sodium ions but also has contributions from calcium ions

with a time constant (about 50 msec) similar to that

associated with calcium currents across the axon membrane.

The plateau is principally the result of an increased

resistance to potassium ions as the membrane becomes

depolarized (SobIe and Tsieni tvlcAllister, ltrolrle and Tsienl0e).

The electric eel is capable of producing electric

currents in the water surrounding it and these are

generated by specialized cel-Is called electroplaques.

However, in contrast to the squid giánt axon, the spikes

are characterized by an increased sodium current but a

reduced potassium steady state current (Keynes and

Martins-Ferreira, Nakamura, Nakajima and Grundfestt t o¡ .

The voltage clamp records obtained from the fresh-water

plants Chara and NiteLLa are also similar to those



104 .

obtained from the squid axon, except that the inward

current corresponds to the outward flux of chforide ions,

the tìme cons'tants are about a thousand tÍmes larger
(f second) and the magnitude of the currents are reduced

by approximately the same factor (Gaffey and Mullins;

Mullins; Kishimotollr). From the condition for equal

roots of the dispersion equation and the expression

derived for the voltage clamp curr:ent (equation (1.15)),

one would expect such a result if the resistance of the

plasmalemma to the active ions is approximately a thousand

times l-arger than that f or the axon membrane.

Although the detailed description of the voltage clamp

ionic currents varies considerably from one cell to

another, and has only been accounted for in the Hodgkin-

Hux1ey model of the squid axon and its extensions by

postulating a separate gate for each class of ions rvith

similar dynarnics with respect to a given excitable metnbrane,

thÌs variation can be explaíned faithfully in the efectro-

diffusion model by application of the condition for equal

roots of the n-component dispersion equation. This leads

to the conclusion that a change in the potential difference

across a ceIl membrane results in a capacity current and.,

in general, two kinds of current for each permeable j-on

a damped oscillatorlr current- (for the voltage clamp, a

transient peak current) and a relaxation to a ne\^/ steady

state current.
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CHAPTER 4

SUBTI{RESHOLD OSCILLATIONS AND THE ACTION

POTENTIAI,

4.I PLASMÀ, OSCTLLATTONS I}I THE MEMBRÀNE

Plasma oscillations in an ionizecl medium are

oscill-atory motions of the charged particles which are

coupled to the electromagnetic field and arise from the

long-range nature of the Coulomb force. They may be

generated in the celI membrane by a stimulus which is

applied to the surrounding electrolytes and which then

propagates to the membrane where the Debye la¡zers are

disturbed. This perturbation is accompanied by relaxation

oscillations within the membrane, and with the appropriate

membrane resistance to these ions and sufficiently large

concentration gradients across the membrane, the

amplitude of the plasma oscillations is enhanced by non-

linear coupling effects, and this in turn facilitates
propagation of these oscj-llations to adjacent regions.

In Lhis section we consider the normal mocles of

oscillation in an ionized medium of two ions, and the

nature of the singularities associated with the equal

root condítion for the three and four-ion dispersion

equation. Tn the next section we examine the oscillations

ín the potential difference across the membrane for a

subthreshold stimulus, and in Section 4.3 we extend the

previous analysis to the nonlinear plasma oscillations



which characteríze the action potential.

We begin by considering the interaction of just

two different kinds of íons within the mernbrane. fn
this case the dispersion equation (3.8) of Chapter 2

becomes

106.

(L.2)

(1.3)

(1.4)

(1.1)

As shown in Section 2.3 the normal modes of oscillation
within the membrane are to be expected when the roots

Itr" and ;ur' are equal ancl in this case the condition
for equal roots is

vr2 , t)22
FA7 - r-w2r 1

(vt 22 v w 22 vr2)2 + 4rr2t)122

where

w2 *rt = BzmrÀ(À+02) ß,m, ). ( À+o I )

Vr' rr' ! 2í vrvz

2

One of the solutions of this quadratic equation ís given

by

vr2-vr't2ivrvz
À

oroz (yz-yr)
Yz0r-Yr0z

(
Yz-Yr

and represents very strongly damped oscillations
can be clisregarded (for the squid giant axon, 0

the order of 102I , \ - 1012 and \)2 N lCl s in
membrane region). The other solution is

and

is
the

so

of



and corresponds to observable oscillations of frequency

103ttz. for the voltage c1amp, subthreshold oscillations

and the action potential.

If the ions are monovalent, it is evident from

equation (3.2) of Chapter 2 that, to secure electrical

neutralitlz, vr2 = '922 so that, provided vr2 ')22 and

\z Yr do not have the same sign, almost undamped'

oscillations of angular frequency

û) = Tir _ 2vrvz (1. 6)
\z-\t

).

will result.

The value of

in equation (L.2) is

so 'that the

obtained by

vr 2-v 22t2ívyv2
\z-\t

r07.

