I give consent to this copy of my thesis, when deposited in the University Library, being available for loon and photocopying. Date !.....tuly......9.... signed

BESSEL FUNCTIONS OF MATRIX ARGUMENT WITH STATISTICAL APPLICATIONS

by

BRIAN G. LEACH B.Sc. (Hons.) (Adel.)

Thesis submitted for the Degree of Doctor of Philosophy in the University of Adelaide, Department of Statistics, Tune, 1969.
Signed Statement viii
Acknowledgements ix
Chapter 1: Introduction 1
1.1 General 1
1.2 Historical 5
1.3 Review of problems considered 8
1.4 Notation 10
Chapter 2: The Asymptotic Formula for $\left.{ }_{\circ} F^{(\mathbb{H}}\right)\left(\frac{1}{2} n ; \frac{1}{\hbar} \Omega, W\right)$ 14
2.1 Introduction 14
2.2 As a function of the latent roots 15
2.3 ANDERSON'S method 17
2.4 Reduction to a Poisson type integraJ. 20
2.5 The classical approach generalised 23
2.6 Finding the maxima 26
2.7 Approximating the integral 35
2.8 Proving the expansion 38
2.9 Summary 42
Chapter 3: Statistical Applications 44
3.1 Introduction 44
3.2 The Stiefel manifold 45
3.3 Maximum marginal likelihood estimation 48
3.4 One argument matrix not of full rank 51
3.5 A BARTLETT-LAWLEY type test of rank 57
3.6 Connections with MANOVA and canonical correlations 64
Chapter 4: The Bessel Function of One Argument 68
4.1 Introduction 68
4.2 ANDERSON'S integral 68
4.3 Finding the maxima 71
4.4 Approximating the integral 73
4.5 Proving the approximation 76
4.6 Summary 76
4.7 The averaged ANDERSON'S integral 77
Chapter 5: The P.D.E. Asymptotic Formula for ${ }_{0} F_{1}$ 78
5.1 Introduction 78
5.2 Using the differential equations 78
5.3 The direct method 85
5.4 The two methods, a comparison 86
5.5 Statistical applications 88
Chapter 6: The Laguerre Polynomial $L_{\kappa}^{a}(S)$ 90
6.1 Introduction 90
6.2 The classical results 90
6.3 The matrix generalisations 92
6.4 The non-central moments of the likelihood ratio statistic 96
Chapter 7: Calculation of Zonal Polynomials and ($\left.\begin{array}{l}\text { v } \\ \nu\end{array}\right)$ 99
7.1 Introduction 99
7.2 The $Z_{k}(\cdot)$ in terms of the $M_{K}(\cdot)$ 99
7.3 Zonal series and evaluating the $M_{\kappa}(S)$ 102
7.4 The formula for ($\left.\begin{array}{l}k \\ \nu\end{array}\right)$ 107
7.5 The $g_{\nu \mu}^{\kappa} \mu$ and products of monomial symmetric functions 109
7.6 Summation identities for $\binom{k}{\nu}$ and $g_{\nu \mu}^{\mathcal{K}}$ 114
Chapter 8: Numerical Ivaluation 117
8.1 Introduction 117
8.2 Small latent roots - zonal series 117
8.3 Medium value latent roots - Laguerre series 119
8.4 Large latent roots - asymptotic formulae 121
8.5 Concluding remarks 124
Appendix 1 125
A.1.1 Calculation of the d_{κ} 125
A.1.2 The evaluation of (2.42) 127
A.1.3 Further terms of the series 130
Appendix 2 132
Appendix 3: Calculation of the Coefficients $\mathrm{c}_{\kappa \tau}$ 135
A.3.1 The programme 135
A.3.2 The generation of partitions 135
A.3.3 Storage of partitions 136
A.3.4 The calculation of $c(\kappa)$ and $\chi_{[2 \kappa]}(1)$ 138
Appendix 4: Calculation of the $g_{v \mu}^{k}$ and ($\left.\begin{array}{c}k \\ v\end{array}\right)$ 140
A.4.1 The programme 140
A.4.2 The product of $\mathrm{msf}^{\prime} \mathrm{s}$, the b_{ε} and the $\mathrm{e}_{\alpha \beta}^{\delta}$ 140
A.4.3 Storing the b_{ε} 143
Bibliography 145

Both the non-central Wishart and non-central means with knovm covariance distributions can be written as the appropriate central distribution multiplied by a factor which in each case involves a oF_{1} hypergeometric (or Bessel) function of matrix argument (JAMES [3]). The results of this thesis constitute an assault on the problem of evaluating the Bessel functions via asymptotic expansions or exact series for arbitrary argument matrices.

In the first part of this thesis matrix transformations and group integrations are used on the integral representations for the Bessel functions to reduce them to a form suitable for the application of a method of approximation due to G.A. ANDERSON [1]. Asymptotic expansions are derived and these are show to be valid for large values of the latent roots of the argument matrix or matrices. For the non-central means with known covariance distribution the expansion is used to compute maximum marginal likelihood estimates, for the non-centrality parameters and to establish a modified Chi-square test on the number of non-zero non-centiralities.

For the Bessel function of one argument matrix I use a differential equation to derive an approximation asymptotic in the number of degrees of freedom. The result is applied to the likelihood factor of the non-central Wishart.

In the latter part of this thesis I consider methods for the direct evaluation of the Bessel functions in terms of series of zonal polynomials and Laguerre polynomials (CONSTANTINE [2]).

By using the Laplace transform for matrix variables I prove some generalisations of classical summation formulae involving the Laguerre polynomial. A summation formula for the determination of the coefficients $\binom{\kappa}{v}\left(a_{\kappa \tau}\right.$ CONSTANTINE [2]) is proved, as well as other identities involving them. These coefficients are then tabulated for the values $k=5,6$. Incidentally an algorithm for calculating the $g_{v \mu}^{\kappa} \mu$, involved in expressing a product of two zonal polynomials in terms of zonal polynomials, is developed.

JAMES [4] has shown that the zonal polynomials can be expressed in terms of the monomial symmetric functions, where the coefficients are easily determined recursively. I calculate these for the direct evaluation of the Bessel functions in zonal polynomial expansions. By summing the first few terms of the series it is possible to study convergence for various argument matrices.

The final section is devoted to making numerical comparisons of all the methods and giving some idea of their ranges of usefulness.

In appendices I give details of the computer programs used as well as considering problems such as the generation and storage of partitions and the indexing of arrays.

REFERENCES

[1] G.A. ANDERSON: An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix, Ann. Math. Statist. 36 (1965), 1153-1173.
[2] A.G. CONSTANTINE: The distribution of Hotelling's generalised \mathbb{I}_{0}^{R}, Ann. Math. Statistics 37 (1966), 215-225.
[3] A.T. JAMES: The distribution of non central means with known covariance, Ann. Math. Statist. 32 (1961), 874-882.
[4] A.T. JAMES: Calculation of zonal polynomial coefficients by use of the Laplace-Beltrami operator, Ann. Math. Statist. 39 (1968), 1153-1173.

SIGNED STATEMENT

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University. To the best of my knowledge and belief, the thesis contains no material previously published or written by any other person, except where due reference is made in the text of the thesis.

ACKNOWLEDGEMENTS

The author is indebted to his supervisor Professor A.T. James for suggesting the topic for research and for encouragement and assistance given throughout this work. He has also benefited from discussions with Dr. A.G. Constantine of the Commonweal th Scientific and Industrial Research Organisation (Division of Mathematical Statistics), who also suggested the use of the system of partial differential equations (Chapter 5).

The author gratefully acknowledges the financial support of a Commonwealth Postgraduate Award and the use of computing facilities at the University of Adelaide. Many thanks are extended to Miss D.J. Potter for her efficient typing of the manuscript, and to Mr. R. Goodwins for the photographic work. Finally the author expresses a vote of thanks to his wife Carolyn for the duplication of the thesis.

CHAPTER 1

INTRODUCTION

1.1 General

The topic is multivariate normal analysis based on the multivariate normal distribution. Let the $m \times n$ matrix variate X, with $m \leqslant n$, be distributed as $d F(X . ; M, \Sigma)=(2 \pi)^{-\frac{1}{2} m n} \operatorname{det} \Sigma^{-\frac{1}{2} n} \operatorname{etr}\left\{-\frac{1}{2} \Sigma^{-1}(X-M)(X-M)^{\prime}\right\}_{1, j} d_{1 j}$
where $\mathbb{E}[X]=M, X=\left(x_{1} \ldots x_{1} \ldots x_{n}\right), x_{1}=\left(x_{j 1}\right) m \times 1$ and $\operatorname{cov}\left(x_{1}, x_{j}\right)=\delta_{1 j} \Sigma$. That is, the columns of X form n independent samples with x_{1} from $N\left(m_{1}, \Sigma\right)$, where $M=\left(m_{1} \ldots m_{n}\right)$.

In 1961 JAMES [20] has given the non-central Wishart distribution, which is the distribution of

$$
\begin{equation*}
X X^{\prime}, \tag{1.2}
\end{equation*}
$$

and the non-central means with known covariance matrix distribution, that is the distribution of the latent roots $w_{1}, w_{2} \ldots w_{m}$ of the determinantal equation ($w_{1} \geqslant w_{2} \geqslant \ldots \geqslant w_{m}$)

$$
\begin{equation*}
\operatorname{det}\left(X X^{\prime}-w \Sigma\right)=0 \tag{1.3}
\end{equation*}
$$

The central distribution of $K X^{I}$ (i.e. $M=0$) was given by WISHART [34] as
$\frac{1}{2^{\frac{1}{2} m n} \operatorname{det} \Sigma^{\frac{1}{2} n} \Gamma_{m}\left(\frac{1}{2} n\right)} \operatorname{det}\left(X X^{\prime}\right)^{\frac{1}{2}(n-m-1)} \operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} X X^{\prime}\right) \quad\left(\alpha\left(X X^{t}\right)\right)$
where

$$
\begin{equation*}
\Gamma_{\mathrm{m}}(a)=\pi^{\frac{1}{4}} \mathrm{~m}(\mathrm{~m}-1) \prod_{i=1}^{\mathrm{m}} \Gamma\left(a-\frac{1}{2}(i-1)\right) \tag{1.5}
\end{equation*}
$$

and $\Gamma(a)$ is the ordinary Gamma function. For the latent roots $w_{1}, w_{2}, \ldots w_{\mathrm{m}}$ the central joint distribution was given by FISHER [11], HSU [13] and ROY [31] as
$\frac{\pi^{\frac{1}{2} m^{2}}}{2^{\frac{1}{2} m n} \Gamma_{m}\left(\frac{1}{2} n\right) \Gamma_{m}\left(\frac{1}{2} m\right)} \exp \left(-\frac{1}{2} \sum_{i=1}^{m} w_{1}\right) \prod_{1=1}^{m} w_{1}^{\frac{1}{2}(n-m-1)} \prod_{1<j}\left(w_{1}-w_{j}\right) \prod_{j=1}^{m} d w_{1}$. (1.6)

$$
\begin{gather*}
\text { Now if }(1.1) \text { is written as } \\
\partial F(X ; M, \Sigma)=\operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} M M^{r}\right) \operatorname{etr}\left(M^{\prime} \Sigma^{-1} X\right) \partial F(X ; 0, \Sigma) \tag{1.7}
\end{gather*}
$$

then both non-central distributions can be written as a likelihood factor multiplied by the appropriate central distribution. That is, the non-central distribution of XX^{\prime} is

$$
\begin{equation*}
c_{1} \operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1}{M M^{\prime}}^{\prime}\right) \int_{O(n)} e \operatorname{tr}\left(M^{\prime} \Sigma^{-1} X H\right)(d H) \times(1.4) \tag{1.8}
\end{equation*}
$$

where (dH) stands for the invariant Haar measure on the group $\mathcal{O}(n)$ of $n \times n$ orthogonal matrices H and

$$
\begin{equation*}
\operatorname{Vol}(O(n))=\int_{(n)}(d H)=\frac{2^{n} \pi^{\frac{1}{2}} n^{2}}{\Gamma_{n}\left(\frac{1}{2} n\right)} \tag{1.9}
\end{equation*}
$$

making $\quad c_{1}=[\operatorname{Vol}(\mathcal{O}(n))]^{-1}$ to give the integral of (1.8) the value unity for $M=0$. The process of integration over $\mathcal{O}(\mathrm{n})$ is called averaging (see JAMES [16],[17]). One
further integration gives the non-central distribution of the roots $w_{1} \ldots w_{m}$ as
$c_{2} \operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} M^{\prime}\right) \int_{\mathcal{O}(m)}\left(d H_{1}\right) \int_{\mathcal{O}(n)}\left(d H_{2}\right) \operatorname{etr}\left(\left(\Sigma^{-\frac{1}{2} M}\right)^{\prime} H_{1}\left(\Sigma^{-\frac{1}{2}} \mathrm{X}\right) \mathrm{H}_{2}\right) \times(1.6)$
with the normalising constant $c_{2}=[\operatorname{Vol}(\mathcal{O}(n)) \operatorname{Vol}(\mathcal{O}(m))]^{-1}$.
In [20], JAMES also showed how to expand both integrals in series of zonal polynomials. These polynomials $Z_{k}(S)$, where S is an $m \times m$ symmetric matrix, are homogeneous symmetric polynomials in the latent roots of S corresponding to the partitions

$$
\begin{equation*}
\kappa=\left(k_{1}, k_{2} \ldots k_{m}\right) k_{1} \geqslant k_{2} \geqslant \ldots \geqslant k_{m} \tag{1.11}
\end{equation*}
$$

of the integer k into not more than m parts. A most important property is the ir aver age over the orthogonal group $\mathcal{O}(m)$, given by

$$
\begin{equation*}
\int_{(m)} Z_{k}\left(\mathrm{RH}^{\prime} \mathrm{SH}\right)(\mathrm{dH})=\frac{\mathrm{Z}_{\kappa}(\mathrm{R}) \mathrm{Z}_{\kappa}(\mathrm{S})}{\mathrm{Z}_{\kappa}\left(\mathrm{I}_{\mathrm{m}}\right)} \tag{1.12}
\end{equation*}
$$

where I_{m} is the $m \times m$ identity matrix and

$$
\begin{equation*}
Z_{k}\left(I_{m}\right)=2^{k}\left(\frac{1}{2} m\right)_{k} \tag{1.13}
\end{equation*}
$$

with

$$
\begin{equation*}
(a)_{k}=\prod_{1=1}^{m}\left(a-\frac{1}{2}(i-1)\right)_{k_{1}} \quad(a)_{n}=a(a+1) \ldots(a+n-1) \tag{1.14}
\end{equation*}
$$

Full definitions, proofs etc. can be found in JAMES [18], [19],[20] and CONSTAIVTINE [7].

Subsequently in 1963, COITSTANTINE [7] gave a power series representation of the hypergeone trice functions of matrix argument. The more general form has two argument matrices and is defined as
$p \cdot F^{(m)}\left(a_{1} \ldots a_{p} ; b_{1} \ldots b_{q} ; R, S\right)=\sum_{k=q}^{\infty} \sum_{\kappa} \frac{\left(a_{1}\right)_{K} \ldots\left(a_{p}\right)_{K}}{\left(b_{1}\right)_{K} \ldots\left(b_{q}\right)_{K}} \frac{C_{K}(R)}{k!C_{K}(S)} C_{K}(I) \quad$
with the summation over all partitions κ of k, and

$$
\begin{equation*}
C_{\kappa}(s)=\frac{\chi[2 \kappa]^{(1)}}{1 \cdot 3 \ldots(2 k-1)} Z_{\kappa}(s) \tag{1.15}
\end{equation*}
$$

with $\chi_{[2 \kappa]}(1)$ the dimension of the representation $[2 \kappa]$ of the symmetric group on $2 k$ symbols. This change in normalisation (1.16) simplifies the formulae. For one argument we have

$$
\begin{equation*}
{ }_{p} F_{q}\left(a_{1} \ldots a_{p} ; b_{1} \ldots b_{q} ; R\right)={ }_{p} F_{q}^{(m)}\left(a_{1} \ldots a_{p} ; b_{1} \ldots b_{q} ; R, I\right) \tag{1.17}
\end{equation*}
$$

and from (1.12)

$$
\begin{equation*}
{ }_{p} F^{(m)}\left(a_{1} \ldots a_{p} ; b_{1} \ldots b_{q} ; R, S\right)=\int_{p_{(m)}} F_{q}\left(a_{1} \ldots a_{p} ; b_{1} \ldots b_{q} ; R H^{\prime} S H\right)(d H) \tag{1.18}
\end{equation*}
$$

Full definitions, proofs etc. are found in CONSTANTINE [7] and JAMES [21].

Using the hypergeometric notation JAMES [21] gives (1.8) as

$$
\begin{equation*}
\operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} \mathrm{MM}^{\prime}\right){ }_{0} \mathrm{~F}_{1}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \Sigma^{-1} \mathrm{MM}^{I} \Sigma^{-1} X X^{\prime}\right) \times(1 \cdot 4) \tag{1.19}
\end{equation*}
$$

and if we write $W=\operatorname{diag}\left(W_{1}\right), \Omega=\operatorname{diag}\left(\omega_{1}\right)$ where the ω_{1} are the roots of

$$
\begin{equation*}
\operatorname{det}\left(M^{\prime}-\omega \Sigma\right)=0 \tag{1.20}
\end{equation*}
$$

then (1.10) becomes

$$
\begin{equation*}
\operatorname{etr}\left(-\frac{1}{2} \Omega\right){ }_{\circ} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right) \times(1.6) \tag{1.21}
\end{equation*}
$$

The ${ }_{o} F_{1}$ is called the Bessel function of matrix argument and is a gener alisation of the familiar univariate function defined by

$$
\begin{equation*}
{ }_{o} F_{1}(a ; x)=\sum_{n=0}^{\infty} \frac{x^{n}}{(a)_{n} n!} \cdot \tag{1.22}
\end{equation*}
$$

This function appears in the non-central χ^{2}. If variates x_{1} are independent $N(0,1)$ then the distribution of $\chi^{2}=\left(x_{1}+\sqrt{\omega}\right)^{2}+x_{2}{ }^{2}+\ldots+x_{n}{ }^{2}$ is (setting $\left.v=\chi^{2}\right)$

$$
\begin{equation*}
e^{-\frac{1}{2} \omega_{0} F_{1}\left(\frac{1}{2} n ; t \omega w\right)} \frac{1}{2^{\frac{1}{2} n} \Gamma\left(\frac{1}{2} n\right)} e^{-\frac{1}{2} w} w^{\frac{1}{2} n-1} d w . \tag{1.23}
\end{equation*}
$$

Both (1.19) and (1.21) reduce to (1.23) if $m=1$ but (1.21), or the distribution of the non-central means with known covariance, is considered to be the generalisation of the non-central χ^{2}.

1.2 Historical

The first results on the non-central Wishart distribution were ob tained in 19山4 by T.W. ANDERSON and GIRSHICK [3]. They stated the general problem in the form of a multiple integral and gave the solution for the rank of $M \leqslant 2$. Both results are expressed in terms of the Bessel functions $I_{\nu}(\mathrm{x})$. Subsequently in 1947 ANDERSON [2], by transforming the general multiple integral, managed to perform
some of the required integrations and produced an integral representation that appeared to be a matrix analogue of the Poisson integral representation of the Bessel function. The distribution for rank 3 was obtained in 1953 by weIBULL [33] and in 1955, prior to the zonal expansions, JAMES [16],[17] gave a power series expansion for the general distribution. The first definite mention of the non-central means with known covariance distribution was in 1961 when JAMES [20] gave the general distribution. It has subsequently been studied in JAMES [21], [22] where it vas shown to be the limiting distribution for the general non-central means distribution with finite error degrees of freedom and for the canonical correlations distribution both of which were derived by CONSTANTINE [7].

For convenience these two limiting processes will be outlined here. If X is such that the $m \times m$ matrix $X X^{\prime}$ has the non-central Wishart distribution on s degrees of freedom with non-centrality parameters Ω (defined by (1.20)) and Y is such that $Y Y^{\prime}$ has the central Wishart distribution on t degrees of freedom, the covariance matrix in each case being Σ, then the distribution of the latent roots $r_{1} \ldots r_{m}$ of the matrix $R=X X^{\prime}\left(X X^{\prime}+Y Y^{\prime}\right)^{-1}$ is given by
$\operatorname{etr}\left(-\frac{1}{2} \Omega\right)_{1} F_{1}^{(m)}\left(\frac{1}{2}(s+t) ; \frac{1}{2} s ; \frac{1}{2} \Omega, R\right)$
$\frac{\pi^{\frac{1}{2} m^{2}} \Gamma_{m}\left(\frac{1}{2}(s+t)\right)}{\Gamma_{m}\left(\frac{1}{2} s\right) \Gamma_{m}\left(\frac{1}{2} t\right) \Gamma_{m}\left(\frac{1}{2} m\right)} \prod_{i=1}^{m} r_{i}^{\frac{1}{2}(s-m-1)}\left(1-r_{i}\right)^{\frac{1}{2}(t-m-1)} \prod_{i<j}\left(r_{1}-r_{j}\right) \Pi d r_{i}$.

The r_{1} are the solutions of

$$
\begin{equation*}
\operatorname{det}\left(X X^{\prime}\left(X X^{\prime}+Y Y^{\prime}\right)^{-1}-r I\right)=0 \tag{1.25}
\end{equation*}
$$

which can be rearranged as

$$
\begin{equation*}
\operatorname{det}\left(X X^{\prime}-\frac{r}{1-r} Y Y^{\prime}\right)=0 \tag{1.26}
\end{equation*}
$$

Now set $Y Y^{\prime}=t S$ (so that as $t \rightarrow \infty, S \rightarrow \Sigma$) then if

$$
\begin{equation*}
w=\frac{r}{1-r} t \tag{1.27}
\end{equation*}
$$

as $t \rightarrow \infty(1.26)$ becomes $\operatorname{det}\left(X X X^{t}-w \Sigma\right)=0$ and it is quite easy to show that under the substitution (1.27) the limit of the distribution (1.24) as $t \rightarrow \infty$ is (1.21).

Also if $r_{1}^{2} \ldots r_{m}^{2}$ are the sample canonical correlatron coefficients and $\rho_{1}^{2} \ldots \rho_{\mathrm{m}}^{2}$ the population canonical correlation coefficients and there are t degrees of freedom, then the limiting distribution, as $t \rightarrow \infty$, of

$$
\begin{equation*}
\operatorname{tr}_{1}^{2}=w_{1} \text { such that } t \rho_{1}^{2}=\omega_{1} \tag{1.28}
\end{equation*}
$$

is again (1.21).
The most recent reference to the non-central means with known covariance distribution was in 1968 when PILJAI and GUPTA [28] showed that the first two moments of $W_{2}^{(\mathrm{m})}$, the second elementary symmetric function in $\frac{1}{2} w_{1} \ldots \frac{1}{2} w_{m}$,
could be expressed in terms of generalised Laguerre polynomials. The results are of interest in what follows for the appearance of these polynomials whose evaluation wiJl be considered at length.

1.3 Review of problems considered

By direct summation of the zonal series the Bessel functions can be evaluated for argument matrices with small latent roots. For medium sized latent roots the Bessel function is expressed in terms of the generalised Laguerre polynomials (see CONSTANTINE [3]) in an attempt to obtain more rapidly converging series. The results and details are given in Chapters 6 and 7 .

Two Chapters are devoted to the problem of expanding the Bessel function in an asymptotic series valid when the latent roots are large. The starting point in each case is the integral representation i.e. (1.10) and (1.8). The method used is an extension of that used in 1965 by G.A. ANDERSON [1] to expand the hypergeometric function ${ }_{0} F_{0}^{(m)}\left(-\frac{1}{2} n \Sigma^{-1}, L\right)$ in an asymptotic series for large n. He begins with the integral definition

$$
\begin{equation*}
{ }_{o F_{O}^{(m)}}^{\left(-\frac{1}{2} n \Sigma^{-1}, L\right)=\int_{O(m)} \operatorname{etr}\left(-\frac{1}{2} n \Sigma^{-1} H^{\prime} L H\right)(d H)} \tag{1.29}
\end{equation*}
$$

where $H \in \mathcal{O}(m)$ and $I=\operatorname{diag}\left(\ell_{1}\right)$ where the ℓ_{1} are the Iatent roots given by $\operatorname{det}\left(X X^{\prime}-\ell I_{m}\right)=0$. In Chapter 2
the more difficult two argument case is considered and the results are easily modified in Chapter 4 to deal with the simpler one argument function.

