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SUMMARY |

The large-scale structure which emerges spontaneously from random
periodic vorticity layers is studied by a novel discrete vortex element
method.

The validity of the point-vortex approximation is examined in terms
of its ability to represent the integral invariants of two-dimensional
continuous vorticity distributions. The method is retained to study the
large-scale motions in rotational flows where the exact behaviour of
individual vortices is largely irrelevant ('"cloud discretization" approach).
A new, simple and computationally economical point-vortex tracing scheme
is presented. The properties of the "centre~to-centre' method, which
preservesnotably the invariance\of the energy of the vortex system, are
established in reference to two exact test flows: the disk of uniform
vorticity (Rankine's vortex) and the roll up of a vortex sheet (Westwater's
problem).

With this understanding of the numerical procedure, the method is
applied to the study of periodic vorticity layers. A vortex sheet is
modelled by a "thick" line of 750 vortices repeated periodically to infinity
to avoid boundary conditions. Layers with uniform and random circulation
per unit length are considered; in both flow families, the finite thickness
of the layer is obtained by a random lateral positioning of the vortices.
Computed flows show in all cases the spontaneous emergence of large vortical
structures and their subsequent amalgamation interactions. The relevance
of these large-scale, strictly two-dimensional unsteady motions as a model
of the coherent structure in the turbulent mixing layer is discussed.

Uniform layers are found to exhibit a strong similitude (growth rates,
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similarity characteristics of the structure) with laboratory flows; the
behaviour of random layers is reminiscent of that of externally forced
mixing layers. The model establishes the importance of the initial
conditions in determining the flow behaviour over very large times. The
sensitivity of the structures to molecular and "turbular" diffusion (i.e.
that which arises from a secondary small-scale motion acting as an enhanced
viscosity) is investigated and appears to be remarkably weak. Low Reynolds
number layers are found to grow by viscous diffusion and not by interactionms
between vorticity structures.

The point-vortex model is extended to the general case of non
circulation-preserving motions. The effects of (large) density ratios
upon the large-scale structure are investigated for a simple flow geometry
(i.e. for a sinusoidal vorticit§ layer). The computations, based on an
original discretized form of Bjerknes theorem, fully demonstrate the
distortion of the structure in non-uniform incompressible layers. The

response of the layer to the action of gravity (Froude number effects) is

briefly illustrated by some additional examples.
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GENERAL INTRODUCTION

The properties and effects of the large-scale organized motions
observed in various turbulent shear flows have recently attracted a great
deal of interest in fundamental fluid mechanics research. The existence
of identifiable large structures, the interactions of which appear to
control much of the development of the flow, suggests a refreshed attitude
toward turbulence problems. A new point of view is currently emerging,
which favors a quasi-deterministic description of real turbulence, and
suggests that knowledge of the properties of the organized motions is a
prerequisite to the understanding of the complex physical processes (growth,
transport, entrainment, mixing, noise generation, etc...) in turbulent
flows (Roshko, 1976; Kovasznay,\1977).

There is increasingly convincing evidence that characteristic
organized structures exist in turbulent flows as diverse as jets (Moore,
1977), wakes (Papailiou & Lykoudis, 1974) and boundary layers (Laufer,
1975). It is in plane turbulent mixing layers, however, that the visual
identification of a large-scale structure has been the most striking (Brown
& Roshko, 1971; 1974). The mixing layer structure appears as a train of
"breaking waves" or '"rollers" which develop from the Kelvin-Helmholtz
instability of the free shear layer that separates from the splitter
plate; it is essentially two-dimensional (Browand, 1978; Wygnanski et al,
1978).

That the coherent structure plays a central role in the mechanics
of the mixing layer is now firmly established (Brown & Roshko, 1974; Bernal
et al, 1979; Dimotakis & Brown, 1976). In particular, the response to

external forcing (Oster et al, 1978), the sensitivity to initial conditionms
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(Batt, 1975), the role of feedback (Dimotakis & Brown, 1976), the strong
effect of density ratio on entrainment (Brown, 1974) in mixing layers,

and more general acoustic coupling and resonances in other turbulent flows
appear all explicable in terms of the large structure and its dynamics.
Salient features of these structures are their very weak sensitivity to
viscous action and their marked two~dimensional nature; in this respect,
their response to three-dimensional disturbances remains poorly understood
(Roshko, 1976).

There is therefore a strong suggestion that many features of
turbulent mixing layers arise from the properties of a rotational,
essentially two-dimensional inviscid flow. It is interesting to compare
these features with those computed in a model which follows, by a strictly
two—dimensional calculation, thé development of the large-scale motion
associated with an initial distribution of vorticity. The present work is
primarily concerned with the development of such a model and its application
to several flows in the general context of their possible relevance to the
turbulent mixing layer.

In all these problems, there is no pretension that an unsteady,
two—dimensional calculation could do more than shed light on the dynamics
of the mixing layer large-scale structure. One of the distinctive properties
of turbulent flows is their ability, under suitable conditions, in increasing
their total vorticity contents by extension of their vortex lines. This
mechanism of vortex-stretching is characteristic of three-dimensional
kinematics and has no equivalent in two dimensions. A second intrinsic
characteristic of real turbulence is the existence, at the smallest scales
of motion, of a viscous dissipation which operates at a rate independent of

viscosity (as v > 0). In two-dimensional models, the dissipation rate
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vanishes as the Reynolds number tends to infinity, and the turbulent
dissipation of energy is grossly underestimated (Saffman, 1977). Although
clearly not modelling turbulence, two-dimensional calculations appear
nevertheless useful to appreciate the importance of physical mechanisms

in real flows.

Problems that relate to two-dimensional rotational motions of an
inviscid fluid are conveniently tackled by the method of discrete vortex
elements. This method has been applied, with various degrees of success,
to a wide range of problems (Clements & Maull, 1975). Simplicity,
flexibility and ability in providing direct visualizations of the vorticity
field appeared as immediate advantages of point-vortex calculations.
Indiscriminate use of the point-vortex approximation, which suffers from
some drawbacks (Baker & Saffmén, 1979), was avoided by applying it in an
original form. An important part of this work is consequently dedicated
to the presentation of a novel point-vortex tracing scheme and a full
discussion of its properties. The new algorithm is shown to be well suited
for economically computing the evolution of clouds of vortices. The
proposed numerical procedure, which provides an accurate description of
the large scales of the motion, is confidently applied to the study of
various hydrodynamical problems.

The material presented in this thesis is distributed in four
chapters which are organized as follows.

Various aspects of the mathematical foundations of the point-vortex
approximation are presented in the first chapter. The concept of vortex
filament leads naturally, in the study of vorticity kinematics, to the
notion of point-vortex; the velocity field associated with a point-vortex
is easily derived from the law of Biot-Savart (Section I.2). The existence

of kinematical invariants of two-dimensional vorticity fields has been
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valuable in developing an accurate vortex—tracing scheme; these invariants
are examined in Section I.3. Most equations of interest in point-vortex
computations are elegantly derived with the formalism of complex variables;
they are summarized in Section I.4 for convenient reference.

The bulk of the second chapter is allocated to the presentation
of a new point-vortex tracing scheme, the centre-to-centre (CTC) method.
The reasons that led to the development of the CTC tracing scheme are
exposed in Section II.2, which details the salient features of the point-
vortex approximation. Arguments that advocate the suitability of the
approximation for depicting the large-—scale behaviour of the rotational
region are given in Section II.3. The CTIC algorithm is then presented
(Section II.4) and its properties established in the rest of the chapter
on the basis of three known reference problems: the motion of a disk of
uniform vorticity (Section II.5), the viscous decay of a vorticity disk
(Section II.6) and the rolling up of a vortex sheet (Section II.7).

The core of the third chapter is the general study of the large-
scale motions of two-dimensional, uniform-density vorticity layers. Various
CTC computations are described and their results discussed with in mind,
their possible relevance as a model of the turbulent mixing layer, the
essential features of which are recalled in Section III.2. The model
follows the temporal evolution of periodic vorticity layers. The relation-
ship between flows which grow in time and those which spread in space, the
type of initial conditions wused and the choice of parameter values for
accurate CTC calculations are considered in Section III.3; this section
closes on an ultimate accuracy check of the numerical procedure by applying
it to Acton's flow, the thick sinusoidal vortex sheet (Acton, 1976). All
results pertaining to inviscid layers are collected in Section III.4. Flow

visualizations are presented which show the spontaneous emergence of a



large-scale structure from an initially random layer of point-vortices

(§ III.4.1); the analysis of the growth histories of the layers reveals
interesting features and suggests sfrong similitudes between computed and
experimental flows (§ IIL.4.2); the coherence and the similarity properties
of the structures are investigated in terms of the autocorrelation functions
of the fluctuating velocity field (§ III.4.3). The possibility of including
viscous effects exists in point-vortex models; it relies on the simulation
of diffusion by the addition of a Gaussian random walk to the hydrodynamic
motion of the vortices (Milinazzo & Saffman, 1977). Section III.5 explores
the response of the large structure to molecular and "turbular" diffusion
effects (i.e. one which arises from a secondary small-scale motion that

acts like an enhanced viscosity). An example of the evolution of a very
low Reynolds number layer is also presented.

Chapter four is essentially concerned with the extension of the
point-vortex approximation to non circulation-preserving flows, in
connection with the modelling of mixing layers between fluids of different
densities. The circulation around a material contour convected by the
flow may be modified in the presence of density gradients; the mechanism
responsible for these changes is analyzed in Section IV.2., It is shown in
Section IV.3 that the point-vortex approximation may be generalized to non
circulation-preserving flows of an incompressible fluid; a novel technique
is presented which allows to compute the rate of change of the strength of
point-vortices that belong to a cloud. The generalized point-vortex method
is then applied to the study of large density ratios on the large-scale
structure of a thick sinusoidal vorticity layer (Section IV.4); the
correspondence between temporal and spatial problems is reexamined in some
detail. Mention is made of the effects of Froude number on the development

of the structure.
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CHAPTER I SRRV

INTRODUCING THE THEORY OF POINT VORTICES

I.1 INTRODUCTION

This chapter summarizes the basic ideas that constitute the
theoretical foundation of the point-vortex approximation employed in
this thesis to compute (two-dimensional) free rotational flows at large
Reynolds numbers,

The notion of a point-vortex arises naturally in the study of
two—dimensional, rotational flow fields of an incompressible fluid.
Section I.2 sketches the logical connection between such flows and the
"generalized law of Biot-Savart', which governs the kinematics of three-
dimensional vorticity distributions. The derivation given here presents
illustrative arguments that should not be regarded as a substitute for
a complete mathematical treatment such as may be found in Batchelor
(1967) and various other texts.

The existence of integral invariants is an important feature of
two—dimensional vorticity distributions in flow fields extending to
infinity; this property is equally shared by analogous point-vortex
systems. The expression and significance of these (five) kinematical
invariants are examined in section I.3, for both the continuous and the
discrete cases. Further aspects of these invariance properties are
outlined in Appendix A.

The theory of point—vortices is elegantly cas£ using the
formalism of complex variables. This approach clarifies the mathematical

nature of point-vortices, which are in this context introduced as



allowable singularities in an otherwise analytic velocity field. A
number of results pertaining to the complex theory of point-vortices
are given in section I.4 to provide tﬁe convenience of a succinct
mathematical summary of all equations fundamental to the point-vortex
computation method. This section is essentially inspired from

Friedrichs (1966).

I.2 ROTATIONAL FLOW FIELDS OF INCOMPRESSIBLE FLUIDS

An important result in the analysis of rotational motions of a
uniform, incompressible fluid is the 'generalized Biot-Savart law"

[egp(@ x e (Q]
u () = u (@) - 0w (@ v (Q [1.1]

e

which gives the velocity field u (P) at any point P in the fluid

associated with a vorticy distribution w = V x u specified over part

~

- or the whole - of the domain V occupied by the fluid. The notation

e is used to indicate unit vectors, i.e.

w r(P) - r(Q)
So T I ) TRy
with Rpq = |§(P) - E(Q)l

The vector field Upo is simultaneously irrotational and solenoidal and
is chosen so that the conditions imposed on the flow at the boundaries
are satisfied by the resultant velocity field u . The assumption is

made that the flow field extends to infinity.



In flow fields without interior boundaries - of particular interest

in this work - expression [1l.1] reduces to

1 [gQP(Q) x e (Q)]

u(P) = - ; w(Q) 4v(Q) [1.2]
Rpq
\

The velocity at any point P in the fluid appears as the superposition

of contributions from volume elements &V (Q), each amounting to

1

-~

Su (P) = w (Q) 8V (Q) (e x eqp) [1.3]

4ﬂRPQ

as illustrated in Figure 1. The magnitude of this contribution is

usually written as

tSu‘.0 (p) = Eﬁglz—izsgl sin yx [1.4]

4ﬂRPQ

where X is the angle between the unit direction vectors ?w(Q) and
eqr (@)

The vector lines of w that pass through a closed contour £ drawn
in the fluid define a vortex—tube. It is readily shown, using Stokes
theorem, that the flux of vorticity through a cross-section of the tube
has a value independent of the location of the section along the tube;

the characteristic quantity

K = J w . dA = J u.ds [1.5]
A 2

defines accordingly the strength (circulation) of the vortex tube. It



Figure 1. Geometry and notations for the BIOT-SAVART law.

Figure 2. Cauchy's
theorem for analytic
functions: integration

paths.



is clear that the cross—section of a tube cannot contract to zero without
the vorticity becoming infinite; vortex-tubes must therefore form finite
closed loops, end or begin on boundaries, or extend to infinity.

A vortex-filament of strength k is a vortex—tube of infinitesimal
cross section; it may be visualized as a set of contiguous cylindrical

vorticity elements, of length 6L and section o with

L (@ & (@ =w (@ o (@ 6L (@

k L (Q) [1.6]

aligned along a given curve L drawn in the fluid. The velocity field

"induced" by a vortex-filament is given by equation

dL(Q) * e p (Q)
_ K % -QP
W ® =5 5 L1.7]

L Rpq

which is a particular form of [1.2].,

Two—dimensional flow fields correspond to configurations where
all vortex—tubes are parallel cylinders extending to infinity; the
plane of flow is clearly normal to the direction of their generating
lines.

Denoting SA the element of area in the plane of flow, and 6z the

element of length normal to that plane, one transforms [1.2] by writing

6V (Q) = A (Q sz (Q)

and carrying out the integration with respect to the variable z.

The velocity components are now given by the expressions



2

R

u(®) = - o I Ly® - y@1 () aa (@)
A PQ

[1.8]

and v (P)

2

R

N J [x(®) = x(@1 (o) daa (Q -
A PQ

The velocity field is known to be solenoidal and hence is derivable from

a stream function which has the form

= 2
v @) = J w(Q) log Ryo dA(Q) [1.9]
A

in view of [1.8].
The two-dimensional velocity field induced by an infinite,

rectilinear vortex-filament is obtained from [1.7]

u (P) = - _;_w [y(P)z— y(Q)]
*rq
[1.10]
v (P) = %T_ [x(P) ;X(Q)]
Rpq

The point Q represents the trace of the filament in the plane of analysis,
and represents a point-vortex of strength «. The corresponding stream

function is

K

2
v (P) = -z5 Tlog Ry . [1.11]



The above results may be obtained if a slightly different point
of view is adopted. The point-vortex approximation (PVA) generates a
discretized form of equations [1.8], [1.9] according to the following
procedure. The vortical area A is broken up into a number NV of small
elements S6A that satisfy the requirement.
NV

A= 84 (Q) ,

Q, being the "centre" of element "a The assumption that each element

SA (Qu) contracts into a point-vortex of strength

k (Q) = J w (Q) 8A(Q) = « [1.12]
SA .
leads to the fundamental formulae
1 NV 2
v (B) = - = 2 Ky 108 Bpo [1.13]
1 W 2
u (p) = -2—"2 Ly ® -y /R,
[ 1.14]
1 NV 2
V@) =gk L ®) - xRy,
with Q, = (x5 v)
2 2 2
and Rp, =[x () = x ] +1y (® -y .

It is interesting to point out that the vorticity concept, which
is central to the theory of Zncompressible fluid motion, is complemented
by the notion of expansion in the general case of compressible fluid
motion.



The '"Cauchy-Stokes decomposition theorem'" asserts that "an

arbitrary instantaneous state of motion may be resolved at each point into

a uniform translation, a dilatation along three mutually orthogonal axes

and a rigid rotation of these axes' (Truesdell, 1954). This theorem shows
clearly that the vorticity @ = V X u -~ representative of the fluid rotation -
and the expansion 6 = V ¢ u - giving the fractional rate of change in the
volume of a material element - appear naturally as dual variables in the
analysis of the kinematics of continuous media.

The essential significance of the distributions of vorticity and
expansion may be otherwise appreciated by considering the Stokes potentials
of the velocity field. It is a well-known result of vector analysis that
any vector field ¢, enjoying suitable differentiability properties, may be
globally represented as the sum of an irrotational field and a solenoidal
field

The scalar function ¢ and the vector field A - known as the Stokes
potentials of the field ¢ - are not uniquely determined: the addition of a
harmonic function ¢ to the scalar potential ¢ and that of a gradient term
Va to the vector potential A leave the above representation unaltered.

One possible pair of potentials is given by the expressions

1 v-9 1 (v x 2
] =—H -—r——dV H A=4_1]' ——r——dV.
v \

The double indetermination can be raised by selecting a so that
is solenoidal, whilst choosing ¢ so that boundary conditions imposed on
are satisfied.,

i P

One can therefore broadly assert that in general, the velocity
field may be represented under the form

4nu(P)=—vJ2_<.@_é.V_<_9_>_ o J 2(QaV(@
- v o

RPQ RPQ

(of which [1.1] is a particular example).

Vortices and sources are singularities of the vorticity field and
expansion field respectively; any (instantaneous) motion may be induced
by an unstable configuration of sources and vortices. The source-vortex
analogy breaks down however when dynamical considerations are included in
the analysis: vortices are essentially Lagrangian in character, while
sources are an Eulerian feature of the flow. The difficulties met in



attempts to generalize the point-vortex approximation to include
compressibility effects stem essentially from this distinguishing
property, which leads to complex evolution equations for the coupled
vorticity and expansion distributionms.

I.3 INTEGRAL INVARIANTS OF TWO-DIMENSIONAL VORTICITY DISTRIBUTIONS

All results presented in Section I.l1 are essentially kinematical
in nature: they refer to instantaneous configurations of the velocity
field and apply at any given instant, irrespective of the dynamical
aspects of the flow. Dynamical considerations are, however, necessary
to establish that the temporal evolution of (two—dimensional) vorticity
distributions takes place in a manner which conserves several integral
quantities. These invariants and their physical significance are
examined below.

Kelvin's circulation theorem asserts that the circulation
r = % u . dL round a material line in an inviscid, incompressible fluid

L~ ~

of uniform density is invariant:

=9 _ o, [1.15]

provided the body force is derivable from a single-valued potential.
A direct consequence of this theorem for the case of a two-
dimensional vorticity distribution extending over a bounded region A is

that the total circulation

r = } u . dL = J w dA [1.16]

around a closed contour fully containing A is invariant. This invariance



condition is locally expressed as

g_t (w6A) = 0 [1.17]

for a material element of area §A.

Consider now the time rate of change of the expression

M = J X w dA [1.18]
A

which is the first moment of the vorticity distribution with respect to

the y axis.

One computes

J u (P) w (P)dA(P) in view of [1.17].
A

Introducing the expression of u (P) from equation [ 1.8] one obtains

J dA(P) J W(Qu®y((E) = u@u@yQ@) g4,

2

A A Rpq

an expression which vanishes identically. The quantity My is therefore

an invariant of the motion; it is obvious that the moment

MX=J y w dA [1.19]
A

is also invariant.
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The position of the centre of vorticity of the distribution is

defined in terms of T, Mx and My by the relations

M X w dA
X=...z. = -i—-é—-——-—-—-
r (
w dA
‘A
(y o da [1.20]
M
Y=T‘-§= .JA
w dA
A

provided that T differs from zero. One can also consider that the
vorticity centre is situated at infinity when the total circulation
vanishes.

It is easy to show that the rate of change of the quantity
2 "2
J = J (x +y) wdA [1.21]
A
is zero. Indeed, one has, using [1.17],

3 = f 2(xu + yv)dA
A

and substitution of the explicit expressions of u(P) and v(P) (equations

[1.8]) into the above identity yields

(2R
[l
[

” w(P)w@[x(P)y(Q) - y(@)x(Q)IdA(P) dA(Q) ,
A

and finally J = 0.

The invariant quantity J 1is identified with the "moment of inertia'" of
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the vorticity distribution. It is convenient to introduce a '"radius of

gyration" (or "dispersion length") I by the relationship

[ [ (x-X)2+(y-Y)%]w dA

o= A [1.22]
J wdA
A
i.e. 1e %— x40y,

The integral giving the kinetic energy of the fluid occupying the
whole plane is not finite. It is however possible to derive an invariant
associated with the kinetic energy by examining the manner in which the
energy integral over a bounded region § diverges when letting £ tend
to infinity. Consider the kinetic energy of the fluid (*) within the
region §, taken as a circle of large radius R totally covering the

vorticity domain A:

2 2
T=1% J (u +v )do .
Q

One transforms T as follows with the use of Stokes theorem:

it
N
> —

pw dA - % J [ g—x(vw) - —g?(uq») ] da
Q

Yw dA - % § v u.dg , [1.23]

af

i
hS
B

(*) Assuming unit density for simplicity, i.e. using the kinematical
y y g
description.
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where 292 1is the circumference of radius R limiting the region .
Letting R tend to infinity, one computes the contribution from the

line integral as

2m
§ Y u.ds J q)(R)ue Rd©
0

27

_ T il i

- Toos (L) gfy me
(0]

) (R—)oo).

bl

112
T log (

The asymptotic form of expression [1.23] for R + ® may be written

r2 1y _,
T+H ].Og (i)—ﬁjww dA ., [1.24]
A

The kinetic energy of the fluid is conserved in the absence of dissipation;
the left hand side of [1.24] is therefore independent of time, a property

which establishes the invariance of the quantity

H=% J Yw dA . [1.25])
A

An alternative expression for H - called the Hamiltonian of the
vorticity distribution, for reasons exposed in section I.4 - is obtained

by substitution of equation [1.9] into equation [1.25], yielding

H=- % J J w(P)w(Q) log %Q dA(P)dA(Q) . (*) [1.26]
A A

(*) His also called the "Kirchhoff function" of the system of vortices;
both names will be used in this work.
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There are several ways of establishing the expressions for the
invariant quantities associated with the motion of a collection of
isolated point-vortices. Inspection of the definition integrals for
'y X, Y and I% suggests, in view of relation [1.12], that the discrete

counterparts of expressions [1.16], [1.20] and [1.22] are respectively

r =z K [1.27]

>
L]
|
~
o]
»
Q
~
=

[1.28]

=
n
™

Kaya/r

2 k[ (xa—X)z + (ya—Y)Z] . [1.29]

rr?

The expression for the discrete Hamiltonian must be determined
somewhat more carefully due to the singular character of the kinetic
energy of a point-vortex. It is necessary to consider, as for the
continuous case, the kinetic energy T of the fluid within a circle of
large radius R, and outside small circles of radius e centered on each
point-vortex. One shows that the following relationship holds asymptoti-

cally as R >« and ¢ = O:

NV NV 2

1 2 il
T + i ( z ke ) log € - Z?'( z Ka) log R
o o
> - i%- T I Kep log RaB [ 1.30]
o B#o

This identity, analogous to equation [ 1.24], establishes on similar
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arguments the invariance property of

1 .
H=-v— I I k«x, logR [1.31]
4 o Bia a B oB
(R represents the distance between vortex "o' and vortex "g'").
o P

Table 1 summarizes the expressions for the five invariants for continuous
vorticity distributions and systems of point-vortices.

A more rigorous derivation of the invariance of expressions [1.27]
to [ 1.31] is presented in paragraph I.4.5, based on some fundamental
properties of the Hamiltonian of systems of point-vortices. Another
aspect of the invariance properties of continuous distributions of
vorticity is proposed in Appendix A, which examines them in the Fourier

transform space.

I.4 COMPLEX THEORY OF POINT VORTICES

I.4.1 The concept of the point vortex

Consider the two-dimensional motion of an incompressible fluid,
having an everywhere irrotational velocity field, except possibly on
certain lines or at certain points where singularities, the character of
which is to be specified, are allowed. The velocity field u = (u,v) can
be described simultaneously in terms of a stream function ¢ - effectively
the only non-zero component of a potential vector ¢ - and a velocity

~

potential ¢, according to the relations

L =
1l
<

Xy =V x (0,0,y)

-~ -~

u = Vo [1.32]



TABLE 1: Invariants of two-dimensional vorticity fields.

