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ST'MMARY

Ttris ttresis reports a theoreticat investigatíon into Iong-ritave effects

on a cloeed boðy of r¿ater resultÍng from wind stress at ttre surface. Results

from bot¡ analytical and nunerical models are comPared wittr data collected

from t¡e lakes of the Murray Mouth, a series of shallow, interconnected

lakes sítuated roughly lOOIon south-east of Adelaide, South Australla.

1Se linearized long-wave equations are consídered. Hence, a closed

la¡<e responding to the acÈion of, surface wind stress nray be viewed as a

linear system, and the concept of the resPonse functionr a convenienÈ meanE

of characterízing a linear system, becomes Íu¡nediately relevant. Ttre res-

ponse function, in ttrís context, is defíned as ttre time i.nvariant part of

ttre steady state lalre response (eittrer vtater level or veloclty response)

measured at a giveh statl,on on ttre lake, to a wind stress of sÍnusoidal

time variation and constant strength and direction over the surface.

Analytical response functions for the single-Iayered rectangrular lake

(neglectÍng Coríolis force) and single-layered círcular latce (including

CorÍotis force), both lalces being constant ín dePth, are derived. Finite

difference net}ods for calculating response functions for basins of arbit-

rary contour and deptlr are considered. Several different nr¡nerical models

of tÌ¡e Murray Mouttr latces have been constructed.

Àdditional problens treated include ttre response of a two-layered

(stratified) lake of constant depttr, and tÌ¡e coupling effects between con-

nected lake systens.

-..............-.......-
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Results Índicate that danrping forces play a dominant role in wind

induced motions of the Murray lt[outh lakes. Generally, satísfactory compari-

sons between predicted and measured lake res¡rcnses have been achieved.
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INTROU'CTION

Ttre major cause of ÍþveÍÞnts of waters within nþst lakes is t}re direct

action of surface wind stress. Bottr free and forced water level oscilla-

tions as well as circulation of short and long term duration may be índuced

by varying types of wind. The efÈects are felt wittrin all basins, regard-

less of size. Generally, they are complicated by the earthrs rotation and.

possibly, by stratification within Ètre fluid.

Strong winds often result in floodíng of areas adjacent to a lake.

Regardless of strengú, wind action largely d.eternines the nrixing Process

witl¡in a lal<er and hence tJ:e quality of its waters if it is subject to pol-

lution dÍscharges.

The Murray lifouth lakes of South Australia - Lake Alexandrina, Lake

Albert and the Coorong lagoons - are typicaL of most Australian lakes in

beíng shallow, highly saline and well-mixed. They are coastal lagoons, con-

nected to ttre Soutt¡ern Ocean through the narrovr Murray t'touth, and are thus

strongly influenced by prevaíling winds.

Chapter I toucÌ¡es briefly on the physics of the varíous types of

effects wíthin a closed lake ttrat result from the action of surface wind

stress. Ctrapter 2 discusses the mathematícal eguations used to analyse the

effects and ttre various simplifying assumptions needed to make them solvable.

ftre sirnplified equations are linearized, so that the concept of the response

function - a natural means of characterizing a linear systern - may be used

to descríbe tlre response of a closed lake to a wind stress input,. Re1at-

ively sinrple and readily interpretable solutions to a variety of wind effect
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problems may be obtained in ttris manner.

Wind effects on a rectangular, non-rotating basin of constant depth -

ttre so-called "narrow lake' - are examÍned in ChapÈer 3' using the response

function method. The results are applicable to the elongated Coorong

lagoons. Theoretical response functÍons for the Norttr Coorong are derived.

Comparison r{ith an expefimentally determined function (ChaPter 8) enables

estimates to be made of the values of different types of danrpíng para-

meters used to specify ttre system. It is shown Ètrat ttre North Coorong

wind-water level system is heavily damped, so that the fundamental longi-

tudÍnal free oscillatíon is unlikely to occur.

Chapter 4 presents a generalized tJreory for wind effects in constant

clepttr basins of arbitrary contour, with Coriolis and dampíng influences

included. Such a tlreory has applications to the o'non-narrow" Lakes Alex-

andrina and Albert. In particular, from certain analytical solutíonsr we

infer ttrat ttre earthrs rotation has little effect on wind induced notions

wittrin ttrese lakes.

Direct numerical calculation of response functions for realistic,

finite difference models (both one- and tr.¡o-dimensional) of the Murray

Mouth lakes is achieved in Chapter 5. Here tl¡e Coriolis forces are neg-

lected. A series of numerical experiments on a model which incorporates

both Lakes Alexandrina and Albert and their connecting línk, the Narrung

channel, índicates that remarkably strong currents are induced within the

ctrannel by wind action on the separate lakes. These currents are well known

to local irùrabitants of the area, and considerably influence wind induced

motions in the separate lakes.



(x)

Ctrapter 6 examines wind effects on a stably stratifíed, simple two-

Iayered lake of consta¡rt, depti:. llhough rrot applicable to the Murray lvlouth

lakes, this model represents the behaviour in many lakes Ín colder regions

of t*re northern hemispherer ê.9. the Great Lakes of Norttr America. Use of

response functions enables easy observation and interpretation of baro-

tropic and barocliníc modes in the basin response.

In CÌrapter 7 ttre problem of coupling effects in the wind induced motion

of a connected lake system is considered. A simple analytical model indi-

cates the irnportance of damping processes in determining ttre extent of

interaction between the separate lakes.

Ttre concluding cùrapter presents tJre results of analyses of wind and

water level data from the Murray Moutt¡ lakes using methods of analysis

largely developed by Noye (1970). For the Coorong lagoons, erc¡rerimental

response functions may be determined by cross-spectral analysis of such

data at a given station. In addition, techniques of Eourier analysis enable

predictions to be made of water levels due to measured wínd velocities for

both tåe Coorong lagoons and the "non-narrow'' Lake Alexandrina, provided

values of the response function for the wj-nd-water level system are known

over a wide frequency range. Some satisfactory comparisons with measured

water leve1s have been achíeved.

Among several Appendiees ís one r^lhÍch describes the Murray Mouth lakes

and details the present and future impact of man on the system. The deci-

sion of the South Australian Govern¡nent to site a new cíty, Monarto, in

tt¡e vicinity of ttre talces, is cerÈain to diversify the uses of the lake

waters. Thus, they have great recreational potentiali at the same timer
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they may serve as a r¡seful outlet for effluent disposal. The work reported

in tlrís thesis was undertaken to assíst in the more satisfactory assessment

of man's impact on the environment of the Murray Mouth lakes.



CHAPTER 1

A PHYS rçþ-rr_ trITBqp_uglqlqN_T_o !{ID{D NE'FTCTS

I.1 l{ind ects Short ffaves and Viscous Slrear

The mechanísm of wind-induced momentun transfer at an air-water

interface j.s a most corçIex phenomenon which, at Present, defíes cornplete

description. Ttrere are essentially two effects tltat occur, as stated by

Phillips (1969), p.145:-

,'.:.ta appears that the transfer of momentum from the wind Ís

shaled largely between direct viscous shear and the momentun

flux fron the inner viscous layer to short htaves...¡r

Ihe two phenomena - formation of localízed short waves and action of,

direct vÍscous shear or stress - are coupled in a way tt¡at is largely

unknown. Decaying short waves possibly act as an energ'y source for the

surface currerrts that result from the viscous shear.

It is conmon to consïder the two effects quíte Índependently of each

other, and that practice is adhered to ín this thesís. Our attention is

directed to ttre second of the tr¿o effects, viz. ttre action of direct vis-

cous shear on the watet surface. Hereafter, unless othenvise stated, the

term "wind effects" will refer to such action.

It ís assumed that the wind stress, denoted by t"r is equivalent to

the stress exerted on a rigíd surface wÍttr an aerodynamic roughness thaE,

clearly must vary with the velocity of the wind. The stress is related to

the mea¡¡ wind velocity, us, measured at some point above the turbulent
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portion of the air flow (no¡:urally a height of IOn), i-e. at the edge of

the surface boundary layer¿ by the drag Ìaw

rs = espauz (r.1.r)

where:C" is a dimensionless drag coefficient "ttd 
ga is the density of air.

There have been manXr enpirÍcal fornrulations suggêsted for the drag

coefficient; for a srunnary of these refex, for example, l{ilson (1960)t

welander (1961) and Smith (1973). It is generatly agreed that above a

certain transition wind velocity, ¡rossibly a transition from an aero-

dynamícally smooth surface to an aerodlmarn-icaIly rough surface, €"

increases witÌ¡ increasing velocity. For exarnple Heaps and Ramsbottcm

(1966) suggest that

-4 -I5.65 x I0 ,u < 5 m.sec(

(

(

s:
c -4 -1o") i(.10 ',5 m.sec - i us -I(-L.2 + r.37 < 2O m.sec

(1. r.2)

The resultant stress-velocity relationship is shown graphically in

Fi9.1.1.

In realítYr of course, considerabLe scatter from the form (1'I'2) is

observed, due partly to small scale turbulent fluctuations in the air flow

above the interface. Deacon a¡rd l{ebb (1962) rep'ort that the drag coef-

ficient is strongly affected by ttrermal atnospheric stability' It has

not yet been shown, however, how such effects may be properly íncorpor-

ated into the drag law.

s
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L.2 A Description of !{ind Effects in Shallow, Cl.osed Lakes

The primary effect of direct wind shear on a surface of waÈer is to

induce upper-Ieve1 drift currents in the direction of the wind stress'

In a non-stratified shallow lake, the drift currents produced by a

steady wind result, in a "piling-up" of vtater along the leeward side of the

lake (Fig. I.2). This elevation in turh produces gravity currênts

directed verticatly downwards and hence lower level currents rett¡rn water

to the windward side of the lake.

Circulation in the vertícal plane is thus set uP with a velocity

profile across a section near tt¡e centre of the lake of the form shown'

Eventually the water surface reaches an equilíbrium position at which the

hlrdrostaticforce due to the tilting of the surface balances the sum of the

aerodlmarnic stress, Ts, of the wind on the upper surface and the frùCtion

stress, ,bi tÏ¡at the ùake þotton e¡etts on retUån öutreDtE' Such a dis-

placement of the water leve] from its mearr position is often referred to

as wind tide or wind set-up. At equilibrir¡n ttre total fluiil transport

across a given vertical section is zero, provided t}e wind stress ís

homogeneous (spatially ufiiform) across ttre lake surface.

For laminar flow of a lalce of uniform depth' H, it may be shown

(Hellstrom (I94I) , Keulegan (1951) ) that the fluid velocity profile at'

1
equilibri,:m is parabolic. ftre velocity is zero at depttr 5u and the

maximum return velocity magmitude, equal to a third of tlre surface

velocity magnitude, occurs at depttr þ ExperimentallyrFrancis (1954)

showêd that tt¡e profile under realistic (turbulent) conditions is con-

siderably flatter near the botton than the theoretical Profile' lfhese
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results are shown in Fig. 1.3a.

The rrechan-ism of wind tide formation in a stably stratífied lake ís

considerably more complicated (Hutchinson (1957), Heaps and Ramsbottom

(1966)). 8or example, irr a lake separated Ínto two layers of de¡rsiÈies

pl (upper) and p2 (lower), the interface separating tJre two layers is

tilted in a ditecti,on opþOsit€ to that of tt¡e surface. flris ís because

surface currents in the lower layer flow in the opposite direction to the

wind (Fig. 1.3b) and return currents in the lower layer thus move in the

same direction as tt¡e wind.

À sirnple physical argument suggests tÌ¡at the Ínterface slope will be

much greater in magnitude than the surface slope. Consider the interface

between two fluíds of densities I (upper) and p' (Iower) . The potential

energy of a volume of one fluid displaced a vertical distance E from its

undisturbed position is directly proportional to the product (p'-p)E.

For the surface layer in Fig. 1.3b, g = p" and pr = pl so (p' - p) tu plt

for ttre lower layer of Fí9. 1.3b, (p' -p) = (pz - pl) << pl since the

density difference between ttre two layers ís extremely small, of

O(fo-3strr,"*-3). Hence, if the sane anount of energy is available to both

layers, the dfstance E will be much greater for the lower l-ayer tl¡an for

the upper layer. Clearly this argunent is an over-simplifÍcation' but

such behaviour in stratifieil fluids is well known, bott¡ for the open ocean

(Charney (1955)) and for closed lakes (Csanady (1972')).

If ttre wind stress ís unsteady, i.e. its strength or direction

changes ín time, ttren the induced currents and the lake surface will

likewíse change ttreír pattern.
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For exaurple, íf the Steady wind suddenly ceases, then free surface

oscíllations (seiches) will occur as the surface, returning from its

equilíbrium set-up posítion to its mean-level, moveg Ín penduh¡m-like

fashion about ttrat level. Damping fofces within tt¡e fluid determine the

rate at which the jree oscillations decay. A grêat deal oÉ the Literature

on the motíons of lake fluids is devoted to a description of seichest

refer, for example, Proudnafi (1953) , Defant (196I) and l{ilson (L9721 '

Time-varying winil stresses also gÍve rise to forced motions within a

lake. The equilibrium wind tide may be regarded as a limiting or trivial

case of forced motion. Forced sr¡rface oscillations are well documentod

in many lal<es, though they may ofter¡ be difficult to dístinguish fr<¡n

free oscillations.

Generally, free and forced wind-induced motions botlr play íurport'ant

roles ín the dynamicat behaviour of a given lake system. In extremely

shallow lakes, however, forced motions are normalty of greater signifi-

cance, since free motions are heavily damped'

1.3 Some Examples of wind Effects on Closed Lakes

As stated previously, wind action on a closed lake results in a ¡nass

transport of fluid wíthin the lake and an assocíated displacement of the

Iake surface from its mean level.

lfhe slope of tl.e displaced lake level is determinecl by the strength

of the wind, and also by the dePth of the lake. Typicauy its magnitude

is of 0(10-5). Ttre wind-induced surface slope increases as tt¡e depth

decreases since the return flow is more heavily restricted and so there
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is greater accumulation of fluid along the leeward shore. Clearly too,

for a given surface slope, wind fetch (the a¡nount of lake surface over

r¡Ìrich ttre wind acts) ís irnportant in determining the a¡nount of displace-

ment of ttre surface from its mean level.

Thus a wind of high velocity acting over a large, shallow lake would

produce large wind tides.

perhaps the best known examples of this effect are provided by the

Norttr American Great Lakesr the surface movements of which are strongly

influenced by winds.

Lake nrie is of longitudinal shape, the length being about 250ktrt. It

is, further, nuch shallower than the other lakes, particularly towards its

western end where ttre depth is generally less than 2Om. During a period

of hÍgh winds in Nove¡nber L972, Lake Survey CenÈer water level gauges

at opposÍte ends of the lâke - at Buffalo a¡rd Toledo - recorded a

simultaneous difference of about 2.5m. Harris (f954) has reported how

a storm on Septenbex 25, I94I, raised tÌ¡e level at Buffato by 2m and

lowered ttre level at Toledo by nearly the same anount.

Even Ín periods of low winds, the effects are still noticeable.

Platzrnan (1966), in an analysis of six ¡rpnths of hourly data of tt¡e

Lake Erle water Ievel, found a diurnal (24 hr) constiluent of the longi:

tudínal oscillation of the Lake and concluded ttrat this was caused almost

entírely by wind stress.

A knowledge of wind tides and associated currents is clearly of

|n¡nrtance for the lessening of erosion and property damage dnd for



the protection of harbour installations and shípping. Newspaper reports

of the wind-tidal flooding of the Great Lakes shores in March, L973,

spoke of nillions of dollars damage beÍng inflicted upon property or.nrers

in ttre states of Michlgan and OntarÍo. 1lt¡ese suddenly changíng water

levels are also knor*rr to affect the ouÈput of the Niagara posrer p1ant.

AustraLia has no Lakes of the siee or cornmercial importance of the

Great Lakes. It does have many extremely shallow lakes, howeVer, which

would be e>çected to be influenced by winds. A typical example ls

provided by the sysùem of Murray MouÈh Lakes, South Australia, for which

depttts generäIly lÍe';witt¡i¡n'ltlie-r¿rn9e Im - 4.5m.

À detaileC description of these lakes is provided in Appendix A,

togettrer with an out,line of ttre impact of marr on Ure system ar¡d some

predÍctíons of its future uses. In partícu1ar, planned urbanization of

nearby regions could lead to the lake waters being used in diverse and

possibly conflictíng ways. T?¡us the lakes wiII certainly become an

im¡nrtant recreational- sourcei they may also be used as an outlet for

wastes from the new cíty.

The Engineering and Vlater Supply Department (8. & W.S.) of South

Australia has, for at least 25 years, ntaintained instruments for measur-

ing wind speed and direction and corresponding water level at various

points around ttre shoreline of the Murray t{outh Lakes. Ttrese records

amply confirm tlre suspicion ttrat wíncl effects a¡_ e of considerable impor-

ta¡rce in the lalces.
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Tl¡is fact is well:known to farmers with property on the shores of

Lake Albert who talj< of consÍderable run-off from ttre lake through the

Narrung Channel into Lake Alexandrina due to strong and persistent

southerly winds. Indeecl, hÍgh velocities charactetize the currents

within the Narrung channel and often rnake its navígatíoh a hazardous

undertaking.

A sudden drop in the water level along the shores of Lake Albert due

to an off-shore wind has occasionally prevented pastoralists from

pumping the fresh water neecled to irrÍgate their large areas of lucerne.

This is also an acute problem in Lake Alexandrina where wind effects

have been known to temPorarlly change the water 1evel by as much as lm'

Ieaving inlet pipes of punps well out of the water-

For example, a 75k¡n/hr south wincl suddenly began blowíng across lJake

Alexandrina just before midnight on 3 Augtust, 1953. At Tauwit'chere

barrage at tåe south-western end of the lake, the water level had fallen

by more ttran lm by 2 a.m., and at !{ellington, a short distance up the

River Murray at the northern end of the laker the watef level had risen

by over 6Ocms by 3 a.m. These effects are íIlustrated in Fig. I.4 which

shows the E. e W.S. Department's recordings of the event.

VariatÍons of water levels in the Coorong lagoons are characterized

by a díurnal oscillation. These movements have been weII doctmented by

Noye (1970). Clarke (1966) contends that they are free oscillations-

However an exanination of Fig. 1.5, showing a length of recorded water

level at Seven Mile Point on the north lagoon and corresponding component

of wind stress directed along ttre lake axis, seens to suggest that the
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oscillations are wincl forced. The diurnal oscillaÈion of wir¡¡l stress,

possíbly a land-sea breeze effect, gives rise to forced water level

oscillations of a similar Period.

Thus far in this section wehavediscussed the effects of surface

wind stress on water levels in closed basins. ImBortant, too, is the

circulation of lake watets caused by surface wind stress.

Circulation and diffusion processes within a lake largely determine

the quality of the water. In order to juilge the consequences of, say, a

pollution discharge ínto the lake, ít would be necessary to have so¡ne

knowledge of these Processes.

Lindh and Bengtsson (1971) list ttre factors causing circulation of

water masses in a lake as (i) wind action; (íi) inflow-outflow system;

(iii) aÈmospherÍc pressure differences on the lake; (iv) astronomlcal

forces¡ (v) density differences. Tney state, further, that wind action

is by far the most Ímportant nechanism determining the lake circulation.

ftris is so.regardless of the lake depth, sLze or structure though such

factors wíLl alter the structure of t}re circulation. '

Short term wind currents (time scale of O(1 hJt) or less) are of an

essentially random nature, being associated with essentially randont

fluctuaÈions of strength and direction in surface wind stress. There is

nore consistency in wind circulation of an intermediate tine scale

(O (I hr - I week) ) , since Ít is associated with changing weather Patterns

and ottrer regular variations in wind stress. Íime scales of water leveI

ctranges show similar behaviour-
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Associated wíth most close<l lakes is a long terrn circulation (tine

scale of 0(1 week or rrore)) which in the nortt¡ern hemispheie has a con-

sistently counter-clockwise direction. (t¡o observations are available for

lakes of the southern hemisphefe). Ernery and Csanady (1973) have postu-

lated ttrat such a long term circulation is wind-induced. It must have

important conseguences for níxing þrocesses within a lake.

Of course, ttre wind effects of different time scales car¡not be

rigidly categorized since the effects of one tire scale interact wíth

those of a¡¡other. However the manner of thís interaction Ís largely

unknown a¡rd, ín ëury case, ís probably stight. fhis thesis ttrerefore Ís

directed towards an investigation of wind effects of the intermediate time

scale which have the advantage of relative sirçlicity bottr in obserr¡ation
¡

and analysis. Accordingly, the following ctrapÈer presents the mathemati-

cal equations necessary for such an analysis and briefly discuEses certaín

tlpes of solutions to these equations.
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CHASTER 2

THE VÛIND EFFECT EOUATIONS AÀID EHE USE OF RESPONSE

FUNCTIONS IN THEIR SOLUTION

2.L The Wind Effect EquatÍons

Ttre mathematical treats€nt of wind effects is acconplished by solving

the Navier-Stokes equatíons and the equation of continuity applied to a

vertical column of fluid extending from the bottom to tt¡e surface and sub-

ject to certain bounclary conditions.

Consider the lake of Fig. 2.1 acted on by the wind stress vector fietd

r . Cartesian co-ordinate axes, fixed relative to tt¡e earth at a latítude
-s
{, are placed as shown wíth the plane z = O in the plane of no disturbance

and the z-axis directed vertically upwards. llfie horizontal lake oonÈour

is denoted by t.

The horizontal component" ."*, rry ot the wind stress vector field t"

are functions of x, y and t (tíme) as also is ttre dÍspLacement of water

Ievel from the z = O plane, descríbed functionalty by z = 6(xryrt). The

bottom contour of ttre lake is described by z = -h(xry).

The specific equations that relate to time-dependent wind effects on

shallow, homogeneous cfosed lakes are the Eulerj.an equations of motion

a¡rd continuity equation used widely in oceanography¡ fot a detailed treat-

ment of these equatíonsr refer, f.or example, Proudman (1953), Vlelander

(196I), Fortak (L9721. The equations of motion are
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(2.1.Ia)

(2.1. rb)

(2.1.Ic)

whíle the continuity equation is

ôu ðv

-¿-Ðx'ðy +
ôw
ð" =Q (2.1.Id)

Here u = u(xryrzrx) r v = v(xrYrzttul r ïI = w(xryrzrt) are x-, y-t and z'

components respectively of fluid velocityi P = P(xrYtz,E) is fluid Press¡uret

,*, = lxz(x'ytzr1-l , Tyz = tyr(xryrzrtl are comPonents of the turbulent stress

tensor actíng in planes parallel to the z = O plane. In additionr P is fluid

density (assr:¡ned constant), g is the aceeleration due to gravity and f is

ttre Coriolis parameter with a value calculable from

ðu - râp ð'*,
æ_=r=-õ,ã;*E-

ârÐv lÐp I
ãÈ+fu=-3ãî*t

e=-lÞ-opòz

yz
àz

f
20sinQ, northern hemisPhere

2flsinQ, souttrern hemisphere
(2.L.2',)

r*¡ereO=0.73x10 sec
-4 -1 i= the angular velocity of the earttr's rotation.

A nu¡nber of im¡nrtant assumptiorrs were made in fornuing ttre system of

equations (2.I.I).

Firstly, Ín

It may be shown,

vided that

(2.I.1c), the vertical acceleratíon terms have been o¡nitted.

(P¡oudman (1953) , Stoker (I95?) ) , ttrat this is valid pro-

4..,
Lrc
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where h* (a tlpical depth) and l* (a tlpical horizontal distance) are

verÈical and horizontal lengtå scales for the motion involved. this is the

so-called "Iong-r.u'e" approxÍmation arid when iÈ holcls true the water is said

to be ttshallowt'.

It is clear, then, from (2.I.Ic) that the ftuid Pressure obeys the

hydrostatic relation

p = p. + p9 G-z) (2.I.3)

where p" = p.(xryrt) is tÌ¡e surface (i.e. at$ospheric) pressure. Since we

are not interested here in the effects of surface Pressure variations vle

assume ttrat p- is constant in space and time.-a

Secondly, we neglect horizontal convection of turbulence' an assllnp-

tion whích again is valid for shallow waters where movement in vertical

planes ís slight.

These two assumptions must clearly break down in shore regions where

verticaÌ and horizontal lengttr scales becorne of the sane order of magnitude.

From Fig. 1.2 it is clear that considerable motion in vertícal planes is

generated near the shores during wind tide fonratíon in closed basins.

Thirdly, it is assumed that convective (non-tinear) acceleration terms

in (2.1.1a) , (2.1.1b) rnay be onitted. For example, a tem of the forst

,, S.., be neglected in comparison with ttre loca} acceleration term ff
provided that

I r, ,r*t*

where t*, u* are tine and fluid veLocfty scales for the motion under concern.
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The ratio Lr./dc = c* ís essentially equivalent to the velocity of long

gravity waves, y'gh* , in the basin.

lfhe

vertical velocity w is close Eo zeto at the bottom, and at the free surface

can we o¡nit a term of the fo¡n * åå in comparíson with fr z

may be approximatea UV Nf provided ttrat the surface slope is not too large.

Itrus a typical vertlcal velocLty ís Crc/t* where 4* is a t1pícal surface

elevation. So provided that

7*Þ-<< I
h*

then the above omíssion is justified. It is again clear, however, that the

approximation would break down near shore regions.

As shown by Greenspan (1968), ttre nragnitude of the Rossby number, a

ratio of ttre convective acceleration to tt¡e Coriolis acceleration, also

indicates tÌre relative ímportance of non línear acceleratÍon ter:ns. Íhe

assumption of small Rossby number has been used by, Eor exarnple, Platzman

(1963), Csanady (1967) and LÍggett (1969), as a justification for neglect-

ing non linear accelerations in the equatíons of motion.

Fourth1y, we neglect ttre effects of spatial variatíon of tt¡e Coriolis

parameter. Harlemann et al. (1962) have shown ttris to be a quite vaLid

approximation for the Great Lakes and it will clearly hold for smaller

water bodies.

Couibining (2.1.la), (2.1.fb) with (2.L.3) gives
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ãu
AE -rv=-nH-È

ât

ðt

. .tzf
|yz

ðz

(2.L.4a1

(2.I.4c)

(2. r.4b)

lltre continuity equation (2.1.Id) may be simplified by vertícal integration

fron the bottom, z = -ir¡, to ttre free surface' aPProxi¡nated by z = 0' to

give

hI Pu' *dx
.i

gå
âr

The asserÈion that the free surface and tt¡e z = o plane closely coincide is

again valid if
¡*
ñ:t

<<l

Equations (2.1.4) are subject to the following boundary conditions:-

(i) The flow normal to a closed boundary is zero, i'e'

qrr=oalongf (2'I'5a)

where g = (urv).. , This condition is equivalent to the assumption that

the contour I does not alter with tfune, i.e. that no tand is covered or

uncovered with a rise or fa]l in water level. For particularly shallow

lakes surrounded by low-Iying flats, however, hurricane force winds may

flood the surrounds and exPose a large portion of the lake becl' St¡ch was

ttre case with Lake Okeechobee, Florida, during the hurricane of 26-27

August, L949 as reported by Haurwitz (1951) '

(ii) shear stress is continuous in the plane of the free surface,

again approxi-urated bY z = O, i.e.
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l-Lyo sy
(2.1. 5b)

where t sx' T are tÌ¡e horizontal cøtponents of surface wínd stress.
sy

As a bottom conditíon we may irnpose the 'no-slip" condition(iii)

u(xryr-hrt) = v(xryr-hrt) - Q (2 .1. 5c )

Itre imposiÈion of a bottom boundary layer contrasts wÍttr the absence of a

boundary layer a!.ong the contour I due to the neglect of horizontal turbu-

lent convectíon.

Before equations l2.L.4l sr:bject to conditions (2.1.5) can be used to

examine wlnd effect problems on a given lake system, the assumptions made

in their derivation should be validated for ttre system. Consider, for

example, ttre system of Murray Mouth la"kes.

Taking h* = 2m, f,* = 10km it is clear tJlat tlre long-wave approximation

is quite valÍd. Further, since c* = O(5 m."..-I) and wind-induced fluid

velocíties are Èypically less than 0.1 m.sec-l in magnitude, ttren the con-

avective term u # *"t be omitted in comparison wittr the loca1 derivative

âu
Ê

dtt
E Furttrer, we omit tlre term w on the basis ttrat typically Ë* = O(Im).

During periods of strong winds ít is possible ttrat E* = O(I¡t) so that

no longer does the approximation ç*,¿'h* << I hold true. Ttris.'i.s especially

so for tt¡e Coorong (refer Appendix A) where h* is closer to Im; near the

soutt¡-easÈern tip of the South lagoon depths are of 0(L0cm),1 However, f,ot

purposes of mathematical si.nplicity, we shall neglect Ç* ín comparison witÏ¡

h*.
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Finallyr alttrough lor*-lying mud flats around Lake Albert and Lake

AlexandrÍna are at times inundated by wind tides., ttre extent of the flood-

ing ís smalI. Further, the boundaries of the shallow extrenes of the South

Coorong are subjecÈ to rnovenent under tt¡e influence of wínds, but to ttre

first approximation this is slight.

It needs to be emphasized. again that equations (2.1.4) are generally

ínvalid near shore regions, where vertical and convective accelerations

become important while lateral friction nlay no longer be neglected. The

more exact, non-linear form of tt¡e eguations is needed to properly account

for wind effects in ttrese regions.

It is clear that (2.I.4) is not closed in Èhe dependent variables u,

v and Ç. Closure is. effected,by express.ing Ti"r.ryz in.terms of these :,. ',

vafiables. fttis is normally performed in one of tt¡e two following wayss-

(a) Eddy-viscosity method.

Thís method uses the concept of the coefficient of eddy viscosity, N,

defined by analogy with laninar flow so that

(2.1.6)

Tttus, the fluid flow is assumed to be essentially quasi-Iaminar. Itre

value of N va¡ies from point to point within t}re fluiit though a constant

value for a given lake is noranally assuned, ttris being a sinrple nodel which

gives satisfactory results. The assumption of csnsÈant N is best for

shallow, well-mixed, waÈers. Density stratl-fícation in the fluid strongly

influences the value of N, which may fall practícally to zero ín the region

,*r= o* åå , ,yr= pN åå
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of a density discontinuity (welander (1957)).

Combíning (2.L.41 and (2.I.6) gives

#-t"=-st.*$
S*ru=-s#.*S

(2.L.7a1

(2.L.7b1

(2.I.7cIkJ-"*' .bl**t =-

sx

sy
*| t'

àç
ar

while the boundary condition (2.L.5b) becomes

( 2 .1.8)

(b) Volume transport method.