(1.s)

(1.7)

(1.8a)

(1.8b)

u2 corresponding to the cond.ition

v2 L/2(wt2 I wz' + t,r' + vz2)

associated normal modes of oscillation are

setting

a0
a tró'aâr

o2oa r/2(wt2 r wz' + t)" + v22) oa

in equation (3.1) of Chapter 2. We thus obtain the

equations

I/2(wz' + t)r'- wr2 - vr2) = vz2þz

L/2(tqt2 + vr2 - wz2 - vz2) = vr20r (1.e)
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and hence when v r 
2 = 'ú z2 ,

vror + ivzoz = v0* exp(liot) (1.10)

where v0* is independent of time, though it depends on

x in a manner determined by equation (1.8b).

with three different kinds of ions in interaction

within the menr-brane, the condition for equal roots of

the dispersion equation (3.8) of Chapter 2 is (see Appendix

B):

+ 0 (1.r1)

where

p=n r rì z*¡ z n s *rì s rì r -V ,"J r'-r) r 'v, '-v ,'l r'
g=tl I n z n g -v r 2 v z2 ns -v z', \ r',l r -v,', v r', n 2*2v r.', \ r', v r',

{
4

P:
27

a
V+= Yu,Àl" 2

2
u -u

t(yr + \z + ys)À + vr2 + r)22 + rs2l/3 (1.12)

and *u' has been approximated by y"À. In this case

equation (f.11) is a sextic equation in À and there are

therefore six singularities affecting the integral in

equation (3.3) of Chapter 2, associated with the vanishing

of the denominators uo'-uu'. rt is easily shown (see

Appendix B) that when ,o'-ru' is small,

rIt rfi * *¡%{,o-,*)+2 (1.13)
k 9. (2q')

1

3

where (t¡lrozt(ìz) = (1rr¡ro2) and ûJ is a complex root

of unity, and that equation (1.11) has a double root at

| = 0, and so the four remaining singularities are
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quadratic branch points.

Although equation (1.11) can in general be reduced

to a quartic and solved exactly by quadratures, the

roots can also be determined approximately by setting

2Yrz w

VIs2 = W2

( 6*' v, '\
\üz-+v;'/

(6*" vz2\
\v r'T-+-v;-z/

(1.r4)

2

so that ôw2

in ôw', the

quadratic

=w3 tlZ2,

dispersion

2 and neglecting terms quadratic

equation then reduces to the

v 2

u --r^tiz
1 (1.rs)

which ís similar to equation (1.I). Two other quadratics

are obtained by permutj-ng the subscripts L,2 and 3 .

In this way one sees that the roots are in general complex,

and that one pair is almost pure imaginary when the

condition for electrical neutrality is satisfied, and

hence corresponds to almost undamped oscillations. One

can also see from equation (1.15) and. equation (3.2) of

Chapter 2, that polyvalent cations have a more pronounced

d.amping effect on the electrolyte system than monovalent

cations (and this is confirmed by consideration of the

exact equations - see Chapter 3), and this suggests

why cal-cium ions on similar polyvalent cations .are required
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for excitability (Frankenhaeusers 7) .

Finally, with for:lr ionic composents in the membrane

the condition for equal toots of the dispersion equation

is a polynomíaI (D) of the twelfth degree. Again, ít
may be shown (see Appendix B) that when uk'-vr' is
smaI1,

(ur -ü)
-u a J

L (2q,')trl +. rlt+t"

where ãrÈ', and q can be expressed in terms of \
and v.2 (i=1, ...,4) , and that. the polynomial D

]-

a root of order 6 at ,À = 0. Hence, the other six
roots.are again quadratic branch points.

2
3

( D+ )
22 (1. 16 )uk

i
has
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4.2 SUBTHRESHOLD OSCILLATIO}IS

When a constant current is applied to an axon

membrane then there is in general a damped oscillatory

response in the trans-mernbrane potential difference

(Sabah and Leibovic; Mauro et aI.ttz¡. This oscillation

has been described in terms of the voltage and time-

dependent membrane conductances for sodium and potassium

ions, which were first determined from the voltage clamp

experíments by Hodgkin and Huxleyl 3. Tn this approach

the axon membrane is modelled by an equivalent electrical

circuit which includes a capacitance, an inductance and a

resistance, and. variations in the potential difference

across the membrane are attributed to voltage-dependent

membrane ion permeabilities. In Chapter 3 we described

the voltage clamp currents across the excitable membrane

in terms of clamped plasrna oscill-ations within the membrane

phase, and in this section we Show that a similar treatment

is also successful in accounting for subthreshold oscillations.

The geometrlz of the experimental_ system is assumed to

be the same as that considered for the voltage clamp (see

Figure 2.I of Section 2.2), but in this case the electrodes

maintain a constant current at the points x = -p/2 and

x = +Q/2 for the duration of the current c1amp. Initiallv

(at t, = 0) the potentials 0a and Q between the

electrodes have values (Ô"0 and Ôo) characteristic of

a steady state, but followi.ng the application of a

constant current at the electrodes, these potentials will

approach the new steady state values Ôr" and 0s.
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The steady state solutions of Section 2.2 were

appropriate for voltage clamp boundary conditions but if

a constant current is maintained at the electrodes then

they require a minor modification in regions Ru and R.,

as follows:

0".e, = X[' (exp[-vn (x-6/2)] + explvn (x-p+6/2)))

þL = Xu'(exp[-vn(x-6/2)l + explvu(x-o+6/2))) + v'

0un (exp Ivr, (x+ô,/2) J + exp [-vr, (x+o-6/2)J)
n

= Xr, (exp Ivr, (x+6/2 ) J + exp [-vr, (x*0- 6/2) I ) + v (2.L)

The general solutions tl)a and V of equations (3.4) and

(3.16), respectively, of Section 2.3 for the regions

Ro and R' are given by (1.1) of Section 3.1 and (3.18)

of Sectj-on 2.3, and so we may write, with the help of
(1.5) of Chapter 3:

+
t.