CONTINUOUS DISTRIBUTIONS l POINT VORTEX DISTRIBUTIONS
CIRCULATION
T)
I' = J wdA '=3¥ k
(o]
o
A
VORTICITY
CENTRE (X,Y)
=1 21
X—erdi X_I‘iKozxcL
A
=1 !
Y_T JwydA Y TzKocya
A
RADIUS OF
GYRATION (I)
g o L) 2 -1 ) -2
I 1,J[(xx) +(y-Y)“l wdA I I,;[(xm X)“+(y ~Y) Tk
A
HAMILTONIAN

(H)

N 2 sy = - L
H = 8 J J waQ log RPQ dAPdAQ H T E KaKB log RaB
AA L
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The scalar functions ¢ and Y are related by equations of the Cauchy-

Riemann type:

’ [1.33]

allowing the analysis to be pursued in terms of the analytic function

x(z) = ¢ + iy [1.34]

of the complex variable z = x + iy; Xx(z) is the complex potential of the

flow. The complex velocity field
w(z) = u + iv [1.35]
is obtained by differentiating x(z) with respect to its argument:

T =8 - By == B 2 f ) [1.36]

(starred quantities represent complex conjugates). Cauchy's theorem for

analytic functions states that

§ f(z)dz =0
C

for any function £(z) analytic in a domain & and any simple closed
contour C completely within &. The complex velocity w(z) is clearly
not analytic in a domain & that contains bodies (see Figure 2). The

complex circulation

Z= § w* (z)dz [1.37]
C

around any closed curve encircling a body does not vanish and one has

generally
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Z = é w*(z)dz = ¢ + 1A ,
C
where
K = § (udx + vdy) = é d¢
C C
and A= § (udy - vdx) = § dy .
C C

The complex circulation reduces to its real part if no sources (sinks) are
present within the region limited by the contour C; it will be assumed
hereafter that this condition is realized (i.e. A = 0).

Suppose now that the cross-section of the body is made to shrink
to an infinitesimally small circle, all other flow conditions remaining

unaltered. The body becomes a punctual singularity of the flow field,

such that

Z = é w(z)dz = [1.38]
C

for any closed contour drawn around it: the singularity defined by this
limit process is a point-vortex of strength k., Any veloéity field of

the form

w*(2) = mm—m——  + WE(Z) [1.39]
(k real)
where wﬁ(z) is analytic at z = g, comprises a point-vortex of strength
k at z = ¢, as shown by a direct application of the residue theorem when

evaluating the corresponding circulation around a curve enclosing the point

z = . The complex potential associated with [ 1.39] has the form

x(2) = 53— log(z-2) + xz(2) , [1.40]
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where xR(z) is regular at z = Z.

The point-vortex has been introduced as the trace in the plane of
analysis of a thin, infinite, straight cylindrical body; it can also be
visualized as the trace of a thin, infinite straight cylinder of rotating
fluid. 1In the former case, the filament is capable of sustaining the
force exerted by the surrounding fluid, and one speaks of a bound vortex;
in the latter case, the filament cannot sustain this force, and behaves
as a free vortex. Point-vortices are usually understood to represent free

vortices.

I.4.2 The motion of point-vortices

The condition that a point-vortex cannot sustain any force (exerted
on it by the surrounding fluid) leads directly to the determination of its
equation of motion. The force experienced by a body immersed in an

inviscid fluid of negligible weight is known to be

F = % [q2n - 2u(u.n)lds
C

where n is the outward normal to the contour enclosing the body, and
%o, . . . ] 5

q = (u.u) is the velocity magnitude. This result (a two-dimensional

form of one of Blasius' theorems) is recast in terms of complex quantities

as

F. +iF =§w2dz* [1.41]

(cf. Lamb, 1932, art. 726). Using expression [1.39] for the velocity

field, one rewrites [1.41] as

i =i S
Fx -1 Fy =5y § =) dz
c
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since the only contribution arises from the cross-product term. Cauchy's

integral formula yields immediately

Fx+ 1Fy=-1K wR(C), [1.42]

which represents the force on a point-vortex at rest at z = Z, in a fluid
moving with a velocity w(z).

The formula remains valid in a frame of reference attached to the
moving vortex, if the relative flow velocity is adequately introduced.

Calling Z the vortex velocity, one obtains

Fo+iF == 1 klwp(2) - 21,

A free vortex, by definition unable to sustain any force, must

necessarily move according to the differential equation

L o= w(D) [1.43]

which is the law of motion required. It is remarkable to note that vortex

motion obeys a first-order differential equation.

I.4,3 The isolated cloud of point-vortices

Consider the situation where NV point-vortices are present in a
fluid filling the whole plane and at rest at infinity. The flow field is
completely determined by specifying the locations Z, and the strengths
K, of all vortices (a = 1,2,...,NV). The complex potential describing

the cloud of vortices is obtained by adding elementary potentials of the

form [ 1.40] , leading to

x(z) = 7%?' Kg 108(Z‘CB) [ 1.44]

z
B
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(the upper summation limit NV and the time dependence Ee(t) being
implied).

The corresponding velocity field is clearly

K ooN o 1 _
w (2) i ZKB/(Z .CB) ‘ [1.45]

The equation of motion of vortex o (a = 1,2,...,NV) is readily
obtained by extracting the regular part of [1.45] at z = ¢ 3

0,

according to [1.43] one has therefore

> 1 *_ rE
g, = wg(c) = §;I8(§) KB/(Cd-CB) . [1.46]

The notation I will be used to indicate a sum over all elements of the
(a)
cloud, excepting element o that must be omitted.
The equation of motion for vortex a can be rewritten in terms

of real variables in the form

1
X ==-+— Ik,Y ./R2
o 27 (o) B "aB’ 0B
[1.47)
. 1 2
y. = <= & x,X . /R
o 27 () B "aB’ TaB
with
S T X 7 i Vo
Xa =X - xB
* [1.48]

and 2
RaB

I
>
QN
™
+
=<
N
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I.4.4 ThHe periodic cloud of point-vortices

Consider now the particular spatial arrangement where equistrength
point-vortices are aligned along the x-axis at the positions X = * na
(n = 0,1,2,...) (a real). The complex potential for this row of point-

vortices is given by the expression

—EF {log z + log(z-a) + log(z+a) + log(z-2a) + log(z+2a)...}

x(2)

- ® 8
E log {z + ngl (z%-n%a%)}

log sin %? . - [1.49]

The point vortex corresponding to n = O is the representative
element of the row; it is convenient to say that a "row-vortex" of
strength «k and period a 1is located at z = r whenever the complex
potential takes the form

o 1K in & (2=
x(z) = 5 log sin a (z-7) . [ 1.50]

Direct differentiation leads to the expression for the velocity field

W (z) = :;_—: cotg L (z-1) , [1.51]

which is singular at z = g. It is clear that a row-vortex does not move
in its own induced velocity field.

Far from the row, the velocity field is found to behave as

. - K
lim u=+% — =% u
2a o

yrie
[1.52]

lim v = 0.
yrteo
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The flow associated with a ¢loud of NV row-vortices located at

CB = (xB,yB) (B =1,2,...,NV) 1is described by the complex potential

,.m
Kg log sin Z-(z—cB) 4 [1.53]

The velocity field induced by the vortices at any regular point of the
plane is given by

W (2) =-§Z g KB cotg 2-(2—;8) . [1.54]

Far away from the vortices, one has

lim -5 L - F L s
yrteo O T ¥ 7a 2 Kg =% 7z =% %
‘ [1.55]
lim v =0 .
yrie

The velocity of row-vortex o corresponds to the regular part of
expression [1.54] at the vortex location z = Ly = (xa,ya). Reverting to

real variables, the equations of motion of vortex o are written:

1 ] 2w
X, = 5o I K 31nh(~:r qu)/D

o (@ ° o8
[1.56]
. 1 27
y === I «x sin( — X )/D
o 2a (@) B a “aB af
with
D _ =D =cosh(-2—1-r- Yg)—cos(-—z—lxs) [1.57]
o8 [ a o a “af ° *

I.4.5 Hamiltonian formulation

The motion of a cloud of NV point-vortices is governed by a set

of 2 NV differential equations of the first order (see equations [1.47]).
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Consider the function H = H(ca,c;) given by the expression
H= z
>

* *
= KaXg log (CG—CB)(CQ-CB) [1.58]

1
2w

where I denotes a double summation, over all pairs (a,B), each pair
a>pB
being taken once only and the pair o = B being excluded

(z =% ).
a>B o B(a)

Kirchhoff noted that the equations of motion [ 1.47] can be concisely

written in terms of H under the form

s 3H
K Gy = 21E . [1.59]

This equation is readily expressed in terms of real variables;

recalling that

=1 * -_ 1 _F
X, = é(ca+ca) Yo = 37 (g,7%)

(o

one obtains the equivalent differential system

[1.60]

la)
Qe

il

+

The form of these equations is identical to that of the canonical
equations of motion in the theory of Hamiltonian mechanics. The quantities
xa/E; and ya/E; can be identified respectively as the generalized
coordinates and momenta of the system of vortices. The Kirchhoff function
H 1is the Hamiltonian of the system and is defined by expression [ 1.58] for
the case of the isolated cloud of point-vortices. It is easily shown that
the Hamiltonian for a cloud of row-vortices is defined by the equivalent

‘expressions
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-1 . T . . * _ %
H=% GEB KaKp loglsin N (ca ;B) sin - (Ca Esﬂ

=% I k«, loglsin? X _ + sinh? ¥ _ ]
a>p 8 aB op
DaB
=-% I «x«x, log—= » [1.61]
a8 o B 2

with Da defined by [1.57].

B
An important question, which arises naturally in the context of
Hamiltonian mechanics, concerns the existence of invariants associated
with the motion of the vortices. The existence of the Hamiltonian makes
the invariance analysis particularly simple.

The Hamiltonian itself may be regarded as the basic invariant of

the system; indeed, one computes

. d - 3H 3H -
B=gp B(x,y) = I (Bx ' oy a)
o o
) i [ 2yKoTo * T (KX J] = 0

using the equations of motion [ 1.60], so that

H(x_,y,) = CONSTANI = Hp . [1.62]

The Hamiltonian is completely determined by the relative positions of the
vortices - for a given distribution of strengths. Its value remains
unaltered for any arbitrary translation of rotation of the coordinate

axes; the relationships

H(Ed’ga) = H(Ca"'E)CZ +€*)
H(Z,, o) = H(ge'®,2e ™)
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hold for arbitrary values of the constants & =a + if and 8,

These identities are equivalent to the three conditions

9H oH oH

— = Q H —— = 0 I =0 y
39| g L) P 36 6

™
I
o
™
n
(@]
™

Consideration of the equations of motion [1.59] or [1.60] discloses

immediately the invariance property of the quantities

M

]
[ne
Fal

Y

[1.63]

and rJy2

[
™
7

(]
[
*

[1.64]

The invariants H, M and J2 may be considered respectively as.
the energy, the moment of mass and the moment of inertia of the system of
vortices. Another invariant quantity is obviously the total strength of

the cloud,

=1« [1.65]
a

It is clear that the real quantities X,Y and J? introduced through the

relationships
X = Re[M/T] [1.66]
Y = In{ M/T] [1.67]
r2 = J - r|um|? [1.68]

are those previously defined in Section I.3 (Equations [1.28], [1.29]).



- 25 -

I.5 SUMMARY

Chapter I is intended as an "gide—mémoire" that covers succinctly
several aspects of point-vortex theory. It emphasizes the kinematical
significance of point-vortices, outlines the important invariance
properties of two—dimensional vorticity distributions and enumerates
most of the equations that are needed in the point-vortex approximation
method.

Applications of the method of point-vortices are comsidered in

the following chapters.
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CHAPTER II

THE CENTRE TO CENTRE POINT-VORTEX APPROXIMATION

II.1 INTRODUCTION

The purpose of this chapter is to introduce the computation method
developed for the numerical studies of two—dimensional, rotational flows
presented in this thesis. The method is an original implementation of the
point-vortex approximation detailed in Chapter I,

The properties of the proposed vortex—tracing algorithm are care-
fully examined by comparing computed flows with two simple, exact reference
flows. Rankine's combined vortex (the disk of uniform vorticity) is first
considered in order to determine the limitations and accuracy of the method
used here and the nature of the 'viscous' effects inherent in the computation
procedure. The rolling-up of an elliptically loaded vortex sheet (Westwater's
problem) is then investigated to further assess the capabilities of the
method, and to vindicate its use when information about large-scale aspects
of the flow is sought.

Throughout this chapter, attention is focused on the behaviour of
the invariants that characterize the motion of a two-dimensional inviscid
vorticity field. It is found that the invariants - in particular the
Hamiltonian or Kirchhoff function - can be used to monitor the accuracy of
the computation; this is in contrast with most applications of the point-
vortex approximation reported in the literature, in which various arbitrary
numerical restraints have been applied without assessment of their effects
on the invariants of the motion and on the consequent accuracy.

It is argued that the method is therefore capable of providing
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adequate "statistical" information about two-dimensional, rotational
inviscid flows - which is proposed to be relevant to high Reynolds number,
free turbulent flows - in terms of quéntitative estimates of parameters
associated with the large scale motions.

The bearing of the present results on some implementations of the
point-vortex approximation reported in the literature is briefly discussed.
It is felt that the information obtained here gives additional insight into
the somewhat controversial point-vortex method, whilst suggesting a new

attitude towards further developments of the technique.

I1.2 THE POINT-VORTEX APPROXIMATION

II.2.1 Outline of the method

Two-dimensional motions of inviscid, incompressible and homogeneous
fluids are governed, when analysed in terms of the vorticity field w(x,y,t),

by the non-linear equations

V2w == R —_— =0 [2.1]

where yP(x,y,t) represents the stream function and %% denotes
differentiation following the motion. These equations are satisfied in
some domain ® of the plane, limited by a contour &R, where appropriate
boundary conditions apply.

The structure of the differential system [ 2.1] reveals the central
role played by the vorticity distribution in the dynamics of the flows
under consideration. Clearly, knowledge of the vorticity distribution at
some instant determines completely the current and subsequent configurations

of the velocity field (subject to the constraints imposed at the boundary

36). Furthermore, and in contrast to its active part as "source" of the
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motion, the vorticity remains attached to the fluid particles and is
transported during the motion as a passive, scalar quantity.

Several discretization schemes are available to the numerical
analyst in order to solve the differential problem [2.1]. Am&ng possible
alternatives, the point-vortex approximation (PVA) remains particularly
appealing due to its simplicity, its suitability for computer analysis,
and its flexibility in providing direct visualization of flow patterns.
For the reasons given below, a new implementation of the PVA has been
developed and used throughout this work to conduct a number of numerical
experiments,

In essence, the PVA replaces the continuous vorticity distribution
by a system of discrete, interacting point-vortices. The principle of
the discretization may be repre;ented as follows. The rotational region
of the flow is divided into a large number of small elements (the fluid
"particles'), each of which carries a certain amount of vorticity. The
circulation around each element boundary has therefore a non-zero value
that is readily evaluated. Each element is then assumed to shrink about
its vorticity centre, whilst retaining the value of its circulation. This
limit process defimes clearly the location and strength of the point-vortex
that represents the element in the final discretized system. The flow
evolution is then depicted by the motion of the set of point-vortices.
Each point-vortex interacts instantaneously with every other vortex by a
simple action-at-a-distance law; it moves according to the local value of
the velocity field whilst simultaneously contributing to the motion of all
other vortices. The tracking of the vortices requires in principle the
numerical integration of a system of ordinary, non-linear differential

equations that present the remarkable property of forming a Hamiltonian
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system. The system is known to possess kinematical invariants which can
be used to monitor the accuracy of the numerical computation.

The simplicity of the PVA is, however, deceptive and masks partially
unresolved questions, some of which will be briefly outlined in the following
paragraphs; tentative solutions will be proposed later in the analysis.

Most problems in the PVA arise from the elimination of the notion
of material area physically associated with each point-vortex. With this
geometrical element removed from the analysis, some flow aspects can no
longer be accounted for, nor represented adequately; for example, the
relationship between distribution of vortices and vorticity field is not
uniquely determined.

Finite-area vorticity elements which are far apart (their
separation being gauged in termé of a length representative of their linear
dimensions) interact almost as pointwise elements. As they approach one
another, their interactions become more complex with the increasing
influence of finite area effects; local distortions of the velocity field,
leading to deformations of the cores, cannot be ignored for neighbouring
elements and must be included in a rigorous analysis. Self-induced
deformations may naturally occur and should also be considered. One must
therefore note that the inability of the PVA method to cope with such
phenomena may lead to physical inconsistencies (*). The importance of
these flow features, and the magnitude of the error made in ignoring them
have not previously been adequately estimated.

Additional difficulties arise from the singular character of the

velocity field at the point-vortex itself. For numerical reasons, this

" (*) for example, material lines initially formed of distinct fluid particles
may occasionally cross - a physical impossibility.
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singular behaviour is usually removed by some ad-hoc method, which often
consists in approximating the velocity field in the vicinity of the vortex
by that due to a vortex with a finite  (circular) cross section. This
artifice of computation, which relies on numerical intuition for deter-
mining a suitable core dimension, does not restore the original concept

of the material vorticity element, and ignores the additional problems
caused by the introduction of finite-area vortices.

It is here appropriate to place these problems within their
historical perspective. The following section presents a brief chrono-
logical survey of the evolution of the point-vortex method, provides a
comparative background for the present method and discusses some of the

solutions to the questions raised previously.

II.2.2 The development and substance of the Point-Vortex

Approximation

The idea of representing a continuous vortex sheet by a number of
discrete, "elemental" vortices, the temporal motion of which is followed by
a numerical, step by step procedure, was first proposed by Rosenhead (1931),
in his study of the progressive deformation of the unstable interface between
two parallel streams of fluid moving in opposite directiomns. Rosenhead
considered an initial sinusoidal disturbance y(x) = Agp a sin(2mx/a),
discretized by NV row-vortices of equal strength « = aAU/NV, uniformly
distributed over one wavelength. Although the number of vortices used was
very limited (NV = 12), Rosenhead was able to demonstrate the smooth
rolling up of the vortex sheet, accompanied by the periodic concentration
of vortices at intervals equal to the wavelength of the original perturbation.

The smallest time step used in this calculation had the magnitude

AT = 0.25a/AU; the integration scheme used Euler's method.
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Among naturally occuring vortex systems, the trailing vortex sheet
produced by an aerofoil is of obvious importance. The PVA was employed in
this context by Westwater (1935), to study the rolling up of a vortex sheet
of finite breadth, the two-dimensional idealization of the wing-tip vortex
system. The sheet was found to roll-up smoothly, at a predictable rate, in
accordance with the spiral structure predicted analytically by Kaden (1931).

However, it was not until the advent of modern computers that the
full capabilities and difficulties of the method were to be extensively
explored, by allowing a finer discretization of the vortex sheet and the
use of higher-order integration schemes, together with much smaller time
steps.

The possibility of a smootZ roll up of the sheet, in the absence
of viscosity, was first questioﬁed by Birkhoff & Fisher (1959). Their
refined version of Rosenhead's calculations revealed a random trend in the
motion of the vortices, and the development of an irregular, contorted and
physically unrealistic geometry of the interface, in total conflict with
the smooth, regular pattern of the original calculations. However, vortices
were found to cluster, which, according to Birkhoff, does not necessarily
reflect a genuine concentration of vorticity: the Hamiltonian associated
with a system of vortices is a suitable measure of the concentration and
is an invariant of the motion. The ultimate randomness of the distribution
of the vortices was also advocated by appealing to the applicability of the
ergodic theorem for Hamiltonian systems (Birkhoff, 1962).

The calculations of Westwater were reconsidered by Takami (1964)
and Moore (1971) who were both unable to reproduce the original results:
the smooth spiral structure was again destroyed by the same chaotic motion

of the vortices as that showed by Birkhoff and Fisher. The possibility
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that this chaotic motion was due to the numerical method failing to
integrate the equations of motion correctly was ruled out by the findings
of Moore: if the time step is chosen to be much smaller than the orbital
period of the two closest vortices, the equations of motion are integrated
correctly. One is therefore led to conclude that the exact solution in
the PVA does not converge to the solution corresponding to the continuous
vortex sheet; increasing the number of vortices worsens the situation. A
satisfactory explanation for the emergence of a chaotic motion in the
rolled-up portion of the spiral is provided by the possibility that
vortices belonging to distinct turns of the spiral, may come very close
together and generate unrealistically large interactions that eventually
disrupt the smooth evolution of the system (Moore, 1974). The correctness
of this explanation is supported by the success met by several techniques
in eliminating this random behaviour of the vortices, all of which prevent
any two vortices from approaching one another too closely, hence suppressing
the occurence of excessive induced velocities. The methods used differ
from author to author. Nielsen & Schwind (1971) substitute, for two
vortices closer than some threshold distance, a single equivalent vortex
located at the vorticity centre of the critical pair. Chorin & Bernard
(1972) introduce point-vortices having a small, finite radius core which
ensures the boundedness of the velocity field everywhere in the plane. A
similar technique is adopted by Milinazzo & Saffman (1977) and by Acton
(1976). Kuwahara & Takami (1973) employ the velocity field associated with
a diffusing line vortex to the same effect. They also note that the
coefficient of viscosity appearing in their equations characterizes an
artificial viscosity rather than a genuine, molecular viscosity.

Another, more rigorous, explanation for the development of a

random motion of the vortices is given by Fink & Soh (1974), who show that
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the PVA of a periodic, continuous vortex sheet neglects the self-

induced velocity of vortex—sheet segments that must be included in a
correct discretization of the Biot-Savart integral. Inclusion of higher-
order terms in the approximation of the integral equation for the ellip-
tically loaded vortex sheet is shown to lead to calculations which converge
as the discretization is refined, and which predict a smooth rolling up of
the sheet into the expected spiral structure (Fink & Soh, 1978).

Many other applications of the PVA have been reported in the
literature, but are not discussed in detail here; they include studies of
the temporal interactions between periodic vortex sheets of opposite
vorticity - a simple model for the formation of a wake behind bluff bodies
(see Abernathy & Kronauer, 1962) and analyses of the spatio-temporal
development of shear layers sheé from bodies placed in transverse flows.
Problems belonging to the second category involve the additional complexity
of boundaries. An extensive and excellent survey of related work can be
found in Clements & Maull (1975).

Some authors have been primarily concerned with the computational
aspects of the PVA. The easiest numerical implementation of the method
consists of a direct evaluation of the velocity of each vortex by summing
the separate contributions of all other vortices present in the flow.
Clearly then, tracing the motion of the whole population requires, at
each time step, a computing effort that scales with the square of the
population size, NV2, It is clear that this summation algorithm
rapidly becomes expensive in terms of computing cost, even for a moderate
number of vortices. The situation worsens if higher-order numerical
schemes are employed for the integration of the equations of motion.

An alternative method evaluates the velocities of the vortices via

the stream function, and the velocity field. A fast Poisson-solver is
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used to determine the values of the stream function at the nodes of a
rectangular mesh defined over the spatial area of interest. The vorticity
field is prescribed as a set of discrete mesh-point values, obtained by
redistributing the contributions of the vortices within a cell to its four
nodal points. The velocity field is then computed from the stream function
field values, leading in turn to the velocities of the vortices. This
approach constitutes the basis of the cloud-in-cell (CIC), particle-in-cell
(PIC) or vortex—-in-cell method (VIC). The technique was pioneered in the
context of plasma physics, and extensively applied to hydrodynamical
problems by Christiansen (1973). The ability to rapidly solve Poisson's
-equation originates from numerical algorithms akin to Fast Fourier Transform
methods. These methods present, however, additional uncertainties linked
with the variety of possible choices in mesh sizes and interpolation
procedures required to switch back and forth from an essentially Lagrangian
description to the Eulerian description over the computation mesh. The
necessity of solving Poisson's equation implies that boundary conditions
be imposed over all domain boundaries; conditions "at infinity" must
necessarily be imposed at finite distances, leading to possible limitations
of the method. Different codes must also be developed to allow for various
types of boundary conditions (Dirichlet or Neumann; periodic or non-
periodic).

The possibility of using the summation algorithm in the PVA is
often subordinate to the availability of low cost computing resources. A
new vortex tracing scheme, based on a fast version of this algorithm, was
developed, with the intention of applying it to the study of two-dimensional
vorticity layers, using a 'cloud discretization" approach. The simplicity
of the method limits the number of parameters required for the understanding

of its properties; these are described in detail in Section II.5 and II.6.
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The concept of '"cloud discretization" is introduced in the next section.

II1.3 THE CLOUD DISCRETIZATION APPROACH

The question of whether the point-vortex approximation generates a
suitable discretization of the continuous vorticity distribution has not
been convincingly resolved. In the absence of a rigorous mathematical
analysis establishing that the point-vortex flow converges to the continuous
flow for increasingly refined discretizations, the assertion that "...
concentrations of vorticity in two-dimensional flow can safely be
approximated analytically by point vortices'" (Batchelor, 1967, p.527) must
be considered with some caution.

