(7

LONG-WAVE WIND EFFECTS ON CLOSED LAKES,
WITH SPECIAL APPLICATION TO
THE MURRAY MOUTH LAKES, SOUTH AUSTRALIA.

by

Patrick Joseph Walsh
B.Sc.(Hons), University of Adelaide.

Thesis submitted for the degree of
Doctor of Philosophy
in the
University of Adelaide
Department of Applied Mathematics
May 1974



(ii)

TABLE OF CONTENTS

Summary (iv)
Signed Statement (vi)
Acknowledgements (vit)
Introduction (viii)
Chapter 1 : A Physical Introduction to Wind Effects. 1
1.1 Wind effects - short waves and viscous shear 1
1.2 A description of wind effects in shallow,
closed lakes 3
1.3 Some examples of wind on closed lakes 5
Chapter 2 : The Wind Effect Equations and the Use of Response
Functions in their Solution. 11
2.1 The wind effect equations 11
2.2 The concept of the response function in
relation to wind effects 23
Chapter 3 : Response Functions for Narrow Lakes - an Analytical
Study. 30
3.1 The 'narrow lake' approximation 30
3.2 A solution using the transport form of the
equations 32
3.3 A solution using the eddy viscosity form of
the equations 44
3.4 Some conclusions regarding wind effects on
the North Coorong 51
Chapter 4 : A Generalized Theory for Wind Effects. 53
4.1 The theory 53
4.2 Equilibrium solutions 59
4.3 The rectangular lake 65
4.4 The circular lake 69
Chapter 5 : Numerical Solution of the Wind Effect Equations. 82
5.1 Introduction 82
5.2 One-dimensional numerical solution 85
5.3 Two-dimensional numerical solution 94
5.4 A combined model of Lake Albert - Lake

Alexandrina 106



Chapter 6

"

Chapter 7

Chapter 8

Conclusions
Bibliography

Appendix A :

Appendix B

Appendix C :

Appendix D

Appendix E :

(iii)

Wind Effects on Stratified Lakes.

6.1 Introduction

6.2 A solution for 'narrow' two-layered lakes
6.3 A generalized theory

Wind Effects on Connected Lake Systems.

7.1 Introduction

7.2 An approximate solution

A comparison of Theory and Experiment.

8.1 Experimental estimate of response functions
8.2 Water level predictions

The Murray Mouth Lakes

1. Introduction
2. The impact of man on the Murray Mouth lakes
3. Future uses of the lakes

Some Properties of Response Functions for Causal,
Linear Systems.

Uniqueness Properties for the Boundary Value
Problems (4.2.11), (4.2.14).

Finite Difference Specification of the Boundary
Conditions for the Numerical Model of Section 5.3.

The combined Lake Alexandrina - Lake Albert Model.

1. Details of the Narrung channel array
2. Matching conditions

114
114
120
125
133
133
139
144
144
147
152
154

161

161
163
166

169

171

173

176

176
176



{iv)

SUMMARY

This thesis reports a theoretical investigation into long-wave effects
on a closed body of water resulting from wind stress at the surface. Results
from both analytical and numerical models are compared with data collected
from the lakes of the Murray Mouth, a series of shallow, interconnected

lakes situated roughly 100km south-east of Adelaide, South Australia.

The linearized long-wave equations are considered. Hence, a closed
lake responding to the action of surface wind stress may be viewed as a
linear system, and the concept of the response function, a convenient means
of characterizing a linear system, becomes immediately relevant. The res-
ponse function, in this context, is defined as the time invariant part of
the steady state lake response (either water level or velocity response)
measured at a given station on the lake, to a wind stress of sinusoidal

time variation and constant strength and direction over the surface.

Analytical response functions for the single-layered rectangular lake
(neglecting Coriolis force) and single-layered circular lake (including
Coriolis force), both lakes being constant in depth, are derived. Finite
difference methods for calculating response functions for basins of arbit-
rary contour and depth are considered. Several different numerical models

of the Murray Mouth lakes have been constructed.

Additional problems treated include the response of a two-layered
(stratified) lake of constant depth, and the coupling effects between con-

nected lake systems.
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Results indicate that damping forces play a dominant role in wind
induced motions of the Murray Mouth lakes. Generally, satisfactory compari-

sons between predicted and measured lake responses have been achieved.
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INTRODUCTION

The major cause of movements of waters within most lakes is the direct
action of surface wind stress. Both free and forced water level oscilla-
tions as well as circulation of short and long term duration may be induced
by varying types of wind. The effects are felt within all basins, regard-
less of size. Generally, they are complicated by the earth's rotation and,

possibly, by stratification within the fluid.

Strong winds often result in flooding of areas adjacent to a lake.
Regardless of strength, wind action largely determines the mixing process
within a lake, and hence the quality of its waters if it is subject to pol-

lution discharges.

The Murray Mouth lakes of South Australia - Lake Alexandrina, Lake
Albért and the Coorong lagoons - are typical of most Australian lakes in
being shallow, highly saline and well-mixed. They are coastal lagoons, con-
nected to the Southern Ocean through the narrow Murray Mouth, and are thus

strongly influenced by prevailing winds.

Chapter 1 touches briefly on the physics of the various types of
effects within a closed lake that result from the action of surface wind
stress. Chapter 2 discusses the mathematical equations used to analyse the
effects and the various simplifying assumptions needed to make them solvable.

The simplified equations are linearized, so that the concept of the response

function - a natural means of characterizing a linear system - may be used
to describe the response of a closed lake to a wind stress input. Relat-

ively simple and readily interpretable solutions to a variety of wind effect
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problems may be obtained in this manner.

Wind effects on a rectangular, non-rotating basin of constant depth =
the so-called "narrow lake' - are examined in Chapter 3, using the response
function method. The results are applicable to the elongated Cogrong
lagoons. Theoretical response functions for the North Coorong are derived.
Comparison with an experimentally determined function (Chapter 8) enables
estimates to be made of the values of different types of damping para-
meters used to specify the system. It is shown that the North Coorong
wind-water level system is heavily damped, so that the fundamental longi-

tudinal free oscillation is unlikely to occur.

Chapter 4 presents a generalized theory for wind effects in constant
depth basins of arbitrary contour, with Coriolis and damping influences
included. Such a theory has applications to the "non-narrow" Lakes Alex-
andrina and Albert. In particular, from certain analytical solutions, we
infer that the earth's rotation has little effect on wind induced motions

within these lakes.

Direct numerical calculation of response functions for realistic,
finite difference models (both one- and two-dimensional) of the Murray
Mouth lakes is achieved in Chapter 5. Here the Coriolis forces are neg-
lected. A series of numerical experiments on a model which incorporates
both Lakes Alexandrina and Albert and their connecting link, the Narrung
channel, indicates that remarkably strong currents are induced within the
channel by wind action on the separate lakes. These currents are well known
to local inhabitants of the area, and considerably influence wind induced

motions in the separate lakes.
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Chapter 6 examines wind effects on a stably stratified, simple two-
layered lake of constant depth. Though not applicable to the Murray Mouth
lakes, this model represents the behaviour in many lakes in colder regions
of the northern hemisphere, e.g. the Great Lakes of North America. Use of
response functions enables easy observation and interpretation of baro-

tropic and baroclinic modes in the basin response.

In Chapter 7 the problem of coupling effects in the wind induced motion
of a connected lake system is considered. A simple analytical model indi-
cates the importance of damping processes in determining the extent of

interaction between the separate lakes.

The concluding chapter presents the results of analyses of wind and
water level data from the Murray Mouth lakes using methods of analysis
largely developed by Noye (1970). For the Coorong lagoons, experimental
response functions may be determined by cross-spectral analysis of such
data at a given station. In addition, techniques of Fourier analysis enable
predictions to be made of water levels due to measured wind velocities for
both the Coorong lagoons and the “non-narrow' Lake Alexandrina, provided
values of the response function for the wind-water level system are known
over a wide frequency range. Some satisfactory comparisons with measured

water levels have been achieved.

Among several Appendises is one which describes the Murray Mouth lakes
and details the present and future impact of man on the system. The deci-
sion of the South Australian Government to site a new city, Monarto, in
the vicinity of the lakes, is certain to diversify the uses of the lake

waters. Thus, they have great recreational potential; at the same time,
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they may serve as a useful outlet for effluent disposal. The work reported
in this thesis was undertaken to assist in the more satisfactory assessment

of man's impact on the environment of the Murray Mouth lakes.



CHAPTER 1

A PHYSICAL INTRODUCTION TO WIND EFFECTS

1.1 Wind Effects - Short Waves and Viscous Shear

The mechanism of wind-induced momentum transfer at an air—water
interface is a most complex phenomenon which, at present, defies complete
description. There are essentially two effects that occur, as stated by

Phillips (1969), p.145:-

v, ..it appears that the transfer of momentum from the wind is
shared largely between direct viscous shear and the momentum

flux from the inner viscous layer to short waves..."

The two phenomena - formation of localized short waves and action of
direct viscous shear or stress - are coupled in a way that is largely
unknown. Decaying short waves possibly act as an energy source for the

surface currents that result from the viscous shear.

It is common to consider the two effects quite independently of each
other, and that practice is adhered to in this thesis. Our attention is
directed to the second of the two effects, viz. the action of direct vis-
cous shear on the water surface. Hereafter, unless otherwise stated, the

term "wind effects" will refer to such action.

It is assumed that the wind stress, denoted by TS, is equivalent to
the stress exerted on a rigid surface with an aerodynamic roughness that
clearly must vary with the velocity of the wind. The stress is related to

the mean wind velocity, us, measured at some point above the turbulent
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portion of the air flow (normally a height of 10m), i.e. at the edge of

the surface boundary layer, by the drag law
1_=€p ul (1.1.1)
whereicS is a dimensionless drag coefficient and Pa is the density of air.

There have been many empirical formulations suggested for the drag
coefficient; for a summary of these refer, for example, Wilson (1960),
Welander (1961) and Smith (1973). It is generally agreed that above a
certain transition wind velocity, possibly a transition from an aero-
dynamically smooth surface to an aerodynamically rough surface, Cs
increases with increasing velocity. For example Heaps and Ramsbottom

(1966) suggest that

( 5.65 x 1072

Ga = 4 -1 -1
( (1.2 + 1.37 us) x10 °, 5 m.sec < us < 20 m.sec -

-1
. uS f 5 m.sec

(1.1.2)

The resultant stress-velocity relationship is shown graphically in

Fig. 1l.1.

In reality, of course, considerable scatter from the form (1.1.2) is
observed, due partly to small scale turbulent fluctuations in the air flow
above the interface. Deacon and Webb (1962) report that the drag coef-
ficient is strongly affected by thermal atmospheric stability. It has
not yet been shown, however, how such effects may be properly incorpor-

ated into the drag law.
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1.2 A Description of Wind Effects in Shallow, Closed Lakes

The primary effect of direct wind shear on a surface of water is to

induce upper-level drift currents in the direction of the wind stress.

In a non-stratified shallow lake, the drift currents produced by a
steady wind result in a "piling-up" of water along the leeward side of the
lake (Fig. 1.2). This elevation in turn produces gravity currents
directed vertically downwards and hence lower level currents return water

to the windward side of the lake.

Circulation in the vertical plane is thus set up with a velocity
profile across a section near the centre of the lake of the form shown.
Eventually the water surface reaches an equilibrium position at which the
hydrostatic force due to the tilting of the surface balances the sum of the
aerodynamic stress, TS, of the wind on the upper surface and the friction

stress, T, , that the lake Pottom exefts on retufn currents. Such a dis-

b
placement of the water level from its mean position is often referred to

as wind tide or wind set-up. At equilibrium the total fluid transport

across a given vertical section is zero, provided the wind stress is

homogeneous (spatially uniform) across the lake surface.

For laminar flow of a lake of uniform depth, H, it may be shown
(Hellstrom (1941), Keulegan (1951)) that the fluid velocity profile at
equilibrium is parabolic. The velocity is zero at depth '%H and the
maximum return velocity magnitude, equal to a third of the surface
velocity magnitude, occurs at depth :%H.‘ Experimentally, Francis (1954)
showed that the profile under realistic (turbulent) conditions is con-

siderably flatter near the bottom than the theoretical profile. These
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results are shown in Fig. 1l.3a.

The mechanism of wind tide formation in a stably stratified lake is
considerably more complicated (Hutchinson (1957), Heaps and Ramsbottom
(1966)). For example, in a lake separated into two layers of densities
p1 (upper) and pz (lower), the interface separating the two layers is
tilted in a direction opposite to that of the surface. This is because
surface currents in the lower layer flow in the opposite direction to the
wind (Fig. 1.3b) and return currents in the lower layer thus move in the

same direction as the wind.

A simple physical argument suggests that the interface slope will be
much greater in magnitude than the surface slope. Consider the interface
between two fluids of densities p (upper) and p' (lower). The potential
energy of a volume of one fluid displaced a vertical distance ¢ from its
undisturbed position is directly proportional to the product (p'-p)L.

For the surface layer in Fig. 1.3b, p = pa and p' = py so (p" = p) Vv p1;
for the lower layer of Fig. 1.3b, (p' -p) = (p2 - pi) << p) since the
density difference between the two layers is extremely small, of

3 3)

gm.cm ~). Hence, if the same amount of energy is available to both

0(10~
layers, the distance r will be much greater for the lower layer than for
the upper layer. Clearly this argument is an over-simplification, but

such behaviour in stratified fluids is well known, both for the open ocean

{Charney (1955)) and for closed lakes (Csanady (1972)).

If the wind stress is unsteady, i.e. its strength or direction
changes in time, then the induced currents and the lake surface will

likewise change their pattern.



-5

For example, if the steady wind suddenly ceases, then free surface
oscillations (seiches) will occur as the surface, returning from its
equilibrium set-up position to its mean-level, moves in pendulum-like
€ashion about that level. Damping forces within the fluid determine the
rate at which the free oscillations decay. A great deal of the literature
on the motions of lake fluids is devoted to a description of seiches;

refer, for example, Proudman (1953), Defant (1961) and Wilson (1972).

Time-varying wind stresses also give rise to forced motions within a
lake. The equilibrium wind tide may be regarded as a limiting or trivial
case of forced motion. Forced surface oscillations are well documented
in many lakes, though they may often be difficult to distingaish from

free oscillations.

Generally, free and forced wind-induced moticns both play important
roles in the dynamical behaviour of a given lake system. In extremely
shallow lakes, however, forced motions are normally of greater signifi-

cance, since free motions are heavily damped.

1.3 Some Examples of Wind Effects on Closed Lakes

As stated previously, wind action on a closed lake results in a mass
transport of fluid within the lake and an associated displacement of the

lake surface from its mean level.

The slope of the displaced lake level is determined by the strength
of the wind, and also by the depth of the lake. Typically its magnitude
is of 0(10_5). The wind-induced surface slope increases as the depth

decreases since the return flow is more heavily restricted and so there



is greater accumulation of fluid along the leeward shore. Clearly too,
for a given surface slope, wind fetch (the amount of lake surface over
which the wind acts) is important in determining the amount of displace-

ment of the surface from its mean level.

Thus a wind of high velocity acting over a large, shallow lake would

produce large wind tides.

Perhaps the best known examples of this effect are provided by the
North American Great Lakes, the surface movements of which are strongly

influenced by winds.

Lake Erie is of longitudinal shape, the length being about 250km. It
is, further, much shallower than the other lakes, particularly towards its
western end where the depth is generally less than 20m. During a period
of high winds in November 1972, Lake Survey Center water level gauges
at opposite ends of the lake - at Buffalo and Toledo - recorded a
simultaneous difference of about 2.5m. Harris (1954) has reported how
a storm on September 25, 1941, raised the level at Buffalo by 2m and

lowered the level at Toledo by nearly the same amount.

Even in periods of low winds, the effects are still noticeable.
Platzman (1966), in an analysis of six months of hourly data of the
Lake Erie water level, found a diurnal (24 hr) constituent of the longi-
tudinal oscillation of the Lake and concluded that this was caused almost

entirely by wind stress.

A knowledge of wind tides and associated currents is clearly of

importance for the lessening of erosion and property damage and for



the protection of harbour installations and shipping. Newspaper reports
of the wind-tidal flooding of the Great Lakes shores in March, 1973,
spoke of millions of dollars damage being inflicted upon property owners
in the states of Michigan and Ontario. These suddenly changing water

levels are also known to affect the output of the Niagara power plant.

Australia has no lakes of the size or commercial importance of the
Great Lakes. It does have many extremely shallow lakes, however, which
would be expected to be influenced by winds. A typical example is
provided by the system of Murray Mouth Lakes, South Australia, for which

depths generally lie withim ''the.rxange 1lm - 4.5m.

A detailed description of these lakes is provided in Appendix A,
together with an outline of the impact of man on the system and some
predictions of its future uses. In particular, planned urbanization of
nearby regions could lead to the lake waters being used in diverse and
possibly conflicting ways. Thus the lakes will certainly become an
important recreational source; they may also be used as an outlet for

wastes from the new city.

The Engineering and Water Supply Department (E. & W.S.) of South
Australia has, for at least 25 years, maintained instruments for measur-
ing wind speed and direction and corresponding water level at various
pecints around the shoreline of the Murray Mouth Lakes. These records
amply confirm the suspicion that wind effects are of considerable impor-

tance in the lakes.



This fact is well-known to farmers with property on the shores of
Lake Albert who talk of considerable run-off from the lake through the
Narrung Channel into Lake Alexandrina due to strong and persistent
southerly winds. Indeed, high velocities characterize the currents
within the Narrung Channel and often make its navigation a hazardous

undertaking.

A sudden drop in the water level along the shores of Lake Albert due
to an off-shore wind has occasionally prevented pastoralists from
pumping the fresh water needed to irrigate their large areas of lucerne.
This is also an acute problem in Lake Alexandrina where wind effects
have been known to temporarily change the water level by as much as 1m,

leaving inlet pipes of pumps well out of the water.

For example, a 75km/hr south wind suddenly began blowing across Lake
BAlexandrina just before midnight on 3 Rugust, 1953. At Tauwitchere
barrage at the south-western end of the lake, the water level had fallen
by more than lm by 2 a.m., and at Wellington, a short distance up the
River Murray at the northern end of the lake, the water level had risen
by over 60cms by 3 a.m. These effects are illustrated in Fig. 1.4 which

shows the E. & W.S. Department's recordings of the event.

Variations of water levels in the Coorong lagoons are characterized
by a diurnal oscillation. These movements have been well documented by
Noye (1970). Clarke (1966) contends that they are free oscillations.
However an examination of Fig. 1.5, showing a length of recorded water
level at Seven Mile Point on the north lagoon and corresponding component

of wind stress directed along the lake axis, seems to suggest that the



oscillations are wind forced. The diurnal oscillation of wind stress,
possibly a land-sea breeze effect, gives rise to forced water level

oscillations of a similar period.

Thus far in this section we have discussed the effects of surface
wind stress on water levels in closed basins. Important, too, is the

circulation of lake waters caused by surface wind stress.

Circulation and diffusion processes within a lake largely determine
the quality of the water. In order to judge the consequences of, say, a
pollution discharge into the lake, it would be necessary to have some

knowledge of these processes.

Lindh and Bengtsson (1971) list the factors causing circulation of
water masses in a lake as (i) wind action; (ii) inflow-outflow system;
(iii) atmospheric pressure differences on the lake; (iv) astronomical
forces; (v) density differences. They state, further, that wind action
is by far the most important mechanism determining the lake circulation.
This is so -regardless of the lake depth, size or structure though such

factors will alter the structure of the circulation..

short term wind currents (time scale of 0(1 hr) or less) are of an
essentially random nature, being associated with essentially random
fluctuations of strength and direction in surface wind stress. There is
more consistency in wind circulation of an intermediate time scale
(0 (1L hr - 1 week)), since it is associated with changing weather patterns
and other regular variations in wind stress. Time scales of water level

changes show similar behaviour.
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Associated with most closed lakes is a long term circulation (time
scale of 0(l week or more)) which in the northern hemisphere has a con-
sistently counter-clockwise direction. (No cobservations are available for
lakes of the southern hemisphere). Emery and Csanady (1973) have postu-
lated that such a long term circulation is wind-induced. It must have

important consequences for mixing processes within a lake.

Of course, the wind effects of different time scales cannot be
rigidly categorized since the effects of one time scale interact with
those of another. However the manner of this interaction is largely
unknown and, in any case, is prcbably slight. This thesis therefore is
directed towards an inve;tigation of wind effects of the intermediate time
scale which have the advantage of relative simplicity both in observation
and analysis. Accordingly, ihe following chapter presents the mathemati-
cal equations necessary for such an analysis and briefly discusses certain

types of solutions to these equations.
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CHAPTER 2

THE WIND EFFECT EQUATIONS AND THE USE OF RESPONSE

FUNCTIONS IN THEIR SOLUTION

2.1 The Wind Effect Equations

The mathematical treatment of wind effects is accomplished by solving
the Navier-Stokes equations and the equation of continuity applied to a
vertical column of fluid extending from the bottom to the surface and sub-

ject to certain boundary conditions.

Consider the lake of Fig. 2.1 acted on by the wind stress vector field
ts. Cartesian co-ordinate axes, fixed relative to the earth at a latitude
¢, are placed as shown with the plane z = 0 in the plane of no disturbance

and the z~axis directed vertically upwards. The horizontal lake contour

is denoted by T.

The horizontal components Tsx, TSY of the wind stress vector field Ty
are functions of x, y and t (time) as also is the displacement of water
level from the z = 0 plane, described functionally by z = g(x,y,t). The

bottom contour of the lake is described by z = -h(x,y).

The specific equations that relate to time~dependent wind effects on
shallow, homogeneous closed lakes are the Eulerian equaticns of motion
and continuity equation used widely in oceanography; for a detailed treat-
ment of these équations, refer, for example, Proudman (1953), Welander

(1961), Fortak (1972). The equations of motion are
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9T

du _ g, o _Ll2p,
T £ S % + 57 (2.1.1a)
v . fu = - 193 . l.ii!i (2.1.1b)
At T p3dy p Oz T
- -1 _
0= >3z " 9 (2.1.1c)
while the continuity equation is

ou , dv , oW _
X +W -é—z'— o . (2.1,14)

Here u = u(x,y,z,t), v = v(x,y,z,t), v = w(x,y,z,t) are x-, y-, and z-
components respectively of fluid velocity; p = p(x,y,z,t) is fluid pressure;
sz = sz(x,y,z,t), Tyz = Tyz(x,y,z,t) are components of the turbulent stress
tensor acting in planes parallel to the z = 0 plane. In addition, p is fluid
density (assumed constant), g is the acceleration due to gravity and £ is
the Coriolis parameter with a value calculable from

( 2Rsin¢, northern hemisphere

f = ( (2.1.2)
(-20sin¢, southern hemisphere

=4 iy
where 2 = 0.73 x 10 sec 1 is the angular velocity of the earth's rotation.

A number of important assumptions were made in forming the system of

equations (2.1l.1).

Firstly, in (2.l.1lc), the vertical acceleration terms have been omitted.
It may be shown, (Proudman (1953), Stokexr (1957)), that this is valid pro-
vided that

h#*
L%
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where h* (a typical depth) and &* (a typical horizontal distance) are
vertical and horizontal length scales for the motion involved. This is the
so-called "long-wave" approximation and when it holds true the water is said

to be "shallow".

It is clear, then, from (2.1l.lc) that the fluid pressure obeys the
hydrostatic relation

p=p, +pg (C-2) (2.1.3)

where p, = pa(x,y,t) is the surface (i.e. atmospheric) pressure. Since we
are not interested here in the effects of surface pressure variations we

assume that P, is constant in space and time.

Secondly, we neglect horizontal convection of turbulence, an assump-
tion which again is valid for shallow waters where movement in vertical

planes is slight.

These two assumptions must clearly break down in shore regions where
vertical and horizontal length scales become of the same order of magnitude.
From Fig. 1.2 it is clear that considerable motion in vertical planes is

generated near the shores during wind tide formation in closed basins.

Thirdly, it is assumed that convective (non-linear) acceleration terms

in (2.1.1la), (2.1.1b) may be omitted. For example, a term of the form

3u

u ox

may be neglected in comparison with the local acceleration term %%

provided that

- *
*>>u

where t*, u* are time and fluid velocity scales for the motion under concern.



-14-

The ratio L*/t* = c* is essentially equivalent to the wvelocity of long

gravity waves, vYgh* , in the basin.

Can we omit a texrm of the form w %E-in comparison with %% ? The

vertical velocity w is close to zero at the bottom, and at the free surface
may be approximated by %% provided that the surface slope is not too large.

Thus a typical vertical velocity is g*/t* where {* is a typical surface

elevation. So provided that

then the above omission is justified. It is again clear, however, that the

approximation would break down near shore regions.

As shown by Greenspan (1968), the magnitude of the Rossby number, a
ratio of the convective acceleration to the Coriolis acceleration, also
indicates the relative importance of non linear acceleration terms. The
assumption of small Rossby number has been used by, for example, Platzman
(1963), Csanady (1967) and Liggett (1969), as a justification for neglect-

ing non linear accelerations in the equations of motion.

Fourthly, we neglect the effects of spatial variation of the Coriolis
parameter. Harlemann et al. (1962) have shown this to be a quite valid
approximation for the Great Lakes and it will clearly hold for smaller

water bodies.

Combining (2.1.1la), (2.1.1b) with (2.1.3) gives
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AT
du _ _ . 9%c 1. xz
_at fv = g ax + o 32 (2.1.4a)
ov g, 1ty
a—t- + fu = -g BY + ; 3z . (2.1.4b)

The continuity equation (2.1.1d) may be simplified by vertical integration
from the bottom, z = -h, to the free surface, approximated by z = 0, to

give.
N dz + E—-dz o = (2.1.4c)

The assertion that the free surface and the z = 0 plane closely coincide is

again valid if

C*
F<< 1

Equations (2.1.4) are subject to the following boundary conditions:-

(i) The flow normal to a closed boundary is zero, i.e.

q, = 0 along T (2.1.5a)

where q = (u,v). This condition is equivalent to the assumption that
the contour I' does not alter with time, i.e. that no land is covered or
uncovered with a rise or fall in water level. For particularly shallow
lakes surrounded by low-lying flats, however, hurricane force winds may
flood the surrounds and expose a large portion of the lake bed. Such was
the case with Lake Okeechcobee, Florida, during the hurricane of 26-27
RAugust, 1949 as reported by Haurwitz (1951).

(ii) shear stress is continuous in the plane of the free surface,

again approximated by z = 0, i.e.
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where Tsx' Tsy are the horizontal components of surface wind stress.

(iii) As a bottom condition we may impose the "no-slip" condition
u(x,y,~h,t) = v(x,y,~h,t) = 0 . (2.1.5c)

The imposition of a bottom boundary layer contrasts with the absence of a
boundary layer along the contour T due to the neglect of horizontal turbu-

lent convection.

Before equations (2.1.4) subject to conditicns (2.1.5) can be used to
examine wind effect problems on a given lake system, the assumptions made
in their derivation should be validated for the system. Consider, for

example, the system of Murray Mouth lakes.

Taking h* = 2m, #* = 10km it is clear that the long-wave approximation
is quite valid. Further, since c* = 0(5 m.sec—l)and wind-induced fluid
velocities are typically less than 0.1l m.sec ! in magnitude, then the con-
vective term u %%-may be omitted in comparison with the local derivative

%% . Further, we omit the term w %&-on the basis that typically * = 0(lm).

During periods of strong winds it is possible that r* = O0(lm) so that
no longer does the approximation Z*/h* << 1 hold true. This is especially
so for the Coorong (refer Appendix A) where h* is closer to lm; near the
south-eastern tip of the South lagoon depths are of 0(10cm).. However, for
purposes of mathematical simplicity, we shall neglect f* in comparison with

h*,
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Finally, although low-lying mud flats around Lake Albert and Lake
Alexandrina are at times inundated by wind tides, the extent of the flood-
ing is small. Further, the boundaries of the shallow extremes of the South
Coorong are subject to movement under the influence of winds, but to the

first approximation this is slight.

It needs to be emphasized again that equations (2.1.4) are generally
invalid near shore regions, where vertical and convective accelerations
become important while lateral friction may no longer be neglected. The
more exact, non-linear form of the equations is needed to properly account

for wind effects in these regions.

It is clear that (2.1.4) is not closed in the dependent variables u,

, T, in terms of these - ;-

v and . Closure is effected. by eXpressing-T* vz

&
variables. This is normally performed in one of the two following ways:-—
(2) Eddy-viscosity method.

This method uses the concept of the coefficient of eddy viscosity, N,

defined by analogy with laminar flow so that

" Ju _ oV
Tz = pN Nz ! Tyz = pN e " (2.1.6)

Thus, the fluid flow is assumed to be essentially quasi-laminar. The

value of N varies from point to point within the fluid though a constant
value for a given lake is normally assumed, this being a simple model which
gives satisfactory results. The assumption of constant N is best for
shallow, well-mixed waters. Density stratification in the fluid strongly

influences the value of N, which may fall practically to zero in the region



-18-

of a density discontinuity (Welander (1957)).

Combining (2.1.4) and (2.1.6) gives

9ua _ 14 324
3t fv = g E"' N a—zT (2.1.7a)
§!+fu=-g-a—‘:+m—2-32" (2.1.7b)
ot By oz e
o o)
g—J udz + g—J vz = - g—f: (2.1.7¢c)
*Jon Y Joq
while the boundary condition (2.1.5b) becomes
Ju av
pN L—% =T _ s+ PN L—% . (2.1.8)
dz 2=0 sX 3z 2=0 sy

(b) Volume transport method.