This method conveniently by-passes ttre problem of ttre specificatíon of

ttre vertical dependence of the stress vector. It uses the technique of

vertical integration of the equations of motion (2.I.4a) , (2.f.4b) from

ttre bottom to the surface to give

t. 
[rÞr] 2=s 

= Í ."x, t" [rtJ z=o 
= r=y'

S-r"=-shå1.å rb*) (2.1.9a)

ffnru=-ehH t¡v) (2 . 1. sb)

AU
ãx + av ar

-:-1
ây ât (2.L.9c1

In (2.L.9), U = U(xry,t) and V = V(xryrt) are the components of volume

transport (or total stream), given by

T

while (2.f.4c) rnay be rewritten as
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[J= udz, V = vdz

-h .-h
f" f"

Ttre transport. vector S (UrV) is related to q-, the velocity vector

averaged over deptl¡, by

S=hq-Jm

Equations (2.1.9) are subject to the boundary condition that the com-

ponent of the transport vector S normal to tt¡e contour, is zero, i.e.

S-=0alongI. (2.1.10)
n

Weenink (1958), Groen and Groves (1962) and Fortak- (1962) treat in

detail ttre assumptions made in the vertical integration to produce (2.I.9).

In parÈicular, the free surface is again assumed to coincide withl the plane

z = o, which is true, provided that E*/}:r'<< I. .b*, .by *. the con-

ponents of Èt¡e bottom stress vector, fb. The surface stress comPonents

T _-t T__- are known at any tíme. Ho$¡ever, the bottom stress componenùs aresx' sy

unknown, and in order to ¡rake the system (2.1.9) closed in the variables U,

ú. and Ç, they must be e:çressed in terms of tÌ¡ose variables.

Essentially, the bottom stress magnitude satisfies a drag relationship

similar to (1.1.1), viz.

I5 e% eol' (2.1.11a)

where % i= a di¡rensionless drag coefficient *d g¡ is the fluid velocity

vector measured at ttre outer edge of the bottom boundary layer. Prouclman

_3
(1953), p.136 gives a value for C- csf 2.5 x I0b
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A convenient linearíze(l form for f¡ .ry be achíeved by writing

Ib = Pcb lssl g5

and defining a parameter r, with the dimensions of velocity, by

'= % ls6l

Furthermore, by approximating

-9¡=1n=

then (2.f.lfb) becomes

prl
1=-.:b h

prg
T. =-mT *-
-b -S .fr

I
h

(2.1.11b)

(2 .1.llc)

(2. r.11d)

The fornr (2.L.1Ic) predicts ttrat in an equilíbrium situation, i.e.

when no net flow or transport is occurúing, the botÈom stress vanishes.

Hoïrever for the equÍlibrium wind set-up of a closed lake, there clearly is

a stress exerted on the bottom by return currents near the botton. One

nay ttrink of the bottom as exerting a stress on the fluíd in the direction

of tt¡e surface stress (FÍS. 1.2).

So for a general, non-equilibrium situatÍon¡ the bottom stress is more

correctly given by

where m is a non-dimensional paraneter ttrat essentÍally specifíes the

relatíve additional contribution ttrat the bottom stress makes t-o the

surface stress. For laminar. wind-induced flow in a lake of uniform depth,
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Hellstrom (I94f) r Keulegan (195f) and Felsenbar-m (f956) all have deduced

that at equilibrium m = O.5. Francis (1954) showed. that in realistic tur-

bulent flows m ís generally less than 0.1.

Bowden (1956) and Reíd (1956) give more exact treat¡nents than that

provided here of the linearízed form (2.t.IId). Smith (1973) has provided

a detailed comparison of the bottom stress parameterÍzations used by prev-

ious authors. Groen and Groves (1962) discuss the different forms of non-

Iinear damping.

The term $?h models turbulent díssipat,ive effects within the fluicl.

For simplicity, the parameter r is generaLly taken as constant for a given

hydrodynamical system. It is someti¡nes assumed that r = 0, í.e. the sy6tem

is non-dissipative. Ho$rever such a simple model is unrealistic fcr

extremely shallow waters where near bottom currents meet strong resistance,

so leading to high energy díssipation.

lltrroughout tt¡is thesis the linearized bottom stress expression (2.1.IId)

is used, with r taken as constant. CombinÍng (2.1.1fd) and (2.1.9) gives

ttre following system closed in tJle variables U, V and E:-

åË.*u-rv=-sh***r"*

H.ivtru=-sh#**'""

(2.1.I2a)

(2.r.12b)

+
AU

A*
_âç

ðr

where f = (l+m),/p.

av
tr (2.L.L2cl
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Let us briefly compare the eddy viscosíty and transgrcrt forms of the

wind effect equations.

Clearly, ttre system (2.1.f2), tlre transport form of ttre equations, is

of a simpler form ttran (2.I.7), the eddy viscosity form, due to the absence

in tl¡e former of ttre independent variable z. The corresponding boundary

condítions also are simpler. For these reasons the transport form ís

normally preferred, both for analytical and for numerical work. Holtever by

elímínation of the variable z, all information concerning the vertical dis-

Èribution of currents is lost. Using only tJ:e transport equations we can

at best obtain ttre mean velocity over depth.

An lnl¡erent weakness of both l2.L.L2l and (2.1.71 is the presence ùn

each of, an ur¡known damping parameter. Semi-empirical mettrods must be used

to determine values of r or N fof, partictrlar lalces.

Platzman (1963) determined a value for the eddy viscosity of Lake Erie,

vi:z. 4Ocrn2sec-I, by measurement of the decay of the funclamental mode of

surface oscillation. Much the sane method was used by Heaps and Ramsbottom

(f966) to estimate a value of r for tbe more dense, bottom layer in the

sÈratÍfied Lake Windermere, Scotland.

Liggett and Hadjitheodor.ou (1969) estimate a value of the eddy vis-

cosity for Lake Eríe, viz. 200cur2=u.-1, which correctly predícts certain

measured currents. A si¡nilar method of computing eddy viscosity from

observed velocíties haE beer¡ used by Lindh and Bengtsson (1971).

1lÌre difference in the above two estimates for the eddy viscosity of,

Lake Etie indicates tl¡e essentially variable nature of the paraneters r
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and N. It is not really sensLble to assert ttrat for a given lake system

either of the patameters always takes a certain value' eerhaps the best

that can be achíeved is to choose values for r and N at a given tlme which

give results compatible with obserrrations.

It should finally be mentÍoned that the supreme mathematÍcal advantage

of botlr (2.L.L2) and (2.L.7) is the proþerty of linearity, which makes it

possÍble to ot¡tain some relatively simple analytical solutions and to use

many of the powerful tools of linear systen theory in so doing.

2.2 'fhe Concept of the Resoorise Function in Relation to l{ind Effects

papoutis (1962), p.81, in defining the term "system" states that:-

',The analysis of most physical systems can be reduced to the

investigation of the relaÈíonship between certain causes and

theír effects. Any system can be viewed as a transducer, with

the cause fi(t) as its input anó the effect fo(t) as its
output or ry.; fo(t) is uniguely deterrnined in Èerms of

fí(t). fhe system is completely characterized terminally if

the nature of the depenrlence of the output on the input is
knowntt.

When solving the wind effect eguations one ís essentially concerned

with ttre resPonse of a system to given inputs. Suppose the vtind stress is

homogeneous over the lake surface. Then one night take as inputs to the

system tJ:e wind stress components t=*(t), Tsy(t) and as output the result-

ing surface displacenent E(xorYort) measured at ttre posítion (xoryo).

These input and output signals are functions of time only. Further, since
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tJre system behaviour ís described by linear eguations, then it nust be a

Ii¡¡ear system and so obey the law of superposÍtion'

It is customary to model analytically ttre behaviour in real lake

basins due to real wind stress fielðts by considering basins of simple

shapes and wind stress fields of simple spatial and ti:ne varíation. Then,

by superposíÈion, one may obtain the response of the model basin t'o a real

wind stress fíeld. Simple but realístic theoretical models of wind stress

fields include:-

(a) A wind of constant sÈrenqth and dir ection over whole lake surface

suddenly ímposed at time t-O, and at that strength

tlrereafter

In tlre ianguage of systems analysis, such a wÍnd stress fielil is a

sl,ep input to the system, i.e. of the form t"(t) = ro.d(t) wtrere t(t) is

the Unit step function and to is constant. It ¡nodels quite realistically

a large scale storm or cyclonic disturbance maíntained over a lake for a

considerable tíme. The response of the lake consists of two part's - the

tra¡rsient of itlmamic part of the response and the equiliJcrium or steady

state part of the response. Essentially, the regponse consísts of danped

free osciLlations about ttre equilíbrÍum response, the degree of damping in

ttre oscillation dependíng on the exEent of internal damping occurring witåin

the system. (For later use, we define the step response of a linear system

as being the response to an input function fi(t) = U(t))'
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(b) A wínd of cons strenqth and aliqnment but varving periodically Ín

time

Such a wind nodels ttre effects d,ue to changes in weattrer patterns' e.çJ.

large-scale weather cycles or small-scale la¡rd-sea breeze effects. Íhe

example of ttre prevaílíng oscillatíng winds over the Coorong lagoons has

been previously cited.

Now for a linear system, the steady state response (after starting

transients have died away) to a sinusoidal input is itself sinusoidal with

tlre same angular frequency as tt¡e input. However, the arnplitude and phase

wiII, in general, be different. Usíng complex nu¡nber notation, if the

input fr¡¡rction has ttre form f , (t) = ujtt *h"te j = Gf and o is an angurar

frequency , i.e. a unit-amplitude sínusoid, then the steady-state response

will be fo(t) = J(r¡)"j" rt"re the function J(r¡) is most commonly called

ttre frequency response function or response function for the system. We

may, further, write

J(r¡) = G(o)e -i0 (t¡) (2.2.l.',,

wtrere G (r¡) is the gain of the system response a¡rd 0 (t¡) is its phase-Iag

(Fis. 2.2).

Ttre term'system function' is also used to describe '¡(to). It is a con-

venient laJrel for ttre ínput-output characteristics of a lÍnear system,

whether the components of that system be electrical, mechanical or hydro-

dynanic. Its chief advantages are ttrat it may be obtained in a relatively

simpte nanner either analytically or nunerically, and that it ís possible,

usÍng time series analysis, to extract the systen function from a given
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in¡nrt-output record and so to make comparisons bêtvúeen tlreoretical and

sq)erinental response functions.

One may draw an ínput-output diagranr (block diagram) as shown in Fig.

2.3a to describe the linear system with response function J(r¡).

A system consistíng of a lake acted on by a wir¡1 stress field rnay be

viewed as a two input - single output system witt¡ block diagram shown in

Fig. 2.3b. Tt¡ere are two response functÍons needed to specify the total

system' ví-z. Z¡ = Z1 (xorYoro) for the subsystern with r"*(t) as input and a

displacement Çl (xoryort) as output, and ZZ = Z2(xoryorur) for the subsystem

$rith rsy(t) as input and a displacenenE Ç2(xoryort) as output. Further, one

has that

E (xoryort) = Et (xoryort) + Ez (xoryort) (2.2.2)

i.e. tÌ¡e two 'sub-dÍsplacementg' add to give the totat displacement.

I{hen only one component of wind stress, say t"*r affects the lake,

i.e. the wind stress field is uni-directional, the 'subr-response function

21(xoryoro) becomes the ttotal' response function, and may be inferred by

data analysís from a given record of wínd stress and correspondíng surface

displacement.

However, for a general two-dimensional problem, it is not a si:nple

matter to determine Z1 (xoryo,.tJl, Z7(xorYoro) by analysis of e><perÍmental

j't, 
""u[t) = .o""jtt one has tt¡atdata. Instead, if r (r) =T eoxsx

jr¡t
whereE (xoryort) - z(xoryorrd)e

Z=r Zt +t Zcox- oy- (2.2.31
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llhe functíon Z(xo,yortl) may be extractêd by a simple analysis of the output

recordt however, it is not a true response function for the system.

Note that in ttre relation e = z"j^E, ü) is regarded as fixed so tÌ¡at we

have E = 6(xoryort). Hovrever we maintain tt¡e convention of writi,ng Z =

Z(xoryortl), since lde are specifically Ínterested in the variation of Z

witl. o. Note also that we might equally well have taken either component

of volume transport measured at (xorYo) or, indeed, a velocity component at

any depthrånd measurecl at (i<orYo), as being a representatiVe'output function

of thè,sy.stem consisting of a closed lake with input functions t"*(t) 'rsy(t) '

A great deal of ttre literature in linear system ttreory deals with the

determfnation of the responser fo(t), of the system to a¡r arbitrary input

f. (t), if tt¡e response to some standard input is known.

Application of the convolution theore¡n enables fo(t) to be expressed in

tems of the step response, a(t), of tÌ¡e system by means of the Dutramel

formula
l-r^tt) = | f.(t-r) !;a(ttat. (,2-2.4)

o Jo

In wind effect problems, integrals of this tlpe have been forrm¡lated and

used with some successi refer, for example, Proudman and Doodson (1924) 
'

Saito (1949), Heaps and Ramsbotton (1966). For a treat¡nent of the DuÏ¡amel

formulae, refer V{yl"ie (1966) ' p. 272.

It is also possible to exPress fo(t) directly in terms of J(t¡).

may be shown (Papoulis (1962), P.86) that

It
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ro(r) = * f:- "(t¡) F1.¡"j'ta,

where F. (r¡) is tt¡e Fourl-er transform of f . (t) , i. e.

(2.2.s)

F (o) --
J- f:. f , (r)"-j"uo.

Alternatively, for a periodic input funcÈion fi(t), vte may write

fi(t) =Ï .rr.i'r,t (2.2.61
11=-æ

for whích the steady state response is clearly given by

fo(t) =i arril(urrr)"jtrrt . (2.2'71
ll=-6

In uakÍng practicaliuse of ttris method, since ttre input record to be

analysed is of finite length T, ttre continuatíon of period T must be used'

Frrrtlrer, tl¡e series {2.2.61 t Q.2.71 will be finite. The steady state res-

ponse to this periodic input (of period T) will be close to ttre obsenred

response if T is sufficiently large to have allowed the systeÍt to reach a

steady state.

using 12.2.5) we may derive a convenient form for the step resPonse'

a(t), in terms c¡f J(r¡). rn this case, fí(t) = l(t) = t fr + sgn(t)),

wtrere

(+1rt>0
sgn(t,) = (

( -1, t < 0

Now the Fourier transform of t is 2n ô(ul), while the Fourier transform of

sgn(t) ís 2/ju. Hence' in this case'

I
F. (o) = nô (r¡) * ;,
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so tlrat (2.2-51 gives

rIa(r)-it.rtol+;

{a(r)}=J(o) =R(o)

(2.2.8a1

(2.2.e)

"'],

papoulis (1962) shows ttrat for a causal system (2,2.8a) nay be.simplif,ied to

a(t) =
R(r¡) sin (u¡t)dt¡l (2.2. 8b)

rchere R(o) = neal {J(r¡)}.

Nowitmaybeshownthat'J(o)=R(O),i.e.theresponsefunctionJ(t¡)

assumes only real values at o=0. Further, the equilibrirün resPonse to the

unit step function ís given Ot li ta(t)Ì, Provícled that the limit exists'

In Appendix B it ís shown that

u)

,6zl
nJ

o

]im
Þ@

Ítrus, tþe fotms (2-2.8a1 , (2.2.8b), Q.2.9) Provide convenient means

of calculating both the total step response and ttre equllibrium step res-

ponse.

In the following chapters we shall concentrate on the calculation of

response functions for various lakes Of sinple fora using analytical

techníques, and more complex form using finite difference ntsterical tech-

níques. usÍng the methods outlined above, however, we shal'I, where

appropriate, transfer our attention from the frequency domain to the real

time domain in consideríng the response of such lalces to non-periodic wínd

sÈresses.
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CHAPTER 3

RESPONSE FUNCTIONS FOR NARROW I,AKES - À¡[ AITALYTICAL STUDY

3.1 The 'Narrow Lake' Approximation

Consider a closed lake wtrich is sigmíficantly elongated in a particu-

Iar dírection. The dominant wind effects on such a lake are a result of

wind stresses acting parallel to ttre longitudinal (lake) axis. As an

example, the wind tide formed ín a direction transverse to the lake axis is

negligibte compared with that fonred atong the lake axis, since the ratio

of transverse wind fetch to longitudinal wind fetch is very smaIl.

llhe so-called 'narrow lake' approximation consists, then, of ignoring

wÍnd-induced motions directed, at ríght angles to tJle lake axis. Only ttre

IongÍtudinal com¡nnent of wínd stress need be considered in a determÍnation

of wind effects in the basin. Ttre approximation has been often used in

studying the free and forced rnotions of fluíds in elongated, closed basins

and na¡row, infinite canalsr refer, fot example, Lamb (1932), Froudnan

(Ies3) .

As part of the approximation we neglect the effects of ttre Cori.olís

force. Supposing the lake axís to be equivalent to the tr-axis of the co-

ordinate system of Fig . 2.Lr. (we ígnore the éffects of cu¡r¡ature in the lake

axis), ttren v = O *U.y" = 0r so (2.1.4b) gives

ru=-s# (3.1-r)

i.e. Coriolis effects "are represented by transverse pressure grradients"

(Proudman (1953), p. 219) which do not signifÍcantly ínfluence tlre
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longitudinal motion a¡rd may be ignored.

Thus, the 'narrohr laker approximation reducos the eddy rriscosity formr

of the wind effect equations to

S= -n #. ":#

kf"udz=-H

(3.1.2a)

(3. r.2b)

(3. t.2c)

(3. Ì.2d)

-h

wittr u = u(xrzrt) and ç = ç(x't), sùject to

u = 0 at Èhe ends of the lalce¡

I

z=O

u(x,-h,t) = 0 . (3.1.2e)

ftre transport form ís reduced to

#.iu=-ehffi**." (3.1.3a)

9å
ðr

(3 . r.3b)

with u = u(xrt) and E = ç(xrt), sr:bject to

U = O at the ends of the lake. (3 .I. 3c)

The systems of egt¡at,iotls (3zLz2l ¿ (3.I.3) are the simplest pqssiblê:

form.s of t!¡e wÍnd effect eguations. The attraction of simplicLty often

Ieads these for:ns to be applied even to basins for wt¡ich the 'narro\,r lake''

concept ls a poor approximation. For exanrple, (3.1.2) and (3.I.3) descrilce

Ðu
ãx
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motions in a non-rotatJ-ng rectangular basin induced by a wind stress actíng

always parallel to one of the two lake axes. Tt¡e solutions are clearly

independent of the breadth of the lake (transverse to the direcÈion of the

wind) and though giving only a crude representation of effects in 'non-

narrorrr" lakes, nevertheless form a natural startÍng point for a theoretical

investigation of wind effects on closed lakes.

3.2 A Solution Usinq the Transport Form of the Equations

In tÌris section we use the transport form of the wind effect equations

to deter¡nine a response functÍon for a rectangutar, non-rotaÈing basin of

constanÈ depttr sr:bject to forcing at, ttre surface by a wind stress acting

always parallel to one of the two lake axes. For si:nplicity, the surface

wind stress is assumed homogeneous, a proposition which is nevertheless

physically reasonable since most weather cycles and wínd disturbances have

lengrth scales much larger than tÌ¡e lake sysÈems they effect.

The plan and longitudinaL sectíon of the basin under consideration

together with the alígnment of surface wínd stress are shown in Fig. 3.1'

with the horizontal lake axes defined as shown. lttre length in the :ß-

direction ís L, while ttre undisturbed depttr of the basin ís H, a constant.

Now the boundary conditicn (3.1.3c) irnplíes a form for the tranÉport,

U(x,t), líke

U(x,t) = U (t) sin(r -x) (3.2-ta).Pp

for íntegers pr where Kp = pr,/L. Thus (3.1.3b) gives
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ç(x,t) = Ëp(t) cos(rnx) (3.2. rb)

where

U
Kp

lltre spatíal clependence of the solutions (3.2.1a), (3.2.1b) is identí-

cal to that of the one-dimensional free oscillations (or seiches) of the

basin (Proudma¡r (1953), p. 225), i.e. solutions to the problem of the wind

forced motion of tlre basin are sought ín terms of, iÈs seiche modes. These

forms are valid regardless of the spatíat distribution of wind stress.

Assume, therefore, a form of the .stress rs(xrt), like

t=(xrt) = tn(t) sin(rnx). (3 .2.1c)

Now eliminating u(x,t) between (3. l.3a) ' (3.1 .3b) gives

I dr'p
dtp

while elimination of E(x,t¡ gives

#. r'H - "r4= -K;F

à2v
T7

AU

ãE -"r&=KF

#*'oþ

+ 2d,

where o, = r/2H is the damping paraneter for the systemrand c' = (gH)

is tJ.e characteristic long-wave velocity for the basin.

Corrbining (3.2.1), (3.2.2), (3.2.1) gives

(3.2.21

(3.2 .3.)

t/2

+uZ:. =-KKTp -p pp (3.2.4a)
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d2u du dt-
;,+* z" ¡19 * ^n' un = *# (3-2.4b)

where cu_ i r_c is the angular frequency of the nth mode seiche of tt¡e
PP

basin. CIearIy (3.2.4a1, (3.2.4b) describe the behaviour of a damped

sinple harmoníc oscillator witÏt a natural fre9uencY trtn-

Equations (3.2.4a), (3.2.4b) may be solved ín a variety of \,ùays,

Laplace transform tectrniques being suitable for quite general time varia-

tions of wind stress.

We are here specifically interested in a homogeneous wind stress of

unit strengttr and sinusoidal time variation. This may be written as an

infinite series of terms of the form (3.2.2c), as

sin (rrrr_rx)
t"(x,t) =4"1" i 

- 

(3.2.5)! n=l ^2n-1

i.e. tl¡e odd continuation of r" for x e [OrL]. Ttre stress configuration

(3.2.5) is consídered applied to an infinitely long lake (Fig. 3.2). Since

ttre wind stress changes direction at the pcints x = kLr k = O't 1, !2, -.-

but maintains ttre sane (unit¡ strength, then there can be no flow aeross

tlrese vertical sectíons in the infinite lake. Hence the behaviour of the

section [OrL] of t]re ínfinite lake will be t]re same as for ttre actual lake.

Such a method has been used prevÍously by Haur'I^tÍtz (1951), Tickner (1961) 
'

Heaps and Ramsbottom (f966).

Clearly then,
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forp=2n-Lrn=Lr2,

_l+2j0(¡)-oz)

4Kj(¡)e
jot

LK 2r,-t @3,...l!2ia,¡-t¡2 )

T (t) = (3.2.6)
p

0 forÞ=2y¡tî=Lr2,

Thus onl-y t.ll e odd ha:nuonics of ttre funda¡nental seiche mode rví1l be present

in the steady state forcing of the basin by such a wind stress, i.e.

U2n(t) = Ezn(t) = 0 whíIe, from (3.2.4') it is clear that steady staÈe

(particular) solutions are

(t) =
-4rej0t (3 .2 ^7 alç

Finally, the steady state solutions to (3.2.3) become (by superposition)

2n-1

U (t¡ =2n-1

ç (x,t)

ttu?,n

(3.2.7b1

(3.2. e)

(3 .2.8a)
fuln-r+zio,o-tu2)

4Kjoe
jr¡t sin (r x)

U(xrt) 2n-L (3 .2.8b)
L n=I ( ufn_r+z)eo-.,12)

Consíderl Dorrr¡ the linear system with input consisting of surface

wind stress (homogeneous), and output the resultant surface dísplacement at

the same position. C1early the function Z(xorur) defined by

cos (r x)2n-l:
I
i

nÊ

æ

I

-4Kzlxoru)
L i

n=l

cos (r2n-Lx
o

twln_r+zic,u-t¡2)

represents the frequency response fi¡nctíon for such a system.
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Some im¡nrtant featr¡res of the response function defined by (3.2.9)

should be noÈed. Rewritíng Z(xortrr) in terms of the system gain G = G(xortrl)

and ptrase-lag 0 = $ (xorto) , one has that

Ç = (e2 + 
"r)L/2 = Rsec(ô) (3.2.I0a)

r I' I (3.2.r0b)0=_arcr""tãJ
where

_ -4xA=T "o" 
(*2rr-r*") y2rr_l

tfn-r++azwz

cos (r<rrr_rxo)

i
n=L

T

(3.2. 11a)

(3.2.rlb)þ= 8KüJA

t n=I

Yn û)n
2- uZ (3.2.1Ic)

For the gaino ínfinite response (resonance) occurs for real, positive

frequencies when c = O and t¡ - r2rr_I, i.e. the frequency of the wind stress

coincides wÍttr the otfd-mode seiche freguencies of ttre basin. For e I O

tt¡e infinite peaks at resonance become turning points ancl for sufficiently

large a the resonance phenomenon vanishes entirely. Note that the lfuniting

gain as t,t + æ is zeror províded d I O.

Ttre behaviour of phase-Iag is more complícated. For c = Or the res-

ponse function is always real and { assumes t}te value Oo or IgOo, points

of discontinuity occurring wherever the response changes sign. For a I O,

phase-lag values vary continualty between 0o and 1800, and the behavfour

changes greatly as o + æ. However the li¡niting behaviour is simPle;

as)rmptotically,

tln-r+aazu2
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A,ì¡ cos (Kzn_lxo) t B ' ffi.i, ""'("2r,-r*o)
4K
æ 1

@

I
11=

so that
2u,

þry29,tr - ,

r.¡here & is an integer.

The north lagoon of the Coorong (Fig. 3.3) may be regarded, in the

first approximation, as being closed at íts shallow north-western end

(Tauwitchere Island) and also near the narrow Hells Gate Channel which

therefore forms its soutl¡-eastern extremity. Às shown by Noye (1970),

tídal influences extend only a short distance south-east along the Coorong

from ttre Murray Mouth, while flows between the north and south lagoons do

not sigmificantty affect water levels inside either.

Further, the 'narrow lake' approximation may be quite justífiably

appl"ied to the North Coorong. fts length is approximately 5Ok¡n while its

average width ís about 2km, In summer, its mean depttt is 1.25rn¡ The

longitudinal axis closely coincides with the north-west, south-east

alignment.

Fig. 3.4 shows a plot of gaÍn and phase-Iag for various values of c

for a rectangular lake with these dímensions, subject to wind stress forc-

i¡1g along tt¡e lake axis. The non-dimensional paraneter m, defined in

(2.1.I1d), is assignecl the value O.O5 (Francis (1954)). Ítre station for

outpuÈÎteasrrlementis*o=0.75L(withL=sokm)whichcorrespondsto

Seven llile point on the Norttr Coorong with ttre origin at the north-western

end of the basin. The frequency range considered ís O '24 cycLes per day
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(cpd). The first 5o terns in the series (3.2.1Ia), (3.2.I1b) were evaluated'

these being quite sufficient for convergence. Îhe resonant freguencies are

odd urultiples of 3.04 c¡xl which is the frequency of ttre fundanental seiche

for the basin.

In the vicinity of tT¡e resonance peak near o = t2rr-l' the system

behaviour is due almost entírety to the response of the (2n-1)th seiche

mode to wind forcing. we may write

4K cos ("2rr-r"o)
z(xo,fr) " T Tr;;:;Ð-þrt

(3.2.L2)

so that

c " # cos (K2n-txo) (ylrr-1¡4o2r2fL/2

dG 8Ktll
õ r T .or (*2rr-t x] (2a2..'t2n-t) (tln-r+aø2u)\-3/2

fhe resonarrce peak occurs wrrer, ffi = o, i.e. o2 = 'Zn-t - 2a2'

Tr*o things become clear from this result. First, the position of the

resonance peak which occurs at trt = .2rr-I for c = O shifts gradua1ly

towards the origirlr tr! = O, as c increases. For d ' 'rn-t/f' , the pealc

is no longer present. Second, the lowest frequency peak is ttre first to

disappear.

For sufficiently large o, the gaín is domínated by low freguenciês'

i.e. the water Ievel oscillations are most strongly influenced by the low

frequency components in a wínd stress of general time variation'

such behaviour is evident in Fig. 1.5 where the water level at seven

Mile point closely 'follows' the dominant diurnal component of wind stress
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variation, and is influenced .to only a ninor degree by oscillations of

smaller períod- ltris suggests that the response of the NortÌ¡ Coorong sur-

face to time-varying wind stresses is heavily damped, a suggestion which is

confirmed later in Chapter 8 by riore precíse analysis.

It is to be noted from (3.2.8a) ttrat, the surface response is always

zero in the middle of the basin' *o = 0'5L' and is slzrnmetric about tltÍs

position, regardless of the value of o. This corresponds closely wittt

behaviour observed in both North and South Coorong by Noye (1970).

In Fig. 3.5 is shown the steady state real ti¡ne response of ttre surface

of the North Coorong basin to a periodic wÍnd stress of the form rosin(2¡E/T),

T being the period of ttre wind stress cycle. The resPonse is given by

torm{z(*rr).j't} where u = 2¡/r. Values used for T are 1day, o.2 day,

0.1 day (corresponding to frequencies 1 cpd, 5 cpd and 10 cprå respecÈively),

whíle t is taken as 0.1 l¡.m-2, this being a typical value for the amplítude
o

of the wind stress cycle. the response is shown only aÈ timeS 0, T/8,

T/4 anð. 3T/8 of, the wind stress cycle - the response at times T/2, 5T/8,

3T/4 and 7I/8 ís identical in magnitude,but opposite in sigm.

Vùhen o = Or the surface always assumes a sinusoidal shape. lttre proof

of tTris result is given in the following chapter. For I = 1 day, the

wavelength of the sinusoid is far greater than the basin length. The

surface response at t = T/A,ís, in fact, close to the equilíbrÍ-um (wind

tide) response, sínce a slow1y osciltating wind a1lows a near equilibrium

situatÍon to be achieved at all times. For lower values of T the
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sínusoidal surface shape with c¡ : O is quite evident.

As o increases the surface response is seen to lag behind the surface

wind stress. Further, the surface profil.e becomes flatter as larger

values of cr decrease the amplitude of displacement at each point along the

lake axis.

The equilibrium surface response due to a steadyr uniform wind is

found (from (2.2.9)) by putting ür = 0 in (3.2.8a1 to give

cos (r i()
z(xþ) = zo(x)=#

I 63,n-t
2n-I

þ( T), "t [o,L] (3. 2.13 )x-

i,e. a plane of slope (I+m) /pSH. This result is well-knowni refer' for

example, Hellstrom (1941), Haurvritz (1951) , Keulegan (1951), Felsenbaum

(1956). IÈ is valid regardless of the value of cr. Further' as will be

shown in the following chapter, it has a wider application than sj-¡nply to

the eì,ongated rectangular basin.