(x-ô/2)

ô'n

i.

i*

i
a

I
a

JaI
d

0

u
Lk -ur.ø (x-6 /2)

(
I

n=l
a

ico !.e1

nkI
2.rr

I
J

"k(
\

te
kt Àt

KE
4trI dÀZltf, xt 

.c,

kn

(x+6/2)

-jæ

(i* +
n

i6c
t'

)

)
-iæ

e
uLr, ( x+6 /2)

u kn

tg
-ukn

(2.2)
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The constant current at the electrodes x = !p/2 implies

that

c
k.r,

exp (urø (-p+ô) )

(2.3)c. I - c. exp(u. 1-p+6) )KNKN-KN

The initial conditions for

now be written as

ó'a inR o ancl R can
n

I jæ (
\
"ku' Iexp (-uou k-6/2) ) +exp (uuu ,.x-p+6/2) ) ]

zit, - i-k
I dÀ

dÀ

lno' 2w
a9,

= ô¡o' lexp(-vu(x-6/2)) + exp(vu(x-p+6/2))]

I iæ "t r, Iexp (unr, (x+ô,/2) ) +exp (-þor, (x+p- 6/2) ) )
2rL

I
)

I
(
\ 2- iæk ukn' w an

(2.4)

(2.s)

where

ôxu (xu')o

(x )on

(xu')"

ôy (x
Sn n

Again, ck and .k' can be determinecl from the solutions

to the equations in (2.4) (see Appendíx A) and the

continuity of ,þ u at x = !6/2

Now, if we denote the constant current per unit area

at the electrodes by I" and the potential difference



across the membrane by

potential Vr in Rn

Section 3.l- we have

V (ttrat is, take the

to be zero) then from
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electric
(1.13) of

v (r) lr ï (t)ldt (2 .6)
1

where

(2.7)

is the capacity of unit area of the membrane, and Ii is

the ionic current and ís given by an expression of the form

(1.41) of Section 3.1 ((zo)¡ and (zr)¡ wí1l clearly

depend on the boundarl' conditíons of the current clamp).

We now show that the expression for the potential

variation during a current clamp given by equation (2.6)

is in agreement with experimental observation. In Chapter

3 we considered the case of three ions in interaction

within the axon membrane (sodium, potassium and chloride

ions) andr âs the extracellular concentration of K+ and

the intracellular concentration of Na* are smal-l-r \^/€

assumed that the branch poínt singularitíes cxrtißr and

o z+íßz could be associated with the sodium and potassium

currents, respectively, and calculated the oscillation

frequencies ßl and. ßz from the concentrations of ions

at the membrane surfaces. If instead, oi and ßi,

i=Lr2 are determined from the average ion concentrations

within the mem]:rane then we find that

K

a;T-

rlt
õrto

c



and

ßr Bz lmsec -l

.-t
0¡ -lmsec d2 -.1msec
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(2.8)

(2.e)-t
I

In general, the integration around each branch cut will

contribute to each of the ionic currents through the

membrane, but for the squid giant axon, âs l"tl t lorl,
the contribution from the branch cut joining a,z + íßz

and d,2 ißz will dominate.

If the constant current at the electrocles is sma1l

(about l¡.ramp cm2 ) then there will be little change ín the

steady state sodium current and so rve may assume that the

clamp current is equal to the steady state potassíum

current. Therefore, the ionic current response 11 may

be written as

ri (2.r0)

where

ro
I+T

ro=-1.5Jr (t)expt-#l (2.11)

is the damped oscillatory current ancl has contributions

from both sodium and potassium ions, and

r = I Jo (r) exp (-fr1 Q.r2)

is the relaxation of the potassium current to a new steady

state val-ue. With these expressions the variation in the

potential difference across the membrane is given by

I
J:

e

c
v(r) lJo (r)+1.5r, (t)J exp(-ft1a. ( 2.13 )
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where I^ = l¡lamp cm2 and C = Iyfarad cm2. Equatione

(2.I3) is plotted in Figure. 4.I. I{e

can see from equation (2.L3 ) that. the subthreshold

oscilration about the resting potential is symmetricar

with respect to positive and negative applied currents.
Although approximate symmetry is certainly evident in the

experimental record of small subthreshold oscirlations,
there are several reasons why this is not exact.

The first depends on the fact that increases in the

potentj-aI difference across the membrane are associated

with predominantly inward sodiu¡n currents, whereas d.ownwar:d

excursions in the potential are associated with outward

potassium currents, and the rnagnitude of these currents

are determined by the j-on concentraLion gradients and the

resistances of these ions relative to other permeable ions.
This will be shown in the next section where we analyze

the action potential in an excitable ceII with only two

ionic species in the electrolyte solutions. In the squid

giant axon this effect is manifested as a slight. increase

in the amplitude of the oscillation for positive current
clamps as compared with those which are equal in magnitude

but opposiL.e in sign (see Mauro et aI.l l2) .