This method conveniently by-passes the problem of the specification of
the vertical dependence of the stress vector. It uses the technique of
vertical integration of the equations of motion (2.1.4a), (2.1.4b) from

the bottom to the surface to give

u _ 3z . 1 _

5T fV = -gh o™ + 5 (Tsx Tbx) (2.1.9a)
v oL 1

T + fU gh 3y + 5 ('rsy Tby) (2.1.9b)

while (2.1.4c) may be rewritten as

5;-+ 3y T (2.1.9¢)

In (2.1.9), U = U(x,y,t) and V = V(x,y,t) are the components of volume

transport (or total stream), given by
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The transport vector § = (U,V) is related to 9’ the velocity vector

averaged over depth, by

s = hg, -

Equations (2.1.9) are subject to the boundary condition that the com-

ponent of the transport vector S normal to the contour, is zero, i.e.
Sn = 0 along T . (2.1.10)

Weenink (1958), Groen and Groves (1962) and Fortak (1962) treat in
detail the assumptions made in the vertical integration to produce (2.1.9).
In particular, the free surface is again assumed to coincide with:the plane

T.- are the com-

- . . . * Sk
z 0, which is true, provided that r*/h* << 1. Tbx' by

ponents of the bottom stress vector, T The surface stress components

b
Tsx' TSY are known at any time. However, the bottom stress components are
unknown, and in order to make the system (2.1.9) closed in the variables U,

V and T, they must be expressed in terms of those variables.

Essentially, the bottom stress magnitude satisfies a drag relationship

similar to (1.1.1), viz.

|| = ey g l? (2.1.11a)

where % is a dimensionless drag coefficient and 9% is the fluid velocity

vector measured at the outer edge of the bottom boundary layer. Proudman
3

(1953), p.136 gives a value for Cb of 2.5 x 10 .
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A convenient linearized form for 1, may be achieved by writing

b
T, = PC, lay! @ (2.1.11b)

and defining a parameter r, with the dimensions of velocity, by

o
]

o lgl -

Furthermore, by approximating

S
P "I Th
then (2.1.11b) becomes
prs
:Eb - T - (2-l-lIC)

The form (2.1.11lc) predicts that in an equilibrium situation, i.e.
when no net flow or transport is occurring, the bottom stress vanishes.
However for the equilibrium wind set-up of a closed lake, there clearly is
a stress exerted on the bottom by return currents near the bottom. One
may think of the bottom as exerting a stress on the fluid in the direction

of the surface stress (Fig. 1.2).

So for a general, non-equilibrium situation, the bottom stress is more
correctly given by

pxs

Ib = -m'ES + T (2.1.118)

where m is a non-dimensional parameter that essentially specifies the
relative additional contribution that the bottom stress makes to the

surface stress. For laminar, wind-induced flow in a lake of uniform depth,
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Hellstrom (1941), Keulegan (1951) and Felsenbaum (1956) all have deduced
that at equilibrium m = 0.5. Francis (1954) showed that in realistic tur-

bulent flows m is generally less than 0.l.

Bowden (1956) and Reid (1956) give more exact treatments than that
provided here of the linearized form (2.1.11d). Smith (1973) has provided
a detailed comparison of the bottom stress parameterizations used by prev-
ious authors. Groen and Groves (1962) discuss the different forms of non-

linear damping.

The term pr§/h models turbulent dissipative effects within the fluid.
For simplicity, the parameter r is generally taken as constant for a given
hydrodynamical system. It is sometimes assumed that r = O, i.e. the system
is non-dissipative. However such a simple model is unrealistic for
extremely shallow waters where near bottom currents meet strong resistance,

so leading to high energy dissipation.

Throughout this thesis the linearized bottom stress expression (2.1.114)
is used, with r taken as constant. Combining (2.1.11d) and (2.1.9) gives

the following system closed in the variables U, V and [:-

14

X
Tt + H U - fV = =gh Ty + K‘tsx (2.1.122)
oV ¢ _ X4
5% + n V ¢ fU = =gh 3y + KTSY (2.1.12b)
U vV _ o
= + 3y = 3% (2.1.12c)

where K = (1+m)/p.
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Let us briefly compare the eddy viscosity and transport forms of the

wind effect equations.

Clearly, the system (2.1.12), the transport form of the equations, is
of a simpler form than (2.1.7), the eddy viscosity form, due to the absence
in the former of the independent variable z. The corresponding boundary
conditions also are simpler. For these reasons the transport form is
normally preferred, both for analytical and for numerical work. However by
elimination of the variable z, all information concerning the vertical dis-
tribution of currents is lost. Using only the transport equations we can

at best obtain the mean velocity over depth.

An inherent weakness of both (2.1.12) and (2.1.7) is the presence in
each of an unknown damping parameter. Semi-empirical methods must be used

to determine values of r or N foxr particular lakes.

Platzman (1963) determined a value for the eddy viscosity of Lake Erie,
viz. 40cmzsec_1, by measurement of the decay of the fundamental mode of
surface oscillation. Much the same method was used by Heaps and Ramsbottom
(1966) to estimate a value of r for the more dense, bottom layer in the

stratified Lake Windermere, Scotland.

Liggett and Hadjitheodarou (1969) estimate a value of the eddy vis-
cosity for Lake Erie, viz. 200cm25ec_1, which correctly predicts certain
measured currents. A similar method of computing eddy viscosity from

observed velocities has been used by Lindh and Bengtsson (1971).

The difference in the above two estimates for the eddy viscosity of

Lake Erie indicates the essentially variable nature of the parameters r



-23-

and N. It is not really sensible to assert that for a given lake system
either of the parameters always takes a certain value. perhaps the best
that can be achieved is to choose values for r and N at a given time which

give results compatible with observations.

It should finally be mentioned that the supreme mathematical advantage
of both (2.1.12) and (2.1.7) is the property of linearity, which makes it
possible to obtain some relatively simple analytical solutions and to use

many of the powerful tools of linear system theory in so doing.

2.2 The Concept of the Response Function in Relation to wind Effects

Papoulis (1962), p.8l, in defining the term "system" states that:-

"The analysis of most physical systems can be reduced to the
investigation of the relationship between certain causes and
their effects. Any system can be viewed as a transducer, with
the cause fi(t) as its input and the effect fo(t) as its

output or response; fo(t) is uniquely determined in terxms of

fi(t). The system is completely characterized terminally if
the nature of the dependence of the output on the input is

known".

When solving the wind effect equations one is essentially concerned
with the response of a system to given inputs. Suppose the wind stress is
homogeneous over the lake surface. Then one might take as inputs to the
system the wind stress components Tsx(t), Tsy(t) and as output the result-
ing surface displacement ;(xo,yo,t) measured at the position (xo,yo).

These input and output signals are functions of time only. Further, since
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the system behaviour is described by linear equations, then it must be a

linear system and so obey the law of superposition.

It is customary to model analytically the behaviour in real lake
basins due to real wind stress fields by considering basins of simple
shapes and wind stress fields of simple spatial and time variation. Then,
by superposition, one may obtain the response of the model basin to a real
wind stress field. Simple but realistic theoretical models of wind stress

fields include:-

(a) A wind of constant strength and direction over the whole lake surface

suddenly imposed at time t = 0, and maintained at that strength

thereafter

In the language of systems analysis, such a wind stress field is a
step input to the system, i.e. of the form Ts(t) = TO.th) where U(t) is
the Unit step function and To is constant. It models quite realistically
a large scale storm or cyclonic disturbance maintained over a lake for a
considerable time. The response of the lake consists of two parts - the
transient of dynamic part of the response and the equilibrium or steady
state part of the response. Essentially, the response consists of damped
free oscillations about the equilibrium response, the degree of damping in
the oscillation depending on the extent of internal damping occurring within

the system. (For later use, we define the step response of a linear system

3

astbeing the response to an input function fi(t) = akt)).
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(b) A wind of constant strength and alignment but varying periodically in

time

Such a wind models the effects due to changes in weather patterns, e.g.
large-scale weather cycles or small-scale land-sea breeze effects. The
example of the prevailing oscillating winds over the Coorong lagoons has

been previously cited.

Now for a linear system, the steady state response (after starting
transients have died away) to a sinusoidal input is itself sinusoidal with
the same angular frequency as the input. However, the amplitude and phase
will, in general, be different. Using complex number notation, if the
Jut

input function has the form fi(t) = e where j = V-1 and w is an angular

frequency, i.e. a unit-amplitude sinusoid, then the steady-state response

will be fo(t) = J(uu)e:mt where the function J(w) is most commonly called

the frequency response function or response function for the system. We

may, further, write

~id(w)

J(w) = Glwe (2.2.1)

where G(w) is the gain of the system response and ¢ (w) is its phase-lag

(Fig. 2.2).

The term 'system function' is also used to describe J(w). It is a con-
venient label for the input-output characteristics of a linear system,
whether the components of that system be electrical, mechanical or hydro-
dynamic. 1Its chief advantages are that it may be obtained in a relatively
simple manner either analytically or numerically, and that it is possible,

using time series analysis, to extract the system function from a given
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input-output record and so to make comparisons between theoretical and

experimental response functions.

One may draw an input-output diagram (block diagram) as shown in Fig.

2.3a to describe the linear system with response function J(w).

A system consisting of a lake acted on by a wind stress field may be
viewed as a two input -~ single output system with block diagram shown in
Fig. 2.3b. There are two response functions needed to specify the total
system, viz, Z; = Zl(xo,yo,w) for the subsystem with rsx(t) as input and a
displacement cl(xo,yo,t) as output, and 2, = Zz(xo,yo,w) for the subsystem
with Tsy(t) as input and a displacement cz(xo,yo,t) as cutput. Further, one

has that

C(xo.yo,t) = c1(xo,yo,t) + o (xo,yo,t) (2.2.2)
i.e. the two 'sub-displacements' add to give the total displacement.

When only cne component of wind stress, say Tox! affects the lake,
i.e. the wind stress field is uni-directional, the 'sub'-response function
Z1(xo,yo,w) becomes the 'total' response function, and may be inferred by
data analysis from a given record of wind stress and corresponding surface

displacement.

However, for a general two-dimensional problem, it is not a simple

matter to determine Zl(xo,yo,wh Zz(xo,yo,w) by analysis of experimental

data. Instead, if t (t) =T ejwt, T {t) T ejmt one has that
sX ox sy oy

jwt
C(xo.yo,t) = Z(xo,yo,w)ejw ; where

Z = + .2,
T x21 T0y22 (2.2.3)

o)
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The function Z(xo,yo,m) may be extracted by a simple analysis of the output

record; however, it is not a true response function for the system.

Note that in the relation T = Zejwt, w is regarded as fixed so that we
have [ = C(xo,yo,t). However we maintain the convention of writing 2 =
Z(xo,yo,w), since we are specifically interested in the variation of 2

with w. Note also that we might equally well have taken either component
of volume transport measured at (xo,yo) or, indeed, a velocity component at

any depth-and measured at (xd,yo),cas being a represéentative. output. function

of the.system consisting of a closed lake with input functions Tsx(t),Tsy(t).

A great deal of the literature in linear system theory deals with the
determination of the response, fo(t), of the system to an arbitrary input

fi(t), if the response to some standard input is known.

Application of the convolution theorem enables fo(t) to be expressed in
terms of the step response, a(t), of the system by means of the Duhamel
formula

® da
fo(t) = Io fi(t—r) a?-a(r)dt . (2.2.4)

In wind effect problems, integrals of this type have been formulated and
used with some success; refer, for example, Proudman and Doodson (1924),
Saito (1949), Heaps and Ramsbottom (1966). For a treatment of the Duhamel

formulae, refer Wylie (1966), p. 272.

It is also possible to express fo(t) directly in terms of J(w). It

may be shown (Papoulis (1962), p.86) that
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£ (t) = %;-I_m Jw Flwye“Fay (2.2.5)

where Fi(w) is the Fourier transform of fi(t), i.e.

F, () = I fi(t)e_jwtdt.

Alternatively, for a periodic input function fi(t), we may write

[~}

£.(6) =] ae¥n® (2.2.6)

n=-=—v°

for which the steady state response is clearly given by

= .
£_(t) ;=§m a d(w)elnt . (2.2.7)
In making practicaliuse of this method, since the input record to be
analysed is of finite length T, the continuation of period T must be used.
Further, the series (2.2.6), (2.2.7) will be finite. The steady state res-
ponse to this periodic input (of period T) will be close to the cbserved

response if T is sufficiently large to have allcwed the system to reach a

steady state.

Using (2.2.5) we may derive a convenient form for the step response,
a(t), in terms of J(w). In this case, fi(t) = th) = %—(l + sgn(t)),
where

(+1, £t >0
sgn(t) = (
(_1't<0.

Now the Fourier transform of 1 is 2m §(w), while the Fourier transform of

sgn(t) is 2/jw. Hence, in this case,

- 1
Fi(w) = w8 (w) + S



so that (2.2.5) gives

o jw
a(t) =% (3(0) + %— U Q-(Elé’-m— dw]).. (2.2.8a)

Papoulis (1962) shows that for a causal system (2.2.8a) may be. simplified to

a(t) = 3[ R(W) <in (wt)dw (2.2.8b)

€

where R(w) = Real {J(w)}.

Now it may be shown that J(0) = R(Q), i.e. the response function J(w)
assumes only real values at w=0. Further, the equilibrium response to the
unit step function is given by ti: {a(t)}, provided that the limit exists.
In Appendix B it is shown that

lim

e L2(E)} = 3(0) = R(O) . (2.2.9)

Thus, the forms (2.2.8a), (2.2.8b), (2.2.9) provide convenient means
of calculating both the total step response and the equilibrium step res-

ponse.

In the following chapters we shall concentrate on the calculation of
response functions for various lakes of simple form using analytical
techniqﬁes, and more complex form using finite difference numerical tech~
niques. Using the methods outlined above, however, we shall, where
appropriate, transfer our attention from the frequency domain to the real
time domain in considering the response of such lakes to non-periodic wind

stresses.
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CHAPTER 3

RESPONSE FUNCTIONS FOR NARROW LAKES ~ AN ANALYTICAL STUDY

3.1 The 'Narrow Lake' Approximation

Consider a closed lake which is significantly elongated in a particu-
lar direction. The dominant wind effects on such a lake are a result of
wind stresses acting parallel to the longitudinal (lake) axis. RAs an
example, the wind tide formed in a direction transverse to the lake axis is
negligible compared with that formed along the lake axis, since the ratio

of transverse wind fetch to longitudinal wind fetch is very small.

The so-called 'narrow lake' approximation consists, then, of ignoring
wind-~induced motions directed at right angles to the lake axis. Only the
longitudinal component of wind stress need be considered in a determination
of wind effects in the basin. The approximation has been often used in
studying the free and forced motions of fluids in elongated, closed basins
and narrow, infinite canals; refer, for example, Lamb (1932), Proudman

(1953).

As part of the approximation we neglect the effects of the Coriolis
force. Supposing the lake axis to be equivalent to the x-axis of the co-
ordinate system of Fig. 2.1!(we ignore the éffects of cuxrvature in the lake

axis), then v = 0 and Tyz =0, so (2.1.4b) gives
fu=-~-g = (3.1.1)

i.e. Coriolis effects "are represented by transverse pressure gradients"”

{Proudman (1953), p. 219) which do not significantly influence the
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longitudinal motion and may be ignored.

Thus, the 'narrow lake' approximation reduces the eddy wiscosity form

of the wind effect equations to

u _ 9T 3%y

T = 79 3o + N 527. (3.1.2a)
o

9 _ 3t

o J udz = T (3.1.2b)
-h

with u = u(x,z,t) and ¢ = g(x,t), subject to

u = 0 at the ends of the lake; (3.1.2c)
du
QN[-B"E] = TS ; (3.1.24)
z=0
u(x,-h,t) = 0 . (3.1.2e)

The transport form is reduced to

93U r _ ]+

s + H-U = =gh 5;-+ KTS (3.1.3a)
U 3r
% 3t (3.1.3b)

with U = U{(x,t) and ¢ = C(x,t), subject to

U = 0 at the ends of the lake . (3.1.3¢c)

The systems of equations (37l72), (3.1.3) are the simplest pusSsiblé:
forms of the wind effect equations. The attraction of simplicity often
leads these forms to be applied even to basins for which the 'narrow lake’

concept is a poor approximation. For example, (3.1.2) and (3.1.3) describe
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motions in a non-rotating rectangular basin induced by a wind stress acting
always parallel to one of the two lake axes. The solutions are clearly
independent of the breadth of the lake (transverse to the direction of the
wind) and though giving only a crude representation of effects in 'non-
narrow" lakes, nevertheless form a natural starting point for a theoretical

investigation of wind effects on closed lakes.

3.2 A Solution Using the Transport Form of the Equations

In this section we use the transport form of the wind effect equations
to determine a response function for a rectangular, non-rotating basin of
constant depth subject to forcing at the surface by a wind stress acting
always parallel to one of the two lake axes. For simplicity, the surface
wind stress is assumed homogeneous, a proposition which is nevertheless
physically reasonable since most weather cycles and wind disturbances have

length scales much larger than the lake systems they effect.

The plan and longitudinal section of the basin under consideration
together with the alignment of surface wind stress are shown in Fig. 3.1,
with the horizontal lake axes defined as shown. The length in the x-

direction is L, while the undisturbed depth of the basin is H, a constant.

Now the boundary condition (3.1.3c) implies a form for the transport,
U(x,t), like

Ufx,t)

Up(t) sin(pr) (3.2.1a)

for integers p, where Kp pr/L. Thus (3.1.3b) gives
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) = t 3.2.1b
C(x,t) cp( ) COS(pr) ( )
where
ar
g =L e
o) Kp dt

The spatial dependence of the solutions (3.2.1la), (3.2.1b) is identi-
cal to that of the one-dimensional free oscillations (or seiches) of the
basin (Proudman (1953), p. 225), i.e. solutions to the problem of the wind
forced motion of the basin are sought in terms of its seiche modes. These
forms are valid regardless of the spatial distribution of wind stress.

Assume, therefore, a form of the'stress Ts(x,t), like
= i . .2.1
Ts(x,t) Tp(t) 51n(pr) (3.2.1¢)

Now eliminating U(x,t) between (3.1.3a), (3.!.3b) gives

aZC Az 2 32 a'l's
+ e - = - —— . .
a—tz- 20 T c m K 3% (3.2.2)
while elimination of Z(x,t) gives
32y du 5 3%y _ _ 91s
-a?z- + 2q0 -é—t- [o] axz = K 3t (3.2.3)
- i R v 1/2
where o = r/2H is the damping parameter for the system,and ¢ = (gH)
is the characteristic long-wave velocity for the basin.
Combining (3.2.1), (3.2.2), (3.2.3) gives
a%g at
R 4 20 =24y 2 = ~K K_T (3.2.4a)
at? dt b p PP
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<32Up du,, ) ar
F- + 2x It + mp UP = K —Rdt (3.2.4b)

where mp = KPC is the angular frequency of the nth mode seiche of the
basin. Clearly (3.2.4a), (3.2.4b) describe the behaviour of a damped

simple harmonic oscillator with a natural frequency wp.

Equations (3.2.4a), (3.2.4b) may be solved in a variety of ways,
Laplace transform technigues being suitable for quite general time varia-

tions of wind stress.

We are here specifically interested in a homogeneous wind stress of
unit strength and sinusoidal time variation. This may be written as an

infinite series of terms of the form (3.2.2¢), as

jue iRy

”: (3.2.5)
n=1 2n-1

4
Ts(x,t) = E-e

i.e. the odd continuation of T, for x € [0,L). The stress configuration
(3.2.5) is considered applied to an infinitely long lake (Fig. 3.2). Since
the wind stress changes direction at the pcints x = kL, k =0, + 1, + 2, ...
but maintains the same (unit) strength, then there can be no flow across
these vertical sections in the infinite lake. Hence the behaviour of the
section [0,L] of the infinite lake will be the same as for the actual lake.

Such a method has been used previously by Haurwitz (1951), Tickner (1961),

Heaps and Ramsbottom (1966).

Clearly then,
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4
2n-1

for p 2n-1, n=1,2, ...

Lic

. 3.2.6
rp(t) ( )

¢] for p 2n, n=1,2, ... .

Thus only the odd harmonics of the fundamental seiche mode will be present
in the steady state forcing of the basin by such a wind stress, i.e.
U2n(t) = c2n(t) = 0 while, from (3.2.4) it is clear that steady state

(particular) solutions are

jwt
-4Ke""
£, () = . (3.2.7a)
2n-1 L{wl _ +2jaw-0?)
. Jjot
U, _,(t) = e (3.2.7b)
o Lkn-1 (W3p~3+230w-0%)

Finally, the steady state sclutions to (3.2.3) become (by superposition)

_ jwt ® cos(k, _.X)
Tix,t) = -fﬂ%?-—- : 20zl - (3.2.8a)
n=1 (mzn_l+2jam-m )
. jwt w sin(x, .X)
U(x,t) = 4K3§e ) 2n-l : (3.2.8b)

e 2 o2
n=1 (w2n_1+23aw w<)

Consider, now, the linear system with input consisting of surface
wind stress (homogeneous), and output the resultant suxrface displacement at

the same position. Clearly the function Z(xo,w) defined by

_ © cos (kK X )
Z(x_,0) = =K zn-i o (3.2.9)

L 2 2 — )
n=1 (wzn_l+23aw w<)

represents the frequency response function for such a system.
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Some important features of the response function defined by (3.2.9)
should be noted. Rewriting Z(xo,w) in terms of the system gain G = G(xo,m)

and phase-lag ¢ = ¢(xo,w), one has that

G = (a2 + 32)1/2 = Asec(¢) (3.2.10a)
¢ = -arctan [ %-] (3.2.10b)
where cos (k x )Y
A= :%5 ) 2atio ensl (3.2.11a)
n=1 yz +4a2p2
2n-1
gra & ©05(Kop_1%o)
B = = (3.2.11b)
cJ 2 +.
n=1 Yon-1 docw
Y = wnz- w2 . (3.2.11c)

For the gain, infinite response (resonance) occurs for real, positive

frequencies when a = 0 and w = , i.e. the frequency of the wind stress

“2n-1
coincides with the ocdd-mode seiche frequencies of the basin. For a # O
the infinite peaks at resonance become turning points and for sufficiently

large o the resonance phenomenon vanishes entirely. Note that the limiting

gain as w + » is zero, provided & # O.

The behaviour of phase-lag is more complicated. For o = 0, the res-
ponse function is always real and ¢ assumes the value 0° or 180°, points
of discontinuity occurring wherever the response changes sign. For o # O,
phase-lag values vary continually between 0° and 180°, and the behaviour
changes greatly as w - ®. However the limiting behaviour is simple;

asymptotically,
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4K 8Ko
A —L—az- L cos (Kzn_lxo) ’ B v i—w—3' L cos (Kzn_lxo)

so that

2a
n = =
¢ 287 -

where £ is an integer.

The north lagoon of the Coorong (Fig. 3.3) may be regarded, in the
first approximation, as being closed at its shallow north-western end
(Tauwitchere Island) and also near the narrow Hells Gate Channel which
therefore forms its south-eastern extremity. As shown by Noye (1970),
tidal influences extend only a short distance south-east along the Coorong
from the Murray Mouth, while flows between the north and south lagoons do

not significantly affect water levels inside either.

Further, the 'narrow lake' approximation may be quite justifiably
applied to the North Coorong. Its length is approximately 50km while its
average width is about 2km. In summer, its mean depth is 1.25m. The
longitudinal axis closely coincides with the north-west, south-east

alignment.

Fig. 3.4 shows a plot of gain and phase-lag for various values of o
for a rectangular lake with these dimensions, subject to wind stress forc-
ing along the lake axis. The non-dimensional parameter m, defined in
(2.1.11d), is assigned the value 0.05 (Francis (1954)). The station for
output measurement is x, = 0.75L (with L = 50km) which corresponds to
Seven Mile Point on the North Coorong with the origin at the north-western

end of the basin. The frequency range considered is O - 24 cycles per day
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(cpd). The first 50 terms in the series (3.2.1la), (3.2.11lb) were evaluated,
these being quite sufficient for convergence. The resonant frequencies axe
odd multiples of 3.04 cpd which is the frequency of the fundamental seiche

for the basin.

In the vicinity of the resonance peak near w = wzn-l' the system
behaviour is due almost entirely to the response of the (2n-1) th seiche

mode to wind forcing. We may write

cos(k, .X )
Z(x_,0) " gK ( Zﬁz}az) (3.2.12)
Yon-1743
so that
-4K 2 2 2,~1/2

GVt cos(K2n_lxo)(Y2n_l+4a w)

4G, 8Kw 2_ 2 2,2,"3/2

an n T, cos(KZn_lxo)(2u Y2n—l)(Y2n—1+4a w<) .

The resonance peak occurs when §§_= 0, i.e. w? = w2 - 202,
dw 2n-1

Two things become clear from this result. First, the position of the
resonance peak which occurs at w = Wor 1 for ¢ = 0 shifts gradually
towards the origin, w = 0, as o increases. For a > wzn-l/JF-' the peak
is no longer present. Second, the lowest frequency peak is the first to

disappear.

For sufficiently large a, the gain is dominated by low frequencies,
i.e. the water level oscillations are most strongly influenced by the low

frequency components in a wind stress of general time variation.

Such behaviour is evident in Fig. 1.5 where the water level at Seven

Mile Point closely 'follows' the dominant diurnal component of wind stress



-39~

variation, and is influenced to only a minor degree by oscillations of
smaller period. This suggests that the response of the North Coorong sur-
face to time-varying wind stresses is heavily damped, a suggestion which is

confirmed later in Chapter 8 by more precise analysis.

it is to be noted from (3.2.8a) that the surface response is always
zero in the middle of the basin, X, = 0.5L, and is symmetric about this
position, regardless of the value of a. This corresponds closely with

behaviour observed in both North and South Coorong by Noye (1970).

In Fig. 3.5 is shown the steady state real time response of the surface
of the North Coorong basin to a periodic wind stress of the form Tosin(2ﬂt/T),
T being the period of the wind stress cycle. The response is given by
ToIm{Z(x,w)ejwt} where w = 21/T. Values used for T are 1 day, 0.2 day,

0.1 day (corresponding to frequencies 1 cpd, 5 cpd and 10 cpd respectively),
while T is taken as 0.1 N.m-z, this being a typical value for the amplitude
of the wind stress cycle. The response is shown only at times O, T/8,

T/4 and 3T/8 of the wind stress cycle - the response at times T/2, 5T/8,

3T/4 and 7T/8 is identical in magnitude,but opposite in sign.

When o = 0, the surface always assumes a sinusoidal shape. The proof
of this result is given in the following chapter. For T = 1 day, the
wavelength of the sinusoid is far greater than the basin length. The
surface response at t = T/4.is, in fact, close to the equilibrium (wind
tide) response, since a slowly oscillating wind allows a near equilibrium

situation to be achieved at all times. For lower values of T the
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sinusoidal surface shape with a = 0 is quite evident.

As o increases the surface response is seen to lag behind the surface
wind stress. Further, the surface profile becomes flatter as larger
values of o decrease the amplitude of displacement at each point along the

lake axis.

The equilibrium surface response due to a steady, uniform wind is

found (from (2.2.9)) by putting w 0 in (3.2.8a) to give

®  cos(K %)
Z(x,0) =2 (x)= iK . 22n 1
‘ n=1  “2n-1

X L
= (x - 3), xe (0,1 (3.2.13)

i.e. a plane of slope (1+m)/pgH. This result is well-known; refer, for
example, Hellstrom (1941), Haurwitz (1951), Keulegan (1951), Felsenbaum
(1956). It is valid regardless of the value of a. Further, as will be
shown in the following chapter, it has a wider application than simply to

the elongated rectangular basin.

Let us now look briefly at the mean velocity response function

qm(xo,w),defined by

. - 4§'w g 51n(K2n‘Ixo) ‘ Bads 1)
H n=1 sz*i(mén*iijum-mz)

Shown in Fig. 3.8 are the gain and phase-lag of the mean velocity response
for the North Coorong rectangular basin at x = 0.75L. Resonance agdain
occurs when o = 0 and w is an odd multiple of 3.04 cpd. For the case a = 0,

phase-lag assumes only the values 270° or 90°, so that the mean velocity
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either leads the surface wind stress by 90° (equivalent to 270° lag) or

lags by 90°.

The equilibrium mean velocity is zero, as seen by putting w = 0 in
(3.2.14). Clearly as w *+ «, the gain approaches zero, though its rate of
doing so is far slower than for the gain of surface response. In fact, for
values of o > 10_3 sec_l, the mean velocity gain is virtually constant for

the North Coorong system over the frequency range 0-24 cpd.

Using (2.2.8a) we may proceed to a determination of the surface step

response, a(xo,t), of the system. The integral

eI9tg, (3.2.15)

© Z(x_ ,w)
- [o)
I(xo,t) = J —_—

jw

-C0

can be evaluated by contour integration in the complex w-plane. We may

write (3.2.9) as

= cos (K X )
z(x_,0) = = ] = e (3.2.16)
n=1 “"¥an-1' " Xon-1
= 3 = j0 =- = 2 -21/2
Where Yon-1 T 3% * Spnenr Xppey T 3 Oy, g @nd Sy = Wy TN

Thus, the poles of the integrand f(w) in (3.2.15) occur for w = 0 and

W = ¢2n-1' X2n—1 for n=1,2, ... . Choose the contour of integration as

shown in Fig. 3.7, allowing the radius of the outer circle, Ro’ to approach

infinity and the radius of the inner circle, r., to approach zero.