The point-vortex discretization is a first-order approximation to
the integro-differential system that governs the motion of two-dimensional
vorticity regions. An analysis similar to that used by Fink & Soh (1978)

for the vortex-sheet roll up problem is required to establish the order of

magnitude of all terms in higher-order approximations of the integrals

u@) = - o j i‘—P—)—;l@ w(Q) dA(Q)
A . B

[2.2]
V@) = J e OLIXOR
A Rpg
All applications of the PVA implicitly assume that the terms omitted are
effectively negligible; it is now clear that for the particular case of
the vortex sheet, this assumption cannot be justified.
The situation appears to be somewhat more favourable in the case
of surface (i.e. two-dimensional) vorticity distributions. This may be

understood on the basis of the following simple argument. Refer to
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Figure 3. Assume that a segment of length & of a 7Zne distribution of
vorticity must be discretized by point vortices. Be T the value of the
circulation around that segment. A measure of the difficulties associated
with the point-vortex discretization is given by considering the induced
velocity between two neighbouring vortices. Clearly, for N vortices of

equal strength Y = T/N , this velocity is of the order

Au =z = —£— = = constant

o
=l

2=

and does not decrease when the discretization is refined (i.e. when
N-w), The same quantity, evaluated for a surface element of area A in a

two—dimensional distribution of vorticity, has the value

N

Au . _E_. _L_
VAN /A

]

(SN N ot
]

and is seen to decrease as N-, This suggests that the effect of small
errors in the position of a nearest neighbour can be made small in the
case of the cloud of vortices, i.e. for two-dimensional vorticity
distributions.

The validity of the PVA in the two-dimensional case is further
supported by noting that the value of all invariants of the continuous
motion is approached by that of their discretized counterparts as the
number of vortices N 1is increased indefinitely; indeed, it can be shown
that convergence is achieved in the limit N+, (*) The equations of motion
of the discretized system approximate, to first order, those that govern

the evolution of the continuous system. In principle, these equations can

(*) For the Kirchhoff function, the point-vortices must be assumed to have
some small but finite core and to have a strength equal to the integral
of the vorticity over the area they represent.



Figure 3: Point Vortex Approximation for a line and a
surface distribution of vorticity.
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Figure 4a: Definition of the computation grid in the CTC method.
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be solved exactly; in practice, the accuracy of the computation may be
checked by monitoring the conservation of the invariants.

These arguments seemed a justification to proceed with the point-
vortex approximation, largely in the spirit of an experiment., In a "cloud
discretization" calculation, vortices are not tracked exactly, and one
does not expect the phenomena determined by local flow conditions to be
described faithfully. Integral expressions - that is, expressions computed
over the whole population of vortices - are however computed accurately, in
the limits indicated by the flow invariants. Flow features are determined
statistically, as resulting from several computations with varying initial
conditions. Each particular discretization can be regarded as one
realization from a statistical ensemble. In this statistical interpretation,
it is conjectured that an ensemble average over random discretizations
defines a solution of the continuous problem (Milinazzo of Saffman, 1977).

A new vortex-tracing algorithm, the centre-to-centre (CTC) method,
well suited to the cloud discretization spirit, was developed and used in

all PVA calculations presented in this work. The remainder of this chapter

is dedicated to the presentation of the CTC method.

I1.4 THE CENTRE-TO~CENTRE METHOD

The motion of the vortices is followed over a fixed computation
grid, which paves the interval of interest with a large number of rectangular
cells, as illustrated in Figures 4a & b. No a priori attempt is made to
track the vortices exactly. At all stages of the computation, the
coordinates of all vortices are deliberately identified with those of the
centre of the cell in which they happen to lie. Vortices move, therefore,

from cell-centre to cell-centre over the computation grid. This tracing
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Figure 4b: Sketch of the computation grid in the CTC method. Point-
vortices moving from A to B are relocated at point C.
The configuration sketched represents a vorticity layer

(periodicity in the x direction).
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algorithm is accordingly called the centre-to—centre (CTC) method, and
will be shown to possess properties that make it a valid alternative to
many vortex-tracing schemes reported in the literature.

A one-to-one correspondence can be established between the
elements of a matrix having MG rows and NG columns and the cells of
a computation grid with the same dimensions. That is, one can introduce,
in order to locate the centre of each cell, a pair of integral coordinates
(J,I) related to the exact coordinates (x,y) of the cell centre by the

relations

x =% (25-1) and y = & (21-1),

in the coordinate system defined in Figure 4a; 6x = a/NG and 8y = b/MG
are the cell dimensions.

Consider the motion of a set of NV point vortices over the
computation grid: vortices start at some initial instant from cell centres,
and are followed in their motion during a suitably small time interval At.
Note here that vortices do not necessarily occupy all cells, i.e. that
many computation cells may span the average distance between vortices if
so required. If after the time step At, the exact coordinates of vortex
o are (xa,ya), then its integral coordinates (Ja’Ia) are computed

from the formulae

where |I[ All denotes the largest integer smaller than or equal to the
number A.
A population of NV vortices is completely described, over a

given grid, by the set of triplets {(Ja’la’Ku); a =1,2,,..,,NV}, where
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Ko, denotes the strength of vortex a . The initial flow configuration is
prescribed as the set of values {(J;,I;,K;); o =1,2,...,NV}. The
velocity of each vortex can be computed from the interaction law and the
new positions of the vortices determined by integration of the equations
of motion.

A few preliminary comments are warranted. The CTC method removes
the possibility of occurrence of high-induced velocities by effectively
preventing vortices from approaching one another too closely. The cell
dimensions act as a critical approach distance: if two or more vortices
happen to lie within the same cell at the end of a time step, they are
thereafter regarded as a single vortex, the strength of which is the sum
of all individual vortices. The component vortices remain, however,
identifiable, since they retain-their label in the set of triplets
describing the configurations.

The introduction of integral coordinates significantly improves the
computational aspect of the summation algorithm. Distances between vortices
are necessarily integral multiples of cell dimensions; many operations can
be carried out using integer arithmetic when evaluating the interaction
summations. This is of particular interest on smaller computers where
floating-point arithmetic operations are especially time-consuming. In
the special case where row-vortices are tracked, the hyperbolic and
circular functions appearing in the "influence coefficients" of the
interaction summations (see equations [ 1.56] and [1.57]) can be tabulated
once and for all; the velocity of each vortex is then readily computed
from table "look-ups" and simple arithmetic operations. Adoption of this
technique substantially reduces the amount of computing time (by approxi-

mately one order of magnitude). Vortex coordinates are integer numbers
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which are easily packed/unpacked for efficient internal and external
storage. Again, this feature may be appealing when working with machine
configurations where available memory space is limited; it is even more
effective when equi-strength vortices are employed, each configuration
requiring only the specification of NV pairs of coordinates

{(Ja’Ia); o =1,2,...,NV} for its complete description.

The tracing algorithm must now be completed by the choice of a
numerical scheme for the integration of the equations of motion. Many
options are available; the choice is however limited by practical
considerations of cost versus precision. The simplest and most economical
scheme is the one-step forward algorithm known as Euler's method, which
relies on the first-term of a Taylor series expansion. This method has
been used by many authors (Roseﬂhead, 1931; Kuwahara & Takami, 1973;
Acton, 1976). Higher—order schemes have also been employed, usually
belonging to the family of Runge-Kutta formulae (Moore, 1974 ; Zalosh,
1976) ; they are prohibitively expensive, however, when the number of
vortices becomes relatively large (a few hundred).

The properties of the CTC algorithm, coupled with the effects of
the integration scheme, have been systematically investigated by comparing
computed flows with an exact reference flow, the disk of uniform vorticity;

this investigation is described in detail in Sections II.5 & II.6.

11.5 EFFECIS OF INTEGRATION PROCEDURE, TIME STEP AND CELL SIZE IN THE

CTC METHOD

The purpose of this section is to present the first series of tests
carried out to quantify the performance and to understand the fundamental

properties of the CTC method. If the method is applied to compute the
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exact motion of the vortices, one can identify, a priori, two sources of
inaccuracy:

(a) the exact locations of the vortices are assimilated to the
coordinates of the cell centres; the spatial resolution of the
method is therefore limited to the computation cell. The magnitude
of this "grid error" depends clearly on some characteristic
dimension & of the cell;

(b) the numerical integration of the equations of motion induces
necessarily an "integration error", essentially dependent on the
size of the time step At.

In the limit where the cell dimensions becomes infinitesimally small, the
CTC method traces the vortices in a conventional manner, its accuracy
being limited by that of the numerical integration scheme.

The combined effects of grid and integration errors for small but
finite cell sizes were investigated by apélying the method to a simple,
known, exact reference flow. A formal solution exists for describing the
velocity field associated with any two—dimensional distribution of vorticity
over some bounded region of the plane (see equations [2.2]). Explicit
analytical solutions are, however, difficult to obtain from these integrals,
even for uniform vorticity distributions and simple geometries; the choice
of possible test problems is then practically limited to the case of the

isolated circular disk of uniform vorticity, generally known as Rankine's

vortex. The problem is briefly discussed in the following paragraph.

ITI.5.1 Rankine's vortex

Consider a disk D of radius a and uniform vorticity wp 1in an
otherwise irrotational flow extending to infinity. The problem is conve-

niently solved in its differential form; the integral formulation is given
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in Appendix B,

The stream function ¢ must satisfy the equations

V2) = -~ w inside D
[2.3]

V%) = 0 outside D .

The circular symmetry is preserved when w and §y are functions of the
radial distance only; steady motion is possible if w is an arbitrary

function of Y. For w constant(= wg), one has

d%y , 1 dy — 0 i D
v + e + wg = 0 in
and [2.4]
a2y 1 dy _ . D
T + = 0 outside .

The general integral of this equation is y(r) = A log r + B; a particular
solution of the nonhomogeneous forms is ¢(r) = - wgr?/4. Therefore, the

internal and external solutions are, respectively,

wi = A, log r + B, - wor2/4
and [2.5]

we = Ae log r + Be .
The requirements that Y be finite at r = 0 and that and %% be
continuous at the disk boundary lead to

vo(r) =22 (a? - ¢2) - woa? log a

i A 2 g
and [2.6]
2
Vo (r) = - =0 1og 1,

where the additive constant B, has been omitted. The velocity potential
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outside the disk is found to be

2
wpa -1
b (x,y) = L8 cail(y,®) ; [2.7]
2
we is a multiple-valued function with cyclic constant T = 27 9%;— = 1awg.

The velocity field is derived from

Ll —LJ
Yr T T %0 B [2.8]

and is found to be
u.(r) =% v within D
0 2 !
[2.9]

2
_ wpa . .
ue(r) —%E- outside D

The disk rotates about its axis as a rigid body with angular velocity
Q2 = wg/2, corresponding to a period of rotation T = 4m/uwg.

For the sake of completeness, let us mention that the pressure
field is determined from Euler's equation of motion inside 7 and

Bernoulli's relation outside 0. One obtains:

ug 1 d w r
- % = —%- giving p(r) = 7? P+ p(0) inside D ,
ug
p(r) = p, - p 5 outside D.

Continuity of the pressure field at r = a leads to the results

2
p(r) = p, — p e 1 - =— inside D
a? 2a2
and [2.10]
)
p(r) = p, ~ 0 outside D .
2r?
2
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The five invariants for the uniform vorticity disk are obtained by

direct evaluation of the definition integrals,

T = J w db [2.11]

D
IX = J w x dp [2.12]

D
I‘Y=JwydD ' [2.13]

D
¢ = ri? = J wf (x-X)2 + (y-Y)21dD [2.14]

D

H =—21-J Yw dD [2.15]

D

with
Ve = - Jw’ Logl (x(P)-x")% + (y(P)-y")?ldx"dy~ . L2.16]
D

Their values are obtained as

I =7 a2 wo [2.17]

X=Y=0 [2.18]

G = 12 = a?/2 [2.19]
2 4

H = 9-%%-—-1-1— (1L -4 log a) . [2.20]

(See Appendix B).

I1.5.2 The Point-Vortex Approximation of Rankine's vortex

The continuous vorticity distribution over the disk is discretized
into a number of equi-strength point-vortices uniformly distributed over
the disk area, according to the following procedure.. The square circum-—

scribing the disk is covered with a grid of (NxN) cells; point vortices
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are then placed at the centres of all cells which belong to the interior
of the disk. The number of vortices retained is approximately equal to
NV = 0.8 N2, This discretization procedure is clearly symmetrical and
ensures that the resulting point-vortex distribution approaches uniformity,
for NV 1large. Boundary effects, however, cannot be fully eliminated and
are reflected in the values of the invariants G and H (I, X and Y achieve
their theoretical value) (see Table 2).

The smallest distance between adjacent vortices is A = 2a/N. The
motion is usually computed over a fine mesh computation grid of cell size 8.
It is convenient to select the ratio A/8 = Ng as an odd integer, in order
to keep the initial configuration unaltered by the redefinition of the
grid (Figure 5).

The influence of the two basic parameters & (cell size) and At
(time step) was investigated on the basis of a comprehensive number of
computer runs. For reasons previously exposed (see section II.3), it
seemed crucial to evaluate the invariants of the flow, particularly the
Hamiltonian or Kirchhoff function of the system: it appears important to
ensure that in its final state, the system possesses the same total energy
as that of its initial configuration. If this energy were not conserved,
the mechanisms responsible for the loss of invariance had to be identified
and the magnitude of their effects appreciated. The behaviour of the
three other invariants X, Y and G was also considered. In all computations,
covering a wide range of values for cell size and time step, the centre of
vorticity (X, Y) of the cloud was found to remain fixed with a high degree
of accuracy., Results presented concern almost exclusively the behaviour of
the Kirchhoff function H of the system. The behaviour of the radius of
gyration I =G was however monitored in order to confirm the conclusions

drawn from the function H; in all cases, conclusions drawn independently



Table 2: PVA of Rankine's vortex:

2
NV I/ag H/ 5%?2
52 .7156 .58648
137 L7175 .66702
256 .7087 .73535
421 7116 73771
616 .7071 .76529
861 . 7094 .76025
1124 .7039 .78787
1457 .7082 .77093
1804 . 7060 . 78250
2217 .7088 77136

I/ap = ,707107
L
n/ 2020 = .7853982

invariants of the discretized

system (effect of NV on values of I and H).

A

Zﬁ&=[“23 23

Figure 5: definition of computation grid in relation to average

distance A between vortices (Rankine's vortex).
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were in full agreement. Sections II.5.3, II.5.4 et II.6 present and discuss
the interesting sensitivity of the Kirchhoff function to the values chosen
for the parameters § and At. 1In éeveral cases, it was found convenient
to use NG as a measure of the cell size. The number of vortices used in
the computations was close to 200, although on some occasions, up to 500

vortices were tracked.

II1.5.3 Euler's integration method

In a preliminary approach, and following in this choice several
authors (Acton, 1976; Kuwamara and Takami, 1973), the equations of motion
[1.47] of the vortices were integrated using Euler's method. The coordinates

of vortex o at time t + At are obtained from those at time t by the

relations
xu(t + At) = xa(t) + ua(t) At
[2.21]
Yu(t + At) = ya(t) + Va(t) At,

expressed in integer coordinates (Ja’Iu)'

For a fixed time step, it was found that changing the cell size by
three orders of magnitude had no effect whatever on the change in H
observed (Figures 6a, 6b and 6¢c). For a time step At wg = .2, the
Hamiltonian H changed by 40 7% in a quarter of rotation of the vorticity
disk. Note that wg At may be interpreted as the time step At scaled by
the characteristic time of rotation of two neighbouring vortices a distance
d apart: wg At = At/(az/Y). A value of wp At of the order .075 is
commonly used in several studies (e.g. Acton, 1976). Figure 6a shows that
the decrease of H with time is issentially linear. Decreasing the time

step (see figure 6b, where wg At = .1) reduces the rate of decrease of H
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without altering the linear trend of the behaviour. A decrease in At of
an order of magnitude (see Figure 6c, wpAt = .0l1) resulted in a change in
H of approximately 107 for one rotation (about 650 time steps). Again,
changing the cell size by several orders of magnitude had no discernible
effect on the results; this is illustrated on figures 7a, 7b & 7c¢, which
show the evolution of the Kirchhoff function in time with At* = At wg/2

as a parameter, § (Né) being kept fixed.

The explanation of this dependence is straightforward, The grid
error is essentially random whereas the integration error is fundamentally
one-sided. When tracking vortices of the same sign, the integration
procedure introduces errors largely of ome sign which, when summed over
all vortices and time steps, lead to a "bulk" diffusion of the cloud of
vortices, This accumulation of errors has an effect on the invariants H
and G which appears to swamp any other source of random error. The
magnitude of this effect is easily predicted. Refer to figure 8. A point
vortex ideally moving on a circumference of radius r about the disk centre
is followed, during each time interval At, tangentially to its true
trajectory. The computed path of each vortex is then a spiral. The

resulting relative error is given by

£ _BB _ 1-cos (wgAt/2) _ 1 - cos At*
T 0A cos (wgdt/2) cos At
: € 1 %2 *
il.e. T =% At for At* << 1 . [2.22]

For the disk of radius a and of circulation T, one has

1-12
H = e (1 - 4 log a)

and allowing the radius to be a function of time, one computes
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AH = H(t*+At*) - H(t*) = -

This leads to the following

function:
d
™ = T
for a(0) = 1.
The prediction : 5;;)

accounts completely for the

- 48 -

Aa
log (1 + —)

4

estimate for the decay rate my of the Kirchhoff

=

[2.23]

=

]

1 - (2 At*) t* [ 2.24]

computed time dependence of the Kirchhoff

function and is represented by plain lines on Figures 6 and 7. Note that
the time rate of change my of the radius of gyration I is readily obtained
as

_d
I dc*

X i(EY)
1 (0)

o
2

m [2.25]

a result which agreed fully with the numerical data (not shown on the
figures).

It appears therefore that the use of Euler's method in conjunction
with point-vortices is not to be recommended, and indeed should be avoided
whenever the trajectories of the vortices all have positive (or negative)
curvatures. In this case, elaborate schemes to prevent vortices from
coming close together or to compute the "accurate'" positioning of the
vortices appear totally unwarranted. Euler's method was abandoned in this
study for a higher-order integration method. It is interesting to note

that the relocation mechanism of the CTC method does not accumulate one-

sided errors, and that the nett grid-error effect tends to average out,
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even for values of At*d/S as small as 5. This balancing mechanism is

effective for reasonably fine computation grids (At*d/6>10).

I1.5.4 Huen's (Euler's modified) integration method

Results of the preceding section stress the importance of the
integration technique used in vortex-tracing algorithms. The cumulative
nature of the one-sided integration error can lead to important bulk
diffusion effects which rapidly distort the flow picture. This distorsion,
quantified in terms of the invariants of the motion, seems unacceptable in
the case of Euler's method.

Many higher-order integration schemes are in principle available
as an improvement of Euler's method; in practice, however, any scheme of
order higher than two results in prohibitive computing costs. This led to
the choice of Euler's modified second-order scheme, a predictor-corrector
method also known as Huen's method (*).

Euler's modified method is based on the equations

r(t+At) = r(t) + At G(t)
and [ 2.26]

8(t) = 3 [u(e) + u(e+ae)]

where wu(t) 1is the velocity corresponding to the current vortex
configuration and u(t+At) 1is the velocity corresponding to the predicted

configuration.

(*) Furthermore, any prediction scheme used in conjunction with the CTC
method gives a relocation of the vortex to the cell centre at the end
of each intermediate step. This involves an error of order &/vAt,,
where v 1s a characteristic vortex velocity and Ati is the
intermediate time step. Hence the modified Euler scheme seems
preferable to any predictor scheme where the intermediate time step
is a fraction of the nominal time step, since Ati = At in

Euler's modified method. nominal
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An analysis similar to that made in the case of Euler's method
discloses the expected dependence of the Hamiltonian on the time step.
Refer to Figure 9. The point vortex initially at A 1is now traced by
the algorithm to point M, the mid-point of line segment AC. The radial

error e = OM -~ OA 1is found from the following geometric relations:

(a) OA = OB cos A8

OB = 0OC cos A8 OA =1

AC _0cC . _
(b) sin 2A6  sin a °’ . G
(c) a=%-Y
BC _ AB . -

(d) sin Yy  sin B °’ e B 80
(e) OM?2 = 0A2 + AM2 - 2 OA AM sin vy ; OM = ¢

All quantities in the right-hand side of (e) can be expressed in terms of

r and A6 if relations (a) - (d) are employed; one finds that

2
¥ o=r2( + % tan“A8) [2.27]

2

"
i.e. =r (1 + Aﬂ_) ; A << 1,

8
The radial error is

r-r A% Ae*t

since At* = %g At = AB by definition.

-

The decay rate my of the Hamiltonian should now scale with t*

according to:
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P di _ At* 3
™ H{o) dt+ 2(1-% Tog ag)
i.e. m = At*3/2 for -ap = 1. [2.28]

It can be similarly shown that the growth rate of the radius of gyration
is given by

my = At*3/8 [2.29]

Figures 10a to 10d illustrate for increasing cell sizes the degree of
improvement achieved in conserving the Hamiltonian when Euler's modified
method is employed. Note that the time interval here is about thirty

times that used to illustrate effects of similar magnitude with Euler's
method, The full lines indicate the expected behaviour of H, as predicted
by équation [2.28]. This prediétion is clearly followed for relatively
large time steps, as seen on Figures 10. For smaller time steps and
relatively large cell sizes, however, departures from the linear behaviour
are apparent (see details on Figures 10c and 10d). Following an idea of
Moore (see Milinazzo and Saffman, 1977), one is led to speculate as to

whether the finite cell size introduces a calculable viscosity (of

Vere
magnitude proportional to 62/At) in the nominally inviscid computation.

This possibility is examined in the following section.

II.6 VISCOUS EFFECTS IN THE CTC METHOD

Moore's argument is based on the observation that molecular
diffusion in fluids emerges as the averaged effect of the random motion of
the molecules, superimposed on the mean motion of the fluid as a whole.
One may then expect that the random relocation of the vortices in the CIC
method is, under certain circumstances (large 6 and small At*), capable

of generating an observable action of viscosity.
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In an attempt to confirm this possibility, calculations were
pursued over many disk revolutions, using the relevant ranges of cell size
and time step. This analysis paralleis that of Milinazzo and Saffman (1977),
who examine the accuracy of a 'viscous" computation based on the addition
of Gaussianly distributed random displacements to the hydrodynamical motion
of the vortices. For Gaussian displacements with zero mean and r.m.s.
amplitude Og» the diffusion effects correspond to a molecular viscosity of

magnitude

Ve = 3 [ 2.30]

(to the first order in (NV)—l, where NV 1is the number of vortices).

In their study, numerical results and analytical arguments support the

view that an accurate simulatioﬁ of viscous effects requires the number
of vortices used in the discretization to be large compared with the

characteristic Reynolds number

Re = T/v [2.31]

of the problem. In their numerical experiments, Milinazzo and Saffman
used Huen's integration method to follow vortices with a finite core,
chosen such that the maximum (hydrodynamical) displacements of the vortices
during the elementary time interval is of the order of their average
separation.

Although similar in spirit, the present study must be distinguished
from that of Milinazzo & Saffman on several points. Firstly, the CTC method
cannot differentiate between vortex core size and amplitude of the random
displacements: both are determined by the cell dimensions, and cannot be
selected separately. Secondly, the probability distribution of the random

fluctuations differ markedly from normality in the CTC method. Finally,
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the existence of a random motion is subordinate to that of the hydrodynamical
motion pure diffusion effects cannot be directly modelled by the CIC method.
With these restrictions in mind, one can estimate the values of an
equivalent core size and r.m.s. amplitude as follows. The square cell of
dimension & 1is assimilated to a circular core of radius ¢ = 8/\m. The
actual probability distribution of the relocation displacements is approxi-

mated by a uniform distribution over the cell, yielding a mean square value

<d2> = J

Nios

B) 2
JZ (x2+y2) dx dy = %T .

-8
2

Nj o

The calculated viscosity in the CTC method is therefore

| "
Vere = TI5T [2.32]

The validity of this prediction may be tested by comparing the outcome of
the numerical computations with the analytical solution for the decay of a
uniform vorticity disk in a viscous fluid. It is possible to predict the
change with time of the Hamiltonian resulting purely from diffusion at the
boundary of the disk; comparison with the behaviour of H in the numerical
computations allows to infer the actual value of the viscosity in the CIC
method and a check on expression [ 2.32]. Before presenting the results of
these calculations, it is necessary to consider the problem of the uniform
disk of vorticity in a viscous fluid and several related expressions; this

is the object of Sections IIL.6.1 and II.6.2.

I1.6.1 Viscous decay of a vorticity disk

Consider a vorticity disk of radius a and uniform vorticity w,

and its motion in an otherwise initially irrotational viscous fluid
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extending to infinity. Viscous action at the disk boundary tends to smooth
out the step discontinuity in the vorticity distribution, leading to the
spreading of the rotational region of the flow by a process of gradient
diffusion.