A second source of asymmetry is the nonlinear relation
between the ionic currents and the electric field within
the membrane, and this becomes more prominent as the

amplitude of the subthresholcl oscill-ations increases. When
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a large negatíve clamp current is applied to the resting

axon, the response ís characterízed by a non-oscillatory

relaxation to the ne\^/ steady state potential. fn contrast

to this, if the constant. clamp current at the electrode

I- is proqressively increased to a more positive value

then, when the threshold current is attained, a large-

amplitude potential variation (the action potential) will

be elicited. In the next section we show that the exisLence

of a threshold potential and the shape and amplitude of

the action potential can be accounted for in terms of the

nonlinear electrodiffusion equations.
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4.3 THE ACTTON POTENTIAL

rn the theory of Hodgkin and Huxleyl 3 the mechanism

of the action potential wad explained in terms of the

results obtained from the study of the voltage clamp'

and it is clear both from an experimental point of view

as well as a theoretical one, that these phenomena are

indeed related. Horrrever, there are two important

differences betiveen the currents associated with the

action potential and the voltage c1amp. While the latter

is a transient effect in which the exponential decay of

the associated currents strongly suggests irreversible

d.iffusion across the membrane, the action potential under

suitable conditions can be repeated indefinitely, and,

disregarding a smal1 but noticeable assymetry in the

potential profile, has many of the characteristics of a

reversible process. Also, while the currents of the

voltage clamp are predominantlv transverse to the membrane'

the most important property of the normal axon action

potential from the biological point of view is its

propagation without appreciable loss of amplitude in the

longitudinal direction. These striking differences have

not previously been reconciled sat.isfactorily with a

common mechanism involving the transport of ions through

a memkrrane phase governed by electrodiffusion processes.

The analyses of Chapter 2, however, suggests that all

excitation phenomena with relaxation times which range

from a millisecond for the squid giant axon to one second
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for excitable plant cel-Is, are associated '¡¡ith plasma

oscillations in the membrane and do not require the

hypothesis of large variations in the ionic permeabilities.
This is particularly true for large voltage clamps and

the action potential where the presence of nonlinear

plasma oscillations is associated with the transfer of

ions through the membrane at a rate very much greater than

could be achieved steadv state diffusion.
Although the possibility of undamped plasma

oscillat.ions within the membrane is necessary, it is not

however sufficient to guarantee the appearance of an

action potential. l^lith only two different kinds of ions,

for instance, the requirement of electrical neutrality is

sufficient to prevent the generation of large amplitude

oscillations within the meml:rane. Other factors which

influence the excitability properties of biological cel-ls

are temperature, ion concentration gradients across the

membrane, and the presence of small electrolyte concentrations

of certain polyvalent cations (for example, calcium ions).

Each of these environmental constants has an effect on

the solutions of the dispersion equation (and hence on

the branch point singularities which can be obtained from

the condition for equal roots of this equation) and the

amplitude of the relaxatíon oscillations within the membrane.

We have shown in Chapter 3 and the previous section

that the linearized theory developed in Chapter 2 is able

to account qualitatively for the observed phenomena

assocÍated with a smaII volLage clamp across the membrane
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from a given holding potentj-aI, and for subthreshold

oscillatj-ons. However, it cannot account for such

features as the existence of a threshold potential, the

almost invariable amplitude of the action potential and

the variations in the shape of the action potential for

dif ferent excitable cells. I¡tre sha1l therefore consider

the consequences of non-linearity of the exact form of

Poissonrs equation. Neglecting the inertial term in

equation (1.9) of Chapter 2, which as we have seen is

nearly always possible within the membrane ¡ \^Iê obtain

âò
ar

^0
"bv2ó

d

4n I
b

exp ( - ßoeo 0o ) (3.r)

(e-ßu(Or"+0r)
"ße(Ozs+62))

Ya K

where Ya

As the non-linearity is expected to affect the time

dependence, rather than the spatial dependence of the

sotution of these equations, r.tre adopt for n2öa the

expressions derived from the linearized theory. In the

application to just two different kinds of ions r we

substitute from equaticns (1.8) into equation (3.1) and

obtain

=ßm0aaa

å"u
2 â0r

-ãE- Lr"6t + v'ors

2v+ ße

1-l0-r 2 âõ, I r--ãË = 2v-Qz Y'þ"t

v2
TG

where

+

+

(e -ße ( 4, r s+õr )

"ße(Ozs+óz))
(3 .2)
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Gv2 = yt \z

ero = - Ezo

e:êf=ê2 (3.3)

and 6i (i=L,2) are the deviations from the steady state

ionic potentials. From equation (1.9) of Chapter 2 LL

follows, under the same conditions, that the electric and

ionic potentials are related by

cxv c(yr02 Yz0r) (3.4)

where

eo

2
0

( 3.5)

have

By addition and subtraction of equations (3.2), we

x-afr(6r + Qz) Sr þz

^ ,-(.-ge(0rs+õr) 
"ße( 

+zt*62))o5i(0r 0z) = ôr + þ" * Eu*'
(3.6)

where V2(Orsl-Qzs) has been absorbed into the exponential

terms.

This pair of equations is the macroscopic counterpart

of a pair of equations derived by Triffet and Green2 7 in

their model of the neuron, and has similar properties,

but whereas the oscillation frequency of the former is

of the order of LO3Hz, the frequency of the microscopic

polarization oscillations is considerably greater

(approximately 1012rrz). the effect of the non-Iinearity

is to cause a rapid reversal in the rate of change of

the potentials when the exponent of either of the exponential

terms attains a magnitude appreciabl.v in excess of 1.
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Consider a two-ion membrane system with

V1 =Vz= -30mV

and assume that the mobility of the anion (ion 2) is

greater than that of the cation (ion t) within the

membrane:

0r = 202

Equations (3.2) may no\^/ be solvecl numerically and the

solution curve for the electric potential has been plotted

in Figure 4.2 (from equation (3.4) rvith potential changes

relative to -70mV). Although its shape and time course

is similar to the squid axon action potential, its

amplitude is dependent on the initial conditions, and

equations (3.2) only exhibit threshold behaviour if the

coefficient of õi (i=L,2\ in the exponential terms is

sufficiently large. In a physical membrane system with

just two ions in the surrounding electrolytes, this value

is never attained, and hence provides an explanation for

the excitability of a two-ion system.