The approximations are a generalisation of the classical result for a $0 F_{1}$ with a large variable. The ${ }_{0} F_{1}$ has the Poisson integral representation (ERDELYI [9] 7.12(10) and $7 \cdot 2 \cdot 2(12)$)
${ }_{0} F_{1}(c ; x)=\frac{\Gamma(c)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2}\right)} \int_{-1}^{1} e^{2 \sqrt{x} t}\left(1-t^{2}\right)^{c-\frac{3}{2}} d t$.
The three steps in the approximation process are:1. Transform $1-t=u$

$$
=\frac{\Gamma(c) 2^{c-\frac{3}{2}} e^{2 \sqrt{x}}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2}\right)} \int_{0}^{2} e^{-2 \sqrt{x} u u_{u}^{c-\frac{3}{2}}\left(1-\frac{u}{2}\right)^{c-\frac{3}{2}} d u_{0} . ~}
$$

2. Expand binomially

$$
=\frac{\Gamma(c) 2^{c-\frac{3}{2}} e^{2 \sqrt{x}}}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(c-\frac{1}{2}\right)} \sum_{r=0}^{\infty}\left(c-\frac{3}{2}\right) \frac{(-1)^{r}}{2^{r}} \int_{0}^{2} e^{-2 \sqrt{x} u_{u}} u^{c-\frac{3}{2}+r} d u
$$

3. For large x the major contribution to the integral is made near the origin and adding in the tail $2<u<\infty$ does not alter the value much, thus

$$
\int_{0}^{2} f(u) d u \bumpeq \int_{0}^{\infty} f(u) d u
$$

and

$$
0 F_{1}(c ; x) \bumpeq \frac{\Gamma(c) e^{2 \sqrt{x}}}{2 \sqrt{\pi} x^{\frac{c}{2}-\frac{1}{4}}} \sum_{r=0}^{\infty} \frac{(-1)^{r} \Gamma\left(c-\frac{1}{2}+r\right)}{r!}\left(\frac{1}{\Gamma\left(c-\frac{1}{2}-r\right)}\right)^{r} \cdot(1.31)
$$

Both asymptotic results vill be shown to agree with this for $\mathrm{m}=1$ 。

Finally in Chapter 5 a differential equation approach is used to give an asymptotic approximation of ${ }_{\circ} \mathrm{F}_{1}\left(\frac{1}{2} n ; R\right)$ valid for large n. This is a generalisation of the one variable method (see e.g. ERDELYI [10]).

Some statistical applications of the non-central means with known covariance distribution are given in Chapter 3. In particular problems of parameter estimation and hypothesis testing by maximum likelihood are considered. The main use of the approximations to the non-central Wishart is to permit the likelihood function to be calculated over a large part of the range. There are difficulties in evaluating the ${ }^{\circ} F_{1}$ when both n and the latent roots are both large, but the term $\operatorname{etr}\left(-\frac{1}{2} \Omega\right)$ should prevent the likelihood being large in this region.
1.4 Notation

Two further group integrations will be considered:-

$$
\begin{equation*}
\text { 1. } \int_{\vartheta_{n \mathrm{~m}}}\left(\mathrm{dH}_{1}\right) \quad \operatorname{Vol}\left(\vartheta_{\mathrm{nm}}\right)=\frac{2^{\mathrm{m}} \pi^{\frac{1}{2} \mathrm{mn}}}{\Gamma_{\mathrm{m}}\left(\frac{1}{2} \mathrm{n}\right)} \tag{1.32}
\end{equation*}
$$

where $H_{1} \in \vartheta_{n m}$, the Stiefel manifold, and H_{1} consists of the first ill columns of the matrix $H \in \mathcal{O}(n)$ i.e.

$$
\mathrm{H}=\left[\begin{array}{lll}
\mathrm{H}_{1} & \mathrm{n}_{2}-\mathrm{m} \tag{1.33}
\end{array}\right] \mathrm{n} \quad \mathrm{H}_{1}^{\prime} \mathrm{H}_{1}=\mathrm{I}_{\mathrm{m}}
$$

and $\left(\mathrm{dH}_{1}\right)$ stands for the invariant Haar measure on the
group ϑ_{nm}.
2. For $\mathrm{S} m \times \mathrm{m}$ symmetric we will consider integrals of the form

$$
\int_{S>0}(d s) \quad \int_{0<S<T}(d s)
$$

where the inequality $S>0$ is understood to mean S is positive definite, $S<T$ means $T-S>0$, the integrations are over the space of positive definite matrices and $(\mathrm{dS})=\hat{1 \leqslant j}_{\mathrm{m}}^{\mathrm{ds}_{1 j}} \cdot \wedge \equiv$ exterior product. Full definitions and proofs are given in JAMES [15].

The following definitions are from ERDELYI [10]. DEFINITION 1. The sequence of functions $\left\{\varphi_{n}(x)\right\}$ is an asymptotic sequence as $x \rightarrow \infty$, if for each n

$$
\varphi_{n+1}(x)=o\left(\varphi_{n}(x)\right) \text { as } x \rightarrow \infty
$$

Let $\left\{\varphi_{n}(x)\right\}$ be an asymptotic sequence. DEFINITION 2. The (formal) series $\Sigma a_{n} \varphi_{n}(x)$ is an asymptotic expansion to N terms of $f(x)$ as $x \rightarrow \infty$ if

$$
f(x)=\sum_{N}^{N} a_{n} \varphi_{n}(x)+o\left(\varphi_{N}(x)\right) \quad \text { as } \quad x \rightarrow \infty
$$

This is written $f(n) \sim \Sigma^{N} a_{n} \varphi_{n}(x)$. DEFINITION 3. The function $\varphi(x)$ is an asymptotic representation for $f(x)$ as $x \rightarrow \infty$ if

$$
f(x)=\varphi(x)+o(\varphi(x)) \quad \text { as } \quad x \rightarrow \infty
$$

This is written $f(x) \sim \varphi(x)$.
Let $u_{1}, u_{2} \ldots u_{m}$ be indeterminate. The elementary
symmetric functions a_{1} are defined by

$$
\begin{aligned}
& a_{1}=\sum u_{1} \\
& a_{2}=\sum_{1<j} u_{1} u_{j} \\
& \cdot \\
& a_{m}=u_{1} u_{2} \ldots u_{m}
\end{aligned}
$$

The power sums r_{1} corresponding to the one part partitions (i) have the definition

$$
r_{1}=\sum_{n=1}^{m} u_{n}^{1}
$$

In Chapters 2,3 and 4 we will be dealing with
"matrices A with large latent roots" and for convenience this is shortened to "large matrices A ". Also note the following convention for the use of the "little-o" notation. Let

$$
h_{1 j}=1-\frac{1}{2} \sum_{j=1}^{m} s_{i j}^{2}+o\left(s^{2}\right)
$$

where $o\left(s^{2}\right)$ means that all subsequent terms are at least third degree in the $s_{1 j}$. Similarly if also

$$
k_{1 j}=1-\frac{1}{2} \sum_{j} t_{1 j}^{2}+o\left(t^{2}\right)
$$

then

$$
h_{1 j} k_{1 j}=1-\frac{1}{2} \sum_{j}\left(s_{1 j}^{2}+t_{1 j}^{2}\right)+o\left(s^{2}\right)
$$

where here $\circ\left(s^{2}\right)$ means that all subsequent terms are at least third degree in the $s_{1 j}, t_{1 j}$.

It is also convenient to have a second notation for partitions. Let $\kappa=\left(k_{1} k_{2} \ldots k_{\mathbb{L}}\right)=\left(1^{\pi_{1}} 2^{\pi_{2}} \ldots i^{\pi_{1}} \ldots\right)$ where
π_{1} of the k_{j} are $1, \pi_{2}$ are $2 \ldots \pi_{1}$ are i and if $k_{1}=s$ then $\pi_{r}=0$ for $r>s$. An ordering of partitions of a given integer can also be introduced. Let $\kappa=\left(k_{1} k_{2} \ldots k_{m}\right)$ and $\lambda=\left(\ell_{1} \ell_{2} \ldots \ell_{m}\right)$ be two partitions of k, then $\kappa>\lambda$ if $k_{1}=\ell_{1} \ldots \mathrm{k}_{1}=\ell_{1}, \mathrm{k}_{1+1}>\ell_{1+1}$. This will prove useful for specifying the range of summation for summing over subsets of partitions. This ordering also leads to the definition of weights. Let $u_{1} \ldots u_{m}$ be indeterminate and $u_{1}{ }^{k_{1}} \ldots u_{m} k_{m}, u_{1}^{\ell_{1}} \ldots u_{m}^{\ell_{m}}$ be two monomials with indices κ and λ respectively. Then if $\kappa>\lambda$ the former monomial is said to be of higher weight.

The summation conventions to be observed for partitions are

1. $\sum_{\kappa} \equiv$ sum over all partitions κ of a particular k and 2. $\sum_{k=0}^{\infty} \sum_{k}$ shortens to $\sum_{k, k}$ where possible.

Finally the LEMMA'S 2.1 and 2.2 of Chapter 2 are both well known but no sources are acknowledged.

CHAPTER 2

THE ASYMPTOTIC FORMULA FOR o $\mathrm{F}_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{6} \Omega, \mathrm{VI}\right)$

2.1 Introduction

In this chapter an asymptotic expansion for the Bessel function $\circ F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right)$ is given. The expansion is shown to be valid for matrices Ω and W with large latent roots. A method of approximation developed by G.A. ANDERSON [1] is used.

The starting point is the integral representation (1.10) and in order to make ANDERSON'S methods work, soine variables must be integrated out. In the first stages of these integrations a Poisson type integral representation (2.15) for the Bessel function is found. This is a two matrix argument extension of the integral called ANDERSON'S integral by JAMES [21] equation (151).

Some of the further integrations and transformations are shown to be generalisations of those given in section 1.3 in relation to the classical Bessel function. The validity of the asymptotic formula itself is shown to follow from a LEMIIA due to HSU [14].

The statistical implications of the result, summarised in THEOREM 2.4 of section 9, are left to the next Chapter. An alternative derivation of the main term of the asymptotic series will also be given in Chapter 3.

2.2 As a function of the latent roots

From (1.21) and (1.10) the integral representation is
${ }_{0} \mathrm{~F}_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{2} \Omega, W\right)=\mathrm{k}_{1} \int_{0(\mathrm{~m})}^{\left(\mathrm{dH}_{1}\right)} \int_{V(\mathrm{n})}^{\left(\mathrm{dH}_{2}\right)} \operatorname{etr}\left[\left(\Sigma^{\left.\left.-\frac{1}{2} M\right)^{t} \mathrm{H}_{1} \Sigma^{-\frac{1}{2}} \mathrm{XH}_{2}\right]}\right.\right.$
where

$$
\mathrm{k}_{1}=[\operatorname{Vol}(\mathcal{O}(m)) \operatorname{Vol}(\mathcal{O}(n))]^{-1}
$$

Make the substitutions

$$
\begin{aligned}
& R=\Sigma^{-\frac{1}{2}} M, \operatorname{det}\left(M M^{\prime}-\omega \Sigma\right)=\operatorname{det}\left(R R^{\prime}-\omega I\right)=0 \\
& S=\Sigma^{-\frac{1}{2}} X, \operatorname{det}\left(X X^{\prime}-w \Sigma\right)=\operatorname{det}\left(S S^{\prime}-w I\right)=0
\end{aligned}
$$

and (2.1) becomes

$$
o^{F_{1}^{(m)}}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right)=k_{1} \int_{O(m)}\left(d H_{1}\right) \int_{O(n)}\left(d H_{2}\right) \operatorname{etr}\left(R^{\prime} H_{1} S_{2}\right) . \text { (2.2) }
$$

It is well known that (2.2) is a function of the latent roots ω_{1} and w_{1}. This will be demonstrated by applying transformations to R and S that reduce them to a "diagonal" form for rectangular matrices. The elements on the diagonals are simple functions of ω_{1} and w_{1}. We use the well known

LEMMA 2.1

Let Z be a real $m \times n$ matrix. Let $A=\operatorname{diag}\left(a_{1}\right)$ where $a_{1}=+\sqrt{b_{1}}$ and the b_{1} are the latent roots of $\operatorname{det}\left(Z Z^{\prime}-b I\right)=0$. Also $D=\left(\delta_{1} \delta_{2} \ldots \delta_{m}\right)$ is the matrix of latent vectors δ_{1} for $Z Z Z^{l}$, normalised so that the first element of each column is positive, making D unique. If $E^{1}=A^{-1} D^{\prime} Z$ i.e. $E^{1} E^{1 /}=I_{m}$ then

$$
\begin{equation*}
\mathrm{Z}=\mathrm{DAE} \tag{2.3}
\end{equation*}
$$

The $m \times n$ matrix E^{1} forms the first m rows of an orthogonal matrix and we can choose the remaining $n-m$ rows to form the $n \times n$ matrix E, where

$$
E=\left[\begin{array}{l}
\mathbb{E}^{1} \tag{2.4}\\
\mathbb{E}^{2}
\end{array}\right] \in \mathcal{O}(n)
$$

Write (2.3) as

$$
Z=D A B^{1}=D\left[\begin{array}{ll}
A & 0
\end{array}\right]\left[\begin{array}{l}
E^{1} \tag{2.5}\\
E^{2}
\end{array}\right]=D\left[\begin{array}{ll}
A & 0
\end{array}\right] E
$$

where $\left[\begin{array}{ll}A & 0\end{array}\right]$ is $m \times n$.
Applying (2.5) to R and S

$$
R=D_{1}[A, O] \mathbb{F}_{1} \quad D_{1}, D_{2} \in \mathcal{O}(m)
$$

where

$$
S=D_{2}\left[\begin{array}{ll}
B & 0
\end{array}\right] E_{2} \quad E_{1}, E_{2} \in \mathcal{O}(n)
$$

and $A=\operatorname{diag}\left(a_{1}\right)$ from $\operatorname{det}\left(R R^{\prime}-a^{2} I\right)=0$

$$
B=\operatorname{diag}\left(b_{1}\right) \text { from } \operatorname{det}\left(S S^{t}-b^{2} I\right)=0
$$

where the elements of A and B satisfy the ordering

$$
\begin{aligned}
& a_{1}>a_{2}>\ldots>a_{m}>0 \\
& b_{1}>b_{2}>\ldots>b_{m}>0 .
\end{aligned}
$$

By comparison with Ω and $W, \omega_{1}=a_{1}^{2}$ and $W_{1}=b_{1}^{2}$. Substitute in the exponential term of (2.2)

$$
\operatorname{etr}\left(\mathrm{R}^{\prime} \mathrm{H}_{1} \mathrm{SH}_{2}\right)=\operatorname{etr}\left(\left[\begin{array}{c}
\mathrm{A} \\
0
\end{array}\right] \mathrm{D}_{1}^{\prime} \mathrm{H}_{2} \mathrm{D}_{2}\left[\begin{array}{ll}
\mathrm{B} & 0
\end{array}\right] \mathrm{E}_{2} \mathrm{H}_{2} \mathrm{E}_{1}^{\prime}\right)
$$

and change variables

$$
\begin{aligned}
& \mathrm{H}_{1} \rightarrow \mathrm{H}_{1}=\mathrm{D}_{1}{ }^{t} \mathrm{H}_{1} \mathrm{D}_{2} \\
& \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}=\mathrm{E}_{2} \mathrm{H}_{2} \mathrm{E}_{1}^{\prime} .
\end{aligned}
$$

Since $D_{1}, D_{2}, E_{1}, E_{2}$ are constant matrices $\left(d H_{1}\right)=\left(d H_{1}\right)$, $\left(\mathrm{dH}_{2}\right)=\left(\mathrm{dH}_{2}\right)$ and on dropping the $-(2.2)$ becomes
${ }_{0} \mathrm{~F}_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \Omega, W\right)=\mathrm{k}_{1} \int_{0(\mathrm{~m})}\left(\mathrm{dH}_{1}\right) \int_{O(\mathrm{n})}^{\left(\mathrm{dH}_{2}\right)} \operatorname{etr}\left(\left[\begin{array}{cc}\mathrm{AH}_{1} \mathrm{~B} & 0 \\ 0 & 0\end{array}\right] \mathrm{H}_{2}\right)$.

At this stage the Bessel function is clearly seen to depend only on simple functions $\sqrt{\omega_{1}}$ and $\sqrt{w_{1}}$ of the latent roots. 2.3 ANDERSON'S method
G.A. ANDERSON'S [1] approach to approximating integrals of this type is to apply the parameterisation $H=\exp (S)$ where $H \in \mathcal{O}(m)$ and $S=\left(s_{1 j}\right)$ is an $m \times m$ skew symmetric matrix. The $s_{1 j}$ are then integrated over the range $(-\infty, \infty)$.

Let us apply this directly to (2.6). Set $H_{1}=\left(h_{1 j}\right), H_{2}=\left(k_{1 j}\right), S=\left(s_{1 j}\right), T=\left(t_{i j}\right), A=\left(a_{1} \delta_{1 j}\right)$ and $B=\left(b_{1} \delta_{1 j}\right)$. Then

$$
\begin{aligned}
& H_{1}=\exp (S)=I+S+\frac{1}{2} S^{2}+\cdots \\
& H_{2}=\exp (T)=I+T+\frac{1}{2} T^{2}+\cdots
\end{aligned}
$$

and the Jacobian is of the form $1+0(\mathrm{~s})$. Element by element

$$
\begin{aligned}
& h_{i 1}=1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}+\ldots \quad i=1, \ldots m \\
& h_{1 j}=s_{i j}+\ldots \\
& i \neq j \\
& k_{1 i}=1-\frac{1}{2} \sum_{j=1}^{n} t_{1 j}^{2}+\ldots \\
& i=1, \ldots n \\
& \text { i } \neq j \text {. }
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{tr}\left(\left[\begin{array}{cc}
A H_{1} B & 0 \\
0 & 0
\end{array}\right] H_{2}\right) & =\sum_{1, j, u, v} a_{1} \delta_{1 u} h_{u j} b_{j} \delta_{j v} k_{v i} \\
& =\sum_{1, j}^{m} a_{1} b_{j} h_{1 j} k_{j 1} \\
& =\sum_{1=1}^{m} a_{1} b_{i} h_{1 i} k_{1 i}+\sum_{i \neq j} a_{1} b_{j} h_{1 j} k_{j 1} \quad \text { (2.7) }
\end{aligned}
$$

and on substituting, noting that $s_{1 j}=s_{j 1}, s_{11}=0$ etc.

$$
\begin{equation*}
=\sum_{1=1}^{m} a_{1} b_{1}\left(1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}\right)\left(1-\frac{1}{2} \sum_{j=1}^{n} t_{1 j}^{2}\right)-\sum_{1, j} a_{1} b_{j} s_{1 j} t_{1 j}+\cdots . \tag{2.8}
\end{equation*}
$$

Now (2.8) does not cont ain the elements $t_{1 j}$, $i, j=m+1, \ldots n$ so on substitution in (2.6) and extension of the range we have integrals of the form

$$
\int_{-\infty}^{\infty} d t_{i j} \quad i, j=m+1, \ldots n
$$

which clearly leads to an absurd result. This is because the variables $k_{1 j} i, j=m+1, \ldots n$ are not explicitly involved in the integrand.

We must now try to integrate out those variables only implicitly involved in (2.6) before applying the parameterisation. The elements only involved in the range are

$$
k_{1 j}, k_{j 1} \quad i=1, \ldots m j=m+1, \ldots n
$$

$k_{i j} \quad i, j=m+1, \ldots n$.
Partitioning H_{2} as

$$
\begin{aligned}
& H_{2}=\left[\begin{array}{c}
H_{2}^{1} \\
H_{2}^{2}
\end{array}\right] \begin{array}{c}
m \\
n-m
\end{array} \\
& \text { n }
\end{aligned}
$$

the integrand of (2.6) reduces to $\operatorname{etr}\left(\left[\begin{array}{c}\mathrm{AH}_{1} \mathrm{BH}_{2}^{1} \\ 0\end{array}\right]\right)$. Only elements of H_{2}^{1} appear in the integrand so we integrate over H_{2}^{2} for fixed H_{2}^{1} by the formula

$$
\begin{equation*}
\int_{H_{Z}^{Z}}\left(\partial H^{2}\right)=k_{2}\left(\partial H_{2}^{1}\right) \tag{2.9}
\end{equation*}
$$

where $\left(\mathrm{dH}_{2}^{1}\right)$ stands for the invariant volume element on the Stiefel manifold ϑ_{nm} and

$$
\mathrm{k}_{2}=\frac{\operatorname{Vol}(O(\mathrm{n}))}{\operatorname{Vol}\left(\vartheta_{\mathrm{nm}}\right)} .
$$

(See JAMES [15] equations $(4.39),(5.10)$ and (5.16).
The integral (2.6) becomes
${ }^{\circ} \mathrm{F}_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \Omega, W\right)=k_{3} \int_{O(\mathrm{~m})}\left(\mathrm{dH}_{1}\right) \int_{V_{\mathrm{nm}}}\left(\mathrm{dH}_{2}^{1}\right) \operatorname{etr}\left(\left[\begin{array}{c}\mathrm{AH}_{1} \mathrm{BH}_{2}^{1} \\ 0\end{array}\right]\right)(2.10)$
where $\quad k_{3}=\left[\operatorname{Vol}(\mathcal{O}(m)) \operatorname{Vol}\left(v_{n m}\right)\right]^{-1}$. Thus we have
integrated out $k_{i j} i=m+1, \ldots n, j=1, \ldots n$.
There are two paths of development to be followed here. Either the Stiefel manifold $v_{n m}$ can be parameterised or the remaining implicit $k_{1 j}$ integrated out. In Chapter 3 the parametrisation of $\vartheta_{n m}$ is used. The integrating out of the $k_{1 j} i=1, \ldots n, j=m+1 \ldots n$ is considered in the next section.

2.4 Reduction to a Poisson type integral

Partition $H^{\frac{1}{2}}$ into

$$
\mathrm{H}_{\mathrm{t}}^{1}=\left[\begin{array}{cc}
\mathrm{H}_{\frac{1}{2}}^{1} & \mathrm{H}_{2}^{1}{ }^{2} \\
\mathrm{~m} & \mathrm{n}-\mathrm{m}
\end{array}\right] \mathrm{m} .
$$

Thus

$$
\begin{aligned}
\operatorname{etr}\left(\left[\begin{array}{c}
\mathrm{AH}_{1} \mathrm{BH}^{\frac{1}{2}} \\
0
\end{array}\right]\right) & =\operatorname{etr}\left(\left[\begin{array}{cc}
\mathrm{AH}_{1} \mathrm{BH}^{1}{ }^{1} & \mathrm{AH}_{1} \mathrm{BH}_{2}^{1}{ }^{2} \\
0 & 0
\end{array}\right]\right) \\
& =\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}^{1}{ }^{1}\right)
\end{aligned}
$$

and the integrand now only involves the elements of $\mathrm{H}^{\frac{1}{1}}$.
One more integration can be performed and this is facilitated by using the transformation (HERZ [12], LEMMA 3.7)

$$
H \frac{1}{2}=\left[\begin{array}{ll}
H_{2}^{1} & H_{2}^{12}
\end{array}\right]=\left[\begin{array}{ll}
T & \left(I_{m}-T T^{\prime}\right)^{\frac{1}{2}} U^{l}
\end{array}\right]
$$

where $H_{2}^{1}{ }^{1}=T$ real with $T T^{\prime} \leqslant I_{m},\left(I_{m}-T T^{\prime}\right)^{\frac{1}{2}}$ is the nonnegative square root and $U \in \vartheta_{n-m, m}$. The LEMMA imposes the restriction that $n \geqslant 2 m$ (against the initial assumpt-
ion of $n \geqslant m$). This should create no difficulties in a statistical application.

HERZ gives for the measures

$$
\left(\mathrm{dH}_{2}^{1}\right)=\operatorname{det}\left(I-T T^{\prime}\right)^{\frac{1}{2}(n-2 m-1)}(\mathrm{dT})(\mathrm{dU})
$$

and the integral (2.10) becomes
$k_{3} \int_{0(m)}\left(d H_{1}\right) \int_{M T^{\prime} \leqslant I}(d T) \operatorname{etr}\left(A H_{1} B T\right) \operatorname{det}\left(I-T T^{\prime}\right)^{\frac{1}{2}(n-2 m-1)} \int_{V_{n-m, m}}(d U)$.
Integrating U over $v_{n-m, m}$ gives $\operatorname{Vol}\left(v_{n-m, m}\right)$ and ${ }_{0} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right)=k_{6} \int_{0(m)}\left(d H_{1}\right) \int_{T T^{\prime} \leqslant I}(d T) \operatorname{etr}\left(A H_{1} B T\right) \operatorname{det}\left(I-T T^{l}\right)^{\frac{1}{2}(n-2 m-1)}$
where

$$
k_{4}=\frac{\operatorname{Vol}\left(\vartheta_{n-m}, m\right)}{\operatorname{Vol}(O(m)) \operatorname{Vol}\left(\vartheta_{n m}\right)}=\frac{\Gamma_{m}\left(\frac{1}{2} m\right) \Gamma_{m}\left(\frac{1}{2} n\right)}{2^{m} \pi^{2} \Gamma_{m}\left(\frac{1}{2}(n-m)\right)} .
$$

This integral is the result of averaging ANDERSON'S integral (as quoted by JAMES [21] equation (151)). The derivation of this integral and the averaging process are given in Chapter $4 \cdot$

The idea now is to replace the integration over $T T^{\prime} \leqslant I$ by one or more integrations, one of which is an integration over $\mathcal{O}(\mathrm{m})$.