In all generality, the two-dimensional vorticity distribution in a

viscous, incompressible fluid is governed by the scalar equation

w=vVv2ay [2.33]
v du . . . . . .
where w = = 3; ; v is the kinematic viscosity of the fluid. In polar
coordinates (r,8), the above equation is rewritten
u 2
dw dw 8 dw 1 9 oW 1 0%w
Ly DL+ ==y [2=(r=)+ =——] [2.34]
t r or r 96 [r ar ar r2 pp2
where
du
1 9 r
w(r,8) = [ 57 (ruy) - 551 - [2.35]

In view of the azimutal symmetry of the problem of the disk, one needs only
consider functions which do not depend on 6 ; furthermore, it is clear that
the velocity field has no radial component

(ur = 0). With these simplifi-

cations, the differential equations of the problem reduce to

dw _ v 3 W

3t -f ot Far) [2.36]
1 3

w = T 3? (ru) [2.37]

where

u has been written for u

o The boundary and initial conditions to

be satisfied by w(r,t)

are the following:

w(r,o0)

w(r,o0)

lim w(r,t)
r-reo

i
(@]

Wo

os<r<a
a<r<ow

for all t>o

[2.38]
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The solution of the differential problem [2.36] - [2.38] may be obtained
as the superposition of solutions of the "source' type. Observe first that

the function

. - r2/4vt
w, (r,t) = - e [2.39]

where C 1is a constant, is a solution of equation [2.36]; this is readily
checked by direct substitution., It is easy to verify that this solution is

singular at the origin at the initial instant t = o, in the sense that

lim w (r,t) =o r ¥ o
to [ 2.40]
lim w (o,t) = = r=0 .

t->o

However, for all t>o, the quantity I w (r,t) dA remains finite and

indeed constant. One computes easily the value of this integral:

J w(r,t)dA = 4mvC = T [2.41]
A

(the integration being extended to the whole plane).

The solution w, represents a point-vortex of strength I located at the

origin and diffusing into the surrounding fluid by viscous action. If the
vortex is located at the point (ro.,8.) — see Figure lla -, the solution
becomes

-R?/4vt

= [2.42]

4vt

w(r,t) =

where R represents the distance between the vortex and the point P (r)

where the vorticity is evaluated; explicitely, one has

R? = (x~%0)2 + (y-yo)?
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Figures 11: Construction of the solution to the problem of the viscous
decay of a disk of vorticity.
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oF R2 = r2 + ro? - 2rro cos (6-60) . [2.43]

Consider now a continuous line-distribution of circulation, defined
such that the amount of circulation "carried" by a line-element &% has
the value 6T = yS8&. Assume in addition that this line of circulation is
a.circumference of radius r. centered at the origin ; clearly then
8% = rodo. The viscous diffusion of a uniform "vorticity ring" is described

by the function

w, (xr,t) § we(r,t) dC
C

dbe

YTro ZNe - R%/ 4yt
4vt 0

Yro -
4TvE

-(r2+ro2) /4yt 2m rr, cos AB/2vt
j . 6o . [2.44]

i.e. wc(r,t) 0
The integral may be expressed in terms of the solution I. of the modified

Bessel equation of order zero (see Watson, 1922, 3.7). One rewrites the

ring solution under the form

yro - (r2+1ro2)/4vt r
w, (r,t) = 79E © Io ( ot ) [ 2.45]

Note that the circulation per unit length Y may be related to the local
value of the vorticity we as follows. Consider the ring of circulation as

an annulus of radius ro and width 6r. (see Figure 1l1lb); clearly one has

‘YG.Q, (.UO(SA = Weo 626ro

H

®
-
<
J

= Wo §ro .

It is now easy to obtain the solution for the problem of the uniform disk

of vorticity, by superposing the contributions of concentric rings of
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vorticity. One writes therefore

wv(r,t) = JJ wc(r,t) dA
2
- r%/4vt (a 2
] . Woe - ro%/bvt TTro
L., wv(r,t) = ot e Jo e I, (m) Yo dro , [2.46]

a solution which will be considered under the form

wv(r,t) Jit

Qv(p,i) = —ws ¢ e

-p2/4E (1 -A2/4g 0
Je Al (22 ar, [2.47]

0

where the adimensional variables p = % and £ = vt/a? have been
introduced. The integral in [ 2.47] cannot be evaluated analytically,

except at p = o where the solution becomes

2 (0,8) = l-e 1748 [2.48]
Figure 12 shows the evolution of Qv(D,E) for values of the parameter
£ 1in the range 0.15 to 3; the radial distance represented here covers three
times the initial radius (p = 3,) Details about the numerical evaluation

max

of Qv(p,E) may be found in Appendix C.

II.6.2 The evaluation of H_(t) and of dH (t)/dt
The solution [ 2.46] of the viscous decay problem may now be used to
compute a quantity of interest in the present analysis, the Kirchhoff

function of the system:

H (t) = %J pwdA
a- o H w(2) w(Q) log RZ, dA(P) GA(Q) [2.49]

( represents the distance between the vorticity elements at the points
Q P y P
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P and Q). Introducing polar coordinates (ro,60) and (r,0) - refer to

Figure lla -, one obtains the Kirchhoff function under the form

“p 27 27 © ) L )
Hv = e J doo J do I rwv(r) dr J rowv(ro) log RPQ dro,
0 0 0 0
with R%Q = 12 4 ro? - 2rro cos (6-0o).

The integration with respect to the angles may be carried out in a manner

similar to that used in Appendix B; one obtains the expression

. P
B =- { Jo pwv(p) logp dp Jorwv(r) dr

+ J pw (p) dj J r wv(r) log r dr } . [2.50]
0 - p

Noting that the expression for the stream function

v, B0 == J 0,(Q) log RZ,) dA(Q),
A

considered at the origin, writes

¢v (o,t) = ~ JO 9 wv(r) log r dr, [2.51]

one transforms [ 2.50] into

H () = % v, (0,8) + JO pw(p) dp Jp rw(r) log (%) dr . [2.52]

Expression [ 2.52] may be used to evaluate numerically the value of
the Kirchhoff function at any instant of time. The behaviour of Hv as a
function of the variable & is shown in Figure 13. In order to check the

accuracy of the numerical procedure used to evaluate Hv’ the total
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circulation (I') and the moment of inertia (Gv) were also computed as
functions of &; their behaviour with time is known (relevant details may
be found in Appendix C). The circulation is seen to remain constant; the
moment of inertia grows linearly with the expected rate, as predicted
analytically. (see Appendix D).

The value of the Hamiltonian is no longer conserved in the presence
of viscosity; this is to be expected in view of the relationship, examined
in the following paragraph, between Hv and the kinetic energy E of the
fluid: viscous action leads necessarily to energy dissipation. The
existence of this relation between Hv and E, and knowledge of the
expression giving the rate of change with time of the kinetic energy in
terms of the viscosity, will be exploited to infer a value for the viscosity
coefficient inherent in CTIC computations. These relationships are

established hereafter.

I1.6.2.1 The relationship between H and E

L4

Consider the kinetic energy ER of the fluid within a circle A of

(large) radius R centered at the origin. The expression for Ex is

E_ = %J u2dA [2.53]

and simplifies, for the case u = u(r), to

R

- - ]

ER = pm I ur o7 dr . [ 2.54]
0

A stream function ¢(r) may be introduced since the fluid is incompressible.

Recall that u(r) stands for Ug (r) and that

ug (£) = - g{; ; [2.55]
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Integration by parts yields the following expression for E_:

R
. (R R
ER = 7p J ywrdr-mplur w]o 3 [2.56]
0
use has been made of the fact that
Tw = S (ur) [2.57]
\) dr L] L[]
The Kirchhoff function H§ is defined similarly to ER:
R .2
Hv = 3 J wwvdA [2.58]
A
R R
i.e. Hv = Tp J wwvr dr ; [2.59]
0
equation [ 2.56] reads therefore
R R
ER = Hv mp [r u w]o 5 [2.60]

For finite values of u and ¢y at the origin, and observing that the
factor of the integrated term at r = R may be related to the circulation

round the circumference of radius R, one rewrites [2.60] under the form

L )
E_ = Hv 5 PR ¥ (R) [2.61]
This expression, considered in the limit R-w, shows that the kinetic energy
and the Hamiltonian function of the whole fluid differ by a constant value;

clearly then

dH dE
RLEVIN 1
It It [2.62]
where E = 1lim E and H = lim HR -
R v v

R0 R-»vo
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Direct evaluation of dE/dt yields therefore the value of the time rate

of change of the Hamiltonian.

I1.6.2.2 The evaluation of dE/dt

An expression for dE/dt may be derived directly from equations
[2.36] and [2.37] as follows. Multiplying [2.36] by r and subtituting
into the resulting equation the value of rw drawn from [2.37] lead to

the evolution equation for u:

du _ 32u 1 Jdu u
AN TR R [2.63]

Multiplying the above expression by pu yields

P 2 .
TN NS

and successively:

Q
rt

dw
= SA=A V]

u =2 [ 2.64]
in view of [2.37]. Integrating over a circle of radius R 1leads to the
expression

dE R

R I
_— LI
e 2T J ru T dr
0
R
= - 2
U F(R)wv(R) 27y J'rwv dr

0

Taking the limit for R»>« and noting that the vorticity distribution
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vanishes at infinity, one obtains the required expression

[}

_— = = 27y J wvz. r dr [2.65]
0

This may be rewritten, in view of [2.62],

dH
_E% = = ux [2.66]
where X = 2T J r wvz dr [2.67]
0

represents the dissipation function. This dissipation function is not
constant in time, as seen on Figure 13. One notes that ¥ appears to
vanish for large values of &, a result consistent with the behaviour of
HV(E) which asymptotes a constént value at large times. The functions in
Figure 13 have been plotted under the form TI'/T., — 4 Hv/H:’ 10 x/xo and
Gv/40 G; ; scaling factors have been introduced to improve the legibility

of the figure.

I1.6.3 Viscosity estimates

Relation [2.66] provides a simple means of determining the magnitude
of the viscosity associated with a CTC computation: at any instant of

time, the viscosity coefficient is given by

3 = - _m_dHX/dt , [2.68]
where H, is the computed Kirchhoff function (*). Alternatively, the
viscosity coefficient may be inferred from the behaviour of the moment of

inertia Gv of the vorticity distribution by the expression

(*) the computer calculations are carried out for a fluid of unit density,
i.e. consider the function Hv/p.
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" 1
A

Indeed, it is readily shown (see Appendix D) that

exact time dependence

G,(t) = G (o) +

46,
dt

4yt .

[2.69]

Gv(t) exhibits the

[2.70]

Practically, estimates of v based on Hv are obtained at early
times by observing that for vt/a%® = E<<1, one may write
oH
= e
Hy (8) = H (o) + &l5p¥)
= H (o) - %€ x_ , [2.71]
where
X = 27 J w2 (r,0) r dr
o 0 Y
a
= 21 woe? J r dr = TwoZa?
0

is the initial value of the

1

1

where C = 1-4 log a

Equation [ 2.70] may be rewritten

is a constant.

8

dissipation.

One writes [2.71] as:

16 &
(1-4 log a)
16g/C [2.72]
€ (all g). [2.73]

Two separate estimates of the viscosity may then be obtained from [2.72]

and [ 2.73] from the expressions
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2
_ _¢Cca d Hy(t)
Yu T T 16 Gt H (o) [2.74]

and VG [2.75]

II.6.4 Discussion of results

The results of the computer runs are plotted in Figure 14, which

shows the behaviour of the ratios v, /v (crosses) and vG/v

H" "CTC CTC

(squares), as a function of the parameters & and At* (the choice of the
independent variable, aAt*%G, d being the average distance between vortices,
is clarified by the following argument). It is known (see section II.5.4)
that for relatively large time steps and small cell sizes, the time rate of

change of Hv is given by

d H, (")

3
= A)Y_Hv S = - At*°/2 . [2.76]

Equation [ 2.74] indicates that the rate of change is also given by

d Hy(t*) _ _ 32 _VH
dt* Hvio) N C  woaZ [2.77]

Now the expected viscosity, as given by [2.32], is known to be

o 62 - 62 Wo
Vere T 12 At | 24 At C [2.78]

Substitution of [2.78] into [2.77] yields

d  Hy(t*) _ _ 4 §2
de* 1 (o) - 3¢ Bt¥a2 [_2‘79]

As predicted by results [2.76] and [2.79], the ratio of the "viscosity'" v H

inferred from [ 2.77] to the expected viscosity Vopg Must be unity when

At o 8 1
52 3C az °’ [2.80]
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while it must behave like

[2.81]

when the inequality [2.80] is reversed.
Identical predictions may be drawn for the estimate vg, using

equation [2.75] and replacing [2.76] by

d G, (t*)
dt* G, (0)

= At*3/4 ,

Equation [2.81] may be rewritten in terms of the average distance d between
vortices, using the estimate drawn from the relation wa? = NV d2. Figure

14 uses logarithmic scales, for which one has

log (g— ) =log (F =) +2 log ( =— [2.82]

CTC

everywhere, except for values of the independent variable satisfying

At*z)

log ( 3

<< log 3%—7 ) [2.83]

N =

where log (v/v must vanish.

CTC)
Some of the scatter in the results is due to the difficulty in estimating
the slopes of the functions Hv(t*) and Gv(t*) which tended to fluctuate
about the linear trend. In addition, the criterion [ 2.31] of Milinazzo &
Saffman could not be met given the imposed constraint that all vortices be
able to move at least one half a cell length in the time step At¥.
Basically, however, results corroborate the validity of the arguments
developed above.

The essential conclusion from this analysis is that the combined

effects of the choice of cell size and time step are completely understood.
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Unless the time step is very small, the one-sided integration error dominates
the overall accuracy of the computation: the random relocation errors are
comparatively insignificant. For sufficiently small time steps, however,

the grid errors introduce a diffusion of the gradient type, for which the
coefficient of viscosity is predictable. Varying the magnitude of the
viscosity by adding a further random component of velocity appears therefore

a simple possibility,

II.7 THE ROLLING-UP OF A VORTEX SHEET

Previous results indicate that the CTIC method, coupled with
Euler's modified method for the integration of the equations of motion, is
a satisfactory device for the computation of flows of point-vortices.
Intrinsic viscous effects are non-existent in comparison with integration
error effects, when realistically large time steps and reasonably small
cell sizes are employed. The criterion [ 2.80] is useful as an indication
of the type of behaviour that may be expected for a particular choice of
the parameters, although the connection between the problem at hand and
the problem of the disk may not be a direct one.

The problem of the rolling-up of a vortex sheet (Westwater's
problem) was finally considered, with two purposes in mind: firstly, to
apply the CTC method to a geometrically—differentlproblem presenting the
added complexity of vortices of different strengths and, secondly, to assess
the potential of the cloud discretization approach, as opposed to the

classical "line" discretization used by Westwater.

II.7.1 Westwater's roll-up problem

The trailing vortex sheet that develops behind an elliptically-

loaded lifting surface may be considered as essentially two-dimensional far
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enough downstream. The problem reduces to the computation of the self-
induced motion of an initially straight vortex segment along which the

vorticity is distributed according to the relation

w(x) = 2Ux(22-x2)" @ [2.84]

in a reference frame where the segment lies on the axis y = 0, over the
interval -2 < x< & . U is the constant speed of the wing that generates
the vortex sheet.

In a conventional PVA approach, the continuous sheet is divided
into an even number of equal intervals; equivalent point vortices are then
placed at all interval mid-points, and their subsequent motion followed.
The geometrical line that connects the successive vortices is regarded as
a suitable marker for following the deformation of the vortex sheet. The

circulation of the vortex located at X = X is computed as

xa+A/2
B 2UE dE
K(Xa) = J m ] [2.85]
xa—A/Z

A being the distance between adjacent vortices. This integral is evaluated

explicitly to yield
K(Xa) = 2U%(cos 8" - cos 8 ) [2.86]
where 6t and ©  are given by the relations

£ sin 6+

x + A2
o
[2.87]

% sin 6 x - A2 -
o

This discretization scheme was employed to define the initial configuration

of the vortices in the following CIC analysis. Five calculations were
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carried out with the values of the parameters NV (number of vortices),
N (cell size parameter) and At* (adimensional time step) given in the

table below.

Run NV N6 At*
1 120 15 .001
2 120 149 .001
3 120 1499 .001
4 240 14999 .001
5 120 14999 .0005

The computatibn cell size was chosen here as § = A/NG and the time made
dimensionless using the velocit? U and length 2. All runs were conducted
with U = & = 1. Results are presented in Figures 15a to 15c. All observed
flow features agree fully with those obtained by Moore (1971). A chaotic
trend in the motion of the vortices emerges rapidly, accompanied by
physically unacceptable distortions of the geometrical - and supposedly
material - line that joins the vortices. There is evidence of the development
of a "Kelvin Helmholtz" instability by which neighbouring vortices tend to
agglomerate and henceforth evolve as "twin" vortices. This instability
originates in the rolled-up portion of the sheet and propagates rapidly
towards its centre. The behaviours of the Hamiltonian and of the quantity

NV
I = % Ku(xg + yé), depicted in Figures l6a and 16b, confirm that the
accuchy of the method is easily controlled. The Hamiltonian is seen to be
more sensitive to change in values of the parameters than the other invariant;

this justifies the choice of Hamiltonian as a suitable indicator for the

accuracy of the computation.
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Failure to model the continuous flow stems not from the computing
method; indeed, it is known from Moore's study that the discretization
itself is responsible for the anomalies observed. In a recent work, Fink
& Soh (1978) have convincingly demonstrated tha£ the PVA, as anticipated
by Moore, does not yield a complete discretized form of the integral
equation that describes the motion of the continuous vortex sheet.
Additional terms that become necessarily large must be taken into account,
and radically affect the flow pattern. One is led to conclude that the
conventional PVA used in the vortex sheet roll-up problem is clearly
inadequate. The idea of adopting another type of discretization, based

on the cloud discretization concept, is explored in the next section.

1I1.7.2 The Cloud Discretization Approach

Westwater's analysis, in its classical formulation, bears little
relation to the physical problem. The wing-tip vortex system generated by
a moving aircraft has necessarily a finite thickness; furthermore, the
action of viscosity diffuses the vortex sheet which soon loses the sharpness
of its initial definition. These physical arguments suggest that the sheet
may be validly discretized using several superimposed layers of vortex
filaments that confer a small, but finite thickness to the discretized
system. The evolution of the configuration of vortices describes the motion
of the sheet in a cloud-like manner, and must be interpreted in the
appropriate, average sense (see Section II.3). 1In this coarser description
of the flow, the question of determining the exact geometrical deformation
of the vortex sheet cannot be clearly answered; other global flow features,
however, like the speed of the sheet mid-point, or the rate at which
vorticity enters the spiral, are likely to be well approximated.

The cloud discretization idea was tested on the roll-up problem as
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follows. The sheet was discretized as the superposition of several layers
of equidistant vortices. Three cases were considered, as shown in the

table, where h represents the distance between layers.

Run NV Ny At* h/A Layers
6 120 14999 5 10 ¢ 0.5 2
7 120 14999 5 10 % 1.5 2
8 120 14999 5 10 *® 0.5 3

The value of the circulatioﬁ at a given abscissa was computed according
to[2.86] & [2.87] and divided évenly between all vortices located at that
abscissa. Runs 6 and 7 were conducted with two layers differently spaced
and run 8 with three layers.

Figures 17a to 17c present several configurations of the vortex
system. The geometrical line linking successive vortices has been
deliberately omitted to convey the impression of a cloud that must prevail
when interpreting these figures. The occurence of an orbital "Kelvin-
Helmholtz'" instability is still visible in the elongated parts of the
spiral, where vortices issuing from different layers show a clear tendency
to pairing. The instability is less pronounced for the higher ratio h/A,
and is hardly noticeable for the triple-layer discretization. This
improvement can be attributed to the fact that vortices are being fed into
the spiral from each layer alternatively, more uniformly in the three-layer
case than in the two~layer one. This leads to an increased definition of
the outside arc of the spiral and the inhibition of the tendency toward

"vortex satellisation" by the improved balancing action of the local
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influences. Examination of the behaviour of the two invariants (Figures
16a and 16b) confirms that the accuracy of the computation is better than
that of the most accurate single layer discretization (i.e. runs 4 and 5).
The behaviour of the sheet was followed over a longer period in the

case of the triple layer discretization. Figures 18a and 18b depict flow
configurations after 3200 and 5200 time steps respectively (t* = 1.6 and
t* = 2.6). It is interesting to note how accurately the invariance is
preserved by the CTC computation after long time intervals; after 5200

time steps, one recorded the ratio values

G _ -
= = 1.000021 ; g= = 1.000256.

o

I1.8 SUMMARY

The central purpose of Chapter II is to present the numerical method
used in this work to compute the temporal evolution of two—dimensional,
rotational flow fieldg; this method is an application of the point-vortex
approximation.

A novel point-vortex tracing algorithm has been developed, in which
the flow field is subdivided into a grid and vortices are always located
at the centres of the cells. In the spirit of "centre-to-centre' (CIC)
calculations, no attempt is made to try and track vortices exactly; flow
features are determined in a statistical sense, as averages over varying
initial conditions, that is, over several '"realizations" of the corresponding
continuous problem. This point of view has been termed the "cloud
discretization approach". Attention is drawn on the existence of invariants
in two-dimensional vorticity fields, and to their utility for monitoring the

accuracy of point-vortex calculations. In particular, the evaluation of the
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numerical effects on the energy invariant (the Kirchhoff function or
Hamiltonian of the system) appears as a crucial aspect of the CTC method.
The properties of the CIC méthod have been thoroughly investigated
on the basis of the problem known as Rankine's vortex. The essential
conclusion from the results obtained is that the combined effects of the
basic characteristic parameters (cell size and time step) are fully
understood; these effects may be quantitatively predicted in terms of their
influence on the energy invariant. The importance of the choice of the
numerical integration procedure is also demonstrated. The performance of
the CTC algorithm and the relevance of the cloud discretization approach
are illustrated on the problem of Westwater, the rolling-up of an
elliptically loaded vortex sheet. An attractive feature of the CTC scheme
is without doubt its simplicity, which allows the nature of the errors
resulting from the various approximations to be explored relatively easily.
The centre-to-centre method may well constitute a simple answer to many
problems connected with the point-vortex approximation. The remarkable
lack of sensitivity of integral flow quantities to large changes in cell
size - of itself an intriguing property — strongly suggests that the use of
complicated stratagems to remove the singular character of the point-vortex
velocity field (e.g. locally diffusing vortices, Kuwahara & Takami, 1973)
cannot be seriously justified in comparison with the simple vortex-relocation
technique of the CTC method. On the other hand, the necessity of employing
an accurate scheme for the integration of the equations of motion has
implications that must be considered in any point-vortex tracing scheme.
Finally, the ability of the CTC method to preserve all invariants
of the motion presents advantages that cannot be claimed by other available
techniques, in particular with all methods where arbitrary amalgamations are

forced upon the vortices, leading to unavoidable discontinuities in the
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value of the invariants. The removal of any ad-hoc mechanism that controls
the amalgamations of vortices is without doubt another satisfactory aspect
of the method.

The proposed computation method allows a very significant saving in
computing time, since the velocity of any one vortex becomes a function of
the integer number of x and y - spacings; the function values may be
tabulated prior to any computation. Although the resulting algorithm is
faster than most other "summation algorithm" methods, it does not match the
computing speed of Fast Poisson Solvers. It is likely, however, that a
combination of the CTC method and a Fast Poisson Solver or a Fast Fourier

Transform technique would provide an even more efficient computing code.
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III.1 INTRODUCTION

In many free turbulent flows there is a suggestion that some features
arise from the properties of a Potati&nal but Znviscid flow. This is the
case for vortex shedding at high Reynolds number, and probably for the plane
mixing layer which appears to be dominated by a quasi-two—dimensional, large-
scale structure (Brown & Roshko, 1974). Recent results (Browand, 1978;
Wygnanski et al, 1978) confirm the large transverse correlation scales of
these structures.

The motion pictures of the mixing layer (Brown & Roshko, 1974) leave
little doubt that the mechanics of the mixing layer is dominated by the
development and interactions of roller-like structures which originate from
the Kelvin-Helmholtz instability of the initial vortex sheet. This impression
is supported by various experimental observations. Browand & Weidman (1976)
find, at moderate Reynolds number, an essentially two—-dimensional flow, in
which the mixing layer grows by the pairing of large structures; the flow,
whilst not having the three-dimensional velocity fluctuations distribution
of the higher Reynolds-number flow (i.e. ;:E z ;TE), exhibits a Reynolds-
stress similarity. Konrad (1979) determined a critical threshold Reynolds
number beyond which the small-scale turbulent energy experiences an increase
of at least one order of magnitude, without significant changes in the
estimated growth rate of the layer.

Thus, through in many turbulent flows one deduces from the mean
profiles that the flow is relatively viscous to account for the stress, it
is of interest to ask how much of this stress results from a large-scale
unsteady motion of either an “nviscid rotational fluid, or a "turbular"
fluid (after the terminology of Liepmann), i.e. one in which a secondary

small-scale motion can be considered to act like an enhanced viscosity, yet
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of much smaller value than the eddy viscosity deduced from the mean profile.
The mixing layer is the simplest flow in which to test this idea, and
possibly the one where, if at all, it is likely to be true. It is worth
noting that sub-grid scale models of turbulence rely on this possibility
(Clark et al, 1977).