For a three-ion or four-ion mernJ¡rane system which

includes the calcium ion, it has been shown by Green and

Triffetr r 3 that

c(06 + 0c,_)ocu

where c is large for a rangte of calcium concentrations,

and this ensures that the membrane system is excitablet

and that the generalization of the pair of equat-ions (3.2)

for a four-ion axon membrane system (K+, cI-, ca**, N"*),

has an action potential solution with a magnitude and

waveform that is in good agreement with experiment.
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I{e shall now consider the significance of the

analyses of previous sections for an understanrling of

the propagation of the action potential along the axon

to either another nerve ce1l, a muscle ce1l or an effector

organ. The propagating nervous impulse depends on the

generation of sufficiently large potential oscillations

across the membrane which induce adjacent regions to

undergo similar changes. However although the subthreshold.

oscillation is rapidty attenuated in a longÍ-tudinal

di.rection along the axon, its velocity of propagation is

almost the same as that of the action potential. I r a

Therefore, the st,ud.y of propagation does not depend on an

understanding of the ionic mechanism of the space-clamped

action potential, and this has permitted attempts to

estimate the propagaLion velocity of the nervous impulse

based upon the cable properties of fibre (see Taylortts¡.

S'uch an analysis can account for the dependence of the

propagation velocity on the sguare root of the diameter

of the unmyelinated fibre, and also its linear dependence

on the diameter for the myelínated axon (trlackeyr ie ¡ . The

impo::tance of the dynamical theory of excitable membranes

is ln calculating the oscillation frequencies of the

currents across the membrane, in terms of which the

velocity of propagation can be expressed.
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CHAPTER 5

MICROSCOPIC TRANSPORT PHENOMENA AT THE

EXCITABLE MET{BRJ\NE

5.1 CORRELATION-FUNCTION E)iPRESSION FOR THE IONÏC

CONDUCTIVITY OF TI{E MEI'IBRANE

In previous chapters we have shown horv to account

qualitatively for the voltage clamp ionic currents,

subthreshold oscillatj-ons and the action potential,

without assuming that ahl ionic conductivity is dependent

on the electric field within the membrane. However, it

is in fact necessary to assume such a dependence in order

to explain the non-Ohmic steady state currents of certain

ions (for example, potassium) which ârê se¡served cluring

Iarge voltage clamps of the axon membrane, and also to

describe the variations in shape of the action potential

for different excitable cells. In this chapter we shall

examine the microscopic basis of the electric field-

dependence of the ionic conductivity within the membrane,

and in view of the correspondence between the Triffet-

Green2 7 quantum mechanical model of the neuron anfl the

macroscopic theory of excitable mernbranes developed in

this thesis, this can be determined by applying correlation

function methods to the Hamiltonian characterizing the

energy of a nerve ce1l and its environment.

In this section we give a non-perturbative derivation

of the time correlation function expressions for the

transport coefficients, and deduce the Einstein relation
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between the ionic conductivity and the corresponding

diffusion coefficient. By considering the time evolution
of the microscopic currents across the membrane, the

nonlinear dependence of the ionic conductivity on the

membrane potential difference can be calculated, and may

be compared with the voltage-dependence of the ion

conductance as determined bv Hodgkin and Huxleyl 3 from

the voltage clamp experiments. However, Èhe dependence

of the ionic conductivity on the electric field within
the membrane is expected to show only moderate deviations

from linearity when the magnitude of the field is large

within the membrane.

The thermodynamic properties of an equilibrium
system can be evaluated from the partition function which

depend.s on the Hamiltonian of the system and the thermo-

dynamic properties of the reservior with which it is in
contact, such as the chemical potential, pressure and

temperature. When an equilibrium system is perturbed .by

an external or mechanical force which can be represented

by an additional term in the Hamiltonian, then the

evolution of the thermodynamic quantities can be described

,by applying Kubo's linear response f ormula. I I 7 When the

perLurbation is instead due to an inhomogeneity in the

system, there are several alternative methods which can

be applied to yield analogous expressions for the

transport coefficients (M.S. Greenl r 8, Kubo et âI. r r s,

Moril20, l4clennanr2l). rn the next secLion we derive a

set of integral equations which can be used to determine
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the time-dependence of the equilibrium parameters in the

Triffet-Green model

The expressions for the transport coefficients

which are obtained by applying correlation function

methods are in agreement rtrith those obtained from kinetic

theory.Tr 17 2 Hovlever, van Kampenr22 has claimed that the

usual method of deriving Kubo's formula is dependent on

assumptions which are not in agreement with the fundamental

randomization hypothesis of statistical mechanics. l{ore

specifically, he claims that the usual d.erivation assumes

that the microscopic motion is li-nearl1¡ dependent on the

drivlng force when the latter is sufficiently small, -but

this condition is not satisfied for macroscopic forces.