Denoting u, = rieje, then the integral
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juit,
Jui u,

o rZ{x ,u.)e
1. = I { o= =1 ae
T M

O -
jw {Z(xo,ui)ejult} ae

+-12 (x) asr, -0,
oo i

while denoting uo = RbeJe, then the integral

Juot,
Jﬂ {Z(xo.uoie °TIu,
de
o ju

o]

]

™ .
juet
Jo {Z(xo,uo)e } ae

+0a R > «
[o]

since Z(xo,uo) + 0 as R.o <+ o , Further, defining

5 oaix ,welt R Z(x ,w)ejwt]
I = —2 __  law 1 =1}° 2 dw
- jw " Jw )

-R -X,
o 1

then

lim (I_ + I+) =1 |,
r ,+0,R
i o

Thus, by the residue theorem we have

[~}

I(x_,t) = 72Z_(x ) + 23 nzl {Res[£(w);¥, ;) + Res[£(w)

-at *® cos(k, .x)
8Ke 2n-1"0o
= 1Z_(x ) + =t - (cos(s, _ )
n=1 w
2n-1

o
+ sin(s, .¢))}
62n—1 2n-1

;x2n—l

1}
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so that,
-0t © cos(k x )
4¥e 2n-1"0
a(xo,t) = Zo(xo) + I L ) (cos(62n_1t)
n= ®2n-1
+ 2 sin(6, .t))} (3.2.17a)
8 2n-1 * T
2n-1

The general solution (3.2.17a) has been obtained previously by Saito

(1249), who solved an initial value problem. Putting a = 0 in (3.2.17a)

gives
cos(k, .x Jcos(w, _.t)
a(x ,t) = z_(x ) + =X 2cE 0 24 (3.2.17b)
[o} o © L n=1 UJ2
2n-1

as obtained by Haurwitz (1951) and Tickner (1961).

Fig. 3.8 shows the form of the step response at positions x, = 0.75L,
X, = 0.99L &f the North Coocrcng basin previously considered, from time -
t=0to t= 4Ts, where TS(E 2L/C):the period of the fundamental seiche, is
7.90 hr. It consists of seiches of odd nodality superimposed on the

equilibrium wind set-up.

For o = 0 the step response overshoots the equilibrium response by a
factor of 2. For much larger values of o the response is essentially over-
damped. The nth mode seicheis overdamped if

_ (2n-1)7c
o > oy == T (3.2.18)

in which case the cos(62n_lt), 51n(62n_lt) terms in (3.2.17a) become
exponentials of real argument. So, for the fundamental seiche in the

North Coorong to be damped out, it is required that
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o> 2,20 x 10-4 secml .

The shape of the step response curve as a function of time for a = 0

bears some explanation. It is clear that (3.2.17b) may be rewritten as

00

2K 1
a(xo,t) = Z0 + —E-nzl 53;:; {cos(lczn_l(xo+ct))+cos(K2n_l(xo ct))}

i.e. a superposition of the equilibrium response and two oppositely
directed and equal amplitude travelling waves, each with speed ¢ = /EE.
Thus, the surface shape at times O, TS/8, Ts/4, 3Ts/8' TS/Z has the form
shown in Fig. 3.9. It is observed that the effect of the step input is
first felt at the lake edges, while the centre portion reacts only after a
time lag. Such behaviour is still evident for those non-zeroc values of a
for which the response is underdamped, as is clear from Fig. 3.8. It
remains a matter of speculation, however, as to whether this could possibly

be observed in real lakes.

3.3 A Solution using the Eddy Viscosity Form of the Equations

Here the same problem dealt with in the previous section is recon-

sidered. This time we seek to solve the equations

2
g_2= g 28, g3 (3.3.1a)

v (3.3.1b)

Q>
S———
0
o
=1}
N
i
)
Q
|~

subject to
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u(0,t) = u(L,t) =0, (3.3.1c)
du .

on (33),00 = Tor (3.3.14)

u(x,~H,t) =0 . (3.3.1e)

The end conditions (3.3.1lc) imply

u(x,z,t) up(z,t)sin(pr) (3.3.2a)

]

z(x,t) Cp(t)cos(KPx) (3.3.2b)

for integers p, and we again assume that

Ts(x,t) = tp(t)sin(pr) .

Combining (3.3.1), (3.3.2) gives

du azup
—L - K + N = 3.3.3a
o] dcp
KPI updz = - T (3.3.3b)
-H
subject to B
N (559, = T (3.3.3c)
= . .3.34
(W) ey = O (3.3.34)

Now again assume the form (3.2.6) for Tp(t), i.e. Tp(t) = Tpejwt

where

==
Lk

for p 2n-1, n=1,2, ...
n (3.3.4)

=3
|]

o)
_— e o~

0 for p 2n, n=1,2, ...

and look for solutions to (3.3.3) of the form
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jwt

cp(t) = Zp(w)e (3.3.5a)
u_(z,t) = n_(z,0)e’t . (3.3.5b)
P b
Then (3.3.3a), (3.3.3b) become
-b = 3.3.6a)
22 ° e T o (
O 2
K dz = - Nb 3.3.6b)
where b2 = jw/N and Ep = ng/N, subject to
20
N (578, = T, (3.3.6c)
= . .3.6d
(np)z=-H 0 (3 6d)
The general solution to (3.3.6) may be written as
p
np(z,w) = Apcosh(bz) + 3951nh(bz) h o2 ZP (3.3.7)

where Ap(w), Bp(w) are to be determined. Furthermore from (3.3.6d) we
have

2
7 (0) = 2= (B_sinh(bH) - A cosh (bH)) (3.3.8)
p e, P P

so (3.3.7) becomes
np(z,w) = Ap(cosh(bz)-cosh(bH)) + Bp(sinh(bz) + sinh(bH)). (3.3.9)

Condition (3.3.6¢) gives

T .
= £
Bp(w) oNb (3.3.10a)

so combining (3.3.6b), (3.3.9), (3.3.10a) gives
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Ap(m) = —Eﬁg- (3.3.10b)
where
inh (bH) [NbS+e_k bH]+ 1-cosh (bH
R(w)=sm( Y [ epp ]E:PKP[ cosh (bH) ] ‘
P cosh (bH) [Nb5+¢& Kk bH]~e k sinh (bH)
P D PP
Thus
bT
zp(w) = pNep [sinh (bH) - Rpcosh(bH)] (3.3.11a)
T
np(z,w) = aﬁf' [(sinh(bz)+sinh(bH))+Rp(cosh(bz)-cosh(bH))] .
(3.3.11b)

Again only the odd harmonics of the fundamental natural mode of the
basin will be excited by the wind stress, due to the form of the expression

(3.3.4). The solutions to (3.3.1) may thus be written as

w cos(k, .x) .
Llx,t) = =22 ——22L . (sinh(bH)-R, _ cosh(bi))}edt (3.3.12a)
PI n=1 K%n-l n
4 ® Sin(KZn—lx)
ulx,z,t) = ;=== 1} (sinh (bz) -sinh (bH))
PR na1 Kan-1
~ R, _, (cosh (bz)-cosh (b)) }eIF . (3.3.12b)

Writing ;(xo,t) = Z(xo,w)ejwt, then (3.3.12a), defines the surface
response function Z(xo,w) for the basin at station X as determined from
the eddy viscosity form of the equations. Shown in Fig. 3.10 is the gain
and phase-lag for the North Coorong basin at x, = 0.75L for various values
of the coefficient of eddy viscosity, N. Clearly, there is little differ-~

ence in form between the plots of Fig. 3.4 and those of Fig. 3.10.

In fact, from {(3.3.1l2a) we have
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o cos (k x )
7(x_u) = %;- (1-cosh (bH)) J [ - n-l o }
n=1"%(Nb +52n_lK2n_1bH)cosh(bH)—82n_lK2n_151nh(bH) :
(3.3.13)
from which, in the limit N + 0, we have
. - cos(KZn—lxo)
z(xo,w) g EE : »
n=} w2n—l - W

equivalent to the response function obtained from the transport equations
withm = 0 and o = 0. In particular, it is to be noted that in the limit

N + 0, resonance occurs again at the frequencies w = Wy oy®

The eguilibrium response due to a steady uniform wind is found by

letting w + 0 in (3.3.12a) to give

3
Zo(x) " 2pgH

(x-2) xe to,ul (3.3.14)

equivalent to (3.2.13) with ¢ = 0 and m = 0.5.

We turn now to the velocity response function s(xo,zo,w) at station

= Jut A,
(xo,zo) where u(xo,zo,t) = s(xo,zo,w)e . Shown in Figs. (3.1lla),
(3.11b), (3.llc) are gain and phase-lag for the North Coorong rectangular

basin at depths z

0 (surface velocity), z, = -H/3 and z0 = =2H/3 res-

pectively, with X 0.75L in each. (Note that the velocity gains shown

in Fig. 3.11 have been normalized with respect to the zero-frequency gain

5 2 1

m.sec

with N = 10~ for the surface velocity, viz. 31.5m.sec_1).

The equilibrium response is found by letting w -+ 0 in (3.3.12b) to

give
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H 1 z 3 z]?
so(x,z) = oF [Z-+ ﬁ-+ 7 [ﬁ} ], x € [0,L] {(3.3.15)

i.e. the quasi-laminar equilibrium velocity profile is parabolic, a result
mentioned in Chapter 1 and depicted in Fig. l.3a. We note that the magni-
tude of so(x,z) is dependent on the coefficient of eddy viscosity, N,

whereas the magnitude of Zo(x) is independent of N.

An interesting feature of the graphs of Fig. 3.11 is that for N ;
10-3m25ec-1, the velocity gain remains relatively constant at a given
depth over the frequency range 0-24 cpd, except for a sharp increase at
very low frequencies. This suggests that,at least for heavily damped

systems, the equilibrium velocities given by (3.3.15) are probably not

typical of measured velocities in a given lake system.

We shall not consider here in detail the surface step response of the
rectangular, constant depth basin as deduced from the eddy viscosity equat-
ions, The problem has been previously examined by Proudman and Doodson
(1924) and requires far more computational effort than for the transport

solution.

Again, from (2.2.8a), the integral

jwt
ejw dw

1t

I(xo'zo) Jw

]w Z(xo,w)

must be evaluated, where Z(xo,m) is given by (3.3.13).

The method of contour integration requires that the poles of Z(xo,w)
be determined. This is clearly equivalent to finding the roots of the

equation
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5 = i =
(Nb +e2n_1K2n_le)cosh(bH) = €2n-1K2n—1Slnh(bH)'n 1,2, ccte
i.e. roots of
tano-g _ ) =1,2 (3.3.16)
05 - 2n_1’ n= sy RO . .

where o = jbH, 8 = N/enKnH5 = N22/gu°n2n2 . The function f(o) =
(tano-o0) /o is even in o. Fig. 3.12 shows a plot of f(o) for real, posi-
tive 0. For ¢ < w/2 the function has a turning point (a minimum) at

(1.11, 0.54). For o > n/2, the factor 1/05 ensures that f£(g) is always

close to zero and < 0 except near the poles of tan o.

Proudman (1924) investigated the solutions of (3.3.16) &nd showed

that in the positive half of the complex o-plane:-

- for Iol < 7/2 and 62n_1 > 0.54, 2 real roots only;

- for |0| < 7/2 and eZn—l < 0.54, 2 complex conjugate roots only;
- for |G| > n/2, the only roots are real and are " iz&%lll n=1,2, ...

The position of the roots must, in each case, be determined numerically.

The step response thus obtained again consists of damped seiches of
odd nodality, superimposed this time on the equilibrium response Zo(xo)

given by (3.3.14).

Such similarity may seem surprising in view of the fact that for the
eddy viscosity case,Z(xo,w) has an infinite number of poles for each n,
whereas for the transport case,the number is only 2. However for the

former case it is only the poles with modulus less than 7/2 that are
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important in determining the type of the step response - these correspond
closely to the poles of Z(xo,w) in the transport form. Thus if 62n—1 >
0.54 all roots of (3.3.17) will be real so that the poles of Z(xo,w) will

occur for purely imaginary values of w. This is then the condition for

overdamping of the seiche of (2n-1)th nodality. It may be rewritten as
= 1/2 . i
N > _(_2_£1_Li)_“_ (0.54 g% /2 (3:3.17)

For the North Coorong rectangular basin, the condition for the fundamental

seiche to be overdamped becomes

N > 2.58 x 10_4m2.sec..l .

3.4 Some Conclusions Concerning Wind Effects on the North Coorxrong

It was stated earlier that internal damping processes appear to
dominate the surface response of the North Coorong to time varying wind
stresses. The extent of this dominance may be gauged by suitably estima-
ting values for the damping parameters o and N for the system. In Chapter
8, time~series analysis of wind stress and water level data suggests, in

- - - -1
fact, that o« = 2.5 x 10 4m.sec 1 and N = 4.0 x 10 4mz.sec A

The gain of surface response is, therefore, dominated by £frequency
components in the range 0 - 6 cpd. Velocity gains, however, retain the

same order of magnitude over a much wider freguency band, say 0 - 24 cpd.

An important conclusion drawn from these estimates of a and N is that

the surface step response is likely to be close to a critifally damped
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situation. This result we infer from the inequalities (3.2.18) and
(3.3.17). From Fig. 3.8 it seems that the surface of the North Coorong
basin, in response to a wind stress of the step form, will reach a state
very close to equilibrium only 1 fundemental seiche period (7.9 hr) after

the onset of the wind .

The appearance of the fundamental longitudinal seiche ('sloshing mode')
in response to Surface wind stress is therefore unlikely in the North
Coorong, though secondary seiches of very small amplitude probably will
occur. We conclude that the characteristic diurnal water level oscilla-~
tions observable in both Coorong lagoons are not free seiches, as postu-
lated by Clarke (1966). Instead, the theoretical forced surface response
to wind stresses of the form Ty = To sin(27t/T) with T = 1 day, as shown

in Fig. 3.5, satisfactorily models the phenomencn.

From the above estimate of o for the North Cocorong, a value for the
parameter r (5 2aH) is calculated as 6.3 x 10-4m.sec-l. Smith (1973) uses
values of r ranging from 10_4m.sec-l to 10_3m.sec—l in a series of numeri-
cal experiments on Lake Michigan (noting little change in computed trans-
ports with these variations). Heaps and Ramsbotton (1966) determine that
for the bottom layer (depth = 21m) of the stratified Lake Windermere.

Scotland, o = 1.2 x lo-ssec-l, so that r = 5.1 x 10-4m.sec_1.

We infer that r assumes a value of the order of 5 x lo_q'm.sec—1
regardless of lake contour or depth. This does not seem surprising since
the quantity 9, in (2.1.11a) probably is largely invariant of such factors.
In regions of strong tidal flow, on the other hand, 9y, is probably much

larger and, indeed, values of r for the southern part of the North Sea
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and the Straits of Dover (Bowden (1956)) may be higher than 5 x 10—3m.sec-l

We, therefore, conclude that the parameter o (rather than r), through
the 1/H factor, determines the degree of damping within a given lake
system. For extremely shallow lakes, such as the Murray Mouth lakes
whexre H = 0 (lm), damping forces dominate the motions. For deeper lakes,

damping forces do not play such an important role.

In mathematical models of the Great Lakes, where H = 0 (50m), it is
quite common to neglect damping forces completely, especially in a con-
sideration of transient motions (Birchfield (1969)) which may persist for
up to 1 week. For the Murray Mouth lakes and, indeed, for most Australian

lakes, it seems that such a simplifying assumption will not suffice.
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CHAPTER 4

A GENERALIZED THEORY FOR WIND EFFECTS

4.1 The Theory

-

We develop here a generalized theory for time varying wind effects on

a lake of arbitrary contour and constant depth. The steady state periodic

response for such a system is the sclution of a Helmholtz equation subject

to certain boundary bonditions.

Consider the transport equations (2.1.12) with constant depth, H, viz.

oU 2 14

e + 200 fv (o] A% + KTsx
v . 2 EE

3% + 20V + fU = -¢ 3y + KTsy
dx 3y at

with ¢, o having their previous meanings.
Assume that wind stress components have the form
B jot
Tsx(x,t) Tox(x,y)e

- jut
Tsy(x,t) Toy(x.y)e

(4.1.1a)

(4.1.1b)

(4.1.1¢c)

(4.1.2a)

(4.1.2b)

where Tox(x,y), Toy(x,y) are amplitudes of wind stress components and, in

general, vary with position across the lake surface.

response of the lake is expressible in the form

Then the steady state
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o(x,y,t) = Z(levw)ert (4.1.32)

U(x,y,t) = P(xry:w)ejwt (4.1.3b)

Vx,y,t) = QUx,y,w) et (4.1.3c)
Combining (4.1.1), (4.1.3) gives
—f0 = -2 22

Bp-£o o oo+ Kr__ (4.1.4a)
= -c2 92

BQHEP = o2 £ 4 Kr (4.1.4b)

g—i + g% = -juwz (4.1.4c)

where B(w) = jw+2a. Eliminating P, Q in turn from (4.1.4a), (4.1.4b) gives

1 2 9% _a_Z_
P (£2487) [K(Brox+froy) cc (B < T £ 5y )1 (4.1.5a)
Q= —2 [k(Br__-f1_)-c2(8 3Z - g2% ) (4.1.5b)
(£2+82) oy = ox dy T~ 9x 7!
and combining (4.1.5), (4.l.4c) we have
(V24k2)z = —— (BD + £C) (4.1.6)
c<B
32 32
where %2 = — + —), i.e. the steady state, periodic response is the
Ix2  3y?
solution of an inhomogeneous Helmholtz equation.
In (4.1.6),
. 2
2 o —jwB £ i -
k -2 (1 + a2 ) (4.1.7).
Tox , oy
D= P + 3y (4.1.8a)
9T ot
C=—d. . 02X (4.1.8b)
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D, C arc respectively the divergence and the magnitude of the curl of the

wind stress amplitude vector T = (T __, T ).
~O ox’ oy

The boundary condition (2.1.10), when subject to (4.1.3b), (4.1l.3c)

becomes

(S*)n 0 along T (4.1.9a)

where S* = (P,Q). We may write

S* = Ka - czp

-

where
2 = (BT Ty BToy ETox) =BT, + FT %k
b = (gzx+fzy,gzy-fzx) = BYZ + fVZxk

and k is the unit vector in the +z direction (Fig. 4.1). Thus (4.1.9a)

becomes
K ~ A
— (a.n)_, = (b.n)
cl T ; T
or
~ A A K ~ A A
(BZZ.E + fYZx&.g)r = 2 (BEO‘E + fzoxE'E)r (4.1.9b)

where ﬁ is the outward unit vector normal to the lake contour, T, (Fig.
4.1). Further, define é the unit vector in the positive (counter-clockwise)
direction of the lake contour, T', (Fig. 4.1), Now the following relat-

ionships are easily established:

VZz.n = =

~ an
Vzxk.n = B_Z_
~ = de
?o-B = Ton



where 9n, de are elements of length in the directions of the unit vectors

P ~

n, e respectively. Thus (4.1.9b) becomes

07 32 K
(B n + f e )r . ;E (Bron + fToe)r, (4.1.9¢c)

a generalized boundary condition for the wind forced, periodic and steady
state motion of a closed lake, with Coriolis and damping parameters

included.

In the work which follows we assume, as in the previous chapter, that

the wind stress is homogeneous over the lake surface, so that C =D = 0,

Recently, Emery and Csanady (1973) have postulated that the long-term,
consistently counter-clockwise circulation of surface waters in many lakes,
lagcons and marginal seas of the northern hemisphere, is due to a positive
(cyclonic) wind stress curl acting on the lake. The proposed mechanism is

as follows.

Surface wind drift currents have a component directed to the right
of the wind (looking downwind) in the northern hemisphere (Ekman drift) and
in the presence of surface heating this leads to a displacement of warmer
water to the right. Greater surface turbulence and thus greater surface
drag is produced to the right of the wind, i.e. a wind stress curl across
the lake is established. 1In addition, upwelling of cold water to the left
of the wind would accentuate thehtemperature gradient across the lake and

hence the magnitude of the wind stress curl.
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~

Now a wind stress curl of this form blowing for a considerable period
of time produces counter-—clockwise circulation(Targyev (1958)). Further,
regardless of the speed or direction of the wind, the circulation has
counter-clockwise sense so that if the lake motion is averaged over a long
period of time, the portion due directly to the wind stress curl would
remain while that due to other, more conventional effects (wind drift,
seiches, etc) would be averaged out. Emery and Csanady show that veloci-
ties equivalent in magnitude to observed velocities (0(0.1 cm.sec-l))
can be induced in a circular, constant depth model lake by a temperature

gradient of 1°C across a 50 km lake diameter.

In the southern hemisphere, the theory predicts Ekman drift of
warmer waters to the left of the wind (looking downwind) with a consequent,
long-term clockwise circulation. Unfortunately there is no available data
to substantiate this supposition. Australian lakes, subject to consider-

able surface heating, might be expected to exhibit such a circulation.

Wunsch (1973) has provided another possible explanation for the
phenomenon. He relates the long-term circulation to second-order Lagrange
drift associated with internal waves generated by impulsive wind changes

over the lake.

The requirement of a wind stress field of zero divergence and curl
reduces (4.1.6) to

(V2 + k2) z = 0 (4.1.10)

still subject to boundary condition (4.1.9c).
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The assumption of constant depth made at the beginning of this sec-
tion is relatively unrestrictive; solutions obtained are likely to reproduce
closely the main features of wind effects in real basins provided there is
no sudden variation in bottom contour. Smith (1973) in a study of the
wind-forced and seiche~forced motion of Grand Traverse Bay,Lake Michigan,
has shown, using numerical models, that unusual bottom topographic features
of this kind may result in the formation of velocity gyres which corres-

pond closely to observed velocity patterns.

We proceed, in later sections of this chapter, to solve (4.1.10) making
cne final simplifying assumption, viz. that the wind stress is uni-

directional, its direction being that of the x-axis, i.e. we have

Tsx(t) = Toe (4.1.11a)

Tsy(t) =0 (4.1.11b)

where T is a constant. With unit amplitude this allows Z(xo,yo,w) to be
interpreted as the response function of the system with Tsx(t) as input

and c(xo,yo,t) as output. Note that generally the function Z(xo,yo,w) is

a linear combination of the sub-response functions which together specify

the system (refer Chapter 2).

Since in this case I, = (t_,0), then the components Ton’ Toe

o
satisfy T =T i. T =T j
Y on oi’ n, =

. ol-e whére i is the unit vector in the

positive x-direction (Fig. 4.1).

The particularization of (4.1.10) obtained with £ = 0 should be noted.
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It is

(V2 + k2) 2 =0 (4.1.12a)
where kg = -ij/c2 . Boundary condition (4.1.9c) becomes

07 K

[BﬁJr‘ o2 (Ton)r . (4.1.12b)

4.2 Equilibrium Solutions

Let us examine, firstly, the equilibrium solutions to (4.1.10), i.e.
the zero frequency solutions assuming the uni-directional wind stress

field (4.1.11). We consider the solutions under the following headings:-

(a) The non-rotating case, £ = 0

Here k = kO and in the limit w -+ 0 we have ko -+ 0, Thus, the equili-~

— lim
brium response Z(x,y), defined as g4 {z(x,y,w)}, satisfies

V2 Z2 =0 (4.2.1a)
subject to

3z'] _ K

[an ]r—"cz (t p - (4.2.1b)

A particular solution to this problem is clearly KTox/cz, so the general

solution to (4.2.1) may be written

_ Kt x
Z(x,y) = —5— + $(x,¥) (4.2.2)
C

where ¢(x,y) satisfies

V2¢p = 0 (4.2.3a)



_60_
subject to

on

[ﬁﬁq =0 . (4.2.3Db)
r

The unique solution to this Neumann precblem is ¢ = ¢o' a constant, (Chester
(1971), p.70), so the unique solution to (4.2.1) is

_ KT _x
2(x) = ——+ ¢, (4.2.4)

where the constant ¢O is to be determined by the condition of mass conserva-

tion, i.e. the integral of Z over the lake surface must be zero.

From (4.1.5) we see that Z = Ekx) implies P = Q = 0, i.e. (4.2.4) is a
static equilibrium solution. Further, we note that the slope of the
equilibrium surface is indepeﬁdent of the shape of the basin contour. So
the classical one-dimensional equilibrium wind set-up, explained physically
in Chapter 1 and derived in Chapter 2 for the case of a ncn-rotating rect-
angular basin of constant depth, is theoretically achievable for a much

wider class of wind effect problems.

We note that (4.1.4a), (4.1.4b) (with Tox = Tor T = 0) may be
written as

BD - £0 = ~c2 2 (z - T) (4.2.5a)

1]
]
Q
N
o~
N
I
N
S~
.

-BQ + fP (4.2.5b)

Lamb (1932), p.319 uses an equivalent form in his investigation of the
general forced motion of a rotating basin. Using Lamb's relation (4) of

§207, the potential of the disturbing forces is



Q =~ Zg (4.2.6)

so the potential of the wind stress (4.1.11l) acting on a closed basin of

constant depth H, is
KTox
Q= - H =~ . (4-2.7)

Finally we noté that the generalized boundary condition (4.1.9c) may

be rewritten in the form

) o 3 -, _
(85-5 (z=-2) + £ 3% (z—z))r =0 . (4.2.8)

(b) The Rotating Case, £ # 0

It proves useful in this case to form, from (4.l.4a) and (4.1.4b), the
vorticitycequation

BM = jwfz (4.2.9a)

where M = [EQ-~ EE% is the amplitude of the integrated vorticity W =

dx 0y
v Ul .
e 5;— imparted to the fluid by the rotation of the earth.

Then for o = 0, (4.2.9a) gives

M= £2Z (4.2.9b)

at all frequencies, including zero frequency. Now if the equilibrium state

were static, (4.2.9b) would imply that the surface equilibrium response

n

Z(x,y),defined as A

0 {z2(x,y,0)} , is everywhere zero, which is unlikely.
n
Rather, a non-trivial form for Z(x,y) implies the presence of vorticity at

equilibrium giving rise to a guasistatic equilibrium circulation patterxn.

In this case k *+ j/R as w *+ 0, where
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R = % , (4.2.10)

(v2 - R_2) Z =0 (4.2.11a)
subject to
VA K
[a_—:] = ? (Toe)r . (4.2.11b)
r (

ny . v
From (4.2.5), the equilibrium transport components P(x,y), Q(x,y) are

given by
N__g2d = _ 3
Pe- gy @D = -5 (4.2.12a)
- L ag .l @.2.12b)
Q=F % ) =% -2-

where Y(x,y) is a stream function defined to satisfy (4.l1l.4c) with w = 0.

Its contours define the quasistatic circulation pattern.

Clearly we may write
Y(x,y) = -‘f:—z- (2-2) .2.13)
since this gives the required equilibrium transports defined in (4.2.12).
Further, since the lake contour, I', must itself form a streamline, then
along I' it is clear that %(x,y) and Ekx) differ by only an additive

constant.

The differential equation satisfied by Y(x,y) is obtained by combina-

tion of (4.2.11) and (4.2.13). It is
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) 1 KTOfX
(v - ;Zﬁw = 2 @.2.14a)
subject to
am] — 0
r
[Be r
i.e.
Y =0along I , (4.2.14b)

where the contour Y is arbitrarily chosen as the streamline ¢ = 0.

In Appendix C it is shown that solutions to (4.2.11) and.(4.2.14) are
respectively unique to within an additive constant and completely unique.
In the .former case, the correct additive constant for a given basin is

determined by the condition of mass conservation.

In later sections of this chapter, the quasistatic equilibrium res-

ponse of basins of specific form will be considered.

Rossby (1938), Cahn (1945) and Veronis (1955) have shown that the
parameter R is of extreme importance in determining the (theoretical)
extent of the quasistatic adjustments (deformations) of mass and velocity
distributions for a wind-induced oceanic current system of finite width
and infinite length. It has dimensions of length and Rossby termed it

the radius of deformaticn . The magnitude of R is the radius of the

inertia circle (Proudman (1953), p.74) for long waves in a channel of

depth, H.

Recently Csanady (1967, 1968a, 1968b, 1972) and Birchfield (1969) have

shown that R is alsc important in determining the extent of the equivalent
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adjustments in closed basins. These works are examined in greater detail

later in this chapter.

Let us briefly consider the case a # . In the limit w » 0, the
vorticity equation (4.2.9a) gives M = 0, i.e. in the presence of damping

forces the equilibrium motion is irrotational. We may thus write

(B,Q) = s* = Wy (4.2.15)

where the function ¥ (x,y) satisfies
V2y = 0 within T 4.2.162)

(this follows by combining (4.2.15) and (4.l.4c) with w = 0), subject to

b4
[an]r =0. (4.2.16b)

The solution to boundary value problem (4.2.16) is y = xo, a constant,
and thus (4.2.15) gives §* = 2, i.e. the equilibrium response is a static

N
response. Finally, integration of (4.2.5) with P = Q = 0 gives

%(x) =7 + ¢o

i.e. solution (4.2.4) again. Thus, even for the case of a rotating basin,
the familiar equilibrium wind tide is established, provided some damping

forces act within the fluid.
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4.3 The Rectangular Lake

We now apply the theory developed in the two previous sections to the
case of the constant depth rectangular lake ccnsidered in Sections 3.2,
3.3. The coordinate system of Fig. 3.1 is again used here. The basin has
length L (%x-direction) and breadth B (y-direction) and is subject to the
wind stress field (4.1.11) which acts always parallel to the side of

length L.
We write (4.1.10) as

2 2
3 g + 9 g + k27 = 0 (4.3.1a)
9x Ay

subject to boundary conditions

a . a —_— _ _
B 57 (2-2) + £ 55 (z-Z) =0 for x = 0, L (4.3.1b)
g L (z-Z) + B o (z-2) = 0 for y = O,B (4.3.1c)
% 57 ) y = O,B. .3.1c

The general solution to system (4.3.1) has not been attempted here.
The difficulty results from the complicated nature of the boundary condi-

tions (4.3.1b), (4.3.1c). The comment of Rao (1966) that

"the solution of the problem of free oscillations in rotating

rectangular basins is far from complete"

is equally applicable to the forced problem.