In any case, and whatever its connection to conventional turbulence,
it seems very likely that the sensitivity of normally turbulent flows to
external forcing - observed in jets (Moore, 1977; Acton, 1977) and mixing
layers (Oster et al, 1978; Abell, 1977) - is related to the rotational
inviscid behaviour of such a flow. Similarly, the sensitivity to initial
conditions (Batt, 1975), the role of feedback (Dimotakis & Brown, 1976),
the resonances in turbulent flows past a cavity and more general acoustic
couplings and resonances of turgulent flows (Ho & Nosseir, 1978) appear to
be explicable in terms of large structures and their dynamics. Furthermore,
the strong effects of density ratio on the entrainment ratio (Brown, 1974)
or the effects of streamline curvature in the mean flow (Bradshaw, 1973)
seem likely to arise through their action on the large~scale motion.

There arguments appeared sufficient to motivate a study of the
dynamics of the large-scale structure in mixing layers, using an unsteady,
two~dimensional calculation. In all problems considered in this work,
there is no suggestion that such a model could do more than shed light on
some properties of the large-scale structure. There is obviously no vortex
stretching and, for an inviscid fluid, no dissipation, both of which are
crucial in the usual energy cascade argument., The intriguing question is,
how important are vortex stretching and dissipation in the evolution of the
structure, in the generation of the stress, and in the response of the
layer to perturbations. The usefulness of a model without these two

physical mechanisms does not seem a priori impaired; their absence may
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indeed prove as illuminating as the inclusion and complex interactions of
several effects of unknown relative significance.

The two-dimensional evolutions of inviscid and viscous vortex sheets
were modelled by following the positions in time of 750 point vortices
initially distributed in a thin layer; the vortices were tracked using the
CTC method. The essential aim of this chapter is to present the results

that were obtained in these calculations.

III.2 THE TURBULENT MIXING LAYER IN THE LABORATORY

It is appropriate to begin this chapter by a brief description of
the turbulent mixing layer as it is observed in experimental facilities,
such as the one described by Brown & Roshko (1974). The arrangement used
in the laboratory to generate nominally two-dimensional turbulent mixing
layers has the idealized geometry sketched on Figure 19. Two parallel,
plane streams of respective uniform velocities U; and U, are separated
by a rigid, semi-infinite plane aligned in the direction of the flow. The
streams come into contact at the edge of the plane and are then allowed to
mix freely. The fluids may or may not be different; in the former case,
the fluid densities are denoted by the symbols p3 and psp .

The major events in the evolution of "conventional" turbulent mixing
layers may be summarized as follows. The vortex sheet emanating from the
splitter plate suffers an instability associated with the inflection point
in the velocity profile. This instability is essentially inviscid and in
its early stages, is well predicted by linear stability theory. As the
instability amplifies, non-linear interactions develop and the vortex sheet
rolls up into classical "Kelvin-Helmholtz" billows, loosely interpreted on

the basis of visualizations as 'concentrations of vorticity". These
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billows interact and are themselves subject to internal instabilities,
viscous diffusion and external perturbations. These mechanisms are central
to the transition process to a fully turbulent state characterized by
three-dimensional velocity fluctuations. That this "turbulent chaos" may
be, under certain conditions, replaced by (or indeed constituted of) a
coherent essentially organized, two-dimensional structure is demonstrated
(suggested) by the shadowgraphs of Brown & Roshko (1974), taken in high
Reynolds-number mixing layers. However, whilst several investigations
(Dimotakis & Brown, 1976; Oster et al, 1978; Wygnanski et al, 1978) have
reported the existence of the structure - and confirmed its large transverse
correlation scales (Browand, 1978) — the structure has not been identified
in a number of studies (refer to Chandrsudaet al, 1978). These apparent
discrepancies bring about essential, partly unanswered questions. Should
the large-scale structure be regarded as a relic of the instability mode

of a laminar shear layer, which has persisted due to favourable conditions?
Does the structure develop if the initial boundary layer is transitional or
fully turbulent?- More precisely, what is the importance of the initial
conditions, specifically on the existence of the structure, and, generally,
on the development of the layer? Similarity considerations and the
occurence and uniqueness of an asymptotic state must also be reexamined

in terms of the existence of a persistent, apparently deterministic, large
structure.

These fundamental issues have triggered a renewal of interest for
the turbulent mixing layer, as witnessed by the numerous contributions
recently published on the subject in the literature (see for example the
proceedings of the conference on the "Structure and Mechanisms of Turbulence",
Berlin 1977; Springer-Verlag, Fiedler editor, 1978). Despite these efforts,
the problem of turbulence in the mixing layer - an apparently "simple"

flow - remains theoretically unresolved; this reflects the general inability
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of present analytical theories of turbulence to cope with real flow situations.
A study of the evolution of vorticity layers, in which the essential charac-
teristics of the large-scale structure, two-dimensionality and Reynolds-
number independence, are imbedded, appears therefore well worth while in

the context depicted above. The following sections show how the problem was

tackled in the scope of the point-vortex approximation.

ITII.3 POINT-VORTEX MODELLING OF TURBULENT MIXING LAYERS

III.3.1 Periodic Vorticity Layers

The "turbulent" character of the mixing layer in an inviscid, two-
dimensional fluid was first recognized by Kadomtsev & Kostomarov (1972).
Their numerical, point-vortex séudy of the spatial problem was, however,
unable to uncover the existence of a large-scale structure. (It is in fact
interesting to note that they identify the turbulent character of the layer
by referring to the absence of a "regular chain of vortices" in the computed
flow configurations.) The lack of evidence of an organized vortex structure
in their computations may be attributed to various factors. There is,
first, the poor resolution in the definition of the vorticity field
connected with the limited number (100) of vortices used in the discreti-
zation of the free shear layer. The presence of an absorbing wall - normal
to the direction of flow and placed some distance downstream of the
"splitter plate" edge, mnecessary to limit the extent of the computation
interval, introduces boundary .effects of unknown importance.

Finally, and more importantly, there is the possibility that the technique
employed for the shedding of vortices at the partition trailing edge was
critical to the subsequent layer development (see Clements & Maull, 1975).

These uncertainties illustrate the intrinsic difficulties associated with
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the modelling of the spatial problem. In order to avoid the complexities
brought about by the presence of boundaries, consider the following problem
(refer to Figure 20).

Imagine an observer attached to a Galilean reference frame moving

downstream with a convection velocity U, = %(U;+Us). This observer sees

M
the growth with time of a turbulent shear layer driven by a velocity
difference AU = U; - Uy . The mixing layer flow, viewed in this different
perspective, can be idealized as follows. Two half-planes, filled with the
same fluid or with fluids of different densities, are separated by a
membrane set on the axis y = O. In both half-spaces, motion is taking
place with uniform velocities, U; = AU/2 in the upper half plane,

Uy = = AU/2 in the lower half-plane. At some initial instant, the membrane
is suddenly removed, creating an unstable interface, effectively a vortex
sheet of strength AU per unit length, which will deform and eventually
become turbulent, for any small initial perturbation in the case p] = p2

or spontaneously for p) # p2 . This idealization defines the temporal
problem, The modelling of the temporal problem amounts, therefore, to the
computation of the self-induced motion of an infinite, perturbed vortex
sheet.

Computations of finite-length vorticity layers suffer from a major
disadvantage: the ends of the vortex sheet roll up, resulting in strong tip
vortices that induce rapidly unacceptable distortions of the whole velocity
field. It is more satisfactory to consider infinitely-periodic vorticity
layers, generated by the cyclic repetition of a layer of finite length.

Periodic vorticity distributions wp(x,y,t) satisfy the requirement that

wp(x,y,t) = wp(x t nL,y,t) (= 1,2,3,...) , [3.1]

L being the length of the basic definition interval.
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It is clear, in view of [3.1] and [1.54] - [1.55], that row- f
vortices provide a suitable means of discretizing periodic vorticity fields.
The motion of a cloud of NV row-vortices initially at rest in a given
configuration ( (x;,fg;K;) specified) is obtained by numerical integration
of equations [1.56].

The simplicity of the summation algorithm for row-vortices is, in
conventional tracing methods, heavily penalized by the computation load
that arises from the (costly) evaluation of the hyperbolic- and circular-
function terms in formulae [1.56]. The CTC method drastically reduces
the computing effort by allowing the pretabulation of these terms. Distances
between vortices in the CTC method are necessarily multiples of the cell

size, so that

XaB

§x J

6x(Ja - JB) B

[3.2]

YaB

sy(1, - I 8y I

B) af

The integer JaB (IaB) takes any of the possible values 0,1,2,...,NG-1
(MG~1), if the computation grid has NG columns and MG rows. The

functions sin g X (cos i X ) and sinh kol ¥ (cosh o Y take
a “of a “of a “of a ‘o

g)
accordingly any of NG(MG) possible values, which need be computed only
once and stored in a table for further, quick reference (typically

NG & MG . 5000). This procedure reduces the central processing time by a

factor of the order of 10 (CDC 6400 computer).

ITI.3.2 The initial flow configurations

Two of the serious criticisms that have been made about vortex
modelling studies of turbulent flows refer to the lack of "predictive

ability" of the method, and to the questionable validity of its "post-
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dictions" in view of the arbitrary choices for the vortex interaction law

and for the method of simulating diffusion effects (Saffman, 1977). A

constant concern in this study has been not only to reduce the arbitrariness

and uncert;inties of the method by avoiding the use of ad hoc computation

stratagems, but also to try and assess the predictive ability of the PVA
by minimizing the amount of information fed into the model about the
phenomenon to be investigated. The choice of appropriate, realistic

initial flow configurations is an important step of the modelling process

and was guided by the following considerations.

It is argued in linear stability theory that arbitrary perturbations
(of a basic flow configuration) may be viewed as the superposition of
"normal modes" and that stability characteristics are, consequently, suitably
analyzed in terms of elementary Fourier components (see for example
Chandrasekhar, 1961). This approach has prevailed in most point-vortex
studies of the infinite vortex sheet problem, where the initial configura-
tion consists of a sinusoidal perturbation (Rosenhead, 1931; Zalosh, 1976;
Acton, 1976). An alternative point of view has been adopted here. Initial
configurations are obtained by randomizing the positions of the vortices
within a narrow strip along the interface, as shown on Figure 21. The
random element in the initial conditions is introduced at two distinct
levels. Initializations of the first type - 'type-I flows" - are charac-
terized by a uniform circulation per unit length: the randomization only
affects the lateral positioning of the vortices. Initial conditions of the
second type - "type-II flows'" - are fully random : they present non-
uniformities in circulation per unit length as well as in the lateral
positioning of the vortices.
Randomized vorticity distributions provide a reasonably unbiased

starting point to investigate the possible universal character of vortical
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Figure 21: Typical random initializations of vorticity layers,
showing 15 segments out of the 250 that are
distributed over the interval L. The top three
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large structures: the Fourier components of the perturbation fields at
flow initiation cover, in principle, an extended range of wavenumbers.

It is therefore interesting to consider the outcome of the instability
mechanism in the light of linear instability theory. A further justifi-
cation for the choice of initial conditions is found in the observation
that random distributions of vorticity emerge spontaneously from initially
uniform, unperturbed vortex sheets under the action of viscosity (this
action being equivalent to random displacements of vortices in the
discretized system).

In selecting these initial conditions, it also seemed important to
have very large aspect ratios (length of cyclic interval L : initial
vorticity thickness 6;) to try\and avoid substantial effects due to the
periodic interval. The use of a large number of vortices was necessary to
achieve a reasonable visualization of the vorticity regioms. Specific
type ~I and type -II flows were generated as follows. The cyclic interval
was divided into 250 equal lengths. In type -I flows, three vortices were
placed at the middle of each of the 250 segments (to give the uniform
circulation per unit length); their vertical positions were chosen from
14 possible locations in a total height equal to approximately one-half of
the segment length. In type -II flows, the 750 vortices were allocated in
a fully random way over the 250 segments and within a height of 1/4 of a
segment length. A standard random number generator was used to obtain
the uniformly distributed random numbers, Two type -I and thfee type -II
flows were studied; the layers were followed until their aspect ratio

dropped at the most to a value of 3 (typically, not less than 10).



_83...

ITTI.3.3 Selecting time step and cell size

The choice of time step was guided by considerations about allowable
changes in the energy invariant of the system of vortices during a complete
calculation. Order of magnitude estimates for AH/H. may be obtained from
a generalization of the results obtained for the test case of Rankine's
vortex. This required interpreting the adimensional time previously used,
t* = two/2 (see section II.5.3), in terms of the characteristic rotation
period T = dz/y of neighbouring vortices (d is the average distance
between the vortices; Y is the vortex strength); clearly t* = t/27.
Observing that the calculations are to follow the layer development over
a range of aspect ratios going from an initial value L/G; ~ 200 to a
final value L/Gi -~ 20, and anticipating a temporal growth for the

vorticity thickness of the order of

Em. -E. = [3'3]

one may estimate the duration T* of a complete computer run to be

approximately
o BTC A L - I 58, [3.4]
= w ) TAU * AU '
Using the two relationships
NV 42 = a; L ;5 Y = LAU / NV, [3.5]
one obtains the estimate
™ .58 /s [3.6]
= w w )

typically, using the representative figures given above, one obtains

T* = 50. The time rate of change of the Kirchhoff function may reasonably
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be expected to be of the order At*3/2 ; over the time interval T*, the

total change in H 1is approximated by

AH

T °N At*4/2 [3.7]

where N is the number of time steps. Limiting the number of time steps

to 1500 by choosing At* = 1/30 leads to a total variation in H of the

3

order of 2 10 °; this choice of At* was retained as an adequate

compromise between accuracy and computation cost.
The choice of cell size is to some extent arbitrary; it affects
only the size of the arrays for the tabulated circular and hyperbolic

functions, and the magnitude of the implicit viscosity v From [ 2.30]

CTC®

and [ 3.5], the expression for Vore 1S readily found to be Vere =

62 AU / 24 6; At*. A characteristic Reynolds number may be formed:

Re = 29 8w o 45 s° ac*/e2 [ 3.8a]
Vere wow

and rewritten, using 6 = L/NG, as

_ 2 S0 )
Re = 24 At* N2 (4) (). [ 3.8b]
Selecting a typical value NG = 8250 (and using At* = 1/30), one estimates

the initial and final Reynolds numbers to be
Ré = 1360 Rfa = 13600 . [3.9]

Reynolds numbers recorded in the actual computations ranged from
Ré = 1500 to R£ x~ 75,000, With this value of the viscosity, the diffusion
contribution to the total growth of the layer compared with that of the

inviscid processes is estimated to be 1% only; in fact, changes in the

Kirchhoff function were of the order of 67 after 1200 time steps, a variation
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that can be attributed to viscous diffusion, although not readily predicted
from the results for Rankine's vortex.

Before discussing various aspects of the computed flows, it is
opportune to examine the relation of the present study with that of Acton
(1976) , and to outline, in particular, the divergences that stem from two,

essentially distinct approaches of the same fundamental idea.

II1I.3.4 Acton's mixing layer model

Initial steps in the modelling of the (turbulent) shear layer
large eddies were taken by Acton (1976) - work hereafter referred to as
"reference A" - who proposed a direct extension of Rosenhead's approach
to the problem of the sinusoidal vortex sheet (1931; see section II.2.2).
The initial configuration analyzed by Acton consists of two sinusoidal
wavelengths, represented by 96 equi-strength vortices evenly distributed
in four layers along the waveform (see Figure 22a). The geometrical
parameters of the arrangement are the layer local thickness A, the wave
amplitude A and a length 6 that corresponds to a vertical offset
distance between the two wavelengths. The study examines the influence
of the parameters A/L, A/L and §/L on the flow development (L = 2X is
the length of the cyclic interval).

It is interesting to consider the significance of that approach in
the light of the present work, not only in view of the differences in the
numerical schemes used for the tracing of the vortices (see below), but
also in terms of the types of initializations chosen to model the two-
dimensional shear layer. The numerical scheme employed in reference A to
trace the vortices combines Euler's integration method with the stratagem

of finite core vortices, which removes the singular character of the
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discretization (proposed by Chorin & Bernard, 1972; see section II.2.2),

It is particularly illuminating to compare the outcome of a CTC
analysis (using Euler's modified method and no explicit numerical artifice)
of the sinusoidal, two-wavelength problem with that of the method of
reference A (*). A typical example of comparative runs is proposed in
Figure 22, The flow configurations in the right-hand side column correspond

to run 1 of reference A (A/X = 0.15; A/X = 0.10; &/x = 0.0375;

_ At Uy
X

At* 0.0125). The left-hand side flow patterns were obtained by a
CTC analysis using a square cell (§/A =5 10_4) and keeping the same
value for the time step At*. The obvious discrepancies that emerge, as
the computations proceed, lead rapidly to fundamentally dissimilar flows
(see patterns (h)). The accuracies of the numerical procedures are compared
in Figure 23 in terms of Hemiltonian conservation. The pronounced loss of
invariance (807% over the time interval considered), imputable to the
numerical method used in reference A, is clearly reflected in the diminishing
compactness of the vortex clouds and is a direct consequence of the 'bulk
diffusion" effect characteristic of Euler's integration method. One is
therefore led to conclude that the validity of Acton's modelling appears
questionable, and that some of the results given in reference A may
require a careful reassessment.

The choice of a simple sinusoidal initialization appears justifiable

in an attempt to isolate the basic parameters that influence the rolling-up

process: one may, however, anticipate that periodicity (i.e. boundary)

(*) The flow configurations of reference A were used to choose the
parameters of a CTC computation based on Euler's method, This
procedure was found to give results in close agreement with those of
reference A, and was consequently retained as a satisfactory substitute
for Acton's calculation method. Acton's method could not be duplicated
exactly due to a lack of knowledge of the core radius value used.
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effects become non-negligible as soon as the two vortex clouds that emerge
from the sine waves amalgamate into a single central structure: this is
likely to seriously restrict the time interval over which the computation
may be taken as being 'realistic'". This argument is supported by the
anomalous behaviour of the growth of the layers at the late stages of the
computations (see reference A, Figure 17). In this respect, it is
significant to point out that, in the present study:
(a) all layers possess an extremely large initial aspect ratio (L/G; ¥ 250);
(b) all computations terminate when the flow patterns consist of only a
few structures or, equivalently, when the layer aspect ratio drops
down to values in the range of 10 to 3. This order of magnitude 1is,
in contrast, typical of the “nitZal configurations examined in
Reference A; \
(c) the ability of witnessing as many interaction events as possible is an
essential feature of the present investigation; this capability is not

included in the computations of Acton, which concentrate on a single,

particular pairing event.

I11.4 THE INVISCID VORTICITY LAYERS

IIT.4.1 Computed Flow Patterns

Qualitatively, the five separate inviscid flows developed similarly.
The striking similarities between the computed flow pattermns and the
experimental flow visualizations of turbulent mixing layers (see Winant &
Browand, 1974) leave little doubt that the large—scale structure is
fundamentally a two-dimensional, inviscid phenomenon. The comparison with

the largely two-dimensional flow of Winant & Browand must naturally allow
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for differences in initial conditions and the minor dissimilarity between
the spatial and temporal problems,

A typical sequence of vorticity configurations can be seen in
Figure 24; it includes 13 frames extracted from the evolution history of
a random layer with initially-uniform circulation per unit length (type ~I
flow). The emergence of clusters of point-vortices is manifest in the
very early stages of the evolution of the layer. Once established, fhese
formations evolve as distinct entities that eventually interact to generate
larger vortex formations; the interaction pattern that results may be
described as follows. The most frequent interaction events consists of
a pairing process, by which two neighbouring vortex clouds amalgamate,
giving birth to a similar, identifiable structure of larger dimensions;
it is easy to recognize several\such pairing events by inspection of
Figures 24. The pairing originates as a motion of two neighbouring
structures toward each other, indicating a tendency to "reciprocal
satellization". This orbiting motion, reminiscent of the basic behaviour
of two vortices - both of which possess a positive (negative) circula-
tion - is, however, impaired by a stronger propensity to amalgamate,
whenever the structures become sufficiently close; these structures
subsequently lose their separate identities and merge into a larger
vortical cloud. Moore & Saffman (1975) have suggested that the interaction
event may take the form of the tearing of a structure "trapped" into the
straining field of two neighbouring ones; this "amalgamation by disinte-
gration", occurringwith no evidence of orbital motion, does not appear as
a fundamental interaction mode in the layers considered here. The reason

for this has been attributed by Saffman (1977) to the inadequacy of the

two-dimensional model which decreases a priori the level of turbulent
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entrainment. In this context, it may be significant to mention that the
only "tearing" event observed occurred for a particular initialization
only, in an early Euler method - CTC computation, i.e., using a scheme
that introduces spurious, larger "diffusion'" effects (not shown in the
figures).

A motion picture film, covering the complete evolution of a layer,
was made using a digital colour display monitored by the PDP 11/34 computer
facility in the Department of Mechanical Engineering. Plate 1 shows a
reproduction of a photograph of the screen displaying simultaneously two
frames of the evolution of the vorticity field. 1In this film, the
development of the layer is seen as the repetitive occurrence of the pairing
process (*), which eventually leads to the ''wrapping up" of all vortices
into a single cloud. The progressive disappearance of structures is clearly
depicted in a "histogram—plot'" of the type presented in Figure 25, These
plots illustrate the temporal evolution of the function h(x) = I Ka(x)
obtained by summing the circulation of all vortices having the saie
abscissa. For equi-strength vortices, the plots may be viewed as the
frequency distributions of the abscissae of the vortices. The evidence of
the amalgamations of vortices into distinct well separated clouds is
unmistakable; the pairing process may also be inferred by inspection of
these histograms. One of the interesting features of h(x) 1is the
development of large gaps; they indicate the absence of vortices in the
regions linking adjacent vortical cores. The 'braids" between structures

are usually (but wrongly) present if Euler's integration scheme is

employed.

(*) It is clear from the motion picture that interactions involving
several structures and much more complex than pairings do occur
in the flows; pairing, however, appears as the most frequent
interaction mechanism in the layer.



Plate 1 : Two late configurations in a type-I layer.

(Frames extracted from computer motion picture)
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On the basis of the above discussion, the model appears to
accurately predict qualitative aspects of the flow. Quantitative
comparison between the model estimates and experimental evidence is the
object of the following paragraphs, beginning with the growth histories

of the sample flows.

I1T1.4.2 The growth of the layers

I1I1.4.2.1 Theoretical background

The self-preservation hypothesis, applied to inhomogeneous spatial
mixing layers, asserts that, at sufficiently large values of Re = xUM/v,
the streamwise velocity distribution U(y) and the density field p(y)

exhibit mean profiles of the form

U = -
U_l'“ FU. (ﬂ, r’S)
0 [3.10]
— = F '
o1 ) (n; r,s)

where n = y/(x-X%o0) is the similarity variable,

r = U2/Ul is the velocity ratio,
and s = pz/pl is the density ratio.

Layers with mean velocity (density) profiles that scale like [ 3.10] must
grow linearly as they develop downstream. Denoting by Gu(x) (Gp(x)) an
estimate of the layer thickness based on the velocity (density) profile,

one predicts the dependence

Gu(x) (x~%o) Cu (r,s)

[3.11]

Gp(X) (x—%o) Cp (r,s)
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where C, and Cp are constants for any fixed choice of values of r and s.
Examination of the layer spreading rate provides therefore a simple means
of testing the relevance of the self-preservation arguments (note that a
linear spreading is a necessary but not sufficient condition for self-
preservation to be established). Knowledge of the functional dependence of
the spreading rates C (r,s) on the velocity and density ratios relies
essentially on experimental investigation. The spreading rate function
Cw(r) for the vorticity thickness (*) of homogeneous layers (s=1) has
been determined in various experimental situations. Presently available
data suggest a possible linear dependence of Cw(r) on the velocity
difference parameter A = 2AU/UM; at small values of A, the Abramovich-

Sabin relationship appears to hold:

c () = (=K, [3.12]

w

where Kw is a constant. Data are well represented, at small X, with
K, = 0.181. Alternative functional forms of the spreading function are
discussed at length by Brown & Roshko (1974).

The spreading of spatial layers is perceived as a growth with time

in the corresponding temporal problems. Dimensional considerations dictate

that temporal layers grow according to the law

T
Gw(t) = (t-to) AU Kw [3.13]
where Kz is a constant. Using the Galilean transformation (t-to) =
- i = = % 1 0
(x x°)/Uc with UC UM v(U1+U2) yields the equation
(*) The vorticity thickness § is defined as § = iAU/Gﬂg the
y 5y’ MAX®

sign being selected accord%ng to that of the velocity
gradient.
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T
w

_ 1-r
= (=) % [3.14]

which is identified as the Abramovich~Sabin relationship. The expected
value for Kz is therefore Kz = Kw/2 ~ ,09. Note that this Galilean
transformation is only appropriate for AU/UM small,

The growth of the computed layers was determined from the change
with time of the vorticity thickness; this was preferred to the visual
thickness whose determination appeared largely too subjective. The
vorticity thickness was determined from the mean velocity profile, fitted
with a high-order polynomial over its central portion (to avoid the long
flat tails of the profile far from the layer). Typically, average values
were computed o%er 75 stations uniformly distributed over the interval
length; 7th-order polynomials were fitted to averaged data over an interval
in the transverse direction equal to 1207 of the visual layer thickness.
This procedure was found to yield smooth velocity profiles and results
fairly insensitive to changes in the parameters. Occasionally, for very
thin layers, some uncertainty could not be avoided in the estimation of Gw.