The perturbation to a many-body system mav be

consid,ered to have two distinct effects. The first is

to change the microscopic orbit of each particle, and

the second is to alter the density matrix which depends

on the ensemble used to describe the system. Although it

is not legitimate to assume that individ.ual particle

orbits are línearly d.ependent on a small perturbation,

it. is however vatid to assume that a sma1l macroscopic

perturbation will result in a correspondingly small change

in the density matrix d.escribing the' system, and so it

appears that his objection cannot be sustained.

fn response to van Kampen's critique there have

been attempts to derive response formurae b1z alternative

methods. Edn¡ards12s derived a formula for the electrical

resistivity by expancling the electric field in terms of
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the current, whereas Kenkrer2L has attempted to avoid.

linearization of the Liouville equation by use of the

projection techniques of Mori and Zwanzíg. Horvever,

both derivations make a linear assumption which is
equivalent to that used by Kubo.

In considering the correlation function expression

for the ionic conductivity during the action potential,

one cannot assume that the change in the electric field
is sma1l, and so \Âre now derive a response formula which

is independent of the magnitude of the driving force, and

is similar in some respects to that used by Moril2o in

obtaining thermal transport coefficients (see also

Visscherrzs¡.

If we write the llamiltonian H of the system as

H Ho+ V(x) 0 (x) dx (1.1)

where H0 is the non-electromagnetic part of the

I{amiltonian, V(x) is the electrostatic potential and

Q(x) is the charge densitv at a point in phase space,

then the observable A(t) satisfies Heisenberg's equation

.1A(r) = #tA(r),Hl (1.2)

ff we consider the statistical average of A(t) in the

Ileisenberg picture (instead of the Schrodinger picture

which is used by rubollT) we have



<A(t)) = Tr(p(0)A(t) )

= <A(0) > + íñ' Tr p(0) Ie(t'),Hldt'

= <A(0)> +
l-h-'

rr{ [H,p(o) ]A(t') ]dt'

is the density matrix of the system at

and, for a grand canonical ensemble, is

I.

It
Jo

I

130.

(1.3)

(1. 4)

(1. 5)

(1. 6)

where p (0)

time t=0r

given by

Also,

-lß(Ho-uN)

p(ol = "-f 
ß(x) trr(x)-u(x)"(r)-v(")e(")l ¿x

where h(x) is the tot.al Hamiltonian d.ensityr n(x) is

the number density .ttq U(x) is Èhe chemical potentíal.

Now, if A is any operator, it is easily shown that

[A' e-e (Ho -uN )

I

=e

1

-e(Ho-uN) eÀg 
("0 -uN) [ { ß (x) th(x) -u (x) n (x) -e (x) v(x) ] dx},el

0

e dÀ

f'

J
I ß (x) th (x) -u (x) n (x) -Q (x) (x) I dx,Hl

t.
= ih I ß (x) [h (x) -u (x) n (x) -Q (x) v (x) ] dx

)

1l
= ih 

'|vß 
(x) (r¡vJn) dx-íh 

.|v 
( ß (x) u (x) ).rrrdx

in 
fovv 

(x) rndx

where we have used the operator conservation laws f.ot

the energy, number and charge densities:
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h+VJ- =h

n*VJ =n

v"Q =

= ttJ 
rj rtr teÀß 

( H0-uN'"n"-Àß (H0-uN )o(.') p (0) r dÀd'

v ( ßu, l, f 
trr,"rg 

( n0 -uN,"rr"-rg ( n0-uN )o (.,) p (0) I dÀdr,

. 
"j, Í rrt,.r 

o ( H0 -uN'"n"-r s ( Ho -uN )o,., ) p (0) I d^dt,

3' j 
r 
j rtt teÀ ß ( H 0 -u*' 

"n"- 
r s ( u 0 -uN )"n {t' ) p ( 0 ) l dÀdt'

(1.7)

Q+

and Jh, J' and 
"Q 

are the corresponding currents.

If we no$/ assume that the gradients Vß(x), V(ßU)

and VV(x) are constant, then the average response ín
the dynamical variable A is

<vA (t) >

(r.8)

where Ju

and, if in add.ition, the temperature gradient is zerol

the response in the current J as
a

<AJ (r) >
a

= ße(E

If this is comparecl with the phenomenological transport
Iaw

<ÀJ^> = -eDVn + oE (1.10)q

where D is the diffusion coefficient and o is the

ionic conductivityr wê obtain

0

0

0

=Jh-U"e

(1.e)
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o=ße

D= I
ne

and hence the relation between o and D is given by

lrlrrr[eÀß(H0-uN)"Q" 
rs(u0-uN)"n{.' ) p (0) ]dÀdt'

I, l rrr Ier e ( H 
0 -uN, 

"n"- 
r s ( s 0 -uN ) 

"n 
{., ) p ( o ) ] dÀdr'

(1.11)

(r.l-2)

o = ßne2D , (r.13)

which is just the Einstein relatíon.

The above expression for o can now be applied to
the Triffet-Green neuron ¡nodel with its Hamiltonian

given by

. H = E(a*a + a*A) + À(axa + A*a) + ¡rN exp(-crN) (1.f¿)

where E is the dissoication energy of an ion-pair,
À and U are parameters which deter¡níne the unit of

time and the magnitude of the electrostatic energy in

the model, and cl is dependent upon the temperature and

the mean potential energy associated with an ion and its

screening charge. The number of excitons within the

neuron is D¡ - a*a and the number outside is A*4, and

so the current across the membrane is (with h=1)

= e (-i) [tI,H]

= e(-iÀ) (a*A - A*a) (1.1s)

dN
AE

ô
"Q

where e is the charge associated with the exciton. In
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the resting state Je(t') depends weakly on the'

electrostatic energy term in the Hamiltonian of (I.14) '
but during the action potential, although it would be

clifficult to evaluate preciselv from the integral over

the operators in equation (I.I1)' it ís clear that

there is an exponential dependence of the ion conductivity

on the potential difference across the neural m.embrane,

which has been defined in the rnodel as

0 0o + O N (r.r6)

where 0o is a uniform negative backgrouncl potential

ancl 6 is the mean potential associated with the exciton.