However the simplification £ = 0 reduces the problem to the one-

dimensional situation of Section 3.2, described now by the equation

—+ k%2 =0 (4.3.2a)
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subject to

%;-(Z— ) =0 for x = O,L . (4.3.2b)

The solution to (4.3.2) is
Kt _sin{k (x - EO}
(e} [o} 2

Z(x,w) = (4.3.3)
koczcos(koL/Z)

identical (at station X and with Ty = 1) to (3.2.9), as may be seen by
expanding (4.3.3) as a Fourier cosine-series over the range [0Q,L}. We

note, too, that

_ KT_
Z(x) = -:;z (x -3, (4.3.4)

equivalent to (3.2.13).

With a = 0 we have ko = w/c, so resonance occurs when cos(wL/2c) = 0,
i.e. w = (2n-1)m¢/L, n=1,2, ... , as determined in Section 3.2. We note
that the real time response to & wind stress of the form Ty = Tosin(wt) is
jut . .
L(x,t) = ToIm{Z(x,w)e }. wWith a = 0 this becomes

KT sin{%(x— 52'-) }
z(x,t) = = cos (@L/22) sin(wt) (4.3.5)

i.e. the surface response has a sinusoidal shape (a result referred to
though not proved in Section 3.2) and has the form of a standing wave.
(Alternatively, we might regard the response as a superposition of oppos-

itely directed travelling waves, each with speed c).

Noye (1973) has previously obtained and discussed the solution (4.3.3)

in the case a = 0.

Let us examine the guasistatic equilibrium circulation pattern for the
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case of the rectangular lake. The stream function Y (x,y) satisfies
(4.2.14a) within the lake contour, while boundary condition (4.2.14b) may
be written as

0 for x = 0,L

< <=
] il

0 for y = O,B.

The sclution to this boundary value problem may be obtained by use of

finite Fourier transforms (Tranter (1971)).
Specifically, define the finite sine transform wn(x) by
wn(x) = IB ¢(x,y)sin(6ny)dy
o
where Gn =nn/B, n=1,2, ... . Then

B 42
3%y = -2
J Byz 51n(6ny)dy Gn wn

o}

so that (4.3.14a) transforms to

2 - -1)y0-
] ¢n 2 g Ktofx(( 1)%-1) (4.3.6a)
ax2 nn c?e
n
where 6§ = ei + 1/R?, subject to
wn(O) = wn(L) =0 . (4.3.6Dh)
The solution to (4.3.6) is
\PZP =0 )
: _ -2kt £ [ . sxnh(ﬁnx) ] ; p=1,2, ... (4.3.7)
2p-1 c20 62 51nh(6nL} ) ,
nn )
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So from the inversion formula

2 v :
Vouy) =5 1 4 (0)sin(e )
p=1l
we have
B ~4KT £ 81n(92p_ly) _ 51nh(629_1x)
vix,y) = X = L= . (4.3.8)
Bc? p=1 0 52 s1nh(62P_lL)
2p-1 "2p-1

Lake Alexandrina may be approximated as a rectangular basin with axes
in north-east and north-west directions; we take length L (north-east
direction) as 30km, breadth B as 15km and depth H as 3.5m. Further, we
take £ = -8.5 x 10 Ssec », obtainable from (2.1.2) with ¢ = 35° which is
the latitude appropriate to the area of the Murray Mouth lakes. The
quasistatic circulation pattern obtainable from (4.3.8) for this model due
to a steady south-west wind is shown in Fig. 4.2. The series was found to

converge sufficiently after 50 terms.

In the portion of the basin from x = 0 to x = L/2, the circulation
consists of slow Ekman drift to the left of the wind (looking downwind),
the flow then moving in a clockwise direction arcund the basin. It is to
be noted that the flow is more concentrated along the sides and the down-
wind end of the basin than along the upwind end ~ such concentrations are

commonly termed coastal jets . Also, the flow involves the entire basin,

and, regardless of the direction of wind, is always in the clockwise sense.
For the Northern hemisphere, a counter-clockwise circulation pattern is
predicted. Circulation of this form offers another plausible explanation
for the long-term counter-clockwise circulation observable in many lakes

of the Northern hemisphere. Evaluation of the velocities associated with
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the pattern of Fig. 4.2 with T, = 0.1 N.m-2 shows that typical velocity
magnitudes are of 0(0.1 cm.sec-l -1 cm.sec-l), though within the highly

concentrated coastal jets they may be as high as 0(10 cm.sec—l).

The quasistatic equilibrium surface response is, from (4.2.14), given

by
Kt x

+ ¢

Y f
7= —y +
c? c2 ©

where ¢o is determined so that mass is conserved, i.e.

Kt L B (L
_ 1 "y £
¢O - c2 t 2 * BL J I w(le)dXdY}.
o‘c
Thus we may write
B (L Kt
Y £ 1 o) L
Z = o2 {Ip BL JO Jow(X.Y)dde} + 02 (x > ). (4.3.9)

Evaluyation of (4:3.9) shows, in fact, that the guasistatic equilibrium
response for the Lake Alexandrina model is dominated by the term
KTo(x—L/Z»bz, i.e. is almost equivalent to the static response. This is
why the velocities associated with the pattern of Fig. 4.2 are generally

small.

4.4 The Circular Lake

The problem of the undamped free and forced motions of a rotating,
circular, single-layer basin is treated in detail by Lamb (1932), §209 -~

§211.

Recently, Csanady (1967, 1968a, 1968b, 1972) and Birchfield (1969)

have extended Lamb's work to the case of a rotating, circular, two-layer
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basin, a simple model shown to exhibit some of the main features of the

summer motions of the Great Lakes.

Here we examine the damped, wind-forced motion of a rotating,

circular, single-layer basin using the generalized theory developed in

previous sections. Such a model should allow some of the important feat-
ures of wind forced motions in the shallow (and therefore heavily damped)
and well-mixed Murray Mouth Lakes to be deduced. The methods used are
applicable also to the two-layer model developed by Csanady and Birchfield,

but discussion of this is left to a later chapter.

The plan of the lake under consideration is shown in Fig. 4.3. The
origin of coordinates is positioned in the centre of the lake; the radius
is denoted by a. Again the wind stress (4.1.11l) acts on the lake. Clearly
we achieve considerable simplification in this case by using polar coor-
dinates r, 0 such that x = rcosf, y = rsinf. Then the wind stress vector
may be written

A -~
T =T + T
~s fr 6%8

~

where €, € are unit vectors in the r- and 6- directions respectively
(Fig. 4.3) and T Tg are ther- and 6- components respectively of the wind

stress vector. From (4.1.11) it is clear that

~
]

To cosb (4.4.1a)

~
i

-Tosine " (4.4.1b)

Further (4.1.10) may be written as
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32 13 1 232 2 B
[arz + 7 3% + =7 352 + k Z =0 (4.4.23a)

(z-z) + = (2-2)) =0 (4.4.2b)
X r=a

where the static equilibrium response is

Kt _rcosf
o

C2 ’

Z(x,8) = @.4.3)

The solution of the boundary value problem (4.4.2) is not difficult to

achieve for arbitrary w. The general solution tc (4.4.2a) has the form
Z2(r,9,w) = Jm(kr)(Amcos(me) + Bm51n(m6))

where m is an integer and Jm(kr) is the mth order ordinary Bessel function
of the first kind, with (in general) complex argument. However from the
form of the boundary condition (4.4.2b) it is clear that only azimuthal
wave number m = 1 is present in the solution to (4.4.2a), i.e. Am = Bm =0

for all m # 1. On the other hand, if the strength of the wind stress, TO,

varied over the surface then other values of m would also be appropriate.

The solution correctly satisfying (4.4.2b) is

KTOJl(kr){(szL2+f2L1/a)cose+6f(L1/a—kL2)sinB}

Z(x,9,w) =
c?{ (BkLy) 2+ (fL;/a)?}
(4.4.4)

where Lj(w) = Jj(ka), Ly{w) = (g;-Jl(z))z = Jo(ka)-Jl(ka)/ka. With.

=ka
£f =0, (4.4.4) reduces to
KTOJl(kor)cose

Z(r,0,w) = (4.4.5)
cz(Jo(koa)-Jl(koa)/koa)
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which may be checked as ‘@ solution to the boundary value problem (4.1.12).

We may approximate Lake Albert (closed at the Narrung channel entrance)
as a circular lake of radius a = 7.5 km and depth H = 2m. The behaviour
of this model lake might be expected to correspond, at least in its gross
features, to the wind-induced behaviour of the actual lake. Shown in Fig.
4.4a are the gain and phase-lag for the response function Z(ro,eo,w)
(unit TO) at station (a/2,0), with £ = -8.5 x 10_Ssec_l, and for various
values of o. In Fig. 4.4b are shown the curves of gain and phase-lag at
the same station with Coriolis parameter f set to zero. To achieve effective
comparison between the response curves of Fig. 4.4a and Fig. 4.4b, the
gains in each have been normalized with respect to the static equilibrium
response at (a/2,0) as given by (4.4.3), with t_ =1 N.m 2, viz. 0.201m.
Typically To = 0.1 N.m—z, so that for Lake Albert, surface displacements

are generally of 0(5cm).

In Figs. 4.5a, 4.5b are shown similar curves obtained from the

station (a/2, 7/4). The normalization factor for gains is again 0.201lm.

=3

In the absence of rotation, and with a = 0 so that ko = reson-

. c c c &)
ance occurs at frequencies w = 3 %n (n=11,2, ...) = 1.9 P 5.3 2! 8.5 3’

11.7 gy etc. where z, is the nth successive positive zero of the function
4 J1(z). These are the frequencies of the natural modes of oscillation
g: azimuthal wave number 1 for a non-rotating circular basin of depth H,
and radius a, (see Lamb (1932),§191). For comparison, a non-rotating

rectangular basin of length 2a, and depth H, exhibits resonance, when sub-

ject to the lengthwise wind stress field (4.1.11), at the frequencies
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c 1 c c [ o]
w = g‘(n - Eﬁw,(n =1,2, ...) = 1.6 = 4.7 23-7.9 = 11.0 > etc. Further,

1/2

d 2 m 1
as z >+ ©, — J(z) tends to (;;J cos[z - ZJ’ so as n>®, z - (n - Zﬂﬂ.

dz
Hence the difference in value of the nth resonant frequencies of the two

. TCe
basins approaches the constant Zg-as n > o,

Consider now the response curves in the presence of rotation, i.e.
£ # 0. Clearly the nature of (4.4.4) is dependent on the:relative values

l/z/R with o = 0, where R is Rossby's

of w and f. since k = k; = ((F) 2-1)
radius of deformation, then with w < f the Bessel functions in (4.4.4) have
imaginary argument and are thus modified Bessel functions, Ij, of the first
kind with real argument; but with w > £ the arguments are real and sc the

Bessel functions in (4.4.4) are ordinary Bessel functions, J;, of the

first kind with real argument.

Now resonance will occur at frequencies, w, coinciding with the natural
modes of azimuthal wave number 1 in the absence of friction. From (4.4.4)
we have that with w < £ this occurs when

(aklIl')2 = ( 5'11)2

where Iy = Ij(kja), Ij = (g;-ll(z)) . But since I > 0, Ij > O for

z=kja
all w, then in fact there is the possibility of resonance only when
f
| B
ak; I o I1. (4.4.64a)
When w > £, resonance will occur at the 'frequency pairs' given by
£
] = —
(ak13}) =+ (C 91)

where J; = J)(k;a), Ji = (g—-Jl(z)) ; i.e. each resonance peak in the

dz z=kia

zero rotation case (at frequency given by Ji = 0) splits into a pair of

resonant frequencies upon the introduction of rotation, at least for w > f.

Lamb (1932), §210 shows that (4.4.6a), (4.4.6b) properly describe the
frequencies of the natural modes of the roating basin. Those natural

modes with frequency less than the inertial frequency,f, are termed
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Kelvin modes following the notation of Defant (1961l), Csanady (1967); modes

with frequency greater than the inertial are termed Poincare modes.

In his treatment of the natural wodes, Lamb shows that there will

always be at most 1 Kelvin mode for each azimuthal wave number m. Further,

the condition for there to be one Kelvin mode for each m is that

2
9-2—> m(m + 1) .

This there will always be at most one resonant frequency for (4.4.4) with
w < f and there will be exactly one if

25> /7 . (4.4.7)

No such restrictions apply to the Poincare modes of which there are an

infinite numbexr for each m.

For the Lake Albert model, R = 52.1 km, a = 7.5 km so that, from

(4.4.7), there are no resonant frequencies below the inertial frequency,

as is clear from Fig. 4.4a. Only the first pair of resonant frequencies

with w > £ are discernibly different; higher frequency pairs are negligibly

different.

Note that (4.4.3) is obtainable from (4.4.5) in the limit w > O.

Further, the quasi-static equilibrium response is obtainable from (4.4.4),

with o = 0, by allowing w + 0, giving

X
Kt al *acose
Z(r,0) = —2 1(§ (4.4.8)
0211 (-ﬁ)

which may be verified as the solution to the boundary wvalue problem
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(4.2.11) for the case of a circular lake.

" o
The quasi-static¢ transport components P(r,0), Q(r,8) are thus (from

(4.2.12)) obtainable from the stream function

11('{)
Y(x,0) = o [a R

£ 51 (%)

Results (4.4.8), (4.4.9) have been previously obtained by Csanady (1968b).

—r] cosf . (4.4.9)

A plot of the streamlines for the Lake Albert model basin are shown
in Fig. 4.6. Essentially the circulation consists of a slow Ekman drift to
the left of the wind direction (looking downwind) away from the centre of the
basin with concentrated cocastal jets returning fluid to the right half of
the basin both at the upwind and downwind ends. Unlike the rectangular
basin circulaticn, the flow in the circular basin entails separate vort-

ices with identical shape but oppositely directed flow in each.

The difference between the solutions for the rectangular and circular
basins is so striking, that it is a matter of considerable speculation aS to
whether either type of flow could possibly be observed in a real lake, or
whether they are not both simply analytical curiosities. Of course, in no
lake is the damping parameter, o, ever zero; neither is a true equilibrium
situation ever reached. But it is possible that for lakes in which damping
influences are slight, flows of either type (or possibly both) might be

induced by strong, almost steady winds.

For R > a, the arguments of the Bessel functions in (4.4.8) will be

less than unity and the approximations I; (r/R)n %r/R, I1 (a/R)’\:%a/R may be
f\' —
applied. Thus 2 v Z for R > a, i.e. the static equilibrium response and

quasi-static equilibrium response are approximately equivalent when the
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radius of deforxrmation exceeds the radius of the basin. In Figs. 4.4, 4.5
the zero frequency gain is in fact 0.999 times the equivalent static

equilibrium response.

Let us briefly comment on the differences between the response func-
tions for the rotating and non-rotating basins, i.e. the differences
between the solutions (4.4.4) and (4.4.5). Firstly, for the case a = 0
(k 2 k1), it is clear from Figs. 4.4, 4.5 that for the response  of .the Lake
Albert model at (a/2, 0), the only significant differences occur in the
vicinity of the rescnant frequencies. At frequencies less than 3 cpd
(including the inertial frequency), the response is essentially an equili-
brium response, so that the small value of the ratic a/R for the Lake
Albert model (v 0.15) largely determines the similarity between the curves
here. At frequencies much greater than the inertial, it is clear that

k1 »> k., so equations (4.1.10), (4.1.12a) become equivalent as do boundary

0
conditions (4.1.9¢c), (4.1.12b). Thus for sufficiently large w the response

curves for the rotating and non-rotating basins with zero o will be negli-

gibly different, regardless of the value of the ratio a/R.

The effect of non-zero o is to reduce further the significance of the
Coriolis force. That this should be so becomes clear by observing that
for large values of a (greater than 10-4sec_l).|f/6| << 1. Thus again
equations (4.1.10) and (4.l1l.12a) become equivalent as do the appropriate
boundary conditions. Physically, the integrated vorticity induced by the
earth's rotation is dissipated by damping forces (refer (4.2.9a)) and is

negligible for sufficiently large a.



-77-

To make these points clearer let us examine the real time surface

response of the basin to a wind stress of the form Tsx(t) = Tocos(wt).

C . _ jut
The surface response at position (ro,eo) is ;(ro,eo,t) = Re{ Z(ro,eo,m)e i}

= Re{Z}cos(wt) - Im{Z}sin(wt). Now with a = 0, and assuming w > £, we

have

KT _ady(kir ){fle—wzalii}cose
Re{z} o o o

c2{ (£31)2 -(akijwI})2}

Kt_aJdi (kir JwE{J)~adT]{}sind
Im{z} 2 2 ©

c?{(£31)2 -(ak1w3])?}

where J3, Ji are as defined in (4.4.6b). (With w < £, J; and Ji are
replaced by I;, Ii). Thus after some manipulation we have

KTOaJl(klro) --(l—f/w)cos(eo—mt) (1+f/w)cos(eo+mt)

C(ro"eo't) - (ak1J]-£J1/w) * (ak1J{+£J)/w)

2¢2
(4.4.10)

Csanady (1968a) obtained a similar result which, however, appears to be in

error by a factor of %-. Recognizing, finally, that

1few 2 , £(1=31/aKk31)
ak1d{+£3; /0  akd] ~ (wak,J{+Ed;)

we have that
KtéaJliklro} 'Qcoseocos(mt)

alii

L]

t(r ,0 ,t)
O Q 202

cos (0- —at) cos (9 +wt)]
..Q - (e}
wak I -£3)  wakyJ{+£7;)

-£(1-)/ak}J}) [ ; (4.4.11)

Thus, from (4.4.10), the surface response consists of 2 travelling

waves of differing amplitudes travelling in opposite (i.e. +6, -0)
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directions around the basin. With £ = 0, the two waves are of identical

amplitude, so the response becomes the standing wave.

KroJl(kro)coseocos(wt)

c?k (I (ka) -J4 (ka)/ka)

with k = w/c. This zero rotation result is analogous to the result for
the forced, l-dimensional regponse in a rectangular basin; there,the sur-
face response consists of two identical, but oppositely directed, progres-

sive waves forming a standing wave.

One may alternatively, from (4.4.11), regard the response in the case
o = 0 as consisting of two travelling waves of differing amplitude super-

imposed on the standing wave

KTOJl(ker)COSGO cos (wt)

2 '
c4ky Jl
In fact, for the Lake Albert model, the progressive waves make a quite

negligible contribution to the forced surface response at all frequencies,

except near resonant frequencies when o assumes small values.

The steady state mean velocities due to the same wind are easily cal-

culable from (4.4.4). Rewriting (4.1.5a), (4.1.5b) in terms of polar

coordinates, we have

2
-C 9Z f 9z K
Q. = L Z 2 (BT 4 £1 )] (4.4.12a)
r (£2482) r r 98 ¢ oxr ob
o _=c? £ 22 4 B232 K er 4t )] (4.4.12b)
0 = 3r T r 30 o2 or TTop b
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where Qr' Qe are the amplitudes of the r-, 6- components respectively of
the transport vector. Further, the amplitudes of the components of mean
velocities are simply q, = Qr/H’ dg = Qe/H . Substitution of (4.4.1),
(4.4.4) in (4.4.12) enables calculation of Qr’ Qe for the particular prob-
lem of this section. The steady state mean velocity components at time t
due to the wind Tsx(t) = T_cos(wt) are then simply Re{q§}cos(wt) -
Im{qr}sin(wt) and Re{qe}cos(wt) - Im{qe}sin(mt). Again explicit expres-

sions are obtainable when o = 0, but they have not beéen’written here.

In Fig. 4.7 we show the mean velocity response to a wind stress of this

form for the Lake Albert model in the four cases (i) o = 0O sec_l, £f=0

sec_l; (ii) o = 10-4$ec—l

lo_ssec-l; (iv) a = 10~4 sec_l, £ = -8.5 x 10 °sec L. The period T of the

wind stress is 1 day; the amplitude, Tyr of the wind stress is 0.1 N.m_z;

 £E=0 sec-l; (iii) o = O sec-l, f =-8.5x

and the response is shown at times t = 0, T/8, T/4, 3T/8 of the wind stress
cycle. Of most interest in these diagrams is the comparison of the veloc-

ity structures at time t = O.

For the case (i), the velocities are everywhere zero since the surface
response is at a maximum. For (ii), the velocity structure is largely
unchanged, there being only very small velocities at t = 0. However, for
the case (iii), the velocity pattern at t = 0 is clearly similar to the
streamline patterns of (4.4.9), the velocity magnitudes being comparable to
the magnitudes obtained in the cases (i), (iii). It is clear that at each
instant of time, the lake response is almost an equilibrium response and
thus, at time t = 0, when the wind stress is acting with maximum strength,

the velocity patterns are similar to the equilibrium velocity patterns due
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to a steady wind acting in that direction. Finally for the case (iv), we
see that any influence of the Coriolis force on the velocity pattern has

become of secondary importance.

From the analysis of this section, we may make scme conclusions
regarding the importance of the Coriolis force in the wind-induced motions

of the Murray Mouth Lakes.

For Lake Albert, a value of a is calculable from r/2H where r =

O(5 x 10—4m.sec_1) and H = 2m; thus we take a = 1.25 x 10_4m;sec_l.

Consider, firstly, the surface response. At frequencies within the
equilibrium regime, the small value of the ratio a/R determines that
inclusion of the Coriolis parameter is inconsequential, regardless of the
value of a. At frequencies outside the equilibrium regime, the ratio
If/B| is very small due to a combination of large o and large w, so that
again the Coriolis force makes a negligible contribution to the forced

surface response.

Considering the velocity response, the near-equilibrium velocity
pattern induced at low frequencies is of no significance compared with
non-geostrophic velocities, due to the dominance of the damping term. At
frequencies away from the equilibrium regime, the smallness of the ratio
|f/8|again determines that thgre is negligible difference between the

rotating and non-rotating cases.

Similar reasoning may also be applied to Lake Alexandrina, for which
typical horizontal and vextical length scales are of a similar order of

magnitude to those of Lake Albert. Remembering that both Coorong lagoons
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obey the 'marrow lake' approximations, we conclude that the effects of
the Coriolis force may be neglected in a consideration of wind effects on

the lakes of the Murray Mouth.



FIGURE 4.1
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; THREE-DIVMENSIONAL ASPECT OF CILOSED BASIN ACTED

ON BY VIND STRESS VECTOR Tg. AL THE VECTORS
SHOWN, LIE IN THE PLANE OF THE UNDISTURBED LAKE
SURFACE, EXCEPT FOR THE UNIT VECTOR IN THE
POSITIVE Z~DIRECTION WHICH IS PERPENDICULAR TO
THIS PTANE .
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FIGURE 4.2 : STREAMLINE PATTRRN (NORMALIZED VAIUES) FOR THE
QUASISTATIC BQUILIBRIUM CIRCULATION OF A MODEL
TAKE ALEXANDRINA . THE WIND DIRECTION (SOUTH=-
WEST) IS INDICATED BY THE DASHED ARROW FROM
LEFT TO RIGHT., THE CIRCULATION ALWAYS HAS A
CIOCEKWISE SENSE .



FIGURE 4.3 : PLAN OF A CIRCULAR, CONSTANT DEPTH, SINGIE-
LAYERED BASIN ACTTD ON BY THE WIND STRESS
VECTOR ¥/
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FIGURE 4.4 : RESPOISE FUNCTIONS FOR A CIRCUTAR TAKR ATBERT AT STATION
(2/2,0) IN BOTH ROTATING AND NON-ROTATING CASES, FOR
(1)%=0 sec-1, (ii)X=10-% sec-1, (1i1)a=10-3 sec-1.
GAINS ARE NORMALIZED ¥ITH RESPECT TO THE ZQUILIBRIUN
RESPONSE FOR TH® NON-ROTATING CASE, VIZ. 0.201 .
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FIGURE 4.5 :

RESPONSE FUNCTIONS FOR A CIRCULAR LAKE ATLBERT AT
STATION (a/2,7/4). THE NORMALIZATION FACTOR FOR
GAINS IS AGAIN 0,201 M . THE CURVES ARE ATIOST
IDENTICAL TO THOSE OF FIG. 4.4. NOTW THAT VHEN &=
0 sec—! IN THE ROTATING CASE, THE PHASE-IAG
ASSUMES VALUES VERY CIOSE TO 00 AND 1800 .



FIGURE 4.6 : STREAMLINE PATTERN (NORMALIZED VALUES) FOR
THE QUASISTATIC EQUILIBRIUM CIRCULATION OF
A CIRCULAR MODEL LAKE ALBERT, RADIUS 7,5 km.
THE WIND DIRECTION IS INDICATED BY THE
DASHED ARROW FROM LEFT TO RIGHT .
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CHAPTER 5

NUMERICAL SOLUTION OF THE WIND EFFECT EQUATIONS

5.1 Introduction

As a means of solving wind effect problems, analytical techniques are
restricted to basins of simple form. Their usefulness lies in the fact
that they allow certain physical features of the motions in arbitrary
closed basins to be deduced. Thus, for example, Csanady (1967, 1968a, 1968b,
1972) and Liggett (1969) consider, respectively, circular and rectangular

constant depth lakes in studying the motions of the Great Lakes.

Analytical techniques, however, will not give results of a suffic-
iently precise nature for predictive purposes unless the form of the parti-
cular lake closely approximates a basin of simple form. Thus rectangular or
circular model basins are insufficient for a detailed description of wind
effects on Lakes Albert and Alexandrina; the problem here is compounded by
the flow exchange between the two lakes. It is clear that in this instance

numerical techniques are required for satisfactory results.

The numerical treatment of wind effects on closed basins has received
great impetus from the widely studied coastal storm surge problem, for
which basically the same equations must be solved. The majority of models
have been of the finite difference type, centered differences in space and
forward in ‘time. A typical example is the model developed by Heaps (1969)

with which very successful simulation of North Sea surges was achieved.

Similar finite-difference, time-stepping models have been used by many
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workers to study the motions of the North American Great Lakes. The behav-
iour of these lakes is almost ocean-like; indeed, storm surges similar to
coastal surges in the open sea are common, and often result in severe prop-
erty damage and even loss of life. Among the numerical studies undertaken
have been those of Platzman (1958, 1965) -~ prediction of Lake Michigan storm
surges; Platzman (1963) - wind tides on Lake Erie; Murty, Tadepalli and Rao
(1970) - wind generated circulation in Lakes Erie, Huron, Michigan and
Superior; Freeman, Hale and Danard (1971) - a variable density model of

Lake Huron; Simons (1972) - three~dimensional numerical models; Smith (1973)

- motions of Grand Traverse Bay, Lake Michigan.

Lakes with horizontal lengths scales of much smaller magnitude (and
thus of lesser commercial importance) have, by comparison, received little
in the way of numerical treatment, though similar sorts of methods ought to
be applicable. Lindh and Bengtsson (1971) have developed both homogeneous
and stratified numerical models and have applied them to Lake Valen, Sweden,
which has horizontal dimensions of 1 km % 7 km. The work of Smith (1973)
also falls into the 'small lake' category as it treats the motions within a

small bay connected to Lake Michigan.

One difficulty with the closed bay problem is that of satisfactorily
ensuring conservation of mass. Finite difference specification of condi-
tions at closed boundaries is susceptible to considerable error, which
results in an effective flow across the boundary and hence a net loss or
gain of fluid from the model if all boundaries are closed. This difficulty
is not encountered in the coastal surge problem where, due to the presence

of open boundaries, mass is not conserved.
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Finite element methods appear to offer the means of more accurately
treating irreqular boundaries and have already been used in a number of
steady state Great Lakes models; refer Cheng and Tung (1970); Cheng (1972)

and Gallagher, Liggett and Chan (1973).

In this chapter we develop systematic one- and two- dimensional
implicit finite difference methods to calculate the steady state response
of closed basins of arbitrary form to wind stresses of periodic time var-
iation. Since the time variation of the steady state response is known,
the models are not of the time stepping variety, i.e. only finite differ-

ences in space are required.

The one-dimensional method enables extremely rapid and accurate cal-
culations to be made of the response for basins of elongated form such as
the Coorong lagoons. The two-dimensional method, using a grid scheme
similar to that of Heaps (1969), enables realistic computations to be made
of wind effects on two-dimensional spatial models. Using these methods we
construct several models of the Murray Mouth Lakes. In particular, a model
combining both Lake Albert and Lake Alexandrina enables a realistic assess-
ment to be made of the importance of Narrung channel flow in the wind-
forced motions of the combined system. In all these models the effects of
the Coriolis force have been ignored. For one-dimensional models, the
'narrow lake' approximations are applied; for two-dimensicnal models, the

conclusions of Section 4.4 justify the neglect of the Coriolis force.
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5.2 One-dimensional Numerical Solution

We present here a finite difference method to solve the transport f£orm
of the one-dimensional wind effect equations for a wind stress field vary-
ing periodically in time. As with the analytical treatment 6f Chapter 3,
the method outlined in this section is strictly applicable only to elong-
ated lakes (channels) such as the Coorong lagoons. Specifically, we seek
to take into account variations in channel cross-sectional area in deter-

mining the response of the lake to time varying wind stresses.