The thickness may also be determined from the probability distribution,

p(y), of the number of vortices, using the relationship

o N [3.15]

W P(Vyax

Expression [ 3.15] may be established as follows. Consider a layer of
period L, discretized by equi-strength point-vortices. Be n(y)dy the
number of vortices located in the strip (y,y+dy); they carry a circulation
Y(y) = yn(y)dy, where y is the individual vortex strength. Compute the
circulation around a strip of height dy which covers the cyclic interval

L. Clearly, one has y(y) = - L %% dy



_93_

and rearranging:

5 & = -1 Wopydy , [3.16]

where p(y) = n(y)/NV 1is the probability distribution function for the
+o

number of vortices, and NV = J n(y)dy 1is the total number of vortices,
-c0

Integration of equation [3.16] yields directly

r (v
u(y) = = =5 J p(dy + u(-=) , [3.17]

where T = y NV is the total circulation, The quantity T/L may be

expressed in terms of the velocities at infinity:

+ = u(=) - uGe), [3.18]

and [ 3.17] may be recast as

y [<¢]
u(y) = u(+=) J p(y)dy + u(~-x) J p(y)dy. [3.19]
-0 y

Expression [ 3.19] indicates that the complete determination of the velocity
profile requires, in addition to the shape of the function p(y), that two
independent constants be specified. Restricting the analysis to shear

layers without overall mean motion, i.e. choosing
u(+e) = U u(-») =-0_ , [3.20]

one obtains three equivalent forms for wu(y):

]

'y CO
u(y) =U_ [ J p(y)dy - f p(y)dy ]
- v

[3.21]

= y
u_[1-2 J p(y)dy 1 =1U_1[2 J p(y)dy = 11 .
y -0

Expression [ 3.15] is a direct consequence of equations [ 3.21] and of the
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definition of Gw; for all distributions tested, p(y)MAX is closely

approximated by p(0).

I1T.4.2.2 Computed growth rates

The growth histories of the computed layers are shown in Figures
26, which display the vorticity thickness ratio 6w/6; as a function of
the dimensionless time tAU/G;. Recall that for type I and type II flows,
the initial aspect ratio L/G; is close to 500 and 1000, respectively.
From Figure 26a, it is apparent that the early growth rates for the two
types of initial conditions are very different: type II flows grow nearly
three times faster than type I flows. Despite different random initial
conditions, growth rates of flows of the same type are remarkably comsistent.
Both flow families appear initially to have constant growth rates. For
longer times, however, it is interesting that type I flows maintain an
accurately linear growth until near the very end of the computations,
where departures from linearity are connected with the small number of
structures (which leads to oscillations in the computed thickness), and
also, at longer times, with the effects from the periodic boundary condition,
By comparison, it is obvious that type II flows slowly revert, over these
longer times, to a reduced growth rate. In a primitive attempt to determine
whether or not the growth rate of these flows approached that of type I
flows at very large times, calculations were continued to a point where all
3 layers achieved the same aspect ratio (approximately 10); these layers
were then placed end to end, two out of every three vortices removed, and
the resulting configuration used as an initial condition for a further
calculation. Apart from an initial adjustment in the thickness, this

Mecompound" flow achieved a final growth rate only marginally different from



ib. D

.0

C

]

|bB. @

12h. 0

8R.0

HB. 4

I I T T T
(a)
~ TYPE -II =
e
-
>k
i ~
=
=
'S =
A —
i ADDD
&0
of” EﬁﬁﬂE”Tf”% TYPE -1
g ]
mﬁgbo
12 L | | 1 !
.0 1A-0 ch. 7 30.0 Hp. 0 S@. @ bia. A
T = T Ay / D ()
. T T T T ]
B (b) .
B
TYPE II -
A 2l ;ﬁ
ol <
B a) 0 g_—" ~
A x 0
a /( e =
/‘X B
>z3/xD Q —
&(K/ ° =
R | | | I |
7.0 1.0 chp.8 3.0 4HAR.-@ SPR.B bPkp. @
T =T .. 00U /7 D (7))

Figures 26(a)&(b): Growth histories of sample flows: vorticity

thickness versus time.



_95_

that of the type I flows. By the time this calculation terminates, the
thickness has reached 320 times its initial value (Figure 26c).

While the number of flows that were studied is very limited, it
appears reasonable to conclude that the two types of flows are fundamentally
different. The explanation may well be that, in the type II case, the
random distribution of circulation per unit length on the initial sheet
rapidly gives rise to vortical structures which have wider distributions
of circulation and spacing than those of the type I family. The subsequent
velocity of any structure normal to the sheet is determined by the nett
balance of the opposing induced velocities due to all structures to the
left and to all structures to the right. Now, if the initial distribution
were exactly periodic - with a wavelength A= L/n, then the sheet would
presumably form n identical vortical structures which, in a sense, would
form a final configuration with no further pairing; this periodic array,
however, would be an unstable equilibrium configuration. Randomness seems
crucial to pairing. Since the magnitude of the resultant of the opposing
velocities will in general be greater for random circulation flows than
for uniform circulation flows, the initial transverse velocity of the
structures will also be greater and lead to the more rapid growth observed
in type II flows. This is consistent with the experiment of Oster et al
(1978), in which forcing the shear layer with a pure sine wave produced a
rapid inttial growth as the vortices develop and wrap up the shed vorticity,
but a subsequent limited growth over a significant distance, as the closely
similar neighbouring vortices convect downstream. These observations
suggest that for the iZnfinite vorticity layer, the growth rate depends on
the probability distribution function for the circulation per unit length

scaled by the vorticity thickness. This possibility is a plausible
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explanation for the behaviour of type II flows. For the infinite sheet,
dimensional analysis predicts that the layer should grow linearly; that it
does not for type II flows presumably reflects the significance of the
periodicity in L. For these flows, the circulation per unit length will
tend to become more uniform - Gm/L increasing - as the initially random
strength, small-scale structures combine; a growth rate which decreases
towards that of type I flows may then be expected.

The present results are consistent with the wide variation in the
experimentally found growth rates of mixing layers, and particularly with
the known sensitivity to a tripping device. Differences in growth rate as
large as those between the two classes of flows studied here have not been
found experimentally; yet, a trip will tend to introduce a randomness in
the circulation about any small-circuit near the splitter plate. This
randomness - though not as large as that present in the calculations - may
be responsible for the dramatic change in the spreading rate of tripped
layers., 1In type I flows, the randomness in circulation is introduced
"locally", i.e. on the scale of the spacing between two vortices; on a
scale of several times the initial vorticity thickness, the circulation per
unit length is uniform, and the randomness looks rather like a random
displacement of the vorticity layer. This situation, one expects, models
more closely the usual splitter plate condition at high Reynolds number.
It is interesting to note that the asymptotic growth rate 5w/AU of the
type I flows is close to .08, over a very large increase of thickness
(Figure 26b). This is to be compared with the value .09 inferred from
experimental data and reported in the preceding section.

A prediction which would follow from these considerations is that

a broad~band random fluctuation in time (not space) of the free-stream
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velocity — for example, U1 = Ul(t) - would have a significant effect on
the spreading rate of spatial layers. This may have interesting implications
when considering the possible connection with the effects of mass flux
variations in jets.

Whatever the explanation for the behaviour of the calculated growth
histories, it is clear that different types of initial conditions have a
persistent effect, in these effectively inviscid flows, over time intervals
that appear surprisingly large. A measure of time in the spatial turbulent
mixing layer, proposed by Dimotakis & Brown (1976), scales with the number
of amalgamation (pairing) events undergone by the structures as they
evolve downstream. The number of interactions m(x) that take place over
a downstream distance x 1is given by m(x) = logz(x/lo), where Lo is the
wavelength of the original disturbance. This estimate is based on the
assumption that each pairing interaction doubles the spacing between the
structures. According to this measure, 5 or 6 amalgamations have taken
place during the history of the calculated flows; this is of interest if
one notes that the same number of interactions have occurred by the time
structures reach the farthest measuring station in the Dimotakis & Brown
experiment; in most laboratory configurations, this number does not exceed

’

10 over the full length of the apparatus.,

ITI.4.3 Correlation analysis of the velocity field

The evidence drawn from the analysis of the growth historie; of the
computed flows suggests that the large scale structure of random vorticity
layers may evolve asymptotically towards a universal state, characterized
by a unique, constant growth rate. This tendency is in agreement with

conclusions drawn from dimensional arguments applied to the infinite vortex
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sheet. It is important to collect additional information about the possible
self-similar structure of these layers; it is also interesting to compare
the characteristics of the structures that arise in two~dimensional
computations with these observed in the turbulent mixing layer. This dual
purpose may be fulfilled through the analysis of the correlation functions
of the fluctuating velocity field, as described below.

The asymptotic evolution of mixing layers towards a fully three-
dimensional self-preserving turbulent structure has been reported by various
authors and is substantiated by a large amount of experimental data
(Chandrsuda et al, 1978). The uniqueness of this asymptotic state appears,
however, questionable in view of the evidence that an apparently distinct,
essentially two-dimensional self-preserving state may also develop in
turbulent mixing layers (Dimotaﬁis & Brown, 1976). The possible connection
between the latter type of flow evolution and the behaviour of the present
numerical flows is without doubt an interesting one.

In their experimental investigation of a mixing layer in water,
Dimotakis and Brown examine the behaviour of the autocorrelation function
of the streamwise velocity fluctuations in terms of similarity properties
and initial-conditions dependence. They report that the autocorrelation
functions RUu (1) = < u”(t) u’(t + t) > exhibit the fundamental periodici-
ty that would be expected from similarity arguments. Their results indicate
that the ratio To/“rC , where T, represents the downstream convection
time of the structure (Tc A X - Xof % (U1 + UZ))’ is effectively constant

for all x,U. and U2, for a given velocity ratio r = U2/U1. The average

1
spacing between the structures inferred from their data is found to fall

in the range 3.1 < &/ Gw < 5., Gw being the vorticity thickness of

the layer.
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The autocorrelation functions of the fluctuating velocities of

the computed flows are defined by the expression

ROLB (E; Y t) =< u(';. (X, Y t) u& (x + Es ¥y t) > [3.22]

X

where u& =u, - <u, > represents the velocity fluctuation in the X,
direction (a = 1,2); the angle brackets < - denote the averaging
operation that allows separation of the velocities into a mean value and
a fluctuating part. Practically, the average <g>  of a quantity q (at

a given ordinate and for a given flow configuration) is obtained as the

arithmetic mean

<qa(x ¥, ) > =3 G, = F

x q (xi,y, t) [3'23]

P 2

over samples evaluated at N stations Xy uniformly distributed over the
computation interval,
Similarity scaling suggests that Gw be introduced as a characteristic

length in expression [3.23 ; the dependence of the functions R on space

af

and time is expressed as

E .
R,g (E;"dzw"t)' [3.24]

The functions RaB (E ; *1, t) were computed for a number of flow configu-

=
W
rations. The ordinate of the sampling line, relative to the position of the

dividing line y* defined by the condition U(y*) = 0, was chosen as

y = % Gw ; this locat%on corresponds to the observation stations in the
experiment of Dimotakis and Brown. The velocity components (ul, u2) were
computed at N equidistant stations X, distributed along the sampling

line; average velocity values <u>x, <v>x were then evaluated by formula
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[3.23] . The correlation functions were approximated at M values of
their argument E/Gw (0, AE, 248, .., (M-1) AE) by the formula

Ryp (1) = %- 6l () uy (G + D) [3.25]

e ™M 2

(% = 0,1,2,..., M-1).

The interval Af and the number of estimates M were selected in order
to limit Evax = (M-1)AE so as to avoid periodicity aliases due to
folding (clearly R(E) = R(E+L)).

The salient features of this correlation analysis may be discussed
in terms of the streamwise velocity autocorrelation function by plotting
the ratio r, (&%) = R11 (E/Gw) / R11 (0) as a function of the dimension-
less spatial lag &* = E/Gw. Figure 27 shows a sequence of frames that
depicts the temporal evolution of ri (§*) 1in a type-I flow. Each
graduation on the abscissa scale represents an increment equal to 4 in
the E/Gw values. It appears that the structures which emerge at the
very early stages of the flow evolution tend to organize themselves in an
array of spatial periodicity closé to 3-4 vorticity thicknesses (frame 27b);
this periodicity is not apparent in the initial conditions (frame 27a). It
is remarkable that the structures seem to retain a similar periodic
organization in the course of their interactions. To render the similarity
behaviour more evident, an ensemble average was performed over a number of
correlations ri, (g%, ti) (i=1,2,...NC), selecting the times t; so as
to scan uniformly the complete flow lifetime. Two representative average

functions ;11 (%) = < ri1 (8*, t) > are shown in Figures 28a (type-I

t
flow) and 28b (type-II flow); typically, NC was of the order of 25.

The behaviour of the ensemble correlation function does not show

the clear periodicity that characterizes some of the instantaneous
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correlations (e.g. that of Figure 27). This is probably due to the
inclusion, in the averaging process, of correlation functions that relate
to configurations in which only a few structures are left over the compu-
tation interval, and for which the ratio L/Gw is not an integer: for
such configurations, periodic boundary conditions may distort the sponta-
neous organization of the structures. Nevertheless, the marked minimum
of the ensemble correlations allows the determination of the fundamental
period of the velocity fluctuations as twice the value of the spatial lag
that corresponds to the minimum. The period defines the average distance

% between structures; Figures 28 yields the estimates

L= 3.2 6, (type -I flows)

[ 3.26]

and lII ~ 2,0 Gw (type -II flows).

It is remarkable that type -I flows - which possess an asymptotic growth
rate close to the rate observed in the laboratory - generate structures
whose mean spacing agrees well with experimentally found values (i.e.
3.1 < R/Gw < 5.).

On the other hand, it is not surprising, in view of the marked
differences in the evolutions of the two types of flow, that the mean
spacing of type -II flow structures would achieve a value substantially
different from that of type -I structures. The wide distribution of
circulation and spacing in type II structures, invoked in Section III.4.2
to account for the observed growth rate of type II layers, may also be

responsible for the low value of % In any case, comparison of the

IT*

estimate for EII with the stability criterion of Moore & Saffman (1975)

- according to which a vortical cloud resists disintegration in the

distorting field of neighbouring structures if £ = 3.5 6w - suggests
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that type II structures are essentially unstable. The implications that
this observation may have in relation with the growth mechanisms of the
layer are interesting and open to further investigations, on the basis of

additional data.

III.5 THE VISCOUS VORTICITY LAYERS

Results presented so far have shed some light upon the characteristics
of the vortical structures that emerge spontaneously from random vorticity
layers of large initial Reynolds numbers. Typically, these inviscid layers
had an initial Reynolds number AUS;/v of 1500, and were followed in their
evolution until AU Gw/v reached a value of the order of 75,000.

A problem of considerable interest consists in investigating the
dynamics of vorticity layers at much smaller Reynolds numbers, i.e. when
the action of viscosity exerts a dominating influence on the flow. Experi-
mental evidence suggests that the large-scale processes in the mixing layer
are to a large extent unaffected by the action of viscosity, even at rela-
tively small values of the Reynolds number; viscous effects are "felt"
indirectly through the initial conditions of the layer, and not through
direct action of viscosity on the large structures (Roshko, 1976). The
possibility of including viscous effects in two-dimensional point-vortex
models exists and has been discussed at length in a previous chapter (see
S.ection II.6): molecular diffusion may be simulated by adding a Gaussian
random walk to the hydrodynamical motion of the vortices. This simple device
provides a convenient means of achieving very small initial Reynolds numbers.
It seemed important to investigate the possible Reynolds number independence
in the strictly two-dimensional conditions of the point-vortex model, and

to determine the response of the coherent structure to the action of
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relatively large viscosities. Extending these ideas further, it also seemed
of interest to examine the diffusive action of a secondary small-scale motion
on the large-scale structures. As pointed out in the introduction, this
model of "turbular" fluid relies on simulating an enhanced viscosity, which
scales with the flow but remains much smaller than the conventional '"eddy"
viscosity.

Following a different but connected line of thought, it appears that
the study of the transitional properties of small initial Reynolds number
layers is equally important. Here, the gist of the study is a verification
that the layers exhibit an initial viscous growth, followed by the development
of waves and the consequeﬂt formation of vortical structures, in the sequence
of events expected from stability theory. That the numerical calculations
would lead to the determination of a critical Reynolds number for two-
dimensional transition is a possibility worth while considering.

This section presents a few preliminary comments and illustrations
related to these ideas; a thorough investigation of the general stability
problem falls beyond the scope of this thesis, and will be the subject of

a separate work.

III.5.1 Viscous and turbular computations

The technique used to incorporate viscosity into the calculations
has been extensively discussed in section II.6. According to equation [2.30],
the magnitude of the viscosity v is related to the root mean square
amplitude o of the Gaussian displacements and to the integration time step

At by the expression, recalled here for convenience:

2
v o= [3.27]
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A sequence of random numbers (Ea,na) normally distributed with zero mean
and unit variance is generated and the equations of motion of the vortices

are integrated under the form

t+At .
xa(t+At) = xa(t) + J ua(t)dt + 0 Ca(t) 5
t
[3.28]
t+At
v (e+ot) =y (t) + J v (t)dt + o n (t) .
t

The amplitude ¢ of the fluctuations is adjusted in order to achieve the
desired value of viscosity; it is kept constant when simulating the effects
of a molecular viscosity but varying linearly with time when modelling the
"turbular" viscosity. The following discussion clarifies the physical
significance of the '"turbular" fluid concept.

It is known that the closure problem in classical turbulence theory
is often bridged by the introduction of an "eddy'-viscosity model which
assumes, that the turbulent shear stress and the mean shear are related

through the simple expression

cuv> =v, (2], [3.29]

Limitations of this model are severe, since turbulent transport of momentum
is by no means a gradient-type mechanism; relation [ 3.29] is then regarded

as providing a definition of v _, in general a function of position.

*’
Dimensional arguments show that in developed mixing layers, the eddy

viscosity is proportional to the velocity difference AU and to the size

of the large-scale eddies, i.e. to the layer thickness Gw :

v, ® 6 AU =C & AU [ 3.30]
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Experimental data confirm this expected behaviour and suggest the

following expression for the turbulent viscosity:

<—uv> Y%
max )

e
(Tennekes & Lumley, 1972). The value of the proportionality constant in
[ 3.30] may be estimated as C, = ,014 if one uses for the maximum shear

stress the typical value of 90 lO_4

AU2 (Wygnanski & Fiedler, 1970).
Turbular fluid effects are modelled by introducing in the point-

vortex calculations a coefficient of viscosity Vg which follows the

same scaling law as Vi, but which is characterized by a much smaller

proportionality constant than Cix . Typical values of the ratio

CT = Vg / Gw AU of the order of 10_3 appear adequate, and still

represent small-scale, diffusive processes of much larger intensity than

those resulting from molecular action. The magnitude of the turbular

viscosity is therefore computed from

° é AU t
= *
vT(t) CT AU Gw [1 + &ﬁﬂ 6; ] : [ 3.31]

in view of the exploratory nature of the modelling, the growth rate
3w/AU needs not be computed exactly at each time step; its value is
conveniently taken as a constant of the order of 0.1,

Figure 29 compares, at a given instant, the stages of development
of the structures which have emerged from a type -1 initialization in
inviscid (top), viscous (middle) and turbular fluids (bottom). The
turbular viscosity was characterized by a coefficient Cp equal to
5 10_3 ; the initial Reynolds number (R& = AU GZ/v) in the viscous

computation was close to 450. The coherent structure appears to withstand

remarkably well the effects of the imposed diffusion. This insensitivity
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to active diffusing mechanisms is also illustrated in Figure 30, which
shows the growth histories of a type II layer subject to turbular diffusions

: 3 and 10—2); departures from the

of large intensities (CT =10 °, 5\10_
growth of the inviscid reference flow, also shown on the figure, are
surprisingly small. Further evidence of the lack of sensitivity of large
vortical structures to molecular diffusion is put forward in Figure 31,
which displays the average correlation coefficient ;11 (E*) of a type I

~

viscous flow (R& ® 450). It is remarkable to note how little the diffusive
process has modified the similarity characteristic of the structure
(compare with the correlation in Figure 28). All data suggest clearly a

weak response of the coherent motion to the diffusive action of small-

scale two-dimensional motions,

III.5.2 Low Reynolds number layers

It is of interest to mention here two results that were obtained
in the analysis of low Reynolds number layers. Some ''viscous" calculations
were performed on layers initially defined by a untform distribution of
point-vortices (typically 3 superposed rows of 250 vortices each). 1In
these configurations, the random displacements of the vortices provide
the mechanism that displaces the system from its unstable equilibrium and .
triggers the motion of the layer.

The average autocorrelation coefficient ;11 (E*) that corresponds
to a computation with an initial Reynolds number of the order of 450 is
shown in Figure 32, Besides the well marked periodicity of the structure,
one notes that the mean spacing between vortical clouds is extremely close
to that of type -I layers (i.e. L~ 3.6 Gw). This observation corroborates
an earlier suggestion.that the large-scale structure is strongly dependent

on the distribution of circulation per unit length: it is clear that the
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isotropic nature of the 'viscous' random walk tends to generate an
effective initialization énalogous to a type -I layer.

Large values of the viscosify may be simply achieved by sufficiently
large amplitudes of the Gaussian displacements. The typical evolution of
a highly viscous layer (R& . 1) is depicted in Figure 33. It is known
(see for example Batchelor, 1962, § 4.3) that the vorticity thickness of
the layer grows linearly with the square-root of time as a result of
viscous diffusion. The growth history of the layer represented here
indicates clearly that the underlying growth mechanism is essentially a
gradient-diffusion process. This is confirmed by the flow visualizations
(not shown)where no tendency towards clumping into vortical clouds can be
discerned. Efforts towards the precise determination of a critical Reynolds
number for transition are presently undertaken and will be reported

separetely.

II1I.6 SUMMARY

Broadly speaking, Chapter III presents a study of the motions which
arise when an infinite perturbed vortex sheet deforms and evolves in its
own induced velocity field. The vortex sheet is represented by thick
periodic vorticity layers; attention is focused on the general properties
of the large-scale structures which are found to emerge from the vorticity
distributions. The relevance of these questions of vortex kinematics to
the turbulent mixing layer is investigated, on the basis of a temporal
problem which relates to the spatially developing flows through a Galilean
transformation of coordinates. ’

Two specific types of vorticity distributions are considered.

Type I distributions are characterized by a untform distribution of

circulation per unit length; these of type II have a random circulation
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Figure 33: Growth of highly viscous (R&. 1), initially uniform
layer. (Vorticity thickness ratio versus time).
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per unit length. The vortex sheet is given a finite thickness by randomizing
the coordinates of the point-vortices in the direction normal to the sheet.
Use of the CTC method permits the tracking of a fairly large number of
vortices (typically 750) at reasonable computing costs. Most computations
are carried out in conditions where the fluid is very nearly inviscid.
Several calculations are also performed to investigate the diffusive action
of molecular viscosity and the effects of a small-scale motion on the

larger flow structures; in these studies, diffusion is modelled by adding

a Gaussian random component to the hydrodynamical motion of the vortices.

Inviscid calculations show in all cases the spontaneous emergence
of arrays of vortical clouds that interact and amalgamate into larger,
clearly identifiable structures. These interactions constitute the
fundamental growth mechanism of the layers. The correlation analysis of
the fluctuating velocity fields reveals the coherent character of the
arrays of structures. All features of the computed flows appear strongly
reminiscent of those observed in the large structure of the turbulent
mixing layer.

Viscous computations at moderate initial Reynolds numbers (-500)
indicate that the structure is remarkably insensitive to molecular and
"turbular'" diffusions. At very small Reynolds numbers (.10), viscous
action "kills" the structure and the layer grows by a process of gradient

diffusion.
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IV.1 INTRODUCTINN

All vorticity layers studied in chapter III were characterized by
a single parameter, the velocity difference AU across the interface
between the two uniform streams. A more general class of shear layers is
that characterized by a second parameter, Ap, which represents the
density jump across the vortex sheet. Shear layers between fluids with
different densities are the central subject of the present chapter; their
study is relevant to problems as diverse as combustion, jet noise, pollutant
dispersion control and weather prediction.

The lack of understanding of, and the general divergences about
mixing, entrainment and transport processes in turbulent shear flows (see
Roshko, 1976 & 1979) are a strong motivation for tackling certain aspects
of the mechanics of simple shear flows by developingbasic models; an
attempt towards the modelling of density aspects on inviscid, non-uniform
shear layers, based on a point-vortex, CTC calculation, is presented in
the following pages. Although applied to a specific case, the scope of
the modelling method proposed hereafter extends effectively to the broader
class of "non circulation-preserving" motions. These flows possess the
distinguishing property that the total rate of change of the circulation
around a material curve 1s not necessarily zero; this is in contrast with
all flows considered so far, for which dI'/dt did vanish identically.

The general applicability of the present model will be implicit in many of
the arguments to be developed.