Let us now look briefly at the mean velocity response function

ctIn (x ,o) rdefined by
o

99

I
ll=

4Kit¡l
Ym- LH

sin (K2n.rr^)
T

(3.2.14)
t=r 

"zn.j tuf,n-i+?iot-t^r?)

Shc¡wn in Fifr. 3.6 a¡¡e the gain anrl phasq:.}ai of the ¡¡ean vetoeity reoponse

for tbe North Coorong rectangular basin at xo = 0.75L. Resonance again

occurs when a = 0 and o is an odd multiple of 3.O4 cpt. For the case o = 0,

phase-Iag assÌrmes only ttre values 27Oo or 90o, 9o that the rnean velocíty
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eithef leads the surfáce wind stress by 9O" (equivalent to 27Oo Lag) or

tags by 9Oó.

The eguÍlibrium mean velocíty is zero, as seen by putting trl = 0 ín

(3.2.141 . Clearly as fr¡ + -, the gain approaches zero, though its rate of

doing so is far slower than for tJ:e gain of surface response. fn fact, for

values of cr > lo-3 sec-l, th. mean velocíty gain is virtually constant for

tÌ¡e North Coorong system over the freguency range O-24 cpd.

Using (2.2"8a) we may proceed

responser a(x^rt), of the system.
(J

to a determination of the surface ster¡

The integral

Z(x , ûJ)

.j"ato

cos (r

lüi
(3 . 2. ls)

can be evaluated by contour integration in the complex trr-plane. üle may

write (3.2.91 as

I (xo rt) :
J-

2n- (3.2.16)

where Úzrr-t = jc' + ôrrr-r'x2rr-1 = jo -62rr-1r and 62rr-1 = (tårr-r -o')'/t'

fhus, the poles of the integrand f(t¡) ín (3.2.15) occur for t¡ = O and

t = ü2rr-1, X2n_I for n =1r2, ... . Choose the contour of integration as

shown in Fig. 3.7, allowing Èhe radius of the outer circle, Ro, to approach

infinity and the radius of the ínner circle, ti, to approach zero.

Denoting ¡r uje, ah"r, the integral

z (xor(l)) 4K
L t (r-Ûzrr-r) (ot-irr,-r)i

11=

-x)IO

¡- t_
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(x
o ,rr) e

jutt

I
t=I-

E

uJ"

@

r(xo,t) = nZo(xo) + 2li I {nestf (o) rürrr_11 + Restf (r¡) rx2n_tl }
n=I

I
n=l

f; jui
juiì

de

d0

+ -n Zo(xo) as r. '+ o t

while denoÈ1ng ¡ *o.jt, then the integralo

Ë "(xo,u1).juit1 
¿6

(?ro ruo) "Juotjuor" j
o

+0asR +ó
o

sí¡rce Z(x ,V )oo
+0aSR *@. Fu¡ther, definíng

o

then

lim
ti{'Ro*

Thus, by tl¡e residue theorem we have

_ ftt (z(*o,o)"jot1 _ lRo ¡z{xo,o)ejot'-=J 1-#] d'' r+=J t :ñ--] a'
-R -r.o¡-

I'" t'(xo'uo)"jÞot¡ ¿6

= nzo(xo) . +

+
Ç 

sin(6rt -tt)) l
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n=1

sin(ô r))]2n-I

a(xort) = zo(xo) + i, cos (r )2n-L

'3.n-t

(cos (ô r)2n-I
x

o

+ (3.2 .L7 a)

The general solution (3.2.L7a) has been obtained previously by Saito

(1949), who solved a¡r initial value problem, Putting o = O in (3.2.Ua)

gives

a(xort) -a (x ) (3.2.17b)
o

as obtained by Haurwítz (195I) and Tickner (f96I).

Fig. 3.8 shows the form of the step response at positions *o = 0.75L,

x^ = O.99L of the North Cocrc;ng basin pieviously considered, from time.o

t = O to t = 4T=, where T=(= 2l/C)rthe period of the fundamental seiche, is

7.90 hr. It consists of seiCres of odd nodality superi:nposed on ttre

eguilibriun wind set-up.

For c = 0 the step response overshoots tJ:e equilil¡rium response by a

factor of 2. For much Iarger values of o the response is essentially over-

damped. The nth mode seicheis overdamped íf

* ' ,2r,-r = ËE*LE (3.2.18)

in which case the "o"(ô2rr-lt), sin(ô2n_lt) terms in (3.2.L7a1 become

ex¡ronentials of real argument. So, for the fundamental seiche in the

North Coorong to be damped out, it is reguired that

o

æ
4KF+- )r¿¿u n=I
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s. > 2.2o x ro-4 sec-I .

lltre shape of the step response cllrve as a function of time for c = 0

bears some explanation. It is clear that (3.2.17b) may be rewritten as

i.e. a super¡rosition of the equilibrium response and two op¡nsitely

directed and equal anplitude travelling Ìraves, each with spee¿ s = @.

Thus, the surface shape at times O, Ts/8, Ts/4, 3Ts/9, Ts/2 has the form

shown in Fig. 3.9. It is observed that the effect of the step input is

first felt at Ëhe lake edges, while tlle centre portion reacts only after a

time lag. Such behaviour is still evident for tl¡ose non-zero values of c

for whích the response is underdamped, as is clear from Fig. 3.8. It

remaÍns a natter of speculation, however, as to whetl¡er this could possibly

be observed ín real lakes.

3.3 A Solution usinq ttre Eddy Viscosity Form of the Equations

Here tÏ¡e sane problem dealt wittr in the previous section is recon-

sidered. fhis time we seek to solve the equations

a(x ,E) = Zo-o
6

+2K Ttbu n=I *"-, 
{cos (rrn-, (xo+ct) )+cos (*rrr-, (xo-ct) ) }

H= -n*..n#

hf"udz=-H

(3.3.Ia)

(3.3.lb)
-h

subject to
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u(Ort) =u(Lrt) =O r

o* (ågJ z=o = rs,

u(xr-Hrt) = Q

flle end conditions (3.3.Ic) imply

u(xrz,t) = up(z,t) sln(Kpx)

Ç (x,t) = çp (t) cos (Kpx)

for integers p, and we again assume ttrat

r" (x,t) = tn (t) sin (rnx)

Combining (3.3.1), (3.3.2) gives

(3 .3 .lc)

(3.3 .Id)

(3.3.le)

(3.3 .2a)

(3.3.2b)

(3 .3.3a)

(3 .3.3b)

(3. 3. 3c)

ðu â2uÞp
--.¿=q|<E+À¡--ât '''p'p " ð22'

îo df*l-oa==-lippl þ clt'-)
-H

subject to

where

pN
z=O pT

{on)r=-H=0. (3.3.3d)

Now again assume the form (3.2.6) for tn(t), i.e. rn(t) = *n"jtt

for P = 2n-I , tr--Lr?,
T

0 for P = 2çtt n=Lt2r ...

4
LKn

(

(

(

(
P

and look for solutÍons to (3.3.3) of the form

(3.3.4)



çp(t) = zp(ûr)ejtdt

un(zrt) = nn(zro)e

Tlren (3.3.3a), (3.3.3b) become

a2np
à22

ndz
P

¡¡52
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z=O D

jt,tt

(3 .3 .5a)

(3 .3. sb)

(3.3.6a)

(3.3.6b)

(3.3.6c)

(3.3 .6d)

(3.3.8)

-bzn p = -ndb
to

"lpls

where 52 = 3o,/U and e. = grn/N, subject to

pN T

(np) z__H = Q

Ttre general solution to (3.3.6) may be written as

np(z,o) = Ancosh(bz) + lsirùr(bz) * #",
e

(3.3.7)

where Ap(o), Bn(trl) are to be determined. Furttrermore from (3.3.6d) we

have

t't -$
p

z
l)

(ensinh(bH) - Ancosh(bH))

so (3.3.7) becomes

nn(z,o) = An(cosh(bz)-cosh(bH)) + Bn(sinh(bz) + sirùr(bH)). (3.3.9)

Condition (3.3.6c) gives

T
P

pNbBp (o)

so combining (3.3.6b), (3.3.9), (3.3.10a) gives

(3.3 .Ioa)
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Ap
TR

(u¡)=Ë (3 .3 .10b)

(3 .3.IIa)

(3. 3 .12b)

where

Thus

Ç (x't) =

Rn(tr) =

bT
zn(ur) = ;¡{ lsinh(bn) - Rncosh(bu)]

T
nn (z,rrr) = õlbg [ (sinh (bz) +sinh (bH) ) +Rn (cosh (bz) -cosh (bx¡ ¡ I

(3 .3 .11b)

Again ouly the odd harmonÍcs of the fundanental natural mode of the

basin will be excited by the wind stress, due to the form of the expression

(3.3.4). The solutions to (3,3.1) may thus be written as

cos (r< x)4b
Lpg i

n=1

2n-L jt:t
Kï.,'-t

(sirih (bH) -R2n_rcosh (bH) ) )e (3 .3.12a)

sin (r x)2n-1 (sinh (bz) -sir¡h (bH) )
Au(x,z,t) = Ñ 

"1,
K2n-l

R2rr-t (cosh (bz) -cosh (bH) ) ]"j't

writing ç(xo,t) - 7(xoro)ejoto tJlen (3.3. LZa) , defines the surface

response function Z(xo,6) for the basin at station xo as detemined from

tåe eddy viscosity fo¡s¡ of Èhe equations. shown in Fig. 3.10 is the gain

and phase-lag for the North Coorong basin at xo = 0.75L for various values

of tt¡e coefficient of eddy viscosity, N. Clearly, there is little differ-

ence in form between the plots of Fig. 3.4 a¡rd those of Fíg. 3.1O.

In fact, from (3.3.I2a) we have



z(xor¡) = # (t-cosh(o*),"ir[
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(Nb5+e

cos (rc x)

K bH) cosh (bH) -e K2n-L 2n-I 2n-1 2n-lsirù¡ (bH)

(3.3 
" 13)

from which, in the li¡nit N + 0, we have

'år,-r - t'

equivalent to ttre response function obtained from the transport equations

with m = O and o = 0. In particular, it is to be noted that in the li¡nit

N + 0, resonance occurs again at the frequencies o = ,2rr_I.

The equilibrium response due to a steady uniform wÍnd is found by

letting o + 0 in (3.3.1-2a) to give

-.4iz(xo,o) * ilo ,r!r_

cos(rc^ -x )¿n-I o

3r
=_l 2pgH \x- Lr

2) rx E [o rL] (3. 3 . 14)

equivalent to (3.2.13) with cl = 0 and m = 0.5.

l{e turn now to tl¡e velocity response functÍon s(xorzoro) at station

(xo'zo) where u (xorzo rt) = s (xo rzorrrr) "j't. Shown in Figs. (3.11a)r

(3.11b), (3.1Ic) are gain and phase-Iag for the North Coorong rectangular

basin at depths ,o = O (surface velocíty) , ,o = -H/3 and zo = -2H/3 res-

pectively, with *o = O.75L in each. (Note that the velocity gaíns shown

in fig. 3.11 have been normalized wittr respect to the zero-frequency gain

with N = Io-Sm?sn"-l fo. the surface veloci:cy, ví2. 3I.5*.=e.-I).

x)z
o

give

The equílibriun response is found by letting trr + O in (3.3.12b) to



s
o

(3.3.ls)

i.e. the quasi-laminar equilibrium velocity profile is parabolic, a result

mentioned in Ctrapter I and depicted in Fig. I.3a. Vüe note that the magni-

tude of s^(xrz) is dependent on ttre coefficient of eddy viscosity, N,o

whereas the ma$nitirde of Zo(x) is independent of N.

An interesting feature of the graphs of Fig. 3.11 is that for N >

1O-3m2se"-1, ah. velocity gain remains relativety constant at a given

depth over the frequency range 0-24 cpd, except for a sharp Íncrease at

very low frequencíes. Ttris suggests thatrat least for heavily damped

systems, the equilibrium velocities given by (3.3.15) are probably not

typical of measured velocities in a given lake system.

We shall not consider here Ín detail the surface step response of the

rectangular, constant clepth basÍn as deduced frour the eddy viscosity eguat-

ions. The problem has been previously examined by Proudman and Doodson

(L924) and requires far more computational effort than for the transport,

solution.

Agai-n, from (2.2.8a), the integral

(x,zt=#u [i.?.i [åJ'] rxEro,Ll
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-@

jot
dr¡r(xo,zo) = J-

Z (xor(l))

-ô

lu)

must be evaluated, where z(xo,u) is given by (3.3.13).

Tt¡e metTrod of contour integration reguires that the poles of Z(xotu)

be determined. This is clearly equivalent to fínding ttre roots of the

eguatíon
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(Nbs +err.-I" 2rr-lbu) cosh (bH) K sinh(bH) ,n=L,2,=e 2n-I 2n-1

(3.3. 16)

where o = j.bH, gr, = N/err*rrd = ¡¡2¡2¡n:t-5n2n2. The function f (o) =

(tano-ø)/qS i" even in o. Fig. 3.12 shows a plot of f(o) for real, posi-

tive o. For d < T/2 the funcÈíon has a turning poinÈ (a mini¡nu¡n) at

(1.11, 0.54). For o > r/2r the factor I/o5 ensures that f(o) is always

close Eo zero and < 0 except near the poles of tan o.

Proudman (L924) investigated the solutions of (3.3.16) and shor¿ed

that in the positive half of the complex o-plane:-

i-e. roots of

- ror lol

- ror lol

- ror lol

tanú-o
Ë= 

o2rr-t' n= L'2'

< r1/2 .rd 02rr-l > 0.54, 2 real roots only;

< n/2 *d 02rr_I < 0.54, 2 complex conjugate roots only;

> Tt/2, the only roots are real and are tu l3Y ,n=Lr2,

The positi,¡n of tt¡e rooÈs must, in each case, be determined nr¡nerically.

1lÌre step response thus obtained again consists of damped seiches of

odd nodality, superimposed this time on the equilibrium resPonse Zo(xo)

given by (3.3.14).

Such si¡uilarity nìay seem surprising in víew of the fact that for the

eddy viscosíty caserz(xoro) has an infinite number of poles for each n,

whereas for the transporÈ caserthe number is only 2. Hoïtever for the

forrner case it is only the poles with nndulus less t)lan n/2 that are
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imporÈant i¡r determining the type of the step response - these correspond

closely to the poles of Z(xorur) in the transport form. Thus if 02r,_I t

0.54 all roots of (3.3.17) will be real so tåat the poles of. Z(xotu) will

occur for purely imaginar'y values of t¡. This is tåen the condition for

overdampíng of the seiche of (2n-f)ttr nodality. It may be rewritten as

N> -ç"-¿l-T.L
(0.54 sHs')L/2 (3:3.1?)

For the North Coorong rectangular basin, the condÍtion for the funda¡nental

seiche to be overdamped becomes

N>2.58xt0-4m2."".-1

3.4 Some Conclusions Concerning !{ind Effects on the North Coorong

It was stated earlier that internal damping processes appear to

do¡ninate the surface response of the North Coorong Èo time varying wind

stresses. The extent of this dominance may be gauged by suitabLy estima-

ting values for the danping parameters o and N for the system. In Chapter

8, time-series analysis of wind stress and water level data suggests, ín

facÈ, ttrat c = 2.5 x 1o-4m."..-1 and N = 4.0 x 1o-4¡n2."".-1.

The gain of surface response is, therefore, dominated by frequency

components in the range 0 - 6 cpd. Velocity gains, however, retain the

same order of magnitude over a much wider frequency bandr say 0 - 24 cpd.

An important conclusion drawn from these estimates of a and N is ttrat

tl¡e surface step response is likety to be close to a critiðally danped
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situation. This result we infer from the inegualities (3.2.18) and

(3.3.1?). From Fig. 3.8 it seems that the surface of ttre ltrorth Coorong

basin, in response to a vrind stress of the step form, will reach a state

very close to equilibrium only I fundamental seiche period (7.9 hr) after

the onset of the wind .

The appearance of the fundanental longitudinal seiche ('sloshing mode')

Ín response to éurface wind stress is therefore unlikely in the North

Coorong, though secondary seiches of very small amplitude probably will

occur. We conclude tÌ¡at the characteristic diurnal water level oscilla-

tíons observa.ble in bott¡ Coorong lagoons are not free seiches, as postu-

Iated by Clarke (f966). Instead, the theoretícal forced surface resPonse

to wind stresses of tle form r" = ro sín (2nt/rl wittr T = I daYr as shown

in Fig. 3.5, satisfactorily models the phenomenon.

From the above estimate of q for the North Coorong' a value for the

parameter r (Ê 2qH) is calculated as 6.3 x 1o-4m.=".-1. S¡nittr (1973) uses

values of r ranging from lo-4m."".-I to 1o-3m."".-1 in a series of numeri-

cal experiments on Lake ![ichigan (noting little change in computed trans-

ports wÍttr these variations). Heaps and Ramsbotton (1966) determíne tl¡at

for ttre bottom layer (depth = 2lm) of ttre stratifíed Lake lfindermere.

Scotlandr ot = 1.2 x lo-5s".-1, so that r = 5.1 x Io-4*."".-1-

I{e infer that r assumes a value of the order of 5 x }O-4m.=."-I

regardless of take contour or depth. This does not seem surprising since

the quantity qb in (2.1.11a) probably is 1ar9e1y invariant of such factors.

In regions of strong tiCal flow, on the other hand, qO is probably much

Iarger and, indeed, values of r for the southern part of the North Sea
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and the Straits of Dover (Bowden (f956)) ¡¡ny be higher tllan 5 x lO-3m."""-I.

Wer therefore, conclude that the parameter o (rather than r), through

the lrlH factor, determj¡res Ètre degree of damping within a given rake

system. For extremely shallow lakes, such as Ètre Murray Mouth rakes

where H = 0 (1m), dampÍng forces doninate the motíons. For deeper l-akes,

damping forces do not play such an important ro1e.

rn mathematical moders of the Great Lakes, where H = o (5om), it is
quite conmon to negrect damping forces compretely, especially in a con-

sideration of transient motíons (Birchfield (1969) ) whích may persÍst for
up to I week. For ttre Murray Mouth lakes and, indeed, for nrost Australian

lakes, it seems ttrat such a sirnprifying assumption wirt not suffice.
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CHÃPTER 4

A GENER,ALIZED THEORY FOR WIND E¡'FECTS

4.I The:Itreofy

We develop here a generalized ttreory for time varying wind. effects on

a lake of arbitrary contour and constant deBth. The steady state periodic

response for such a system is the solutíon of a Helmholtz equation subject

to certain boundary bonditions.

Consider the tra¡rsport equations (2.L.12) wittr constant depth, H, viz.

au
ar +2cU-fV=-.rt*K."*

av
ãT + 2aY + fU = -.2 s-* ¡<.dy sy

(4.I.la)

(4.1 .lb)

35
ar

(4.I.lc)

with c, o having their previous meanings.

Assume that wLnd stress com¡ronents have the form

r"*(xrt) = rox(xry)ejr¡t (4.1. 2a)

T (xrt) = ,¡ (x,Y) e
j(^'t (4.1. 2b)

sy oy

where to*(xry), .oy(xry) are amplitudes of wind stress components andr in

general, vary with positíon across tìe lake surface. Then the steady state

response of the lake is expressible in tlre fo¡:tt

âU äV

-J--=r
äx ây



Coinbining (4.1.1), (4.I.3) gives

E (xryrt) = Z(xry rttJ I "jot
U(xryrt) = P(x,yrt¡)ejot

V(xryrt) = Q(xryrrrt) "j't

Bp-ro =-cz F**.-dxox

Êg+rp =-c2 #*."o"

3P

-*dx
39 = -irz

Q= @ IK(ßr
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-ftoy ox t-cz(e K - +,#

(4 .1. 3a)

(4.r.3b)

(4.1.3c)

(4.L.4a1

(4.1.4b)

)1, (4.r.sb)

(4.L.71:.:.

(4.1.8a)

(4.I.4c)

where B(o) = jo*2o. Elíninating Pr Q in turn from (4.1.4a) , t4.L.4b) gives

p=
(tz+Bz) [r(Êt )-cztB #* , #,, (4 .1.5a)+frox oy

I

I

(Yl+vz¡"=ft (pD+ rc) (4.1.6)

where v2 = 
ð2= * ^2àxz ,? , í.e. the steady state, periodíc response is the

solution of an irùromogeneous Helmtroltz eguation.

and conlciníng (4.1.5), (4.1.4c) we have

rn (4.1.6),

y2 --j$,r**,c¿ g'

þ=
âr

'oxãr
Ðroy
âx

ât
oy

Ðy

âroxr
+

(4. r.8þ)
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D, C are respectively the divergrence and the magnitude of the curl of the

wind stress amplitude vector fo= (To*, aor).

The bounrfary condition (2.1.10) , when subject to (4.I.3b), (4.I.3c)

becomes

(S*)n=Oa1ongI

(PrQ) . lle may write

S*=Ka-cZb

(4.1.9a)

where S* =

where

+fTa

Þ

(ßr r -froy ox)=ßt +frxk' -o -o-ox oY'g

(Êz*+tzr,Azy-f,zx) I BVZ + fvzxk

and k is the unit vector in the +z dírection (rig. 4.1). ÍÌrus (4.1.9a)

becomes

K7
or

(4. r.eb)

where n is the outward unit vector normal to the lake contour, I, (Fis.

4.1). Further, define e the unit vector in the positíve (counter-clockwise)

(Byz.; + rvzxi,.;,, = þ (ßIo.û * r.;,.!.å1,

dÍrection of ttre lake contour, I' (Fig. 4.f). Now the following relat-

ionships are easily established:

yr.i = #
òz
ããnYZxk

t-o Ton.ll =
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oe

where Ûn, âe are elements of lengttr in the directions of the unit vectors

n , â t""p"ctive1y. Thus (4.1.9b) becomes

^^T xk.n=T-o

(ß #* t#,. =þ (ß.or,* r.o.)r, (4.1.ec)

a generalized. boundary condition for the wind forced, periodic and steady

state motion of a closed lalcer with Coriolis and damping parameters

included.

rn t$e work which follows we assume, as in the prevíous chapter, that

the wÍnd stress ís homogeneous over tÌ¡e lake surface, so that C = D = 0.

Recently, Emery antå Csanady (1973) have postulated that the long-term,

consistently counter-clockwise circulation of surface !ìraters Ín many 1akes,

Iagoons and marginal seas of the northern hemisphere, is due to a positive

(cyclonic) wind stress curl acting on the lake. Íhe proposed mechanism is

as follows.

Surface wind drift currents have a component directed to the right

of the wind (Iooking downwind) in the nortl¡ern hemisphere (E<ma¡r drift) and

in the prlesence cf surface heatíng tt¡is leads to a displacement of warmer

water to the right. Greater surface turbulence and tbus greater surface

drag is produced, to the right of the wind, i.e. a wind stress curl across

the lake is established. In addition, upwelling of colcl water to the left

of the wind would, accentuate the temperature gradient across the lake and

hence the magnitude of tÌ¡e wind stress curl.
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Now a wind stress curl of this form blowing for a considerable p.tiì¿

of ti¡ne produces counter-cloekwise circulation(Tareyev (1958)). Further,

regardless of the speed or dírection of the wind, the circulation has

counter-clockwise serlse so that if the lake motion is averaged over a long

period of time, the portion due directly to ttre wind stress curl woulil

remain while that due to other, more conventional effects (wind drift,

seichesr etc) r.rould be averaged out. Emery and Csanady show that veloci-

ties equivalent in magnitude to observed velocities (0(0.1 cm."u"-I))

can l:e induced in a circular, constant depth mod,e1 lake by a temperature

gradient of loC across a 50 km lake dÍaneter.

In the southern hemisphere, the theory predicts Elcnan drift of

warmer waters to ttre left of the wind (looking downwÍnd) with a consequent,

long-term clockwise circulation. Unfortunately there is no available data

to sr¡bstantiate this sup¡rosition. Australian lakes, srrbject to consider-

able surface heating, might be e:ç>ected to e:ù¡ibit such a circulation.

Wünsch (1973) has provicled another possible explanation for the

phenomenon. IIe relates the long-term circulatíon to second-order Isgrange

drift associated with internal waves generated by inrpulsive wind changes

over the lake.

The requirement of a wínd stress field of zero divergence and curl

reduces (4.1.6) to

(v2+t2) z=o (4.1. 10)

still subject to boundary condition (4.1.9c).
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The assumption of constant depttr made at the beginning of this sec-

tion is relatively unrestrictive; solutions obtained are tikely to reproduce

closely the main features of wind effects in real basins provided there is

no sudden variation in bottom contour. Smith (f973) in a study of the

wind-forced and seiche-forced mc.¡tion of Grar¡d Traverse BayrLake Michigan,

has shown, using numerical ¡nodels, that unusual bottom topographic features

of this kind may result, in the formation of velocity gyres whích corres-

pond closely to observed, velocity patterns.

We proceed, in later sections of this chapter, to solve (4.1.10) making

one final simplif,ying assumpticn, viz. that the wind stress is uni-

directional, its direcÈion being that of the x-axis, i.e. we have

T sx
(r) =Teo

jttt (4.1 .Ila)

T (t) =Q (4. r. rIb)sy

where ro is a constant. Vlith unit amplitude this allows z(xoryoro) to be

interpreted as the response function of the system with rsx(t) as input

and ç(xo,yort) as output. Note that, generally the function Z(xoryortrr) is

a linear combination of the sub-response functions which together specify

ttre system (refer Chapter 2).

Since in this cês€ To = (roro), then ttre components Ton, Toe

satisfy r = r Î.â, r = r i.êwhere Î i= trtu unÍtvectorinthe' on o;-;'. oe o: -
positive x-clirection (fig. 4.f ).

llhe particularization of (4.1.10) obtained with f = 0 should be noted.
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It is

(v2+kå) z=o

where xl = -jrrre/"2 . Boundary condition (4.1.9c) becomes

* 5 t'o' T

(4.1.12a)

(4 .1.12b)

(4.2.z',,

4.2 Equilibrium Solutions

Let us examíne, firstly, ttre equilibrium sotutions to (4.L.10), i.e.

tJle zero frequency solutions assr:ning the uni-directional wincl stress

field (4.1-.11). We consider ttre solutions under the followiirq headings:-

(a) The non-rotating case, f = 0

(4.2.Lal

subject to

(4. 2 .Ib)

Here k = ko and in the limit 0J -t O we have ko * O. Thus, the equili-

brium response 1$,y1, defined 
"" *ä {z(x,y,t¡)}, satisfies

12î=o

K
=.-- aî

cz '"onl,
(¿z'

l.4"
) r

A particular solution to ttris problen is clearly Krox/c2, so Èhe general

solution to (4.2.1) may be written

Ktx
oz(x,yl = + ô (x,Y)

v¡trere 0 (xry) satisfíes

v2o=o (4.2.3a1
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=Q

The unique solution to this Neumann pr'eblem is ó = 0o,

(1971), p.7O), so the unique solution Èo (4.2"1) is

z(xl
KTx

o +ó'o

(4.2.3b)

a constant, (Ctrester

(4.2.41

rrthere the const^tta 0o ís to be determinecl by the condition of nass conseffa-

tion, i.e. the integral of E over the lake surface must, be zero.

From (4.I.5) we see that Z = Z(xl implies P = Q = 0, i.e. (4.2.41 is a

static equilibrium solution. Furttrer, we note that the slope of the

equilibrium surface Ís independent of the shape of the basin contour. So

the classical one-dimensional equilibríum wind set-up, explaÍned physically

in Chapter I and derived in Chapter 2 fot the case of a non-rotating rect-

angular basin of constant depth, is theoretícally achievable for a much

wider class of wind effect problems.

9le note that (4.1.4a), (4.1.4b) (with rox T = 0) may beoy

written as

= To'

(4.2 "Sal

-ße+ fp=-c2b,, -zl . (4.2.sb)

Lanlc (1932), p.319 uses an eguivalent form in his investigation of tt¡e

general forced motion of a rotating basin. UsÍng Lambos relation (4) of

9207, the potential of the disturbing forces is

ße-rg=-c2fuø-zl
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(4.2.6)

so the potentíal of the wínd stress (4.1.11) acÈing on a closed basin of

oonstant deptlt H, is
Krx

o = - o . (4.2.71
H

Final].y we nott¡ that the generalized boundary ccndition (4.1.9c) nay

be r.ewritten in the form

=Q (4.2.8)

(b) The Rotating Case, f I O

It proves useful ín ttris case to form, from (4.1.4a) and (4.1.4b), the

voftÍr!lþyreguation

$t4 = jwfz (4.2.9a)

e of the i-ntegrateC vorticiÈY W =

tTre rotation of tÌ¡e earth.

Ít¡en for cr = 0r @.2.9a1 gives

M=fZ (4.2.eb)

at alL frequencies, including zero frequency. Nor,ù íf the equillbrír¡m state

were static, (4.2.9b) would irnply tJlat the surface equilibrium resPonse

zlx,yl,defined "" Hä {z(x,yrr¡)} , is everlmÌrere zero, which is unlikely.

Rather, a non-trivial form ør l,(xry) irnpties ttre presence of vorticiÈy at

equilibrium giving rlse to a quasigÞa,tic equilibrium circulatíon pattern.

zgQ=-

a-x-
ßin tz-z) + r fr tz-zll,

In this case k + j/R as üJ -) 0, where
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cf,= f ,

so the equilibrium response ä(x,y) satisfies

srrbject to

(4.2.LOÌ

(4. 2 .lla)

r (4. 2 " 11b)

From (4.2.5), the equilibritm transport components l(*,y), ä(x,y) are

given by

(4.2.L2a1

ö=É ftë-zt =å* u.z.L2bt

where ú(xry) is a stream functíon definecl to sâtisfy (4.1.4c) with to = O.

Its contours define ttre quasistatic circulation pattern.

Clearly we may r¿rite

p=-

(v2-þrä=o

frå-zt=-#c2
f

[,9, = Þ "o"'

^2 ^.-ú(x,y) = i ø-zl 9.2. 13)

since tlrís gives the required equitibrir.un transports defined in (4.2.L21 .

Further, since the lake contour, l, must ítse1f form a streamline, then

along I Ít is clear tfrat 2(x,y) ana Z(x) itiffer by only an additive

constant.

The differenÈial equation satÍsfied by ú(xry) is obtained by combina-

tion of (4.2.LL) and (4.2.13). It, ís
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(vz - 
*rlr, 

u.
"2

Kt fx
o

Q.2.LAa)

subject to

= 0,

r. e.

û=0alongl, (4.2.LAb)

where Èhe contour r! is arbitrarily chosen as the streamline ú = 0.

In Appendix C it is shown that solutions to (4.2.LL, and (4.2.L4) ãre

respectively unique to within an additive constant and completely'unique.

In the.fcrmer case, tÌ¡e ccrrect. additive constant for a given basin is

determined by the condition of nass conservaÈion.