Shown in Fig. 5.1 is the plan of the South Coorong lagoon. Any
effects due to the curvature of the channel, which is slight, will be
ignored. The channel axis (denoted the x-axis) points in the north-west
direction, with the origin at the south-east end of the channel. The
length, L, of the channel is 39.9%m. The wind stress, Ts(t), blows
parallel to the channel axis and again is assumed homogeneous over the
lake surface. We denote by A(x) the area of channel cross-section, by
b(x) the (undisturbed surface) breadth of channel cross-section and by

h(x) the mean depth of channel cross-section, where
A=hb . (5.2.1)

Now (3.1.3a), (3.1.3b) may be written as

ow x .. _ 3L ;

e PR W= 9R 55+ KbT (5 2. 2a)
oW _ g o .
% - P 3 15.2.2b)

subject to
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W=0at x=0,L (5.2.2c)

where W(x,t) is the total flow thrcugh a channel cross—section and is

given in terms of the transport U(x,t) by

W=D01U. (5.2.3)

Further, z(x,t) represents the mean surface displacement across a channel

cross-section.

In deriving (5.2.2a), (5.2.2b) we assume that h(x) in (3.1.3a) refers

to the mean depth of cross-section; further, a term Q %-gg-has been

omitted from (5.2.2b) on the grounds that %E is small. Equations (5.2.2a),
(5.2.2b) are the hydrodynamical channel equations with a linear damping

term and a wind stress forcing term.

jut

Now assuming that Ts(t) = Toe , With To constant, we look for steady
state solutions to (5.2.2), like
c(x,t) = Z(x,w)ewt (5.2.4a)
Wix,t) = £(x,0)e ¥t (5.2.4b)
so that (5.2.2) becomes
A2
BE = =gA 3—); + Kb‘l’o (5.2.5a)
g—f{- = —jubZ (5.2.5b)
€ =0 at x=0,L (5.2.5¢)

where B(x,0) = (jw + r/h).
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Platzman and Rac (1964) and Noye (1973) used a similar finite differ-
ence method to solve the system (5.2.5) without the damping term, for the
case of free and forced oscillations respectively. This method is here

extended to include frictional force..

Fig. 5.2 shows the type of grid scheme used, here applied to the
South Coorong basin. Also shown is the variation of cross—-sectional mean
depth and area along the channel as calculated from summer contours for
the South Coorong presented by Noye (1974). The average depth is 1.01lm
while average breadth is 2.82 km. Along the lake axis is positioned a
one-dimensional array with an odd number, NP, of equispaced grid points,
the first and last points corresponding to the ends of the lake; the
distance between adjacent stream points is the grid length, 4. For the
South Coorong model, NP = 109 and d = 370m. At the odd-numbered points
(1,3, ... , NP), only £(x,w) is evaluated; these are known as 'stream
points" and denoted "x'. At the even~numbered points (2,4, ... , (NP-1)),

known as ‘'elevation points' and denoted '0', only Z(x,w) is evaluated.

We use subscript notation to denote the value of a particular quan-
tity at a given array point; e.g. hi denotes cross—-sectional mean depth at
array point i. Furthexr, we approximate spatial derivatives by centred

finite differences; thus

£.. .-E.
as] N oit2Cd

== — (5.2.6a)
[Bx i+l 24

[a_z] o 2i37%4 (5.2.6b)
i+2
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Note that elevation derivatives are evaluated at stream points, transport
derivatives at elevation points. So evaluating (5.2.5b) at elevation point

(i + 1) and (5.2.5a) at stream point (i + 2) gives

L L,
2a -~ %4 fin
2, -3
i+3 "i+d
Bivz Biva = "y { 2d ] TR 2T,

and upon rearranging

Ei4p = By - 2dub, 4 Z; (5.2.7a)
Ziw3 = 2341 T Binfiaa® TP Vi (5.2.7p)

where g, ne -gAi/Zd; (5.2.5¢c) becomes simply
Ey=E.=0. (5.2.7¢)

NP

The system of difference equations (5.2.7)forms the basis of an
iteration scheme to solve the system of differential equations (5.2.5).
Specifically, knowing that £} = 0 and assuming a value for Zz we may cal-
culate &3 from (5.2.7a), 2y from (5.2.7b) and so on, right through the
grid. (Note that we only require values for hi at stream points i =
1,3, ... , NP). Then ENP will be zero only if Z; has been correctly
chosen. Whatever its value, ENP is .a ‘linear function of the value chosen

for Z;, i.e.

Egp = C1 + C222

where the constants Cj, Cp are independent of Z;. Clearly the correct

choice for Z; is
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Zy = -Cl/Cz.

C; and Cy (in general complex~valued) may be determined by calculating ENP for

any two different choices of Z3. Fox example, choosing Z2 = 0 gives

o _ = : = 1 ai 1 _
ENP Cy; choosing 723 = 1 gives ENP C; + C3. Thus
- £0 0 _r1
22 ENP/(ENP ENP) .

Using the correct value for Z;, a final run may be made through the array

to determine values for £, Z at alternate grid points.

A stability criterion for this scheme has been determined using the

method of stability analysis of Noye (1973). The basis of this analysis is
to introduce a small roundoff error at one step of the computation of £ (or
Z) and to examine the manner in which the error propagates through the array

as values of £ (or Z) are calculated at further steps.

Thus, suppose an error AEi is introduced in the computation of Ei' S0

that we obtain instead

my
*
"

i + 8%
and further

* -4 -
2i41 T %y T ByAE /Yy

*
3P

Ci4g ¥ (1+2dub, 18,7750 88, .
The error, A&i, introduced at stream point i, will clearly propagate with

diminished magnitude through the remainder of the array if

1 + 2djub,

MUGARE
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which upon rearrangement gives

ghibi - 1/2
d < . (5.2.9a)
24+2 /M2
2bi+l(w +r /hi) \

The introduction of an error AZi+1 at elevation point i + 1 leads to a
similar condition for the diminished propagation of the error. It is

clear then that by choosing grid length such that
gd h

1/2
oo

d < do = e (5.2.9b)
2(w2+r2/hg)

where ho = min. {hi, i=2,4, ...(NP-1)}, ao = min. {(bi/b i=1,2,

i+l)'
...NP}, the stability of the iterative scheme will be guaranteed. Condition
(5.2.9b) is a sufficient stability condition, but is not a necessary condi-
tion. This is because the scheme may (according to (5.2.9a)) be unstable

at one step but, because of changing breadths and depths, be stable at the
nex£. In fact, it may be more accurate to suggest that a necessary stability
condition for the scheme is

= 1/2
a<ada = “____EE____jI (5.2.9¢)

2 (wl+r2/u2)

—

where H is the average depth of the basin, viz. 1.0lm for the South Coarong.

To demonstrate this fact, consider the South Coorong model of Fig.
5.2 for which @ = 370m. The value for hO is 0.06m at grid point 1 (the
very shallow extremes of the South Coorong) while 60 = 0,5 (between grid
points 1 and 2 the breadth increases from 300m to 600m). Fig. 5.3 shows a
plot of do as calculated from (5.2.9b) and (5.2.9¢c) for various values of r
and a frequency range O - 24 cpd. It is clear that (5.2.9b) predicts stab-

ility over a limited range of frequencies for r = 0 m.sec—1 while for
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r = 10-4m.sec_l, 10-2m.sec-l it is unstable at all frequencies. However,

it is certain that in this case (5.2.9b) is unreasonable as ho is not of

the same order of magnitude as H, i.e. errors generated at the first two
steps are quickly damped out in regious where the scheme is stable. However,
(5.2.9¢) predicts stability throughout the range of frequencies and for all
values of r shown in Fig. 5.3. It is probable that a necessary stability
condition is more closely approximated by (5.2.9¢c) than by (5.2.9b). Several
test runs revealed indeed that the scheme becomes grossly unstable only: for

exceptionally high values of r, say r = O(lo_lm.sec_l).

The numerical scheme was used to examine the surface response functions
of three types of test basins, viz. (i) rectangular plan (sides L,B) and
constant depth, H; (ii) rectangular plan and a depth variation symmetric

about the centre of the basin, of the form

h(x) = H + %-cos{Zw(x—L/2)/L};

(iii) rectangular plan and a depth variation asymmetric about the centre of

the basin, of the form

h(x) = H - % (x~L/2)

For each, ﬁ = 1.0lm, L = 39.9km and B = 2.82km, the average dimensions of

the South Coorong, while again NP = 109 and A 370m. (Of course the solu-
tion for (i) is that obtained in Section 3.2; a comparison of responses
" obtained analytically and numerically revealed negligible differences over

a wide range of frequencies and for values of r less than 10_1m.sec_l).

For each basin, the average depth is H.

Shown in Fig. 5.4 are the surface response functions for all three test
. . ; A . A -1
basins at the Salt Creek Point station (grid point 20) with r = 0 m.sec .

We know that for the constant depth basin, resonance peaks coincide with

the frequencies of the odd free modes.. For the South Coorong constant
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depth basin, the resonant frequencies are odd multiplies of 3.41 cpd.
Further, it is clear from Fig. 5.4 that resonance occurs at approximately
the same frequencies for the test basin with depth symmetric about x = L/2.
However, for the test basin with depth asymmetric about x = L/2, resonance
occurs for frequencies corresponding approximately to all the multiples of

the free modes of the constant depth basin.

Finally, we examine the response of the South Coorong model of Fig.
5.2, i.e. using actual depths and breadths. Since the depth contour is
asymmetric about the centre of the basin, we might naively expect that
resonance would occur at frequencies corresponding approximately to multi-
ples of 3.41 cpd. (Of course, the variation of breadth also must play a
part here). This is, indeed, seen to be the case from Fig. 5.5 which shows
the surface response at the Salt Creek Point station for r = 0 m.sec-l,
10-4 m.sc-zc_1 and 10-3 m.sec—l. The computations involved here may be per-
formed extremely rapidly; the Central Processor time required to calculate

the response at a single frequency is estimated at 0.15 seconds using the

CDC 6400 machine of the University of Adelaide.

In Fig. 5.4 is shown the steady state time response of the South
Coorong surface at times t = 0, T/8, T/4, 3T/8 of the wind stress cycle of
the form Ty = ToSin(Zﬂt/T) with T, = 0.1 N.m-z, for T = 1 day, 0.2 day
and 0.1 day. A dominant feature of the response is the excessively large
surface displacement occuring at the shallow extremes of the South Coorong,
particularly at the south-east end where depths are of 0(10 cm). Clearly
in these regions the basin response is highly non-linear since the ratio
g*/h* (Section 2.1) is greater than unity. The linear theory predicts, in

fact, a daily cycle of flooding of low-lying areas at the south-east end
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of the basin followed by an exposure of a considerable portion of the bed

of the basin at that end. Such an effect has been documented by Noye (1970).

We note that displacements are generally greater in the south-east half
of the basin than in the north-west half. This is a result of mass contin-
uity which requires that the surface displacement integrated over the whole
surface be zero, i.e. approximately that

(NP-1)

{z.b.} =0. (5.4.1)
i=2(2) 1t

Tests carried out on the displacements of Fig. 5.6 showed that negligible
errors of this type were involved. Since breadths are generally smaller in
the south-east half, then the average displacement across each section is

generally bigger in order that the relation (5.4.l1) be satisfied.

Finally, we present results for the step response of the South Coorong

surface as calculable from (2.2.8b), i.e.

_2 °°R(w) :
a(t) = p fo——a—-51n(wt)dw

where R(w) is the real part of the surface response function. An approxi-
mate method of calculating the above integral is to truncate the range of

integration and apply a suitable quadrature.

Such a method was found to work well for systems with a reasonable degree
of damping. Using Simpson's quadrature, tests were carried out on rectan-
gular constant depth basins and the results compared with the known analy-
tical results of Chapter 3 for the North Coorong basin at Seven Mile Point,

where the equilibrium step response is 1.063 metres. Numerical integration
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over the range 0 ~ 24 cpd with an interval length for the quadrature of

0.25 cpd gave values to within lcm at all times for r = 10-4m.sec-l, and to
within 2mm for r = 10-3m.sec-l. Using a range of 0 - 48 cpd with the same
interval length gave values to withi.. 5mm for r = 10_4m.sec-1, and to within

lmm for r = 10_3m.sec_l.

In Fig. 5.7 is shown the step response of the South Coorong basin at
the Salt Creek Point station and the Noye's Island station (grid point 92)
up to 12 hours after the onset of the wind. We observe that with r = 5.0
X 10—4m.sec"l the response is almost exactly critically damped. In fact

(3.2.18) with L = 39.%m and H = 1.01lm gives
r>5.0x10 % msec?

for the fundamental seiche of the South Coorong to be damped out.

5.3 Two-Dimensional Numerical Solution

Here we generalize the method of the previous section to enable realis-
tic computations to be made for the response of lakes of arbitrary shape

and depth to periodic wind stresses.

We wish to solve by a finite difference technique, the system of

equations (4.1.4) with Coriolis parameter, f, set to zero, i.e.

97

BP = -gh % + KTox (5.3.12)
9Z

BQ = -gh =— + K1 (5.3.1b)

dy oy
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8o sz (5.3.1c)

subject to the boundary condition ¢4.1_9a). we shall assume that Tox’

Toy are spatially constant, though the technigne can simply incorporate

wind stress inhomogeneities.

The two-dimensional grid scheme here is similar to that used in the
models of Heaps (1969) to study storm suxges in the North Sea. In Fig.
5.8a is shown a model of Lake Albert, considered closed at the Narrung

channel entrance, constructed from the scheme.

Again Z(x,y,w) is evaluated only at points marked “'0', while
P(x,y,w), Q(x,y,w) are evaluated only at points marked "X". A rectangular
array of consecutive rows of elevation and stream points completely
covers the lake in question. For the Lake Albert model the array size is
11 x 13, i.e. 11 rows and 13 columns of both elevation and stream points.
The horizontal and vertical array axes (x- and y-axes respectively) of
the Lake Albert model coincide with the west-east and south-north direc-
tions respectively. The array is bounded to the north and west by ele-
vation points and to the south and east by stream points. The distance
between consecutive columns is denoted Ax, while Ay denotes the distance
between consecutive rows. Unlike the scheme of Heaps (1969), we shall
assume that Ax = Ay = d. For the Lake Albert model of Fig. 5.8a, d =

630 metres.

It can be seen that the basic "building units' of the array are
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i.e. a stream point surrounded by four elevation points, and an elevation
point surrounded by four stream points. For an m x n array, both eleva-
tion and streaﬁ points are numbered 1, 2, ..., mn starting from the first
row and proceeding from west to east along each row. A typical cluster
of points is thus numbered

x1—n—1 xl—n

Further, each stream point and each elevation point is classified as
a particular type of point. This classification of points into groups
is simpler than the classification of Heaps (1969) since here all bound-
aries are clogsed. Specifically there are 14 groups of stream points and
3 groups of elevation points, listed in Table 5.1. 1In Fig. 5.8b, each
array point of the Lake Albert model of Fig. 5.8a has been designated by

its group number.

For all array points interior to the lake boundary (i.e. group 2
points, groups 16 and 17 points), spatial derivatives may be approximated
by centred differences. Thus, at the interior stream point i,

az) . 1
[K] ;1@ B % e )



TABLE 5.1

GROUPING OF ARRAY POINTS FOR THE TWO-DIMENSIONAL SCHEME

Assume horizontal and vertical array axes coincide with
west-east and south-north directions respectively.

STREAM POINTS

Group Type

number
1 EXTERIOR POINT X
2 INTERIOR POINT X
3 NORTH BOUNDARY POINT Lttt
4 SOUTH BOUNDARY POINT Y aarera

5 WEST BOUNDARY POINT

6 EAST BOUNDARY POINT

7 NORTH-WEST 90° CORNER POINT a

8 NORTH-WEST 270° CORNER POINT 3
9 SOUTH-WEST 90° CORNER POINT %

10 SOUTH~WEST 270° CORNER POINT 7777§3('

11 SOUTH-EAST 90° GORNER POINT '

I



TABIE 5.1 (oont.)

Group Type

number

12 SOUTH=EAST 270° CORNER POINT
13 NORTH-EAST 90° CORNER POINT
14 NORTE-EAST 270° CORNER POINT

ELEVATION POINTS

Group Type

number

15 EXTERIOR POINT

16 POINT IMMEDIATELY SOUTH OF

NORTH BOUNDARY

or IMMEDIATELY EAST OF
WEST BOUNDARY

or IMMEDIATELY SOUTH-EAST OF
GROUP 8 POINT

17 ALL OTHER INTERIOR POINTS

™
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22) L
[ay] 2323 n*25341 2 14n)]

while at the interior elevation point i,

P 1
&Sﬂ v 44 (P, —Pl 1 1—n_Pi—n—1)

S o L ) -
[QY]i “ag Qi Ut n1"% )

Using these approximations we transform (5.3.1) into a system of differ-
ence equations evaluated at interior array points. (Note that, as with

the one-dimensional numerical method of the previous section, values for
depth h are required only at stream points. Shown in Fig. 5.8c are depth
values at each of the interior or boundary stream points of the Lake Albert

model as inferred from the contour map Fig. A2 of Appendix A).

System (5.3.1) becomes

~gh,

i
BiPi = ad Zi417%i*% i1 %n) T Kok (5.3.2a)

—ghi
BiQi = 43 (Zl Z1.+n i+l :|.+n+1)+ KToy (5.3.2b)

evaluated at interior stream point i, and
L (p.-p, +p, -p ) + 2= (0. ~0.+ ~0. .) = jwz. (5.3.2c)
Za PPy 1*Pin"Fion-1) Y23 Qi RitRyn-17Ri) = IWE; 153

evaluated at interior elevation point i. System (5.3.2) may be written

in the alternative form

Bisi = = Yi(zi+l-zi+n) + A (5.3.3a)
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B.D, = = Yi(Z -2,) + B (5.3.3b)

n
o
1
5]
+
9>}

-4djwz (5.3.3c)

i i-1 i-n Di-n—l

where Yy = —ghi/2d, A = K(Tt ), B = K(T —Toy) and unknowns Si' Di are

+T
OX oy ox

given in terms of Poo @y by

S; = Py +Q (5.3.4a)

D, = P, -Q. . (5.3.4b)

The degenerate forms of the difference equations satisfied by each
type of boundary stream point are described in detail in Appendix D. Use
of a condition at 270° corner points equivalent to that of Heaps (1969)
was found to produce erroneous results. The errors were clearly revealed
in non-conservation of mass, i.e. any inaccuracy in the specification of
the boundary condition at 270° corner points leads to a flow across the
lake boundary at that point and hence a net loss or gain of fluid from the
basin. Such losses, in a closed basin model, are intolerable. Similar
effects were noticed by Smith (1973), and his method of introducing the

unnatural boundary condition of (Pi,Qi) = (0,0) at 270° corner points has
been adopted here. Such a condition is ‘unnatural in the sense that our
model does not incorporate a lateral boundary layer, i.e. the effects of
horizontal turbulent diffusion have been mneglected. It has the advantage
of simplicity, however, and was found to reduce non-conservation of mass

to acceptable proportions in all the models described here.

The difference equations (5.3.3) form the basis of an iterative scheme

to determine the appropriate value for Z, S and D at each stream or
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elevation point within or on the lake boundary. Rewriting (5.3.3) as

1
= = B, (= v (24 45725,,) ) (5.3.5a)
Dy = Djn-1%53.178; 4 m4dduwZ; (5.3.5b)
i+n+l i Y5 i“i "yl 7 .3.5¢c

then knowing values for S and D at stream points i-n~l, i-n and i-1l, and
also values for Z at elevation points i, i+l and i+n, we may calculate
values for Si (from (5.3.5a)), Di (from (5.3.5b)), and zi+n+l (from

(5.3.5¢c)).

In order to initiate such a scheme and to enable it to proceed through
the array, we assume a value for Z at each group 16 point, the assumed
values being known as “'starting values'. Values for S and D for all points
belonging to groups 3, 5, 7, 8, 9 and 13 are computed using the differ-
ence equations of Appendix D. Next, proceeding west to east along each
row and treating each row successively, we calculate values for S and D
at each group 2 point and a value for Z at each group 17 point. The
order of calculations is indicated by the direction of arrows in Fig. 5.9.
Along each row, stream points belonging to any one of groups 4, 6, 10,

11, 12 and 14 may be encountered; values for S and D at such points are

computed according to the equations of Appendix D.

Now values for S and D at group 3, 5, 7, 8, 9 and 13 points have been
calculated so that the relevant boundary condition at each point is sat-
isfied, regardless of the starting values. This is not the case for

group 4, 6, 10, 11, 12 and 14 points - the relevant boundary conditions
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will only be satisfied at each of these if the correct starting values
have been chosen. At each such point one may define a so-called 'end
value' which, if zero, ensures that the relevant boundaxry condition is
satisfied, as shown in Appendix D. Ftor example, for group 4 points the

boundary condition is that

so we define the end value as being S-D.

For a consistent system the number of starting values and the number
of end values are the same, say p. We may thus form vectors s and €, both
of dimension (p x 1), consisting of starting values and end values res-
pectively. The vector elements are numbered according to the position in
the array of the point to which they refer. For the Lake Albert model,

P = 24. 1In Fig. 5.8a the relevant vector element number (1~24) has been
assigned to each array point at which a starting value or end value is
defined. For a general m x n array in which the lake boundaries coincide
with the first and last rows and first and last columns, i.e. a rectangular

lake with sides 2(m~-1)d and 2(n-1)d, we may easily show that p = (m+n-3).

An additional complication, as with the one-dimensional numerical
method, results from that fact that Z, S and D are, in general, complex
valued. Thus at each group 16 point we define two starting values,
corresponding to the real and imaginary parts of %; while at each point
belonging to one cf groups 4, 6, 10, 11, 12 or 14, two end values will be
arrived at. Let us define vectors 5 and g, both of diﬁension (2r x 1),

such that
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thiop = Re 1s;} , £, = Ims;}

£ v=Re{ei},f

24-1 Im{ei}.

2i

Each end value is linearly related to the starting values. We may
thus write

£f =%t + k (5.3.6)

where ¢ is a matrix (2p x 2p), with (real) elements, which determines the
effect of the starting values on the end values, and k is a vector (2p x 1)
which describes the effect of the forcing functions Tox! TOY on the end
values. The correct starting values are thus determined by solving

(5.2.6) for t, with £=20, i.e.

t=-(0) k. (5.3.7)

The elements of ¢ and k must first be determined. Clearly each
column of ® may be generated by setting k = 0 and choosing a starting

vector of the Kronecker delta form, so that

fi = ¢ik6kj = ¢ij .

Further, k is equivalent to the end vector cbtained by setting £ = Q and

using the particular forcing functions that act upon the given lake.

Having determined the correct starting values, a final run of the itera-
tion scheme is performed to determine the correct values of Z, S and D at
each elevation or stream point over the lake. The simplified flow diagram

of Fig. 5.10 summarizes the total iterative procedure.

The matrix ¢ is generally non-sparse. Its size (and thus the array
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size used to specify a given lake) is therefore limited by the storage
capacity of the machine in use, as there are no simple means of inverting
large, non-sparse matrices. For the relatively coarse Lake Albert model,
¢ has dimensions (48 x 48) so that tne solution of (5.3.6) with £=0

presents no great difficulties.

A stability criterion for the scheme may be determined in a manner

similar to the one-dimensional stability procedure. The complicated
nature of the two-dimensional scheme; -however, makes the analysis:.far

more difficult; and it is presented only briefly here.

Suppose that a small roundoff error, AZi, is introduced to the value

for Z2,. Neither Z, nor Z, is affected by the error in Z, since
i i+ itn i

1

neither is given in terms of Zi by & difference eguation of the form
(5.3.5¢). Similarly, Si is unaffected. However, Di is affected; the

error involved in a calculation of Di is -(4djw + Vit vi_n)AZi, where

1

vi = Yi/Bi B This in turn affects the value for Zi+n+l (from (5.3.5c¢)),

for which the error is {1+ (vi_1 v, ot 4djw)/vi}AZi.

Thus referring again to the fundamental unit

0:|.+n 01+n+l

it is clear that an error in Zi propagates only in a diagonal direction.

For stability it is then required that

|1+ (adjw + v, _; + v, /v <1 (5.3.9a)
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for all interior elevation points i. Further analysis shows that the
error AZi does propagate to elevation points i+2 and i+2n, the errors

being -(vi_n/vi_n+1)AZi and -(v

/v )AZi respectively. (Clearly if

i-1" "i-n+l

the depth is constant then this reprusents only a change of sign of Azi
rather than a change of magnitude). The error, in fact, 'leap-frogs'
along rows and columns of elevation points (Fig. 5.11) affecting only
every second point. The error, however, affects each succeeding point in
the same diagonal as elevation point i, so we expect that in an unstable

scheme diagonals will harbour the greatest accumulated error.

Let us examine the stability of the Lake Albert model of Fig. 5.8a.
We follow the pattern of the one-dimensional scheme by supposihg that the
depth is a constant, H (S 1.94m), the average depth of the actual basin.
The resultant stability condition will then approximate a necessary condi-
tion of stability for the model with variable depths. With depth constant,
no round-off error propagates along verticals or horizontals and we need
consider only errors propagating diagonally through the grid. Then

(5.3.9a) becomes

|3 + ﬁ?)ﬂ | <1 (5.3.9b)

where v = gH/ (2d{jw+x/H}).
Evaluation of the quantity |3+4djw/6| over the frequency range O - 96
cpd revealed that the scheme was unstable according to {5.3.9b) at all

frequencies below about 48 cpd and above 68 cpd, for values of r from

0 m.sec“l to 10-3m.sec-l.

The property of instability does not render the scheme ineffectual;
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however, the array size must be limited to ensure that any accumulated
round-off error is kept within reasonable bounds. Clearly, the precision
of number specification of the machine in use plays an important role in
containing accumulated errors. Sinyle precision specification, accurate
to approximately 14 decimal digits, has been used in all the two-
dimensional numerical calculations reported here. Use of double precision
unfortunately increases significantly the amount of time required for the
iterative scheme to be performed, as well as placing bigger demands on
storage capacity. Use of single precision means that all the models
developed are relatively 'coarse', but they nevertheless have been found
to give reasonable results and, importantly, are able to contain round-

off errors.

Each model must be individually tested for its degree of instability.
It was found that instabilities manifested themselves largely in the form
of non-zero flows across the closed boundaries of the lake model, especially
in the regions of terminating diagonals. For the Lake Albert model of Fig.
5.8a, tests revealed that in the frequency range 0 - 24 cpd the accumu-

lated round-off errors involved were insignificant.

Fig. 5.12 shows the surface response function due to a southerly wind
{i.e. L 1, TOY = 0) at elevation point number 15 in the Lake Albert
model of Fig. 5.8a. We note that for r = 5 x 10-4m.sec“1 resonance peaks
are still quite apparent, so that the response of Lake Albert to changing
wind stresses is not as low-frequency dominated as is the response of the

Coorong lagoons. Further, if we assume Lake Albert to be rectangular

(sides 15km, 12km) with constant depth (1.94m) then for the fundamental
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longitudinal seiche (south-north direction) to be overdamped, it is

required from (3.2.18) that

r > 3.6 x 10_3m.sec-l

which is of an order of magnitude greater than the expected value of r.
Similar general reasoning applied to Lake Alexandrina, assumed closed at
the Narrung channel entrance, shows that here too none of the free

oscillations of the basin is likely to be overdamped.

Let us examine the steady state time response of the Lake Albert model
to a periodic westerly wind of diurnal frequency. The wind stress takes
the form Ty = Tocos(Zﬁt/T)with T = 1 day and To = 0.1 N.m-z. Shown in
Fig. 5.13a are the surface contours and mean velocity vectors at times
t =0, /8, T/4, and 3T/8 for the Lake Albert model with depth taken as
constant and equal to 1.%4m; and in Fig. 5.13b the same using actual

depths. In both we take r = 5 x 10_4m.sec—l.

We note a general similarity between the response of the circular model
lake of Section 4.4 and that shown in Fig. 5.13a. At each instant an
approximately equilibrium response is attained, the velocities reaching a

maximum at about T/4 when the surface elevation is at a minimum.

With the variable depth model we note little change in elevation
pattexns but a large alteration in velocity structures. The order of the
velocity magnitudes (0 (0.1-0.5 cm.sec-l)) in the centre of the basin is
the same for both constant- and variable-depth models, but there is consid-

erable difference in directions. 1In the velocity response at time t = 0O
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for the variable depth model there is evidence of flow separation about
Campbell Point on the western shore of Lake Albert, with resultant gyre

formation in the southern and northern halves of the basin.

We note that velocities xeach a maximum much earlier in the wind stress
cycle for the variable depth model. Further the maximum velocities
(0 (1-2 cm.sec-l)) are attained in the shallower coastal regions - these
magnitudes seem exaggerated and may be the result of a peculiarity of the
numerical model which is unlikely to be observed in practice. Tronson
(1973) reported similar effects in a series of time-stepping experiments

on the South Australian gulf system.

5.4 A Combined Model of Lake Albert - Lake Alexandrina

In this section a finite difference model of the combined Lake
Albert - Lake Alexandrina system which incorporates both the one-dimension-
al and two-dimensional schemes outlined in the previous sections is des-
cribed, and results of a series of numerical experiments carried out on
the model are discussed. This model was constructed in order to give an
indication of the importance of Narrung channel flow in determining the

water levels and current patterns within each lake.