Section IV.2 examines the origin and the nature of the mechanisms
capable of modifying the distribution of vorticity in a fluid in motion;
the source (sink) of circulation is identified in Bjerknes theorem as the

interaction between the pressure gradient and the density gradient.
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The modelling of vorticity regions by a point-vortex approximation
in the presence of density inhomogeneities is considered in Section IV.3,
for the case of incompressible fluids. It is argued that use of a suitable
discretized form of Bjerknes theorem, coupled with a representation of the
density field based on 'density carriers" (i.e. particles that transéort a
density value), provides, in the spirit of the cloud discretization approach,
a simple but adequate means of analysis. The model relies on the CIC
algorithm as fundamental computational tool.

The proposed computation method is then applied to the study of
the effects of density ratio (and to a lesser extent, of buoyancy) upon the
structure developing from a sinusoidal vorticity layer of finite thickness.
The results of various numerical experiments, presented in Section IV.4,
suggest that the approach folloéed here, although of limited accuracy,
provides a firm basis to comprehend and unveil the fundamental aspects of

the physics of the problem.

IV.2 CREATION OF CIRCULATION IN A FLUID IN MOTION

Let us examine under which conditions the circulation around a
material curve drawn in the fluid changes as the material loop is convected
by the motion. The analysis is better understood if one bears in mind a
theorem and an identity which belong to the study of the kinematics of

continuous media, and which are recalled below.

IV.2.1 Vector flux across a material surface

Consider a vector field q defined everywhere in the domain
occupied by the fluid. By definition, the flux of this vector across a
material surface S drawn in the fluid is instantaneously given by the

expression
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¢(a) = J q . ds [4.1]
S
It is a theorem that the rate of change of this flux, as the motion evolves

and entrains the surface of reference (always constituted of the same

particles), is determined by the relation

[q - (q.V)u + q8 ] . ds [4.2]

~ -~ A o~ -~

‘5(3) =J
S

or equivalently by

; 3q
¢(q)=J[ 3—E+Yx (9><13)+1;1(Y.c~1)] . ds , [4.3]
S

where u 1is the velocity field, 6 = V.u the expansion (rate), and

& = —% the rate of change of q following the motion (see Truesdell, 1954).

IV.2.2 Acceleration, vorticity and expansion

The acceleration field a 1is directly expressed in a Eulerian

~

description of the motion as

ou

+ (u.V)u , [4.4]

[
a = u 2 ee—
= ot w o

but can also be written in the form given by Lagrange:

au
a=3%+%v u? + wxu, [4.5]
where w = V x u represents the vorticity.

An expression for the quantity G = V X a may be obtained by taking

~ -~

the curl of equation [4.5] ; this yields

G=Vxa=uw+06uw- (0Vu , [4.6]

-~ - o



- 112 -

an expression valid in any fluid and totally independent of the equations
of motion. Note that the identity [4.6] simplifies to
G=Vxa=uwn+ 0w [4.7]

in the case of a two-dimensional motion.

IV.2.3 Rate of change of circulation

The previous theorem provides the starting point for classifying
possible fluid flows into "circulation-preserving" and '"non circulation-
preserving' motions. Recalling that the flux of vorticity w across a

-~

material surface S 1is the circulation T, one writes

o(w) = J w . dS = J (V xu) . dS = % u, dG=T, [4.8]

S S - .C
where C is the base-contour or 'support" of the material surface 8.

The rate of change of the circulation is then obtained from [4.2] as

I = ¢(u) = J[LB - (@.V)u + 6w ] . dS . [4.9]
S

In view of identity [4.6], this result is also expressed as

1'"=J (Vxa) . dS . [ 4.10]
S

One concludes that the rate of change of circulation in a moving fluid
depends critically on the motion being/not being a motion for which V x a = 0.
The existence of an acceleration potential characterizes circulation-preserving

flow fields. The "source'" of circulation arises from the configuration of

the acceleration field; it is clear that further analysis requires the
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inclusion of the dynamical aspects of the problem, that is, consideration

of the equations of motion; this is done in the next section.,

IV.2.4 Bjerknes theorem

Consider situations where the equations expressing the conservation

of momentum take the form of Euler's equation

pa = - Vp + pF ; [4.11]

~

F represents the external body force acting on the unit of mass of the

fluid. The notation v will be introduced for the specific volume of

=1

the fluid (v = p ); it will also be assumed that the body forces are

conservative, i.e. that there exists a scalar potential § such that
F=-VYV Q. Under this assumption, equation [4.11] becomes a = - vVp - VQ ,

and one obtains readily the expression for V x a :

Vxas=G=Vp x Vv, [4.12]

The rate of change of circulation obeys therefore the law

I = J (Vp x Vv) . ds [4.13]
S

Expression [ 4.13] discloses the nature of the mechanism responsible for the
modification of the circulation in a non-homogeneous fluid, the interaction
between the pressure and the density gradients; this relationship is known
as the theorem of Bjerknes. This classical result is often presented in a
different fashion. If the potential £ exists, one may write [ 4.10] under

the form

r=—J [V x (vvp)] . dS .

-~
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Applying Stokes theorem, one obtains

~

C c

f=—§ vp . dC , 1i.e. 1'"‘=—§ %P- . [4.14]

which is the conventional statement of the theorem. Note finally that in

terms of the density, the theorem [4.13] is written

f=J Fl,z(ypxyp) . ds . [4.15]
S
Bjerknes theorem [ 4.15] applies whenever density gradients exist (or develop)
in the fluid, irrespective of the origin of the corresponding inhomogeneities:
the generation (destruction) of circulation arises from the same mechanism
in compressible and incompressible inhomogeneous fluids.

In two—-dimensional flow fields, the vector G has only a non-zero
component in the direction normal to the plane of motion; expression [ 4.15]
simplifies in that case to

Pe| G233 ey . [4.16

The above expression constitutes the basis of the study of two-
dimensional, non circulation-preserving fluid motions; it is shown in
Section IV.3 that the evolution of these flows may be computed by the
method of discrete vortices. The success of the point-vortex approximation
depends essentially on deriving a suitable discretized form of equation
[4.16] ; possible alternative choices for the numerical evaluation of [ 4.16]
and a formula that appears well adapted to the point-vortex, CTC method

are discussed in the following.
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IV.3 POINT~VORTEX MODELLING OF NON-CIRCULATION-PRESERVING MOTIONS

IV.3.1 The fundamental approach

Point-vortex modelling of non circulation-preserving flows has not
attracted a great deal of attention in the literature; two notable exceptions
are the studies of Zalosh (1976) and Meng & Thomson (1978). Both papers
examine flows in which the inhomogeneity arises at the interface between two
incompresstible fluids of slightly different densities. The present study is
also restricted to the case of incompressible fluids (*), but removes the
limitation of small density discontinuities: the possibility of large
density ratios is included in the analysis.

The basis of the discrete vortex method, in the homogeneous case,

consists of the equations of motion

. aH . aH
KOL Xa=—7a- H K(l ya = '5'}'5 (0 = 1,2,...,NV) ] [4.17]

whose integration in time yields the trajectories of the NV vortices; H
is the Kirchhoff function of the system of vortices (see Section I. . ). In
the nonhomogeneous case, the same equations of motion apply, complemented
by the equations giving the rate of change with time of the strengths of

the vortices:

éa = .Za (Vp, Vp) (o = 1,2,...,NV) : [4.18]

which are known (from [4.16]) to depend upon the pressure and density gradients,
as explicitly indicated. Equations [4.17] and [4.18] form a set of 3 NV

first-order differential equations for the variables X0 Yy and Ky,

(*) Compressibility effects are not simply accounted for in a point-vortex
p y : ply P
approximation, as discussed in Section I.
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(o = 1,2,...,NV). The problem is fully determined if an initial configu-

ration (x;, y;, K;) (0 = 1,2,...,NV) 1is prescribed.

I1V.3.2 Computation of dk_/dt

Equation [4.18] is a discretized form of equation [4.16]; modified
forms of [4.18] are obtained from [4.16] by eliminating the pressure-gradient
term — a quantity not directly accessible to a point-vortex calculation -
in terms of the local acceleration. Returning to equation [4.13], and noting

that Euler's equation [4.11] reads Vp = (F - a)/v, one obtains

I = J[(a—F) x V(log p)] . dS . [4.19]
S

Use of the vector identity V X.(mc) = m(V x ¢) + (Vm) x ¢

yields immediately

I = J dS . {(log p)V x (a~F) = V x[log p(a-F) 1} ,
S
and
f=§ log p (F-a) . dC +J log p (V x a) . dS , [ 4.20]
C S

after application of the theorem of Stokes and under the assumption of the
existence of the potential Q.

The discretized forms of equation [4.20] employed by Zalosh (who
considered Rosenhead's problem, in the case of two fluids of different
densities) and Meng & Thomson (in their study of the rise of a buoyant
cylinder) stem from the same fundamental assumption: a distribution of

oint-vortices along the '"line" of density discontinuity depicts faithfully
p g
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the geometry of the deforming interface. It is interesting to consider

their formulae in some detail; they may be derived as follows.

IV.3.2.1 The classical formulation

Assume that vortices are distributed uniformly along the interface,
a distance AL apart, as shown on Figure 34, The strength of vortex a

is defined by the value of the circulation around a closed contour Ca of

length A% and width € encircling the vortex and "

straddling" the inter-
face (see Figure 34). For this contour, the contribution from the surface

integral in [4.20] vanishes - the interface is the only site of vorticity

changes —, and one obtains

K = § log p (F-a) . dC, . [4.21]

Letting € tend to zero yields

Ky = 82 (F-a ) . {(log pz) epq * (log pl) eps}
= (log s) A% (F—aa) v e s [4.22]
where s = p2/p1 is the density ratio and e, = d2/df% is the unit direction

vector of the interface. An estimate for ey is obtained from the coordi-

nates of the vortices adjacent to vortex a; clearly, from Figure 34, one

has

1
exc = 757 €8

~

ey = Xy-1,0¢1? Yg-1,0+1)

Substituting this estimate into [4.22] leads to the expression
° log s

Ky = = =5 [ax §x + (ay + g) 8yl , [4.23]

in which the subscripts o have been omitted for clarity; a and a



d+//’d

Figure 34: discretization of interface between fluids of
: different densities by a line distribution of
point vortices.
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represent the components of the acceleration of vortex o and g 1is the
acceleration of gravity. With the additional assumption that the density

ratio s 1is slightly different from ﬁnity, [4.23] writes (*)

(5 [a, ox + (ag + &) 6] ; ‘ [ 4.24a]

Ne

o

this is the approximation adopted by Zalosh (1976). In problems where no
shear exists initially across the density interface and where the motion

from rest is induced by buoyancy only, formula [ 4.24] reduces to

Re

(353 & oy [ 4.24b]

a_

(Meng & Thomson, 1978).

IV.3.2.2 A "cloud discretization'" formulation

Formulae [ 4.24] stem from the assumption that the evolution in time
of a single row of point-vortices represents accurately that of the inter-
face between the fluids. As observed in various studies (refer to the
discussion in Section II. 7 ), the coincidence between the continuous vortex
sheet and the line which connects the vortices tends to disappear as the
flow evolves. This geometrical divergence destroys the validity of the
approximations [ 4.24] at a stage of the computation that seems to depend on
the number of vortices chosen for the discretization. Calculations of the
motion of a sinusoidal vortex sheet in slightly non-uniform situations
(density ratio close to unity), based on formula [ 4.24a], were performed;
they were found to break down when the number of vortices was larger than

40, and sooner as this number was increased. These results are consistent

(*) Recall that log x = 2(%5% + -% G——J + ... (x>0)
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with the observation that refining the single-row discretization of vortex
sheets tends to trigger the occurence of random movements in the trajectories
of the vortices (refer to Section II.2,2),

A possible solution to these problems, suggested and adopted in the
early part of this work, is to represent the interface as a thin vorticity
region of finite thickness, and use several rows of vortices in the discre-
tization. The increase in definition of the vorticity distribution is then
balanced by the loss in sharpness of the geometry of the interface; use of
equations [4.24] is no longer warranted with this type of discretization.
The rate of change with time of the strength of Voftices used in a cloud
approximation was computed on the basis of the formula derived in what
follows.

Let us represent a vortex sheet by distributing (in a uniform or
random fashion) NV vortices throughout a layer of finite thickness. Be
Asa the area of the material element associated with point-vortex a.
Reverting to formula [4.19] written in terms of vector components, one

obtains the time rate of change of the vortex strength as

. =J (2x20 _ 2y * 830 ) guqy . [ 4.25]
o p 9y p X
AS

Provided the number of vortices is sufficiently large (i.e. AS, 1is suitably

o

small), one may approximate the integral by considering local average values

of the terms of the integrand; this leads to the estimate

_ AS ap _ 3p
k, (€) = p—aﬂ- [a, (W)a (ag,* 8 (3x)a] ) [4.26]

The values of ASa and of P, at time t are simply equal to the values

taken at time t = o : in the incompressible case, one has
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dAS . do
T -0 5 g = O [4.27]

The acceleration terms in [4.26] are readily evaluated from the

known motion of vortex o; the values of Ay and ayq at time t are

given by the expressions

a = UYa () = uy (t - At) Aug
Xo, At At
[4.28]
a = Yo (t) - vy (t - At) Avg
Yo At At ’

using a simple first-order backward difference scheme (higher-order schemes
could be used to improve the accuracy of these estimates; this is not
justified, however, in view of the approximation made on the other terms
and discussed below).

The evaluation of the local gradients of the density field is
somewhat more delicate. Equation [4.27b] indicates that fluid particles
retain their initial density value throughout the flow evolution, Vortices
may then be "tagged" with a density value (defined by the shape of the
density profile at flow initiation) which accompanies them during their
motion. The salient idea for imbedding density effects in a point-vortex
"cloud" computation is to estimate the values of the gradients (Bp/ax)a
and (Bp/ay)a from the distribution p(xB,yB) defined by the set of
vortices B which surround vortex o. Fitting a surface p(x,y) to the
discretized field p(xB,yB) yields estimates of the gradients as coefficients
of the fit. The neighbourhood ofvortex o at time t may be defined in
two distinct ways: it may be constituted of those particles which are
initially in the neighbourhood of the vortex, or made of the set of particles

which currently happen to lie within a certain distance from the vortex. In
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either case, the definition of the vicinity of a vortex involves some
characteristic distance which fixes its spatial extent. The validity of
the method rests on the implicit assumption that gradient estimates are

not sensitive functions of this characteristic dimension; numerical tests
showed a posteriori that this assumption is reasonably well founded (see
Section IV.4). These arguments lead to the following formula for computing
the change in circulation Ak of a point-vortex in an elementary time

interval At:

Ak = AS Au AS Av AS g At
K= —== ¢ = —— ¢ = —2
P y p X p b'S
= Ak, + Ak o+ Ak [4.29]
X - g

Cx and c_  are the values of the estimated density gradients in the x-
and y- directions respectively, i.e. the relevant coefficients of the local
polynomial fit. All quantities in this formula should be tagged with the
index a that identifies the point-vortex.

In addition to the vortices, which constitute the active elements
of the flow, passive "markers' may be distributed over the computation
interval. Markers are effectively vortices that carry no circulation; their
main function is to improve the definition of the density field. The
presence of additional density carriers ensures that the estimates of the
density gradients are computed in favourable conditions. They may be
allocated "statically'" or "dynamically" to the vortices in order to represent
the local density distributions. Passive particles are also useful as an
aid in visualizing the flow. The use of markers is computationally more

advantageous than that of vortices: substitution of NM vortices by passive

. . . . ] 2
particles results in a saving of computation cost that scales like NM .
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The suitability and performance of the computation method described
in this section are discussed in the rest of the chapter, which is dedicated
to a first analysis of the effects of (large) density ratios on the coherent

structure of vorticity layers.

IV.4 DENSITY EFFECTS ON THE STRUCTURE OF VORTICITY LAYERS

IV.4.1 The temporal problem for two-density layers

The modelling of non-uniform density shear layers is based, as that
of homogeneous layers, on a correspondence between the spatially developing
flow and an idealized temporal problem. The principle of a Galilean
transformation (see Section IIIﬂB.l ) must be applied somewhat carefully in
order to interpret the two-density layers results appropriately. Before
examining this issue, let us recall a useful result of linear stability
theory.

Consider a layer of fluid (density pl) moving with a uniform velocity
u relative to another layer of fluid (density 02) which, without loss of
generality, is assumed to be at rest. The movement of the upper layer is
parallel to the interface between the fluids. The linear stability charac—
teristics of this vortex sheet are obtained by considering perturbation

quantities (pressure, velocities, interface displacement) of the form

q (x,7,8) = £(y) el (KX T W)

w.t
f(y) e Y {cos (kx - wrt) + i sin (kx - wrt)} 3

]

where w = w, + iwi is a complex frequency.

It is found that disturbances whose complex velocity c¢ = w/k 1is

given by
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c, = ——— [p xihp 1
1 1 2

are solutions of the problem (Landau & Lifchitz, §30, 1971). The vortex
sheet is absolutely unstable to infinitesimal perturbations of all wavelengths.

The phase velocity of the perturbation is given by

= Uy - . . =
c, =—ws T+ (s pz/pl)

this expression shows that c.*o for s » 1 (heavy fluid at rest) but that
c.*u for s <1 (heavy fluid moving). One concludes that the instability
wave tends to travel with a velocity approaching that of the denser fluid.
This important observation suggests that the following temporal
problem be associated with spatially developing, two-density mixing layers
(Brown, 1974). Suppose that the plane 2z = Q separates two half spaces,

one of fluid of density (z>0) and the other of fluid of density

Py
Py (z < 0). At some initial time, both spaces are impulsively set into a
uniform motion in which the velocities at infinity are equal but opposite
in direction (U(z>+») = - U(z + - «) =1U_). The interface between the
fluids is an unstable vortex sheet which will ultimately

evolve towards a "turbulent'" state by developing large scale vorticity
structures. The emergence of the structures in the homogeneous case

(p1 = pz) is clearly established by the computer experiments described
earlier in this work; that a (possibly distinct) structure develops in the
two-density case (p1 # p2) is suggested by the flow visualizations of the
mixing layer between gases with different densities (Brown & Roshko, 1974).

When =Py the structures do not move relative to the observer (i.e.

P1
to the computation interval). For Py # Pos however, the observer will

contemplate structures which travel with a velocity U, in the same direction
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as that of the heavier fluid. In a system of reference moving with the

structure, the velocities at infinity will be

u = U -U 5

1 " o =U_+ U, [ 4.30a]

Y2
if the heavier fluid is in the upper half-plane, and

up = U+ U, 5 ouy =T, U [ 4.30b]

if the denser fluid fills the lower half-plane. Clearly, the translation
velocity U_  depends on the demsity ratio s = pz/p1 .

The apparent spreading angle d&/dx of the temporally growing
layer obgerved in a frame of reference translating relative to the structure

may be shown to be

1+ k(s)) 1 -1r) ,
k(s) + r

§° = .,178 [4.31]

where r = UZ/Ul is the ratio of the fluid velocities on either side

(reéorded in the moving axes) and where k(s) = u2/u1 (u1 and u,
are given by equations [4.30]). The function k(s) may be related to the
volume rates Al and AZ at which the fluids are entrained on each side

of the layer through the expression

Ay 1
7; * 5 [4.32]

(A full discussion of the model that leads to the predictions [4.31] and
[4.32] may be found in Brown (1974 ). I

Knowledge of the function k(s) appears essential to the understan-
ding of the growth and entrainment processes in non-uniform layers. The

few available experimental data suggest a possible dependence of the type
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k(s) ~ s (n®5). Preliminary calculations, showing the effects of the
density ratio upon the vorticity structure for a simple flow geometry, are
presented in the following section. The essential purpose of this investi-
gation is to determine the qualitative behaviour of the structure in the
presence of large density ratios; the analysis of the results in the light
of the temporal problem defined above leads in addition to a quantitative
prediction for the function k(é) which appears reasonable in view of the

simplicity of the model used.

IV.4,2 Effect of density ratio on the structure in a sinusoidal

vorticity layer

In order to investigate the effects of large density ratios on the
structure, it was decided to revert to the simplest initial configuration
by considering the case of the sinusoidal vortex sheet of finite thickness.
The vorticity layer was discretized into a number of superposed rows of
point-vortices uniformly distributed over the layer thickness h and
wavelength L. The rows were juxtaposed symmetrically on both sides of
the mean layer position ;(x) = AL sin (2mx/L). A density value equal to
Pl is attributed to vortices located above ;(x); those below this dividing

line carry a density value = spq. Vortices were disposed uniformly

f2
along L by subdividing the computation interval into equal segments and
placing the vortices at mid-length of each segment. Rows of markers (also
located at mid-segment abscissae) were added on both sides of the layer
along sinusoids of identical amplitude A L. Figure 35a shows the general
arrangement of a layer defined with 3 rows of 50 vortices each and 2 rows

of 50 markers. The initial strength of the vortices was modulated according

to their position along the sinusoid, using the formula



- 126 -

K(x) = %%g (1-2m 4, cos (21x/L)) ;

this expression accounts for the initial non-uniformity in the circulation
of the displaced vortex sheet (Hama & Burke, 1960).

The accuracy of the computations was monitored by checking at each
time step, the invariance of the total circulation (I' = LAU) of the layer.
An upper limit of 107 was set on the allowable relative error AT/T_ .

The "quality" of the computations, measured in terms of AT/T_, was found to
deteriorate with increasing density ratios; typically, values of Al/T,

of the order of 10—4 were recorded with s = 1.1, whilst values as large

as 10_2 did occur for s = 7. (all other computation parameters being
identical). It is interesting to note that AT/T, did not behave as a
one-sided error; the device of resetting the total circulation to its

initial value after each time step - by replacing the current vortex strength
Ka(t) by K&(t) = Ka(t) FO/P(t) - was found not to alter this behaviour and
not to better the accuracy of the calculation: it was not retained as a
significant improvement of the method. A series of tests showed that use

of too low (5) or too high (>30) a number of particles for the '"dynamic"
definition of the local density field resulted in a poor overall accuracy;
dynamic neighbourhoods containing an average number of 15 to 20 particles
were retained as those yielding the 'best" flows. 1In all calculations
presented in the following, the local density field was approximated by
fitting a least-square plane p = c tec x4 cy y to the surface

p (xi,yi) defined by density carriers allocated dynamically to each point-
vortex. Although the fundamental significance of these various approximations
remains to be assessed, the consistency of the data obtained justifies at

this stage the discussion of some of the salient features of the computed

flows.



- 127 -

Figure 35 shows in parallel the evolution of the vorticity structure

of a sinusoidal layer (A, = .05) in the uniform-density case (left-hand

°
side column) and in the case where the density ratio is 1/3 (right-hand side).
The heavier fluid is, according to the definition of s, in the upper half
space and travels from left to right on the pictures. The dissimilarities
between the '"uniform" and the '"non-uniform'" structures are striking. In

the uniform flow, the structure emerges in the classical rolling-up sequence
that leads to a perfectly symmetrical, spiral-like vortex cloud; the

structure remains stationary relative to the computation interval. The
non-uniform structure is, in contrast, essentially asymmetrical; it is also
animated of a translating motion in the same direction as the stream of denser
fluid. As it develops and moves from left to right, the rolling-up structure
entrains a certain volume of fluid; the proportions in which the fluids are
entrained depend clearly on their relative densities. It is interesting to
estimate the entrainment ratio Al/Az (i.e. ratio of volume of fluid
entering the structure on side 1 to volume of fluid 2 entrained) on the

basis of the areas limited on each side of the line y = 0 by the vorticity

layer. A graphical evaluation of areas A and B in frame (f) yielded the

value '% = %%%} . The estimated entrainment ratio, Az/ll = 1.75,
agrees remarkably well with the value predicted by [4.32], namely
k (1/3)~ V3 = 1.7 .

A separate attempt was made to predict the dependence on s of the
function k(s) from estimates of the translation velocity U_ of the
structure relative to the computation grid. Figure 36 shows the trajectories
of the centre of mass of the structure on a «,t diagram, for several values

of the density ratio (from s = 1.1 to s = 5.). The slope of a trajectory

defines the instantaneous translation velocity of the structure, which
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appears to remain reasonably constant for a given density ratio. Data
points displayed in Figure 36 correspond to the early stages of the flows
where the error AI'/T_ 1is smaller than 5%; the degradation in accuracy
(AI‘/F° increasing) observed at large times resulted in departures of the
trajectories from their linear trend.

Estimates of U, based on the data presented allowed to infer
values of k(s) = u2/u1 based on equations [4.30]. Figure 37 shows the

predicted behaviour (squares), which appears to be close to s—°'4 (dashed

1

line); the continuous line represents the function s ~, suggested by
available experimental data (Brown, 1974 ). 1In view of the simplified
approach of the present model, the prediction in Figure 37 appears successful

and an encouragement for further development.

IV.4.3 Froude number effects on the structure in a sinusoidal

vorticity layer

All calculations presented so far did not take into account the
effects of gravity which, according to equation [4.29], contributes to the
modification of the circulation in the flow by its interaction with the
density field. Inclusion of gravitational action into the computations
involves a trivial modification of the computer code; it was thought
interesting to conduct a few runs where AKg is not identically zero.