In later sections of this chapter, the quaslstatic equilibrium res-

ponse of basins of specific form will be considered.

Rossby (f938), Cah4 (1945) and Veronis (1955) have shown that the

parameter R ís of extreme importance in cletermining the (theoretical)

extent of ttre quasistatic adjustments (deformations) of mass and velocity

distributions for a wind-induced oceanic current system of finite width

a¡¡d infinite tength. It has dimensions of lengttr and Rossby terrned it

ttre radius of deformation . Ttre magnitude of R is the radíus of the

inerÈia circle (Proudman (1953) , 9.741 for long waves in a channel of

depth, H.

Recently Csanady (L967, 1968a, 1968b ¡ L972) and BirchfÍeld (1969) have

shown that R is also important in determining the extent of the equivalent
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adjustments in closed basins. these works a¡e exanined in greater detait

later in this chapt,er.

Let us brief ry consider the case y # o_ . rn the rÍmit t¡l + o, the

vorticíty equation (4.2.9a) gives !l = o, i.e. in ttre presence of damping

forces the equilíbiir¡n motion is irrotational. wê may thus write

(4.2.Ls)

where ttre funct,ion ¡(xry) satísfÍes

V2X=Owithinf Q.2.L6al

(ttris follows by combining (4.2.15) and (4.1.4c) with t¡ = 0), sr:bject to

StQ)P !x

=Q. (4.2.L6b1

The solution t<¡ boundary value problem (q.2.r61 is ¡¡ = xo, " constanÈ,

and thus (4.2.L5) gives 9* = 9., i.e. the equilibrium response is a static
response. Finalty, integration of (4.2.5) with ï = ö = 0 gives

ä(*) =-*Qo

i.e. solution (4.2.4) again. lttus, even for the case of a rotating basin,

the familiar equilibrium wínd tÍde is established, provided some damping

forces act wittrin the fluid.
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4.3 The Rectangular Lake

lrle now apply the theory developed in the tr¡¡o previous sections to the

case of tt¡e constant depth rectangular lake considered in Sections 3.2,

3.3. The coordinate system of Fig. 3.1 is again used here. The basin has

length L (x-direction) and breadth B (y-direction) and is subject to the

wind stress field (4.1.I1) which acts always parallel to the side of

Iength L.

lùe write (4. I. 10) as

ð22
æ

ð22
æ

+ +kZz=O (4.3. la)

subject to boundary conditions

(4.3.lb)

ã (4.3.Ic)-f ðx
(z-zl + g

ðy
(z-Z)=Ofory=O'8.

The general solution to system (4.3.1) has not, been attempted here.

The difficulty results from the complicated nature of tÌre boundary condi-

tions (4.3.lb), (4.3.lc). The comment of Rao (1966) that,

"the solution of ttre problem of free oscillations in rotating
rectangular basins is far from complete"

is equally applicable to the forced problem.

However the simplification f = O reduses the problem to the one-

dimensional sítuation of Section 3.2, described now by ttre equation

t_1-
B fu tz-z) + f fi tz-zl = o for x = or L

a

+k2z=od2z
ã7' o

(4.3.2a)
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koczcos (koL/2)

identical (at station xo and with ro = 1) to (3.2.9), as nray be seen by

expandÍng (4.3.3) as a Fourier cosine-series over the range [0'L]. We

note, too, that
KT Lz$l = j lx-"î l, (4.3.4)
c'

subject to

The solution to (4.3.21 is

Zlxrt¡) =

equivalent to (3. 2.f3) .

Ì{ith a = O lrre have k- = 6/c to

i.e. o = (2n-1)trc/L, n = L,22

ç (x,t) o

â-
ç(Z-z)=Oforx=orL. (4.3.2b)

rctosintko t" - |l ]
(4.3.3)

so resonance occurs when cos(øL/2c) = O,

, as determined in Section 3.2. ttle note

tÏrat the real time response to a wind stress of the form t" = rosin(uJt) is

ç(x,t) = roror{z(x,t¡).j"}. vrith o = o tl¡is becomes

KÎ sin{å(x- þ }
sin (ot) (4.3.5)t¡rc cos (t¡L/2c)

i.e. the surface response has a sinusoidat shape (a result referred to

though not proved in Section 3.J) and has the form of a standing wave.

(Alternatively, we might regard the response as a superposition of oppos-

itety dÍrected travetling \,taves, each wíth speed c).

Noye (1973) has prevíously obtained and discussed tl¡e solution (4.3.3)

in the case c = O.

Let us examine ttre quasistatic equilibrium circulation pattern for the
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case of the rectangtrlar lake. The stream function ú(xry¡ satisfies

(4.2.I4a) wittrin ttre lake contour, whÍIe boundary condition (4.2.14b) may

be written as

Ù=Qforx=orl, :

ü=Ofory=o¡Bi

The solution to this boundary value problem may be obtaíned by use of

finite Fourier transforns (Tranter (197I) ).

Specifícally, define ttre finite sine transform úrr(x) by

úrr(x) = f *(x,y)sin(orrv)ilv

where 0

so tlat (4.3J4a) transforms to

A 2rl
'n

Then

Vrr(o¡ =Vn(L) =Q

-Kr-fx( (-I)n-I)
_¡2-n 'n c?eo

(4 . 3 .6a)

(4.3 .6b)

P = Ir2, (4.3.7',

=tüt/Btn=Lr2,n

f #sin(0,'v)dv =

o
3v"-e

F
where ô3 = e-2 + L/5..2, subject tonn

The soluÈion to (4.3.6) is

þrn

ûrn-t

=Q
-2Kr fo

c2o 62nn
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So from ttre inversion formula

T
P=I

ú(xry) = + ûn (x) sin(ony)

we have
-4Kt f æ

rl(x,y) = -+ I
F,c2 PE

sin (0 v)2r,-L sir¡h (ô x)2p'r
sinh ( ô L)

(4. 3.8)x-L
1e ¡2

2p-l "2p-t 2p-1

Lake Alexandrina may be approxi-urate<l as a rectangular basin with axes

in north-east, ancl north-west directionsi hre take length L (north-east

direction) as 30km, breadth B as l5krn and depth H as 3.5m. Further, we

take f = -8.5 x 1o-5sêc-1, ot¡tainabte from {2.L.2) with ó = 35o which is

the laÈituCe appropriate to tt¡e area of the Murray Mouth lakes. The

quasistatic circulaÈion pattern obtainable from (4.3.8) fcr this model due

to a steady south-west wi-nd is shown in Fig. 4.2. Ttre series was found to

converge sufficiently after 50 terms.

In ttre portion of the basin from x = O to x = L/2, the circulation

consists of slow Elcman drift to the lef! of the wind (looking downwind),

ttre flow then moving in a clockwise direction around the basin. It is to

be noted that tt¡e flow is more concentrated along the sides and the d,own-

wind end of the basin than along the upwind end - Such concentrations are

commonly termed coastal jets . Also, the flow involves the entire basin,

and, regardless of the direction of wind, is always in the clockwise sense.

For the Northern hemisphere, a counter-clockwise circulation patÈern is

predicted. CirculatÍon of this form offers another plausible explanation

for t}te long-term counter-clockwise circulation observable in many lakes

of tt¡e Northern hemi,sphere. Evaluation of the velocíÈies associated witlt



-69-

the pattern of Fig. 4.2 with to - O.1 N.m-2

-1magnitudes are of O(0.I crn.sec - I cm. sec

shows that tlpicat velocitY

-I) , though within the highly
.I

concentrated coastal iets tåey may be as high as 0(10 cm.sec )

llhe quasístatic equilibríum surface response is, from (4.2.14), given

by

z =f
c2

where Q is determined so that mass is conserved, i.e.
o

KTx
'i,,*É *0o

1 TKTOL¿-
c2[z$ =-U

. år f" I] ,,-,",.x¿vì.

llhus hre may write

z=+{*-hJ KT

ü(x,y)dxdy] - f, rx - f- l.
B L

(4.3. e)
o o

Evalüation of (4.'319j shoräg, in fact, that the quasistatic equilibrium

response for the Lake Alexandrina model is dominaterl by the term

xro(6-t'/2)b2, i.e. is almost equivalent to the static response. This is

why the velocities associated with the pattern of Fí9. 4.2 are generally

small.

4.4 The Circular Lake

The problem of the undamped free and forced motíons of a rotating,

circular, single-layer basin is treated in detail by Larnb (1932) ' 5209 '

5 211.

Recently, Csanady (1967, 1968a, 1968b' 19721 and Birchfield (1969)

have extended La¡nbrs work to the case of a rotating, circular, two-layer
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basin, a. simple model shown to o<tribít some of t}re main features of the

su¡n¡ner motions of the Great Lakes.

Here we examine the damped, wind-forced motion of a rotating,

circular, single-layer basin usíng the generalized theory developed in

previous seetions. Such a model should allow some of the important feat-

ures of wind forced motions in ttre shallow (and therefore heavil-y damped)

ancl well-mixed Murray Mouth Lakes to be deduced. The methods used are

applÍcable also to the two-layer model developed by Csanady and Birchfield,

but discussion of this is left to a later chapter.

The plan of the lake under consideration is shown in Fig. 4.3. The

origin of coordinates is positioned in the centre of the lake; the radius

ís denoted by a. Again the wind stress (4.I.Il) acts on the lake. Cleariy

we achÍeve considerable simplification in ttris case by using polar coor-

clinates r, 0 such tt¡at x = rcosOr y = rsin0. Then ttre wind stress vector

may be written
^!"=tr9r+.090

where êr, êU are unit vectors in the r- and 0- directions respectively

(rig. 4.3) and trr re are ther- and 0- components respectively of the wind

stress vector. From (4.I.Il) it is clear that,

ITr
te

o
cos0

sinO

(4.4. Ia)

(4.4.lb)
o

Further (4.I.10) nay be written as
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faz I a .+4*r2l z=o[ãF*; ã; r¿àa. )

while boundary condition (4.2.8) becomes

â - f A(ß-(z-zl +:#(z-z)) =edt f dU f=A

(4.4 -2a)

(4.4.2b1

where Èhe static equiliJcrium response is

Kt rcos0
îE,o) = # e.4.3)c-

The solution of the boundary value problem (4.4.21 is not diffiarlt to

achj.eve for arbitrary o. The general solution to (4.4.2a) has the form

z(r,0 rûJ) = J*(kr) (a*cos(m0) + B*sin(m0) )

where m is an integer and J*(kr) is the mth order orclinary Bessel function

of the first, kÍnd' with (in general) complex argument. However from the

form of the boundary condition (4.4.2b1 it is clear that only azÍ¡nuthal

wave nr¡mber m = I ís present in the solution to (4.4.2a), i.e. A* = Bo, = O

for aII n I 1. On ttre other hand, if the strength of ttre wind stress, ro,

varied over the surface then other values of m would also be appropriate.

lltre solution correetly satisfying (4.4.2b) Ís

Z(r r0 ru) =
KtoJl (kr) { (ß2t<I.2+t2Lt/a)cosg+gf (L1la-kL2) sino}

cz { (But zl 2+ (l¡i.t/al 2}
(4.4.4)

where L1(to) = Jt (ka) , L2(ur) =

f = 0, (4.4.41 reduces to

(å; 
"t 

@)) 
"=t 

u= Jo(ka)-.T1 (ka),rka. WÍIh

Kr J1 (kor) cosO
Z(x,0 ,ul = o

"2 
(Jo (koa) -J1 (koa),zloa)

14.4.51
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which nay be checked, as 'á soluÈion to the bor¡ndary value problen (4.1.12).

!{e may approximate Lake Albert, (closed at ttre Narrung ohannel entrance)

as a circular lake of radíus a = '1.5 km and depttr H = 2m. The behaviour

of this model lake might be Ðq)ected to correspond, at least in its gross

features, to tJre wind-induced behaviour of tÌ¡e actual lake. Shown in Fig.

4.4a are the gaín and phase-Iag fcr the response function Z(ror0oro)

(uniÈ ro) at station (a/2rO), with f = -8.5 x 1O-5"""-1, and for various

values of a. In Fig. 4.4b are shown tt¡e curves of gain and phase-Iag at

the sane station wittr CoriolÍ-s parameter f set to zero. To achieve effectíve

comparison between the response curves of Fig. 4.4a and Fig. 4.4b' the

gains in each have been normalized with respecÈ to the static equS;Iibrium

-nresponse at (a/2,O) as given by (4.4.3), wittr 
"o = I N.m o, viz. O.2Otm.

-,Qpically.o = 0.1 N.m o, so tJ.at f<¡r Lake Albert,, surface clisplacements

are generally of 0(5cm).

In Figs. 4.5a, 4.5b are shown similar curves obtained from tt¡e

station (a/2, T/4). The normalization factor for gains Ís again 0.201n.

In the absence of rotation, and with d = O so that k , reson-o

= I.e å,

ll.7:, etc. where z- is tàe nth successive positive zero of ttre functiona-n
L ¡f (=). These are ttre frequencies of the natural modes of oscillation
dz
of azimuthal wave number I for a non-rotating circular basín of depth tl,

and radius a, (see Lamb (1932),rglgt). For comparison, a non-rotating

rectangular basin of length 2a, and depttr H, exhibits resonance, when sub-

ject to ttre lengttrwise wind stress field (4.1.11), at the frequencÍes

a
c

ance occurs at f crequencies t,r = f, zr, (n = Lr2n ...) u.r :, r.u :,
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, = å t" - |lr,(n = L,2,...) = 1.6 ?, n., 9u,'l.g 9, 11.o f, etc. Furttrer,
1as z'+ -, å;. "r=, 

tends to Fà't'.o=(" - i), so as ,r * -, zn * tr, - fln.
Hence the difference in value of the nth resonant frequencies of the two

basins approaches the constant äi "" n -) æ.

Consicler now the response curves in the presence of rotatíon, i.e.

f / O. Clearly tï¡e nature of (4.4.4) is dependent on the'relative values

of o and f. since k = k1 = ((i)t-t) t/z/Rwith o = 0r where R is Rossbyrs

rad.ius of deformation, then with r¡ < f the Bessel functions in (4.4.41 have

imaginary argument and are thus modified Bessel functions, 11 ¡ of the first

kínd with real argunent; but with t¡ > f the arguments are real and, so the

Bessel functions in (4.4.4) are ordinary Bessel functions, J1, of the

first kínd with real argument.

Now resonance will occur at freguencies, ûr, coinciding with the natural

modes of azjmutt¡a1 wave number l in tle absence of fricùion. From (4.4.4')

we have tt¡at with t¡ < f this occurs when

(ak1ri¡2 = , å tt,'

r¿here rr = It(kra), Ii = (å; tt(r))"=tr., But since rr > O, rí r o for

all o, then in fact, there is the possibility of resonance only when

aklIi =*tr. (4.4.6a)

Vlhen t¡.1 > f, resonance will- occur at the rfrequency pairs' gíven by

-Gk1,ri) =t (*or)
where J1 = J1(k1a), ,Ji = (å; 

"t(r))r=¡.ru, 
i.e. each resonance peak in the

zero roÈation case (at frequency given by .fi = 9¡ sptits into a pair of

resonant .frequencies upon the introductÍon of rotation, at least for ul > f.

Lamb (1932), 5210 shows tJrat (4.4.6a) , (4.4.6b1 properly describe the

frequencies of the natural modes of ttre roating basin. Those natural

modes with frequency less tJ:an the inertial frequencyrf, are termed
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Ke1vin modes following Ètre notation of Defant (1961), Csanacly (L967) r modes

with frequency greater than the inertial are termed Poincare modes.

In his treatment of the natural modes, Lamb shows that there wi}l

always be at most 1 Kelvin mode for each azimuthal wave number m. Further,

the condition for there to be one Kelvin mode for each m is that

^2.a- ¡ ¡,(ríù.+ I)
R2

ft¡üe there will always be at most one resonant frequency for (4.4.41 vtíth

t¡ < f and there will be exactly one if

'tr
a
R

14.4.71

No such restrictions apply to the Poincare rndes of which t]¡ere are an

infiníte number for each m.

For the Lake Albert model, R = 52.1 km, a = 7.5 km so that, from

(4.4.71, there are no resonant frequencies below the inertial freguency,

as is clear fron Fig. 4.4a. OnIy the first pair of resona¡rt frequencies

with r¡ > f are discerniJcly different; higher frequency pairs are negliSibly

different.

Note tt¡at (4.4.3) is obtainable from (4.4.5) in the limit ui -> 0.

Further, ttre quasi-static equilibrium response is obtainable from (4.4.41,

with a = O, by allowing o + O, giving

zG ,e) - 
rtoarr [Ð coso 

Ø.4.s,,
c?tt tå)

which may be verifÍed as the solution to the boundary value problert
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(4.2.II) for flle case of a circular lake.

The quasí-static transport component" È(rr0), ö(r,0) are thus (fron

(4.2.12)) obtaÍ.nable from the stream functíon

ú(r,o)
rr (å)

rr (å)
cos0 (4.4.9)=-

Klo
f

Results (4.4.e) , (4.4.9) have been previously obtained by Csanady (1968b).

A plot of the streamlines for the Lake Albert model basin are shown

Ín Fig. 4.6. Essentially the circulation consists of a slow Ekman drift to

the left of the wind direction (Iooking downwind) away from the centre of the

basin with concentrated coastal jets reÈurning f1uÍd Èo the right half of

the basin both at ttre upwind and downwind ends. Unlike the rectangular

basin circulation, the flow ín ttre circular basin entails separate vort-

ices w:ittr identical shape but op¡rositely directed flow in each.

Ttre difference between the solutions for the rectangular and circular

basins is so strikingr that it is a matter of considerable speculatÍon as to

whether either type of flow could possibly be observed in a real lake, or

whether tlrey are not both simply analytical curiosities. Of course, in no

lake is the damping paraneter, c, ever zeÍoi neither is a true equilibrirrn

situation ever reached. But it is possiJcle ttrat for lakes in whích danping

influences are slight, flows of eíther type (or possibly both) might be

induced by strong, almost steady winds.

For R > a, the arguments of the Bessel funcÈions in (4.4.8) will be

less than unity and ttre approximations rr (r,/R)n, lr/x, Ir (a,/R)'ì, la/x may be
1úapplied. Thus Z tu Z for R ) ê¡ i.e. the static equilibrium response and

quasi-static equilibríum response are approximately eguivalent when the
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radius of deformation exceeds the radius of the basi¡r. In Figs - 4.4, 4.5

the zero frequency gain is in fact 0.999 times the equivalent static

equili5rium response.

Let us bríefly comment on tJ:e dífferences between tÌ¡e response func-

tions for the rotating and non-rotating basíns, i.e. the differences

between ttre solutions (4.4.4) and (4.4.5). Firstly, f.or the case o. = O

(k = k¡) ¡ it is clear from Figs. 4.4r 4.5 that for the_ response of .thé Lake

Albert model at (a/2, 0), the only significant dífferences occur in the

vícinity of the resonant frequencies. At, frequencíes less than 3 cpd

(including the inertíal frequency), the response is essentially an equili-

brium response, so that Èhe small value of the ratio a/R f.or ttre Lake

A1bert model (tu 0"15) Iargely determines the similarity between the curves

here. At frequencies nuch greater than the inertial, it is clear that

kt * kO so eguations (4.1.10), (4.L.12a) becone equivalent as do boundary

conditions (4.1"9c) , (4.1.12b). Ttrus for suffíciently large ur the response

curves for the rotating and non-rotating basins with zero a wiII be negli-

gibly different, regardless of the value of the ratio a/R.

The effect of non-zero d ís Èo reduce further the sigrnificance of the

Coriolis force. That this should be so becomes clear by observing that

for large values of c (greater than 1O-4"."-l) ,lt/gl .. r, Thus again

equations (4.1.10) and (4.I.12a) become equívalent as do the appropriate

boundary conditions. Physically, the integrated vorticity induced by ttre

eartl¡fs rotation is dissipated by dampíng forces (refer (4.2.9a)) and i-s

neglÍgíble for sufficíently large c.
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To malce these points

response of the basin to a wind stress of tl¡e form r"*(t) = rocos(t¡t).

The surface response at position (ror0o) is E(roreort) = Re{ z(ror0orQ)éi

= ne{z}cos(r¡t) - ur{z}sin(ot). Now with o = or and assuming Ð > f, we

have

Re{z} =
aJ1 (k1 ro ) {tzt y-o2ak1 Ji }cos0o

rm{z} =

.2{ (t¡r ¡ 2 - 1ar1r,r.ri ) 2}

KtoaJr (k1 ro) urf { J1 -a,ri }sin0o

c2{ (t¡r ) 2 - (akrt:,ri)2}

where .rf , Ji are as defined in (4.4.6b). (tüith t¡ < f 2 J1 and Ji are

replaced by If, Ii). Thus after some manipulation we have

1E 0

(L-f/ul cos (0o-ûJt) (I+frlt¡) cos (Oo+¡tt)
+

o (ak¡,ri -fJ¡/u) (ak1Ji+fJ1rltr)

(4. 4. r0)

clearer leÈ us exanine the real tirne surface

ot ]

Kt
o

Csanady (1968a) obtained a similar result which, however, appears Èo be in

error by a factor of t . Recognizing, finally, that

IL¿f/u

we have ttrat

ak 1 + L/u

6 (ro , 0o, t)

fJJ I
I

s6s(0¿-ôt) cos(eo+ot)
-f (L-r ¡/akrri ) uraklJi -fJ1 oaklJj +fJ 1

(4.4.LL',)

Thus, from (4"4.10), the surface response consists of 2 travelling

waves of differing a¡nplitudes travelling in opposite (i.e. +0' -0)
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directions around the basin. with f = O, the two waves are of identical

ampliÈude, so tJle response becomes tt¡e standing wave-

KroJI (kro) cosOocos (ult)

c2r 1,ro qra) -J,1 (ka),/ka)

with k = u/c. lltris zero rotation resulÈ is analogous to tÏre result for

the"forced, I-dimensional response in a rectangular basin; thererthe sur-

face response consists of two identical, but oppositely directed, progres-

sÍve waves forming a stancling wave.

One may alternatively, from (4.4.11), regard Èhe response in the case

cl = 0 as consisting of twc travelling rÀraves of differing amplitude super-

imposed on the standíng wave

KroJl (k1ro) cos0o cos (trlt)

"2t1 ,r1

In fact, for tJle Lake Albert model, the progressive waves make a quite

negligible contrilcution to the forced surface resgonse at all freguencies,

excepÈ near resonant frequencies when e assumes smal} values.

Ttre steady state mean velocities due to the same wind are easily cal-

culaÌole from (4.4.4). Rewriting (4.I.5a) , (4.1.5b) in terms of prclar

coordÍnates, we have

Qr
àz
âr

_^2
=:[ß

ft2+92¡

fàz+--r' r â0
K

7 (ßt +ft
o0 ) I ê.4.L2a1or

_^z ðz Bàz Keo=åt-fÉ+:#-ìt-rr' (fz+82) ã?' ; ãõ" - ., or +Br
o0 ) I Ø.4.L2b1
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r*here Qr, Qg are tìe amplitudes of tl¡e t-, 0- components respectively of

t}te transport vector. Further, the amplitudes of ttre components of mean

velocities are simply S\ -- Qt/H, g0 = QU/tt . Substitution of (4.4.Lr,

(4.4.4) ín (4.4.L2) ena.bles calculation of Qr, Qg for ttre particular prob-

lem of this section. The steady state mean velocÍty components at time t

due to tl¡e wind rsx(t) = tocos(ot) are then simply ne{qi:}cos(ot)

Im{ø"}sin(trrt) and Re{QU}cos(urt) - 4mier}sin(ot). Agaín expticit expres-

sions are obtainable when u = 0r but they have not been'.w¡¡itten here.

In Fig. 4.7 we shcw the mean velocity response to a wind stress of this

form for tt¡e Lake Albert model i¡r the four cases (i) c = O "."-I, f = 0

"""-1; 
(ii) a, = lO-4sec I, f = O .."-1, (iii) q = 0 =""-1, f = -8.5 x

ro-Ssec-I; (iv) s = 1o-4 
"""-1 n f = -8.5 x lo-Ssec-l. The period T of the

wind stress is I day¡ the amplÍtude, ro, of the wind stress is 0.1 U.m-2;

and the response is shcwn at times t = 0, T/8, E/4,3T/8 of the wind stress

cyc1e. Of most interest in these diagrams is ttre comparison of the veloc-

ity structures at time t = 0.

For the case (i), the velocítíes are everln*here zero since the surface

response is at a maxj¡num. For (ii), ttre velocity structure is largely

unchanged, there beÍng only very small velocities at t = 0. However, for

the case (iii), the velocÍty pattern at t = O is clearly similar to ttre

streamline patterns of (4.4.91, the velocity magnitudes being comparable to

the nagnitudes obtained in the cases (i), (i1i). It is clear tt¡at at each

instant of time, the lake response is almost an equilibrium response and

thus, at time t = 0r when the wind stress is acting with maximun strengttr,

the velocity patterns are similar to tt¡e equitibriurn velocity patterns due
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to a steady wind acting in that directÍon. Finally for the case (iv), we

see tÏ¡at, any influence of the Coríclis force on tt¡e velocity pattern has

become of secondary importance.

From the analysis of this section, we may make some conclusions

regarding the importance of the Coriolis force in the wind-induced motions

of the Murray Mouth Lakes.

For Lake Albert, a value of a is calculable from t/2H where r =

-a -1. _ -4 -10(5 x 10 -m.sec -) and H = 2mi ttrus we take a = 1.25 x 10 =m.,sec

Consider, firstly, the surface response. At frequencies within the

equili-brirm regime, the small value of the ratio a/R determilres that

ínclusion of ttre Coriolis paraneter is inconsequential, regardless of the

val-ue of e. At frequencies outside ttre equilibriu¡n regíme, the ratÍo

Ittøl is very small due to a combination of large o a¡rd large o, so that

again tt¡e Coriolis force makes a negligible contríbtrtion to the forced

surface response.

Considering the velocity response, the near-equilibrium velocity

pattern índuced at low frequencies is of no significance compared with

non-geostrophic velocities, due to the dominance of tt¡e damping term. At

frequencies away from tt¡e equilibrium regime, the smallness of the ratio

lflgl"g"in determines tåat ttrgre is negligible difference between the

rotating and non-rotating cases.

Si¡nÍlar reasoning may also be applied Èo Lal<e Alexandrina, for which

typical horizontal and vertical length scales are of a símilar order of

magnitude to those of Lake Albert. Reme¡nbering that both Coorong lagoons
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obey the 'narrow laker approximations, we conclude that ttre effecÈs of

the Coriolis force may be neglected in a consideration of wind effects on

the lakes of the Murray Mouth.
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CHAPTER 5

NUMERTCAL SOT,UTION OF THE WIND E'F¡CT EQUATTONS

5.1 Introduction

As a means of solving wínd effect problems, analytical techniques are

restricted to basins of simple form. Their usefulness lies in the fact

ttrat they allow certain physical features of the motions in arbitrary

elosed basins to be deduced. Thus, for example, Csanady (1967, I968a, 1968b,

L9721 and Liggett (1969) consider, respecÈively, circular and recÈangrular

constant depth lakes in studying the motions of the Great Lakes.

Analytical Èechniques, however, will not give results of a suffíc-

iently precise nature for predictÍve purposes unless the form of the partí-

cular lake closely approximates a basin of simple form. ftrus rectangular or

circular model basins are insufficient for a detailed description of wind

effects on Lakes Albert and Alexandrina; ttre problem here is compounded by

the flow exchange between ttre two lakes. It is clear that in this Ínstance

numerícal techniques are required for satisfactory results.

fhe numerical treatment of wind effects on closed basins has received

great impetus from the widely studied coastal storm surge problem, for

t¿hich basically the sa¡ne equations must be solved. The majority of models

have been of the finite difference type, centered differences Ín space and

fo¡r,rard in tine. A typical example ís tlre model developed by Heaps (1969)

with which very successful simulation of North Sea surges was achieved.

Similar finíte-difference, time-steppi:ìg nodels have been used by many
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hlorkers to study ttre motions of the North ¿\merican Great La]<es. The behav-

iour of these lakes is almost ocean-tike; indeed, storm surges similar to

coastal surges in the open sea are co¡unon, and ofÈen result in severe prop-

erty d.amage and even loss of life. Among the numerical studies undertaken

have been Èhose of Platzman (1958, 1965) - predictÍon of Lake Michigan storm

surges; Platzman (1963) - wind tides on Lake Erie; Murty, Tadepallí and Rao

(1970) - wind generated circulation in Lakes Erie, Huron, Michigan and

Superior; Freeman, HaIe and, Danard (I97I) - a variable density model of

Lake Huron¡ Simons (19721 ' three'-dimensional numerical models; Smith (1973)

- motions of Grand Traverse Bay, Lake Michigan.

Lakes with horizontal lengths scales of much smaller magnitucle (and

tt¡us of lesser conunercial importance) have, by comparison, received little

in ttre way of numerical treatment, though similar sorts of methods ought to

be applicable. Lindh and Bengtsson (197I) have developed both homogeneous

and. stratified numerical models and have applied them to Lake Valen, Sweden,

which has horizontal dimensions of I km it 7 km. The work of Smith (1973)

also falls into ttre rsmall lake' category as it treats the motions within a

small bay connected Èo Lake Michígan.

one difficulty with the closed bay problem is ttrat of satisfactorily

ensuring conservation of mass. Finite difference specification of condi-

tions at closed boundaries is susceptible to considerable error. which

results i-n an effective flow across the boundary and hence a net loss or

gain of ftuid from the model if all boundaríes are closed. this difficulty

is not encountered in tt¡e coastal surge problem where, due to the presence

of open boundaries, m¿\ss Ís not conserved.
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Finite element methods aBpear to offer tlre means of more accurately

treating irregrular boundaries and have already been used in a nu¡riber of

steady state Great Lakes modelsi refer Cheng and Tung (1970); Cheng (1972)

and Gallagher, Liggett and Chan (1973).