A grossly simplified model of the combined system, as reported by
Walsh and Noye (1974), was initially constructed to examine the flow inter-
action between Lake Albert and Lake Alexandrina. This consisted of model-
ling the two lakes as rectangular basins joined by a straight channel of

constant breadth. The combined system was set on a two-dimensional array
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of the type reported in the previous section, and the depth was constant
throughout. The channel breadth was taken as 24, where d is the array grid
length. (This is the narrowest possible width that the channel can take
if it is to remain part of the two-d*mensicnal scheme with constant grid

length).

The results from this model have not been presented here; they have
little quantitative value due to the simplicity of the model. Qualita-
tively, however, it was shown that subjecting the model to various forms
of wind stress invariably induced channel velocities that were consider-
ably greater in magnitude than velocities in either of the two lakes. It
seems that a narrow channel or opening between two lakes is a region in
which wind-induced velocities undergo considerable amplification. This

feature is consistent with the observations referred to in Chapter 1.

A more accurate representation of the combined system requires, most
importantly, that conditions in the channel be better specified. It was
decided that this could best be done by modelling the channel flow one-
dimensionally using the scheme of Section 5.2. This flow was then matched
onto two-dimensional flows in each of the lakes by deriving suitable

conditions at the ends of the channel.

Shown in Fig. 5.14a is a two-dimensional array (17 x 15, with grid
length = 1275m) for modelling Lakes Alexandrina and Albert, and also the
depths at non-exterior stream points as inferred from Fig. A2 (Appendix A).
Again the directions of the array axes coincide with the west-east and

south~north directions. The one-dimensional array (25 points, with grid
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length = 425m) for modelling the Narrung channel is shown in Fig. 5.14b;
further details of the array are provided in Appendix E together with the
conditions used to match the one-dimensional channel flow onto the two-
dimensional flows in the separate lakes. Little data is available con-
cerning channel depths. For simplicity it is assumed that the channel
slopes uniformly from a depth of 3m at the Lake Alexandrina end to 2m at
the Lake Albert end. The numbering of the two-dimensional array points
follows the normal convention; the channel points are numbered 1 - 25

beginning at the Lake Alexandrina end.

We note that for reasons mentioned in the previous section, the two-
dimensional finite difference specification of the separate lakes (parti-
cularly of Lake Albert) is necessarily coarse, though it provides a

reasonable representation of the basic features of the lakes.

Within the Narrung channel there is considerable reed growth which,
in all probability, reduces the effective surface wind stress in the
channel. Such a phenomenon has been investigated by Saville (1952) and
Tickner (1957). We assume here that the wind stress is homogeneous sep-
arately over the two lakes and the channel, and that the ratio of the
wind stress amplitude, Tc, over the channel to that, Tyr Over the two
lakes assumes the value 0.5. Variation of the ratio TC/TQ was shown to

influence only marginally the response of the combined system.

We expect, further, that the damping parameter r assumes a greater
value within the channel than in either of the two lakes. Excessive

bottom growth is likely to increase the channel value of the drag



-109-

coefficient Cb (refer (2.1.11a)); further, the observed high velocities
within the channel indicate that the quantity qy is likely to be of a
higher corder of magnitude here than within either of the separate lakes.

Denoting by r,, rc the value of r wilain the lakes and the channel res-

L
pectively, we assume for simplicity, that the ratio rz/rc has the value

0.5. Since typically we expect that r, = 5 x 10-4 m.sec—l, this indicates

that typically r, = 10 3 m.sec 1.

It is clear from the above discussion that among important parameters
to be chosen before an analysis of the combined system is attempted, are
the ratios TC/TZ and rz/rc. The quite moderate choice of 0.5 for each is
shown in Chapter 8 to give a reasonable comparison between predicted and
measured water levels. However, much. experimental work remains to be done

to properly elucidate the nature of conditions within the Narrung channel.

Using the above values for r, and e the surface response functions

L
-2

(due to a south-east wind, with T, = iNm©“, T, = 0.5 N.m_z) for the
combined system at elevation points 89 (approximating the response at
Wellington), 107 (Milang), 129 (Narrung 1 - the Lake Alexandrina end of
the channel), 177 (Narrung 2 - the Lake Albert end of the channel), 184
(Tauwitchere barrage) and 255 (Meningie) are shown in Fig. 5.15. For com-
parison, the response functions at the same stations for the uncombined
system, i.e. assuming neither lake is connected to the channel (approp-

riate boundary conditions detailed in Appendix E), are also shown in Fig.

5.15.

Resonance peaks are observed in each of the gains for the combined
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system. Generally, the most significant differences between the response
functions for the combined and uncombined systems occur for frequencies
less than 3 cpd. For higher frequencies, curves of gain and phase-lag are
shaped similarly for both systems. .owever, the differences at all stat-
ions are sufficient to suggest that a consideration of the independent
behaviour of Lakes Alexandrina and Albert would be inadequate in a des-
cription of wind effects in the total system. This suggestion is strength-
ened by an examination of characteristic wind induced velocities within the

system.

Consider the response of the combined system to a diurnal wind stress

with constant alignment, of the form Tg =T cos(2mt/T) with T = 1 day and

2

'3

Ty = 0.1 N.m_2 (and thus T, = 0.05 N.m °). We may examine a variety of
alignments for such a wind stress, corresponding to different possible
types of prevailing winds in the area of the Murray Mouth lakes. For con-
venience, we assume that within Lakes Alexandrina and Albert depths are
constant at 3m and 2m respectively, thle again the channel depths slope
uniformly from one end to the other. Such a simplification eliminates
exaggerated velocities in shallow coastal regions produced in a variable
depth model and allows the effects of channel flow to be considered in

isolation. It would be desirable for later models to incorporate depth

variations.

Shown in Fig. 5.16a are the mean velocity vectors and surface contours
due to a wind stress of this form with a south-east alignment, at times
t=0, T/8, T/4 and 3T/8. 1In Fig. 5.16b we show the response of the uncom-

bined system to the same wind stress field.
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The most obvious feature of the response of the combined system is
that typical channel velocities (0 (1-30 cm.sec-l)) are very large, rela-
tive to typical velocities in the separate lakes (0(0.1 - 0.5 cm.sec_l)).
It is apparent that water is continuously being 'pushed' from one lake to
the other through the channel. Thus, at time t = T/4, the surface of the
uncombined model is almost equivalent to the plane of no disturbance; for
the combined model, the Lake Alexandrina and Lake Albert water levels are
approximately constant at +l.5cm and =-5cm respectively. Clearly, in the
portion of the wind stress cycle from (approximately) t = T/8 to t = 5T/8,
water is pushed from Lake Alexandrina to Lake Albert; the channel flow is

oppositely directed for the remainder of the cycle.

The response of the combined system to a wind stress of similar form
and south-west alignment is shown in Fig. 5.17. Even though the wind is
always directed at right angles to much of the channel axis, it is appar-

ent that very large channel velocities are still induced.

A type of wind commonly observed in the region of the Murray Mouth
lakes is a diurnally rotating wind which has been observed to persist for
several days at a time (Noye (1970)). Fig. 5.18 shows wind speed and
directions on the South Coorong as recorded at Noye's Island and Salt Creek
over a period of four days in December, 1967. For the first two days the
direction was approximately constant, for the remaining two days it exhib-

ited a slow, daily rotation in a counter-clockwise direction.

A simple model for a counter-clockwise rotating wind is given by
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T = Re{TZert} =T

" zcos(wt)

Jwt

rRe{-jt,e” "} = t,sin(wt .

sy %

o 2

Haurwitz (1951) examined analytically the transient response of a square,
constant depth lake to such a wind stress. In Fig. 5.19 is shown the

steady state response of the combined Lake Alexandrina - Lake Albert model

to a rotating wind stress of this form with Ty = 0.1 N.m_2 (Tc = 0.05

N.m-z) and period T = 1 day.

For a closed basin subject to a diurnally rotating wind the surface
contours rotate with the wind while the directions of the mean velocities
lead the wind by approximately 90°, a result clear from our analyses of
previous chapters and shown numerically by Walsh and Noye (1974). This
phenomenon is observable in the separate lakes of Fig. 5.19, with some
modification due to channel flow. We note that the strongest channel flows
occur when the direction of the wind is at right angles to the average
direction of the channel axis (i.e. T/8 - T/4) since then characteristic

velocities in the lakes are aligned with the channel direction,

The response of the combined system to periodic wind stresses of south-
east and south-west alignment as well as to a rotating wind were re-

] . -3 -1 -3 -1
examined using r, = 10 m.sec and rc = 2 x 10 m.sec ~ . Channel velo-

cities were reduced in magnitude but were still significantly greater than

velocities in the separate lakes.

In summary, it appears that no matter what the form of the wind stress,

Narrung channel flows are an indispensable part of the wind-induced motions
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of Lakes Alexandrina and Albert. It appears, indeed, that the lakes act
very much as a single unit in their response to wind stresses. Further,
the numerical experiments of this section confirm the local observations

regarding the very intense flows in the Narrung channel.
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FIGURE 5.10 : FLOW DIAGRAM OF THE ITERATIVE PROCEDURE TO CALCULATE
THE RESPONSE OF THE TWO-DIMENSIONAL ARRAY AT A
SINGLE FREQUENCY .



O4 O441 Oi+2
. p

Oi+n O4+n+1 Oli+n+2
X X

0 _:1.:_2_1} oi+2n+1 ;__'oi+2n+2

FIGURE 5.11 : SHOWING HOW AN ERROR AT ELEVATION POINT i IS
TRANSMITTED TO NEIGHBOURING ELEVATION POINTS ,



360

180 |

phase-lag (degrees)

gain (m.)

1072}

1072

FIGURT 5.12

1'2 24

frequency (cycles per day)

: RESPONSE FUNCTIONS FOR SURFACE DISPLACEMENT

AT ELEVATION POINT NUMBER 15 OF THE TAKE
AIBERT MODEL, FOR (i) r=Om.sec~1, (ii) r=

5 x 10=4 m.sec-1, (iii) r=10-3 m.sec-1.



time t= 0 hy t=3 hr t=6 -

=9 b

. —
wind stress 5 N Ty ) 5 N.w-= 5o moa
vector > 5 > >
7 7 7 > € ¥ ¢ & &« ®
AT T > 7 L & € © = £ & & - -«
‘T A1 T T 77 L € € € © & g & e -« <«
mg 71411172 & - e e & e e R
'302 4 4 14 4 1 1A L& € & & & g — yeC ey e i
+= E. > > A4 49 1 A A €& o & & b Y € e kY e &
’30 A 14 4 14 14 A zeetk v /ggee Vi & £
|9|'— : 7 7 17T T4 A € e & & £ e e €Y e &
g A 2 7 7 7Y 7T 7T 7T 1A v Ce- s & £ N vf\ef/t/rree v v*e—/zre’*t
y > 2 7T 7 7 > 7 7 A Al & grpe— % &€ € ik e e N R kS
AP 7 T A Z=s> 2 Ve& oy IA'E_"E e ey |‘E-'¢_¢ ' ey
"’"—I_ € & & «
2 =2
o8 -1 0 1 &
&?EA 0 1 Zi "2I_l:l 0 1 0 1
o g
{E-PO r
= gd—
no
(9]

FIGURE 5.13 : (a) RESPONSE OF CONSTANT DEPTH LAKE ATBERT MODEL (1.94 m.) TO
WIND STRESS C,COS(2mt/T) WITH T=1 day AND T o=0.1 N.m-2,
NOTE THE SLIGHT DISPLACEMENT OF THE BOUNDARY OF THE MODEL TO
ATIOW BOUNDARY VELOCITIES TO BE PROPERLY SEEN .



time t= 0 h+ -t- .

wind stress e
- 3 ln o% N.m-3

0 ¢t
i

o

L~

]

-

by

e

/| N N. ™% ‘:—(3—0—&’"\:“
= = — ol
Pv<¢ * e € S, %
LI Y * b e 4 4 v e <« VvV >
T 4 v Pr Ty a A v v < v 4 AC T € » VY SR
8 T P Ad VY Y > €« v PP dVY 4 € € T C ¥ b+ £ o B
gui e A P Y T & ¥y L P T ¥ € & b L € €T T <€ 2 » e
-lgcsb € € € & < ¥ < > €« € € & 4V <<<4,_J N
SO Vv 4 & € ¥ A —rlJvttevA DD e
ro'l‘— v v & T A A Lb&‘v;‘ rese ey 3Y
gT v v <« B A A e 4 < b b v € R A T e I
A gy v 1N y v o2 2 P a2 g v A e 2L
L] e > > &£ A i | peces
_L-L-L_LI—J_ el

o

N

FIGURE 5.13 : (b) RESPONSE OF THE LAKE ALBERT MODEL USING ACTUAL DEPTHS TO
THE SAME WIND STRESS. NOTE THE HIGHER VELOCITY SCALE DUE TO
EXAGGERATED BOUNDARY VELOCITTES.

surface
contours
(cm)




1.50 1,50 1.50

1.50

! .50 3,00 3.25 3.50 1.50 1.50
P 1.50 3,00 3.25 3.5
T e e 3 X x
L e— o \\ o 1.50 1.50 3.25 3.50 3.70 3.50 1.50
% ®» X % ®
P o 1,50 1.50 1.50 1,50 1.50 3.50 3,75 3.80 3.80 3.40 1,50
X 4 x x
(o] [+] (o] o o
> X X X % /x 1.50 1.50 1.50 3.20 3.50 4.10 4.20 4.30 4.30 4,30 4.20 4,00 1,50 1,50 1,50
/r‘_tr—u/o o © o o o o
oS I o o C: 1,50 2,50 3.50 4.00 4.15 4.30 4.45 4,60 4.55 4.50 4,25 3,50 2.00 2.00 1.50
o o
2 &2 Ll
o 0 o0 o ) 1.50 3.00 3.70 4,00 4.20 4.30 4.30 4,30 4,30 4.20 3,50 2.70 3,00 2,50 1,50
x x X X 4
© o o o 1.50 1.50 3.50 3.90 4.10 4,10 4,20 4.10 4.05 1.50 1,50 1.50 1.50 1.50 1.50
x e ot m.‘/ 5 3
o o o
» . 1,50 1,50 1,50 3.30 1.50 1.50 1.50 3.00 1.50
o o
x = x x 1.50 1,50 3,00 1.50
o o o o
X b 4 X
o oVo 1.50 2,00 1.50 1.50 1.50 2,00 1,50 1,50
X X
e ofo o 1,50 1,50 1.50 1,50 2,20 2,30 1.50 1.50
® b X x
A G . 1.50 1,50 1,50 1,50 2.20 2,30 2,40 1.50
(-] o Q, o
x '“7"/ x 1.50 1,50 1.50 2.50 2.90 1.50
(-] Kﬂ -] o (-3
X X X x
= iﬂ B 1.50 1,50 1,50 2,40 2.50 1.50
b 3 X
1.50 1,50 2,20 2,30 2,20 1,50
1.50 1.50 1.50 1.50 1,50

FIGURE 5.14 : (a) TWO-DIMENSIONAT, ARRAY FOR MODELLING BEHAVIOUR

IN TAKES ATEXANDRINA AND ATBERT. GRID LTNGTH IS
1275 m 3 ALSO SHOWN ARE CORRESPONDING DEPTHS
(METRESS



Scale (km)

PIGURE 5.14 : (b) ONE~-DIMENSIONAL ARRAY FOR MODELLING
NARRUNG CHANNEL BEHAVIOUR., GRID LENGTH
IS 425 m .
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CHAPTER 6

WIND EFFECTS ON STRATIFIED LAKES

6.1 Introduction

As mentioned earlier, the waters of the Murray Mouth lakes are well-
mixed throughout the seasonal cycle. This is due to a combination of the
intense surface heating to which they are subjected for most of the year
and the extreme shallowness of the lakes. Shallowness permits the effects
of wind-induced convective and diffusive mixing to be felt even in the

deepest regions (v 4.5m) of the lakes.

However, since the analytical methods of the previous chapters are
applicable to stably stratified as well as to homogeneous fluids, it is
worthwhile, for the sake of completeness, to devote a single chapter to

wind effects on stratified lakes.

Where stratification (i.e. density variation) does occur it results
largely from temperature (rather than salinity) differences within the
fluid. (For simplicity, we neglect the extremely difficult area of con-
vection currents). Often, a region of high temperature gradient, known
as the thermocline, forms the interface . between two approximately homo-
geneous layers of fluid. The Great Lakes, for example, have an annual
cycle of partial winter freezing (during which time the fluid is relat-
ively homogeneous) followed by summer heating, with a resultant warming of
surface waters ana hence thermocline formation. The process of thermocline
formation in the Great Lakes is described in detail by Harleman et al.

(1964) . The difference in density between the two layers is slight; a
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density difference typical of summer conditions in Lake Michigan is

2 kgm.m—3, the density in the upper layer being about 998 kgm.m-'3 and the
density in the lower layer about 1000 kgm.m"3. Temperature differences
are more marked; typically in Lake Michigan the upper layer temperature
varies between 18°C and 22°C while temperatures in the lower layer vary

between 4°C and 6°C.

So it appears that a simple yet physically realistic model of a
stratified lake is that in which two homogenecus layers with a small
density difference are secparated by an interfacial region of zero thick-
ness. In this chapter we confine ourselves to a consideration of this

model.

One of the major theoretical difficulties is that of determining a
suitable condition at the interface. The difficulty results from the fact
that the process of turbulent diffusion at a density discontinuity is not
well understood. A common assumption is that frictional stress in the

interfacial region is negligible. Proudman (1953), p. 101 comments:

"When [the density gradient] is very great, there will be very
little vertical turbulence, and hence very little vertical
mixing or internal friction across horizontal surfaces. 1In the
limiting case of a surface of discontinuity of density, it [is
normallyl, for the sake of simplicity, ... assumed that there

is neither mixing nor friction across the surface."

Fig. 6.1 shows the plan and vertical section of the general two-
layered basin under consideration. For purposes of simplicity we restrict

our attention to a lake for which both total depth h, and the depth hy of
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the undisturbed interface between the two layers are constant. Coordinate
axes are positioned as for the homogeneous lake of Fig. 2.1. The basin is

acted on by the wind stress vector T, < (t ’Tsy) where the components are

sSX

known functions of x, y and t.

The equations of motion and continuity again assume in each layer

separately the form (2.1.1), provided the approximations used in arriving
at the ferm (2.1.1) are assumed valid for ecach layer. We use subscript
1 to denote quantities in the upper layer, subscript 2 to denote quanti-

ties in the lower layer (e.g. densities py, p32).

In the upper layer, the fluid pressure p,(x,y,z,t) is again of the
form (2.1.3), viz.

Py =p, * pig(;i-z)‘

However in the lower layer the fluid pressure ps(x,y,z,t) assumes at the
surface a value equal to the value of = at the bottom of the upper layer.

Hence p, takes the form

pz = p, + pog(go-hy-z) + pyg(gi+hy-C2).

Similarly, the vertical velocity wj (x,¥,z,t) is again approximately equal

3
to 3%1 at the surface of the upper layer. At the surface of the lower

layer (bottom of the upper layer) however, vertical velocities w) (x,y,z,t),

3
wy (x,y,2,t) are both equal to _%Z .

Thus in each layer the equations of motion and continuity assume a

form analogous to the form (2.1.4) valid for the homogeneous lake, viz.
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for the upper layer:

duy 3ty 1 8Ty,
5t V1 T 93 T o1 T ez (Sstatal
vy gy 1 dlt, M
O %u (]
1 vy 3;2 9Ly
[ i;— dz + [ r-d = a—t_ - -3_1:_ & (6.1.1c)
hy h)
for the lower layer:
duy 3z, 3Lz 1 3(Ty,)2
2 _ = — ) —— =< = 2V xzlZl
o - V2 = ~gl(lme) g+ e 5= b4 - —T (6.1.14)
dv 3z 9zZ 1 o(T..)
=2 = - —e) —=2L 2=2 2 Sl ygmi2
e + fup = -g{(l-e) 5t € oy Yo+ YT (6.1.1e)
=hy 4 -hy 5 dz.
=at)l V2 gy = - =2
J ™ dz + J 5y dz m . (6.1.1f)
=hp -hjp

Here, the quantity € = 1-p;/py is a 'small' parameter, i.e. € = O(l).
We note that the equations are coupled in the dependent variables
zy (x,y,t) and g(x,y,t) which presents difficulties in determining solu-

tions.

As with the equations valid for the homogeneous lake, one may simplify
the equations using either the eddy viscosity method or the volume trans-
port method. We confine ourselves to a treatment of the simpler transport
method. (Heaps and Ramsbottom (1966) have considered both forms cf the
resultant equations in a treatment of the response of a narrow, two-

layered lake to a suddenly imposed wind stress).
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Thus, defining components of volume transport for each layer as

o o
Uy {x,y.,t) = J udz, Vi(x,y,t) = J vidz
=hy ~hy
-h; ~h;
UZ(XIYrt) = J updz, Va(x,y,t) = I vodz ,
~hy ~h2

then vertical integration of the above equations of motion gives

A T 1

Uy _ - 1,1 _

5t fv, ghy Fv + 51 (Tsx Tix) (6.1.22a)

v Ya

—L 4+ fU; = ~ghy =+ = (¢_ -1, ) (6.1.2b)

at 9y P1 sy iy

BUZ 3t or 1

Yo fVy = =g(ho-h;) {(1-¢) 5;—-+ iy } o+ E; (Tlx Tbx)
(6.1.2c)

v 9z L 1

—2 = - = -) —L —2 = -

Tt fUz = ~g(hp-h;) {(1-¢) 5y + e 5y } = (Tiy Tby)

(6.1.24)

aUl 3V1 BLZ 3(1

5x T 3y ot ot 8.2229)

U, vy 3;2

= dy 9t {6.1.2f)

)

where T, = (1, ,T.

~1 ix’ iy
is the bottom stress
made in the vertical

subject to the usual

the lake contour, T,

is the interfacdal stress vector and 1 = (Tbﬁ'Tby)
vector. We make here similar assumptions to those
integration to produce (2.1.9). The equations are
lateral boundary condition of zero flow normal to

viz.
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S1n = SZn = 0 along T (6.1.2g)

where S; = (U,V1), S = (Uz,V3).
We may, following Proudman (1954), Heaps and Ramsbottom (1966), and

by analogy with expression (2.1.11lc) for the homogeneous lake, assume for

the bottom stress vector the form

T, = p2r§2/(hp-hy) = 2ap5S, (6.1.3a)

vhere ¥ is constant. Furthermore, on the basis of our previous discus-
sion,

I; =9 - (6.1.3b)

Combining (6.1.2), (6.1.3) thus gives

U 3¢

e = -gh; —2L 4 1_

5 vy gh; 5=t on Tex (6.1.4a)

3V1 Bgl l

3 + fUl = ~ghy 'a—l;- + ?’T Tsy (6.1.4b)
EEZ-+ 20Uy -£fVy = =g(hs~hy) {(1l~¢) 3E-l--+ € EEZ} (6.1.4c¢)
ot 2 2 27 ax Ay .
8V2 L3 BCZ
3T+ 20V2 +£Up = -g(hp-h;) {(1-e) _Lay + € a_y—} (6.1.44)

% + 3y = 3% - ST (6.1.4¢e)

U v 3?;2

2 2 _ _
ppe + 5y = 5t (6.1.4f)

subject to

wn
il

w0
]

Oalong T . {6.1.4q)
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In the following two sections we provide some simple solutions to
(6.1.4) utilizing the theory of response function and the methods built

up over previous chapters.

6.2 A Solution for 'Narrow' Two~Layered Lakes

Let us first solve the system (6.1.4) for the case of a rectangular
(constant depth) non-rotating basin over which the wind stress acts always
parallel to one of the two lake axes - the x-axis (Fig. 3.1). The results
obtained from an analysis of this situation are clearly most applicable to
elongated, two-layered lakes for which the "narrow lake' approximation is
satisfied in each layer, i.e. only the component of wind stress, Ts(x,t),
acting along the lake axis significantly influences wind effects in the

basin, and the effects of the Coriolis force may be neglected.

The "narrow lake' assumptions enable (6.1.4) to be written as

Qo

Uy 3%1 . 1
—_— = -0l 2y =
T °! 3% + O T (6.2.1a)
U, az 9z
i = (el o =1 22 .
ST T 20U (ci-cp) {(1-e) s+ € o= } (6.2.1b)
au oz g
1 _ 2 . 1 ic)
3%~ 3t 3¢ (6.2.10
U g
—2 - - 22
5% 5t (6.2.14)
subject to
Uy =Up; =0at x=0,L (6.2.1e)
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1/2
where c1,3 = (ghy,)) / .

Firstly, we eliminate U (x,t), Us(x,t) from (6.2.1) and obtain par-
tial differential equations for both r;(x,t), Lo (x,t) in terms of the

forcing function Ts(x,t). This may be done in the following manner.

Elimination of Uj(x,t) between (6.2.1a), (6.2.1lc) gives

32 32 82 9
Zr2_2h, 2 ¥ 1 0y (6.2.2a)
a2 at2 9x2 P1 9x
while eliminating Ua(x,t) between (6.2.1b), (6.2.1d) gives
32; 3. 2 o 32
+ + - - = 0. .2.
F& 20 —Zat (c1-c2) zor {(1-e)Ty+ers} = 0 (6.2.2b)
Further, elimination of Co(x,t) between (6.2.2a), (6.2.2b) gives
b, gk 3 [32 2 32 2 2 o %
e "°2 FZaxZ * 2% 3¢ |3eZ ~Ciggz] ~ecilcl-c)) ax® | %1
__1 3 (a2 2 2 32 d
b1 3% [5E7-+ e({c)~-cy) Py 2a Bx] Ty (6.2.3a)
while eliminating j;(x,t) between (6.2.2a), (6.2.2b) gives
o 2 ot 3 [s2 2 32 2, 2 2 3%
SEF TO2 BeZax? T 2% ¢ (€2 1 5xz) “ecilel-cd) gm| L2
_ A-e)(eded) 2Py (6.2.3b)
P1 ax3 o

Equations (6.2.3a), (6.2.3b) may be solved using the same methods
employed in the one-dimensional case of Section 3.2. Specifically, given
again a wind stress field of the form (3.2.5), i.e. periodic in time and
with constant unit strength across the lake surface, the steady state

surface and interface responses are given by
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jut ®

4 .
Ty (x,t) = Epl nZl {(w2-23aw+e(c%-c%)K%n_l)cos(KZn_lx)/vn} (6.2.4a)
] t L
Lo (x,t) = -4(l-e)(c%-c%)ejw z {Kgn-lcos(KZn—lX)/vn} (6.2.4b)

n=1

2
2n

2

where v_(w) =wh<chwlk .

nam g2 2.2 el 2 2
-1 2j0w (w clen_l) ecy (c] cZ)KZn-l .

It is clear that a two-layered lake subject to wind stress forcing
may be considered as two interdependent systems, each with input consist-
ing of surface wind stress measured at station X r and one with output
Cl(xo,t), the other with output gg(xo,t). Further, from (6.2.4) we may

define response functions Zl(xo,w), Zz(xo,w) for the respective systems.

It is noted that, except for very large values of angular frequency,
W, and damping parameter, o, the interface response has much greater magni-
tude than the surface response, i.e. |Zzi>>|21|, a result alluded to in

Section 1.2. In fact, since

®  cos(k, _X) N
Zl(x’O) = : ) a1 (x L/2) le[OIL]
2 L 2 gp1h)
Lplcl n=1 K2n-1
cos (k %) (6.2.5a)
Z2(x,0) = Lﬂ:’— 2“;1 = '(1;;‘)) (1’1"1‘/2) ,xe[0,L]
Lpicie n=1 K2n—l L
(6.2.5b)

and also since typically € = 0(10_3), then

|2} (x,0) /25 (x,0) | = 0(2073) .

Such large movements of the thermocline constitute one of the most con-
spicuous features of the summer behaviour of the Great Lakes (Csanady
(1968a)). The movements may be detecteéd even by a casual cobserver
through the upwelling of cold water from the lower layer. Such an upwel-

ling is always associated with an appropriate wind pattern which, if
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strong encugh, may even cause the thermocline to intersect the surface.
Under such conditions, of course, the interface response becomes highly
non-linear; we chose to ignore non-linearities of this type in our formu-

lation of the equations (6.1.4).

From (6.2.5) it is clear that the surface and interface equilibrium
responses are both planar, with slopes l/gpih; and -(1-e)/egpih) respec-
tively. We note that the equilibrium interface slopes in the opposite

direction to the equilibrium surface, as shown in Fig. 1.3b.

Resonant frequencies for Zl(xo,m),zz(xo,w) are identical and may be

obtained by solution of

4_n2,2,2 =

wi-cowtK, 47 €Cl(cl c2)1<2 -1 =0, n=1,2, ...
i.e.

2_1 2 2 1] /24
(¢ln,2n) 3 G2k, [1 % {1+ 4a[h J h -1y} . (6.2.6)
! 2 2
. A4 < ‘o .

Since hz] 1 0, then both ¢1n' ¢2n are positive. Hence for each posi

tive integer n, there exists a pair of resonance peaks about the resonant
peak at w = c2K2n—l = w2n—l for the equivalent homogeneous lake with
depth hy.

These two resonant frequencies are very widely spaced, however.