For T real $m \times m$ we can find an $H_{2} \in \mathcal{O}(m)$ such that $T=\mathrm{SH}_{2}$, where $S=\left(T T^{\prime}\right)^{\frac{1}{2}}$. That is, S is the symmetric positive semi-definite square root.

To find the Jacobian of the transformation, by (2.3)

$$
T=\underline{H}_{1}^{\prime} D \underline{H}_{2} \quad S=\underline{H}_{1}^{\prime} D \underline{H}_{1}
$$

where $H_{1}, H_{2} \in \mathcal{O}(m)$ and $D=\operatorname{diag}\left(d_{1}\right)$ with the d_{1} the latent roots of $\operatorname{det}(S-d I)=0$. Clearly

$$
\begin{aligned}
T & =\underline{H}_{1}^{\prime} D \underline{H}_{1} \quad \underline{H}_{1}^{\prime} \underline{H}_{2} \\
& =\mathrm{S}
\end{aligned}
$$

where $\mathrm{H}_{2}=\underline{\mathrm{H}}_{1}{ }^{\prime} \mathrm{H}_{2} \in \mathcal{O}(\mathrm{~m})$. Now in [15] if T is a real $m \times n$ matrix, then equation (8.8) gives

$$
\begin{equation*}
(d T)=\left(d H_{1}\right)\left(d H_{2}\right) \prod_{1<j}\left(d_{1}^{2}-\alpha_{j}^{2}\right) \prod_{1=1}^{m} d d_{1} \tag{2.12}
\end{equation*}
$$

and from (8.19), with $S=\left(X^{\prime} X\right)$ an $m \times m$ symmetric matrix,

$$
\begin{equation*}
(d S)=\left(d H_{1}\right) \prod_{1<j}\left(d_{1}-d_{j}\right) \Pi d d_{1} \tag{2.13}
\end{equation*}
$$

Combining (2.12) and (2.13)

$$
\begin{equation*}
(d T)=\left(d H_{2}\right) \prod_{1<j}\left(d_{1}+d_{j}\right)(d S) \tag{2.14}
\end{equation*}
$$

But $H_{2}=\underline{H}_{1}{ }^{\prime} \underline{H}_{2}$ and for fixed \underline{H}_{1}, as \underline{H}_{2} ranges over $\mathcal{O}(\mathrm{m})$ so does H_{2}. This corresponds to having fixed S and as H_{2} (or H_{2}) ranges over $\mathcal{O}(\mathrm{m}), T$ ranges over all matrices for which $T T^{\prime}=S^{2}$. Thus when H_{1} is fixed, $\left(\mathrm{dH}_{2}\right)=\left(\mathrm{dH}_{2}\right)$. Substituting in (2.14)

$$
(d T)=\left(d H_{2}\right) \prod_{1<j}\left(d_{1}+d_{j}\right)(d S)
$$

After the transformation the range of integration is changed from $0 \leqslant T T^{\prime} \leqslant I$ to $0 \leqslant S^{2} \leqslant I$ and since S is
assumed symmetric positive semi-definite, this range is equivalently $0 \leqslant S \leqslant I$. The integral (2.11) becomes ${ }_{o F_{1}}^{(m)}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \Omega, W\right)=\mathrm{k}_{4} \int_{0(\mathrm{~m})}\left(\mathrm{dH}_{1}\right) \int_{0(\mathrm{~m})}\left(\mathrm{dH}_{2}\right)$ $\int_{0 \leqslant S \leqslant I}(d S) \operatorname{etr}\left(A_{1} B S H_{2}\right) \operatorname{det}\left(I-S^{2}\right)^{\frac{1}{2}(n-2 m-1)} \prod_{1<j}\left(d_{1}+d_{j}\right)$. (2.15)
If we set $m=1$ in (2.15) it reduces to (1.30) provided $\mathcal{O}(1)$ is considered to consist of the two points ± 1 and the measure (dH) is taken to be 1 at each point (i.e. $\operatorname{Vol}(\mathcal{O}(1))=2$). Thus this integral can be considered as the two matrix argument analogue of the Poisson integral for the classical Bessel function. We can apply the matrix analogues of steps 1.0 . of section 1.3 to the integral (2.15).

2.5 The classical approximation generalised

Let us first make the substitution as in step 1.

$$
U=I-S \quad(c f \cdot u=1-t)
$$

Clearly U is symmetric positive semi-definite and has latent roots $u_{i}=1-d_{i}$, while the range of integration becomes $0 \leqslant u \leqslant I$. Also it can be shown that

$$
(\alpha U)=(-1)^{\frac{1}{2} m(m+1)}(\mathrm{dS})
$$

but since the integrand of (2.15) is always non-negative the sign of the Jacobian can be ignored. Thus the integral
becomes

$$
\begin{equation*}
{ }_{o F_{1}}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right)=k_{5} \int_{O(\mathrm{~m})}\left(d H_{1}\right) \int_{O(m)}\left(d H_{2}\right) \operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right) \tag{2.16a}
\end{equation*}
$$

$x \int_{0 \leqslant U \leqslant I}(d U) \operatorname{etr}\left(-A H_{1} B U H_{2}\right)\left[\operatorname{det} U\left(I-\frac{1}{2} U\right)\right]^{\frac{1}{2}(n-2 m-1)} \prod_{1<j}\left(1-\frac{u_{1}+u_{1}}{2}\right)$
where $\quad k_{5}=2^{\frac{1}{2} m(n-m-2)} k_{4}$.
Now following step 2. let us expand

$$
\operatorname{det}\left(I-\frac{1}{2} U\right)^{\frac{1}{2}(n-2 m-1)}
$$

in its binomial expansion (CONSTANTINE [7] equation (31)). Also as $\prod_{1<j}\left(1-\frac{u_{1}+u_{j}}{2}\right)$ is a symmetric function it too has an expansion in zonal polynomials. The two series are then multiplied and the result is expressed in zonal polynomials as
$\operatorname{det}\left(I-\frac{1}{2} U\right)^{\frac{1}{2}(n-2 m-1)} \prod_{i<j}\left(1-\frac{u_{i}+u_{i}}{2}\right)=1+\sum_{k=1}^{\infty} \sum_{\kappa} c_{\kappa} C_{k}(U)$.

Thus the integral (2.16b) can be written as

$$
\begin{equation*}
\int_{0 \leqslant U \leqslant I}(d U) \operatorname{etr}(-R U) \operatorname{det} U^{\frac{1}{2}(n-2 m-1)}\left(1+\sum_{k, \kappa} c_{\kappa} C_{\kappa}(U)\right) \tag{2.18}
\end{equation*}
$$

where $R=H_{2}{A H_{1} B \text {. }}$
Finally the analogue of step 3. We want an asymplotic expansion valid for large A and B, so R will be large and etr(-RU) will be negligible for large values of U. Thus we change the range to $U>O(f(U)=0$ at $U=0)$
and integrate using a THEOREM of [7].
THEOREM 2.1
Let R be an $m \times m$ positive definite symmetric matrix. Then
$\int_{\text {SS }} \operatorname{etr}(-R S) \operatorname{det} S^{t-\frac{1}{2}(m+1)} \mathrm{C}_{\kappa}(\mathrm{S})(\mathrm{dS})=\Gamma_{\mathrm{m}}(\mathrm{t}, \kappa) \operatorname{det} \mathrm{R}^{-\mathrm{t}} \mathrm{C}_{\kappa}\left(\mathrm{R}^{-1}\right)$.
The integration is over all positive definite $m \times m$ matrices S and valid for all real t with $t>\frac{1}{2}(m-1)$. Also $\Gamma_{\mathrm{m}}(\mathrm{t}, \kappa)=(\mathrm{t})_{\kappa} \Gamma_{\mathrm{m}}(\mathrm{t})$.

Applying (2.19) term by term to (2.18) with the range of integration extended gives the general term

$$
\int_{U>0} \operatorname{etr}(-R U) \operatorname{det} U^{\frac{1}{2}(n-m)-\frac{1}{2}(m+1)} c_{\kappa} C_{\kappa}(U)(d U)
$$

$$
=\Gamma_{m}\left(\frac{1}{2}(n-m)\right) \operatorname{det} R^{-\frac{1}{2}(n-m)}\left(\frac{1}{2}(n-m)\right)_{\kappa} \quad c_{\kappa} \quad C_{\kappa}\left(R^{-1}\right)
$$

while $\operatorname{det} R=\operatorname{det}(A B), R^{-1}=B^{-1} H_{1}{ }^{\prime} A^{-1} \mathrm{H}_{2}{ }^{\prime}$. Finally we are left with the evaluation of
$k_{6} \operatorname{det}(A B)^{-\frac{1}{2}(n-m)} \int_{\mathcal{O}(\mathrm{m})}^{\left(\mathrm{dH}_{1}\right)} \int_{\mathcal{O}(\mathrm{m})}^{\left(d \mathrm{H}_{2}\right) \operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)\left(1+\sum_{k, \kappa} \mathrm{~d}_{\kappa} \mathrm{C}_{\kappa}\left(\mathrm{B}^{-1} \mathrm{H}_{1}^{\prime} \mathrm{A}^{-1} \mathrm{H}_{2}^{\prime}\right)\right)}$
where $\quad k_{6}=I_{\text {m }}\left(\frac{1}{2}(n-m)\right) k_{5}, \quad d_{\kappa}=\left(\frac{1}{2}(n-m)\right)_{\kappa} c_{\kappa}$ 。
This approximate integral representation for
${ }_{0} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right)$ is now ready to be tackled by parameteriseation of H_{1} and H_{2}.

2.6 Finding the maxima

There are two features of ANDERSON'S method: 1. the parametrisation $H=\exp (S)$ is only valid for proper orthogonal matrices H (i.e. those with $\operatorname{det} H=+1$), and
2. the approximation is made in neighbourhoods of the equal maxima of the integrand of (2.20), which is denoted by $f\left(\mathrm{H}_{1}, \mathrm{H}_{2} ; \mathrm{A}, \mathrm{B}\right)$ for convenience.
That is we must first convert the integrations of (2.20) into ones over proper orthogonal matrices and then determine the maxima of the integrands.

Firstly $\mathcal{U}(\mathrm{m})$ is the union of two disjoint subsets $\mathcal{O}^{+}(\mathrm{m})$ and $\mathcal{O}^{-}(\mathrm{m})$ defined by

$$
\begin{aligned}
& \mathcal{O}^{+}(m)=\{H: H \in \mathcal{O}(m), \operatorname{det} H=+1\} \\
& \mathcal{O}^{-}(m)=\{H: H \in \mathcal{O}(m), \operatorname{det} H=-1\} .
\end{aligned}
$$

The range of integration of (2.20) breaks into four disjoint ranges, giving

$$
\begin{equation*}
f_{(\mathrm{m})} \int_{b(\mathrm{~m})}=\int_{b^{+(m)}} \int_{b^{+(m)}}+\int_{b^{+}(\mathrm{m})} \int_{-(\mathrm{m})}+\int_{b^{-(m)}} \int_{b^{+}(\mathrm{m})}+\int_{b^{-}(\mathrm{m})} \int_{-(\mathrm{m})} \tag{2.21a}
\end{equation*}
$$

or

$$
\begin{equation*}
I=I_{1}+I_{2}+I_{3}+I_{4} \tag{2.21b}
\end{equation*}
$$

Now it is well known that the elements of $\mathcal{O}^{+}(\mathrm{m})$ can be mapped one-to-one into those of $\mathcal{O}^{-(m)}$, and vice versa, by the device of selecting a matrix, A say, from one subset, $\mathcal{O}^{-}(\mathrm{m})$ say, and then as H runs over all elements of $\mathcal{O}^{+}(\mathrm{m})$, AH runs over all elements of $\mathcal{O}^{-}(\mathrm{m})$. In particular, let us consider the mapping

$$
H^{+} \rightarrow H=J H^{+} \quad \text { where } J=\left[\begin{array}{cc}
I_{m-1} & 0 \\
0^{\prime} & -1
\end{array}\right]
$$

Then $H^{+} \in \mathcal{O}^{+}(m)$ implies that $H \in \mathcal{O}^{-}(m)$ and since J is fixed $(\mathrm{dH})=\left(\mathrm{dH}^{+}\right)$. Applying the transformation to an integral gives

$$
\int_{O^{-}(\mathrm{m})} \mathrm{y}(\mathrm{H})(\mathrm{dH})=\int_{0^{+}(\mathrm{m})} \mathrm{y}\left(\mathrm{JH}^{+}\right)\left(\mathrm{dH}^{+}\right)
$$

Now returning to (2.21), in I_{4} make the transformations

$$
\begin{array}{ll}
\mathrm{H}_{1}=\mathrm{JH}_{1}^{+} & \left(\mathrm{dH}_{1}\right)=\left(\mathrm{dH}_{1}^{+}\right) \\
\mathrm{H}_{2}=\mathrm{H}_{2}+\mathrm{J} & \left(\mathrm{dH}_{2}\right)=\left(\mathrm{dH}_{2}^{+}\right)
\end{array}
$$

and by noting that $J A J=A, J A^{-1} J=A^{-1}$ it is seen that $I_{4}=I_{1}$. Making the same transformations where required in I_{2} and I_{3} respectively, we obtain (on dropping the ${ }^{+}$)
$I_{2}=I_{3}=\int_{0^{+}(\mathrm{m})}\left(\mathrm{dH}_{1}\right) \int_{0^{+}(\mathrm{m})}\left(\mathrm{dH}_{2}\right) \operatorname{etr}\left(\mathrm{A}^{*} \mathrm{H}_{1} \mathrm{BH}_{2}\right)\left(1+\sum_{k, \kappa} \mathrm{a}_{\kappa} \mathrm{C}_{\kappa}\left(\mathrm{B}^{-1} \mathrm{H}_{1}^{\prime} \mathrm{A}^{2-1} \mathrm{H}_{2}^{\prime}\right)\right)$
where $A^{*}=A J=J A=\operatorname{diag}\left(a_{1} \ldots a_{m-1},-a_{m}\right)$. Thus $(2.21 b)$ is

$$
\begin{equation*}
I=2 I_{1}+2 I_{2} \tag{2.22}
\end{equation*}
$$

where all integrations are over $\mathcal{O}^{+}(\mathrm{m})$ and we can parametarise $H_{1}, H_{2} \in \mathcal{O}^{+}(\mathrm{m})$.

Secondly we must find the H_{1}, H_{2} that are solutions to
\max

$$
\begin{equation*}
f\left(\mathrm{H}_{1}, \mathrm{H}_{2} ; \mathrm{A}, \mathrm{~B}\right) \tag{2.23}
\end{equation*}
$$

$\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{O}^{+}(\mathrm{m})$
max
$\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{O}^{+}(\mathrm{m})$
Of course it is easier to find all stationary values of $f\left(H_{1}, H_{2} ; A, B\right)$ for $H_{1}, H_{2} \in \mathcal{O}(m)$ and identify the two cases afterwards. In fact we restrict ourselves to finding the stationary points of $\operatorname{etr}\left(\mathrm{AH}_{1} B H_{2}\right)$ as this is the dominant factor for large A, B.

Now $\exp (\cdot)$ is a monotone function so we begin by finding all stationary points of $\operatorname{tr}\left(X_{H Y K}{ }^{\prime}\right)$ over $H, K \in \mathcal{O}(m)$, where X, Y are defined by

$$
\begin{array}{ll}
\mathrm{X}=\operatorname{diag}\left(\mathrm{x}_{1}\right) & \mathrm{x}_{1}>\mathrm{x}_{2}>\ldots>\mathrm{x}_{\mathrm{m}}>0 \\
\mathrm{Y}=\operatorname{diag}\left(\mathrm{y}_{1}\right) & \mathrm{y}_{1}>\mathrm{y}_{2}>\ldots>\mathrm{y}_{\mathrm{m}}>0 .
\end{array}
$$

All stationary values of $\operatorname{tr}\left(\mathrm{XHYK}^{\prime}\right)$ are given by THEOREM 2.2

If X, Y, H, K are as defined above then the stationary values of the function $\operatorname{tr}\left(\mathrm{XHYK}^{\prime}\right)$ occur at those points where H, K are signed permutation matrices and related by

$$
\mathrm{K}=\mathrm{I}^{*} \mathrm{H} \quad \mathrm{I}^{*}=\left[\begin{array}{ccc}
\pm 1 & & 0 \\
& \cdot & \\
0 & & \pm 1
\end{array}\right]
$$

DEFINITION. Let σ be a permutation of $1,2, \ldots m$. Then by a signed permutation matrix is meant a matrix $P=\left(p_{1 j}\right)$ with

$$
p_{i j}= \begin{cases} \pm 1 & i=\sigma(j) \\ 0 & \text { otherwise }\end{cases}
$$

For example

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

$$
\begin{array}{ccc}
\sigma(1)=2 & \sigma(2)=3 & \sigma(3)=1 \\
p_{21}=1 & p_{32}=-1 & p_{13}=1 \\
& P=\left[\begin{array}{rrr}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] .
\end{array}
$$

Clearly P is orthogonal.
The proof of the THEOREM uses the well known
LEMMA 2.2
If A is $m \times m$ real and $S_{\alpha}, \alpha=1,2, \ldots \frac{1}{2} m(m-1)$ are $m \times m$ skew symmetric and linearly independent, then

$$
\operatorname{tr}\left(A S_{\alpha}\right)=0 \quad \alpha=1,2, \ldots \frac{1}{2} m(m-1)
$$

implies that A is symmetric.
Proof
Let $A=\left(a_{i j}\right), S=\left(s_{i j}\right)$, then

$$
\operatorname{tr}(A S)=\sum_{1, j} a_{1 j} s_{j 1}=0
$$

Rearranging

$$
\begin{equation*}
\sum_{1} a_{1 i} s_{1 i}+\sum_{1<j}\left(a_{1 j}-a_{j 1}\right) s_{j 1}=0 . \tag{2.25}
\end{equation*}
$$

Now $s_{11}=0 \quad i=1, \ldots m$ so the a_{11} are arbitrary. Substituting the elements of S_{1}, S_{2}, \ldots in (2.25) gives $\frac{1}{2} m(m-1)$ linearly independent equations in $\frac{1}{2} m(m-1)$ unknown. The system has the solution $a_{1 j}=a_{j i} i<j$. Q.E.D.

Proof (of THEOREM 2.2)

At a stationary point

$$
\begin{aligned}
0 & =\mathrm{d} \operatorname{tr}\left(\mathrm{XHYK}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathrm{XdHYK}^{\prime}+\mathrm{XHYdK}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathrm{XHH}^{\prime} d H Y K^{\prime}+\mathrm{XHYAK}^{\prime} \mathrm{KK}^{\prime}\right)
\end{aligned}
$$

Now $K^{\prime} d K$ is skew symmetric ($K^{\prime} K=I$ implies $d K^{\prime} K=-K^{\prime} d K$) as is $H^{\prime} d H^{\prime}$. Make the substitutions $d \Lambda_{1}=H^{\prime} d H$, $\mathrm{d} \Lambda_{z}=\mathrm{K}^{\prime} \mathrm{dK}$, then

$$
\begin{equation*}
\operatorname{tr}\left(\mathrm{YK}^{\prime} \mathrm{XHZ} \Lambda_{1}-\mathrm{K}^{\prime} \mathrm{XHY} \Lambda_{2}\right)=0 \tag{2.26}
\end{equation*}
$$

Since H, K vary independently over $\mathcal{O}(\mathrm{m})$, then $\mathrm{d} \Lambda_{1}, \mathrm{~d} \Lambda_{2}$ vary independently over sets of skew matrices and we equate the two terms of (2.26) to zero separately, giving

$$
\operatorname{tr}\left(\mathrm{YK}^{\prime} \mathrm{XH} \mathrm{\alpha} \Lambda_{1}\right)=0 \quad \operatorname{tr}\left(\mathrm{~K}^{\prime} \mathrm{XHY} \alpha \Lambda_{2}\right)=0
$$

Applying the LEMMA 2.2 and putting $C=K^{\prime} X H$ gives
YC and CY symmetric. Then

$$
\begin{align*}
& \mathrm{YC}=\mathrm{C}^{\prime} \mathrm{Y} \tag{2.27}\\
& \mathrm{YC}^{\prime}=\mathrm{CY}
\end{align*}
$$

and adding

$$
\mathrm{Y}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)=\left(\mathrm{C}+\mathrm{C}^{\prime}\right) \mathrm{Y} .
$$

Now Y is diagonal so in order to commute with Y we must have $\mathrm{C}+\mathrm{C}^{\prime}$ diagonal. Put $\mathrm{C}+\mathrm{C}^{\prime}=2 \mathrm{D}$, then $\mathrm{C}=\mathrm{D}+\mathrm{S}$ where S is skew symmetric.

Substi toting in (2.27)
i.e.

$$
\begin{aligned}
Y(D+S) & =(D-S) Y \\
Y S+S Y & =0 .
\end{aligned}
$$

Put $S=\left(s_{1 j}\right)$ and write out element by element as

$$
\left(y_{i}+y_{j}\right) s_{i j}=0 \quad i, j=1, \ldots m_{0}
$$

Then $s_{1 j}=0 \quad i, j=1, \ldots m$. Hence C is diagonal. So $K^{\prime} \mathrm{XH}=\mathrm{D}$ where $\mathrm{D}=\operatorname{diag}\left(\mathrm{d}_{1}\right)$.

Now

$$
\begin{align*}
D^{2} & =D^{\prime} D=H^{\prime} X^{2} H \tag{2.28}\\
& =D D^{\prime}=K^{\prime} X^{2} K \tag{2.29}
\end{align*}
$$

and equating the right hand sides of (2.28) and (2.29)

$$
\mathrm{X}^{2} \mathrm{KH}^{\prime}=K H^{\prime} \mathrm{X}^{2} .
$$

Put $T=\left(t_{1 j}\right)=K H^{\prime}$ and write out element by element as

$$
x_{1}{ }^{2} t_{1 j}=t_{1 j} x_{j}{ }^{2} .
$$

Thus when $i \neq j, x_{1}{ }^{2} \neq x_{j}{ }^{2}$ making $t_{1 j}=0$ and when $i=j$ $t_{11}= \pm 1$ since $T \in \mathcal{O}(m)$. Hence $K H^{\prime}=I^{*}$ and $K=I * H^{*}$

Now $D=K^{\prime} X H=H^{\prime} I * X H=H^{\prime} X^{*} H$ where $X^{*}=\operatorname{diag}\left(\pm x_{1}\right)$
and the elements of D are the same as those of X but in some rearrangement ie. $d_{1}= \pm x_{\sigma(1)}$. From

$$
\begin{equation*}
X{ }^{*} H=H D, \quad x_{1} h_{1 j}=h_{1 j} \quad x_{\sigma(j)} \tag{2.30}
\end{equation*}
$$

comes

$$
\pm 1 \quad i=\sigma(j) \quad \text { i.e. } \quad h_{\sigma(j) j}= \pm 1
$$

$$
h_{i j}=
$$

0 otherwise
which is the definition of a signed permutation matrix H. Also $K=I{ }^{2} H$ is a signed permutation matrix with $k_{\sigma(j) j}= \pm h_{\sigma(j) j}$ depending on the signs of the diagonal elements of I\%。 Q.E.D.

We must now find the stationary points of $\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)$ and $\operatorname{etr}\left(\mathrm{A}^{*} \mathrm{H}_{1} \mathrm{BH}_{2}\right)$ for $\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{O}^{+}(\mathrm{m})$. From the above proof we see that at a stationary point the function takes the value

$$
\begin{equation*}
\operatorname{tr}(D Y)=\sum_{1=1}^{m} \pm x_{\sigma(1)} y_{1} \tag{2.31}
\end{equation*}
$$

Clearly the absolute maximum is $\Sigma x_{1} y_{1}$ for $i=\sigma(i)$, $d_{1}=x_{1}$ and $h_{11}= \pm 1$. Now $D=X$ and substituting in (2.30) $X ; H=H X$ giving $X *=X=I * X$ and $I \%=I$. Thus

$$
H=K=\left[\begin{array}{lll}
\pm 1 & & \tag{2.32}\\
& \cdot & \\
& & \\
& & \pm 1
\end{array}\right] \text {. }
$$

Applying this result to $\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)$ we have $2^{\text {m }}$ equal maxima of $\operatorname{etr}(A B)$ at points $\left(H_{1}, H_{2}\right)$ where $H_{1}=H_{2}=H\left(\right.$ as in (2.32)) and of these 2^{m-1} have
$\mathrm{H}_{1}, \mathrm{H}_{2} \in \mathcal{O}^{+}(\mathrm{m})$. Thus we will take our asymptotic expansion in the region of those $H_{1}, H_{2} \in \mathcal{O}^{+}(\mathrm{m})$ for which etr $\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)$ is near its maximum of $\operatorname{etr}(A B)$, on the assumption that for large A, B this region will also contain all those H_{1}, H_{2} for which $\mathrm{f}\left(\mathrm{H}_{1}, \mathrm{H}_{2} ; \mathrm{A}, \mathrm{B}\right)$ is also large. Note also that all the maxima occur at points in the range of integration of I_{1} so we can now approximate it.