In this chapter we develop systematic one- and two- dimensional

irnplicit finite difference methods to calculate the steady state resPonse

of closed basins of arbitrary form to wind stresses of periodic ti¡re var-

iatÍon. Since the time variation of the steady state response is known,

the models are not of the tíme stepping variety, i.e. only finÍte differ-

ences in space are reguired.

lltre one-dimensional method enables extremely rapid and accurate cal-

culations to l¡e made of the response for basíns of elongated fo:cst such as

the Coorong J.agoons. Tt¡e two-dimensional method, using a grid scheme

sirnilar to that of Heaps (f969), enables realístic computatíons to be made

of wind effects on two-dimensional spatial rnodels. Using these methods we

construct several- models of, the t\turray Mouth Lakes. In particular, a model

cornbining both Lake Albert and Lake Alexandrfna enables a realistic assess-

rnent to be made of the ínrportance of Narrung channel flow in the wind-

forced nptions of the combined system. In aII these nodels the effects of

tJ:e Coriolis force have been ignored. For one-dimensional models, ttre

'narrolv lake' approximations are applied; for two-dimensional models, the

conclusions of Section 4.4 justify the neglect of the Coriolis force.
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5.2 One-dimensional Nrurrerícal Solution

We present here a finite difference method to solve the transport fôrm

of the one-dímensional wínd effect equations for a wínd stress field vary-

ing períodically Ín time. As with t:e analytíca1 treat¡nent of ChaBter 3,

the mett¡od outlined in this section is strictly applícable only to elong-

ated lakes (channels) such as the Coorong lagoons. Specifically, we seek

to take into account variations in channel cross-sectional area in deter-

minj-ng the response of the lake to tíme varying wind stresses.

Shovm in Fig. 5.1 ís the plan of the South Coorong lagoon. Any

effects due to the curvature of the channel, which is slight, wÍtl be

ignored. The channel axis (denoted the x-axis) points in ttre north-west

direction, with the oriqin at the souttr-east end of the channel. The

length, L, of, the channel is 39.9km" The wind stress, t"(t), blows

parallel to the channel axis and again is assumed homogeneous over the

lake surface. We denote by A(x) the area of channel cross-section, by

b(x) the (undisturbed surface) breadth of channel cross-section and by

h(x) the mean clepth of channel cross-section, where

A = hb (5.2.1)

Now (3.1.3a) r (3.1.3b) may be wriÈten as

#.*w=-eANf,+ror" Is 2.2å)

subject to

âw

-= 
-bdx

ãe
At 15,2.2b)
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W=Oatx=OrL (5.2.2c:1

where lf(x,t) is the total flow thrcugh a channel cross-section and ís

gíven in terms of the trans¡rort u(xrt) by

Vt = bU . (5.2"3)

Further, ç(xrt) represents the mean surface displaceurent across a channel

cross-section.

In deriving (5.2.2a1 , (5.2.2b) we assume that h(x) in (3.1.3a) refers

to the mean depth of cross-section; further, a term O * * has been

oniÈted from (5 .2.2b) on the grounds tftat S is small. Equations (5.2.2a) r

(5.2.2b) are the hydrodynanical channel equations wíth a linear dampÍng

tent a¡ld a wind stress forcing term.

jttt
Now assuming ttrat t" (t)

state solutions to (5.2.21 ,

, with r constant, we look for steady
o

jot (5.2.4a1

jr¡t (5.2.Ab)

=Teo
Iike

ç (xrt) = Z (xro) e

W(xrt) = f (xrot)e

so that (5.2.2) becomes

ßt=-gAffi+roro

!t
âx = -jubz

(5.2.5a)

(s.2. sb)

where B (xrr¡) (jo + r/h).

E=0atx=OrL (5.2.5c)
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Platzman and Rao (1964) and Noye (1973) used a similar finite differ-

ence method to solve tlre systen (5.2.5) without the damping term, for the

case of free a¡rd forced oscillations respectively. This method is here

extended to include frictional force,.

Fig. 5.2 shows the tlpe of grid scheme used, here applied ttr the

South Coorong basi¡. Also shown is tt¡e variation of cross-sectional mean

depttt and area along the channel as calculated from summer contours for

the South Coorong presented. by Noye (1974). The average depth is 1.01m

while average breadth is 2.82 km. Along ttre lake axis is positioned a

one-dimensíona1 array with an odd number, NP¡ of equispaced grid points,

tÌ¡e first and last points corresponding to the ends of the lalce¡ the

distance between adjacent stream point,s is ttre grid length, d. For the

Souttt Coorong modelr NP = 109 ancl d = 370m. At, the odd-nr:mbered poÍnts

(1r3, , NP), only E(xrr,l) is evaluated; these are known as 'streann

pointsn and denoted ''X' . At the even-nr¡¡rbered points (2,4, , (Np-l)),

known as 'elevation points' and denoted '0', only Z(xro) is evaluated.

We use subscript notation to denote ttre value of a particular quan-

títy at a given array point; e.g. hi denotes cross-sectional mean depth at,

a.rray point i. Further, we approxímate spatial derivatives by centred

finite differences; thus

[,1],.,"
È-È5i+2 Þi

2d,
(5.2.6a)

ltrì * zi*3-zs*L

ta*J i*z 2ð,
(5 . 2.6b)
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Note that elevation derivatives are evaluated, at stream points, transport

derivatives at elevation points. So evaluating (5.2.5b) at elevation point

(i + 1) and (5.2.54) at strean poínt (i + Z) gíves

È -rei+2 ti

- 

= -jtbi*r Zi*r

r+r-sr+,r'lBi*, E¡*z = -9Ai+2 2d, )
+Kb i+2t

o

anrl upon rearrangi-ng

EL*2 = t, - Zaioni+t zi+t (5.2.7a)

z zí*L * (Bi*zEi*z-Ktobr*r) hi*z (s.2.7b1

vrhere "(r- = -gA./2tJ; (5.2.5c) becomes simply

i+3

Et = t¡tp =0. (5.2.7cì

The system of difference equations (5.2"7)forms tþe basis of an

iteraÈion scheme to solve the system of differer¡tial equations (5.2.5).

specifically, knowing ttrat El = o and assuming a value f:ot z2 we may cal-

culate {3 fron (5.2.7a1 , 24 from (5.2.7b1 a¡rd so onn right ttrrough t}re

grid. (Note tþat we only require values for h. at strea¡¡ Points i =

I,3, , NP). 1fhen E*" wilt be zero only if 22 has been correctly

chosen. Whatever íts va1ue, tnp is.a'!.inear function of the value chosen

for 22, i.e.

t*p=C¡+C222

where the const¿nts C1, C2 arê independenL of 22. CIearIy the correct

choice f,or 22 is
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22 = 'C¡/C2.

C1 and C2 (in general complex-valued) may be determined by calculating

any tv¡o different choices of, 22. Fo¡r example, choosing ZZ = 0 gives

€*" for

t$n = C1; choosíng 22 = l gives tin = C¡ + C2-. Thus

zz = Eltp/ re$" -efr"1

Using the corect value for 22, a final run may be ¡nade through the array

to d.etermine values for L Z at alternate grid points.

A stability criterion for this scheme has been determined usùng the

method of stability analysis of Noye (1973). The basis of this analysis is

to introduce a small roundoff error at one step of the computation of | (or

z') and to examine the manner in which the error propagates through the array

as values of E br Z) are calcutated at furttrer steps.

Thus, suppose an error Àti i" introduced in the computation of Ei, s<>

that we obtai¡r instead

ET = E, + AE.-t- -t -l

and further

zT*r ='i*t - Êi^EílYi

€l*Z = Ei*Z * (I+2djurb.*rBr,/Vr)At,

The error, Ati, introduced at strea¡n point i, will clearry propagate with

diminished nagnitude through the remainder of the array if

lr+zaiuui+rßilyil.r
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which upon rearrangement gives

qh.b.- rt-
L/2

d< (5.2.9a)
2b i*rfuz+r2¡2¡

The introduction of an error Âzi*r at elevation point i + I reads to a

similar condition for the dimínished propagation of the error. rt'is

clear then that by choosing grÍcl length such that

q6h-oo
L/2

d<d ( s. 2. sb)o
2 fuz+r2¡z¡

where ho = min. {.h., i = 204, ...(Np-I)}, ôo = min. {{urÆr*r), i = L,2,

...NP), the stabÍIity of the iterative scheme will be guaranteed. Condition

(5.2.9b) j.s a sufficient stability condition, but is not a necessary condi-

tion. This is because the scheme may (accorcling to (5.2.9a) ) be unstable

at one step but' because of changing breaclths and depttrs, be stable at ttre

nexÈ. In fact¡ it may be more accurate to suggest that a necessary stability

condítion for the scheme is
L/2

d<d gH (5.2.9c)o 2(u2+r2 /H2)

where H is ttre average depth of the basín, ví2. I-OIn for the Souttr .Coorong.

To demonstrate this fact, consider tt¡e Scuth Coorong model of Fig.

5.2 for which d = 37om. 'rtre value for ho is o.06m at grid point I (the

very shallow extremes of the South Coorong) while ôo = 0.5 (between grid

points I and 2 the breadth increases from 300m to 600n). FiS. 5.3 shows a

plot of do ." calculated from (5.2.9b) and (5.2.9c) for various values of r

and a frequency range 0 - 24 cpd. rt Ís clear that (5.2.9b) predicts stab-

iliÈy over a limited range of frequencies for r = 0 m."""-1 while for
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r = lo- m."""-1, lo-2m...r"-l it is unstabre at all frequencies. However,

it is certain tTrat in this case (5.2.9b) is unreasonable as ho is not of

the same order of rnagnitude as H, i.e. errors generated at the flrst two

steps are quickly darnped out in regions where the scheme is stable. However'

(5.2.9c) predicts stability throughout the range of frequencies and for all

values of r shown in Fig. 5.3. It is probable that a necessary stabílity

condition is more closely approximated by (5.2.9c) than by (5.2.9b). Several

test run'.i revealed indeed that the scheme becomes grossly unstable only: for

exceptionally high values of r, say r = 0(1o-1m."..-1).

The numerÍcal scheme vras used to examine the surface response functions

of ttrree t]æes of test basins, ví2. (i) rectangular plan (sides LrB) and

constant depth, H¡ (ii) rectangrular plan and a depth variation slzmmetric

about the centre of the basin, of the, form

h (x) = H + f ""s{ 
2r (x-L/2't /L} ¡

(iii) rectangular plan and a depth variaÈion asymmetric about the cenÈre of

ùhe basin, of the form

h(x)=H-äi.x-L/21

For each, ù = l.Olmr L = 39.9k¡n and B -- 2.82km, the average di-nensions of

the South Coorong, while again NP = I09 and d = 370m. (Of course the solu-

tion for (i) is that obtained ín Section 3.2i a comparison of responses

obtained analytícally and numerícally revealed negligible differences over

a wide range of freguencies and for values of r less tltan 1o-1m."o"-1).

For each basin, the average depth is H.

Shown in FÍ9. 5.4 are the surface response functions for aII threo test

basins at the Salt Creek Point station (qrid point 20) wittr r = 0 *."o"-1.

We know that for the constant depttr basin, resonance peaks coincide with
ttre frequencies of ttre odd free modes.. For the South Coorong constant
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depth basín, the resonarrt frequencies are odd ¡nultipl"íes of 3.4I cpd.

Further, it is clear from Fig. 5.4 thaÈ resonance occurs at approximately

the same frequencies for the test basin with depth sylnmetríc about x = L/2.

However, for the test basín wLth depth aslnrmetric about x = L/2, resionance

occurs for frequencies corresponding .rpproxirnately to aII the multiples of

ttre free modes of the constant deptlt basin.

FinaIIy, we examine the response of the South Coorong model of Fig.

5.2, L.e. using actual depths and breadths. Since the depth contour is

asymmetric about the centre of the basin, we might naively e>çect that

resonance would occur aÈ frequencies corresponding approximately to multi-

ples of 3.41 cpd. (ôf course, the vafiation of breadth also must play a

part here). This is, indeed, seen to be the case from Fig. 5.5 which shows

the surf¿.ce response at the Salt Creek Point station for r = O m."""-1,

lo-4 m.=u.-r and 1o-3 *."..-1. The computatíons involved here may be per-

forrred extremely rapiitly; the Central Processor time required to calculate

the response at a single frequency is estimated at O.l5 seconds using the

CDc 6400 machine of the University of Adelaide.

In Fig. 5.6 is shown the steady state time response of ttre South

Coorong surface at times t = O, T/8, T/4, 3T/8 of the wind stress cycle of

tlre fo:¡n t" = rosin(2¡t/Tl with to = O.I N.m-2 , fot T = 1 day¡ 0"2 day

and 0,1 day. A dom-inant feature of the response is tt¡e excessively large

surface displacement occuring at the shallo\t extremes of the South Coorong,

particularl-y at the souttr-east end where depths are of 0(L0 cm). Clearly

ín these regions the basin response is highly non-línear since ttre ratío

Ç*/h* (Section 2.1) is greater than unity. The linear theory predicts' ln

facL, a daíly cycle of flooding of low-lying areas at the south-east end
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of the basin followed by an exBosure of a considerable portion of tt¡e bed

of the basin at that end. Such an effect has been d.ocumented by Noye (1970).

We note that dísplacements are generally greater in the south-east half

of the basin ttra¡¡ in tt¡e north-west half . Ttris ís a result of mass contin-

uity which requires tl¡at the surface displacement integrated over the r.*role

surface be zero, i.e. approxÍrnately that

(NP-1)

=Q (s.4. 1)
i=2 2)

Tests carried out on the displacements of Fig. 5.6 shorrred that negligible

errors of this tlpe were involved.. Since breadths are generally smaller in

the south-east half, then the average displacement across each section ís

generally bigger ín order that the relation (5.4"1) be satisfied.

FÍnally, we present results for the step response of the South Coorong

surface as calculable from (2.2.8b), i.e.

a(t) = sin (oÈ) do

where R(o) is the real part of ttre surface response functíon. An approxi-

mate mett¡od of calculating the above integral is to truncate Èhe range of

integration and apply a suitable quadrature.

Such a method was found to work well for systems with a reasonable degree

of damping. Using Simpson's quadrature, tests vtere carried out on rectan-

gular constant depth basins and the results compared wÍth the known analy-

tical results of Chapter 3 for tl¡e North Coorong basin at Seven Mile Point,

where the equilibriun step resp,onse is 1.063 metres. Numerical integration

I
(

{r.¡.}1a

z f-n(r)
nl ûl,o



over the range O - 24 cp'cl with an ínten¡a} lengtl:. for the quadrature of

0.25 cpdl gave values to wíthin lcm at, all times for r = IO-4m."""-1, and to

within 2mm for r = 1o-3m."".-1. Using a range of O - 48 cpd wíth the sa¡re

Íntenral length gave values to withi.. Smm for r = I0-4m."."-I, and to wíthin
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lmmforr=10 -3 -r
m. sec

In Fig. 5.7 ís shown the step response of the South coorong basin at

ttre Salt Creek Point station and the Noye's Island station (grid point 92)

up to 12 hours after the onset of the wínd. 9le observe that with r = 5.0

-^ -lx IO =m.sec ^ the response is almost exactly crítically damped. In fact

(3.2.18) with L = 39.9km and H = 1.01m gives

-4 -1r > 5.O x I0 m. sec

for the fundamental seiche of the Souttr Coorcng to be damped out.

5.3 Trso-Dimensional Numerical Solution

Here hre generalize the method of the previous section to enable realis-

tic computations to be made for tåe response of lakes of arbitrary shape

and depth to periodic wind stresses.

We wish to solve by a finite difference technique, the system of

equations (4.1.4) wÍth Coríolis parameter, f, set to zeto, i.e.

Fp=-shS**r--- (5.3.1a)
dx ox

ße=-gh#**.o" (s.3.lb)



-95-

(5.3 .Ic)

subject to ttre boundary conditic,n (4_t -q.r)- r,¡le shall a.ssumê that To*r

1^-- are spatially constant, though tho tcc.L-i-c¡rro can simply íncorporateoy

wind stress inhomogeneities.

The two-dímensional grid scheme here is similar to that used in the

models of Heaps (1969) to study storm surges in tJ e North Sea. In Fig.

5.8a is shown a model of Lake Albert, considered closed at the Narrung

channel entrance, constructed from the ssheme.

Again Z(xry,wl is evaluaÈed only at points marked ''O' , while

P(xryru¡) ' 9(xryrt¡) are evaluated only at points marked 'rx". A rectangular

array of consecutive rows of elevation and stream points completely

covers the lake in question. For the Lake Albert model the array size is

II x 13, i.e. Il rows and 13 columns of bott¡ elevation and stream points.

llhe horizontal and vertical array axes (x- and.y-axes respectively) of

the Lake Albert model coincide wittr the west-east and south-north direc-

tions respectively. The array is bounded to the north and west by ele-

vation points and to ÈÌre south and east by strean points. 1Íhe distance

between consecutive columns is denoted Âx, whÍIe Ày denotes the distance

between consecutive rot{s. Unlike the scheme of Heaps (1969), we shall

ass'rrme tàat Ax = Ay = d. For the Lake Albert model of Fig. 5.8a, d =

63O ¡netres.

3i"*--juz

It can be seen tl¡at the basic ''building units' of the array are
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ooxx

i.e. a stream point surrounded by four elevation points, and an elevation

point surrounded by for:r stream points. For an m x n array, bot-h eleva-

tion and strean pclints are numbered L, 2, " . . , ¡nn starting from tl¡e first

row and proceeding from west to east along each row. a typical cluster

of points is thus nr¡mbered

*i-n-l xi-t
oi+1

i-l iXX

Oi+n Oi+n+l

Further, each stream point and each elevatíon point is classified as

a particular type of point. Ttris clasÈification of points into groups

is simpler than the classification of Heaps (1969) since here all bound-

aries are closed. Specifically there are 14 groups of stream points and

3 groups of elevation poÍnts, listed in Table 5.1. fn Fig. 5.8b, each

array point of the Lake Albert model of Fig. 5.8a has been designated by

its group nuniber.

, For all array poínÈs interior to the lake boundary (Í.e. group 2

points, groups 16 and 17 points), spatial derivatives may be approximated

by centred differences. Thus, at ttre ínteríor stream point i'

xxoo

ox

OI

)[*]," fu ø,*,-,,*,i+n+1 -zi+n



T.â.BLE 5.L

GROT'PII{G OF .ANR.[Y POIIIÍIS F'OR TEE TT(ÞI'ItrIEilSTOfi¡.L SCEEIM

A¡eunc ho¡Íøontel andl vcrtloal atray a¡cs ooinoldc rltb
weet-€ast antl south-north ôlrcotlons rctpcctlve\r.

STRE.A!¡I POINTS

lVBcGbouB
nr¡mber

1

2

3

?7ìçv4

7

I

9

10

&¡CIERTOR POIìW!

I¡IERTOR POIWT

IÍORTE BOT'NDANT POIIüT

SOUTE BOUIDÂRT POItrIT

IIEST BOUIDAXT POI¡M

EÀST BOT'ISDANT POI}ÍII

oñoRTg-rfEsT 90 COR¡IER POIYI

o
NORTE-rEST 27O GOR¡üER POINf

osorrlE-IfEs[ 90 CORNER POIÌWT

sotnE-ÍESE 27Oo CORTÍER POrÌúr

X

X

/t/ ,\/ , /

à
*I

r

5

6

4*

V
,-l

11 SOIITE-EAST 9oo C6¡1NER PoI¡m



Group
nr¡nber

13

EI,EVATION POIITfS

t6

T7

ÎABLE 5.1 (oor¡t. )

lìrpc

so(nE-EAST 2?Oo COBNER POrM

NORTE-EAST 9OO CORÑER POIWT

NORTE-EAST 2?OO CORNER POINI

EXTIERIOR POIM

PODTI IüüEDIATEIY SOUITU OF

ilONTE EOINDARÏ

Or II{II{EDIAIIELY EAST OT'

TIEST BOtnÜDAfiT

Or IITÍIIEDIAITELT Sü'TE-EAST OÍ'
GROttP I pOlrr

A.T,L OTEER INTERIOR POIIvIS

t2

t4

\-*?

Gfouo
nunbcr

l5roc

15
o

o

1
o

_j
o

ì
o
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while at the interiot elevation point i,

[r+J, " åã (zí-z!*n*zi*r-'i*,,*r)

[r*-], " ä (Pi-P. r*"i-,,-Pi-n-r)

[#], " åE (Qr-,'-Qr+Qi-n-r-Qr-1)'

-gh.
ßiQÍ = -Ai (zi-Z.+n+zi*r-zi*rr*t)* *.oy

Using these approximations we transform (5.3.I) into a system of differ-

ence equaticns evaluated at interior array points. (uote that, as with

tÌ¡e one-di¡nensional numerical mett¡od of the previous secÈion, values for

depth h are required only at strean points. Shown in Fig. 5.8c are depth

values at each of ttre ínterior or boundary stream points of the Lake Albert

mod.el as inferred from the contour map Fig. A2 of Appendix A).

System (5.3.1) becomes

-gh
(ui*t

1 i+n+1 i+n ox
(5 .3.2a)-z +z -z )+Kr]-

Eß.P. ='L l-

(s. s. 2b)

evaluated at interior strean point i, and

nul t"r-"r-r+pí-r,-pi-n-r) * fo ror-r,-Qi*eÍ-r,-r-ei-r) = iuzi(S.3.2c)

evaluated at interior elevatíon point i. System (5.3.2) may be written

in the alternative form

ßisi = - Yi(zi*t-Zi*r,) + A (5. 3 . 3a)
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(s.3.3b)

-AdiuZ. = þ..LJ- si-r*si-rr-Di-n-I (5. 3. 3c)

where y1 = -ghr/2d, A = K(rox+Toy), ¡ = K(to*-to") and unknown" sí'D. are

i, Qi by

ÊiDi = - yi(zi*rr*1-2. ) + B

given in te:ms of P

D.
I

si +P.¡

P.
t-

Qi (5 
" 3 .4a)

Qi (s. 3.4b)

The degenetate forms of the difference equations satisfied by each

type of boundary streaur point are described in detail in Appendix D. Use

of a condition at 27Oo corner points equivalent to tt¡at of Heaps (1969)

was found to produce erroneoug results. The errors were clearly revealed

in non-conservation of mass, i.e. any inaccuracy in ttre specÍfication of

tt¡e boundary condition at 2700 corner points leads to a flow across the

lake boundary at that, point and hence a net loss or gain of fluid from the

basin. Suct¡ losses, in a closed basín model, are intolerable. Similar

effects were noticed by Smith (L9731 r ênd his method of introducing the

unnatural boundary conditj,on of (Pirgi) = (Or0) at 27Oo corner points has

been adopted here. Such a condítion is 'unnatural in the sense tfiat our

model does not íncorporate a lateral boundary layer, i.e. tÏ¡e effects of

horizontal turbulent diffusion have been neglected. It has the advantage

of simplicity, hoy¡ever, and was found to reduce non-conse¡rration of mass

to acceptable proportions in all the models d,escribed here.

ftre difference equations (5.3.3) form tt¡e basis of an iterative scheme

to determine the appropriate value for z, S and D at each stream or
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elevation point withín or on the lake boundary. RewrítÍng (5.3.3) as

(5.3.5a)

D. = D. - ,fS, ,-S, --4djtrrZ. (5.3.5b)I I-n-I 1-I r-n - r_

Izi*r,*' = z! ' t; (ßiDi-Bí) ' (5'3'5c)

then knowing values for S and D at stream points i-n-I, i-n and i-Ir and

also values for Z at elevation points i, i+I and ifn, r¡r¡e may calculate

values for S. (from (5.3.5a)), Dj- (from (5.3.5b)), 
"rd Zi*rr*1 (from

(5.3. 5c) ) .

In order to initiate such a scheme and to enable it to proceed through

the array, we assume a value for Z at each g.roup 16 point, the assumed,

values being knov¡n as ''starting values' . Values for S and D for all points

belonging to groups 3, 5, 7, 8, 9 and 13 are computed using ttre differ-

ence eç[uations of Appendix D. Next, proceeding r¡¡est to east along each

row and treating each row successively, we calculate values for S and, D

at each group 2 point and a value f.or Z at each group 17 point. lltre

order of calculations is indicated by ttre direction of arroÌvs in Fig. 5.9.

Along each row, strean poínts belongÍng to any one of groups 4, 6, lO,

LL, 12 and 14 may be encountered; values for S and D at such points are

computed accorcling to the equations of Appendix D.

Nowvalues for S and D at, group 3, 5, 71 8,9 and t3 points have been

calculated so that the relevant boundary condition at each point is sat-

isfied, regardless of the starting values. This is not the case for

group 4, 6, 10, 11, 12 and 14 points - the relevant bounCary condítions

t, = t i- ,i ('.'*L-'i*,',)+aÌ
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will only be satl-sfied at each of these if the correct starting values

have been chosen. Àt each such point one may define a so-called ,end

valuef which, j-f. zero' ensures that the relevant, boundary condition is
satísfied, as shown in Appendíx D. Lor example, for group 4 points the

boundary condition is that

si=Di

so v¡e clefine the end value as beíng S-D.

For a consÍstent system the number of starting values and, the nr¡mber

of end values are the salne' say p. We may thus form vectors s and !, bottr

of dimensíon (p x 1), consisting of starting values and encl values res-

pectively. The vector elements are nunbered accordíng to the positÍon in
the array of the point to which they refer. For tt¡e Lake A1bert model,

p = 24. In Fig. 5.8a the relevant vector element number (L-241 has been

assigned to each array point at which a startÍng value or end value is
defined" For a general m x n array in which the lake boundarÍes coincide

with ttre first ancl last rows and first and last columns, i.e. a rectangular

rake wj.th sides 2(m-1)d and 2(n-r)d, we may easily show that p = (m+n-3).

An additional complication, as wÍth the one-dinensional nu¡rerical

method, resurts from that fact that z, s and D are, in generar, courplex

valued. Thus aÈ each group 16 point we define two starting values,

corresponding to the real and imaginary parts of. z¡ whire at each point

belonging to one cf groups 4, 6, 10, rr, L2 or 14, two end values will be

arrived at. Let us define vectors 3 a¡rd f;, uottr of dimension (21 x l),
such that
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t

fzi-r = Re {er} , 2í J-
f = Im{e Ì

Each end value is linearry rerated to the starting varues. we may

thus write

(s.3.6)

where Q is a matrix (2p x 2p), wíth (rea1) elements, which determÍnes the

effect of the starting values on the encl values, and k ís a vector (2p x I)

which describes tl¡e effect of the forcing functions rox, roy on the end

varues. ftre correct starting values are thus determined by solving

(5.3.6) for È¡ with f = !, i.e.

(s. 3.7)

The elements of 0 and k must first be determined. clearly each

column of 0 may be generated by setting E = Q and choosing a starting

vector of the Kronecker delta form, so that

Furttrer, k is equivalent to tt¡e end vector obtained by settÍng Ë = Q and

using the particular forcing functions that act upon the given lake.

Having determj-ned the correct starting values, a fínal run of ttre itera-

tion scheme is performed to determine the correct values of Z, S and D at

each elevation or stream point over ttre lake. fhe símplified flow diagram

of Fig. 5.10 summarizes tÌ¡e total iEerative procedure.

l=0:*t

! = -tol-l 5

fi=QikôLj-oij

The matrix ô Ís generarly non-sparse. rts size (and thus the array



-LO2-

size used to specify a given lake) is therefore

capacity of the rrachine in use, as there are no

large, non-sparse maÈrices. For ühe relatively

0 has dimensions (48 x 48) so that tne solution

presents no great difficultíes.

Iinited by the storage

simple means of inverting

coarse Lake Albert, moclel ,

of (5.3.6) wíth f = 0

A stability criterion for the scheme may be determined in a manner

similar to the one-dimensional stabiLity procedure. The complicated

nature of the two-dimensíonal schenre.i.:howeverr,,makes tJre analysÍs,.€ar

nore diffieulti and it is presented only briefly here.

Suppose that a small roundoff error, LZí, i-s introduced to the value

for 2.. Neithe, Zi*L ror Zi+r, is affected by the error ín Z, since

neither ís givel in terms of. Z. by a ilifference equation of tho form

(5.3.5c). Similarly, S, is unaffected. Ho\dever, D. ís affected; the

error Ínvolved in a calculation of D. is -(4djul * ui_l * ri_rr)Azr, where

vi = yi,/ßi . This in turn affects the varue tor ri*n*, (from (5.3.5c) ),

for which ttre error is {t+ (ui_t * ui-r, + 4djo),zvr}42..

Thus referring again to the fundamental unit

o
i+I

xi

Oí+n Oi+n+l

it is clear ttrat an error ín Z. propagates only in a díagonal direction.

For stabilÍty it is tJ.en required ÈÏrat

oi

lr * (4djt¡ * ui_r + v._rr)/vil < r (5.3.9a)
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for all interior elevation points i. Further analysis shows that t}te

etror Lz, does propagate to elevation points i+2 and L+2n, the errors

being -(vr_rr,/v._n+I)AZ, and -(vr-r/vr_n+I)AZ. respectively. (Clearly if

tlre depth is constant ttren this repr'.sents only a change of sign of AZ,

rather than a change of magnitude). The error, ín fact, 'leap-frogs'

along rows and columns of elevation points (Fí9. 5.Il) affecting only

every second point. The error, however¡ affects each succeeding point in

the same diagonal as elevation point i, so we expect that in an unstable

scheme diagonals will harbour the greatest accumulated error.

Let us examine the stability of ttre Lake Albert model of Fig. 5.8a.

ûte follow the pattern of tt¡e one-dimensional scheme by supposing that the

clepth is a constant, H (= I.94ml, the average depttr of the actual basin.

The resultant stabílity condition will tt¡en approximate a necessary condi-

tÍon of stabiliÈy for tt¡e model with variable depths. !{ith dept}t constant,

no round-off error propagates along vertícals or horizontals and we need

consíder only errors propagating díagonally through the grid. Then

(5.3.9a) becomes

lt*Tl.r (s.3.eb)

where \ = gH/ (2d{ jo+r,/H} ) .

Evaluation of the quantity l:+aaiurTO I ov"r the frequency range O - 96

cpd revealed that the scheme was unstable according to (5.3.9b) at all

frequencies below abouÈ 48 cpt and above 68 cpd, for values of r from

-r -3 -1O m.sec - to 1O -m.sec -.

The property of instability does not render tt¡e scheme ineffectual¡
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howeverr the array size must be Iimited to ensure that any accumulated

round-off error is kept within reasonable bounds. Clearly, the precísion

of number specification of the machine in use plays an important role in

contair¡-ing accumulated errors. Single precisÍon specification, accurate

to approximatery 14 decimar digits, has been used in all the two-

dimensional numerical calculations reported here. Use of double precision

unfortunately increases significantly the amount of time required for the

íterative scheme to be performed,, as well as pracing bigger demands on

storagre capaciÈy. use of singre Brecision means that alr the moders

developed are relatively ''coarse', but tley nevertheless have been found

to give reasonable results and, importantly, are able to contain round-

off errors.

Each model must, be inCividually tested for Íts degree r¡f instabitity.

It was found that instabilities manifested ttremselves largely in the form

of non-zero flows acrosq the closed boundaries of the lake model, especially

in the regions of terminating diagonals. For the Lalce Albert model of Fig.

5.8a, tests revealed that in ttre frequency range 0 - 24 cpil the accumu-

Iated round-off errors involved were insignificant.