A first understanding of the phenomenon may be gained by a rough
order of magnitude analysis of equation [ 4.29]. Assuming that changes in

circulation are chiefly due to gravitational action, one infers from [ 4,29]

that
Ak
_A_K. = _g e AS_ é&
At At Py © Bx°’ [4.33]
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where denotes the average density value (pM = % (pl+p2)). In terms

Py

of the vorticity w, the above relation is rewritten

it " by, [ 4.34]

For a layer of thickness ¢ and having a velocity jump AU, the quantities
Aw, At and Ax are respectively estimated as AU/8, §/AU and §. One

is then led to predict a marked gravitational influence when the ratio

gé Ap/pM (AU)? is of the order of unity. Progressive disappearance of
these effects are expected as the value of this ratio tends to zero. This
criterion may be recast in terms of the Froude number of the problem

Fr=7‘g_'L— (55 )

under the form

=1 (marked effect)
b Eff) <1 (weak effect) . [ 4.35]

Visualizations of flows characterized by different values of the
Froude number are displayed in Figures 38 and 39. It is interesting to note
that the response of the structure to gravity is in full agreement with
prediction [ 4.35] . Figure shows in parallel the development of the
structure in a flow where the density ratio is 3. The "aspect ratio"
L/S8 of the layer is of the order of 30. Gravity effects are practically

inexistant for Fr-_2 = 10—1 (left-hand side column) but are well marked

for Fr“2 ~ 1l: they provoke an important flattening of the structure.

) ~ 10 (Figure 39),

The structure disappears completely in the case Fr
where one can observe the complete reversal of the flow behaviour.
It is understood that these preliminary results give a qualitative

description of the phenomenon and must be accordingly given an indicative

value only.



1 effects.

right-hand side

resence of gravitationa

idal layer in p

inusol

-1
’

10

-2

Fr

-
SUENEFREINEERTEY ISTWNTETREESROFSEITE AT TR TET T PR SEETRS
- he-d naa "
e a “
an -
" een .o -
. L] L
A - L] "
A e [
[ oo
na
-
e
enr .
"o
P
o
ey
~a -
- -
e -0 a
—man - ene n
- - ——n -
- a - - nn
- e iy n o= - -
a o e
- Y - = o
= - fia
£ - i
o - - -
- an 'y
e = S
o - " .
- L - ~n
n - an
- “
Fewn an i
ae = " L3S -
Tas it - - o Nume 0 —
"o o= ' n .
Mew - L] - - O )
= . = —
oy e - —a = P
zszzerzzeaas z=zsze==zezsszza TEsEImssEEzEITIESSEEEE =rrs
= ) fa e
n A " -
- -n - -
noem - “ -
A - n - L L]
n - - e
0 oss na ] e
e i o [
- - — # - i
i - - I
naan T o -
Facen - - -
- ] n -~ = "
flem=n " - - -
i - e -
faean ~ n - 8-
Hanft - - -
- n~ on =8
P . "
n 0 -
n- e= a -
foe -
- . e
ne - “
e 4. "
- - - P
i L - - -
N = [t . - u -
- nae " .
- ———n L " - — =
Ll - wm—- non - L - - - Vo
AR = = et . = —en n radaiad it
N e mee = ee _— Pt
" Ane - - — = an
" - " - -
P - -— e
- - - s - " e
. - - o=
— Ll -
= e o =
pe=an
an -
Neair b - n
focn = B n
LY o - g
- -
== - -n -
nert - o
[y - -
- - 0y -
faen - Ne - .
L] n i .
Aaar - " - Py -
sEEEsI=IIasa 2=y 22 e

Left-hand side patterns correspond to
patterns to Frl. 1,

Figure 38a & b: Evolution of s



Daen
NEE I

(===
Nemen
0==0
0e=0

N===(
Na=()

Ne=n
Ne=el

Neal

1==n

NN
Ne=a=f

N==q
Nawh

N=e=f)
Na=n
HET T T)]

Ne=(

Ne=mi)

-=0

=-—y
U= =U
-0
Q=
-0
= G
U=+v
-0
O++
=++V
4 V]
O=4+4
0
U=+
N=1+0
1)
mee
U= U
U==u
Avl -
0 =0
Oll
=-U
C'-
Qe=v

{y=={

0 =0

(=m0

= =0

Na 0
-a)
-al)

0 =0

- 0
0N =N

=0
Namh

-]
[
N==0
Ne of
nH =0

() o o

N ==q

(= =0

New=

(==

O==0
0O

-
NO=

Evolution of sinusoidal layer under strong

Figure 39

action of gravity (Fr—2 ~ 10).



- 130 -

IV.5 SUMMARY

The object of chapter IV is to discuss the extension of the point-
vortex method to flows in which the material rate of change of the circu-
lation is not identically zero.

The mechanisms which modify the distribution of circulation in
non homogeneous fluids are examined for the general case of three-
dimensional motions, and identified as resulting from the interaction
between pressure and density gradients (Bjerknes theorem).

Two~dimensional flows of an inhomogeneous, incompressible fluid
may be studied, in principle, by a generalized form of the point-vortex
approximation. It is suggested that the success of the extended method
depends critically on the use .of a suitable discretization of Bjerknes
theorem. Attention is focused on the specific problem of computing the
change with time of the distribution of circulation at an interface between
fluids with different densities, The need for a numerical procedure
adapted to the discretization of the interface as a thick vortex sheet
is demonstrated; a formula which appears to have the required properties
is proposed. The novel approach relies essentially on the use of density
"carriers' for representing the density field in a suitably defined
neighbourhood of a point-vortex.

The generalized method is applied to study the effects of density
ratio on the sinusoidal vorticity layer between two fluids of different
molecular weights. This simple flow models the behaviour of non-uniform
mixing layers provided the relationship between temporal and spatial
problems is suitably formulated. Results indicate a strong distortion of
the structure with fundamental modifications of the entrainment process.

The model predicts a dependence of the entrainment ratio on the density
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ratio that appears to agree with an analysis of Brown (1974). Qualitative
results are presented which depict the effect of gravity (Froude number

effect) on the structure.
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APPENDIX A:

INVARIANTS OF TWO-DIMENSIONAL CONTINUOUS VORTICITY DISTRIBUTIONS:

AN ANALYSIS IN FOURIER SPACE

The purpose of this appendix is to present another aspect of the
invariance properties of the differential equations that govern the motion
of two-dimensional, inviscid vorticity distributions.

The analysis consists essentially in deriving evolution equations

for the generalized moments

M(m,n)

J X" yn w dA
A

H(m,n) J oy wyp dA

A

and examining for which values of (m,n) the invariance property may

be established. The method relies on the fact that the above quantities
can be easily expressed in terms of the Fourier transforms of the vorticity
field and of the stream function. The conditions of existence of the
invariants may then be defined in all generality in terms of the existence

of expressions involving Fourier transforms.

1. BASIC EQUATIONS

The two~dimensional vorticity field w(x,y,t) in an inviscid

fluid satisfies the system of equations
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ow , 9 dw _ Y dw _
ot + 0x dy dy 0ox [A.1]

VY = w [A.2]

where UY(x,y,t) 1is the stream function.

Defining the spatial Fourier transforms of w and ¢y as

ptoo (oo Y

W(E,n,t) = Flu] = wix,y,t)e ATEEY gy a3
o 4o ,

P(E,m,t) = FIY) = P, y,t)e AATEEIY gy au4)

one obtains the inversion formulae as:

oo oo ,

w(x,y,t) = F LW = WE M, ) e 2ETEEMW gean [a5]
oo o )

U(x,y,t) = F1[P] = P(E,n,t)e 2TEM ) qean | [aL6)

Analysis of the problem in the wave number space can be pursued in terms
of W and P - which will be assumed to exist, if necessary as generalized
functions - by Fourier-transforming equations [A.1l] and [A.2]. This leads

to the equations

W _ F[@g.am] - F{@g_am]

ot 9x Jy dy ox

FIVZy] = W.

Recalling the convolution theorem

Flfgl = FIf] « Flgl ,

where f % g denotes the two-dimensional convolution

0 4o
h(x,y)=J J f(a,B)g(x-0,y-B)dadp ,

=00 -00
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one obtains

- ey ¢ - ) %, [4.7]
P=- Z%g-w/(£2+n2) . [A.8]

The right-hand side of equation [A.7] is explicitly written as

4o oo
J J dodB B(E-0)P (a,B)W(E-0,n-B)

—00 -0

oo (oo
i} J J dadB a(n-8)P (a,B)W(E-a,n-8) .

-C0 -00
In the following, functions with shifted arguments will be denoted by

the corresponding lower case letter, i.e.:

W(E-a,n-B)
P(E-0,n-B).

g
It

P

The previous expression, using this notation, is then rewritten

o0 oo oo oo
j I dadB B(E-0)Pw - J J dadf o(n-B)Pw .

—C0 -00 =00 -0

Elimination of P between [A.7] and [A.8] leads finally to the evolution

equation for W:

™*)

40
W _ BE-on
== J oitge " dadp [A.9]

w0

which will be the basis of the invariance analysis for the quantities

M(m,n).

24 EVOLUTION EQUATION FOR M(m,n)

An evolution equation for M(m,n) can be derived from [A.9]

by observing that the high-order derivatives of the function W(E,N),

™)

The double integration sign will be dropped for clarity.
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evaluated at the origin (& = 0, n = 0), are directly related to the
moments M(m,n).
From [A.3], one computes easily the quantity

L) _ 3™ ueE,mn)

ag™

One has successively

oo .
W(m,n) - J W (—Ziﬂx)m(—Ziﬂy)n e—zm(x&mwdxdy

=00

(—Zi'rr)m+n W (x,y)xmyn e—21ﬂ(xg+nY)dxdy

T3

:

and evaluation of this expression at & =n =0 yields immediately

that
M(m,n) = Wi/ (c2im™ ™ [A.10]
where the notation
+n
3 e
wimn) _ —— W(E,N)
65 o €=n=0

has been employed.

Equation [A.9] may now be used to derive the rate of change
with time of all quantities w(m,n)’ which will yield evolution equations
for the quantities M(m,n) when evaluated at & =n = 0. This is done
as follows.

Equation [A.9] is rewritten

(0, 0) +o
W 0,0 —
= (0,00 _ J[ ———5% +%Q wW dadp
, (0,0)
Now pmn) L s mw -
9E " on
M waadg 9™ (BE-on)w

| L [A.11]

=00

g™



_AS...

The derivative is evaluated as follows:

B (ecanye = D[ + - du
5™ an)w = as;“‘"l (Bg-om) BF,]
= —_am—?- ow 32w
= agm_z [ 28 BE + (Bg—an)-gg—z-
m-1 -
= mB i m__Y + (Bg—a’n) _a_%
.13 &
Now
am+1 Bmw
m (Bg-on)w = mB —
g on 3 T om
m m+l
- a2y (gemany 2T
3% 9g 9n
and generally
min
2 (BE-an)w = mB @1 o (men-l)
ag™an"
(msn)
+ (BE-an)w , [A.12]

if by definition

™0y _ 3™ M(E~a,n-B) _ (m,n)

m, n m . n [A.13]
& dn 95 oan

Substitution of [A.12] into [A.11] yields the equation

<o
@n) _ J[ ILzTélzB {mB S@=l,m) o (m,n-1)

-=CO

+ (BE—om)w(m’n)} . (A.14]
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Evaluation of this expression at £ = n = 0 vyields the evolution

equation for the moments M(m,n):

oo
camm B [T R [ @1 g (D] sy

=00

which is the expression required for the invariance analysis. Note

that the notation

w0 gy =« ™™ (= n=0)
[A.16]

o™ yi(E-a,n-B)

BE;l'ﬂ ,anl'l

£=n=0

which is consistent with that used in [A.10], has been introduced.

3. INVARIANCE PROPERTIES OF M(m,n)

Ley us now examine the right-hand side of equation fA.15] and
establish the conditions for which it vanishes. In this connection,
the following "symmetry" property is especially useful.

Let us show that in all cases,

W @,8) = w™™ (a8 [4.17)
Clearly:
o™ W(E-a,n-B) _ (_ymwtn 3T W(E-0,N-B)
oE™ an" ao™ 3g"

Therefore,

mn 9™ W(E-0,n-B)
oo™ 3"

W& (4,8) = (=)
£=n=0

Now by definition



and hence

_A7..

™ y(a,B)

(m,n)
W (o,B) =
oo™ ag™

W™ (o) =u™™ (0,8

which is equivalent to [A.17]

The invariance of the lower order moments may now be proved

(a)

(b)

m=n = 0.
Inspection of [A.15] shows that ﬁ(0,0)
that
40
M(0,0) = J w dxdy
-00
is invariant.
m=1 n=20
One obtains from [A.15]
D W dodg  (0,0)
; A = | X aocp s
(-24im) v M(1,0) J aZ+82 Wg
-00
Now from [A.16] one knows that
0,0 0,0
w$®9 (@, = WD (-a,-p)
so that
oo
Coary (M(1,0) _ B dadB e
( 21'”) Bt J a2+62 W(OL,B)W( Oy B)
-0
The integrand is an odd function in (a,B)
integral vanishes identically. Therefore

o0
M(1,0) = J x w dxdy

00

is invariant.

[A.18]

as follows.

vanishes, so

[A.19]

and hence its

[A.20]
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(c) m=0 n=1

Repeating the argument developed for the case (m = 1,

n = 0) establishes the invariance of the moment

; 4o
M(0,1) = J y w dxdy. [A.21]

—C0

(d) (m=2,n=0)+ (m=0, n=2)

The evolution equation for the combination I = M(2,0)

+ M(0,2) is obtained from [A.15] as

. 2
CHD® < 2,0y +14(0,2)]

4o
- J W dadh g ,{10) _ g 4001

-00

where, by definition

wglso) = w(l’o) ("'OL,—B) - BW(_BOLG’—B)

[A.22]

Wgo’l) = w(o’l) (_u,-B) . aw(—au'Bs_B2

The invariance of I 1is proven if one establishes the

identity
My =M,
where
M = rm W dadB 3% [log (a2+B2)] a‘/J(—E;JLOL,—B)
and

~+o0 .
T N =)

=00

where use has been made of the fact that



_B 102 2,02
_a _129 2,02
OZHpZ 7 g 10B(@THET).

The expressions for M1 may be transformed as follows

by carrying out the integration w r. to B

= J+°° do {[log(oc2+62) W g—w_]sl
e o g,
- Em a8 log (a2+87) 5’% [w %_]}
Ml = [M1] - J+°° I+°° dadp 1og(a2+32)[-g-‘81 %— + W*g?g{jg]

-0 -—00

where [M1] represents the integrated term.

Tdentical manipulations on M, yield the expression

+oo -0
J dB{[log(a2+82) W Bl_-l '
98 ly,

My

~—00

oo : -
- J da, 1og(0L2+82) % [w BgJB ]}

* oW oW 32w
- - 2102y 2X
= [M2] J J dodB log(a“+B )[aa 36 + W 3098 J

Both integrated terms vanish provided the vorticity
distribution vanishes sufficiently rapidly toward

infinity. It is readily seen — with the change of
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variables o - -a; B - -8 - that the identity M1 = M2

is verified in this case, which establishes the invariance

of the expression

B
I = J (x%+y?) w dxdy

=00

4, EVOLUTION EQUATION FOR H(m,n)

Define the function ¢ (x,y) as the product

d(x,y) = P(x,y) wx,y)
and its Fourier transform F(&,n) by

4o 4o )
F(E,n) = J J b(x,y) e T2TOET) gray

=00 -—00

with the corresponding inversion formula

4o oo )
d(x,y) = J I F(E,n) 2 TTEW grgn |

-=00 -—00

It is easily shown that one has

m+n

3 F(E,Nn)

oo
= (-2im)™" j " ¢ (x,y)dxdy
m Il
& an

(030) =i

so that

+oo
H(m,n) = F{™™ { (~24m)™HD

—C0

fA.22]

[A.23]

fA.24]

[A.25]

[A.26]

[A.27]

The invariance of the moments H(m,n) may be investigated by

considering the evolution equation for the quantities Fgm’n).

The equation giving %% is easily obtained from [A.7] and

[A.8] by noting that F = W % P. Clearly then
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- am?p o (EW) x (F) - (W) % (EP)

161" P & [(E%+En?)P & nP - (N*+E?)P & (EP)]
after repeated use of [A.8]
The foregoing expression may be rewritten as

R UL IGR) [4.28]

where T(&,n) 1is given by

oo ten
T(E,n) = J J (a2+8%)P(a,B) dodB

-00 -0
o0 oo
Tle J I dudv (ou—-Rv)P(u-a,v-RB)P(E-u,n-v) . [A.29]
=00 -=C0
In particular,
(0,0)
aFo _ 4
5t léw' T(0,0)
=0
in view of expression [A.29]. This completes the proof that the quantity
.
H(0,0) =H = J J w w dXdy [A-30]
=00 -—00

is an invariant of the vorticity distribution.

Intuitively, one suspects that the treatment of vortices in
Fourier transform space should lead to economics in computer time
requirements, but this approach has not been pursued further at the

present time.
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APPENDIX B:

STREAM FUNCTION AND INVARIANTS FOR THE DISK OF UNIFORM VORTICITY

The integral,

VE) = - o= J w(Q) log RZ, 4D(Q) [5.1]
D

defining the stream function associated with a distribution of vorticity
w(Q) over a bounded domain 0¥ can be explicitly evaluated for the

particular case of the disk of uniform vorticity, for which one has

w(Q)
D

constant = wy

2 4+ y2 < a2},

{(x,y) : x

The positions of P (fixed) and Q (element of domain D) are expressed in
terms of polar coordinates (p,¢ ) and (r,0) (refer to Figure B.1l).

One has

(x(P),y(P)) (p cos 9,p sin ¢)

(x(Q),y(Q))

2 =12 - 2rp cos (8 - ¢) + p2
Req

(r cos 8, r sin 6)

dD(Q) = r dr do ,
and expression [B.l] is rewritten

a 27
y(P) = - Zﬂ l rdr l de log [r2 - 2rp cos (6 = ¢) + p?] . [B.2]

It is easily shown that
2m
J de log [r2 - 2rp cos (9 -9 ) + p2 ] =
0

™
2 j de log [r2 - 2xp cos 8 + p2 ],
0
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so that [B.2] is rewritten

27

a T '
V() = - 20 J rdr J de 1og [r2 - 2rp cos B + p2 1, [B.3]
0 0

This expression may now be evaluated on the basis of the formula
m 21 log A (A > B)
J log (A2 - 2AB cos o + B2) da = { [B.4]
0 21 log B (B > A)
(A,B > 0), taken from standard integral tables.
The integration with respect to 6 in [B.3] must be carried out differently
if r=2p or if r < p. This leads to distinct forms for the stream

function depending on whether P 1lies inside or outside the disk. One

finds easily the two forms:

2

y(®) = - 9%?— log p (p = a) (P exterior)

2
- %g (p2 - a2) - E%é_ log a (p < a) (P interior)

[ B.5]

v (P)

The invariants of the vorticity distribution are easily evaluated
from their definition integrals [1.16], [ 1.20], [1.22] and [1.25]. Their
values are:

(a) Total circulation T

a
I' = .uwg J 271r dr = 7 wy a? [ B.6]
0

(b) Coordinates of vorticity centre (X,Y)
X=Y=0 [B.7]
(¢) Moment of inertia G (= I2)

a 2w
TG = wp J J r3 dr de

I=a/v2. [B.8]

o
(1]
[p]
]
[+4]
N
=~
N
(o]
=
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(d) Hamiltonian (Kirchhoff function)

wo? [ a 27 27
H=- 5%— J r dr J p dp J de J d¢ log [r? + p% - 2rp cos (8 - ¢) ]
0 0 0 0

Using formula [ B.4] and proceeding in a manner similar to that used when
evaluating w(P), lead to the expression

p

H = EQT%—E (1 -4 log a) . [B.9)
A
P(p,¢)
p r
¢
0
o

Figure B.1l
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APPENDIX C:

NUMERICAL EVALUATION OF @ (p,£) AND OF 4 ASSOCIATED INTEGRALS

The solution for the problem of the viscous diffusion of the

vorticity disk has been found to be

LP2/4E (1 - A2/4g i
Q\) (p,E) =_—2E_— J e AT, (i’g) dA [C.l]

0

(Refer to [2.47]). Using the change of variables u = pA/2f, one obtains
the alternative form

/28 2, 2
_ 28 —p2/4g [P - £u?/p
Q\) (p,8) = 72 e Jo e u Io(u) du .

[C02]
Difficulties arise in the numerical evaluation of the function I.(u)
for large values of its argument, due to a rapid increase in magnitude;
overflow conditions are expected to arise for large values of p/2E.
A manner of avoiding computational problems is to base the

calculation on the available polynomial approximations for the functions
Io (x) (0< x < 3.75)
and Go (%) =e » Vx Io (x) (3.75 < x < =),

(see Abramovitch & Stegun, 1964, 9.8.1 & 9.8.2). This requires the
modification of the above expression for Q, as follows. Writing A = 3.75

and F = -E%— , one decomposes the integral in[ C.2] in two parts, writing:
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@, (p,6) = F (9 + ®,) , with

- a2 A L 2,2
91 = e pe/4E J e Eu/p u Io(u) du [C.3]
0

p/2E - gu2/p? - p2/4g
and 92 = J e u Io(u) du

A

p/28  u(l-gu/p?) - p?/4g
i.e. Q, = e YU Go(u) du . [C.4]

A

- - Lo«
Qv is then evaluated as Qv Fﬂl for 7E A and as the sum
Qv = F(Q1 + 92) for %% > A. Both integrals are evaluated using the
Gauss method, for which one has the approximation
+1 NG
J f(u) du = 2 f(x) wx) , [c.5]
o a

-1 o=1
for any function £. The weighting functions w(xa) and the Gauss nodes
X, (0 = 1,2,...NG) are available as tabulated values in various textbooks
on numerical analysis (see for instance Abramovitch & Stegun, 1964, Table
25.4).

In all computations, 50 nodes were used; the convergence of the
method was checked by varying the number of nodes; stabilization of the
values was generally observed for as low a value as NG = 20.

The changes of variables required to scale the integration bounds

down to the range [-1,+1] are readily found; one used:

(a) for Ql H v = %g -1, giving
2+l _ A(v+1), 2
Ql = %r J (v+1) e el 2p 1 I, [éi%illi dv [c.6]
-1
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; - uN P A y-2L A {vi
(b) for 92 PovE g M = 4 5 3 N = 4T + 5 ), giving
1 ) [1 - £V
Qz =M j e e Go (Mv+N) YMv+N dv. [c.7]

For p=0, . may be computed from the simpler expression

Q =1-e L4 [c.8]

(see [2.48]).

Having computed Qv (p,&), the evaluation of the related integral

quantities
I' =27 J r w(r,t) dr , [C.9]
0
I‘ {eo] -
Hv == J r w(r,t) log r dr
0
[+2] [+o]
+ J u w(u,t) J r w(r,t) log (%) dr du , [cC.10]
0 u
X = 2u J r w?(r,t) dr  and [c.11]
0
2'J"I' * 3
G = r® w(r,t) dr [c.12]
0

may then be carried out using the same Gauss method. Here, the changes
of variables required to map the infinite ranges of integration onto

the (-1,+1) interval are simply r = tg u and v = 4u/m - 1.
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APPENDIX D:

EVOLUTION IN TIME OF THE MOMENT OF INERTIA OF THE VORTICITY DISK IN A

VISCOUS FLUID

By definition, the moment of inertia Gv of a vorticity distribution

is given by the expression

I, = J wvrz daA , [D.1]

where T 1is the total circulation. For the case of the uniform disk,

one has

G = —zg— rd w (r) dr = 2 J/a%uw

Y a<wy 5 v 05
where J = J r3 wv(r) dr [D.2]
0
dG ; dJ . . .

Let us evaluate HEM by computing Tc from the differential equation

aw v 9 3w

—y = 2 —

ot r T (= or ). [D.3]

3

Multiplying equation [D.3] by r~ and integrating over the whole space

with respect to r yields

a [ e duy
5 =Y J ré o= ( r 5o ) dr. [D.4]

0

Successive integrations by parts may be carried out; one obtains:

00
dJ _ 3 Wy 1% _ 2 W
F T [r 3;3-]0 2v j r 3?¥ dr
0
a3 _ 3 3wy 1 2, 1% N
and Ic v [? T ]0 2v [r W, ]0 + 4v row, dr .

0
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For wv(r) behaving at least like r—2 at infinity, this yields

dJ _ r
ol 4y T congtant ’ [D'5]

since by definition r= J w,  dA = 2w J rwvdr.
A

The time evolution of Gv(t) is then given by

r 4G
= == ).
G, (t) = G (o) +e( 5 )o [D.6]
_ 2 4y T
so that Gv(t) = Gv(o) + t Tas I
i.e. Gv(t) = Gv(g) + 4vt , [D.7]

which is an exact relationship. In terms of the variable £ = vt/a%, it

is rewritten

G, (E) _
= o)—1+8§ [p.sl

since Gv(o) = a2/2.