Now we find the maximum for the dominant term of the integrand of I_{2}. That is we must find

$$
\max , \quad \operatorname{tr}\left(\mathrm{A}^{*} \mathrm{H}_{1} \mathrm{BH}_{2}\right)
$$

or in other words

$$
\begin{aligned}
& \max ^{\mathrm{H}_{1}, \mathrm{H}_{2} \text { in different }} \operatorname{tr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right) . \\
& \text { subsets }
\end{aligned}
$$

From the THEOREM $2.2 \quad H_{2}=H_{1}^{\prime} I^{*}\left(K=I^{*} H\right)$ and for H_{1}, H_{2} to belong to different subsets, I^{*} must have an odd number of -1^{\prime} s on the di agonal. Let $D=H_{2} A H_{1}=H_{1}^{\prime}(I \% A) H_{1}$, then an odd number of the $d_{1}=-a_{\sigma(1)}$. Since there must be at least one negative a_{1} it is clear that

$$
\operatorname{tr}(D B)=\sum_{1=1}^{m-1} a_{1} b_{1}-a_{m} b_{m}
$$

where $D=\operatorname{diag}\left(a_{1} \ldots a_{m-1},-a_{m}\right)$, is the maximum value of $\operatorname{tr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)$ when $\mathrm{H}_{1}, \mathrm{H}_{2}$ come from different subsets. At this maximum

$$
H_{1}, H_{2}=\left[\begin{array}{lll}
\pm 1 & & \\
& & \\
& & \\
& & \pm 1
\end{array}\right] \text { but } H_{2}=H_{1} J \text {. }
$$

There are 2^{m} solution points in all and 2^{m-1} are solutions to (2.33) and hence are maxima in the range of I_{2}. We will see that for large values of A and B the integrands of (2.22) will be negligible apart from small neighbourhoods about each maximum. The integral I_{1} will consist of identical contributions from each of the se 2^{m-1} neighbourhoods, and similarly for I_{2}. One solution to the maximisation problem in each case is $H_{1}=H_{2}=I$ so (2.22) becomes

$$
\begin{align*}
I & \bumpeq 2^{m} \int_{N(I)} \int_{N(I)} f\left(H_{1}, H_{2} ; A, B\right)\left(d H_{1}\right)\left(d H_{2}\right) \tag{2.34}\\
& +2^{m} \int_{N(I)} \int_{N(I)} f\left(H_{1}, H_{2} ; A *, B\right)\left(d H_{1}\right)\left(d H_{2}\right)
\end{align*}
$$

where $\mathbb{N}(I)$ is a neighbourhood of I on the orthogonal manifold $\mathcal{O}(\mathrm{m})$ and contains only matrices in $\mathcal{O}^{+}(\mathrm{m})$.

We will now focus attention on the approximation of

$$
\begin{equation*}
g(A, B)=\int_{N(I) N(I)} f\left(H_{1}, H_{2} ; A, B\right)\left(d H_{1}\right)\left(d H_{2}\right) \tag{2.35}
\end{equation*}
$$

but the same methods are valid for $g\left(A^{*}, B\right)$.

2.7 Approximating the integral

Now in (2.35) both $H_{1}, H_{2} \in \mathcal{O}^{+}(\mathrm{m})$ so we apply the parametrisation of section 3 . Let $S=\left(s_{1 j}\right), T=\left(t_{1 j}\right)$ be $m \times m$ skew symmetric matrices and $H_{1}=\left(h_{1 j}\right), H_{2}=\left(k_{1 j}\right)$. Then

$$
H_{1}=\exp (S) \quad H_{2}=\exp (T)
$$

and element by element

$$
\begin{array}{r}
h_{11}=1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}+o\left(s^{2}\right), \quad k_{1 i}=1-\frac{1}{2} \sum_{j=1}^{m} t_{1 j}^{2}+o\left(t^{2}\right) \\
\\
\quad i=1,2,,, m \\
h_{1 j}=\quad s_{1 j}+o(s), \quad k_{1 j}=\quad \tag{2.36b}\\
\\
\end{array}
$$

For the transformation $H_{1}=\exp (s)$ the Jacobian is
$J(S)=1+\frac{m-2}{24} \operatorname{tr} S^{2}+\frac{8-m}{4 \cdot 6!} \operatorname{tr} S^{4}+\frac{5 m^{2}-20 m+14}{8 \cdot 6!}\left(\operatorname{tr} S^{2}\right)^{2}+0\left(s^{4}\right)$
and similarly for $H_{z}=\exp (T)$. Also on transformation the ranges of integration become $N(S=0)$ and $N(T=0)$.

It remains to substitute for H_{1} and H_{2} in $f\left(H_{1}, H_{2} ; A, B\right)$. First we have

$$
\begin{equation*}
f\left(\mathrm{H}_{1}, \mathrm{H}_{2} ; \mathrm{A}, \mathrm{~B}\right)=\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)\left(1+\mathrm{F}\left(\mathrm{H}_{1}, \mathrm{H}_{2} ; \mathrm{A}, \mathrm{~B}\right)\right) \tag{2.38}
\end{equation*}
$$

and

$$
\operatorname{tr}\left(A H_{1} B H_{2}\right)=\sum_{1=1}^{m} a_{1} b_{1} h_{11} k_{11}+\sum_{1 \neq j} a_{1} b_{j} h_{1 j} k_{j 1}
$$

Substituting and simplifying gives

$$
\begin{aligned}
\operatorname{tr}\left(A H_{1} B H_{2}\right)= & \sum_{i=1}^{m} a_{1} b_{1}-\frac{1}{2} \sum_{i<j}\left\{\left(a_{1} b_{1}+a_{j} b_{j}\right) s_{1 j}^{2}+\left(a_{1} b_{1}+a_{j} b_{j}\right) t_{1 j}^{2}\right. \\
& \left.+2\left(a_{1} b_{j}+a_{j} b_{1}\right) s_{i j} t_{1 j}\right\}+o\left(s^{2}\right)
\end{aligned}
$$

Each quadratic form can le written in matrix notation as
$\underline{s}_{i j}^{\prime} Q_{1 j} \underline{s}_{1 j}=\left[\begin{array}{ll}s_{1 j} & b_{1 j}\end{array}\right]\left[\begin{array}{ll}a_{1} b_{1}+a_{j} b_{j} & a_{1} b_{j}+a_{j} b_{1} \\ a_{1} b_{j}+a_{j} b_{i} & a_{1} b_{i}+a_{j} b_{j}\end{array}\right]\left[\begin{array}{l}s_{1 j} \\ t_{1 j}\end{array}\right]$
so

$$
\begin{equation*}
\operatorname{tr}\left(A H_{1} B H_{2}\right)=\operatorname{tr}(A B)-\frac{1}{2} \sum_{1<j} S_{1 j}^{l} Q_{1 j} S_{1 j}+o\left(s^{2}\right) \tag{2.39}
\end{equation*}
$$

Substituting in (2.35) using (2.38) and (2.39)
gives

$$
\begin{aligned}
& g(A, B) \bumpeq \operatorname{etr}(A B) \int_{N(S=0) N(N=0)} \exp \left(-\frac{1}{2} \sum_{1<j} \underline{S}_{i j} Q_{1 j} \underline{S}_{i j}\right)\left(1+o\left(s^{2}\right)\right) \\
& \times(1+\varphi(S, T ; A, B)) J(S) J(T) \underset{1<j}{\prod_{1}} d s_{1 j} d t_{1 j} .
\end{aligned}
$$

For large values of a_{1}, b_{1} the major contribution to the integral is in the region $(S=0) \cap(T=0)$ so we can extend the range of integration for the $s_{1 j}, t_{1 j}$ to ($-\infty, \infty$) i.e. integrate over the domains

$$
\begin{aligned}
& \mathcal{B}=\bigcup_{i<j}\left\{s_{1 j}:-\infty<s_{I j}<\infty\right\} \\
& J=\bigcup_{i<j}\left\{t_{1 j}:-\infty<t_{i j}<\infty\right\}
\end{aligned}
$$

Also from (2.37)

$$
\begin{equation*}
J(S) J(T)=1+\frac{m-2}{24} \operatorname{tr}\left(S^{2}+T^{2}\right)+o\left(s^{2}\right) \tag{2.41}
\end{equation*}
$$

and substituting in (2.40) we see that the main asymptotic term is given by the evaluation of

$$
\begin{equation*}
K(A, B)=\int_{B} \int_{j} \exp \left(-\frac{1}{2} \sum_{i<j} \underline{s}_{1 j}^{\prime} Q_{1 j} \underline{s}_{1 j}\right) \prod_{1<j} d \underline{s}_{1 j} . \tag{2.42}
\end{equation*}
$$

From Appendix 1 section 2 this integral is seen to have the value

$$
\begin{equation*}
K(A, B)=\frac{(2 \pi)^{\frac{1}{2} m(m-1)}}{\prod_{i<j} c_{1 j}{ }^{\frac{1}{2}}} \tag{2.43}
\end{equation*}
$$

where $c_{1 j}=\left(a_{1}^{2}-a_{j}^{2}\right)\left(b_{1}^{2}-b_{j}^{2}\right)=\left(\omega_{1}-\omega_{j}\right)\left(w_{1}-w_{j}\right)$.
To obtain further terms of the approximation (2.40)
it is necessary to evaluate the first few terms of $\varphi(S, T ; A, B)$ and $J(S) J(T)$. The expansion to follow is in terms of a_{1}^{-1} and b_{1}^{-1} for large a_{1}, b_{1}. From (A.1.4) and (2.20) $d_{1}=-\frac{1}{8}(n-3)(n-m)$ and it is the coefficient of $C_{(1)}\left(R^{-1}\right)=\operatorname{tr}\left(R^{-1}\right)$ the first term of $F\left(H_{1}, H_{2} ; A, B\right)$, where $\mathrm{R}^{-1}=\mathrm{B}^{-1} \mathrm{H}_{1}{ }^{\prime} \mathrm{A}^{-1} \mathrm{H}_{2}{ }^{\prime}$. Setting

$$
\begin{aligned}
& A^{-1}=\operatorname{diag}\left(a_{1}^{-1}\right)=\operatorname{diag}\left(\alpha_{1}\right)=\left(\alpha_{1} \delta_{1 j}\right) \\
& B^{-1}=\operatorname{diag}\left(b_{1}^{-1}\right)=\operatorname{diag}\left(\beta_{1}\right)=\left(\beta_{1} \delta_{1 j}\right)
\end{aligned}
$$

leads to

$$
\operatorname{tr}\left(B^{-1} H_{1}^{\prime} A^{-1} H_{2}^{\prime}\right)=\sum_{1, j} \beta_{1} \alpha_{j} h_{j 1} k_{1 j}
$$

and on substitution as for (2.39)

$$
\begin{equation*}
\operatorname{tr}\left(B^{-1} H_{1}^{\prime} A^{-1} H_{2}^{\prime}\right)=\sum_{i=1}^{m} \alpha_{1} \beta_{1}-\frac{1}{2} \sum_{i<j} s_{1 j}^{\prime} P_{1 j} s_{1 j}+o\left(s^{2}\right) \tag{2.44}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{1 j} & =\left[\begin{array}{ll}
\alpha_{1} \beta_{1}+\alpha_{j} \beta_{j} & \alpha_{1} \beta_{j}+\alpha_{j} \beta_{1} \\
\alpha_{1} \beta_{j}+\alpha_{j} \beta_{1} & \alpha_{1} \beta_{1}+\alpha_{j} \beta_{j}
\end{array}\right] \\
& =\alpha_{1} \alpha_{j} \beta_{1} \beta_{j} Q_{i j}
\end{aligned}
$$

Also

$$
\begin{equation*}
J(S) J(T)=1-\frac{m-2}{12} \sum_{1<j} S_{1 j}^{\prime} S_{i j}+o\left(s^{2}\right) \tag{2.45}
\end{equation*}
$$

From Appendix 1 section 2 we have

$$
\begin{equation*}
g(A, B) \bumpeq \frac{(2 \pi)^{\frac{1}{2} m(m-1)} \operatorname{etr}(A B)}{\prod_{1<j} c_{1 j}^{\frac{1}{2}}} G(A, B) \tag{2.46}
\end{equation*}
$$

where

$$
\begin{align*}
& G(A, B)=1-\frac{1}{6}(m-2) \sum_{i \neq j} \frac{a_{1} b_{1}}{c_{i j}}-\frac{1}{8}(n-3)(n-m) \sum_{i=1}^{m} \frac{1}{a_{1} b_{1}} \\
& +\frac{1}{k 8}(n-3)(n-m)(m-2)\left(\sum_{i \neq j} \frac{a_{1} b_{i}+a_{j} b_{j}}{a_{1} b_{1} c_{1 j}}+\sum_{i \neq j \neq k} \frac{a_{1} b_{1}}{a_{k} b_{k} c_{1 j}}\right) \\
& +\frac{1}{16}(n-3)(n-m) \sum_{i<j} \frac{1}{a_{i} b_{i} a_{j} b_{j}}+\cdots \tag{2.47}
\end{align*}
$$

2.8 Proving the expansion

It is now shown that (2.46) is an asymptotic representation of the integral (2.35). A LEMMA due to HSU [14] is used.

LEMMA 2.3
Let $\varphi\left(u_{1}, \ldots u_{m}\right)$ and $f\left(u_{1}, \ldots u_{m}\right)$ be real functions on an m-dimensional closed domain D such that

1. $f>0$ on D
2. $(f)^{n} \varphi$ is absolutely integrable over $D, n=0,1,2, \ldots$ 3. all partial derivatives $f_{u_{i}}$ and $f_{u_{1} u_{j}}$ exist and are continuous, $i, j=1,2, \ldots m$
3. $f(\underline{u})$ has an absolute maximum at an interior point ξ of D, so that all $\left.f_{u_{1}}\right|_{\underline{u}=\xi}=0$ and $\operatorname{det}\left[-\left.f_{u_{1}} u_{j}\right|_{\underline{u}=\underline{\xi}}\right]>0$ 5. φ is continuous at ξ and $\varphi(\xi) \neq 0$.

Then for n large

$$
\begin{equation*}
\int_{D}(f)^{n} \varphi d \underline{u} \sim \frac{\varphi(\xi)[f(\xi)]^{n}}{[\Delta(\xi)]^{\frac{1}{2}}}\left[\frac{2 \pi}{n}\right]^{\frac{1}{2} m} \tag{2.48}
\end{equation*}
$$

where $f(\underline{u})=\exp (\psi(\underline{u}))$ and $\Delta(\underline{u})=\operatorname{det}\left[-\psi_{u_{1} u_{j}}\right]$.
This LEMMA is used to prove directly that (2.46) is an asymptotic expansion of the integral.

THEOREM 2.3

Let A, B be $m \times m$ diagonal matrices with

$$
\begin{aligned}
& \mathrm{a}_{1}>\mathrm{a}_{2}>\ldots>\mathrm{a}_{\mathrm{m}}>0 \\
& \mathrm{~b}_{1}>\mathrm{b}_{2}>\ldots>\mathrm{b}_{\mathrm{m}}>0 .
\end{aligned}
$$

Then for A, B large and $g(A, B)$ defined as in (2.35)

$$
\begin{equation*}
g(A, B) \sim \frac{(2 \pi)^{\frac{1}{2} m(m-1)} \operatorname{etr}(A B)}{\prod_{1<j} c_{i j}{ }^{\frac{1}{2}}} \tag{2.49}
\end{equation*}
$$

Proof

We must show that the conditions of LEMMA 2.3 are satisfied.

Directly after substitution in (2.35) we have

$$
g(A, B)=\int_{N(S=0)} \int_{N(T=0)}^{\operatorname{etr}\left(A H_{1} B H_{2}\right)(1+\varphi(S, T ; A, B)) J(S) J(T) \prod_{1<j} d s_{1} d t_{1 j} \cdot}
$$

Now set

$$
\begin{array}{ll}
A=a_{1} X & x_{1}=a_{1}^{-1} a_{1} \\
B=b_{1} Y & y_{1}=b_{1}^{-1} b_{1}
\end{array}
$$

then

$$
\begin{equation*}
\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}\right)=\left[\operatorname{etr}\left(\mathrm{XH}_{1} \mathrm{YH}_{2}\right)\right]^{\mathrm{a}_{1} \mathrm{~b}_{1}} \tag{2.51}
\end{equation*}
$$

The right hand side is of the form $(f)^{n}$ where $a_{1} b_{1}$ corresponds to n and $f \equiv \operatorname{etr}\left(X H_{1} Y H_{2}\right)$ is a function of the $m(m-1)$ variables $s_{1 j}, t_{1 j} i<j$. Also

$$
\begin{aligned}
& \varphi \equiv(1+\varphi(S, T ; A, B)) J(S) J(T) \\
& \psi \equiv \sum_{i, j} X_{i} Y_{j} h_{i j} \mathrm{~K}_{\mathrm{j} 1}=\operatorname{tr}\left(X_{1} Y H_{2}\right)
\end{aligned}
$$

and $D \equiv \mathbb{N}(S=0) \cap \mathbb{N}(T=0)$. Clearly ξ corresponds to the point $(S=0, T=0)$ and $(f)^{a_{1} b_{1}}$ and hence f have just one maximum in $N(S=0) \cap N(T=0)$. At this point ($\mathrm{S}=0, \mathrm{~T}=0$)

$$
(f)^{a_{1} b_{1}}=\operatorname{etr}(A B)
$$

and from (A.1.9)

$$
\varphi(\xi)=1-\frac{1}{8}(n-3)(n-m) \sum_{1=1}^{m} \frac{1}{a_{1} b_{1}}+\cdots
$$

For large values of A and B we have $\varphi \bumpeq 1$.
Now by (2.39), with $Q_{1 j}$ a function of x_{1}, y_{1}

$$
\psi=\sum_{1} x_{1} y_{1}-\frac{1}{2} \sum_{1<j} \underline{s}_{1 j}^{\prime} Q_{1 j} \underline{S}_{1 j}+o\left(s^{2}\right)
$$

Then

$$
\begin{equation*}
\frac{\partial \psi}{\partial \underline{S}_{1 j}}=-Q_{1 j} \underline{S}_{1 j}+o(s) . \tag{2.52}
\end{equation*}
$$

Since

$$
f(S, T)=\exp (\psi(S, T))
$$

$$
\frac{\partial f}{\partial \underline{S}_{1 j}}=\frac{\partial \psi}{\partial \underline{S}_{1 j}} \exp (\psi(\mathrm{~S}, \mathrm{~T}))
$$

and at $(S=0, T=0)$

$$
\frac{\partial \psi}{\partial \underline{s}_{1 j}}=\frac{\partial f}{\partial \underline{s}_{1 j}}=0
$$

Thus all conditions of LIMMA 2.3 are satisfied and it remains to evaluate $\Delta(S, T)$. Differentiating (2.52) further

$$
\begin{aligned}
& \frac{\partial^{2} \psi}{\partial \underline{S}_{1 j} \partial \underline{S}_{i j}}=-Q_{1 j}+\text { terms of degree at least one } \\
& \frac{\partial^{2} \psi}{\partial \underline{S}_{1 j} \partial \underline{S}_{u v}}=0+\text { terms of degree at least one } \\
& \qquad \begin{array}{l}
i<j \quad u<v \\
\\
i \neq u \text { or } j \neq v
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta(S, T) & =\operatorname{det}\left[-\left.\frac{\partial^{2} \psi}{\partial \underline{S}_{1 j} \underline{S_{u} v}}\right|_{S=0, T=0}\right] \\
& =\prod_{1<j} \operatorname{det} Q_{1 j} \\
& =\prod_{1<j}\left(x_{1}^{2}-x_{j}^{2}\right)\left(y_{1}^{2}-y_{j}^{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
g(A, B) & \sim \frac{\operatorname{etr}(A B) \cdot 1}{\prod_{1<j}\left[\left(x_{1}^{2}-x_{j}^{2}\right)\left(y_{1}^{2}-y_{j}^{2}\right)\right]^{\frac{1}{2}}}\left[\frac{2 \pi}{a_{1} b_{1}}\right]^{\frac{1}{2} m(m-1)} \\
& =\frac{(2 \pi)^{\frac{1}{2} m(m-1)} \operatorname{etr}(A B)}{\prod_{1<j} c_{1 j}{ }^{\frac{1}{2}}} . \quad \text { Q.E.D. }
\end{aligned}
$$

Returning to (2.34) we have

$$
\begin{equation*}
I \bumpeq 2^{m} g(A, B)+2^{m} g\left(A^{*}, B\right) \tag{2.53}
\end{equation*}
$$

and it is easy to show that asymptotically the term $g\left(A^{*}, B\right)$ is swamped by $g(A, B)$.

LEMMA 2.4

$$
\begin{equation*}
\lim _{a_{m}, b_{m} \rightarrow \infty} \frac{g\left(A^{*}, B\right)}{g(A, B)}=0 \tag{2.54}
\end{equation*}
$$

Proof
Substituting the approximations (2.49)

$$
\begin{align*}
\frac{g\left(A^{*}, B\right)}{g(A, B)} & \bumpeq \frac{\operatorname{etr}\left(A^{*} B\right)}{\operatorname{etr}(A B)} \\
& =\exp \left(-2 a_{m} b_{m}\right) \tag{2.55}\\
& \rightarrow 0 \text { as } a_{m}, b_{m} \rightarrow \infty \quad \text { Q.E.D. }
\end{align*}
$$

Thus from (2.55), (2.53) can be written as $I \bumpeq 2^{m} g(A, B)\left(1+O\left(\exp \left(-2 a_{m} b_{m}\right)\right)\right)$ for large A, B.
That is, the effect of $g\left(A^{*}, B\right)$ can be ignored for all practical purposes. To achieve better accuracy it would be better to determine more terms of the series $G(A, B)$ than to include the terms of $g(A *, B)$. Some more terms are listed in Appendix 1 section 3(A.1.16).

2.9 Summary

From (2.20) and (2.34) remembering that $A^{2}=\Omega$,

$$
\begin{align*}
& B^{2}=W \\
& o F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right) \bumpeq k_{6} \operatorname{det}(A B)^{-\frac{1}{2}(n-m)}\left[g(A, B)+g\left(A^{*}, B\right)\right] \tag{2.57}
\end{align*}
$$

and by (2.56) the term $g\left(A^{*}, B\right)$ can be neglected, so we have proved the

THEOREM 2.4

For large values of the non-centrality parameters and of the latent roots w_{1}, the Bessel function has the asymptotic expansion, for $n \geqslant 2 m$, of
${ }_{0} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, w\right) \sim k \frac{e \operatorname{tr}(A B)}{\Pi_{1<j} c_{1 j}{ }^{\frac{1}{2}} \operatorname{det}(A B)^{\frac{1}{2}(n-m)}} G(A, B)$
where $a_{1}^{2}=\omega_{1}, b_{1}^{2}=w_{1}, c_{1 j}=\left(a_{1}^{2}-a_{j}^{2}\right)\left(b_{1}^{2}-b_{j}^{2}\right)$,

$$
k=\frac{2^{\frac{1}{2} m(n-3)} \Gamma_{m}\left(\frac{1}{2} m\right) \Gamma_{m}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{2} m(m+1)}}
$$

and

$$
\begin{equation*}
G(A, B)=1-\frac{1}{6}(m-2) \sum_{1 \neq j} \frac{a_{1} b_{1}}{c_{i j}}-\frac{1}{8}(n-3)(n-m) \sum_{i=1}^{m} \frac{1}{a_{1} b_{1}}+o\left(\frac{1}{a^{2}}\right) . \tag{2.59}
\end{equation*}
$$

The numerical assessment of this result is left to Chapter 8, where all the various approximations are examined together. An idea of the range of values of Ω and W for which this is a good approximation will also be specified.

$$
\text { Setting } m=1 \text { in (2.58) and (2.59) and ignoring all }
$$ summations involving more than one index gives us the approximation outlined in Chapter 1.