Fig. 5.I2 shows the surface response fgnction due to a southerly wind

(i.e. T^-- = I, r -- = O¡ at elevaÈion ¡nint number 15 in ttre ¡,ake Albertox oy

model of Fig. 5'8a. We note that for r = 5 x IO-4¡r."".-l resonance peaks

are still quite apparent' so that the response of Lake Albert to changing

wind stresses is not as low-frequency dominated as is the response of the

coorong lagoons. Furthet, j-f, we assume r,ake Arbert to be rectangurar

(sides l5km, 12kn) with constant depth (I.94m) then for the functamental
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longitudinal seictre (soutt¡-north dírection) to be overclamped, it is

required from (3.2.Ì8) tÏrat

r>3.oxlO-3.."u.-l

which is of an order of magnitude greater than the oçected value of r.

Similar general reasoning applied to Lake Ale¿xandrina, assumed closed at

the Narrung channel entrance, shows that here too none of the free

oscillations of ttre basin is likellz'to be overdamped.

Let us examine the steady staÈe time response of the Lake Albert model

to a periodic westerly wind of diurnal frequency. Ttre wind stress takes
_)the form rs = rocos(2nt/T)with T = I day ancl ro = O.1 N.m -. Shown in

Fig. 5.13a are the surface contours and mean velocity vectors at times

t = 0, \/8, T/4, and 31/8 for the Lake Albert model with depth taken as

constant and equal to 1.94m¡ and in Fig. 5.13b the same using actual

deptTrs. In both we take r = 5 x 1O-4m."..-I .

!{e note a general similarity between the response of t}re circular model

lake of Sect,ion 4.4 and tl¡at shown in Fig. 5.13a. At each instant an

approximately equilibrium response is attained, the velocities reaching a

maxímum at about T/4 when the surface elevation is at a nínimum.

!{ith the variable depth model we note little change in elevation

patterns but a large alteratíon in velocíty structures. The order of the

velocity magnitudes (O (O.1-O.S crn."""-l) ) in the centre of the basin is

tJne same for both constant- and varj-able'depth models, but there is consíd-

erable dífference in directions. In the velocity res¡rcnse at time t = O
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for the variable depth urodel there is evídence of flow separation about

Canrpbell Point on tÌ¡e western shore of Lake Albert, with resultant gyre

formation in the souttrern ar¡d northern halves of the basin.

!{e note t}¡at velocitÍes reach a maximrun much earlier in t}re wind stress

cycle for the variable depth model. Further the maximum velocities
-1(O(1-2 cm.sec ^)) are attained in the shallo\,rer coastal regíons - these

magnitudes seem exaggerated and may be the result of a peculiarity of the

numerical model which is unlikely to be observed in practice. Tronson

(f973) reported similar effects in a series of time-stepping experiments

on the South Australían gulf system.

5.4 A Combined Model of Lake A1bert, - Lake Alexandrina

In this section a fínite difference model of the courbined Lake

Albert - Lake Alexandrina system which incorporates both the one-dimension-

al and two-ðimensional schemes outlined in the previous sections is des-

cribed, and results of a series of numerical experiments carried out on

the model are discussed. This ¡nodel was constructed in order to give an

indication of tl¡e importance of Narrung channel flow Ín determining ttre

water levels and current patterns wittrin each lake.

A grossly simplified model of the conbined aystem, as re¡rorted by

9lalsh and Noye (1974), r^ras initíally constructed to examine the flow inter-

action between Lake Albert and Lake Alexandrina. This consisted of model-

ling the two lakes as rectangular basins joined by a straight channel of

constant breadth. The combíned system !ìtas set on a two-dimensional array
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of the ty¡>e reported in tbe previous secÈion, and the depttt was constant

throughout. ÍIhe channel breadttr was taken as 2d, where d is the array grid

length. (Thís is the narrowest possible width that the channel can take

if tt is to remain part of ttre two-d;meirsional scheme with constant grid

lengtTr) .

The results from this model have not been presented here; they have

litÈIe quantitative value due to the simplicity of tt¡e model. Qualita-

tively, horvever, it was shown that subjectíng the nodel to various forms

of wind stress invariably induced channel velocities that ltere consider-

ably greater in magnitude than veloc{ti." in either of t}¡e two lakes. It,

seems that a narrord channel or opening between two lakes is a region in

which wind-induced velocities undergo considera.ble amplification. This

feature is consístent with tt¡e observatíons referred to in Chapter 1.

A more accurate representation of the combined system requires, most

importantly, that conditions in the channel be better specified. It was

decided that this could best be done by modelling the charurel flow one-

dimensionally using the scheme of Section 5.2. This flow was then matched,

onto two-dimensional flows in each of ttre lakes by deriving suitable

conditions at tt¡e ends of the channel.

Shown ín Fig. 5.I4a is a two-dimensional array (17 x 15' with grid

Iength = 1275n) for modelling Lakes Alexandrina and Albert, and also the

depths at.non-exterÍor stream points as inferred from Fig. A2 (Appendix A).

AgaÍn the directions of the array axes coincide with the west-east and

south-north directions. The one-dimensional array (25 poínts, wíth grid
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lengtÏr = 425m) for ¡nodefling ttre Narrung channel is shown in Fig. 5.14b;

further detaíIs of the array are provided in Appendix E together wíth ttre

conditions used to match the one-dimensional channel flow onto the two-

dimensional flows in the separate lakes. Little data is available con-

cerningr channel depths. For simplicity it is assumed tl¡at tt¡e channel

slopes uniformly from a itepth of 3m at ttre Lake Alexandrina end to àn at

the Lake Albert end. The nr:¡nbering of ttre two-dímensional array points

fotlows the normal convention; the channel points are numbered I - 25

beginning at the Lake Alexandrina end.

We note that fcr reasons mentioned in the previous section, the two-

dimensional finite d.iff,erence specification of ttre separaÈe lakes (parti-

cularly of Lake Albert) is necessarily coarse, though it provides a

reasonable representation of the basíc features of the lakes.

Within the Narrung channel there is considerable reed growth which,

in all probability, reduces the effective surface wind sÈress in the

channel. Such a phenomenon has been Ínvestigated by Saville (f952) and

Tickner (1957). We assume here that the wind stress is homogeneous *P-

arately over the two lakes and the channel, and, that tl¡e ratio of the

wind stress amplítuder ra, over ttre channel to that, Tgr over the tvro

lal<es assr¡mes the value 0.5. Varíation of the ratio r"/r, was shown to

influence only marginally the response of the combined system.

We expect, further, that the damping para¡neter r assumes a greater

value within the channel than in either of the two lakes. Excessive

bottom growth is likely to increase the ctrannel value of t'he drag
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coefficient CO (refef (2.L.I1a) ) ; further, the observed hígh velocities

wittrin the channel indlcate thaÈ the quantity qb is likely to be of a

hÍgher ord.er of magnitude here tÌ¡an witt¡in either of the separate lakes"

Denoting by rg, rc the value of r wi'-¡in the lakes and the channel res-

pectively, we assume for simpliclty, that the ratio r,/t" has the value

0.5. Since typically we expect that rO = 5 x 1O-4 m.se.-l, ahi" indicates

that typically r^ IO-3 -rm. sec

It is clear frcm Èhe above discussion Èhat among important parameters

to be chosen before an analysis of the combined system is attempted, are

Èl¡e ratios rc/r* and rU/r". The quite moderate choice of 0.5 for each ís

shown in ChapÈer I to give a reasonable comparison between predicted and

measured \¡rater levels. Howeverr r}Uch. experimental r^¡ork remains to be clone

to properly elucidate the nature of conrlítions within the Narrung channel.

Using the above values for rU and r", tJle surface response functions

(due to a south-east wind, with rg = 1 N.m-2 , ," = 0.5 N.m-2) for the

combined system at elevation points 89 (approximating the response at

WellÍngton), 107 (Milang) , J-29 (Narrung 1 - the Lake Alexandrina end of

tlre clrannel), L77 (Narrung 2 - the Lake Albert end of the channel) , L84

(Tauwitchere barrage) a¡rd 255 (Meningie) are shoïrn in Fig. 5.15. For com-

parison, the response functions at the same staÈions for ttre uncombined

system, i.e. assuming neither lake is connected to ttre channel (approp-

ríate boundary conditions detailed in Appendix E), are also shown in Fig.

5.15.

Resonance peaks are observed in each of the gains for the combined
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system. Generally, the most significant differences between the response

functions for the combíned and uncombined systems occur for frequencÍes

less than 3 cpd. For higher freguencies, curves of gain and phase-Iag are

shaped sirnilarly for botlr systems. .ior^rever, the differences at all stat-

ions are sufficient to suggest, that a consideration of the independent,

behaviour of Lakes Alexandrina and A1bert would be inadequaÈe in a des-

cription of wind effect,s in the total system. this suggestion is strength-

ened by an examination of characteristic wind inrluced velocities wit}in the

system.

Consider the response of ttre combinèd system to a diurnal wind stress

with constant alignment, of the form r" = r[ cos (znE/T) with T = I day and

-2 -)tL = O.1 N.m - (and thus r. = O.O5 N.m '). We may examine a variety of

aIÍgnments for such a wind stress, corresponding to clÍfferent possible

types of prevailing winds in the area of ttre l4urray Mouth lakes. For con-

venience, \{e assume ttrat within Lakes Alexandrina and Atbert depths are

constant at 3m and 2n respectíve1y, while again the channel depths slope

uniformly from one end to the other. Such a simpLification eliminates

exaggerated velocities in shallow coastal regions produced ín a varíable

depth model and allows the effects of channel ftow to be considered in

isolation. It would be desirable for later models to incorporate depth

variatíons.

Shown in Fig. 5.16a are the mean velocity vectors and surface contours

due to a wind stress of this form wittr a south-east alignment, at times

t = 0, T/8, f/4 and 3T,/8. In Fig. 5.16b we show the response of the uncom-

bined system to ttre same wind stress field.
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The most obvious feature of the respcnse of the combined system is

that typical channel velocities (O(1-30 .*.=".-I)) are very large, rela-

tive to typical velocities in ttre separate lakes (O(0.1 - O.5 cm.=."-I)).

It is apparent that water is continuously being 'pushed' from one lake to

the other through tJre channel. Thus, aÈ time E = T/4, the surface of the

uncombined model is almost equivalent to the plane of no disturbance; for

the corrlcined model, the Lake Alexandrina and Lake Albert waÈer levels are

approximately constant at +I.5cm and -5crn respecÈively. C1early, in the

portion of ttre wind stress cycle from (approximately) t = T/8 to t = 5T/8,

water is pushed from Lake Alexandrina to Lake Albert¡ the channel flow is

oppositely directed for the remainder of the cycl.e.

The response of the combÍnecl sys¿em to a wind stress of similar form

and south-west al ignmenÈ is shown in FÍ9. 5.I7. Even though the wind is

always directed at right angles to much of tlre channel axis, it is appar-

ent that very large channel velocities are stitl induced.

A type of wind conmonly observed in the region of the Murray Mouth

Iakes is a diurnally rotating wínd which has been observed to persist for

several days at a time (Noye (1970)). Fig. 5.I8 shows wind speed and

directions on Èhe South Coorong as recorded at Noyers Island and SaIt Creek

over a period of four days in December, L967. For the first two days the

dírection $ras approximately constant, for the remaining two days it ext¡ib-

ited a slow, daily rotation in a counter-clockwise directÍon.

A simple model for a counter-clockv¡ise rotating wind is given by
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,=x = Re{Tlejot} = trcos(c.lt)

""y = *t{-j'otj't} = tusin(t'rt

Haurwitz (f951) examined analytically the transient response of a squaret

constant depth lake to such a wind stress. In Fig. 5.19 is shown the

steady state response of the combined Lake Alexandrina - Lake Albert mod.el

to a rotating wind stress of this form wittr "g = O.I tt.m-2 (

¡1.*-21 and period T = I day.

t = 0.O5c

For a closed basÍn sr:bject to a diurnally rotating wind the surfase

contours rotate with the wind whil.e the dÍrections of the mean velocities

lead the wind by approximately 90o, a result clear from our analyses of

previous chapters and shown numerically by f,Ialsh and Noye (19741. This

phenomenon is observable ín the separate lakes of Fig. 5.L9, with some

no,JíficaÈíon due to channeÌ flow. lùe note tlrat the strongest channel flows

occur when the direction of the wind is at right angles to the average

direction of the channel axj-s (í.e. T/8 - T/4) sj-nce then characteristic

velocíties in the lakes are aligned with the channel dÍrection.

The response of the combined system to perÍodic wind stresses of south-

east and south-west aligrunent as weÌl as to a rotating wind Ìvere re-

l-3 rn. "".-l . channer vero-

cities were reducerf in nagnitude but were still significantly greater than

velocities in the separate lakes.

In sunnary, it appears that no matter what ttre form of the wínd stresst

Narrung chamel flows are an in<lispensable part of the wind-induced motions
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of Lakes Alexandrina and Albert. ft appears, indeed, ttrat the lalces act

very much as a single unit in their response to wind stresses. Further,

the numerical experiments of this section confirm ttre local observations

regarding the very intense flows in the Narrung channel.
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CHAPTER 6

WIND EFFECTS ON STRATIFIED I,AKES

6.1 Introduction

As mentioned earlier, the waters of the Murray Mouth lakes are well-

mixed throughout ttre seasonal cycle. This is due to a combination of the

intense surface heating to which they are subjected for most of the year

and thê extreme shallowness of ttre lakes. Shallowness permíts ttre effects

of wind-induced convective and cliffusive mixing tc be felt even in the

deepest regions (tu 4.5m) of the lakes.

Howevero since the analytical methods of the prevíous chapters are

applicable to stably stratified as well as to homcgeneous fluids, it ís

wortÏ¡while, for ttre sake of completenessr to devote a síngÌe chapter to

wind effects on stratified lakes.

IrlTrere stratification (i.e. density variation) does occur it results

largely from temperature (ratl¡er than salínity) dífferences within the

fluid. (For simplicity, we neglect the exÈremely difficult area of con-

vection currents). Often, a regÍon of high tenrperature gradientr known

as the thermocline, forms tt¡e interface . between two approximaÈely homo-

geneous layers of fluid. The Great Lakes, for example, have an annual

cycle of partial winter freezing (durÍng which time the fluÍcl is relat-

ively þomogeneous) followed by summer heating, with a resultanÈ warming of

surface waters and hence thermocline formation. The process of thermocline

formation in the Great Lakes is described in deÈail by Harleman et al.

(1964). The difference in riensity between Èhe two layers ís slíght; a
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density 'Jifference typical of sunmer conditions

Z Xgirn.m-3' Èhe density in the upper layer being

density in the lower layer about lO0O kgm.rn"3.

¿rre more marked; typically in Lake l4ichigan the

varies between 18"C and 22oC while temperaÈures

between 4oC and 6oC.

in Lake Michigan'.is

about 998 kqm.nr-3 and the

Temperature differences

upper layer temperature

in the lower layer vary

So it eppears that a simple yet physically realistic model of a

stratifiecl lake is ttrat in which two homogeneous layers wLth a small

densiÈy difference are separated by an interfacial region of zero ttrick-

ness. In this chapÈer we confine ourselves to a consideration of tÌ¡is

mod,el.

One of the major theoreÈical difficulties is that of determinÍng a

suítable condition at the interface. the difficulty results from the fact

that tÌ¡e process of turbulent diffusion at a clensity díscontinuity is not

well und.erstood. A common assumption is that frictional stress in tìe

Ínterfacial region is negligible. Proudman (1953), p. IOI comments¡

"When [t]re density gradientì ís very great, ùt¡ere will be very
little vertical turbulence, and hence very litt1e vertical
mixing or internal friction across horizontal surfaces. fn the
Iimiting case of a surface of discontinuity of density, it lis
normallyl , f.or the sake of simplicity, assumed that ttrere
is neither níxing nor friction across the surface. "

Fig. 6.I sh<¡ws the plan and vertical section of the general two-

Iayered basin under consideration. For purposes of sinplicity we restrict

our attention to a lake for v¡Ìridr both total depttr h2 and the depth h1 of
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the undisturbed interface between tt¡e two layers are consÈant. Coordinate

axes are positÌoned as for t}re homogeneous lake of Fig. 2.L. The basin is

acted on by the wind stress vector g" = (.r*rt=") where the components are

known functions of x, y and t.

The equaticns of motion and continuity again assume in each layer

separately ttre form (2.1.I), provi<led the approximatic¡ns used in arriving

at the fcrm (2.f.1) are assumed valid for each layer. v¡e use subscript

I to denote quantities in the upper layer, subscript 2 to denote quanti-

ties in the lower layer (e.g. densities pL, pZJ -

fn the upper layerr tl¡e fluid pressure F1(x,ynzrt-) is again of the

form (2.1.3), ví2.

Pl = P. + Pigßr-zl .

However ín the lower layer tlie fl-uicl pressure p2(x,l ,z,t) assumes at tlre

surface a value equal to the value ôf pt at the bottom of the upper layer.

Hence p2 takes the form

PZ = Pa + P2g(Cz-n't'zl + 0rg(ç1+h1-42).

SiníIar1y, the vertical velocity w1 (x,y rz¡t.) is again approximately equal
ârra" É at the surface of the upper layer. At the surface of the lower

layer (botton of ttre upper layer) however, vertical velocities w1 (xry rz,E),
âr

w2(xryrz,t) are both equal t" # .

Thus ín each layer the eguations of motion and continuity assume e

form analogous to the form (2.1.4) valid for the homogeneous lake, viz.
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for the upper layer:

Aut - Açr I A(rxz)t
,- _ rvr = _e ãE_'rl __a"_

ôvr
,.5¡: * fu1 = -g

Ðçl
ãy

I
pt

(6.1. ta)

(6.1.6h)

(6.1.lc)

(6. 1.ld)

(6.1.le)

(6.1.lf )

I f;
aEi
ât

âol
¡"-

I
dz+ dz

ãtt
ãy

Uz
ar

I

for the lower layer:

P rv2= -g{(r-e) F. "F}.bry.
þ. ru2= -g{(r-e) F. "Y} +lV

f*'P u" * J-n'fo"'u' = -Y
-h2 -h^2

Here, the quantíty e - I-pt./pz is a 'smaLl' paraneter, i.e. e = o(1).

Ífe note thaÈ tt¡e equatíons are coupled ín ttre dependent variables

Çl (xry,t) *ñ ÉZ(x,yrt) r*hich presents ilifficulties in determining solu-

tions.

As with the eguations valid for the homogeneous lake, one may sinplify

tlre equaticns using either the eddy viscosity method or the volurne trans-

port method. We ccnfine curselves to a treatment of the sÍmpler transport

method. (Heaps and Ramsbottom (1966) have considered l¡oth fonts cf the

resultant equations in a treatment of tT¡e response of a narrow, two-

layered lalce to a suddenly imposed wind stress).
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Thus, defining components of volume transport for each layer as

U1 (x,yrt) =

U2 (xryrt) =

J" ,rrur, v1 (x,yot) = J" .rru"

t 
7nt

u2dz, V2(xry,t) = I vZdz t

-h1

-h

I
'h2

-h¡

h2

then vertical integration of the above equations of moÈion gives

åf - rvr = -sl'r F +
I
p1 t -t. )sx l_x'

av. ôçl
çr + fu1 = -shi q;l * h tt=r-tiv)

AUz AEI àç2 - l
6- - fY2 = -e(h2-h1) t(l-e) å-;- + " E- j *; (tr*-to*)

F. rü2= -e(h2-h1){(r-e) F. .þt .# (riy-.¡y)

( (6.I. 2a)

(6. r.2b)

(6.I.2c)

(6. r.2d)

(6.I.2e)

(6. 1. 2f )

âsr ðvr
ã;-*ãil=

âLå _ arl
At Ar

âuz

ãF
aÇ2

+

-=
ðy ar
av2

where r. = (ti*r.iy) is the ínterfac,ial stress vector ang 3b = ("¡ir.¡y)

is the bottom stress vector. !{e make here similar assumptions tc those

made in the vertical integratíon to procluce (2.1.9). The equations are

sr:bject to the usual lateral bounclary condition of zeto flow normal to

the lake contour, T, ví2.
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tlrr=S2r,=0alongf (6.L.2g)

where S1 - (UtrVt). E2 = FJ2,y2l .

[{e may, fol-rowing prour]man (1954) , Heaps a¡rd Ramsbottom (1966) , and

by analogy with expression (Z.I.IIc) for the homogeneous lake, assume for
the bottom stress vector the form

.I5 = P2rÇ2/(h2'hy) = 2øp2$z (6.I.3a)

r¿here r is consta¡rÈ, Furthermore, on ttre basis of our previous discus-

sion,

T. =I (6.f.3b)a

Conbining (6.I.2), (6.1.3) thus gives

au, açt
5¡r - fv1 = -shi ãE-

'ut * 
tut 

= 
ðez _òÇtãx ãy At At

âU,

àx
3þ
Ðy

I
pl (6.1.4a)

(6. r.4b)

(6.1.4d)

(6. 1. 4e )

(6.1.4f )

sx

tvr
ãã- + fU¡ = -ghl + sy

ôç1

¡v

# . 2au2 -t.,12= -e(h2-h1) { (r-e) þ .. " þ (6.r.4c)

F. 2ay2 +tu2 = -e(h2-h1) { (r-e) F. r þ

I
Pl

.E

+
aE^

Ðr

subject to

S1n S2rr=0alongI. (6. 1. as)



-r20-

In the follorving two sectíons hre provide some simple solutions to

(6.1.4) utilizing the ttreory of response function and the methods built

up over prevÍous chapters,

6.2 A Solution for 'Narro!ù' Ta"o-Layered Lakes

Let us first solve the systeur (6.f.4) for the case of a rectangular

(constanÈ depth) non-rotating basin over which the wind stress acts always

parallel to one of the two lake axes - the x-axis (Fi9. 3.1). ftre results

obtained from an analysís of this situation are clearly most applicable to

elongated, two-layered lakes for wt¡ích the "narrov,r lake' approximation is

satisfied in each layer, i.e. only the component of wind stress, rs(xrt),

acting along the lake axis significantly influences wind effects in the

basin, and ttre effects of the CoriolÍs force may be neglected.

Ttre "narrovr lalce' assr:nrptions enable (6.1.4) to be written as

ðUr o àÇt 1
E- = -ci ã;- ' õT t=

P . 2av2 = -rc|-clt { (r-e) þ -' þ i

ðu, ðe" â6,
âx àt At

I}.
àx

Yz
ar

(6. 2. Ia)

(6.2.lbi

(6.2.úcl

(6. 2.ld)

subject to

Ul=U2=0atx=QrL (6, 2. 1e)
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L/2where elt2 = (ghrrz)

Firstly, we eliminate U1(xrt), U2(xrt) from (6.2.I) and obtain par_

tial differential equatlons for botr¡ Er (xrt) , Ç2(xr1) in terms of ttre

forcing function 'r" (xrt) . This may be done in ttre folrowing manner.

Eli¡nination of U1(xnt) between (6.2.Ia) r (6.2.Ic) gi-ves

\tL, _ azct , _z ã2Çt
tF - â.'F * 'i ã;F

Ð'r_s.
âx

þ* 2o 
3L * rc?-"/t $ ,(r-e) e¡+eÇ2\ = o.

Ë* -.å ,#æ *,o ft [þ -"1#] -,.ir"î -"ît

[#. .r"!-"lt #. r.k]

-â4 2

l__aËa--"2
¡a a la2 zaz)

ã-r3æz f z'a ãï- l.ãTu 
-cr EzJ

2-Ecl rc?-"7t ffi ,,
(r-e) (c?-c3l â3r

I
PI

while eliminating Uz(x,t) between (6.2.lb), (6.2.1d) gives

(6.2.2a1

(6.2.2r.)

(6. 2.3a)

(6. 2. 3b)

Furttrer, elimination of Ee(xrt) between (6.2.2a), (6.2.2b,) gives

1à
Pt âx

while eliminating !r(x,t) between (6.2.2a) t rc.2.2b) gives

T
S

s
pt

Equations (6.2.3a), (6.2.3b) nay be solved using the sarne methods

employed in Çhe one-di¡nensional case of section 3.2. specificarly, given

again a wind stress fierd of the form (3.2.5), i.e. periodic ín time and

witl¡ constant unit strength across the lake surface, the steady state
surface a¡rd interface responses are given by

ilr'
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Er (x,t) = i, I { øz-zioorc<"?-"71*},n-tl"o" (*2r,-r*)/vrr} (6.2.4a)

n=1

Çz(x,t) = -4(L-e) t"î-"âl.j't { r!n-tcos ( r rrr-rx}'/vrr}

-L22-

I
i

Il=
(6.2.4b1

where v,. (ur ) =r) u 

"îu2*ln_r-z)o, 
(u2 - c?rln_, ) -e c f f "l- "l¡" lr,_r

It ís clear that a two-Iayered take subject to wind stress forcing

may be considered. as Èwo interdependent systems, each with input consist-

furg of surface wind stress measurecl at station xo, and one v¡ith output

41(xort), the otl¡er with output Ë2(xort). f'urther, from (6.2.41 we may

define response functions Zt(xo,uJ), Zz(xorr^l) for the respective systems.

It is noted that, except for very large values of angular frequency,

o, and damping paranetér, cr, the interface response has much greater magni-

tude than the surface response, i.e. lrrlrrll.1l , a result alluded to in

Section 1.2. In fact, since

ccs (r x)
z¡(xr0) = +Lprci I

æ
f
L

ll=

2n-l (x-L/21
sp thr

,xe [0 rL]

z2(x,o) =

and also since typically e = O (10

2*2rr-1

"o= 
(*2rr-t*)

2
*2rr-1

, then

= -lL-e) (x-r'/21
- Êgp thl

(6.2.5a1

,xe[0rL]

(6. 2. 5b)-3
)

lzr (x,o) /l.21¡x,ol I = o(10-3)

Such large movements of the thermocline constítute one of the nost con-

spicuous features of the summer behavíour of the GreaÈ Lakes (Csanady

(I96Ba) ). The movements may be detectêd. even by a casual observer

through the upwelling of cold water from the lower layer. Such an upwel-

ling is always associated with an appropriate wind pattern whích, if
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strong enough' m.ey even cause tÌ¡e tt¡ermocline to intersect the surface.

Under sucl¡ conditions, of course, the interface response becomes híghly

non-lineari !ûe chose tc ignore non-IinearÍties of this type in our formu-

lation of ttre equations (6.1.4).

Fron (6 "2.51 it is clear that the surface and ínterface eguilibrium

responses are both planar, with slopes I/Sptt:.t and - (L-e)/egp1h1 respec-

tively. lüe note that the equilibríum interface slopes in the op¡rosite

direction to ttre equilibrium surface, as shown Ín Fig. I.3b.

Resonant frequencies for 21 (xo ,ul ,ã2(xorul) are identical and may be

obtaine<l by solution of

,a - "7^z*3n-r- 
ec I rcî.. 

"?t "
4
2n..1 = 0, n=1r2,

r.e.
(0r,, 

2n)z = I "t"rî-, rr I {r + 4ehiÌ,[þ].urn/'i. (6.2.61

Since
rh, ì

[#"J 
-r < O, ttren both þ|, , þtrnare ¡rcsitive. Hence for each posi-

tive fnteçter n' tl¡ere exists a paÍr of resonance peaks about tt¡e resonant

peak at t¡ = c2K2n_1 ! .2rr-l for the equivalent homogeneous lake with

deptt¡ hZ.

These two resonant frequenci-es äre very widely spaced, however.

Clearly, we have

(0tn)2=r]r,-t+o(e2)

(ô2n)' =,Zn-t{"[+] ['- [LJ]] 
* o r.2r

so ttrat
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h" e''L/2 {t*}l ['- hï]l] ",
The resonant frequencies 01rr, 02r, are the frequencÍes of ttre normar

free mod,es of the two-layered basin. The modes 0lr, *. known as the

bartoÈropic or external. modes of the Ì¡asin (Veronis (1956), Csanady (1962) )

since they are close to the free modes that rvould exist without stratifi-
cation. The modes 02r, .t. known as baroclinic or internal modes, and are

approximately the free modes that would exist in a homogeneous lake of

lengttr L and 'equivalent depth, hr = Êhl (h2-hi)/hz.

For the stratified Lake htinclermere, Heaps and Ramsbottom (1966) take

h1 = 15m, and h2 = 36fi¡ while Èypically pL = ggg kgm.m-3 and p, =

-31000 kgm.m Further, the basín ís sufficiently elongated for the
rnarrÐw lake' approximation to be applied.

In Fig. 6,2a axe shor¡¡n the gain and phase-.lag of the surface response

21(xo'trt) (as calculated from (6.2.4a1) at station xo = O.'15L, for ttre

freguency ranges O - 24 cpd anct 108 - 132 cpd. Values of c for which the

responses are shovrn are 0 "".-1 and 10-4 "."-r. rn Fig. 6.2b are shown

the gain and phase-Iag of interface response (as calculated fron (6.2.4b')l

at the same station and over the same frequency range. The gains in each

have been normalízed against the respective zero frequency gaíns, viz.
0.o112m for the surface gain and ll.2m for the interface gain.

Now the first barotropic resonant frequency f.or Lake !{Índermere is
approximabely L22.9 cp<l, white the baroelinic resonance peaks occur at odd

multiples of 1.92 cpd. Thus 32 baroclinic resonance peaks precede the '
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fÍrst barotropic rescnance peak.

The ckrminant feature of ttre surface response as shovrn in Fig. 6.2a is
the intensity of the first barotropic mode relative to the baroclinic

modes precedíng it. In fact the baroclÍnic resonance peaks close to t¡e
first barotropic peak appear almost as infinÍtesimal 'spikes' superi-urposed

on the barotropic response. Similar1y the interface response is dominated

by the baroclinic modes. The evidence of Fig. 6.2 points to the general

conclusion ttrat the maximum displacements associated with tt¡e barotropic

modes occur at the surface (hence the alternative name external ) while

for tt¡e baroclinic ( internal ) modes, maximunr displacements occur at the

i¡terface. such a cc¡nclusion may also be reached by 'a priori' means

(refer, for example, Csanady (1967) ).

,6.3 A Generalized fheorv

Let us ccnstruct a theory, anarogous to that of chapter 4, for wind

effects on two-layereclo closed basins of arbitrary contour and constant

depth. Again assume ttrat wind stress component" ."*(xryot), ."y(x,yrt)
have ttre form (4.L.2'), from which it foltov¡s that steady state surface

response and transport components in each tayer have the form (4.r.3).

Ttrus system (6.1.3) becomes

jotPl - fQ1
2- -cI

ðzt
ôx

* K1 r (6.3 .Ia)ox

jt¡Qr + fP1 = -"1 Y+ Klrdy oy
(6.3.Ib)
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Bzpz - fez = -rc?2-"lt f; t tr-.1 z¡+ez2|

\ 
BzQz + r¡P2= -rc|-"ï fo ttr-"1 z¡+ez2l

aPt
àx

âer
ôy

{(1-e) z¡+ez2}

(6. 3 .lc)

(6.3.}d)

(6. 3 . l-e)

(6. 3.1f )

(6.3.2a)

(6.3.2c)

(6.3.2d.)