Clearly, we have

2 o .2 2
(61)" = Wop-y + 0(e)
‘fh h
2 - 2 A1~ (L 1 2
(P2n) " = 93p-1 {E[hz][l (hz]lj+ 0(e™)

sc that
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¢ h h
1 -1/2 bl ! 1
p R bR

The resonant frequencies ¢1n' ¢2n are the frequencies of the normal
free modes of the two-layered basin. The modes ¢1n are known as the

bartotropic or external modes of the basin (Veronis (1956), Csanady (1967))

since they are close to the free modes that would exist without stratifi-

cation. The modes ¢2n are known as baroclinic or internal modes, and are

approximately the free modes that would exist in a homogeneous lake of

length L and ‘'equivalent depth' h' = ehj (hp~hj)/hs.

For the stratified Lake Windermere, Heaps and Ramsbottom (1966) take
-3
hy = 15m, and hp = 36m, while typically p; = 999 kgm.m ~ and py =
1000 kgm.m_3. Further, the basin is sufficiently elongated for the

'narrow lake' approximation to be applied.

In Fig. 6.2a are shown the gain and phase-~lag of the surface response
Zl(xo,m) (as calculated from (6.2.4a)) at staticn x, = 0.75L, for the
frequency ranges 0 - 24 cpd and 108 - 132 cpd. Values of o for which the
responses are shown are 0 sec_1 and 10-'4 sec-l. In Fig. 6.2b are shown
the gain and phase-lag of interface response (as calculated from (6.2.4b))
at the same station and over the same frequency range. The gains in each
have been normalized against the respective zero frequency gains, viz.

0.0112m for the surface gain and 11.2m for the interface gain.

Now the first barotropic resonant frequency for Lake Windermere is
approximately 122.9 cpd, while the barcclinic resonance peaks occur at odd

multiples of 1.92 cpd. Thus 32 baroclinic resonance peaks precede the -
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first barotropic resonance peak.

The dominant feature of the surface response as shown in Fig. 6.2a is
the intensity of the first barotropic mode relative to the baroclinic
modes preceding it. In fact the baroclinic resonance peaks close to the
first barotropic peak appear almost as infinitesimal 'spikes’ superimposed
on the barotropic response. Similarly the interface response is dominated
by the baroclinic modes. The evidence of Fig. 6.2 points to the general
conclusion that the maximum displacements associated with the barotropic
modes occur at the surface (hence the alternative name external ) while
for the baroclinic ( internal ) modes, maximum displacements occur at the
interface. Such a conclusion may also be reached by 'a priori' means

(refer, for example, Csanady (1967)).

6.3 A Generalized Theory

Let us construct a theory, analogous to that of Chapter 4, for wind
effects on two-layered, closed basins of arbitrary contour and constant
depth. Again assume that wind stress components Tsx(x,y,t), Tsy(x,y,t)
have the form (4.1.2), from which it follows that steady state surface

response and transport components in each layer have the form (4.1.3).

Thus system (6.1.3) becomes

. 2 92

jwPy - £Q) = —c a—xl— Y RT (6.3.1a)
3z

jwQy + £Py = —c% —t Kt (6.3.1b)

oy oy
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2
BoPp - £Q, = -(cj-ci) %;'{(1'8)21+522} (6.3.1c)
3
B2Q2 + £P = -(c5-cf) 55 {Q-e)z1+ez2) (6.3.1d)
oy 391 _ .
= 55_ = jw(22-21) (6.3.1e)
3Py  9Qy .

where (as indicated previously) subscript 1 refers to the upper layer,

subscript 2 to the lower layer and we have Ky = 1/p1,82 = (jw+2a).

From (6.3.1) we obtain

e L % et 2.3 9

P} = (fz_mz)tK}(JwIéx+fToy) ci(ju 3z + £ 5y ) 21} (6.3.2a)

X ; 2, . 2 d
2= (£2-0)2) {Kltijoy-fTOx)—cl(Jw ay & Ix )21}
Po = ‘(02_02)[§ 3_.+ £ _ {l-e) Zi+eZo} (6.3.2¢)
A (f2+B§} 2 3x oy € 1 2 .3.2¢

2_ 2 .

(c5-c1) 3 3

Q2 = (f2+ﬁ§} [E ax 82 Y- F‘l'E) Z)+eZy}. (6.3.2d)

Finally, combining (6.3.1le), (6.3.1f) with (6.3.2) gives

2 Ky ) g
V2z) + 22 (21~Z3) = - (jwb + £C) (6.3.3a)
juct
V2{(1-e)Zy+eZo}+ 23 25 = 0O (6.3.3b)

where D, C are defined by (4.1.7) and further

g2 o (P2 5 _ ~jwB, (1+£2/83)
1 2 T2 2_ 2
ci (cz—cl)

Equations (6.3.3a), (6.3.3b) are coupled in the unknowns Zy(x,7,0),
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Z,(x,y,0) just as the original equations for the upper layer ((6.1.1.)
a-c¢) and lower layer ((6.1.l1l.)d-f) are coupled in the unknowns gj (x,y,t),
To{x,y,t). We achieve some simplification by assuming, as in Chapter 4,
that the wind stress field is homogeneous over the lake surface, so D =

C =0, and (6.3.3b) becomes
v2z; + 22 (21-25) =0 . (6.3.3¢)

It then remains to uncouple (6.3.3b), (6.3.3¢). This may be done in
a manner similar to that of Charney (1955), Veronis (1956) and Csanady
(1967). In their equations, however, damping forces in the bottom layer
are neglected, so that By = jw. Essentially, if (6.3.3c) is multiplied

by an unknown, ¢, and the resultant equation added tc (6.3.3b) we obtain
V2{oz1+(l~£)21+e%Z2}
+02%(21-22)+2323 = 0. (633.4)
Now ¢ is chosen so that the quantities {0Z;+(1-¢€)Z}+e22}, {02%(21-22)+
z%zz} are in proportion, i.e.
u2{0Z1+(l—€)Z1+eZ2} = {02%(21—Z2)+2322}

which is satisfied if
p2[o+(1-e)] = o?
W2e = 02 - 2
uee = 25 021.
Thus ¢ must satisfy:the quadratic equation

02 + og(1-6) - §(1-¢) = O (6.3.5)

where § = 23/22 . (Note that (6.3.5) is equivalent to (22) of Charney
2/
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(1955) if By = jw, when 8 becomes equivalent to h;/(hp-h;)). The roots of

(6.3.5) are

1 | N
o1 2 =3 (6-1) + [}I (6-1)2 + 6(1-ezl (6.3.6a)
so that
22 (8-01 3)
(uy 2)% = ———. (6.3.6b)

Defining Z3, Zy by

Z3 = (01+1-e)2; + €Zp {6.3.7a)
Zy = (09+l~€)Z) + €29 (6.3.7b)
then (6.3.4) gives
(V3+i2)z3 = 0 (6.3.8a)
(V2+u§)zu =0 (6.3.8b)

i.e. (6.3.4) has been uncoupled into a pair of tractable equations.

Finally, 2;(x,y,w) and Z,(x,y,w) may be recovered from

Z3-2,

2, = a1-0, (6.3.9a)
(01+1-€)Zy—-(g2+l-¢) 23

Zp = . (6.3.9b)

e(01~03)

Charney (1955) shows that for the case in which B2 = jw, i.e. neglec-
ting damping forces in the bottom layer, then the transformation (Zy, Zs)
+ (23,24) is, in fact, a separation of the motion into its normal modes,

i.e. the barotropic (external) and baroclinic (internal) modes.

System (6.3.8) may be regarded as the generalization of (4.1.10) to
the case of a two-layered lake. Further, appropriate boundary conditions

analogous to (4.1.9c¢) are not difficult to achieve.
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For the upper layer we have that
*
(S1)n = 0 along T

where SI = (P1,Q1), which is shown, in the manner of Section 4.1 for the

boundary condition in the homogeneous case, to be equivalent to

3Z Az K
-‘__L 1 ___1 .

(Jw At £ e )P E? (Jwton+froe)r. (6.3.10a)

Similarly. from
*
(52_}n = 0 along T

we have that

[(By 2— + £ 2 ) {(1-€)21+ eZy}].. = © (6.3.10b)

2 34 e Elezr—. 3.

It is not in general possible to uncouple (6.3.10) so that boundary
conditions are obtained in terms of Z3(x,y.,w), 2Zy({x,y,w) alone. However,
having found general solutions to (6.3.8a) and (6.3.8b), then use of
(6.3.9a) and substitution into (6.3.10) easily allows the appropriate

arbitrary constants to be determined.

Let us now briefly examine some particularization of this method.

{(a) The Rectangular Lake

For simplifcation we shall again neglect the Coriolis force, and
suppose that the wind stress acts always parallel to the x-axis, so that

the problem becomes equivalent to that of Section 6.1.

Then, (6.3.8a), (6.3.8b) become



22 2

= + i Z3 =0 (6.3.11a)
X

32 2 gy

Rzt 3| Zy = 0 (6.3.11b)

subject to

92 Kyt

§—L ==l 0 ot x = o,L (6.3.11c)
X c%

%; {(1-e)Zy+ €23} = 0 at x = O,L. (6.3.114)

In this case we may express the end conditions (6.3.11lc), (6.3.11d) in

terms of Z3(x,w) and Zy(x,w) alone. Clearly we obtain

323 = olK‘lTn

% c2 at x = O'L (6.3.11&)
1

BZQ OZKITO

3 = at x = O,L . (6.3.llf)

X C%

The solutions to (6.3.1la), (6.3.11b) satisfying (6.3.1le), (6.3.11f)
respectively are

01Ky tosin{uy (x-L/2)}

Z3(x,w) = (6.3.12a)
c%ﬁlcos(ulL/Z)
02K Tosin{uy (x~L/2) }
Zy(x,w) = P (6.3.12b)
c%uzcos(uzL/z)

and thus, from (6.3.9), we have

K1To —o1sin{y; (x-L/2)}  opsin{u, (x~L/2) }—
Z ’ = &= ;
s c2 (0)-07) J_ Hycos (11L/2) uzcos (UyL/2) _I

(6.3.13a)
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KiTg [ (o1+1-€)orsin{ysy (x~L/2)}

Floy-op) | Mecoshel/D)

(op+l-g)oysin{p] (x-L/2)}

B uicos(u1L/2) < (6.3.13b)

Expressions (6.3.13a), (6.3.13bh) may be expanded as Fourier cosine-series
over the range [0,L} and be shown to be completely equivalent to the

expressions for Zj(x,w), Zs(x,w) obtained from (6.2.4).

Result (6.3.13) is, further, the two-layered equivalent of (4.3.3).
Since we are not specifically interested in stratified lakes, however, we

shall not dwell on its properties.

(b) The Circular Lake

Let us retain the Coriolis term in this case and assume, as in the
homogeneous case of Section 4.4, that the wind stress always acts in the
direction 8 = 0. Again, polar co-ordinates are used; the radius of the

basin is denoted by a.

The general sclutions to (6.3.8a), 6.3.8b) then become

23(xr,9,w)

J1(uyr) (A3cos6+B3sind) (6.3.14a)

Zy(r,0,w) = J){uzr) (Aycos6+Bysind) (6.3.14b)
so that (6.3.9) gives

Z1(x,0,w) = [cos8{A3T] (u1r) - AyJ](u2r)}

+

sin0{B3J; (u1+) -B,J; (uor)}l/(o1-02)  (6.3.15a)
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Z,(x,0,0) = [{g1+1-e}T1 (u2r) (AycosO+BySind)

- {02+1-€}J] (U1x) (A3cos6+B3sin6) 1 /e (01-02) .

Boundary condition (6.3.10) becomes

3% 22 KT
. 1, £%4 =10 . —fad
[Jm§;~ * = T ] 2 (jwcosf8-£sind)
r=a 1

[(By o t 5%-6){ (1'5321+€Zz}]r=a = 0.

(6.3.15b)

(6.3.16a)

(6.3.16b)

Combination of (6.3.15) and (6.3.16) allows a determination of the four

constants to be made.

Again these results are not discussed here. It has been merely our

intention in this chapter to show how readily applicable is the response

function method to the analytical determination of wind effects on strati-

fied lakes of simple form.
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CHAPTER 7

WIND EFFECTS ON CONNECTED LAKE SYSTEMS

7.1 Introduction

In Chapter 5 we examined, by means of numerical modelling, wind-
induced flow exchange between Lakes Albert and Alexandrina through the
Narrung channel. It was shown that channel velocities were always much
larger than velocities in the separate lakes, regardless of the direction
of the surface wind stress acting on the system. The narrow opening known
as Hell's Gate which connects the North and South Coorong lagoons is simi-
larly characterized by high velocities. Measurements taken by Noye (1970)
led him to conclude, however, that any efflux of water through Hell's Gate

has only slight effects on the mean level in the two separate lagoons.

In this chapter we examine, from an analytic point of view, the ques-
tion of the degree to which two lakes, joined by an opening or chamnel, act

independently of each other in their reaction to wind stress forcing.

Consider, for example, the two rectangular lakes shown in Fig. 7.1,
divided by a partition at x = L;, with an opening of width €' (not neces-
sarily 'small'). The two lakes have the same constant depth, H, and are
acted on by a wind stress Ts(t) blowing always parallel to the x-axis. We

shall ignore the effect of the Coriolis force.

It was shown in Chapter 4 that for a closed basin of constant depth
the form of the boundary contour does not affect the equilibrium surface

slope, provided some damping forces act within the lake. Applying this
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result to the total system of Fig. 7.1 we thus have, remarkably, that the
width of the opening does not influence the equilibrium response, provided

€' is non-zero.

Given that the wind stress has the form Ts(t) = Toejwt, we may con-
sider at what frequencies the two parts of the total system begin to exhibit
independent behaviour. A variety of analytical techniques are at our dis-

posal in the solution of this problem, and we may draw on analogies with

other problems, both in hydrodynamics and related fields.

As an example, the phenomenon of harbour resonance has, over the past
decade, received considerable attention since the paper of Miles and Munk
(1961). Here, a bay or harbour is connected, through an opening, to an
infinite ocean, and responds to incoming waves at the opening in much the
same way as the two basins in Fig. 7.1 respond to surface wind stress. The
main mechanism of energy loss in the harbour resonance problem occurs
through radiation away from the mouth, and a major theoretical difficulty
is that of determining how best to account for this energy loss. Problems
of water wave transmission through cpenings such as breakwaters (Tuck (1971))
may also be seen as related to the present problem. Analogies may also be
drawn with problems in acoustics - the coupling of rectangular cavities has
been treated by Morse and Ingard (1970), §10.4 - as well as with waveguide

problems in electromagnetics.

Let us attempt a direct solution to the problem of Fig. 7.1 where the

wind stress is of the form Ts = Toejmt with TO constant. We shall consider

firstly the left-hand basin alone. We kow that the steady state surface
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response has the form
jut
Ly (x,y,t) = 21 (x,y,0)e’

where Zj) (x,y,w) satisfies the Helmholtz equation
(V2+k2)z; = 0 (7.1.1)

with k? = (wz-zjaw)/cz; note that k(w) in (7.1.1) is equivalent to ko(w) of
(4.1.12a). Along the closed boundaries the relevant conditions are, from

{(4.1.9¢c), given by

] 9

3 Z1(x,0) = 3_}; z1(x,B1) = 0, xe[0,1;] (7.1.2a)
9

Y z1(0,y) =T . yYel0,B1] (7.1.2b)

9
% Z1(Ly ,y) T,y €[0,d) and ye(d+e',B;l. (7.1.2c)

*
with T = Kto/cz, K = (1+m)/p. Denoting by P (y,w) the amplitude of the
x-component of volume transport through the opening, then from (4.1.4a)

with £ = 0 we have, further, that

o=
%; 2y (Ly;g) = T- 1555— , yeld,a+e'] . (7.1.24)

Note that the possibility of a velocity discontinuity at the edges of the

opening has not been excluded by these boundary conditions.

We make an initial simplification by means of the transformation

x sin{k (x~L;/2)}
21 = 2 Xcos (KLy/2)

. (7.1.3)

If €' = 0 then (from (4.3.3)) Z; = T sin{k(x-L;/2)}/{kcos(kL1/2)} so

*
Z1(x,y,w) represents the contribution to the surface response of the basin
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which results from the opening itself.

Combining (7.1.1), (7.1.2), (7.1.3) gives

*
(VZ2+kx2)2; = 0 (7.1.4)
subject to

9 * d *
5§-zl(x,0) = 5§'Z1(X,B1) = 0,xe[0,1] (7.1.5a)
3 *
3y 21(0.y) =0, yei0,B;] (7.1.5b)
) *
3% Z1(L1,¥y)= 0, yel0,d) and ye(d+e',B;] (7.1.5¢)
3 * 'kZP.*
7% 21(L1,¥)= - 1—;—— , yeld,d+e']. (7.1.5d)

A solution to (7.1.4) satisfying (7.1.5) is not difficult to find by separa-

tion of variables. It is

* Lk * P
2 L 1o oS e —2k )y % Mn cosh(ylnx)cos(elny)}

~ Bjw 1 sin(kL;) ey ]
(7.1.06)
where
eln = nn/B)
= (a2 _12y1/2
Yln(w) (eln k<)
A (w) = l/{Yln51nh(Y1nL1)}, n=1,2, ...
* *
and where the coefficients Q; (w), an(w) are defined by
* d+e' 2
01 (w) = P dy (7.1.7a)
d
% d+e'
an(w) = j P cos(elny)dy, n=1,2, ... . (7.1.7b)

d
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*
01 (w) is the total discharge through the opening and is an important
physical parameter of the total system.
The solution to (7.1.1) subject to (7.1.2) is thenlsimply

Tsin{k (x-L;/2)}
kcos (kL1/2)

Zy (x,y,w) =

* cos(kx) _ e £
+ 310 {01 sin (kDp) 2k nzl A, Q; coshly, x)cos(8, y)}.

(7.1.82)
Similarly in the right-hand basin the solution is

‘Tsin{k (x-Lp/2)}
kcos(kLy/2)

Zz (;I;lw) =

ik * cos (kx)
¥ Byw 92 SintkL,)

[+<]
* p— —
-2k nzl A2nQ2n COSh(anx)COS(anY)}
(7.1.8b)

A are defined in a

(with x = -x + L) + Ly, y =y + s), vhere 0, , v, , B,

similar manner to © and where

in’ Yin' Aln

2 d+e! * = "
02 (w) = —I P dy = - 91{(w) = -9 (w) (7.1.9a)
d
" d+e’ =
QZn(w) = —[d P cos(62ny)dy, n=1,2, ... (7.1.9b)

Neither (7.1.8a) nor (7.1.8b) explicitly satisfies the respective
boundary conditions at x = 21(;'=22), i.e. the coefficients QI(m)and
QIn(m) are unknown. A determination of the coefficients requires that
these conditions be satisfied. In particular the two solutions must be
matched across the opening. The matching condition, quite clearly, is that

the amplitude of surface displacement should be continuous across the
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opening, i.e.

23 (L1 ,y,w) = Zp(Lo,y+s,w),yel(d,d+e']. (7.1.10)

In order to simplify this determination let us suppose that the two
basins are identical (Fig. 7.2), so that QIn = an (ELQ;). Further, we
place a2 new set of horizontal co-ordinate axes as shown. Then (7.1.8a),
(7.1.8b) may be written in terms of these coordinates as

Tsin{k (x+L/2) }
kcos (kL/2)

21 (x,y,w0) =

15_{ * cos (k(x+L))

= *
. ST~ ) A 0. cosh(y (x+L))cos(6 _y)}

n=1

+

(7.1.11a)
_~Tsin{k (-x+L/2) }
Zo(x,y,w) = kcos (kL/2)

JE-{Q* cos (k (=x+L) )
Bw sin (kL)

!

Py *
-2k nzl Ath cosh(Yn(—x+L))cos(6ny)}

(7.1.11b)

where Aln A2n & An), Yln =Y (= yn). Clearly the problem is now

2n
reduced to a determination of the coefficients Qz-'-s and Q; for n =1,2, ... .
Further, it is clear that the amplitude of surface displacement is an odd

function about x = 0, i.e. Z;(-x,y,w) = -Z2(x,y,w). Hence the matching

condition (7.1.10) reduces to
z1{(0,y,w) = Z2,(0,y,w) = 0, vel[d,d+e"]. (7.1.12)

Thus in this simplified case we may obtain a solution for the total system

by considering only the behaviour in the left-hand basin.
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7.2 An Approximate Solution

Ippen and Raichlen (1961) in an early approach to the harbour reson-
ance problem, considered the coupling of a small, highly réflective rect-
angular basin (modelling the harbour) to a large rectangular basin (the
ocean) through an opening. They produced separate solutions in each basin
which were then matched across the opening by assuming constant surface
slope across the harbour entrance and equating the ‘average' of each solu-

tion evaluated at the entrance.

In this section we use a similar method in considering the wind
forced coupling of two identical rectangular basins. Specifically, we assume
that P*(y,w) is constant across the opening between the two lakes. If
g' = B, i.e. the two basins are fully connected, then this approximation

is exact. In fact, we know that in this case

" 2 921
To & 9x |x=0

o
it

_ jwTtan(kL/2)
T k4cot(kL)

(7.2.1)
*
More generally, when €' ¥ B and P° is a constant, PO, it is clear that

Q =90 =6'PO (7.2.2a)

g =1 (7.2.2b)

where Gn = sin{en(d+€')} -sin{end}. Thus (7.1.1la) gives

ikQ oy
T Y (°) 2k
Z1(0,y,0) = E-tan(ku/z) + 5 {cot (kL) ET-nZl Cncos(eny)}

(7.2.3)
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where Cn(w) = Anén 00sh(ynL)/6n. Now an approximation to the condition

z1(0,y,w) = O,ycld,d+e'] is

1 d+e'
f z1(0,y,w)dy = O, (7.2.4)

-E-:_'-
a
i.e. the average displacement across the opening is zero. Combining

(7.2.3), (7.2.4) gives

jwBTtan (kL/2) (7.2.5)

Q=

© 2 2k P
k4 (cot (XL) - CoLA z D)
n=1

where Dn(m) = CnGn/Bn.

The infinite series in the denominator of (7.2.5) is convergent if

€' # 0. When €' = B, for example, Dn = 0 so

P [= 90] _ jwTtan (kL/2)
e\ B k2 cot (kL)

equivalent to {(7.2.1):

Finally, (7.1.11la) becomes

_ Tsin{k(x+L/2)}
Z) (x,y,w) = kcos (k1/2)

ik
43 Qn»{ cos(k(x+L)) _ 2k

= ~In (kD) ~ Y Encosh(yn(x+L))cos(6ny)} (7.2.6)

n=1l

where En(m) = Anﬁn/en.

Let us model the combined North Coorong - South Cocrong system as two
identical lakes, each with length 50km, breadth 2.5km and depth 1.25m,
connected by an opening of width 100m which models the Hell's Gate channel.

The length d is set to zero. The left hand basin may be said to act
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independently of the right hand basin at a given frequency when the surface
response function (gain and phase~lag) at each point along the axis of the
left hand basin (except close to the opening) is almost equivalent to the
surface response function at the identical point in the case when the two

basins are unconnected.

In Fig. 7.3 we present the surface response function as determined
frem (7.2.6) for the Seven Mile Point station, equivalent in this instance
to the point (-L/4, B/2). For comparison, the response function for the
Seven Mile Point station assuming the lakes are unconnected, is also pre-
sented here. 1In Fig. 7.4 the surface response function at the positicn
(-L/2, B/2) for the connected system is shown; for the unconnected system,
the response is always zero at this position. Finally in Fig. 7.5, the

gain and phase-lag of the discharge Qo(w) are presented.

Regardless of the value of the damping parameter o, it is clear that
at sufficiently low frequencies the two lakes act as a single unit, exhib-
iting the familiar wind set-up along the axis of the combined system.
Further, at higher frequencies and with a = 0, there is a marked differ-
ence between the response of the connected and unconnected systems. The
effect of an opening of non-zero width between two basins is to increase
the possible number of normal modes and hence resonant frequencies within
the component parts of the total system (Mei and tinltata (1973)). However,
as w *> @, the magnitude of the discharge Qo(w) %+ 0, so that even with a = 0
the influence of these 'connected' modes becomes minimal at sufficiently

high frequencies and the two basins act independently of each other.
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An increase in the damping parameter o in general causes a decrease in
the discharge Qo(w) at each frequency, sc the basins begin to respond
independently of each other at lower frequencies. For sufficiently high

0., they act essentially independently at almost all frequencies.

We have previously indicated that if the North Coorong is considered
closed at Hell's Gate, the damping parameter o assumes a value of
0(2.5 x 10-4 sec-l). For such values our analysis indicates that the
North and South Coorong basins behave largely independently at frequencies
greater than 1 cpd. For example, at Seven Mile Point there is an equiva-
lence between gains, the errors being at most 15%, while phase-lags also
correspond closely. At the station (-L/2, B/2), the gain of the con-
nected system is low frequency dominated, the response at frequencies above
about 2 cpd being very small. For diurnal frequencies there is a good
first order agreement at Seven Mile Point between the gains of the con-
nected and unconnected systems. However there is a phase difference magni-
tude of about 90° for this frequency. At frequencies much smaller than the
diurnal (e.g. wind stresses involved in large scale storm cycles), it is

clear that the separate basins act very much as one.

A brief mention should be made of alternative methods of solution to
the problem presented in this chapter. One alternative involves deriving
integral equations( in the case d=0) for P*(y,w), yel0,e']l and 2;(0,y,w),
yele',B]l. BApproximate solutions to these equations enable upper and
lower bounds to be placed on the quantity Qo(w). Similar methods are used
in electromagnetics (refer Jones (1964), §5.12)) and have recently been

most successfully employed in water wave problems (Evans and Morris (1972)).
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The method was applied to the present problem, though solutions were only
possible for the restricted case a = 0. The results confirmed that even
when the width of the opening between the lakes is very small the degree

of interaction between them may be considerable at certain frequencies.

Another alternative involves use of a 'small-hole' theory similar to
that of Mei and Ualata (1973) used to study the harbour resonance problem.
The general theory has recently been formalized by Tuck (1974). It was
not attempted in the present instance, but may prove to be of great rele-
vance in studying the related and more complicated problem of wind effects

on basins connected by a straight channel.

We conclude at this stage our simplified analysis of wind effects on
connected lakes. Results have shown that the conclusions of Noye (1970)
regarding the effect of flows through Hell's Gate on water levels in the
Coorong lagoons are generally correct, but this is only so because of the

heavily damped nature of the system.
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CHAPTER 8

A COMPARISON OF THEORY AND EXPERIMENT

8.1 Experimental Estimate of Response Function

The Coorong lagoons obey the 'narrow lake' approximation, i.e. only
the component of wind stress parallel to the lake axis is important in
determining wind effects in the lagoons. As such, only a single response

function is needed to characterize the system.

Experimental estimates of this function for the North and South Coorong
have been made by time series analysis of wind velocities recorded at
Mundoo Island and water levels recorded at Seven Mile Point and Noye's
Island respectively. We assume that wind velocities at Mundoo Island are
equivalent to those at other points along the lagoon axes, i.e. the wind
stress is homogeneous; also that the flows through Hell's Gate have minimal
effect on the surface responses of the separate basins. Thus, by a com-
parison of these experimentally determined response functions with the
theoretical response functions determined by the analytical methods of
Sections 3.2, 3.3 and the numerical methods of Section 5.2, estimates may
be made of the values of the various damping parameters used to character-

ize the system.

The data used to estimate the response function for the North Coorong
is shown in Fig. 8.la; that used for the South Cocrong is shown in Fig.
8.1b. 1In each case, the wind velocities were obtained from the chart
record of a Dynes anemometer, its sensor being lOm above ground level. The

corresponding surface stress is calculable from (1.1.1), and thus the
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component of wind stress along the axis of each lagoon may be calculated.
The axes of the North and South lagoons are regarded as positive in the
south-east and north-west directions respectively; this follows the nota-
tion of the analytical model of the North Coorong (Section 3.2) and the
numerical model of the South Coorong (Section 5.2). The method of recorxd-

ing water levels is reported elsewhere by Noye (1970).

The longitudinal component of surface wind stress and corresponding
surface displacement at a given station may be regarded as the input and
output functions respectively of a linear system. The gain and phase of
the linear system may be estimated directly by cross-spectral analysis of
the input-output data. Often the gain function G(w) at a given angular

frequengy « has been found from
2
P = P 8.1.1
I'(uu) G* (w) W(m) ( )
where Pw(w) is the power spectrum of the wind-stress input and PL(w) is the °
spectrum of the water-level output. Thus,

L
Pw(w)

P_(w)yl/2
] R (8.1.2)

Glw) = [
However such a procedure does not take account of any noise which might
be generated within the system. If there is an independent noise contained

in the output record, then
= a2
PL(w) G (w)PW(w) + PN(w) (8.1.3)

which differs from (8.1.1) only by the inclusion of PN(w) (the power spec-
trum of the noise) with the contribution from the input. The effects of

this extra term can be accounted for in the following way. Jenkins and
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Watts (1968), p.352 have shown that
= - 2
Po{w) = P (0) {1 - Ro (w)} (8.1.4)

where R%L(w) is the squared coherence between the input and ocutput at

angular frequency w. This equation shows that, when the whole of the out-
put spectrum consists of noise, the squared coherence is zero; when there
is no noise, the squared coherence is unity. From (8.1.3) and (8.1.4) it

follows that

PL(m) 1/2
} . (8.1.5)

Glw) = |R W] [P ™
Vi

This formula was used in the analysis of the wind and water-level

data of Fig. 8.1 to determine the gain of each wind-water level system.
The power spectra Pw(w) and PL(w), the coherence RWL(w) and the phase

difference 0(w) were found and the gain calculated using (8.1.5).