${ }_{\circ} F_{1}\left(\frac{1}{2} n ; \frac{1}{2} a^{2} b^{2}\right) \sim \frac{2^{\frac{1}{2}(n-3)} \Gamma\left(\frac{1}{2} n\right) e^{a b}}{\sqrt{\pi}(a b)^{\frac{1}{2}(n-1)}}\left(1-\frac{(n-1)(n-3)}{8 a b}\right)$.

CHAPTER 3

STATISTICAL APPLICATIONS

3.1 Introduction

In this Chapter we consider an alternative derivation of the asymptotic representation for the Bessel function of two argument matrices using a parameterisation of the Stiefel manifold given by JAMES [23]. The parameterisation is similar to that used for $\mathcal{O}^{+}(\mathrm{m})$ in Chapter 2, but the substitution can be made without integrating out all implicit variables.

In section 2 the leading (asymptotic) term is derived for the case considered in Chapter 2 i.e. both argument matrices are of full rank, while in section 4 the technique is extended to derive the asymptotic term when one of the matrices is not of full rank.

Two statistical problems are dealt with:

1. In section 3 the non-centrality parameters are estimated by maximum likelihood.
2. In section 5 a likelihood ratio test for the rank of the matrix of means M is derived and its sampling distribution is considered.

The final section ties the results of section 5 to the work of BARTLETT [4], [5] and LAWLEY [26] in deriving multivariate tests of hypothesis.

We use as our starting point (2.9) of Chapter 2 ie.
${ }_{0} F_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \Omega, W\right)=\mathrm{k}_{3} \int_{0(\mathrm{~m})}\left(\mathrm{dH}_{1}\right) \int_{V_{\mathrm{nm}}}\left(\mathrm{dH}_{2}^{1}\right) \operatorname{etr}\left(\left[\begin{array}{c}\mathrm{AH}_{1} \mathrm{BH}_{2}^{1} \\ 0\end{array}\right]\right)$
where $k_{3}=\left[\operatorname{Vol}(\mathcal{O}(m)) \operatorname{Vol}\left(v_{n m}\right)\right]^{-1}$.
If $H_{2}^{\frac{1}{2}} \in \vartheta_{n m}$ is partitioned as $H_{2}^{\frac{1}{2}}=\left[\begin{array}{ll}H_{2}^{1} & H_{2}^{12}\end{array}\right]$ the integrand of (3.1) becomes exr $\left(\mathrm{AH}_{1} \mathrm{BH}_{2}^{1}{ }^{1}\right)$. It is necessary to determine where the maximum of this function occurs.

Since H_{2}^{11} is the top left hand corner of an orthogonal matrix, its elements must satisfy the inequalities $\left(H_{2}=\left(k_{1 j}\right) \quad i, j=1, \ldots i 1\right)$

$$
\left|k_{1 j}\right| \leqslant 1 \quad i, j=1,2, \ldots m .
$$

It is easily seen that the maximum of $\operatorname{etr}(A B)$ is attained at the matrices

$$
H_{1}=H_{2}^{\frac{1}{2}}=\left[\begin{array}{lll}
\pm 1 & & \\
& \cdot & \\
& & \\
& & \pm 1
\end{array}\right]
$$

giving H_{2}^{1} the form $\left[\begin{array}{ll}H_{2}^{11} & 0\end{array}\right]$. There are 2^{m} equal maxima. It is also clear that we again have the second maximum of $\operatorname{etr}(A * B)$ but in the following derivations it is ignored.

Since there is an equal contribution from each of the
$2^{\text {m }}$ neighbourhoods of the equal maxima we write (3.1) as $0 F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right) \bumpeq 2^{m} k_{3} \int\left(d H_{1}\right) \int\left(d H_{2}^{1}\right) \operatorname{etr}\left(A H_{1} B H_{2}^{1}{ }^{1}\right)$.
$N(I) N\left(\left[\begin{array}{ll}I & 0\end{array}\right]\right)$

Again $N(I)$ contains only matrices in $\mathcal{O}^{+}(\mathrm{m})$ so H_{1} can be parameterised. Also JANES [23] has given a parametrisation of the Stiefel manifold. Thus we can parameterise $\mathrm{H}_{1}, \mathrm{H}_{2}^{\frac{1}{2}}$ by

$$
\begin{aligned}
& H_{1}=\exp (\mathrm{S}) \\
& \mathrm{H}_{2}=\left[\begin{array}{l}
\mathrm{H}_{2}^{1} \\
\mathrm{H}_{2}^{2}
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
-\mathrm{T}_{12}^{\prime} & 0
\end{array}\right]\right)
\end{aligned}
$$

where S, T_{11} are $m \times m$ skew matrices and T_{12} is an $m \times(n-m)$ rectangular matrix.

If we let $H_{1}=\left(h_{1 j}\right), S=\left(s_{1 j}\right), T=\left(t_{1 j}\right)$ with $t_{1 j}=0$, i and $j>m$, then writing out the elements

$$
\begin{array}{rlrl}
h_{11} & =1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}+o\left(s^{2}\right) & i & =1, \ldots m \\
h_{1 j} & =0(s) & i, j & =1, \ldots m \\
k_{1 j}=1-\frac{1}{2} \sum_{j=1}^{n} t_{1 j}^{2}+o\left(t^{2}\right) & i & =1, \ldots m \\
k_{1 j}= & t_{1 j}+o(t) & i, j & =1, \ldots n, \quad i \neq j
\end{array} \quad i \neq j
$$

From the integrand of (3.2), neglecting terms of degree greater than 2, $\operatorname{tr}\left(A H_{1} B H^{\frac{1}{2}}{ }^{1}\right)=\sum_{1, j=1}^{m} a_{1} b_{j} h_{1 j} k_{j 1}$
$=\sum_{i=1}^{m} a_{1} b_{1}\left(1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}\right)\left(1-\frac{1}{2} \sum_{j=1}^{n} t_{i j}^{2}\right)-\sum_{i, j=1}^{m} a_{1} b_{j} s_{i j} t_{1 j}$
$=\operatorname{tr}(A B)-\frac{1}{2} \sum_{i} \underline{S}_{j} \underline{S}_{j} Q_{1 j} \underline{S}_{1 j}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=m+1}^{n} a_{1} b_{1} t_{1 j}^{2}$
where

$$
Q_{i j}=\left[\begin{array}{ll}
a_{1} b_{1}+a_{j} b_{j} & a_{1} b_{j}+a_{j} b_{1} \\
a_{1} b_{j}+a_{j} b_{1} & a_{1} b_{1}+a_{j} b_{j}
\end{array}\right] \underline{s}_{1 j}=\left[\begin{array}{l}
s_{1 j} \\
t_{1 j}
\end{array}\right] .
$$

For the Jacobian of the transformation

$$
\begin{equation*}
\left(\partial H_{1}\right)\left(\partial H_{2}^{1}\right)=(\partial S)\left(d T_{11}\right)\left(d T_{12}\right)(1+o(s)) \tag{3.4}
\end{equation*}
$$

where $(d S),\left(d T_{11}\right),\left(d T_{12}\right)$ stand for $\wedge_{1<j}^{m} d s_{1 j}, \wedge_{i<j}^{\mathbb{M}} d t_{1 j}$ and $\bigwedge_{1=1}^{m} \bigwedge_{j=m+1}^{n} d t_{1 j}$ respectively.

Substitute (3.3) and (3.4) in the integrand of (3.2). Since the integrand tends to zero as $\left|s_{1 j}\right|,\left|t_{1 j}\right|$ tend to ∞, we can change the range of integration to $-\infty<s_{1 j}<\infty$, $-\infty<t_{1 j}<\infty$ to obtain the leading term of the asymptotic series

Hence for large values of A and B

$$
\begin{aligned}
& \int^{N}(I)\left(\mathrm{aH}_{1}\right) \int_{([I O])}^{\left(d H_{2}^{1}\right)} \operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}^{11}\right) \\
& =\operatorname{etr}(A B) \int_{S} \int_{\Gamma_{11}} \prod_{1<j}^{m} \exp \left(-\frac{1}{2} s_{1}^{f} Q_{i j} S_{1 j}\right) d \underline{S}_{1 j} \\
& \times \int_{i=1}^{m} \prod_{j=m+1}^{n} \exp \left(-\frac{1}{2} a_{1} b_{1} t_{i j}^{2}\right) d t_{1 j} \\
& \bumpeq \operatorname{etr}(A B) \Pi_{1<j} \int_{-\infty}^{\infty} \int_{0} \exp \left(-\frac{1}{2} \underline{S}_{1}^{1}, Q_{1 j} \underline{S}_{1 j}\right) \operatorname{ds}_{i j} \\
& \prod_{i=1}^{m} \prod_{j=m+1}^{n} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} a_{1} b_{1} t_{1 j}^{2}\right) d t_{i j}
\end{aligned}
$$

$=\frac{\operatorname{etr}(A B)(2 \pi)^{\frac{1}{2} m(m-1)}(2 \pi)^{\frac{1}{2} m(n-m)}}{\prod_{1<j} c_{1 j} j^{\frac{1}{2}} \operatorname{det}(A B)^{\frac{1}{2}(n-m)}}$
where $c_{1 j}=\left(a_{1}^{2}-a_{j}^{2}\right)\left(b_{1}^{2}-b_{j}^{2}\right)$.
To summarise we substitute (3.5) in (3.2) to obtain

$$
\begin{equation*}
{ }_{o} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{2} \Omega, W\right) \sim K \frac{\operatorname{etr}(A B)}{\prod_{1<j} c_{i j} j^{\frac{1}{2}} \operatorname{det}(A B)^{\frac{1}{2}(n-m)}} \tag{3.6}
\end{equation*}
$$

where

$$
K=\frac{2^{\frac{1}{2} m(n-3)} \Gamma_{m}\left(\frac{1}{2} m\right) \Gamma_{m}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{2} m(m+1)}}
$$

This result is the same as the dominant asymptotic term of (2.61). The method of this chapter is much simpler for determining the leading term but it appears to be much more difficult to extend in order to obtain further terms of the series.
3.3 Maximum marginal likelihood estimation

The likelihood factor for the non-central means with known covariance distribution is

$$
\operatorname{etr}\left(-\frac{1}{2} \Omega\right)_{\circ} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{\natural} \Omega, W\right)
$$

We are interested in finding maximum likelihood estimates for $\omega_{1}, \ldots \omega_{m}$ from the marginal distribution of $w_{1}, \ldots w_{m}$. Using the asymptotic results, the likelihood function can be factorised as

$$
\begin{equation*}
L\left(\omega_{1}, \ldots \omega_{m}\right)=K\left(w_{1}, \ldots w_{m}\right) L_{1} L_{2} G \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& L_{1}=\operatorname{etr}\left(-\frac{1}{2} \Omega\right) \operatorname{etr}(\Omega \mathbb{W})^{\frac{1}{2}} \tag{3.8}\\
& L_{2}=\operatorname{det} \Omega^{-\frac{1}{2}(n-\mathbb{m})} \prod_{1<j}\left(\omega_{1}-\omega_{j}\right)^{-\frac{1}{2}} \tag{3.9}
\end{align*}
$$

G is the asymptotic series (2.47) and K is a function not involving $\omega_{1}, \ldots \omega_{n}$.

We begin by finding an estimate $\hat{\omega}_{1}$ for ω_{1} using L_{1} only and improve it by using $L_{1} L_{2}$. The function G is shown to have negligible effect for large enough values of the w_{1}. The method of estimation is also due to ANDERSON [1].

Taking (3.8)

$$
\ell_{1}=\ln L_{1}=-\frac{1}{2} \sum_{i=1}^{m} \omega_{1}+\sum_{i=1}^{m}\left(\omega_{1} w_{1}\right)^{\frac{1}{2}} .
$$

Differentiating and equating to zero gives

$$
\frac{\partial \ell_{1}}{\partial \omega_{1}}=-\frac{1}{2}+\frac{1}{2} \frac{w_{1} \frac{1}{2}}{\omega_{1}}{ }^{\frac{1}{2}}=0
$$

and the approximate maximum likelihood estimate

$$
\begin{equation*}
\hat{\omega}_{1}=w_{1} . \tag{3.10}
\end{equation*}
$$

Now we consider the effect that the function L_{2} has on this estimate. First expand the terms of $\ell_{2}=\ln \mathrm{L}_{2}$ in a Taylor series about the points $\hat{\omega}_{1}$. From (3.9)

$$
\ell_{2}=-\frac{1}{\hbar}(n-m) \sum_{i=1}^{\mathrm{m}} \ln \omega_{1}-\frac{1}{2} \sum_{1<j} \ln \left(\omega_{1}-\omega_{j}\right) .
$$

Taking the terms separately, with $\omega_{1}=\hat{\omega}_{1}+\delta \omega_{1}$

$$
\begin{aligned}
\ln \omega_{1} & =\ln \hat{\omega}_{1}+\ln \left(1+\frac{\delta \omega_{1}}{\hat{\omega}_{1}}\right) \\
& =f_{1}\left(\hat{\omega}_{1}\right)+\frac{\delta \omega_{1}}{\hat{\omega}_{1}}+\cdots
\end{aligned}
$$

$$
\ln \left(\omega_{1}-\omega_{j}\right)=g_{1 j}\left(\hat{\omega}_{1}, \hat{\omega}_{j}\right)+\frac{\delta \omega_{1}-\delta \omega_{i}}{\hat{\omega}_{1}-\hat{\omega}_{j}}+\cdots \cdot
$$

Combining these results with (3.8) gives

$$
\begin{aligned}
\ell=\ln I_{1} I_{2}= & -\frac{1}{2} \sum_{1=1}^{m} \omega_{1}+\sum_{1=1}^{m}\left(\omega_{1} w_{1}\right)^{\frac{1}{2}}-\frac{1}{4}(n-m) \sum_{1=1}^{m} \frac{\delta \omega_{1}}{\hat{\omega}_{1}} \\
& -\frac{1}{2} \sum_{1<j} \frac{\delta \omega_{1}-\delta \omega_{1}}{\hat{\omega}_{1}-\hat{\omega}_{j}}+\ldots+\Theta\left(\hat{\omega}_{1}, \ldots \hat{\omega}_{m}\right)
\end{aligned}
$$

where Θ is the sum of the functions f_{1} and $g_{i j}$ and is independent of $\omega_{1}, \ldots \omega_{m}, \delta \omega_{1}, \ldots \delta \omega_{0}$.

$$
\begin{gathered}
\text { Differentiating } \\
\frac{\partial \ell}{\partial \omega_{1}}=-\frac{1}{2}+\frac{1}{2} \frac{W_{1}}{\omega_{1}^{\frac{1}{2}}}-\frac{1}{4} \frac{n-m}{\hat{\omega}_{1}}-\frac{1}{2} \sum_{j \neq 1} \frac{1}{\hat{\omega}_{1}-\hat{\omega}_{j}}+\cdots
\end{gathered}
$$

Equating to zero and substituting w_{1} for $\hat{\omega}_{1}$,

$$
\hat{\hat{\omega}}_{1}^{\frac{1}{2}}=w_{1}^{\frac{1}{2}}\left(1+\frac{n-m}{2 w_{1}}+\sum_{j \neq 1} \frac{1}{w_{1}-w_{j}}+\cdots\right)^{-1}
$$

Squaring and expanding binomially,

$$
\begin{equation*}
\hat{\omega}_{1}=w_{1}-(n-m)-2 \sum_{j \neq 1} \frac{w_{1}}{w_{1}-w_{j}}+\cdots \tag{3.11}
\end{equation*}
$$

At this point it would appear that this estimate could be improved by including the effect of G. By considering a numerical example I will show that for large values of ω_{1}, w_{1} and for small n the contribution of G is negligible, but not so the correction made by including L_{2} 。

Suppose from a normal sample with $m=3, n=10$ sample latent roots of $w_{1}=100, w_{2}=64, w_{3}=36$ were obtained.

Using (3.11) the estimates for the ω_{1} are easily calculated.
The exact log likelihood function was approximated by $\ell_{1}+\ell_{2}+g$ where $g=\ln G^{*}$ and G^{*} is the series (2.47) truncated after four terms. An iterative method was used to locate the function maximum and its coordinates.

Comparing the two sets of results.

	iterative	(3.11)	relative error $(\%)$
ω_{1}	83.20	84.32	1.35
ω_{2}	56.24	55.98	0.46
ω_{3}	33.52	32.70	2.45

Aill relative errors fall with in reasonable bounds.
At these values $\ell=72.92, \quad \ell_{1}=99.47, \quad \ell_{2}=-26.10$
while $g=-0.45$. Small changes in the ω_{1} have much greater effect on the values of ℓ_{1}, ℓ_{2} than on g.

Estimation from the marginal distribution is stated by JAMES [22] to lead to unbiassed estimates. He illustrates this by showing that marginal likelihood estimates for the latent roots of the covariance matrix are unbiassed. In order to show the estimates (3.11) are unbiassed estimates of the ω_{1} it would be necessary to determine $\mathbb{E}\left[w_{1}\right]$. 3.4 One argument matrix not of full rank

Using the parameterisation for the Stiefel manifold it is possible to easily derive the leading term of the asymptotic expansion of the Bessel function when one of the
argument matrices is not of full rank but all non-zero latent roots are large. In the statistical applications this corresponds to Ω, the matrix of non-centrality parameters, not being of full rank. One application is considere in the next section.

From sections 2.3,2.4 the integrand of (2.6) can be reduced to $\operatorname{etr}\left(\mathrm{AH}_{1} \mathrm{BH}_{2}^{1}{ }^{1}\right)$ so the equation can be written as
where $k_{1}=[\operatorname{Vol}(O(m)) \operatorname{Vol}(O(n))]^{-1}$.
Let the matrix A (and hence $\Omega=A^{2}$) have rank $\mathrm{k}<\mathrm{m}$. That is

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
0 & 0
\end{array}\right] \begin{aligned}
& k \\
& m-k
\end{aligned} \quad A_{1}=\operatorname{diag}\left(a_{1}\right)
$$

As before we can integrate out over subsets of the orthogonal manifold and since A is of lower rank here, the remaining domains of integration are Stiefel manifolds of lower dimension. Partition the matrices H_{1} and $H^{\frac{1}{2}}{ }^{1}$ as

$$
\mathrm{H}_{1}=\left[\begin{array}{c}
\mathrm{H}_{1}^{1}- \\
\mathrm{H}_{1}^{2} \\
\mathrm{~m}
\end{array}\right]_{\mathrm{m}-\mathrm{k}}^{\mathrm{k}} \mathrm{H} \quad \mathrm{H}_{\frac{1}{2} 1}^{\mathrm{m}}=\left[\begin{array}{cc}
\mathrm{K}^{1} & \mathrm{~K}^{2} \\
\mathrm{k}-\mathrm{k}
\end{array}\right] \mathrm{m} .
$$

The exponent of the integrand of (3.12) becomes

$$
\operatorname{tr}\left[\left[\begin{array}{cc}
\mathrm{A}_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{H}_{1}^{1} \\
\mathrm{H}_{1}^{2}
\end{array}\right] \mathrm{B} \quad\left[\begin{array}{ll}
\mathrm{K}^{1} & \mathrm{~K}^{2}
\end{array}\right]\right\}
$$

$$
\begin{align*}
& =\operatorname{tr}\left\{\left[\begin{array}{cc}
\mathrm{A}_{1} \mathrm{H}_{1}^{1} \mathrm{BK}^{1} & \mathrm{~A}_{1} \mathrm{H}_{1}^{1} \mathrm{BK}^{2} \\
0 & 0
\end{array}\right]\right\} \\
& =\operatorname{tr}\left(\mathrm{A}_{1} \mathrm{H}_{1}^{1} \mathrm{BK}^{1}\right) . \tag{3.13}
\end{align*}
$$

Now $\operatorname{tr}\left(\mathrm{A}_{1} \mathrm{H}_{1}^{1} \mathrm{BK}^{1}\right)$ contains only elements of $\mathrm{H} \frac{1}{1} \in V_{m k}$ and of K where

$$
K=\left[\begin{array}{l}
K^{1} \\
K^{*} \\
k
\end{array}\right]_{\mathrm{n}-\mathrm{m}}^{\mathrm{m}} \in \vartheta_{\mathrm{nk}}
$$

We can integrate out over H_{1}^{2} for fixed H_{1}^{1} and over H_{2}^{2} for fixed K by the formulae

$$
\int_{H_{1}^{2}}\left(d H_{1}\right)=c_{1}\left(d H_{1}^{1}\right) \quad \int_{H_{2}^{2}}\left(\mathrm{dH}_{2}\right)=c_{2}(\mathrm{dK})
$$

where

$$
\left.\begin{array}{c}
H_{2}=\left[\begin{array}{cc}
\mathrm{K} & H_{2}^{2}
\end{array}\right] \mathrm{n} \\
\mathrm{k} \\
\mathrm{n}-\mathrm{k}
\end{array}\right] \begin{gathered}
c_{1}=\frac{\operatorname{Vol}(\mathrm{O}(\mathrm{~m}))}{\operatorname{Vol}\left(\vartheta_{\mathrm{mk}}\right)} \quad c_{2}=\frac{\operatorname{Vol}(\mathrm{O}(\mathrm{n}))}{\operatorname{Vol}\left(\vartheta_{\mathrm{nk}}\right)} .
\end{gathered}
$$

The equation (3.12) becomes

$$
\begin{equation*}
o F_{1}^{(m)}\left(\frac{1}{2} n ; \nmid \Omega, W\right)=k_{2} \int_{V_{m k}}\left(d H_{1}^{1}\right) \int_{V_{n k}}(d K) \operatorname{etr}\left(A_{1} H_{1}^{1} B K^{1}\right) \tag{3.14}
\end{equation*}
$$

where

$$
\mathrm{k}_{2}=\mathrm{c}_{1} \mathrm{c}_{2} \mathrm{k}_{1}=\left[\operatorname{VoI}\left(v_{\mathrm{mk}}\right) \operatorname{VoI}\left(v_{\mathrm{nk}}\right)\right]^{-1}
$$

Let $k+q=m$ and partition B into

$$
B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right] \begin{aligned}
& k \\
& q
\end{aligned}
$$

where B_{1}, B_{2} are both diagonal matrices. Then $\operatorname{tr}\left(A_{1} H_{1}^{1} B K^{1}\right)$ has 2^{k} equal maxima of $\operatorname{tr}\left(A_{1} B_{1}\right)$ at the matrices

$$
H_{1}^{1}=\left[\begin{array}{ll}
I * & 0
\end{array}\right] \quad K^{1}=\left[\begin{array}{l}
I * \\
0
\end{array}\right] \begin{aligned}
& k \\
& k
\end{aligned}
$$

where

$$
I^{*}=\left[\begin{array}{llll}
\pm 1 & & & \\
& & & \\
& & \cdot & \\
& & & \pm 1
\end{array}\right] \text {. }
$$

Thus (3.14) becomes approximately

$$
\begin{aligned}
\circ F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{4} \Omega, W\right) \bumpeq 2^{k} k_{2} \int\left(d H_{1}^{1}\right) \quad \int(d K) \operatorname{etr}\left(A_{1} H_{1}^{1} B K K^{1}\right) \cdot(3.15) \\
N\left(\left[\begin{array}{l}
I \\
0
\end{array}\right]\right)
\end{aligned}
$$

Now H_{1}^{1} and K can be parameterised by

$$
\begin{aligned}
& \mathrm{H}_{1}=\left[\begin{array}{l}
\mathrm{H}_{1}^{1} \\
\mathrm{H}_{1}^{2}
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
\mathrm{S}_{11} & \mathrm{~S}_{12} \\
-\mathrm{S}_{12}^{\prime} & 0
\end{array}\right]\right) \\
& \mathrm{H}_{2}=\left[\begin{array}{ll}
\mathrm{K} & \mathrm{H}_{2}^{2}
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
\mathrm{T}_{11} & \mathrm{~T}_{12} \\
-\mathrm{T}_{12}^{\prime} & 0
\end{array}\right]\right)
\end{aligned}
$$

where S_{11}, T_{11} are $k \times k$ skew matrices and $S_{12} k \times q$ and $T_{12} \mathrm{kx}(\mathrm{n}-\mathrm{k})$ are rectangular matrices. With the obvious definitions for S, T and their elements,

$$
\begin{aligned}
& h_{11}=1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}+\ldots \quad i=1, \ldots k \\
& h_{i j}=s_{i j}+\ldots \quad i=1, \ldots k, j=1, \ldots m \\
& k_{11}=1-\frac{1}{2} \sum_{j=1}^{n} t_{1 j}^{2}+\ldots \quad i=1, \ldots k \\
& k_{1 j}=\quad t_{1 j}+\ldots \\
& i=1, \ldots m, j=1, \ldots k .
\end{aligned}
$$

For the integrand of (3.15), neglecting terms of degree greater than 2,

$$
\begin{aligned}
\operatorname{tr}\left(A_{1} H_{1}^{1} B K^{1}\right)= & \sum_{1=1}^{k} \sum_{j=1}^{m} a_{1} b_{j} h_{1 j} k_{j 1} \\
= & \sum_{1=1}^{k} a_{1} b_{1}\left(1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}\right)\left(1-\frac{1}{2} \sum_{j=1}^{n} t_{1 j}^{2}\right)-\sum_{i=1}^{k} \sum_{j=1}^{m} a_{1} b_{j} s_{1 j} t_{1 j} \\
= & \sum_{1=1}^{k} a_{1} b_{1}-\frac{1}{2} \sum_{1=1}^{k} \sum_{j=1}^{k}\left\{a_{i} b_{1} s_{1 j}^{2}+a_{1} b_{1} t_{1 j}^{2}+2 a_{1} b_{j} s_{1 j} t_{1 j}\right\} \\
& -\frac{1}{2} \sum_{1=1}^{k} \sum_{j=k+1}^{m}\left\{a_{1} b_{1} s_{1 j}^{2}+a_{1} b_{1} t_{1 j}^{2}+2 a_{1} b_{j} s_{1 j} t_{1 j}\right\} \\
& -\frac{1}{2} \sum_{1=1}^{k} \sum_{j=m+1}^{n} a_{1} b_{1} t_{1 j}^{2} .
\end{aligned}
$$

This expression can be summarised in the notation of quadratic forms as before to facilitate using the standard integral (A.1.5). Let $\underline{g}_{1 j}$ and $Q_{1 j}$ be as defined in section 2 and

$$
Q_{1 j} \%=\left[\begin{array}{ll}
a_{1} b_{1} & a_{1} b_{1} \\
a_{1} b_{j} & a_{1} b_{1}
\end{array}\right]
$$

Since $\operatorname{det} Q_{1 j}^{*}=a_{1}^{2}\left(b_{1}^{2}-b_{j}^{2}\right)>0, Q_{1 j}^{* /}$ is positive definite.