(6. 3.3a)

(6. 3. 3b)

äPo

--lòx

+ - ju(22-Z¡)

à92
ãy = -juZ2

where (as indicated Breviously) subscript 1 refers Èo the upper layer,

subscript 2 to the lower layer and, we have K1 = l/pt r9z = (jo+2e).

From (6.3.1) we obtain

Pl= irc¡{jrÐr.>(+fron)-.îfj,¡ k * t b, urt

oy r-"1rj, b - 'k,r,t-fr

-ßz

ox

Finally, combining (6.3.le) r (6.3.If) wittr (6.3.2) gives

K1

j,"îvzz¡ + 9,1 (z¡-22) = (jr,ro + fc)

v2{ (1-E) z¡+ez2}+ nl z2 = g

where D, C are defined by (4.L.71 and further

.,þJ

rcî ze,î

-r"Jl 
(1-e) z¡+ez2\ -

-iwlzo+rz¡gl¡
11. = cl -c I

Equatíons (6.3.3a), (6.3.3b) are coupled ín the unknowns Z¡(xry,r¡l) ,
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Z2(x,y$) just as the oriqinal eguations for ttre upper layer ((6.I.1.)

a-c) a¡¡d lower layer ((6.I.1.)d-f) are couplerl in tLre ur¡knovtns 6I (x,yrE),

Çzlxryrt-l. 9Ie achieve some simpllfication by assuníng, as in Chapter 4,

tbat tÌ¡e wind stress field is homogeneous over the lake surfêcê¡ so D =

C = Or and (6.3.3b) becomes

v2z1 +tl(zrzz)=o (6.3.3c)

It ttren remains to uncouple (6.3.3b), (6.3.3c). lltris may be done in

a marurer similar to that of Charney (1955), Veronís (1956) and Csanady

(1967). In their equations, however, danrping forces in the bottom layer

are neglected, so that ßZ = ju. Essentially, if (6.3.3c) is multipliecl

by an unknown, o, and the resultant equation added ta (6.3.3b) we obtain

v2{ozû(r-e) zfeàz}

+o9'?ßL-zù+9'fz2 = s. ,(6rì3.¡4)

Novr o ís chosen so that ttre guantities {oz¡+(l-e) Z¡+eZ2} , {ot!(zrzù+

l,fz2\ are ín proportion, i.e.

v2{oz¡+(1-e) z¡+ez2} = {o¿1 (z;-z2l+L722}

which is satisfied if

U2 [o+ (1-e) | = o9"?

vze=nl-otl.

Thus o must satisfy:Lthe quadratic equation

o2+o(1-ô)-ô(1-e)=Q (6.3.5)

v¡trere A = l,î/l?. (Note that (6.3.5) is equivalent to 122) of charney



-L28-

(1955) íf 3Z = jo, when ô becomes equivalent Eoh¡/(hZ-hr)). Ehe roots of

(6.3.5) are

o.,z=! ro-rl a [å (ô-r)2+ ô o-i\"t (6.3.6a)

so that

(6. 3 .6b)

(6. 3.7a)

(6. 3 .7b)

(6. 3 .8a)

(6. 3 .8b)

Defining Zg, 24 by

then (6.3.4) gives

(V2+È1) zs = o

ßz+vf¡z+ = o

23 = (o1+1-e) Z¡ + eZ2

zq=(o2+1-e)z¡+ez2

i.e. (6.3,4) has been uncoupled. ínto a pair of tractable equations.

Finally, z¡(x,y,ul and. Z2(xryrtrt) may be recovered from

Z?.-Zb
21 = 

- 

(6.3.9a)' or-o2
(o1+I-e¡ za-G2+L-e)zg

z2=
e (or-oz) (6. 3.9b)

Charney (f955) shows that for ttre case in which BZ = ju, i.e. neglec-

ting dampíng forces ín the bottom layer, tÏren the transformatíon (Zl¡ ZZ)

+ (Zg,Z+) is, in fact, a separatíon of the motíon into its normal modes,

i.e. the barotropic (external) and baroclinic (internal) mocles.

System (6.3.8) may be regarded as the generalization of (4.I.tO) t¡

ttre case of a two-layered lake. Further, appropriate boundary conditions

analogous to (4.I.9c) are not difficult. to achieve.
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For the upper layer w<¡ have that

*(St)rr=OalongI

where FÍ = (P1,QI), which is shos¡¡r, in ttre Í¡anner of, section 4.1 for the

boundary condition in the homogeneous case, to be equivalent to

àz- Az- K,(j, ã+ * f ¡; ), = B 
(jrrrrorr+fro")I. (6.3.Ioa)

Similarly, from

we have that

*(s = 0 along I
¿ n

(6. 3 .10b)

It is not in general possible to uncouple (6.3.10) so that boundary

condítions are obtained in terms of Zg(xryrt¡) , z,4(x,yrt¡l) alone. Howevert

having found general solutions to (6.3.8a) anrl (6.3.8b), then use of

(6.3.9a) and sr¡bstitution into (6.3.f0) easily allows the appropríate

arbitrary constants to be determined.

Let us now brÍefly examÍne some particul.arization of this meÈhod.

(a) Ttre Rectangular Lake

For simplifcation we shall again neglect t}re Coriolis force, and

suppose that ttre wind, stress acts a}ways parallel to the x-axis, so ttrat

the problem becomes equivalent to that of Section 6.I.

t(Ê2 å; * t h ) {(r-e) zf ezz}7r = o.

Then, (6.3.8a), (6.3.8b) become
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Ktro at x = OrL

atx=OrL

[#.'lJ zs = o

[#.'åJ 24 = o

(6.3. lla)

(o; g;rrb)

(6. 3 . ltc)

(6. 3 . lte)

àr, 
=ðx cl

þ trr-tlzt+ ezz\ = o at x = o,L. (6. 3 .11d)

In this case !ìre IeL express the end conditions (6.3.11c), (6.3-11d) ín

terms of, Z3(xrt¡) and 24(xrr¡) alone. Clearly we obtain

3tu
äx

_ o2Klr0
atx=OrL. (6. 3 .llf )

c

The solutions to (6.3.IIa), (6.3.llb) satísfying (6.3.lIe), (6.3.Ilf)

respectively are

o¡K1rssín{urlx-L/21}
Z3 (xrtrl) = (6. 3. I2a)

.fËr.o" (y¡L/21

o2Kltgsin{y2 ;x-t /21}
Z4 (xrro) = (6. 3 . 12b)

ò23 
= 

ot Kr Tn
ðx ^2"I

and thus, from (6.3.9), we have

cfuzcos (vzL/2)

1sín{ur ß-L/z) } o2sín{vz :.-ry'zlI.

2
I

,

ulcos (Vú/ZI u2cos (vZt /z)

(6. 3. t3a)
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(o 1+1-e ) o2sin{ u z lx-L/ 2l }

U2cos 2

Expressions (6.3.13a), (6.3.13b) may be expanded as Fourier cosíne-series

over the range [OrL] and be shown to be conpleteiy equivalent to ttre

e>çressions for z1(xrrrr) , z2(x$l obtained from (6.2.41 .

Result (6.3.13) is, further, the two-layere<I equivalent of (4-3-3)-

Since we are not specifícally i¡rterested in stratified lakes, however, Ì,ve

shalI not dwell on its properties.

(b) the Circular Lake

Let us retain the Coriolis term in ttris case and assume, as in the

homogeneous case of Section 4.4, ttrat tt¡e wind stress always acÈs in the

direction 0 = O. Again, polar co-ordinates are used; the radius of the

basin ís denoted by a.

fhe general sclutions to (6.3.8a), 6.3.8b) then become

(o2+1-e ) o1 sin{u r $-L/ 2l }

ul çcls(y¡L/21

Zg(r,0 rûr) = .11(U1r) (Agcos0+p3sin0)

24(t t0 ro) = J1 (U2r) (A4cos0+B4sin0)

(6. 3. 13b)

(6. 3. I4a)

(6.3. r4b)

so that (6.3.9) gives

zy(x ß ro) = [cos0{a3Jr (urr) - Ar+Jl 1y2r) }

+ sin0{ IbJr (ur+) -%or (u2r) }l / rcroz) (6. 3 .15a)
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Z2(r ,0 ,u) = [ {ot+I-s },r¡ (F2r) (A4cos0+Br*sin0 )

- {o2+t-e}Jl (Urr) (A3cos0+s3sín0 ll/e(oroz'l .

Boundary conrlition (6.3.10) becomes

( jt¡cos0-fsinO )

(6. 3. rsb)

(6. 3.16a)
3I+-r

(6.3. r6b)

Corüeination of (6"3.15) a¡rd (6.3"16) a1lowe a determination of the four

constants to be made.

Again ttrese results are not discussecl here. rt has been merely our

intention in ttris chaBter to show how readily applícab1e is the response

function method to the analytical determination of wind effects on strati-
fied lakes of sÍmple form.

rrez fo + fftlt(r-e) zfez2lt==" = o.

I
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CT{APTER 7

TTIND EFFEqTS ON CONNECÎED IÀKE SYSTE}IS

7.L Introduction

In Chapter 5 we examined, by means of numerical modellingr wÍnd-

induced flow exchange between Lal<es Albert and Alexandrina through the

Narrung channel. It was sho$rn that channel velocíties were alttlays much

larger Èha¡r velocities in the separaÈe lakes, regardless of the directíon

of ttre surface wind stress acting on the system. The narrow opening known

as HeII's Gate which connects tt¡e North and South Coorong lagoons is simi-

Iarty characterizecl by high velocities. Measurements taken by Noye (1970)

Ied him to conclude, however, that any efflux of water th:rough HeII's Gate

has only slight effects on the mean leve1 in the two separate lagoons.

In this ctrapter we examine, from an analytic point of view' the ques-

tÍon of the degree to whÍch two takes, joined by an opening or channel, act

independently of each other in their reaction to wind stress forcing.

Consider, for exanrple, the two rectangular lalçes shown in Fig.7.L,

divided by a partition at x = L1, with an opening of width e' (not neces-

sarily 'small'). The two lakes have the same constant depth, H, and are

acted on by a wínd stress r"(t) blowing always parallel to the x-axis. We

shall ignore the effect of tbe Coriolis force.

It was shown in Chapter 4 ttrat for a closed basin of constant depttt

tl¡e form of tÌ¡e boundary contour does not affect the equilibriun surface

slope, provided some damping forces act within the lake. Applying this
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result to the total system of Fig. ?.I we thus have, rernarkably, that the

width of the opening does not influence the equilibriu¡t response, provided

el is non-zero.

jr¡t
Given that the wind stress has the form r

s
r) =Teo , we may con-

sider at what freguencies tt¡e two parts of the total system begin to exhil¡it

independent behavíour. A variety of analytÍcal techniques are at our dis-

posal in the solution of this problem, and we may draw on analogies wit]¡

other problems, both in hydrodynarnics and related fields.

As an example, ttre phenomenon of harbour resonance hasr ovêr the past

decade, received considerable attention since the paper of Miles and l¡funk

(1961). Here, a bay or harbour is co¡utected, through an opening, to an

infinite ocean, and responds to inconuing vtaves at the opening in much the

same lray as the two basins ín Fig.7.L respond to surface wind stress. fhe

main mechanísm of energy loss in the harbour resonance problem occurs

through radiation away from the mouth, and a major theoretical difficulty

is that of determining how best to account for this energy loss. Problems

of water wave transmission through openings such as breakwaters (Tuck (197I) )

may also be seen as related to tÌre present problem. Analogies may also be

drawn wittr problems in acoustics - the couplíng of rectangular cavities has

been treatedl by Morse and Ingard (1970), 510.4 - as well as with waveguíde

problenrs in electromagnetics.

(

Let us attempt a direct solution to the problem of Fig. 7.1 where the

wínd stress is of the form t" = ao"j" wittr ro constant. We shall consider

firstly the left-hand basin alone. We kow that the steady state surface
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response has t}re form

Çt (xryrt) = z¡(xtY tr)"jtt

v¡trere Z1(xryru) satisfíes tlre ttelmtroltz equation

(V2+tz)zr = o (7.I.1)

witÌ¡ k2 = lu?-Zjaul/c2i note ttrat k(t¡) in (7.1.1) is equival-ent Eo k"(r¡) of

(4.1.12a). Along the closed boundaries the relevant conditions are, from

(4.f.9c), given by

h zr (x,0) = b z¡ (x¡Br) = O, xelo,Lll (7.1.2a)

åt zt(o,y) =r ,yelo,Brl (z.t.2b)

zt(Lt,y) = Try e[0,d) and ye(d+e',Bt]. (7.1.2c)

vrith T = Kto/c2, K = (l+m),/p. Denoting ¡y pt(yrr¡) the amplitude of the

x-component of volume trans¡nrt through tJ:e opening, then from (4.1.4a)

with f = O we have, further, ttrat

åO " 
(L1 ;Y) =:r-

-ik2Pj'
Ye [drd+e'] (7 .L"z(r)

d

ñ

uJl

Note that the possilility of a velocity discontínuity at the edges of the

opening has not been excluded by tÌ¡ese boundary conditions.

l{e make an initial simplification by means of the transfor¡tation

(7.1.3 )

rf ef = o tt¡en (from (4.3.3) ) zL = r sín{k (x-¡,t/Zl }/{kcos(kltl2) } so

*
Z¡ (xry,rrr) represents tt¡e contribution to the surface response of ttre basin
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h'hich results from the opening itself.

Couibining (7.1.1) , ('1.L.2) , (7.1.3) gLves

subject to

s¡trere

,.

*

1v2+r2¡ ,I = o

# ,i(x,o) = h zT (x,ar) = o,xe[o,L1J

i ri(o,y) = o, yE[o,B1l

k "i(Lt,Y)= 
or Ytlo,d) and ye(d+e',Brl

(7.L.4)

(7. 1.5a)

(7.1.sb)

(7. r.6)

(7 .L.7al

(7. 1.5c)

* j¡<zp.*F z1(L1,y)= - , ye [drd+e I ] . (7. r. sd)

A solution to (7.1.4) satisfying (7.I.5) is not difficult Èo find by separa-

tion of variables, It is

ã

OJ

zL= .iE_
Bt t) { -'*"iro,- Arr, cosh (Ytrrx) cos (otrrY) Ì

0- = nn/BtIN

yrrr(trr) = ßln-xz¡l/z

arrr(ur) = l/{vlnsirùr(yrrrI.l)}, n = !,2. ...
*

and where the coeffícíents 9t (r¡) , Qrrr(o) are defined by

¡d+e

lu
(r¡

1r

Qr dy
*

P;

P

Ë'
Qrr, (trt) =

*
cos(Orrry)dy, n = LrZt ... (7.1.7b)
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Q1 (o) is Èhe total discharge through the opening and is an important

physical parameter of the total system.

The solution to (7.1.1-) sr:bject, to (7.L.21 is iJren símply

rsin{k (x'¡t/2)}
21 (x'yrtrt)=.1;;;ç;172¡-'

.fttoiffi-,* ï
n=I

AtnQlrr cosh (Ytnx) cos (ornv) )'
*

Sinilarly in tt¡e right-hand basin the soÌution is

'rsin{k <x-çz/z)}
zZ(x,yro) = kcos(kL2/2)

d+e I

d

d*e I

Qz (u¡) = -
a**P dy = - Qr (rrr) = -9 (tt)

. ä ia; iffit# -r* j, or.,Ql,, cosh(vri)cos{vr,,f¡1

(7. r.8b)

(with i = -* + L1 + t'2, i = y + s), where 02n, \2n, A2r, -t" defined in a

simirar m¿rnner to 01rr' Ylrrr Ar' and where

(7.1.8a)

(7.I.9a)*

* *
2¡

(7 . r. eb)
d

Neither (7.1.8a) nor (7.L.8b) explicitly satisfies the respective

boundary conditions at x = 1,r(l =9.21, i.e. the coefficients QT(ò)and
*

Qrrr(o) are unknown. A determínation of the coefficients requires that

these conditions be satisfied. In partícular Èhe two solutions must be

matched across Èhe opening. The matctring condition, quite clearly, is that

the arnplitude of surface displacement should be continuous across the

a (t¡) = - P cos(Orrry)dy, n = Lt2' ...
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opening, i.e.

21(L1 rYno) = Z2(L2ry+srüJ) ,ye [drd+erl . (7.1.I0)

In order to simplify this determination let us suppose that ttre tr¿o

basins are identical (r'ig. 7.2'), so that A; = Ci" f=:Oil . Further, we

Tt¡en (7.1.8a),place a new set of horizontal co-ordi¡rate axes as shown.

(7.1.8b) may be written in terms of ttrese coordinates as

-2k I
n=1

i¡.
Bu)

I cos (k (x+¡,) )
sin (kL) ArrÇ cosh (yr, (x+r,) ) cos (OrrV) )

*
+ ta

(7 .I.lIa)
Z2(xry tu) -tsin{k (-x+L/2) }

kcos (kr,,/2)

jk
Btrl

te. '"3(* [;äïL) 
) -zr.

(7. l. rrb)

where Alr, = A2r, (= An) , YIr, = \ 2n (= vrr) . clearly ttre problem is now

reducecl to a determination of the coefficients gS and Al for n = Lr2, ...

Furtt¡er, it is clear ttrat ttre amplitude of surface displacement is an odd

function about x = o, i,.e. 21 (-xryror) - -L2(xryrr¡). Hence the matctring

condition (7.f.I0) reduces to

21 (0rY,ul) = zz(O ryro) = 0r yE[drd+er ]. (7.L.Lz)

Thus in this si-urplified case \,te may obtain a solution for the total system

by considering only the behaviour in ttre left-hand basin.

F*

)_ ArrQ; costr (Yr, (-x+r,) ) cos (Orrv) )
n=I
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7.2 An Approximate Solution

Ippen and Raichlen (1961) Ín an early approach to tJ.e harbour reson-

ance problem, considered the coupling of a small, highly réflective rect-

angular basín (urodelling ttre harbour) to a large rectangular basin (ttte

ocean) througlr an opening. Ttrey produced separate solutÍons in each basin

wtrich were then matched across the opening by assuming constant surface

slope across the harbour entrance and equating the 'average' of each solu-

tion evaluated aÈ the entrance.

In tt¡is section lùe use a similar methocl ín considering the wind

forced couplíng of two ídentícal rectangular basins. Specífically, we assume

that P*(yrr¡) is constant across the opening between the two lakes. If

er = B, i.e. the two basíns are fully cornected, then ttris approximation

is exact. In fact, we know that Ín this case

p* = Kro - c2 [#]-=o

jo¡Ttan (kL/2)
-ffi

More generally, when e' * B and P

(7.2.L',)

is a constant, Po, Ít is clear that

Qo

*
a

*
9n

O = ÊtPo
(7.2.2a)

(7.2.2b1
Pôon=-=

0n

ô
n

e'0n

vrt¡ere ô = sin{0 (d+e')} -sin{0 a}.nnn Thus (7.1.11a) gives

z¡ (Q,y,rr) = | t.r, (k'-/21 . + {cot(kL) - # T. crrcos (env) }
n=r

(7.2.3)
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L
n

z¡(0¡y,trr) = oryÊtô;ó+ê!I is

I
F Zr (0ryrtrt)dy = Ot (7.2.4)

i.e. ÈÏre avçrage rlisplacement across the operring ís zeto. Conbining

(7.2.3) , (7 .2.4) gives

oBTtan 17.2.s)Qo

f".'

k2 (cot(kL) -

rvlrere on (rrr) e Crrôrr,/0rr.

Tt¡e infinite seríes in the denominator of (7.2.51 is convergent if

e' I O. When er = B, f.or examPler Dr, = o so

)nD

Ii¡l=

9o
Bo [=

I
n=1

jkQ^
Bü)

P

equiva,lent to (Z.Z;¡) ;

Finally, (7.1.lla) becomes

. esin{k(x+L/2}}Ztlx,ytw) = -%lliffi

+
r cos (k (x+r,) I 2k. 

"i''(kt)-''
Errcosh (yrr(x+r,) ) cos (0rrv) i tz .2.6)

where nrr(ro) = Arrôrr/0rr.

Let us model the combined Norttr Coorong - South Coorong systen as two

idenÈical lakesr each with length sOkm, breadth 2.5lsn and depth 1.25m,

corurected by an opening of width 1O0m which models the Hell's Gate channel.

Ttre lengttr d is set to zero. Ítre left ha¡d basin may be said to act
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independently of the right har¡d basin at a glven frequency when tl¡e surface

response fir¡rction (gain and phase-}.g) at each point along the axis of tt¡e

left hand basin (except close to the opening) is almost equivalent to tt¡e

surface response function at the identical point Ín ttre case when the two

basÍns are unconnected.

In Fig. 7.3 we present the sr¡rface response function as determined

fro¡n (7.2.61 for ttre Seven Mile Point station, eguivalent in this instance

to the point (,-L/4' B/2). For comparison, the response function for the

Seven Mile Point station assuming ttre lakes are uncorurecÈed, is also pre-

sented here. In Fig. 7.4 tl¡e surface response functÍon at the posÍtion

(-L/2, B/2) for the connected system is shown; for the unconnected system,

ttre response is always zero at thís positÍon. Finally in Fig. 7.5, the

gain and phase-1ag of tÌ¡e discharge Qo(ur) are presented.

Regardless of the value of the danrping parameter d, it is clear that

at sufficiently low frequencies the two lal<es act as a single unít, exhib-

iting tt¡e familiar wind set-up arong the axís of the combined system.

Further, at higher frequencies and wíttr o = 0r there is a marked differ-

ence between the response of the coru¡ected and unconnected sysÈems. The

effect of an openíng of non-zero widttr between Èwo basins Ís to increase

the possible nr:nber of normal modes and hence resonant frequencies withÍn

the conrponent parts of the total system (Mei and ünlüata (1973),. Howevet,

as o + -, the magnltude of the discharge Qo(to) -à O, so that even with a = 0

tl¡e influence of these 'connected' modes becomes minimal at suffíciently

high frequencies and the two basins act independentty of each other.
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An increase in the danping paraneùer c in general causes a decrease in

the díscharge Q_ (ul) at each freguency, so the basíns begin to respond

independently of each ottrer at }ower frequencies. For sufficiently high

c, ttrey act essentially independently at almost all frequencies.

We have previousl-y indicated that if the North Coorong ís considered

closed at Hellrs Gate, the danping parameter o assunes a value of
-4, -ì0(2.5 x lO = sec '). For such values our analysis indicates that the

North and South Coorong basins behave larqely independenÈly at frequencies

greater than 1 cpd. For example, at Seven MiIe Point there is an equiva-

lence between gains, the errors beÍng at most I58, while phase-lags also

correspond. closely. At the statíon (-L/2, B/21, the gain of the con-

nected system is 1ow freguency dominated, Èhe response at frequencies above

about 2 cpd being very small. For diurnal frequencies tÌ¡ere is a good

first order agreement at Seven Mile Point between the gains of the con-

nected and unconnected systems. However there is a phase difference magni-

tude of about 90" for this frequency. At frequencies much smaller than tl¡e

diurnal (e.9. wind sÈresses involved in large scale storm cycles) r it is

clear that the separate basins act very much as one.

A brief mention should be made of alternative methods of solution to

the problem presented in this chapter. One alternative ínr¡olves deriving

integral equations( in the case d=O) for P*(yrt^¡)r Ye[0re'] and 21(OrYrtd),

ye[e'rB]. Approxímate solutíons to these equations enable upper and

Iov¡er birunds to be placed on the quantity Qo(u). Si¡nilar methods are used

in electromagnetics (refer ilones (1964), 55.12)) and have recently been

most successfully employed in water wave problems (Evans and Morris (1972) ).
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The method was aBplied to tfie present problem, though solutions were only

possible for the restricted case o = O. The results confirmed that even

when the width of the opening between the l-akes is very small the degree

of Ínteraction between them may be consÍderable at certain frequencies.

Another alternative involves use of a 'smal1-hole' theory simílar to
that of Mei and üi¡lttata (Lg73, used to study the harbour resonance problern.

The general theory has recently been formalized by ruck (1974). rt was

not attempted ín the present instance, but may prove to be of greaÈ rele-
vance in studying ttre related and more compticated problem of wind effects

on basÍns connected by a straight channel.

t{e conclude at ttris stage our simplified analysis of wind effects on

connected lakes. Results have shown that the conclusions of Noye (l-970)

regarding the effect of flows ttrrough Hel1's Gate on water levels in ttre

Coorong lagoons are generally correct, but tt¡is is only so because of the

heavily damped nature of the system.
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CHAPTER 8

A CCI,TPARISON OF THEORY AIi¡D EXPERIMENT

8.1 Experimental Estimate of Response Function

The Coorong lagoons obey the 'nalrov¡ lake'' approxirnation, i.e. only

ttre component of wind stress paralle1 to the lake axis is important in

deÈermi¡ing wi.nd ef fects in the lagoons . As such, only a single response

function is needed to characterize the system.

Erçerimental esti¡nates of this function for the North and Soutlt Coorong

have been made by tÍme series analysis of wind velocities recorded at

Mundoo Isla¡rd and water levels recorded at Seven Milê Point and Noyers

fsland respectively. Vte assume that wi¡rd velocities at l{und,oo Island are

eguivalent to ttrose at other points along ttre lagoon axes, i.e. the wind

stress is homogeneous; also tt¡at ttre flows tlrrough Hell's Gate have minimal

effect on the surface responses of the separate basins. Tttus, by a com-

parison of these experimentally determined response functions with the

theoretical res¡nnse functions determined by the analytical methods of

Sections 3.2, 3.3 and ttre numerical ¡rethods of Section 5.2, estímates may

be made of Ètre values of the various darrping parameters used to character-

ize tlte system.

The data used to estimate the response function for the North Coorong

is shown in Fig. 8.1a¡ that used for ttre Souttr Coorong is shown in F.ig.

8.1b. In eacl¡ case, the wind velocities were obtained from Èhe chart

record of a Dynes anernomeÈer, its sensor being IOm above ground leveI. llhe

corresponding surface stress is calculable from (1.1.1), and thus Èhe
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qomponent of wind stress along the axis of each lagoon may be calculated.

The axes of ttre North and Soutlr lagoons are regarded as positive ín the

south-east and nortt¡-west dírections respectively; this follows the nota-

tion of ttre analytÍcal model of the Norttr coorong (section 3'2) and the

numerical mo<lel c¡f the South Coorong (Section 5.2). lltre nethod of record-

ing water levels is reported elsewhere by Noye (1970).

Ittre longitudinal component of surface wind stress and corresponcling

surface displacement at a given station may be regarded as the input and

output functÍons respectiveJ.y of a linear system. The gain and phase of

t¡e línear system may be estimated directly by cross-spectral analysis of

the input-output data. often the gain function G(t¡) at a given ançfqlar

frequency r has been found from

PL(ùr) = G2 (t¡) e*(trr) (8.1.1)

where er(trr) is ttre pohrer spectrum of the wincl-stress input and P"(o) is the

spectrum of the water-leve1 output. thus'

¡P, (rrr) 
1 I/2

c (r¡) = l._"rr,r, ,J (8.1.2)

Hovrever such a procedure does not take account of any noise which might

be generated within ttre system. If there is an independent noise contained

in tt¡e output record, then

PL(ur) = ç2(t,r)e"(rrl) + PN(ri) (8.1.3)

which differs from (8.1.1) onì.y by the incl-usion of e"(ut) (the power spec-

trum of the noise) wiÈh tt¡e contribution from the input. The effects of

tl.ís extra term can be accounted for in the following way. ilenkins and
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Watts (f968) , p-352 have shown that

r"(rrr) = P"(rrr) tr - ÇtolÌ (S.1,4)

where Çtrl is the squared coherence between the input and output at

angular frequency u:. This equation shows that, when t}e whole of the out-

put spectrum consists of noise, the sqrtared coherence is zero¡ when ttrere

is no noise, the squared coherence is unity. From (8.1.3) and (8.1.4) it,

follows that
tP- (ultL/2

G(o) = l1*r'rl |.fr.u,.[ (8.1.s)

This fo¡¡rula was used in the analysis of the wind and water-level

data of Fí9. 8.1 to determine the gain of each wind-water level system-

Ttre power spectra ern(trt) and P"(t¡), the coherence n""(ut) and the phase

difference 0(ul) were found and the gain calculated usíng (8.1.5).

Fig. 8.2 shows the gain G(o) and phase-fag {-0(r,r)} of the wind-water

Ieve1 system for the North Coorong and South Coorong sysÈems. IÈ can be

seen that for both there is a steady fall in the gain while water level

Iags ttre wind stress by increasing anounts as the freguency increases.

In Fig. 8.3 cun¡e-fitting of the analytical gain and phase-lag at

Seven Mile Point as d.eterminecl from (3.2.91 ancl (3.3.13) ' (assuming the

NortÌ¡ Coorong is a rectangiular lake of constant depth), suggests that c =

2.5 x ro-4 sec-l .rrd N = 4.0 x 1O-4 """-1. similar curve-fitting of the

gain arrd phase-Iag at Noyers Island determined numerícally in the manner of

Section 5.2 indicates that for the South Coorong t = 7.5 x 1o-4 *.=."-1.

These values should be regarded as estimates only. The theoretical curees
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dran*r ín Fig. 8.3 approximate the upper and lower bounds of t}re 95* confi-

dence limits of tt¡e oçerimentally deÈerminecl gains. The coruesponding

phase-lag curves do not match so well wittr e>çerimentally deteruríned phase-

lag values. Neverttreless these estímates confirm our previously-he1d sus-

picion tfiat the response of both Coorong lagoons to variable wind stresses

is heavily damped. Ih particular, the appearance of the fundamental tongi-

tudinal seiche in eiÈt¡er 1agoon is rxrlíkely.

Wind-water level systems without a 'preferred direction" must be

specified by two response functions, as indicated in Section 2.2. Lakes

Arexandrína and Arbert clearly come within this category. The task of

extracting two response functions from a given recorcl of wind velocities

and corresponcling water levels Ís more ccnrplicated than for the case out-

Iined abover and has not been attempted here.

8.2 Vlater Leve1 Predictions

Íhe ultimate test of any scientífic theory is provided by the degree

to which its predictíons match reality. fn the case of wind effects on

closed la}-es vre nay, using recorded surface wÍnd stress as Ínput to tt¡e

theoretical system' compare water leve1s predicted by the linear theory of

previous sections with recorded water levels. using the approximate

Fourier analysis technigue sketched in Section 2.2, several such compari-

sons are made here between predicted and record,ed water levels for the

lakes of ttre Murray t{outh.