Fig. 8.2 shows the gain G(w) and phase-lag {-6(w)} of the wind-water
level system for the North Coorong and South Cocorong systems. It can be
seen that for both there is a steady fall in the gain while water level

lags the wind stress by increasing amounts as the frequency increases.

In Fig. 8.3 curve-fitting of the analytical gain and phase~lag at
Seven Mile Point as determined from {(3.2.9) and (3.3.13), (assuming the
North Coorong is a rectangular lake of constant depth), suggests that a =
2,5 x 10-4 sec-1 and N = 4.0 x 10“4 sec-l. Similar curve-fitting of the
gain and phase~lag at Noye's Island determined numerically in the manner of

Section 5.2 indicates that for the South Coorong r = 7.5 x 10-4 m.sec-l.

These values should be regarded as estimates only. The theoretical curves
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drawn in Fig. 8.3 approximate the upper and lower bounds of the 95% confi-
dence limits of the experimentally determined gaing. The corresponding
phase-lag curves do not match so well with experimentally determined phase-
lag values. Nevertheless these estimates confirm our previously-held sus-
picion that the response of both Coorong lagoons to variable wind stresses
is heavily damped. Ih particular, the appearance of the fundamental longi-

tudinal seiche in either lagoon is unlikely.

Wind-water level systems without a 'preferred direction" must be
specified by two response functions, as indicated in Section 2.2. Lakes
Alexandrina and Albert clearly come within this category. The task of
extracting two response functions from a given record of wind velocities
and corresponding water levels is more complicated than for the case out-

lined above, and has not been attempted here.

8.2 Water Level Predictions

The ultimate test of any scientific theory is provided by the degree
to which its predictions match reality. 1In the case of wind effects on
closed lakes we may, using recorded surface wind stress as input to the
theoretical system, compare water levels predicted by the linear theory of
previous sections with recorded water levels. Using the approximate
Fourier analysis technique sketched in Section 2.2, several such compari-
sons are made here between predicted and recorded water levels for the

lakes of the Murray Mouth.

For a 'narrow lake' the input record consists of the longitudinal wind
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stress Ts(t) recorded at station;xo. The record is of finite length T,
extending from t = 0 to £t = T. It is a continuous record, but for practi-
cal purposes it must be sampled at intervals At over the range [0,T] to
produce a discrete (digitized) record consisting of 2L (= T/At) sample

values (Ts)r, r=0,1, ... , 2L-1 such that
(Ts)r = Ts(rAt).

Then, as shown By Jenkins and Watts (1968), p.f9, the finite Fourier series

L-1
Ab + 2 mzl {Amcos(wmt) + BmSLn(wmt)} + ALcos(th)
with
- 2T =1,2 L (8.2.1a)
U)m— T ’ m = 7 i L 4 . «da
1 2L-1 (“mr‘
Am = 3% Z (Ts)r cos lT] ,m=0,1, ... , L (8.2.1b)
r= 0
1 LSt Y
B = = rZO (t) sin ['ETJ ,m=1,2, ... , (L-1) (8.2.1lc)

provides an approximation ;s(t) to the continuous record Ts(t) over the

range [0,T] in the sense that
(t)), = T, (¥8t), r = 0,1, ... , 2L-1 .

The highest frequency component present in the approximation ;s(t) is L/T =
1/2At, corresponding to a period of 2 sampling intervals. The approxima-
tion ;s(t) to Ts(t) over the range [(0,T] is defined for all t and is a

periodic function with period T.
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If %s(t) is taken as the input to the wind-water level system at
station X1 then the form
L-1

AOZ(xo,O) + 2 m£1 [AmRe{Z(xo,wm)e

jwnt jwr £
+ BmIm‘[Z(xo,uum)e:wm o+ ALRe{Z(xo,uoL)eJmL }

where Z(xo,w) is the response function for the system, is the resultant
steady state output, E(xo,t). It is periodic, with period T, and approxi-
mates the true system response, ;(xo,t), to the input Ts(t) over the range
{0,T]. However, the approximation would be expected to break down at the
ends of this range; it is therefore desirable that the record length, T, be
as large as possible, so confining such distortions to relatively small

regions.

The block diagram of Fig. 8.4a summarizes the procedures involved in

water level predictions for 'narrow lakes' using response functions.

Such methods are equally applicable to lakes without a preferred direc-
tion. Here, however, the wind stress vector ;s(t) measured at station
(xo,yo) over the range [0,T] is resolved into components Tsx(t), Tsy(t)
which may both be approximated by finite Fourier series ;sx(t), %sy(t) of
the above form. These separately produce system responses El(xo,yo,t),
Ez(xo,yo,t) which may be added to produce an approximation to the true total

response, c(xo,yo,t), of the basin. A block diagram of this procedure is

given in Fig. 8.4b.

Both the methods outlined in Fig. 8.4 have been used in water level

predictions for the Murray Mouth lakes. The method of Goertzel (1962) was
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programmed for an efficient calculation of the series (8.2.1b), (8.2.1c),

Wind speeds have been converted into stresses using the form (1.1l.1).

Fig. 8.5 shows a prediction of water level at Seven Mile Point for the
11 day period depicted in Fig. 8.1b. The response function values used in
the prediction are determined from (3.2.9) (assuming the North Coorong as a
rectangular, constant depth basin) with a = 2.5 x 10-4sec-l. Fig. 8.6 shows
a water level prediction at Noye's Island over the 11 day pericd depicted in
Fig. 8.la. The response function values are determined from the numerical
method of Section 5.2 with r = 7.5 x 10-4m.sec_l. Fig. 8.7 shows a water
level prediction at Tauwitchere barrage for a 19 day period in December,
1971. Response function values for elevation point 184 of the model of
Section 5.4 with r, = 5 x 10“4m.sec-1 and r_ = 10-"3m.sec“l have been used
here, thé wind velocities being resolved into south-north and west-east

components.

In each of these three cases, the input record was digitized to half
hourly readings; the highest frequency component present in the Fourier
series approximation to the wind stress input is thus 24 cpd. This makes it
impossible to reproduce, through the prediction process, any high frequency
(> 24 cpd) fluctuations in the observed water level. This is not a serious
problem for the Coorong lagoons where such effects are a minor part of the
surface response. Indeed, it is clear that very satisfactory comparison
between observed and predicted water level has been achieved for both the
Coorong predictions. From the results of the North Coorong prediction we
conclude that the rectangular, constant depth model is a realistic representa-

tion of the actual basin.
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For Lake Alexandrina, the observed and predicted water levels at
Tauwitchere barrage do not compare as well. (Variation of r, and X, showed
that values of 5 x lO-4 m.sec_1 and 10-3 m.sec—l respectively gave the best

fit). There are several possible causes for these discrepancies.

Firstly, from the response function for Tauwitchere barrage shown in
Fig. 5.15, it may be concluded that high frequency components are an impor-
tant part of the water level response and should not be omitted. It would
be preferable, therefore, for the sampling interval to be somewhat less
than 1/2 hr. Secondly, the numerical model of Section 5.4 fails to give a
very accurate representation of the lake contour in the region of
Tauwitchere barrage. Unfortunately, the only records suitable for analysis
were from this region. 1In all probability, more satisfactory compariscns
would be achieved at places like Milang and Wellington. Thirdly, the flow
through the barrages is variable and has an effect on the water level at

Tauwitchere barrage that cannot be incorporated into our model.

In summary, the satisfactory comparison obtained between observed and
predicted water levels, particularly for the Coorong lagoons, justifies the
use of response functions for purposes of predicting water levels on closed
lakes. Further work on refinement of the numerical model of Section 5.4
and the collection of water level data at points other than Tauwitchere
barrage needs to be undertaken to improve comparisons in the 'non-narrow’

Lakes Alexandrina and Albert.
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CONCLUSIONS

The analytical and numerical results of this thesis indicate that use
of response functions provides a simple means of characterizing the wind
induced response of a given lake. A wide class of wind effect problems may
be treated in this manner and a systematic derivation provided to many

results otherwise obtainable only by more lengthy procedures.

A comparison of theoretical and experimentally determined response func-
tions suggests that damping processes dominate the wind induced response of
the Coorong lagoons. Such heavily damped behaviour is due to the extreme
shallowness of the basins. It is concluded that the fundamental longitudi-
nal seiche resulting from a suddenly imposed wind is overdamped in both North
and South Coorong, a result in agreement with the experimental conclusions

of Noye (1970).

The characteristic diurnal oscillation in the Coorong water levels is
simply explained as a forced response to periodic wind stresses. Water
level displacements at least of 0(10cm) may be induced by such prevailing
winds. It is, therefore, likely that non-linear responses will become impor-
tant, particularly in the shallow end regions of the Coorong where surface
displacements are greatest. Elucidation of the theoretical non-linear res-
ponse of a closed basin to variable wind stresses is required before further

progress can be made in this area.

From the simplified analysis of Chapter 7, it seems that damping pro-
cesses are also important in determining the largely separate behaviour of

the Coorong lagoons. Future work, particularly concerning wind effects on
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lakes coupled by a narrow channel, should extend and strengthen this

conclusion.

The theoretical results of Chapter 4 suggest that the earth's rotation
plays an unimportant role in the response of Lakes Alexandrina and Albert to
surface wind stress. This is due to a combination of the rather small hori<
zontal dimensions of the lakes, the much larger value of the Rossby radius

of deformation and to significant damping influences.

Numerical experiments of Section 5.4 highlight the importance of Narrung
channel flow in determining the response of Lakes Alexandrina and Albert.
Generally, the magnitudes of characteristic water level displacements due to
prevailing winds are of O(l1 - 10cm). Mean current speeds within the separ-
ate lakes are generally small (0(0.1—lcm.sec-1))but are amplified many times
with the narrow confines of the Narrung chamnel. Such a conclusion agrees

with local observations.

The numerical modelling of Lakes Alexandrina and Albert reported here
is the first theoretical study of the motions of the waters of these lakes
to be undertaken. Though reasonable agreement between cbserved and computed
water levels has been obtained, there is need for improvement, particularly
in the sophistication of the numerical models used in the prediction and in
the gathering of accurate and more reliable wind and water level data. 1In
addition, far too little is known of the depth contours in either of the
lakes, of conditions within the Narrung channel and of the effect that open-
ing and closing of the barrages has on water levels within the lakes. Until
such knowledge has been accumulated, continued theoretical advances will be

of little direct benefit.
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APPENDIX A

THE MURRAY MOUTH LAKES

1. Introduction

The River Murray, 2500km long, forms at its mouth a most peculiar and

fascinating system of lakes (Fig. Al).

It drains into Lake Alexandrina (450km?) which in turn is comnected to
‘the smaller Lake Albert (100km2)through the narrow, 8km long Narrung channel,
and to the Southern Ocean through an extremely small opening, only a few

hundred metres wide, which is the real mouth of the River Murray.

Stretching south-east from the Murray Mouth for a distance of about
80km is the Coorong, an elongated coastal lagoon of average width about
2km, separated from the Southern Ocean by the narrow ridge of sandhills
called Younghusband Peninsula. In reality the Coorong consists of two

lagoons, the North Coorong and the South Coorong, joined by the opening

known as Hell's Gate only a hundred metres wide.

Few detailed studies of any kind have been carried out on any part of
this system of lakes. It would be true to say that very little is known

about any of the lakes of the Murray Mouth.

For example, the only recorded depth measurements of Lake Alexandrina
are at present held by the Engineering and Water Supply Department of South
Australia. They were made in 1912 and consist of data from several trav-

erses made approximately north-south across the lake and through the
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Narrung channel into Lake Albert. One can estimate an average summer depth
of between 3 and 3.5m for Lake Alexandrina. More recently, measurements

of Lake Albert depths made by Cheng Wan-Li (1972) show the average depth

of this basin to be about 2m. Approximate summer contours drawn fxrom

these sets of data are shown in Fig. A2. Noye (1974) estimates the aver-

age summer depths of the two Coorong lagoons to be between 1 and 2m.

The Coorong is geologically the most interesting and environmentally
the most finely balanced of the lakes of the Murray Mouth. For this reason
it has received the most attention from scientists, though even for the
Coorong our knowledge is very limited. A most compr;hensive summary of the
important aspects of the Coorong region has recently been published by
Noye (1974). It contains in detail much of the information reported only
briefly in this Bppendix concerning the environmental decay of the Coorong

lagoons.

It is believed that the inner shoreline of the Coorong represents the
stranded beach of a past geological age. It is thus slowly undergoing a
natural geological death, a process being hastened by the influence of

man (refer Section 2 of this Appendix).

Much of the Coorong area is under State protection as a national park,
game reserve cr sanctuary. The area has, in the past, supported great
numbers of bird life, especially pelicans and wild duck, and contains many
unique specimens of marine life in the form of crabs, sea-grasses, etc.
Prior to World War II many fishermen earned a profitable living from the

waters of the Coorong.
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2. The Impact of Man on the Murray Mouth Lakes

(i) The Barrages

The Coorong water is basically sea water. However, in the South Coorong
its salinity during summer may be as much as three times that of normal sea-

water.

On the other hand, the water of Lake Alexandrina and Lake Albert is
relatively fresh and is quite suitable for irrigation of surrounding pas-
tures. It has been so, however, only since the completion in 1940 of a
series of barrages across the south~western end of Lake Alexandrina (Fig.
Al), constructed in order to prevent the upstream flow of water from the
Southern Ocean during the summer months when the River Murray ceases to

flow.

The barrages are normally closed during the summer months and open
during the winter months, though extraordinary seasons may alter this pat-
tern. During very dry seasons it is possible to wade across the Murray

Mouth at low spring tide.

The opening of the barrages in winter causes a large influx of fresh
water into the Coorong, with a consequent rise in water level and drop in
salinity. Conversely, the closure of the barrages during summer leads to

an abnormal increase in salinity and decrease in water level.

It is thought that sudden changes in salinity may adversely affect
certain species of sea-grass and fish. It is certain that unseasonal varia-
tions in water level can upset the nesting habitats and routines of water

birds such as pelicans. The reduced flow of fresh water into the Coorong
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during the summer months is also believed partly responsible for the almost

stagnant nature of the South Coorong water over the past few years.

From a comparison of the two sets of data mentioned in Section 1 of
this Appendix for Lake Albert depths, one taken in 1912 and the other in
1972, it seems that the construction of the barrages has led to an approxi-
mate increase in the average depth of Lakes Alexandrina and Albert of 1m.

Noye (1974) has documented the fact that winter depths in the Coorong
lagoons are approximately twice the summer depths due both to man-made

influences and to natural effects.

(ii) The South-East Drainage Scheme

Prior to Werld War II Salt Creeck was an important source of fresh water
for the South Coorong. However the South-East drainage scheme, completed
in 1946, diverted these waters and as a result Salt Creek has not flowed
since 1948. The effect of cutting off this fresh-water source seems to have
been a slow increase in the salinity of the South Coorong over the past
twenty-five years, which in turn has adversely affected the ecology of the

lagoon.

As an example, fish numbers in the South Coorong seem to have dropped
considerably in this time. 1In addition, sea-grasses are believed to have
been adversely affected and it is thought that the decrease in the abund-
ance of these sea-grasses may be responsible for the obvious and alarming
drop in bird numbers. The sight of foam lining the South Coorong shores is

now quite common, even in winter.
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Thus, due in part to the summer closure of the barrages and also to
the now negligible flow of Salt Creek, the South Coorong is rapidly decay-

ing into a stagnant environment.

(iii) Shore Pollutants

The Report of the Committee on Environment in South Australia (1972)
lists the twe main pollution problems associated with the River Murray as
saline pollution and effluent discharge from towns, industrial plants and
river-craft. Periodic salinity increase is considered to be the bigger

problem of the two.

It would be reasonable to suppose that a large amount of upstream
pollution finds its way into the lakes of the Murray Mouth. These lakes
might therefore be considered as a partial indicator of the state of envir-

onmental decay of the River Murray itself.

So far there has been little evidence produced to show that the Murray
Mouth lakes are being threatened by upstream pollutants. A greater threat
to the lakes is presently being posed by farms and towns situated on its
shores. Signs of eutrophication, possibly a result of superphosphate being
washed into the lakes from surrounding farmland or of other nitrogeneous

effluents, have begun to appear.

A recent report on water pollution control of the River Murray by
the E. & W.S. Department (1973) comments (p.3):-

"Judged by the level of pollution which exists in many of the
major river systems of the United States of America and Europe,

the River Murray in South Australia is a clean river. However,
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there is no room for complacencyas there is already growing evi-
dence of unbalanced aquatic biological activity in the River
Murray in South Australia - particularly in the back-waters, the
lower reaches of the River itself, Lake Alexandrina and the Goolwa

channel."

3. Future Uses of the Lakes

The decision of the South Australian Government to site a new city,
Monarto, near the present town of Murray Bridge (Fig. 1) as part of its
decentralization policy has raised considerable speculation as to the future

uses of the lakes of the Murray Mouth.

At present the lakes provide life-giving fresh water to surrounding
farmland. It seems that within a decade this use as a water resource will
have greatly increased in scope. One recent proposal, for example, was to
place a barrage across the Narrung channel and to use the water of Lake

Albert as a source of fresh water for both Mcnarto and Adelaide.

A more certain forecast is that the lakes will become an important
recreational source, a gquiet retreat for the future inhabitants of Monarto.
Care must be taken to ensure not only that the system of lakes is kept in
a fit state for recreational usage but also that such usage does not itself

destroy the system.

The recreaticnal potential of the lakes is already under investigation
by the South Australian State Planning Authority (1973a). Reporting on

proposals for the land adjoining the Lower Murray River and Lake Alexandrina,
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it comments (p.11l6):-

"The coasts, riversides and lakefronts are unigque water land
boundaries. Being fixed and finite they are a community asset
for which no substitute is available. .... Along the shorelines
fronting Lake Alexandrina and the Lower Murray River, sites
should be allocated for tourist accommocdation areas and recrea-
tional facilities which have as little effect as possible on

the natural and scenic qualities of the area.”

It is likely, too, that unless great care is taken, Monarto will
greatly increase the load of upstream pollutants presently entering the
system. The South Australian State Planning Authority (1973b) in its
report on the site selection of Monarto, says (p.19):-

"Sewage disposal will require detailed planning. The possi-
bility of eutrophication in the River, and salinity build-up
in irrigated areas will require careful consideration. Piping
the effluent toc Lake Alexandrina and/or nutrient stripping

may have to be provided in the long term."

In summary then, it seems that the lake waters will, in future years,
be used in many more diverse and possibly conflicting ways. Conflict is
unavoidable -~ it can be minimized only by the application of carefully

planned policies and guidelines for development.

Clearly the greatest barrier to efforts at preserving the lakes of the

Murray Mouth is our overall lack of knowledge of the system itself.

For example, much attention has recently been focussed on the decay
of the ecoblogically fragile Coorong. It has been proposed that a channel
be cut to connect Lake Albert to the North Coorong or the Southern Ocean to

the South Coorcng near Salt Creek. In this way it ought to be possible to



-168~

satisfactorily flush out the Coorong waters and thus maintain salinities

at a more stable level.

Such a proposal, however, will remain as mere speculation rather than

a definitely committed plan until a large-scale, multi-disciplinary study

has been undertaken to determine the effectiveness and, indeed, possible
side effects of the scheme. It was with the intention of contributing to
our knowledge of the lakes of the Murray Mouth that the studies reported in

this thesis were undertaken.
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FIGURE A2 : APPROXTIMATE DEPTH CONTOURS FOR LAKES ATEXANDRINA AND
ALBERT AS DETERMINED FROM RECORDS OF THE E. & W.S.
DEPT. AND MEASUREMENTS TAKEN BY CHENG WAN-LI (1972) .
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APPENDIX B

SOME PROPERTIES OF RESPONSE FUNCTIONS FOR CAUSAL, LINEAR SYSTEMS

The response function, J(w), of a linear system may be defined as the
Fourier transform of the impulse response h(t), (i.e. the response to a

unit impulse 8(t) of the system) viz.

I (w) =J hit)e 9Cat (B.1a)
with inversion
h(t) = %;-I J(m)ejwtdw. {B.1b)

Papoulis (1962), p.86 shows this definition to be equivalent to that given

in Section 2.2 of this thesis.

Now, the impulse response is a real-time function so that writing

J(w) = R(w) + jX(w) where R(w) and X(w) are real, we have from (B.l) that

R{w) = [ h(t)cos (wt)dt (B.2a)
X(w) = —j h(t)sin(wt)dt (B.2Db)
~00

i.e. the real and imaginary parts of the response function of a linear
system are even and odd functions respectively of the angular frequency w.

Further, X(0) = 0 so that

J(0) = R(0) . (B.3)

The step response and impulse response are related by the form
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t
a(t) =I h(t)dr
(]

which follows from (2.2.4) with fi(t-T) = §(t~T). Also, for a causal system

(B.la) becomes
rm

Jw = | hirye Y

dt

so that

J(o) = J h(t)dt.

o
Thus we have finally that
lin
e La(B)} = J(0) = R(O) (B.4)

provided the limit exists, i.e. the equilibrium response of a causal linear
system is equal to the system gain at zero frequency. If the limit does
not exist we may speak of J(0) only as a quasi-equilibrium (or quasi-
static equilibrium) response. Such is the case in wind-effect prcblems

when no damping forces are acting within the fluid.
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APPENDIX C

UNIQUENESS PROPERTIES FOR THE BOUNDARY VALUE PROBLEMS (4.2.11), (4.2.14)

To prove that any solution to (4.2.14) is unique, it suffices to con-
sider the following generalized boundary value problem in three-dimensional
space:-

(V2-A2)y

£(x,y,2) (C.1la)
within a closed volume Vv, subject to the boundary condition

¥ g(x,y,z) {C.1b)

on the surface S of the volume V. 1In (C.la), X is a real constant. We
shall prove that any solution Y(x,y,z) to the boundary value problem

(C.1la) is unique.

To this end, suppose there are two separate solutions to the problem,

viz. ¥1(x,y,z) and Y2(x,y,z). Then the difference ¥; - ¥ = Y3 satisfies

(V2-12)¥, 0 within V, (C.2a)

¥y 0 on S. (C.2.b)

Further, the function Y3(x,y,z), subject to the conditions of continuity
of all first derivatives within V and continuity on E} satisfies the
following corollary of the divergence theorem (Chester (1971) p.69):-

. — 8 — —_
[I] ¥3)2av = [f ¥3 5%1 ds - [[[ ¥av2v¥sav (C.3)
v s v

where n is the outwardly directed normal to the surface S. Combining

(c.2a), (C2.b) and (C.3) gives
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[I] 149¥3)24+(A¥3)2}aV = 0 (C.4)
\'4

from which, since the integral of the left hand side of (C.4) is never

negative, we conclude that ¥3 = 0 within V.

Thus, it follows that if a solution to (4.2.14) exists then that
solution is unique. A similar analysis applied to (4.2.11) shows that
uniqueness is guaranteed to within an additive constant. (Of course, this

also follows from (4.2.12) and the uniqueness of (4.2.14)).
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APPENDIX D

FINITE DIFFERENCE SPECIFICATION OF THE BOUNDARY CONDITIONS

FOR THE NUMERICAL MODEL OF SECTION 5.3

Here we consider in detail the relevant form of the boundary condition
(4.1.9a) applying to each type of boundary stream point, and derive the
"degenerate" form of the difference equations (5.3.3) satisfied at each.
The form of the boundary condition at 270° corner points is a point of dis-
pute. Clearly, it cannot be defined explicitly using (4.1.9a). We choose

the simple, though unnatural condition of zero flow at such points.

Group 3
A |

1

— _—
oi+n 2d 0i+n+l

values for zi+n’ Zi+n+1

are starting values. Here (4.l.9a) gives

0. =0 (p.1la)
so that Pi+Qi = Pi-Qi, i.e.
s.-D, =0. (D.1b)

i 1

The appropriate difference equation to determine Si (and hence Di) is

determined from (5.3.la). Using a "one-sided' difference approximation for
9Z .
(ggli, viz.
9Z 1
[Bx]i “ 38 Ciene1 %140

then (5.3.la) gives
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ByPy = = Y5 (%5 41785 4n) K0k

or

1
sy =g - v (3
1

+n)+K1:o } (D.1lc)

i+n+l_zi X

while Di may be determined from (D.1lb).

Group 4

01 01+1

i
TTT 7177

1 have been calculated as part of the iterative scheme.

Again we have that Si-Di = 0. Now a value for Di may be determined from

values for Zi' Zi+

(5.3.3b). PFurther, taking a similar one-sided difference approximation for

{%g]i' then (5.3.1af gives

1
5, = B {- yi(zi+l-zi)+xrox} . {D.2a)

Defining at this point the 'end-value" e = Si—Di, then if e = 0, the bound~-

ary condition (D.1lb) is satisfied.

I—

Group 5 0l+l

{

01+n+1

i

Values for Zi are starting values. Here (4.1.%a) gives

+1° Zi+n+l
P, =0 (D.3a)

so (Pi+0.) = =(P;~Q,), i.e.

S.+D. = 0. {D.3b)
1 1

Using a one-sided difference approximaticn for [%%ﬂi, viz.
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3z 1
[By]i ~ %23 %3417 %5404’

then (5.3.1b) gives

S, = ;—{— Y. (2., -2, )+Kt__} (D.3c)

while Di may be determined from (D.3b).

Group 3

10 H;
o

i"h-.

X
_—
i+n0 Vs
P

Values for Zi' Z,

i+n have been previously calculated. A&Again Si+Di = 0,

Now (5.3.1b) gives

i
S; = Ei- {- Yi(zi'zi+n)+KToy} (D.4)

while a value for Di may be determined from (5.3.3b). The end value is

defined by e = S,4D, .
i7i

Group 7

Here we have simply that Pi =9

l
o
[ dd
.
o

S, =D, =0, (D.5)
The condition (D.5) is also satisfied at stream points belonging to groups

8, 9 and 13. For stream points belonging to groups 10, 11, 12 and 14 it is

required that (D.5) be satisfied. In each of these cases a value for Di is

calculable from (5.3.3c); we may thus define the end value e = Di for such

points.
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APPENDIX E

THE COMBINED LAKE ALEXANDRINA - LAKE ALBERT MODEL

1. Details of the Narrung Channel Array

Equations (5.2.7a), (5.2.7b) are used in the calculation of elevations
and transports for the arraypoints of Fig. 5.14b., (Knowledge of the channel
transport at grid point 1 and elevation at grid point 2 is necessary to
initiate the process; this is obtained from the matching conditions with

the two-dimensional model).

For simplicity, transports at grid points 1, 3 have a north-south
alignment, i.e. parallel to the verticals of the two-dimensional array; at
grid point 5, the alignment is south-east; for grid points 7, 92,11, 13 it is
west-east (parallel to the horizontals of the two-dimensional array); while
for the remaining grid points of the one-dimensional array, transports again

have a south-east alignment.

Only the component of wind stress amplitude parallel to the alignment

of E , 1 =1, 23, (2) is used in the calculation of Zi+ from (5.2.7b).

i+2 3
Thus the one-dimensional scheme of Section 5.2 is modified here to the
extent that wind stress inhomogeneities are incorporated into the difference
equations. We, therefore, have accounted for the channel curvature in a

simple yet physically realistic manner.

2, Matching Conditions

We are required to match the two~dimensional flows in the separate lakes

onto the one-~dimensional channel flow.
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Part of the matching condition requires continuity of flow at the
junctions between the separate lakes and the channel. The first and last,
channel points are assumed to coincide with stream points 129 and 162 res-
pectively of the two-dimensional array. At grid point 129, a value for the
quantity Di is calculated from (5.3.5b) and then Si = —Di gives the direc-
tion cf the computed flow as parallel to the verticals of the two-dimensional
array. The computed transport amplitude at this point then becomes equiva-
lent to the channel flow amplitude £;, when multiplied by the width of the

channel at this point.

Elevaticn amplitudes must also be matched across the junction. At the
Lake Alexandrina junction, this has been done by supposing that the mean of
elevation amplitude values for grid points 129, 130 of the two-dimensional
array is equivalent to the elevation amplitude at a distance dc (dc = chan-
nel grid length) north of channel point 1. This value is then used, in
conjunction with the known value for §; to calculate a value for Z,; using

(5.2.7b).

Matching procedures at the Lake Albert end of the channel are similar.
Knowledge of the channel flow at grid point 25 enables a calculation to be
made of the quantities Si, Di at grid point 162 of the two-dimensional array.
The flow at this point always has a scuth-east alignment. An elevation
amplitude value for grid point 178 is calculated on the assumption of its
equivalence with the elevation at a distance dc south-east of channel grid
point 25 as calculated from (5.2.7b). ¥Fig. El illustrates the main features
of these matching conditions. Though the matching of elevations is only

approximate it has been shown to give quite satisfactory results.
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Essentially, the iterative scheme for the combined model operates as
for the two-dimensional scheme of Section 5.2. However, the fact that the
lakes are connected means that at stream point 129 and elevation point 178

we no longer need to specify end and starting values respectively.

In order to consider the unconnected behaviour of the model Lakes
Alexandrina and Albert, we may simply close off the channel ends. Thus
stream point 129 of th=z two-dimensional array becomes a group 4 point,
elevation point 178 becomes a group 16 point and stream points 162, 163
both become group 3 points. (In the connected model, velocities at the
latter point are set to zero). We then proceed through the iterative

scheme of Section 5.3 for each basin separately.
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FIGURE E1 : MATCHING CONDITIONS AT THE TWO ENDS
OF THE NARRUNG CHANNEL .