Then

$$
\begin{aligned}
& \operatorname{tr}\left(A_{1} H_{1}^{1} B K^{1}\right)
\end{aligned}
$$

For the Jacobian of the transformation
$\left(d H_{1}^{1}\right)(d K)=\left(d S_{11}\right)\left(d S_{12}\right)\left(d T_{11}\right)\left(d T_{12}\right)(1+o(s))$
where $\left(d S_{11}\right),\left(d S_{12}\right),\left(d T_{11}\right),\left(d T_{12}\right)$ stand for $\wedge_{i<j}^{k} d s_{1 j}$,
$\bigwedge_{i=1}^{k} \bigwedge_{j=k+1}^{m} d s_{i j}, \widehat{i<j}_{k}^{k} t_{1 j}, \bigwedge_{i=1 j=k+1}^{k} \widehat{n}_{1 j}^{n} d t_{i j}$ respectively.
Again the method is to substitute (3.16) and (3.17) in the integral of (3.15) and change the range of integration to $-\infty<s_{1 j}, t_{1 j}<\infty$ to obtain the asymptotic representalion.

$$
\begin{aligned}
& \left.\int_{N}([\mathrm{IO}]) \mathrm{dH}_{\frac{1}{1}}\right)(\mathrm{dK}) \operatorname{etr}\left(\mathrm{A}_{1} \mathrm{H}_{1}^{\frac{1}{1}} \mathrm{BK} \mathrm{~K}^{1}\right) \\
& N\left(\left[\begin{array}{l}
I \\
0
\end{array}\right]\right) \\
& \bumpeq \exp \left(\sum_{i=1}^{k} a_{1} b_{1}\right) \prod_{1<j}^{k} \int_{-\infty}^{\infty} \int_{0} \exp \left(-\frac{1}{2} \underline{S}_{1 j}^{1} q_{1 j} \underline{S}_{1 j}\right) d \underline{S}_{1 j}
\end{aligned}
$$

$$
\begin{aligned}
& \times \prod_{1=1}^{k} \prod_{j=m+1}^{n} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} a_{1} b_{1} t_{1 j}^{2}\right) d t_{1 j}
\end{aligned}
$$

$=\frac{\exp \left(\sum_{i=1}^{k} a_{1} b_{1}\right)(2 \pi)^{\frac{1}{2} k(k-1)}(2 \pi)^{\frac{1}{2} k q}(2 \pi)^{\frac{1}{2} k(n-m)}}{\prod_{1<j}^{k} c_{1} j_{1=1}^{\frac{1}{2}} \prod_{j=k+1}^{k}\left[a_{1}^{\frac{m}{2}}\left(b_{1}^{2}-b_{j}^{2}\right)\right]^{\frac{1}{2}}{ }_{1=1}^{k}\left(a_{1} b_{1}\right)^{\frac{1}{2}(n-m)}}$.
Finally the substitution of (3.18) in (3.15) gives ${ }_{0} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{2} \Omega, W\right) \sim$

where

$$
K=\frac{2^{\frac{1}{2} k(n-k-2)} \Gamma_{k}\left(\frac{1}{2} m\right) \Gamma_{k}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{2} k(\mathbb{m}+1)}} .
$$

For $k=m$ this agrees with (3.6).

3.5 A BARTLETT-LAWLEY type test of rank

The aim is to develop a likelihood ratio test on the rank of the matrix of means M. This is also a test on the number of nonzero non-centrality parameters ω_{1}. The equivalence of the two follows from LEMMA 3.1

$$
\begin{equation*}
\text { rank }(M)=\text { number of non-zero } \omega_{1} \text {. } \tag{3.20}
\end{equation*}
$$

Proof

Since the covariance matrix Σ is positive definite $\operatorname{rank}(M)=\operatorname{rank}\left(M^{\prime}\right)=\operatorname{rank}\left(\Sigma^{\left.-\frac{1}{2} M_{M} \Sigma^{-\frac{1}{2}}\right)}\right.$
where $\Sigma^{-\frac{1}{2}}$ is the positive definite square root of Σ^{-1}.

The matrix $\Sigma^{-\frac{1}{2}} \mathrm{MM}^{\prime} \Sigma^{-\frac{1}{2}}$ is symmetric and hence its rank is equal to the number of non-zero latent roots. The matrix $\Sigma^{-1} \mathrm{MMM}^{\prime}$ has the same latent roots. Q.E.D.

First we consider the likelihood ratio test of the hypothesis $H_{0}: M=0$
against H_{1} : M arbitrary.
On the alternate hypothesis the likelihood function is

$$
L(M)=[2 \pi]^{-\frac{1}{2} m n} \text { aet } \Sigma^{-\frac{1}{2} n} \operatorname{etr}\left[-\frac{1}{2} \Sigma^{-1}(X-M)(X-M)^{\prime}\right]
$$

and the test statistic is

$$
\begin{equation*}
\lambda=\operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} X X^{t}\right)=\operatorname{etr}\left(-\frac{1}{2} W\right) . \tag{3.21}
\end{equation*}
$$

Now

$$
\begin{equation*}
-2 \ln \lambda=\operatorname{tr} w=w_{1}+\ldots+w_{w} \tag{3.22}
\end{equation*}
$$

and putting $X=\left(x_{1} \ldots x_{n}\right)$ where x_{1} an $m \times 1$ column vector

$$
\operatorname{tr} W=\operatorname{tr} \Sigma^{-1} X X^{\prime}=\sum_{1=1}^{n} x_{1}^{\prime} \Sigma^{-1} x_{1} .
$$

On H_{0} each term has a χ^{2} distribution on m degrees of freedom so $\operatorname{tr} \mathbb{W}$ has a χ^{2} distribution on $m n$ degrees of freedom.

A more general hypothesis is now considered. We wish to test H_{0} : M has rank $k<m$ against H_{1} : M arbitrary.

By LEMMA 3.1 this is equivalent to the test of

$$
H_{0}: \omega_{k+1}=\ldots=\omega_{b}=0
$$

against H_{1} : all $\omega_{1}>0$.

We now derive the test statistic and consider its asymptotic distribution. The test statistic used is

$$
\begin{equation*}
\Lambda=-2 \ln \lambda=w_{k+1}+\ldots+w_{m} \tag{3.23}
\end{equation*}
$$

and rather than interrupt the argument at this point, the long but straightforward derivation is given in Appendix 2.

The derivation is a modification of one given by RAO [30]. There he is considering what he calls a test of dimensionality on the matrix of means.

It is interesting that the criterion Λ is derivable, as most BARTLETT-LAVLEY type test statistics for testing these intermediate hypotheses, such as the test that a subset of the latent roots of the covariance matrix are equal, are merely a contraction of the statistic derived for the overall test, such as the sphericity test.

Now by asymptotic theory Λ is distributed as χ^{2} where degrees of freedom $=$ number of parameters in H_{1}

- number of parameters in H_{0}.

The null hypothesis states that M has rank k. This means that k row vectors of M are linearly independent and the remaining $m-k$ rows are unknown linear combinations of these. Thus H_{0} involves $k n+k(m-k)$ parameters. Clearly H_{1} involves $m n$. Hence there are $(m-k)(n-k)$ degrees of freedom for χ^{2}.

THEOREM 3.1

To test H_{0} : M has rank $k<m$ against H_{1} : M arbitrary, use the statistic

$$
\Lambda=w_{k+1}+\ldots+w_{m}
$$

On $H_{0} \Lambda \sim \chi_{d}^{2}$ where $d=(m-k)(n-k)$.
In the spirit of LANLEY [26] we can improve our approximation by finding a multiplier c such that $c \Lambda$ is more nearly χ_{d}^{2}. A new approach to this problem is given in JANES [23]. It involves the determination of the conditional distribution of the last q sample roots given the first k.

Now using the asymptotic result (3.19) the joint distribution is given by the THEOREM 3.2

The asymptotic distribution of the latent roots $w_{1}, \ldots w_{k}, w_{k+1}, \ldots w_{\mathrm{m}}$ depending on the non-centrality parameters $\omega_{1}, \ldots \omega_{k}$ is

$$
\begin{aligned}
& f\left(w_{1} \ldots w_{k}, w_{k+1} \ldots w_{m} ; w_{1}, \ldots w_{k}\right) \bigwedge_{1=1}^{m} d w_{1} \\
& =\frac{C \exp \left(-\frac{1}{2} \sum^{k} \omega_{f}\right) \exp \left[\sum_{1<1}^{k}\left(\omega_{1} w_{1}\right)^{\frac{1}{2}}\right]}{\prod_{1}^{k}\left[\left(\omega_{1}-\omega_{j}\right)\left(w_{1}-w_{j}\right)\right]^{\frac{1}{2}} \prod_{1=1}^{k}\left(\omega_{1} w_{1}\right)^{\frac{1}{4}(n-m)}} \\
& \times \exp \left(-\frac{1}{2} \sum w_{1}^{k}\right) \stackrel{k}{\Pi} w_{1} \frac{1}{2}(n-m-1) \prod_{i<j}^{k}\left(\frac{w_{1}-w_{j}}{\omega_{1}-\omega_{j}}\right)^{\frac{1}{2}} \bigwedge_{i=1}^{k} d w_{1} \\
& \times \prod_{i=1}^{k} \prod_{j=k+1}^{m}\left[\frac{W_{i}-W_{j}}{\omega_{1}}\right]^{\frac{1}{2}}
\end{aligned}
$$

$\times \exp \left(-\frac{1}{2} \sum_{1=k+1}^{m} w_{1}\right) \prod_{1=k+1}^{m} w_{1}^{\frac{1}{2}(n-k-q-1)} \underset{k<1<j \leqslant m}{\prod}\left(w_{1}-w_{j}\right) \underbrace{m}_{1=k+1} d w_{1}$
where

$$
C=\frac{\Gamma_{k}\left(\frac{1}{2} m\right) \Gamma_{k}\left(\frac{1}{2} n\right)}{2^{\frac{1}{2} q n+\frac{1}{2} k(k+2)} \pi^{\frac{1}{2} k(m+1)-\frac{1}{2} m^{2}} \Gamma_{m}\left(\frac{1}{2} n\right) \Gamma_{m}\left(\frac{1}{2} m\right)} .
$$

As in [23] there are two very useful corollaries. COROLLARY 1

The first k sample roots are asymptotically sufficient for the population roots $\omega_{1}, \ldots \omega_{k}$. COROLLARY 2

The conditional distribution of the last roots $W_{k+1}, \ldots W_{m}$, given the first k, is

$$
\begin{aligned}
f_{k} & =f\left(w_{k+1}, \ldots w_{m} \mid w_{1}, \ldots w_{k} ; w_{1}, \ldots w_{k}\right) \\
& =\text { const. } \prod_{1=1}^{k} \prod_{j=k+1}^{m}\left(w_{1}-w_{j}\right)^{\frac{1}{2}}
\end{aligned}
$$

$\exp \left(-\frac{1}{2} \sum_{j=k+1}^{m} w_{1}\right) \prod_{1=k+1}^{m} w_{1}^{\frac{1}{2}(n-k-q-1)} \prod_{k<1<j \leqslant m}\left(w_{1}-w_{j}\right) \underbrace{m}_{1=k+1} d w_{1}$.
and this does not depend on the population parameters $\omega_{1}, \ldots \omega_{k}$.

The last line of (3.25) is essentially the null distribution of $w_{k+1}, \ldots w_{m}$ on $n-k$ degrees of freedom. One degree is lost for each variable conditioned on. The test of rank can now be made using this conditional distribution.

If k were zero, then the distribution of the likelihood ratio statistic Λ would be derived from the distribulion in the second line of (3.25). The result is

$$
\begin{equation*}
\chi_{d}^{2}=\Lambda \tag{3.26}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d}=\mathrm{qn} . \tag{3.27}
\end{equation*}
$$

In testing the last q roots when $k \neq 0$, as a first approximation one could ignore the factor involving $w_{1}, \ldots w_{k}$ if these were large. In this case (3.26) would be correct as a first approximation but in (3.27) n is replaced by $(n-k)$ and we have

$$
\begin{equation*}
\mathrm{d}=\mathrm{q}(\mathrm{n}-\mathrm{k}) \tag{3.28}
\end{equation*}
$$

(Of course (3.27) could be written $q(n-k)$ as $k=0$ in that case.)

By considering the factor involving $w_{1}, \ldots w_{k}$ we obtain the refinement of the form $c \Lambda$, which is more nearly $\chi_{\mathrm{d}}^{2} \cdot \quad$ Expanding the product, with $\mathrm{w}_{\mathrm{k}} \gg \mathrm{w}_{\mathrm{k}+1}, \ldots \mathrm{w}_{\mathrm{m}}$

$$
\begin{align*}
\prod_{1=1}^{k} \prod_{j=k+1}^{m} & \left(w_{1}-w_{j}\right)^{\frac{1}{2}} \\
& =\prod_{1=1}^{k}\left(w_{1}{ }_{j=k+1}^{\frac{1}{2} q} \prod_{j=1}^{m}\left(1-\frac{w_{1}}{w_{1}}\right)^{\frac{1}{2}}\right) \\
& =\prod_{1=1}^{k}\left(w_{1}{ }_{j=1}^{\frac{1}{2} q} \prod_{j=k+1}^{m}\left(1-\frac{1}{2} \frac{w_{1}}{w_{1}}+o\left(\frac{1}{w_{1}}\right)\right)\right) \\
& =\prod_{1=1}^{k} w_{1}^{\frac{1}{2} q} \prod_{1=1}^{k}\left(1-\frac{\Lambda}{2 w_{1}}+o\left(\frac{1}{w_{1}}\right)\right) \\
& =\left(1-\frac{\Lambda}{2} \sum_{i=1}^{k} \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right)_{1=1}^{k} w_{1}^{\frac{1}{2} q} \tag{3.29}
\end{align*}
$$

Using (3.29) the distribution (3.25) is approximated as

$$
\begin{equation*}
f_{k}=\text { const. }\left(1-\frac{1}{2} \Lambda \Sigma^{k} \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right) \stackrel{k}{M}_{1}^{\frac{1}{2} q} \cdot \text { null distribution } \tag{3.30}
\end{equation*}
$$

where the null distribution is given by
cons. $\exp \left(-\frac{1}{2} \sum_{i=k+1}^{m} w_{i}\right) \prod_{i=k+1}^{m} w_{1}^{\frac{1}{2}(n-k-q-1)} \prod_{k<i<j \leqslant m}\left(w_{1}-w_{j}\right) \bigwedge_{i=k+1}^{m} d w_{1}$.

Define the following notation for expectation.
$E_{0}=$ expectation with respect to the null distribution (3.31)
$\mathbb{E}_{1}=$ expectation with respect to the modified distribution
To a first approximation, by (3.26) and (3.28)

$$
\begin{align*}
& E_{0}[\Lambda]=d=q(n-k) \tag{3.32a}\\
& E_{0}\left[\Lambda^{2}\right]=d(d+2) . \tag{3.32b}
\end{align*}
$$

To find the constant of (3.30) we have
$1=E_{1}[1]=E_{0}\left[\right.$ canst. $\left.\left(1-\frac{1}{2} \Lambda \Sigma \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right) \prod_{1=1}^{k} w_{1}{ }^{\frac{1}{2} q}\right]$
$=$ const. $\left(1-\frac{1}{2} d \sum^{k} \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right)_{i=1}^{k} w_{1}^{\frac{1}{2} q}$
and the modified distribution takes the form

$$
\begin{equation*}
f_{k}=\frac{\left(1-\frac{1}{2} \Lambda \Sigma \frac{1}{W_{1}}+o\left(\frac{1}{w}\right)\right)}{\left(1-\frac{1}{2} d \Sigma \frac{1}{W_{1}}+o\left(\frac{1}{W}\right)\right)} \cdot \text { null distribution. } \tag{3.33}
\end{equation*}
$$

The improved multiplier c comes from

$$
\begin{aligned}
E_{1}[\Lambda] & =\frac{E_{0}\left[\Lambda-\frac{1}{2} \Lambda^{2} \Sigma \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right]}{1-\frac{1}{2} d \Sigma \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)} \\
& =\left[d-\frac{1}{2} d(d+2) \Sigma \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right]\left[1-\frac{1}{2} d \Sigma \frac{1}{w_{1}}+o\left(\frac{1}{w}\right)\right]^{-1} \\
& =d\left[1-\Sigma \Sigma \frac{1}{W_{1}}+o\left(\frac{1}{w_{w}}\right)\right]
\end{aligned}
$$

Thus to order w^{-1} we have

$$
\begin{equation*}
\left(1+\sum_{i=1}^{k} \frac{1}{w_{1}}\right) \Lambda=\chi_{d}^{2} \tag{3.35}
\end{equation*}
$$

and the results of this section are summarised as THEOREM 3.3

The statistic

$$
\begin{equation*}
\left(1+\sum_{i=1}^{k} \frac{1}{w_{1}}\right)_{i=k+1}^{m} w_{i}^{m} \tag{3.36}
\end{equation*}
$$

is an improved statistic and is asymptotically distributed as χ_{d}^{2}.
3.6 Connections with MANOVA and canonical correlations

This problem of rank, or number of nonzero noncentralities, is now shown to be allied to the general MANOVA situation. The results (3.21), (3.22), (3.23), (3.26), (3.27) and (3.28) of the previous section can all be derived as limiting cases.

Let $X m \times n$, Ymxt be sample matrices on n, t degrees of freedom respectively with the columns all normally and independently distributed with common covariance matrix Σ. Also $\mathbb{E}[\mathrm{X}]=\mathrm{M}, \mathrm{E}[\mathrm{Y}]=0$.

Thus the likelihood ratio statistic to test $H_{0}: M=0$ against $H_{1}: M$ arbitrary is

$$
\begin{equation*}
\lambda=\left[\frac{\operatorname{det} Y Y^{\prime}}{\operatorname{det}\left(X X^{T}+Y Y^{T}\right)}\right]^{\frac{1}{2}(n+t)}=\prod_{1=1}^{m}\left(1-r_{1}\right)^{\frac{1}{2}(n+t)} \tag{3.37}
\end{equation*}
$$

where the r_{1} are the latent roots of

$$
\begin{equation*}
\operatorname{det}\left[X X^{t}-r\left(X X^{t}+Y Y^{\prime}\right)\right]=0 \tag{3.38}
\end{equation*}
$$

Asymptotically

$$
\begin{equation*}
-2 \ln \lambda=-(n+t) \sum_{1=1}^{m} \ln \left(1-r_{1}\right) \sim \chi_{m n}^{2} . \tag{3.39}
\end{equation*}
$$

The test was proposed by BARTLETT [5] and by considering the expectation of $-2 \ln \lambda$ he derived an improved approximation. Allowing for the notational changes $n \rightarrow n+t, q \rightarrow m$, $\mathrm{p} \rightarrow \mathrm{n}$, this has the form

$$
\begin{equation*}
-\left[t-\frac{1}{2}(m-n+1)\right] \stackrel{m}{\Sigma} \ln \left(1-r_{1}\right) \sim \chi_{m}^{2} n \tag{3.40}
\end{equation*}
$$

BARTLEIT [4], [5] also proposed that in order to test that M has rank k, the statistic to use is

$$
\begin{equation*}
-\left[t-\frac{1}{2}(q-n+1)\right] \sum_{1=k+1}^{m} \ln \left(1-r_{1}\right) \tag{3.41}
\end{equation*}
$$

which is asymptotically χ^{2} on $q(n-k)$ degrees of freedom. In [26], LAWLEY considers a further adjustment term. Let the f_{1} be solutions of

$$
\begin{equation*}
\operatorname{det}\left(X X^{t}-f Y Y^{\prime}\right)=0 \tag{3.42}
\end{equation*}
$$

If the f_{1} estimate population parameters $\beta_{1}{ }^{2}$ then the approximation is $\left(1-r_{1}=\left(1+f_{1}\right)^{-1}\right)$

$$
\begin{equation*}
\left[t-\frac{1}{2}(q-n+1)+\sum_{1=1}^{k} \frac{1}{f_{1}}\right] \sum_{j=k+1}^{m} \ln \left(1+f_{1}\right) \sim \chi_{d}^{z} \tag{3.43}
\end{equation*}
$$

where $d=(m-k)(n-k)$.
Now it was shown in section 1.2 that the non-central means with known covariance distribution can be obtained as a limit from the general non-central means distribution with the substitutions

$$
w_{1}=\frac{r_{1} t}{1-r_{1}} \quad \text { i.e. } \quad r_{1}=\frac{w_{1}}{w_{1}+t}
$$

and then letting $t \rightarrow \infty$. Take the right hand side of (3.37), substitute for r_{1} and let $t \rightarrow \infty$ to give

$$
\begin{aligned}
& \lambda=\prod_{1=1}^{m}\left(1+t^{-1} w_{1}\right)^{-\frac{1}{2}(n+t)} \\
& \longrightarrow \exp \left(-\frac{1}{2} \sum_{i=1}^{m} w_{1}\right)=\operatorname{etr}\left(-\frac{1}{2} w\right)
\end{aligned}
$$

which is the result (3.21).
Similarly substitution for r_{1} in (3.39) and (3.40) and letting $t \rightarrow \infty$ gives (3.22) while the limiting process applied to (3.41) yields (3.23). Under this limiting process the asymptotic distribution of $-2 \log \lambda$ is still a χ^{2} on the appropriate number of degrees of freedom, thus yielding (3.26), (3.27) and (3.28).

Also if we substitute $t f_{1}=w_{1}$ then as $t \rightarrow \infty$
(3.42) becomes $\operatorname{det}\left(\mathrm{xx}^{\prime}-\mathrm{w} \mathrm{\Sigma)}=0\right.$ and (3.43) becomes

$$
\begin{gathered}
{\left[1-\frac{q-n+1}{2 t}+\sum_{1=1}^{k} \frac{1}{w_{1}}\right] \ln \prod_{1=k+1}^{m}\left(1+\frac{w_{1}}{t}\right)^{t}} \\
\underset{t \rightarrow \infty}{\longrightarrow}\left(1+\sum^{k} \frac{1}{w_{1}}\right) \sum_{i=k+1}^{m} w_{1}
\end{gathered}
$$

which is precisely (3.36).
One final link is with the canonical correlations distribution. As was shown in section 1.2 the general canonical correlations distribution tends to the non-central means with known covariance distribution under the substitutions $w_{i}=\operatorname{tr}_{1}^{2}, \omega_{1}=t \rho_{1}^{2}$ and taking the limit as $t \rightarrow \infty$. To test the hypothesis $\rho_{\mathrm{k}+1}=\ldots=\rho_{\mathrm{m}}=0$ BARTLETT [4] proposed the statistic $(\mathrm{n} \rightarrow \mathrm{t}, \mathrm{p} \rightarrow \mathrm{M}, \mathrm{q} \rightarrow \mathrm{n}$, $s \rightarrow k)$

$$
\begin{equation*}
\chi^{2}=-\left[t-\frac{1}{2}(m+n+1)\right] \log \prod_{i=k+1}^{m}\left(1-r_{1}^{2}\right) \tag{3.44}
\end{equation*}
$$

where χ^{2} has ($m-k$) ($n-k$) degrees of freedom. The multiplier was modified by LAWLEY [26] to give an improved approximation. Quoting equation (8) ($n \rightarrow t, p \rightarrow m, q \rightarrow n$) this improved multiplier takes the form

$$
\begin{equation*}
t-k-\frac{1}{2}(m+n+1)+\sum_{i=1}^{k} \frac{1}{r_{1}^{2}} \tag{3.45}
\end{equation*}
$$

Substituting this in (3.44), putting $r_{1}{ }^{2}=t^{-1} W_{1}$ and letting $t \rightarrow \infty$ gives (3.36).