8or a 'narrow lake' the input record consÍsts of the longiturlinal wind
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stress rs(t,) recorded at station:.xo. Íhe record is of fÍnite length T,

extendíng from t = O to t = T. It ís a contínuous record,' but f,or practÍ-

ca1 purposes it must be sampled at intervals At over the range [OrTl to

produce a díscrete (digitized) record consisting of 2L (= T/^tl sanple

values (r")", r = 0r1, , zL-L such tt¡at

(t=)r = r=(rôt).

Then, (1968), p.f9, ttre finíte Fourier seriesas shown tiy Jer¡krns a¡id lfatts

A 2+
L-1
I {Ao.cos (ont) * Brnsin (o^t) } + e"cos (o"t)

m=I

2nmra=Ërm=Lr2,

o

wiÈh

, L

, m = 0r1,

, m= Lr2¡

(8.2.Ia)

,L (8.2. rb)

(L-I) (8.2.Ic)

s
(t) over the

A
m 2L I (r irlI

rB=
m

I

2I,-L

r=..O

2L-L

r=0

cos

) 9tn

ts

2L I (rs l¡lrì
Ir-J

L

provides an approximation r_(t) to tÌ¡e continuous record r

range [0rTl in t]re sense that

(t") t 1s
(rAt), r = 0rl, , 2L-L

The highest frequency component present in the approximation i"ttl is l,/t =

L/2Lt-, corresponding to a period of 2 sampling Íntervals. Ttre approxíma-

tion i"(t) to t"(t) over the range [orT] is defined for all t and is a

periodic functÍon with period T.
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If ì (t) ig taken as Ure input to t1.e wind-water leve1 system at
s

station xoe then the form

L-1
aoz (xo ro) * , "I: 

tAmRe{z (xo,rrr*) 
"juht}m=r

j,rnt ]fDLt+ Bmrm{z(xoro*)e ) ¡ + arne{z (xo,rrr") e

where Z(x ,o) is ttre response function for the system, is the resultant
o

steady state output, ilxort), It is periodíc, wíth perÍod T, and approxi-

mates the true system response, Ç(xort), to the input t=(t) over tÏ¡e range

[OrT]. However, the approximation would be expected to break down at tt¡e

ends of tl:is range¡ it is ttrerefore desirable that the record lengttt, T, be

as large as possible, so confining such distortions to relatively small

regions.

Irhe btock diagram of Fig. 8.4a summarizes ttre procedures involved in

water level predictions for 'narrovr lakes' using response functions.

Such methods are equally applicable to lakes witt¡out a preferred direc-

tion. Here, however, ttre wind stress vector E"(t¡ measured at station

(xoryo) over the range [O'T] is resolved into component" t""(t), rsy(È)

whích may both be approximated by finite Fourier series i"*{t), i="tt) of

the above fo¡sr. These separately produce systen responses Ëf {*orYort),

Ëz(xoryort) which may be added to produce an approximation to ttre true total

response, Ç(xoryort), of tÌ¡e basín. A block diagranr of this procedure is

given in Fí9. 8.4b.

Botl¡ the mettrods outlined in Fig. 8.4 have been used in water level

predíctions for üre Murray Mouth lakes. The method of GoerËzel (1962) was

)
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progranned for an efficient calculation of the series (8.2.1b), (8.2.1c) '
Wind speeds have been converted into stresses using the form (1.1-t) -

Fig. 8.5 shows a predictíon of water leve1 at Seven Mile Poínt for tt¡e

11 day period depicted in Fig. 8.1b. The response function values used in

the pre<liction are determined from (3.2.9) (assr¡ning the NorÈt¡ Coorong as a

rectangular, constant depth basin) with o = 2.5 x lO-4=e"-I. E,ig. 8.6 shows

a water level prediction at Noye's fsland over the 11 itay period depicted in

Fig. 8.1a. The response function values are determined from the numerical

metlrod of Section 5.2 wittr r = 7.5 x 1O-4m."..-1. Fig. 8.7 shows a water

level prediction at Tauwitchere barrage for a 19 day period in December,

L97L. Response function values for elevation point I84 of ttre model of

Sectíon 5,4 witÌ¡ r^ = 5 x lO-4m.sec-I and r- = 10-3*."""-1 have been used
)LC

here, the wind velocities being resolved into south-nortt¡ and west-east'

components.

fn each of these three cases, the input record was digítized to half

hourly readingsr the highest frequency componenË present in ttre Fourier

series approximation to the wínd stress Ínput is thus 24 cpñ.. Ttris makes it

impossible to reproduce, througrh ttre prediction process, ânY hígh frequency

(> 24 c¡¡al) fluctuations in the observed water level. ftris ís not a serious

problem for ttre Coorong lagoons where such effects are a minor part of t'he

surface response. Indeed, it is clear that very satísfactory comparÍson

between observed and predicted water level has been achíeved for bottt the

Coorong predictions. From the result,s of the North Coorong prediction we

conclude tJ:at the rectang,ular, constant depttr model is a realistic representa-

tion of the actual basin.
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For Lake Alexandrina, the observed and predicted water levels at

Tauwitchere barrage do not compare as rdell. (VariatÍon of rO and r. showed

t¡at values of 5 x 1O-4 r."."-I ana 1O-3 *."""-I respectively gave the best

fit). There ate several ¡nssible causes for these discrepancies.

Firstly, from tt¡e response function for Tauwitchere barrage shown in

¡¡ig. 5.15, it, may be co¡rcluded that hígh frequency components are an impor-

tant part of the water level response and should not be omitted. It would

be preferable, therefore, for the sarnplíng interval to be somewhat less

ttran 1rl2 hr. Secondly, the numerical model of Section 5.4 faits to give a

very accurate representation of the }ake contour in the region of

Tauwitchere barrage. Unfortunately, the onty records suitable for analysis

were from this regíon. In all probability, more satisfactory compariscns

would be achieved at places like Mílang and l{ellington. thírd1y, the flow

through tt¡e barrages is variable arul has an effect on the water level at

Tauwitchere barrage that cannot be incoxporated into our model.

I¡ sìJ¡nnaqf , the satisfactory comparison obtai¡red between obsen¡eti and

predícted water levelsr particularly for the Coorong lagoons, jrrstifies the

use of response functions for purposes of predictíng v'tater levels on closed

Iakes. Furt}er work on refinement of the numerical model of SectÍon 5.4

and the collection of water level data at poínts ottrer tt¡an Tauwitchere

barrage needs to be undertaken to improve comparisons in the 'non-narrow'

I'akes Alexa¡rdrina and A1bert.
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CONCLUSIONS

The analytical anrd numerj-cal results of ttrÍs thesis indicate that use

of response functions provides a simple means of characterízing the wínd

induced response of a given lake. A wÍde class of wind effect problems may

be treateil in thís ¡nanner and a systematic derivatíon provided to many

results otl¡en¡ise obtaÍnable only by more lengttry procedures.

A comparison of theoretical and experimentally determined response func-

tions suggests that damping processes dominate the wind induced response of

ttre Coorong lagoons. Such heavily damped behaviour is due to the extreme

shallowness of the basins. ft is concluded that the fundamenÈal longitudi-

nal seiche resulting from a suddenly imposed wind is overdamped in both North

and South Coorong, a result in agreement with the experimental conclusions

of Noye (1970),

The characteristic dÍurnal oscillation in the Coorong water levels is

si.mply explaíned as a @gg response to períodic wind stresses. water

Ieve1 displacements at least of O(IOcxn) may be induced by such prevailing

winds. it is, therefore, likely that non-Iinear responses will become impor-

tant, partÍcularly ín the shallow end regions of the Coorong where surface

displacements are greatest. Etucidatíon of the theoretical non-linear res-

Ponse of a closed basin to variable wind stresses is required before further

progress can be made in this area.

From the simplified analysis of Chapter 7, it seems that danping pro-

cesses are also ímportant in determining ttre largely separate behaviour of

the Coorong lagoons. Future work, particularly concerning wind effects on
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Iakes coupled by a narrorv channel, should extend and strengthen this

conclusion.

The theoretical results of Chapter 4 suggest that ttre earth's rotatíon

plays an unímportant role in the response of Lakes Alexandrina and A1bert' to

surface wind stress. This is due to a combÍnation of the ratt¡er sura1l horl¿

zontal di¡nensions of the lakes, the much larger value of the Rossby radius

of deformatÍon and to signÍficant damping influences.

Numerical experiments of Section 5.4 highlíght the importance of Narrung

channel flow ín determÍning ttre response of Lakes Alexandrina and Albert.

Generally, the magmitudes of ctraracteristic vÍater leve1 displacements due to

prevailing winds are of 0(f - lOqn). Mean current speeds within the separ-

ate lakes are generally snall (O(O.I-Icm.ee"-I))but are aurplifíeil many times

with the narrow confines of the Naruung charmel. Such a conclusion agrees

with loca1 observatíons.

The numerical modelling of Lakes Alexandrina and Albert reported here

ís ttre first theoretical study of the motíons of the waters of these lalces

to be undertalen. Though reasonable agreement between observed and computed

water levels has been obtained, tåere is need for improvement, particularly

in the sophistication of the numerical mo<lels used in ttre prediction and in

tåe gatheríng of accurate a¡¡d more reliable wind and water level data. In

addítion, far too little is known of ttre depth contours in eittrer of the

Iakes, of conditions wittrin the Narrung channet and of the effect that open-

ing and closing of tÌ¡e barrages has on water levels withln the lakes. Until

such knowledge has been accumulated, continued theoretical advances will be

of little direct benefit.
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APPENDIX A

THE MURRAY MOUTII I,AKES

I. Introduction

The River Murray, 250Okm long, forms at its mouèh a, most peculiar and

fascínating system of lakes (Fig. AI). .

It drains into Lake Alexandrina (450km2) wtictr in turn is connected to

ttre smaller Lake Albert (lookm2)ttrrough the narrow, 8km long Narrung channel,

and to tl.e Southern Ocean ttrrough an extremely small opening, only a few

hundred metres wide, which is the real mouth of the Ríver Murray.

Stretching south-east frcm the Murray Mouth for a distance of about

SOkn is the Coorong, an elongated coastal lagoon of average width about

2km, separated from the Southern Ocean by tfre narro$r ridge of sandhills

called younghusband Peninsula. In reality the Coorong consÍsts of two

Iagoons, tlte North Coorong and ttre South Coorong, joined by the opening

known as Hellrs Gate only a hundred metres wide.

Few detailed studies of any kind have been carried out on any part of

this system of takes. It would be true to say that very little is known

about any of the lakes of the Murray Mouth.

For example, the only recorded depth measurements of LaJ<e Alexandrina

are at present held by the Engineeríng and Water Supply Department of Soutlt

Australia. They were made in 1912 and consist of data from several trav-

erses made approxirnately north-south across ttre lake and ttrrough the



-t62-

Narrung channel into Lake Albert. One can estj¡nate an average su¡¡rmer clepth

of between 3 and 3.5m for Lake Alexandrina. l"tore recently, measure¡nents

of Lake Atbert depths made by Cheng Wan-Li (1972) show the averagê depttt

of thís basin to be about 2m. Approximate summer contours drawn from

these sets of data are shown in Fig. 42. Noye (L974) estimates tÌ¡e aver-

age sr¡trsrer depths of ÈÌre tr$o Coorong lagoons to be between I and 2m.

the Coorong is geologically the most ínteresting and environmentally

tlre most fíne1y balanced of the lakes of the I'fi¡.rray Mouth. FoT this reason

ít has received tÏ¡e most attention from scientÍsts, though even for the

Coorong our knowledge is very limited. A most comprehensive sumrnary of the

important aspects of ttre Coorong region has recently been published by

Noye (L974'). It contains in detail much of the information reported only

briefly ín tt¡is Appendix concerníng the environmental decay of the Coorong

lagoons.

It is L¡eIíeved that the inner shoreline of the Coorong represents ttre

stranded beach of a past geological age. It is thus slowly undergoing a

natural geologícat death, a process being hastened by the influence of

man (refer Section 2 of this Appendíx).

Much of tÏ¡e Coorong area is under State protection as a national park,

game resen¡e or sanctuary. The area has, i-n the past' supported great

numbers of bird life, especially pelicans and wild duckr and contains many

unique specimens of marine life in the form of crabsr sea-grassegr etc.

Prior to l{orld War II many fishermen earned a profitable living from the

waters of the Coorong.
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2 the Impact of Man on the Murrav'Mouth Lakes

(i) The Barrages

The Coorong water is basically sea water. Hovrever, in the Souttr Coorong

Lts salinÍty during sr¡nmer may be as much as three times that of normal sea-

water.

On the other hand, the water of Lake Alexandrina and Lake Albert is

relatively fresh and is quite suitable for irrigation of surrounding pas-

tures. rt has been so, however, onry since ttre completion in 1940 of a

series of barrages across the soutl¡-western end of Lake Alexand¡ina (fig.

AI), constructed in order to prevent the upstream flow of water from the

Southern Ocean during ttre su¡uner months when the River Murray ceases to

flow.

The barrages are normally closecl <luring the surnmer mcnths and oBen

during the winter months, though extraordinary seasons may alter ttrís pat-

tern. DurÍng very dry seasons it is possible to wade across the Murray

Mouttr at low spring tide.

the opening of ttre barrages in winter causes a large influx of fresh

water into the Coorong, with a consequent rise i-n water level and drop in

salinity. Conversely, the closure of the barrages during sr'lrnmer leads to

an abnormal i¡rcrease in salinity and decrease in water level.

It is ttrought that sudden changes in salinity may adversel-y affecÈ

certain species of sea-grass and fish. It is certa.in that unseasonal vari-a-

tions in water level can upset the nesting habitats and, routínes of waÈer

birds such as pelicans. The reduced flow of fresh water into tl¡e Coorong
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during Ètre suruner months is also believecl partly res¡rcnsible for tt¡e almost

stagrnant natu¡e of the souttr coorong water over the past, few years.

From a comparison of the tvro sets of data mentioned in section I of
this Appendix for Lake Albert depÈhs, one taken in l9l2 and the other in
L972, it seems that the construction of the barrages has led to an approxi-
mate increase in the average clepth of Lakes Alexandrina and Atbert of Im.

Noye (L974) has documented the fact that winter depths in the coorong

Iagoons are approximately twice the summer depths due both to man-made

influences and to natural effects.

Prior to lforld l{ar rr salt Creek Í^ras an important source of fresh water

for the South Coorong. Hovtever the South-East drainage schene, conpleted

iJt 1946, diverted these waters and as a resulÈ salt creek has not frowed

since L948. The effect of cutting off this fresh-water source seems to have

been a slow increase in the salinity of tt¡e South Coorong over the past

twenty-fíve years, which in turn has adversely affected the ecology of ttre

Iagoon.

As an example, fÍsh nr:mbers in the South coorong seem to have dropped

considerabry Ín this time. rn addition, sea-grasses are belíeved to have

been adversely affected and it is thoughÈ that ttre decrease in Ètre abund-

ance of t}ese sea-grasses may be responsÍble for the obvious and alarming

drop in bird nr:mbers. The sight of foam lining ttre south coorong shores is
now guite cotuncin, even in winter.



-165-

Thus, d.ue in part to ttre surnr¡er closure of ttre barrages and al-so to

tl¡e now negligible flow of SaIt Creek, the South Coorong is rapidly decay-

ing into a stagnant environment.

(iíi) Shore Pollutants

The Report of the Comrnittee on Envirorunent in South Australia (1972)

lists tÏ¡e two main pollution probtems associated with the River Murray as

saline pollution and effluent discharge from towns, industrial plants and

river-craft. Periodic salinity increase is considered to be the bigger

problem of the two.

It would be reasonable to suppose thaÈ a large amount of upstream

pollution finds its way into the lakes of the Murray Mouth. These lakes

might therefore l¡e consídered as a partial incl,Ícator of ttre state of envir-

onmental decay of tåe Ríver Murray itself.

So far ttrere has been litt1e evidence produced to show that the Murray

l4ouÈtt lakes are being tbreatened by upstream pollutants. A greater tt¡reat

to the lakes is presently being posed by farms and towns situated on its

shores. Signs of eutrophication, possibly a result of superphosphate being

washed into the lakes from surrouncling farmland or of other nitrogeneous

effluents, have begun to appear.

A recent report on water pollution control of the River Murray by

the E. e W.S. Department (1973) comments (p.3):-

"Judged by the Level of pollution whích exísts in many of the
major river systems of ttre United States of Ameríca and Europe,

the River Murray in South Australia is a clean river. Honever,
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there is no room for c-omplacencyas there is already growing eví-
dence of ur¡balanced aquatic biological activity in tt¡e River

t'turray in South Australia - partÍcularly in the back-waters ' the

lower reaches of tlee River ítse1f, Lake Alexandrína and the Goolwa

channel. "

3. Future Uses of the Lakes

The decision of Èhe South Australían Government to site a new cíty,

Monarto, near. the present town of Murray Bridge (fiS. t) as part of its

decentralization policy has raised considerable speculation as to the future

uses of the lakes of the Murray Mouth.

At present, the lalces provide life-giving fresh \,tater to surrounding

fanrland. It seems that witl¡in a decade this use as a vitater resource wílI

have greatly increased in scope. One recent proposal, fot example, was to

place a barrage across the Narrung ctrarurel and to use the water of Lake

Albert as a source of fresh water for bottr t'lcnarto and Ade1aide.

A more certain forecast

recreational source, a quiet

Care must be taken to ensure

a fit state for recreational

destroy the system.

is that the lakes will become an important

retreat for the future inhabitants of Monarto.

not only that the system of lakes is kept in

usage but also that such usage does not ítself

The recreational potential of the lakes is already under investigation

by the South Australian State Planning huttrority (1973a). Reporting on

proposals for the land adjoining ttre Lower Murray River and Lake Alexandrina,
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it comments (p.Il6) ¡-

"fhe coasts, riversid.es anrl lakefronts are unÍque water land

boundaries. Being fixed and finite they are a community asset

for which no sr:bstÍtute is available . Along the shorelines
fronting Lake Alexandrina and the Lcwer t"turray River, siËes

shoultl be allocated for tourist accommodation areas and recrea-

tional facilitíes which have as litt1e effect as possiJrle on

the naÈura1 and scenic qualities of the area."

It ís Iikely, too, that unless great care is taken, Monarto wiII

greatly increase the load of, upstream pollutants presently entering the

system. The South Australian State Planning Authority (1973b) in its

report on the site selection of Monarto, says (p.19):-

"sewage disposal wÍll require detailed planning. Tlre possi-

bitity of eutrophícation in ttre River, and salÍnity build-up
in irrigated areas will require careful consideration. PÍping

the effluent to Lake Alexandrina and/ar nutrient stripping
may have to be provided in the long term. "

fn sumnary then, it seems that the lake waters will, in future years.

be used in many more diverse and possibly conflicting l¡?.ays. Conf lÍct is

unavoidable - it can be mini¡nízed only by the application of carefully

planned policies and guidelines for development.

Clearly the greatest barrier to efforts at preserving the lakes of tt¡e

Murray Mouth is our overall lack of knowledge of the system itself.

For example, much attention has recently beerr focussed on the decay

of the ecologically fragile Coorong. It has been proposed that a channel

be cut to connecÈ Lalce A1bert to ttre North Coorong or the Southern Ocean to

the Souttr Coorong near Salt Creþk. In this way it ought to be possible to
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satisfactorily flush out the Coorong \ilaters and tåus maLntain salinities

at a more stable level.

Such a proposal, hówever, wÍlI remaÍn as mere sPeculation rather than

a definítely committed plan untíI a large-scale, multi-disciplila¡¡fr study

has been undertaken to determíne tÌ¡e effectiveness and, indeed, possible

side effects of tlre scheme. It wag with ttre intention of contributing to

our knowledge of ttre lakes of the Murray l{outh that the studÍes reported in

tÏ¡is thesis were undertaken.
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Ítre response function, il(t¡), of a linear system may be defined as the

Fouríer transform of tt¡e impulse response h(t), (i.e. the response to a

unít impulse ô(t) of the system) rví2.
,Ø

J (r,r) = I ntale-jt.^ttua (B.ra)
t

with inversion

h(t) =*[ s(u,)ejota,¡. (8.1b)

Papoulis 1L962), p.B6 shows this definition to be equivalent to that given

in Section 2.2 of thÍs tt¡esis.
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APPET{DIX B

SOME PROPERTIES OF RESPONSE FUNCTIONS FOR CAUSAI,, I,INEAR SYSTEMS

Now, the impulse response is a real-time function so tt¡at writing

J(t¡) = R(r¡) + jx(t¡) where R(r¡¡) and X(t¡) are real, we have from (8.1) that

f'

r
-o

i.e. the real and imaginarl'parts of the response function of a linear

system are even and odd functions respectively of the angular frequency o.

Further, X(O) = O so that

iI(0) = R(O) (8.3)

n(o) = h (t) cos (ôL) dt (8.2a)

(8.2b)X(t¡) = - h (t) sin (ot) dt

The step response and impulse response are related by ttre forut



-170-

rt
a(t) = Ilo

h (r) dt

wtrích follows from (2.2.4) with f (t-r) =' ô (t-T) . AIso, for a causal systern
t-

(8.Ia) becomes

,r(.u) = J* 
n,.r.-J"u..

so that

I¡(0) = h (r) dr.

lfhus we have finalLy that

H ,"(t)) = it(o) = R(o) (8.4)

provided the limit exists, i.e. tt¡e equilíbriu¡n response of a causal linear

system ís equal to the system gain at zero frequency. If ttre lfunit does

not exist vre may speak of iI(O) only as a quasi-eguiliJrrium (or quasi-

static equilibriu¡r) response. Such is the case in wind-effect problems

when no dampl-ng forces are acting within ttre flulil.
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APPEI{DIX C

UNIOIJENESS PROPERÎIES FOR lHE BOT'NDARY VALUE (4.z.ILl , G.2.L4l

To prove that a.ny solutíon to (4.2.L41 ís unique, it suffices to con-

sider the following generalized boundary value problem ín three-climensional

sPace:-

(V2-¡2¡ Y = f (x,y ,zl (c' ra)

within a closed volume l, subject to the boundary condition

Y = g (x,Y ,zl (c ' Ib)

on the surface õ of the volu¡ne l. In (C.Ia), )\ is a real constant' We

shall prove that any solution Y (xryrz) to the boundary value problem

(C.la) ís unique.

To ttris end, sup¡rose there are tr,r¡o separate solutfons to tt¡e problemt

viz. Y1(x,yrz) and V2 lx,Yrz). 1Íhen the difference Yr - Yz = V3 satisfies

1y2-12¡ y 
3

Y3

= 0 within Vr

=0onS.

(C.2a)

(c. 2.b)

Further, ttre function Y3(xryrz), sr¡bject to the conditions of continuity

of aII first derivatives within I ana continuity ot F, satisfies ttre

following corollary of t}e divergence theorem (Ct¡ester (1971) p'69):-

/flìvv.l2dV= !!- rrff.æ - ilLY3v2v3a? (c'3)

vs\7
where â i" ¡tr. outwardly directed normal to the surface F. Combining

(c.2a), (c2.b) and (c.3) gives
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IIÍ t,(vvg)2+(ÀYg)2)af = o (c.4)

v

from which, since t}e integral of the left ha¡¡d side of (C.4) is never

negative, qte cortclucle that Y3 = O withh I .

lllrus, it follows that Íf a solutíon to (4.2.L41 exÍsts then that

solution is unique. A similar analysis applied to (4.2.11) shoÌts that

rrníqneness is guaranteed to within an additive constant. (of course' tt¡Ís

also follows from (4.2.L21 and the uníqueness of (4.2.14) ).
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APPE{DIX D

FINITE D IFFERENCE SPECIFTCAT OF THE BOUNDARY COITDITIONS

FOR THE NT'MERICAL !,IODEL OF SECTTON 5.3

Here rile consider in detail the relevant forr of the boundary condition

(4.1.9a) applying to each tlpe of boundary str:eam point, and derive the

"degenerate" form of the difference equations (5.3.3) sat'ísfied at each-

Ttre form of the boundary condition at 27Oo corner points is a poínt of dis-

pute. Clear1y, it cannot be defíned explicitly usíng (4.1.9a). lttre choose

ttre simple, though unnatural condition of, zera flow at such points.

Group 3

t l¡t.. lrl/

Values for Z ,zi+n i+n+l

so ttrat Pi*Qi = Pi-Qi, i.e.

I

0.- 2d+ 0.-i+n -i+n+l

a¡e starting values. Here (4.I.9a) gives

O.=0

S.
1-D =0.

1¡. ra)

(D.lb)
I

The appropriate dífference equation to determine S, (and hence Dt) is

determined from (5.3.la). Using a ''one-sided' difference approximation for
laz)
[ãxJi 

, v'l'
far.l ^, 

r t,,
[ã-"Ji ' ã (zi+r,+1-Zi+r')

tl¡en (5.3.Ia) gives



or

ßiPi = - yi("i*rr+1-zi+n)*n o*

^1S. - - 
{- Vi (2i+r+L-Zi*rr)+K.o*}tÞi

may be cletermined from (D. tb) .
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=O.

while DI

Group 4.

ui+1

l-

Values for 2,, Zi+L have been calculated as part of the iterative schene.

Again we have that s.-Di = o. Now a value for D' nay be dete¡mined from

(5.3.3b). Further, taking a similar one-sided difference approxÍ.rnation for

[åi]r, ttreÍ'(s.s.tal gives

L.tr=ü{-yiø.+L-ziil+Kto*}. (D.zal

Defining at ÈÏ¡is Boint the rend-value" e = Sí-Oi, then íf e = O. the bound-

ary condition (D.lb) is saÈisfied.

0
i+l

Group 5

0
i+n+l

values for ,í*1, Zi+n+l are starting values. Here (4.1.9a) gives

Pi=o (D.3a)

oi

(D.lc)

:j
J

,T'
-1

so (P.+pi) = -(Pi-Qi), i.e.

S. +D
]. t

Using a one-sided <lifference approximation for
(az)
[ÐJi ' vlz'

(D.3b)
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ß+Jt " h (zi*r-zi*,'*r)

then (5.3.Ib) gives

., = h 
{- yi (zi*t-ri*r,*r)*K.oy} (D.3c)

Again s.+Di = O.

while D may be determined from (D.3b).
I

Group 6

io

i+no

Values fot 2,, 2,, - have been previously calculated,.I. I+N

Now (5.3.1b) gives

(D.4)

whíle a value for D may be determíned from (5.3.3b). The end value is
t-

qlefinedbye=ti*Oi

Group 7

Here we have simply Èhat Pi = 9í = 0, i.e.

S. = D. = 0. (D.5)

The condition (D.5) is also satisfied at strea¡n points belonging to groups

I 9 and 13. For stream points belonging to srour¡s lO, LL, 12 and 14 it is

required --hat (D.5) be satÍsfied. In each of these casee a value for D. is

calculable from (5.3.3c); we may ttrus define the end value " = Di for such

points.

t, = L 
{- ti(zi-zi+n)+Kroy}
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APPENDIX E

THE COMBINED LAKE AÍ,EXANDRTNA . LAKE ALBERT IIODEL

I. Details of the Narrung Channel Array

Equations 15.2.7a) t $.2.7b) are used in the calculation of elevations

and transports for the array¡nints of Fig. 5.14b. (Ihowle,Jge of the channel

Ëransport at grid point I and elevation at gricl point 2 is necessary to

inÍtiate the process; this is obtainetl from ttre matching conditions with

ttre two-dimensional model) .

For simplicity, transports at grid points 1, 3 have a north-south

alignurent, i.e. parallel to ttre verticals of the two-dimensional array; at

grid point 5, the atignment is south-east; for grid points 7t g'J-L, 13 it is

west-east (parallel to tl¡e horizontals of the two-dimensional array); while

for the remaining grid points of the one-dimensional array, transPorts again

have a south-east alignnent.

OnIy the component of wind stress amplitude parallel to the aligmment,

of Ei*2, i = L, 23, (2) is used in the calculation of ,i*3 fto^ (5.2.7b).

Thus the one-dÍmensional scheme of Section 5.2 is modified here to the

extent that wind stress inhomogeneíties are íncorporated into the difference

equations. !rle, therefore, have accounted for Èhe chx¡nel curvature in a

simple yet physically realistic manner.

2. Matchinq Condítions

VÍe ane reguired to match ttre Èwo-dimensional flows in Èhe separate lakes

onto the one-dimensional channel flow.
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Part of the matching condition requires continuity of flow at the

junctions between ttre separate Ìakes and Èhe channel. The first and last,

channel points are assumed to coinci<le with strean points 129 and 162 res-

pectively of the troo-dimensional êËf,â1li At grid point l-29, a value for ttre

quantity D. is calculated from (5.3.5b) and then s. - -D. qLves the direc-t ]. t-

tion of ttre computed flow as parallel to the verticals of the two-dimensional

array. The computed transport amplitude at this point then becomes equiva-

lent to the channel flow arnplítude EI, when multiplied by ttre widtt¡ of the

channel at this point.

Elevaticn anplítudes must also be matched across the junction. At the

Lake Alexandrina junction, this has been done by sup¡rosing thrat the mean of

elevation ampl5-tude values for grid points I29, 130 of the two-dimensíonal

array is equivalent to the elevation amplitude at a distance d. (d. = chan-

nel grid length) north of channel poínt l. This value is then used, in

conjunction with the known value for 61 to calculate a value for Z2 using

(s.2.7b) .

Matching procedures at the Lake Albert end of the channel are simílar.

IGrowledge of the channel flow at grid point 25 enables a calculatíon to be

made of the quantities Si, oi at grid point 162 of the two-dimensional array.

The flow at this point always has a scuth-east alignment. An elevation

alrplitude value for grid point I78 is calculated on the assumptíon of its

equivalence with the elevation at a distance d" south-east of channel grid

point 25 as calculated from (5.2.7b). I'ig. El íllustrates the main features

of these natching condítions. Though the matching of elevations is only

approximate it has been shown to give quite satisfactory results.
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Essentialty, the iterative sctreme for Èt¡e couibined model operates as

for ttre two-dimensional scheme of Section 5.2. However' Èhe fact that the

lal<es are connected means that at strean point 129 and elevation point 178

we Tro longer need to specify end and starting values respectively.

In order to consider the unconnected behaviour of the model Lakes

Alexandrina ar¡d ALbert, we may simply close off the channel enCs' Tt¡us

strean point L29 of the two-dimensional array becomes a group 4 point,

elevation point 178 becomes a group 16 point and stream points L62, L63

botÌ¡ become group 3 points. (In ttre connected model, velocities at the

latter point are set to zero) . lfe then procee'3 ttrrough the iterative

scheme of Section 5'3 for each basin separately.
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