Hodgkin and Huxleyl 3 described the current across

the squid giant axon membrane in terms of ion conductances

which are also defined with respect to the potential

difference across the membrane 0, and from the voltage

clamp experiments they were determined to have an

exponential dependence on Q and t which is similar

to that expected from the Triffet-Green model . Íf '
however, the electrostatic energy term is expressed, not

in terms of the potential difference across the membrane'

but instead in terms of the electric field within the

membrane I (which also has an exDonential- <lependence on

time) then the extent of the variation of the ion

conductivity with respect to I is considerably reduced.

We may therefore conclude that the application of

irreversible statistical mechanics to the Triffet-Green

model perrnits the calculation of conductivities which

are ín agreement with experinental determinations both
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from excitable cells and other physical systems.
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5.2 THE TTME-DEPENDE}trCE OF THE EQUILTBRIUM PARAMETERS

IN THE TRIFFET-GREEN MODEL.

In this section we derive a set of integro-

differential equations which can be solved to determine

the time-dependence of the equilibrium pararneters in

the Triffet-Green neuron modeI. The model is characterized

by the Hamiltonian

H E(a*a + A*A) + À(a*A + a*A) + Ua*a exp(-oa*a) (2.I)

which describes the energV of a neuron and its environment.

In general, the parameters À and U are dependent on

thermodynamic variables of state and hence varlz with

time according to the nature of the irreversible

processes within the system. The above Hamiltonian

must therefore be considered. to have an explicit time

dependence H(t), sâY, and hence the non-equilibrium

density matrix p (t) may be written as

p (t) po (r) + p'(t) (2.2)

where p0 (t) is the reversible part of the density

matrix which only contributes to time-dependent statistical

averages of dynamical variabÌes, and in a grand canonical

ensemble it may be exPressed as



where

p0 (r) =e

Ho(t) = H(r)

= dl l'/t

-B(so (t )-url,Jr-uzÄ/z )

ua*a exp (-aa*a)

* dzÄ/z
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(2.3)

(2.4)

ñr. = ßi*ß1, i=Lr2 are quasi-particles which can be

defined in terms of a and A, and ui are the

chemical potentials of the i-t.h quasi-particle (i=I,2) ,

and the d. (í=I,2) and u are functions of Ur rvz and
]-

ß.

The irreversible part of the density matrix ís

p'(t) and is used to- compute the irreversible currents-

The non-equilibrium density matrix p (t) satisfies

Liouville's equation

â

5E
p (t) ïr tH(r),p(r)l (2.s)I

which has the solution

t
p' (r) e

-æ

where

r
)

-til, H(t" ) at'7tr*t., 
I "tfl

,H(t")¿t'7rr
dt ' Q.6)

ih
I

tH (r' ) , I o (t' ) I . (2.7)

The average number of quasi-particles of type I

is given by

<l,Jr> = rr(po (t) ßr*ßr)

R(r')

1A
B ãirr rr (p0 (t) )



(z)
-ß(drn +dzn -Utn

L37 .

-urr,(') ¡ e.g)
(IA

E ãu' t ôi
1
2

( )n
n

=Q
-0)

exp(-ß(dr-ur))
[I-exp (--ß (dr-ür ) ) ], tI-exp (-ß (dz-uz ) ) l = f r (ul'u2'ß)

and, similarly, the average nurnber of quasi-particles

of type 2 ís

<lrf z >
exp (-ß (dz-uz ) )

[l-exp (-ß (dz-uz ) ) ] 2 (I-exp (-ß (dr-ü r ) ) l

= fz(ulru2'ß).

The energy associated with the interaction between

excitons (denoted by H-) is-_L

Hl = pa*â exp(-o¿a*a)

(2.e)

(2.10)

= F( I ß"*ß") for some function F.
f¡s

The average interaction energy in the grand canonical

ensemble is

'Hr = Tr(90 = fs(utrU2rg) , say (2.11)

Now, the conservation laws for the number of quasi-

particles and their interaction energy are

0 í=1, 2 (2.L2)

Hr)

a-
âr

oT=fr,

<J. >i
IÄf.>I

+<J +
I

J.
]-

t'g ."rt * .err + .erri = o

^J.
].

where i=lr 2 and

(2.13)



and <J

<0 rr (p' (t) Q

]-
rr(po (t).r

1 í=L ¡2

<J Tr (p' (t) J í=L r2]- l_

<Q Tr(po (t)e

I38.

(2.l-4)

r

I T

are the reversible and irreversible currents of quasí-

particles and interaction energy, respectively. The

conservation equations (2.L2) and (2.13) are integro-
differential equations in the parameters Ur rU2 and ß

and hence given an appropriate set of initial conditions,
their time dependence may be determined. However, the

complexity of the structure of the above equations would

make their numerical solution somewhat difficult.
The variation of Ur rU2 and ß in the resting

state of the neuron will be small, but during the action
potential, the irreversible process of ionic diffusion
(and to some extent heat conduction) will induce a

relatj-vely much larger change in these parameters, and

hence also in À and U . Changes in the latter
parameters were shown to be associated with an increase

in the information content of the svstemz 7, and hence

justified describing À and U as memory parameters.