CHAPTER 4

THE BESSEL FUNCTION OF ONE ARGUMENT

4.1 Introduction

Here we apply the reduction process of Chapter 2 to the Bessel function ${ }_{\circ} \mathrm{F}_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right)$ and obtain an asymptotic expansion valiá for those X such that $X X^{\prime}$ has large latent roots. The result is easier to obtain than (2.58) and is made even easier by borrowing freely the results of Chapter 2.

ANDERSON'S integral, in the case $m=k$, is derived as a stage in the process and in section 7 we see how (2.11) can be obtained by averaging (4.4).

Statistically the Bessel function of one argument matrix appears as part of the likelihood factor of the noncentral Wishart distribution.

Direct substitution for H in (4.1) again leads to obviously wrong results so some preliminary integrations are in order before setting $H=\exp (s)$. 4.2 ANDERSON'S integral

Directly from JAMES [21] comes the integral

$$
\begin{equation*}
{ }^{\circ} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right)=k_{1} \int_{(n)} \operatorname{etr}\left(X H_{1}\right)(d H) \tag{4.1}
\end{equation*}
$$

and using (2.9), with $H_{1} \in \vartheta_{n m}$

$$
o F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right)=k_{2} \int_{v_{n \mathbb{M}}} \operatorname{etr}\left(X H_{1}\right)\left(d H_{1}\right)
$$

where $k_{1}=[\operatorname{Vol}(O(n))]^{-1}, k_{2}=\left[\operatorname{Vol}\left(v_{n \mathrm{~m}}\right)\right]^{-1}$ and $H=\left[\begin{array}{ll}H_{1} & H_{2}\end{array}\right] \in \mathcal{O}(n)$.

Again this can be shown to be a function of the latent roots of XX^{\prime} only. Diagonalise X by the transformation of LEMMA 2.1. Set $X=D\left[\begin{array}{ll}A & 0\end{array}\right] E$ with $D \in \mathcal{O}(m)$, $E \in \mathcal{O}(n), A=\operatorname{diag}\left(a_{1}\right)$ and the $a_{1}{ }^{2}$ are the latent roots of $\operatorname{det}\left(X X^{\prime}-a^{2} I\right)=0$ with $a_{1}^{2}>\ldots>a_{m}^{2}>0$. Substituting in the integrand of (4.2) gives

$$
\operatorname{etr}\left(\mathrm{XH}_{1}\right)=\operatorname{etr}\left(\left[\begin{array}{ll}
\mathrm{A} & 0
\end{array}\right] E H_{1} \mathrm{D}\right)
$$

and it is clear that $E H_{1} D \in \vartheta_{n \mathbb{m}}$. Change variables to $K_{1}=E H_{1} D$ and since E, D are constant matrices $\left(d K_{1}\right)=\left(d H_{1}\right)$. Hence (4.2) becomes

$$
{ }_{\circ} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{t}\right)=k_{2} \int_{V_{\Omega}} \operatorname{etr}\left(\left[\begin{array}{ll}
A & 0 \tag{4.3}
\end{array}\right] K_{1}\right)\left(d K_{1}\right)
$$

Applying the Stiefel manifold transformation of
HERR,

$$
K_{1}=\left[\begin{array}{l}
K_{11} \\
K_{21}
\end{array}\right]=\left[\begin{array}{l}
T \\
U\left(I_{m}-T^{\prime} T\right)^{\frac{1}{2}}
\end{array}\right]
$$

where T is an $m \times m$ real matrix with $T^{\prime} T \leqslant I, U \in \vartheta_{n-m, m}$ and there is now the added restriction of $n \geqslant 2 m$. For the measures $\left(d K_{1}\right)=\operatorname{det}\left(I-T^{\prime} T\right)^{\frac{1}{2}(n-2 m-1)}(d T)(d U)$ and for the
integrand of (4.3)

$$
\operatorname{etr}\left(\left[\begin{array}{ll}
A & 0
\end{array}\right]\left[\begin{array}{l}
K_{11} \\
K_{21}
\end{array}\right]\right)=\operatorname{etr}\left(A K_{11}\right)=\operatorname{etr}(A T)
$$

So (4.3) becomes, on integrating (dU) over $v_{n-m, m}$

$$
{ }_{o} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right)=k_{3} \int_{T^{\prime}} \operatorname{etr}(A T) \operatorname{det}\left(I-T^{\prime} T\right)^{\frac{1}{2}(n-2 m-1)}(d T)
$$

where

$$
k_{3}=\frac{V o I\left(v_{n-m}, m\right)}{\operatorname{VoI}\left(v_{n m}\right)}=\frac{\Gamma_{m}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{2} m^{2}} \Gamma_{m}\left(\frac{1}{2}(n-m)\right)}
$$

Equation (4.4) is ANDERSON'S integral for the case when the matrix $X m \times n$ is of rank m. For $m=1$ this reduces to the POISSON integral (1.30).

The integration over $T^{\prime} T \leqslant I$ must be reduced to one over $\mathcal{O}(\mathrm{m})$. Let $T=H S$ where $H \in \mathcal{O}(m)$ and S an $\mathrm{m} \times \mathrm{m}$ symmetric positive definite matrix. From (2.14)

$$
(d T)=(d H) \prod_{1<j}\left(d_{1}+d_{j}\right)(d S)
$$

where $d_{1}, \ldots d_{m}$ are the latent roots of S, and (4.4) becomes

$$
\begin{align*}
{ }^{\circ} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right) & =k_{3} \int_{O(m)}(d H) \int_{S \leqslant I}(d S) \operatorname{etr}(A H S) \\
& \times \operatorname{det}\left(I-S^{2}\right)^{\frac{1}{2}(n-2 m-1)} \prod_{1<j}\left(d_{1}+d_{j}\right) \tag{4.6}
\end{align*}
$$

The three steps of the classical approximation are now applied. Transform $U=I-S$, \quad has latent roots
$u_{1}=1-d_{1}$ and (4.6) becomes

$$
\begin{align*}
& { }_{\circ} \mathrm{F}_{1}\left(\frac{1}{2} \mathrm{n} ; \underset{\hbar}{ } \mathrm{XXX}^{\prime}\right)=\mathrm{k}_{4} \int_{\mathcal{O}(\mathrm{m})}(\mathrm{dH}) \operatorname{etr}(\mathrm{AH}) \\
& \quad \int_{U \leqslant I}(\mathrm{dU}) \operatorname{etr}(-\mathrm{AHU})\left[\operatorname{det} U\left(I-\frac{1}{2} U\right)\right]^{\frac{1}{2}(n-2 m-1)} \prod_{1<j}\left(1-\frac{\mathrm{u}_{1}+\mathrm{u}_{1}}{2}\right)
\end{align*}
$$

with $k_{6}=2^{\frac{1}{2} m(n-m-2)} k_{3}$. Expand binomially to obtain the series (2.17). Apply THEOREM 2.1 term by term to (4.7b) with the series substituted and the range of integration extended to $U>0$, since the latent roots of A are assumed large. This gives, with $R=A H, R^{-1}=H^{\prime} A^{-1}$ ${ }_{o} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right) \bumpeq k s \operatorname{det} A^{-\frac{1}{2}(n-m)}$

$$
\begin{equation*}
\int_{\mathcal{O}(\mathrm{m})} \operatorname{etr}(\mathrm{AH})\left(1+\dot{\sum}_{k, K} \mathrm{~d}_{\kappa} \mathrm{C}_{\kappa}\left(\mathrm{R}^{-1}\right)\right)(\mathrm{dH}) \tag{4.8}
\end{equation*}
$$

with d_{k} as in (2.20) and $k_{5}=\frac{2^{\frac{1}{2} m(n-m-2)} \Gamma_{m}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{2} m^{2}}}$.
4.3 Finding the maxima

Now (4.8) can be split into integrals over the disjoint subsets $\mathcal{O}^{+}(\mathrm{m})$ and $\mathcal{O}^{-}(\mathrm{m})$. Making use of the device $\mathrm{H}^{+}=\mathrm{JH}$ of Chapter 2, we get

$$
\begin{equation*}
\int_{O_{(m)}} f(H ; A)(d H)=\int_{O^{+}(m)} f(H ; A)(d H)+\int_{O^{+}(m)} f\left(H ; A^{*}\right)(d H) \tag{4.9}
\end{equation*}
$$

where f stands for the integrand of (4.8) and $A *=\operatorname{diag}\left(a_{1} \ldots a_{\mathrm{m}-1},-a_{\mathrm{m}}\right)$.

To find the stationary points of $\operatorname{tr}(A H)$ over
$\mathcal{O}^{+}(\mathrm{m})$ we have, taking differentials and equating to zero,

$$
\begin{equation*}
\mathrm{d} \operatorname{tr}(\mathrm{AH})=\operatorname{tr}\left(\mathrm{AH}\left(\mathrm{H}^{\prime} \mathrm{dH}\right)\right)=0 . \tag{4.10}
\end{equation*}
$$

Using LEMMA 2.2, (4.10) implies that $A H$ is symmetric. Thus $A H=H^{\prime} A$, or element by element $a_{1} h_{1 j}=h_{j_{1}} a_{j}$. For i = 1,

$$
\begin{equation*}
h_{1 j}=\frac{a_{j}}{a_{1}} h_{j_{1}} \quad j=2, \ldots m \tag{4.11}
\end{equation*}
$$

Since the rows and columns of H are normalised

$$
\begin{gathered}
h_{11}^{2}+\sum_{j=2}^{m} h_{1 j}^{2}=h_{11}^{2}+\sum_{j=2}^{m}\left(\frac{a_{j}}{a_{1}}\right)^{2} h_{j 1}^{2}=1 \\
h_{11}^{2}+\sum_{j=2}^{m} h_{j 1}^{2}=1 .
\end{gathered}
$$

By assumption $a_{j}<a_{1}, j=2, \ldots m$ and the above are contradictory unless $h_{j_{1}}=0, j=2, \ldots m$. From (4.11) $h_{1 j}=0$, $j=2, \ldots m$. Thus we can write

$$
H=\left[\begin{array}{cc}
\pm 1 & 0^{\prime} \\
0 & H_{1}
\end{array}\right]
$$

where $H_{1} \in \mathcal{O}(m-1)$, and by repeating the argument on H_{1},

$$
H=\left[\begin{array}{llll}
\pm 1 & & & \\
& \cdot & & \\
& & \cdot & \\
& & & \\
& & & \pm 1
\end{array}\right] \text {. }
$$

Hence for $\operatorname{tr}(A H)$ the maximum is $\operatorname{tr}(A)$ at $H=I$ and for $\operatorname{tr}\left(A^{*} H\right)$ the maximum is $\operatorname{tr}\left(A^{*}\right)$ at $H=I$.

Unlike the Bessel function of two argument matrices,
we have a unique maximum for $\operatorname{tr}(A H)$ over $H \in \mathcal{O}^{+}(m)$ and a unique maximum for $\operatorname{tr}(A * H)$ similarly, rather than the 2^{m} equal maxima over each subset as before. However we argue as before that for large values of A and $A *$ the integrands on the right hand side of (4.9) are large only in the neighbourhood of the maximum of $\operatorname{tr}(\mathrm{AH})$ and $\operatorname{tr}(\mathrm{A} * \mathrm{H})$ respectively. Thus (4.9) approximates to

$$
\int_{0(m)} \mathrm{f}(H ; A)(d H) \bumpeq \int_{N(I)} \mathrm{f}(H ; A)(d H)+\int_{V(I)} f(H ; A \%)(d H) .
$$

4.4 Approximating the integral

We concentrate on

$$
\begin{equation*}
g(A)=\int_{V(I)} f(H ; A)(d H) \tag{4.13}
\end{equation*}
$$

but the same procedures may be applied to $g(A *)$.
Now $N(I)$ contains only $H \in \mathcal{O}^{+}(m)$ so apply the parametrisation $H=\exp (S)$ where S is an $m \times m$ skew symmetric matrix. Let $H=\left(h_{1 j}\right), \mathrm{S}=\left(\mathrm{s}_{1 j}\right)$, then

$$
\begin{array}{ll}
h_{11}=1-\frac{1}{2} \sum_{j=1}^{m} s_{1 j}^{2}+o\left(s^{2}\right) & i=1, \ldots m \\
h_{1 j}= & s_{1 j}+o(s)
\end{array} \quad i \neq j .
$$

Also $N(I) \rightarrow N(S=0)$ and $(d H)=J(S) \prod_{i<j} d s_{1 j}$ where $J(S)$ is given by (2.37).

Substituting for H in $f(H ; A)=\operatorname{etr}(A H)(1+F(H ; A))$.

First

$$
\begin{aligned}
& \operatorname{tr}(A H)=\sum_{i=1}^{m} a_{1} h_{1 i}=\sum_{1=1}^{m} a_{1}-\frac{1}{2} \sum_{1, j} a_{1} s_{i j}^{2}+o\left(s^{2}\right) \\
&=\operatorname{tr}(A)-\frac{1}{2} \sum_{i<j}\left(a_{1}+a_{j}\right) s_{i j}^{2}+o\left(s^{2}\right) \\
&(4.14)
\end{aligned}
$$

Thus

$$
g(A) \bumpeq \operatorname{etr}(A) \int_{N(S=0)} \exp \left(-\frac{1}{2} \sum_{1<j} d_{1 j} s_{1 j}^{2}\right)(1+\varphi(S ; A)) J(S) \prod_{1<j} d s_{1 j}
$$

where $d_{1 j}=a_{1}+a_{j}$.
For large values of a_{1} the major contribution to the integral (4.15) comes from integrating over values of $s_{1 j}$ near the origin so the range of integration can be extended from $N(S=0)$ to $\bigcup_{1<j}\left\{s_{1 j}:-\infty<s_{1 j}<\infty\right\}$. Furthermore let $A^{-1}=\operatorname{diag}\left(a_{1}^{-1}\right)=\operatorname{diag}\left(\alpha_{1}\right), R^{-1}=\left(\rho_{1 j}\right)$ and

$$
\begin{equation*}
F(H ; A)=e_{1} a_{1} *+e_{2} a_{1} * 2+e_{3} a_{3}^{*}+o\left(r^{-2}\right) \tag{4.16}
\end{equation*}
$$

with the $a_{1} *$ the elementary symmetric functions of the latent roots of R^{-1}. Firstly
$a_{1} *=\operatorname{tr}\left(H^{t} A^{-1}\right)=\sum_{1=1}^{m} \alpha_{1} h_{11}$

$$
\begin{equation*}
=\Sigma \alpha_{1}-\frac{1}{2} \sum_{i<j}\left(\alpha_{1}+\alpha_{j}\right) s_{1 j}^{2}+o\left(s^{2}\right) \tag{4.17}
\end{equation*}
$$

and secondly $a_{1} * 2$ is easily found, while since $\rho_{1 j}=\alpha_{j} h_{j 1}$

$$
\begin{aligned}
a_{z}^{*} & =\sum_{1<j}\left(\rho_{11} \rho_{j j}-\rho_{1 j} \rho_{j 1}\right) \\
& =\sum_{1<j} \alpha_{1} \alpha_{j}+\sum_{1<j} \alpha_{1} \alpha_{j} s_{1 j}^{2}-\frac{1}{2} \sum_{i<j} \alpha_{1} \alpha_{j} \sum_{k=1}^{m}\left(s_{1 k}^{2}+s_{j k}^{2}\right)+o\left(s^{2}\right)
\end{aligned}
$$

Substituting in $F(H ; A)$ gives $\varphi(S ; A)$ and it is easily seen that all terms derived from (4.15) are evaluable using

$$
\begin{gathered}
\int_{-\infty}^{\infty} \exp \left(-\frac{1}{2} d s^{2}\right) d s=\left[\frac{2 \pi}{d}\right]^{\frac{1}{2}} \\
\int_{-\infty}^{\infty} s^{2 r} \exp \left(-\frac{1}{2} d s^{2}\right) d s=\left[\frac{2 \pi}{d}\right]^{\frac{1}{2}} \frac{1 \cdot 3 \ldots(2 r-1)}{d^{r}} \quad r=1,2, \ldots
\end{gathered}
$$

and the integral of an odd power of s gives zero.
Substitution and integration of all terms from (4.15) gives

$$
g(A)=\frac{(2 \pi)^{\frac{1}{4} m(m-1)} \operatorname{etr}(A)}{\prod_{1<j} \alpha_{1 j} \frac{1}{2}} G(A)
$$

and stopping at terms of second degree in $\frac{1}{a_{1}}$

$$
\begin{align*}
& G(A)=1-\frac{1}{8}(n-3)(n-m) \sum \frac{1}{a_{1}}-\frac{1}{12}(m-2) \sum_{1<j} \frac{1}{a_{1}+a_{j}} \\
&+\frac{1}{128}(n-3)(n-5)(n-m)(n-m+2) \sum \frac{1}{a_{1}^{2}} \\
&+\frac{1}{128}(n-m)\left(n^{3}-n^{2} m+2 n^{2}+8 m^{2}-10 n m+23 n-5 m-2\right) \sum_{1<j} \frac{1}{a_{1} a_{j}} \\
&+\frac{1}{128}(n-3)(n-m)(m-2) \sum_{1<j} \sum_{k=1}^{m} \frac{1}{a_{k}\left(a_{1}+a_{j}\right)} \\
&+\frac{(m-2)(5 m-11)}{2 \cdot 6!} \sum_{i<j} \frac{3}{\left(a_{1}+a_{j}\right)^{2}}+\frac{5 m^{2}-23 m+38}{6!} \sum_{1<j} \sum_{j<k} \frac{1}{\left(a_{1}+a_{j}\right)\left(a_{1}+a_{k}\right)} \\
&+\frac{5 m^{2}-20 m+14}{8.6!} \sum_{1<j} \sum_{k<\ell} \frac{1}{\left(a_{1}+a_{j}\right)\left(a_{k}+a_{\ell}\right)}+0\left(\frac{1}{a^{2}}\right) . \tag{4.19}
\end{align*}
$$

4.5 Proving the approximation

Using HSU'S LEMMA we can show that (4.18) is an asymptotic expansion for the integral (4.13) for large values of A.

THEOREM 4.1
Let $A=\operatorname{diag}\left(a_{1}\right)$ be $m \times m$ with $a_{1}>a_{2}>\ldots>a_{m}>0$. Then for A large and $g(A)$ defined as in (4.13)

$$
g(A) \sim \frac{(2 \pi)^{\frac{1}{4} m(m-1)} e \operatorname{tr}(A)}{\prod_{1<j}\left(a_{1}+a_{j}\right)^{\frac{1}{2}}} .
$$

Proof

The proof follows the lines of that for THEOREM 2.3. Set $A=a_{1} X, \quad X_{1}=a_{1}^{-1} a_{1}, \operatorname{etr}(A H)=[\operatorname{tr}(X H)]^{a_{1}}$ etc...Q.E.D.

Again it is easy to show that

$$
g\left(A *^{*}\right)=O\left(\exp \left(-2 a_{m}\right) g(A)\right)
$$

indicating the relative unimportance of the second term.

4.6 Summary

From (4.8) and (4.13)

$$
\begin{equation*}
{ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right) \bumpeq k_{5} \operatorname{det} A^{-\frac{1}{2}(n-m)}\left[g(A)+g\left(A^{*}\right)\right] . \tag{4.21}
\end{equation*}
$$

The results may be summarised in the

THEOREM 4.2

Let the matrix $X X^{\prime}$ have latent roots a_{1}^{2}. Then for large values of the a_{1}^{2} the Bessel function has the asymptotic representation

$$
o F_{1}\left(\frac{1}{2} n ; \frac{1}{L} X X^{t}\right)=\frac{k \operatorname{etr}(A)}{\prod_{1<j}\left(a_{1}+a_{j}\right)^{\frac{1}{2}} \operatorname{det} A^{\frac{1}{2}}(n-m)} G(A)
$$

where $G(A)$ is given by (4.19) and $k=\frac{2^{\frac{1}{2 m m}(2 n-m-5)} \Gamma_{m}\left(\frac{1}{2} n\right)}{\pi^{\frac{1}{7^{m}}(m+1)}}$. Setting $m=1$ this reduces to
$o F_{1}\left(\frac{1}{2} n ; \frac{1}{4} x^{2}\right)=\frac{2^{\frac{1}{2}(n-3)} e^{x}}{\sqrt{\pi} x^{\frac{1}{2}(n-1)}}\left(1-\frac{(n-1)(n-3)}{8 x}+\frac{(n+1)(n-1)(n-3)(n-5)}{128 x^{2}} \cdots\right)$
which agrees with the first few terms of (1.31).
Again numerical evaluations are left for Chapter 8 .

4.7 The averaged ANDERSON'S Integral.

The integral (2.11) can be deduced directly from (4.4) by averaging over the orthogonal group. Take the left hand side of (2.11)

$$
\begin{equation*}
o_{1} F_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{6} A^{2}, B^{2}\right)=c_{1} \int_{O(m)}{ }_{O} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} A^{2} H B^{2} H^{t}\right)(d H) \tag{4.23}
\end{equation*}
$$

where $c_{1}=[\operatorname{Vol}(\mathcal{O}(m))]^{-1}$. The argument $A^{2} \mathrm{HB}^{2} \mathrm{H}^{\prime}$ has the same latent roots as $\mathrm{BH}^{\prime} \mathrm{A}\left(\mathrm{BH}^{\prime} \mathrm{A}\right)^{\prime}$ so (4.23) becomes ${ }_{\circ} \mathrm{F}_{1}^{(\mathrm{m})}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \mathrm{~A}^{2}, \mathrm{~B}^{2}\right)=\mathrm{C}_{1} \int_{0(\mathrm{~m})}{ }_{\mathrm{O}} \mathrm{F}_{1}\left(\frac{1}{2} \mathrm{n} ; \frac{1}{4} \mathrm{BH}^{\prime} \mathrm{A}\left(\mathrm{BH}^{\prime} \mathrm{A}\right)^{\prime}\right)(\mathrm{dH})$
$(4=4) c_{2} \int_{(m)} \int_{R^{\prime} R \leqslant I} \operatorname{etr}\left(\mathrm{BH}^{\prime} A R\right) \operatorname{det}\left(I-R^{\prime} R\right)^{\frac{1}{2}(n-2 m-1)}(d R)(d H)$
where $\quad c_{2}=\frac{\Gamma_{m}\left(\frac{1}{2} m\right) \Gamma_{m}\left(\frac{1}{2} n\right)}{2^{m} \pi^{m^{2}} \Gamma_{m}\left(\frac{1}{2}(n-m)\right)}$. Making the substitution
$T^{\prime}=R$ and using the fact that $\operatorname{tr}(X Y)=\operatorname{tr}\left(X^{\prime} Y^{\prime}\right)$ with $\mathrm{X}=\mathrm{BH}^{\prime} \mathrm{A}, \mathrm{Y}=\mathrm{T}^{\prime}$ gives (2.11).

CHAPTER 5

THE P.D.E. ASYMPTOTIC FORMULA FOR ${ }^{\circ} \mathrm{F}_{1}$

5.1 Introduction

The result of Chapter 4 for the Bessel function of one matrix argument was given in terms of inverse powers of the latent roots and was asymptotic on these becoming large. In this Chapter we consider an asymptotic expansion for ${ }_{0} F_{1}\left(\frac{1}{2} n ; R\right)$ ($R m \times m$ symmetric) where the series is given in powers of n^{-1} on the condition that the matrix R depends on n .

The asymptotic expansion is derived using a system of partial differential equations given by MUIRHEAD [27]. The sysiem is a generalisation of that given by JAMES [17] for ${ }_{o} F_{1}\left(\frac{1}{2} m ; R\right)$ and many of the results used in section 2 are taken from that paper.

Finally the expansion is related to the ${ }^{\circ} F_{1}$ appearing in the likelihood factor of the non-central Wishart distribution.