Hence, it seems reasonable to conclucle that the rate of
change of the information content of a collection of
neurons is strongly influenced by the rate of firing
of the individual neurons, wþich in turn depends on the

nature of the interconnections between them.

I



139.

CONCLUS IOT{

fn this thesis we have attenrpted to account for

the electrical properties of excitable membranes, and in

particular, the existence of a threshold potential and

the large transient eurrent-s whj-ch are observed during

excitation, without invoking the assump'tion of a large

variable ionic permeability. Insteacl, we have assumed

that the excitable membrane is an ionized meclium through

which each permeable ion may cliffuse with a resistance

to flow which depend.s weakly on the electric field and

the extent of hydra'bion within the membrane.

It was argued in sect-ion 5.1 that the weak dependence

of the ion conductivity on the electric field followed

from the application of correlation functíon methods to

a Hamiltonian neuron mod.e1 which is a microscopic

counterpart of the present theory. Also, although there

is reduced shielding of the ions within the membrane

during the action potential, its effect on the ion

concluctivity would not be sufficient to account for the

targe variations in ion conductances for sodium and

potassium determined experimentatly by Hodgkin and Huxley.

There is considerabl-e evidence to suggest that ion

transport through the membrane is mediated by isolated

protein molecules wl'rich extend across the thickncss of

the membrane (Iargely composed of lipid), but the model

of ion transport adopted in this thesis is to a large

extent independ.ent of the detailed structure of the

membrane. The membrane resistance to each permeable ion



c +íæ
t'

)

c (u) dukI
¿TT L I (aa¡

l-
_t!

where0<c4vrand

(u

lu' - wak'(u) I (= u)

"k
c* (l) df rzdpo

c -l-æ

)

'(u) u + v

k

w '(u ) = w '(l) (As)
ak k a

I{e thus obtain a singular integral equation of Cauchy's

type (¡{ushkhelish-viti12 7) which has the obvious solution

ôn(u) X
(A6)a

\^¡
2

u
I
k ak

This is a set of lj-near equations from which the
d.J\ !,.ibL( ', a i

and hence the co(À), can be determined-

ão{u), '

The second integral equation, obtained by subtracting

(42) from (Al), is solved in the same wây, except that

in applying the Laplace transformation, the integrati-on

is f rom -co to 0 instead of f rom 0 to æ.
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In this appendix we show that the condition for

equal roots of the l¡-component d.ispersion equation for

N=3 and 4, can be expressed as the non-zero solutions

of a pol¡znomial of degree 2(N-l) (if we neglect

strongly damped osciltations), and that these correspond

to quadratic branch points of the integrand in (3.3) of

Chapter 2.

The three-component dispersion equation is

(81)

with solutions gi.ven by the roots of the cubic equation

x3+ax2*bx*c=0 (82 )

where

Equation (82 )

r{;r =r

a = -arÀ âo

b = À(brÀ + bo)

c = -1,2 (crÀ + co)

has solutions
l1

xr=At+85 a/3

xz = r^,A] * ,'B] a/3
11

xs = o2A5 + t¡B3 - a/3

#*r'
-+-DL

gt*P1
427

3

I
b=1

(83 )

(84 )

where ûJ is a complex root of unity, and

f,=

l, =

D



From equations (B3) and (85) we may write

þ= (86 )

and. it is easily sho\.,rn that
(82) have equal roots when

(k I 9.1 is small then

D5 - De = 0. Now, (Bf ) and

D-0, andif *k-xg

1

D2 (E7)
(2q'l,

where (ù, r k--Lr2,3 are the cubic roots of unity, andlr'
so there are four ,rorrj""ro branch point singularities.

The four-component dispersíon equation is

P=b a2/3

g = c ab/3 + 2a3/27

*k-xø==tål (0r r¿)

n
DÀn

6

I
n=0

(Bs )

(ne ¡

4

I
b=1

=1(

with solutions given by

xr+rx3+sx2+txf u=O (89)

where

r=_(rrÀ*ro)

s = À(srÀ + so)

t - -À2 (trÀ + to)
g = À3(urÀ f uo) (B1O)

The resolvent of the quartic equatíon (89) ís defined to

be

y3+ay'+by+c=O (BI1)

where



a=-S

b=rt-4u
c = 4su - rzu'- t2

The solutions of the resolvent (BI1) are

are

(812 )

(813 )

(81s)

(816 )'

Yr =43
t

Yz = uJAt

Y¡ = ûJ2A

1,
+B3 - a/3

+ r^l2gt a/3
11
'+óB'-a/3

and

(Bs )

ArB,D,p and q are given by equation (B5). From

and (812) I^re can write

(814 )

6

þ = rG ( I- n=0

L,
2tet

I,
2 t-et

)DÀn n

where Do I 0.

The solutions of the quartic (89)

x¡ = -+ * |t", * ez * eg)

a.
4

êz es )

X3 3
4

xz=

xr+ =

0= 2b
3-

+

+ *ez-es)

f+|t-.' - êz +e3)

where

Equations

if *k-x

er2 = q + Aå + Bå
11

ez2=d+t¡45+r¡285

es2=cr+o2A**rgl

{
4

(88 ) and

t. (k l 'q')

(89) have equal roots when D=0, and

is small then



2= t(
3

1

2D (oi 0i ) (817 )
L

and so in this case there are six non-zero branch point

singularities.

x-
lç W,z,rj
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