5.2 Using the differential equations

Let R be an $m \times m$ complex symmetric matrix with latent roots $R_{1}, R_{2}, \ldots R_{m}$. Then from MUIRHEAD [27] THEOREM 5.1

The function $o F_{1}\left(\frac{1}{2} n ; R\right)$ is the unique solution of each of the m differential equations
$R_{1} \frac{\partial^{2} F}{\partial R_{1}{ }^{2}}+\left\{\frac{1}{2} n-\frac{1}{2}(m-1)+\frac{1}{2} \sum_{j \neq 1} \frac{R_{i}}{R_{1}-R_{j}}\right\} \frac{\partial F}{\partial R_{1}}-\frac{1}{2} \sum_{j \neq 1} \frac{R_{1}}{R_{1}-R_{j}} \frac{\partial F}{\partial R_{j}}=F$

$$
\begin{equation*}
i=1,2, \ldots m \tag{5.1}
\end{equation*}
$$

subject to the conditions that
(a) F is symmetric in $R_{1}, R_{2}, \ldots R_{n}$, and
(b) F is analytic about $R=0$ and $F(0)=1$.

In statistical applications the matrix R is restricted to being positive semi-definite. That is all $R_{1} \geqslant 0, i=1,2, \ldots . . H_{0}$ However for the expansion an even more restrictive condition is needed. Let R have the form

$$
\begin{equation*}
R=n S \text { for each } n \text {, } \tag{5.2}
\end{equation*}
$$

where S is a fixed $m \times m$ symmetric matrix.
Thus we can determine the behaviour of oF_{1} as $n \rightarrow \infty$. LaMina 5.1

$$
\begin{equation*}
\lim _{n \rightarrow \infty} o F_{1}\left(\frac{1}{2} n ; R\right)=\operatorname{etr}(2 S) \tag{5.3}
\end{equation*}
$$

Proof
Expand ${ }^{\circ} F_{1}$ in a zonal series and take limits. Since the series is absolutely convergent, the order of the operations of summation and taking limits can be reversed. Thus, substituting $R=n S$

$$
\lim _{n \rightarrow \infty} o F_{1}\left(\frac{1}{2} n ; R\right)=\sum_{k, \kappa} \lim _{n \rightarrow \infty} \frac{C_{k}(n S)}{\left(\frac{1}{2} n\right)_{k} k!} .
$$

Now $\mathrm{C}_{\kappa}(\mathrm{nS})=\mathrm{n}^{\mathrm{k}} \mathrm{C}_{\kappa}(\mathrm{S})$ and taking limits the individual terms reduce to $\mathrm{C}_{\kappa}(2 \mathrm{~S}) / \mathrm{k}$!. Summation of these terms gives
the required result. Q.E.D.
First we obtain a system of PDE's in the latent roots $S_{1}, S_{2}, \ldots S_{m}$ of S. Make the transformation (5.2). Then $R_{1}=n S_{1}$ and differentiating $\frac{\partial F}{\partial R_{1}}=\frac{1}{n} \frac{\partial F}{\partial S_{1}}, \frac{\partial^{2} F}{\partial R \cdot q_{1}}=\frac{1}{n^{2}} \frac{\partial^{2} F_{1}}{\partial S_{1}{ }^{2}}$ The system (5.1) becomes

$$
\begin{gather*}
S_{1} \frac{\partial^{2} F}{\partial S_{1}^{2}}+\left\{\frac{1}{2} n-\frac{1}{2}(m-1)+\frac{1}{2} \underset{j \neq 1}{\sum} \frac{S_{1}}{S_{1}-S_{j}}\right\} \frac{\partial F}{\partial S_{1}}-\frac{1}{2} \sum_{j \neq 1} \frac{S_{j}}{S_{1}-S_{j}} \frac{\partial F}{\partial S_{j}}=n F \\
i=1,2, \ldots m \tag{5.4}
\end{gather*}
$$

Now using (5.3), for large values of n the function ${ }^{\circ} F_{1}$ can be factorised in the form

$$
\begin{equation*}
F=\operatorname{etr}(2 S) G \tag{5.5}
\end{equation*}
$$

and we get PDE's for G. Differentiating partially in (5.5)

$$
\begin{aligned}
& \frac{\partial F}{\partial S_{1}}=\operatorname{etr}(2 S) \frac{\partial G}{\partial S_{1}}+2 \operatorname{etr}(2 S) G \\
& \frac{\partial^{2} F}{\partial S_{1}^{2}}=\operatorname{etr}(2 S) \frac{\partial^{2} G}{\partial S_{1}^{2}}+4 \operatorname{etr}(2 S) \frac{\partial G}{\partial S_{1}}+4 \operatorname{etr}(2 S) G
\end{aligned}
$$

Substituting in (5.4) and cancelling an etr(2S) gives the system

$$
\begin{gather*}
S_{1} \frac{\partial^{2} G}{\partial S_{1}{ }^{2}}+\left\{\frac{1}{2} n-\frac{1}{2}(m-1)+4 S_{1}+\frac{1}{2} \sum_{j \neq 1} \frac{S_{1}}{S_{1}-S_{j}}\right] \frac{\partial G}{\partial S_{1}}-\frac{1}{2} \sum_{j \neq 1} \frac{S_{j}}{S_{1}-S_{j}} \frac{\partial G}{\partial S_{j}}+4 S_{1} G=0 \\
i=1,2, \ldots m . \tag{5.6}
\end{gather*}
$$

By the condition (a) on the solution of (5.1), F is a symmetric function. Also etr(2S) is a symmetric function. Hence from (5.5) G is also a symmetric function. This suggests that we try a series expansion in elementary symmetric functions. That is, a solution of the form

$$
\begin{equation*}
G=1+\sum_{u=1}^{\infty} \frac{P_{u}(a)}{n^{4}} \tag{5.7}
\end{equation*}
$$

where the $P_{u}(a)$ are polynomials in the elementary symmetric functions $a_{1}, a_{2}, \ldots a_{m}$ of the variables $S_{1}, S_{2}, \ldots S_{m}$.

JAMES [17] has shown how to transform from a PDE in the variables to a PDE in the elementary symmetric functions of them. Let $a_{j}(1)$ for $j=1,2, \ldots m-1$ denote the j th elementary symmetric function of the variables $S_{1} \ldots S_{m}$ omitting S_{1}. Introducing the dummy variables

$$
\begin{array}{ll}
a_{0}=a_{0}(1)=1 & \\
a_{j}=0 & j=-1,-2, \ldots \text { and } m+1, m+2, \ldots \\
a\}^{1}=0 & j=-1,-2, \ldots \text { and } m, m+1, \ldots
\end{array}
$$

we have the relationship

$$
\begin{array}{ll}
a_{j}=S_{1} a_{j-1}^{(1)}+a_{j}^{(1)} & -\infty<j<\infty \tag{5.8}\\
& i=1,2, \ldots m .
\end{array}
$$

The partial derivative formulae are

$$
\begin{aligned}
& \frac{\partial}{\partial S_{1}}=\sum_{\nu=1}^{m} a_{\nu-1}^{(1)} \frac{\partial}{\partial a_{\nu}} \\
& \frac{\partial^{2}}{\partial S_{1}{ }^{2}}=\sum_{\nu, \mu=1}^{m} a_{\nu-1}^{(1)} a_{\mu-1}^{(1)} \frac{\partial^{2}}{\partial a_{\nu} \partial a_{\mu}} .
\end{aligned}
$$

On substituting for the partial derivatives and applying (5.8), (5.6) gives
$\sum_{1 \leqslant \mu \leqslant v \leqslant m}\left(2-\delta_{v \mu}\right)\left(\sum_{j=1}^{\mu} a_{\mu+v-1} a_{j-1}^{(1)}-\sum_{j=1}^{\mu} a_{\mu-j} a_{v+j-1}^{(1)}\right) \frac{\partial^{2} G}{\partial a_{\nu} \partial a_{\mu}}$

$$
+\frac{1}{2} \sum_{j=1}^{m}(n+1-j) a_{j-1}^{(1)} \frac{\partial G}{\partial a_{j}}+4 \sum_{j=1}^{m}\left(a_{j}-a_{j}^{(1)}\right) \frac{\partial G}{\partial a_{j}}=4\left(a_{1}^{(1)}-a_{1}\right) G
$$

$$
\begin{equation*}
i=1,2, \ldots m \tag{5.9}
\end{equation*}
$$

To proceed we need the following
LEMMA 5.2 ([17] p 371)
If $S_{1}, S_{2}, \ldots S_{m}$ are indeterminates and $a_{1}, a_{2} \ldots a_{m}$ the elementary symmetric functions of them, and $a_{1}^{(1)} \ldots a_{m-1}^{(1)}$ the elementary symmetric functions of $S_{1} \ldots S_{m}$ with S_{1} omitted and if $\lambda_{0}(a), \lambda_{1}(a), \ldots \lambda_{0-1}(a)$ are functions of $a_{1} \ldots a_{\mathrm{m}}$ such that

$$
\lambda_{0}(a)+\lambda_{1}(a) a_{1}^{(1)}+\ldots+\lambda_{m-1}(a) a_{m-1}^{(1)}=0
$$

then $\lambda_{0}(a)=0, \lambda_{1}(a)=0 \ldots \lambda_{\mathrm{p}-1}(a)=0$.
Using the LEMMA 5.2 each of the $m P D E ' s$ in (5.9) can be expanded into a system of m PDE's. Each member of (5.9) will give the same system of derived PDE's. Equating the coefficients of $a_{j-1}^{(1)}$ to zero for $j=1,2, \ldots m$ we have

$$
\sum_{\nu, \mu=1}^{\mathbb{m}} c_{\mu \nu}^{(j)}\left(S_{1} \ldots S_{m}\right) \frac{\partial^{2} G}{\partial a_{\mu} \partial a_{\nu}}+\frac{1}{2}(n+1-j) \frac{\partial G}{\partial a_{j}}
$$

$+4 \sum_{\nu=1}^{m} a_{\nu} \frac{\partial G}{\partial a_{\nu}} \delta_{1 j}+4 a_{1} G \delta_{1 j}=4 \frac{\partial G}{\partial a_{j-1}}\left(1-\delta_{1 j}\right)+4 G \delta_{2 j}$

$$
\begin{equation*}
j=1,2, \ldots m \tag{5.10}
\end{equation*}
$$

where $c_{\mu \nu}^{(j)}=c_{\nu \mu}^{(j)}$ and for $\mu \leqslant \nu$

$$
c_{\mu \nu}^{(j)}=\begin{array}{cl}
a_{\mu+\nu-j} & 1 \leqslant j \leqslant \mu \\
0 & \mu<j \leqslant \nu \\
-a_{\mu+\nu-j} & \nu<j \leqslant \mu+\nu \\
0 & \mu+\nu<j
\end{array} \quad j=1,2, \ldots m \cdot
$$

Written more explicitly, the system of differential equations (5.10) is

$$
\begin{aligned}
& j=1:\left(a_{o}^{(1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} n \frac{\partial G}{\partial a_{1}}+4 \sum_{\nu=1}^{m} a_{\nu} \frac{\partial G}{\partial a_{\nu}}+4 a_{1} G=0 \\
& j=2:\left(a_{1}^{(1)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}(n-1) \frac{\partial G}{\partial a_{2}}-4 \frac{\partial G}{\partial a_{1}}=4 G .
\end{aligned}
$$

For the general $\operatorname{PDE}\left(a_{j-1}^{(1)}\right)$

Substitute for G in (5.11) using (5.7) and equate coefficients of powers of n^{-1}.

Term independent of $n(u=0)$.

$$
\begin{array}{ll}
j=1: & \frac{1}{2} \frac{\partial P_{1}(a)}{\partial a_{1}}+4 a_{1}=0 \\
j=2: & \frac{1}{2} \frac{\partial P_{1}}{\partial a_{2}}=4 \\
j>2: & \frac{1}{2} \frac{\partial P_{1}}{\partial a_{j}}=0 .
\end{array}
$$

Hence $P_{1}(a)$ is a function of a_{1} and a_{2} alone and must have the form

$$
\begin{equation*}
P_{1}(a)=c_{0}+c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{1}^{2} \tag{5.13}
\end{equation*}
$$

Condition (b) on (5.1) is needed here to provide a unique solution to the equations (5.12). If $S=0$, then ${ }_{\circ} F_{1}\left(\frac{1}{2} n ; n S\right)=1$ and hence $G=1$. Thus $P_{1}(0)=0$ and $c_{0}=0$. Substituting (5.13) in the equations (5.12a) and (5.12b) gives the soluslion

$$
\begin{equation*}
P_{1}(a)=8 a_{2}-4 a_{1}^{2} \tag{5.14}
\end{equation*}
$$

Next the coefficient of n^{-1}.
$j=1: \quad \frac{1}{2} \frac{\partial \mathrm{P}_{2}}{\partial a_{1}}=8 a_{1}+32 a_{1}^{2}-32 a_{2}-32 a_{1} a_{2}+16 a_{1}{ }^{3}$
$j=2: \quad \frac{1}{2} \frac{\partial \mathrm{P}_{2}}{\partial \mathrm{a}_{2}}=-4-32 \mathrm{a}_{1}+32 \mathrm{a}_{2}-16 \mathrm{a}_{1}{ }^{2}$
$j=3: \quad \frac{1}{2} \frac{\partial \mathrm{P}_{2}}{\partial \mathrm{a}_{3}}=32 \quad j>3: \frac{\partial \mathrm{P}_{2}}{\partial \mathrm{a}_{j}}=0$.
Solving the system under condition (b)
$P_{2}(a)=32 a_{2}^{2}-32 a_{2} a_{1}^{2}+8 a_{1}^{2}+64 a_{3}+64 a_{1} a_{2}+\frac{62}{3} a_{1}^{3}-8 a_{2}+8 a_{1}^{2} . \quad(5.15)$
By considering successively the coefficients of
n^{-2}, n^{-3}, \ldots the polynomials $P_{3}(a), P_{4}(a), \ldots$ can be found. The number of terms per polynomial increases sharply with u
as $P_{u}(a)$ is a polynomial of degree au. Rather than evai= ute further $P_{u}(a)$, we now consider a series expansion in another set of symmetric functions that gives fewer terms per polynomial.

5.3 The direct method

Let us consider a series of the form

$$
\begin{equation*}
G=1+\sum_{u=1}^{\infty} \frac{Q_{u}(r)}{n^{U}} \tag{5.16}
\end{equation*}
$$

where the $Q_{u}(r)$ are polynomials in the power sums $r_{1} ; r_{2} \ldots$ of the variables $S_{1} \ldots S_{m}$. This is analogous to (5. \bar{i}).

> Substituting (5.16) directly into (5.6) gives
$S_{1} \Sigma \frac{1}{n^{u}} \frac{\partial^{2} Q_{u}}{\partial S_{1}^{2}}+\left\{\frac{1}{2} n-\frac{1}{2}(m-1)+4 S_{1}+\frac{1}{2} \sum_{j \neq 1} \frac{S_{1}}{S_{1}-S_{j}}\right\} \sum \frac{1}{n^{u}} \frac{\partial Q_{u}}{\partial S_{1}}$
$-\frac{1}{2} \sum_{j \neq 1} \frac{S_{j}}{S_{1}-S_{j}} \sum \frac{1}{n^{u}} \frac{\partial Q_{u}}{\partial S_{j}}+4 S_{1}\left\{1+\sum \frac{Q_{u}}{n^{u}}\right\}=0$

$$
\begin{equation*}
i=1,2, \ldots m_{0} \tag{5.17}
\end{equation*}
$$

Term independent of $n(u=0)$

$$
\frac{1}{2} \frac{\partial Q_{1}}{\partial S_{1}}+4 S_{1}=0 \quad i=1,2 \ldots m
$$

Solving

$$
Q_{1}(r)=-4 S_{1}^{2}+\text { similar terms } i=1, \ldots m
$$

Combining all m results and expressing the solution in terms of power sums

$$
\begin{equation*}
Q_{1}(r)=-4 r_{2} \tag{5.18}
\end{equation*}
$$

The coefficient of $\frac{1}{n}$,

$$
\frac{\partial Q_{2}}{\partial S_{1}}=16 S_{1}+8 \sum_{j \neq 1} S_{j}+32 S_{1} r_{2}+64 S_{1}{ }^{2}
$$

$$
i=1, \ldots m
$$

Integrating

$$
\begin{gathered}
Q_{2}(r)=8 \mathrm{~S}_{1}^{2}+8 \sum_{j \neq 1} S_{1} S_{j}+8 S_{1}^{6}+16 S_{1}^{2} \sum_{j \neq 1} S_{j}{ }^{2}+\frac{6 L}{3} S_{1}^{3} \\
+ \\
\text { similar terms. }
\end{gathered}
$$

Combining all m results

$$
Q_{z}(r)=8 r_{z}+8 \sum_{1<j} S_{1} S_{j}+8 r_{4}+16 \sum_{1<j} S_{1}^{2} S_{j}^{2}+\frac{6 L}{3} r_{3} \cdot(5 \cdot 20)
$$

It is easily seen that

$$
\begin{aligned}
& r_{1}^{2}=r_{2}+2 \sum_{1<j} S_{1} S_{j} \\
& r_{2}^{2}=r_{k}+2 \sum_{i<j} S_{1} 2 S_{j} 2
\end{aligned}
$$

and substitution in (5.20) gives the answer in power sums as

$$
\begin{equation*}
Q_{2}(r)=8 r_{2}^{2}+\frac{6 L}{3} r_{3}+4 r_{2}+4 r_{1}^{2} \tag{5.21}
\end{equation*}
$$

For general u, the m equations have the form

$$
\begin{array}{r}
\frac{\partial Q_{u_{i}}}{\partial S_{1}}=-2 S_{1} \frac{\partial^{2} Q_{u}}{\partial S_{1}^{2}}+(m-1) \frac{\partial Q_{u}}{\partial S_{i}}-8 S_{1} \frac{\partial Q_{u}}{\partial S_{1}}-8 S_{1} Q_{u} \\
-\sum_{j \neq i} \frac{S_{i} \frac{\partial Q_{u}}{\partial S_{1}}-S_{j} \frac{\partial Q_{u}}{\partial S_{i}}}{S_{1}-S_{j}} \\
i=1, \ldots \mathrm{~m} . \tag{5.22}
\end{array}
$$

5.4 The two methods, a comparison

From JAMES [21] comes a table of zonal polynomials in terms of power sums and elementary symmetric functions. By equating the two

$$
\begin{aligned}
a_{1} & =r_{1} \\
2 a_{2} & =r_{1}^{2}-r_{2} \\
6 a_{3} & =r_{1}^{3}-3 r_{1} r_{2}+2 r_{3}
\end{aligned}
$$

Substitution in P_{1} and P_{2} shows that

$$
\begin{equation*}
P_{u}(a)=P_{u}(a(r))=Q_{u}(r) \quad u=1,2 \tag{5.23}
\end{equation*}
$$

but Q_{1} and Q_{2} only involve half as many terms as P_{1} and P_{2}. From this it is inferred that in general Q_{u} will contain less terms than P_{u} but one can be converted into the other if necessary.

The method of Section 3 is more direct as no change of variables is required in the $\operatorname{PDE}(5.6)$ before substituting (5.16). On the negative side the main disadvantages appear to be the evaluation of the term

$$
\begin{equation*}
\sum_{j \neq i} \frac{S_{1} \frac{\partial Q_{u}}{\partial S_{1}}-S_{j} \frac{\partial Q_{u}}{\partial S_{j}}}{S_{1}-S_{j}} \tag{5.24}
\end{equation*}
$$

and the combination of m results like (5.19) into the polynomial (5.20) where the method is one of trial and error. The solution of (5.22) introduces functions that are not power sums or even elementary symmetric functions egg. $\sum_{1<j} S_{1}{ }^{2} S_{j}{ }^{2}$.

For the first method the main problem is to write down the system of equations for each P_{u}. The general equation (5.10) is not as simple as (5.22) because the coefficients $c_{\mu \nu}^{(j)}$ depend on the equation, but the solving is trivial since we need only work in terms of elementary symmetric functions.

The main asset of the first method is that it would be quite simple to write a computer programme to evaluate the polynomials $P_{u}(a)$ recursively. For the second method, the term (5.24) seems to need human intervention to handle. Also there is this problem of mixed terms and their conversion to power sums.
5.5 Statistical applications

The non-central Wishart distribution involves the Bessel function ${ }_{0} F_{1}\left(\frac{1}{2} n ; \frac{1}{4} \Sigma^{-1} M M^{\prime} \Sigma^{-1} X X^{\prime}\right)$ where n is the number of degrees of freedom of the sample matrix $\mathrm{Xm} \times \mathrm{n}$, $E[X]=M$ and the columns of X are normally and independently distributed with common covariance matrix Σ.

Let $X X^{\prime}=n S$, then $E[S]=\Sigma+\frac{1}{n} M M^{\prime}$ and S is clearly bounded in probability as $n \rightarrow \infty$. For n large S can be treated as a constant matrix. Thus XX^{\prime} can be considered as a function of n alone for n sufficiently large, satisfying the condition of LEMMA 5.1.

The Bessel function can be written as
${ }_{0} F_{1}\left(\frac{1}{2} n ; n T\right)$ where $T=\frac{1}{2} \Sigma^{-1} M M^{\prime} \Sigma^{-1} S$. Approximating for n large gives

$$
\begin{equation*}
o F_{1}\left(\frac{1}{2} n ; n T\right) \bumpeq \operatorname{etr}(2 T) G(n ; T) \tag{5.25}
\end{equation*}
$$

where G can be expanded as in (5.7) or (5.16).
This approximation would be particularly applic-
able to power function calculations. There we are dealing with small deviations from the central distribution. In
particular, it should be most useful for situations involving only one non-zero latent root or perhaps more generally a small number of them non-zero.

The approximation could also be used to evaluate the likelihood func tion of the non-central Wishart distribution, viz.,

$$
\begin{equation*}
L(M, \Sigma) \propto \operatorname{etr}\left(-\frac{1}{2} \Sigma^{-1} M M^{1}\right)_{0} F_{1}\left(\frac{1}{2} n ; n T\right) . \tag{5.26}
\end{equation*}
$$

Its usefulness would be limited to that part of the range for which the latent roots of $n T$ are small or the sample size would need to be large.

No numerical calculations were done to determine the region of application of the approximation. This would be an extensive study in itself.

CHAPTER 6

THE LAGUERRE POLYNOMIAL LK (S)

6.1 Introduction

All previous asymptotic expansions are only valid for large n or for argument matrices with large latent roots. For small values the zonal series converges rapidly enough. The problem is that for "medium" values the asymptotic expansions do not work and.the convergence of the zonal series is too slow.

The aim of this Chapter is to work with the zonal series for the ${ }^{\circ} F_{1}$ functions and by rearrangeme $n t$ of series obtain more rapid convergence. The series will be rearranged in terms of the generalised Laguerre polynomials introduced by HERZ [12] and CONSTANTINE [8]. Two such rearrangements will be demonstrated. Both are applicable to the one and two argument Bessel.

A similar Laguerre type expansion exists for the ${ }_{1} F_{1}$. This is involved in the non-central moments of the generalised variance and the likelihood ratio statistic. The expansion is included for reasons of completeness only.

The numerical work is left to Chapter 8. All matrices referred to in the following sections are m×m. 6.2 The classical results

Let us first review the classical formulae for functions of a single variable. Referring to Chapter 10,

Section 12 of ERDELYI ET AL [9] we see that the Laguerre polynomials $\mathscr{L}_{n}^{a}(x)$ are defined as

$$
\begin{equation*}
\mathcal{L}_{n}^{a}(x)=\sum_{m=0}^{n}\binom{n+a}{n-m} \frac{(-x)^{m}}{m!} \quad n=0,1,2, \ldots \tag{6.1}
\end{equation*}
$$

The identities to be generalised are

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\ell_{n}^{a}(x)}{\Gamma(n+a+1)} z^{n}=(x z)^{-\frac{1}{2} a} e^{z} J_{a}\left[2(x z)^{\frac{1}{2}}\right] \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!\mathcal{L}_{n}^{a}(x) \mathcal{L}_{n}^{a}(y)}{(a+1)_{n}} z^{n}=(1-z)^{-a-1} \exp \left[-\frac{z(x+y)}{1-z}\right] 0 F_{1}\left(a+1 ;\left(\frac{x}{1-z} z\right)^{z}\right) . \tag{6.3}
\end{equation*}
$$

Both can be proved by applying the Laplace transform

$$
\begin{equation*}
g(w)=\int_{0}^{\infty} e^{-v w} v^{a} f(v) d v \tag{6.4}
\end{equation*}
$$

Apply to z in (6.2) and y in (6.3) and in both cases they reduce to the main generating function for Laguerre polynomials ie.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \ell_{n}^{a}(x) z^{n}=(1-z)^{-a-1} \exp \left[\frac{x z}{z-1}\right] \quad|z|<1 \tag{6.5}
\end{equation*}
$$

As is well known (and easily verified) the functions J and ${ }^{\circ} F_{1}$ are related by

$$
\begin{equation*}
\left(\frac{1}{2} z\right)^{-a} J_{a}(z)=\frac{1}{\Gamma(a+1)} \circ F_{1}\left(a+1 ;-\frac{1}{4} z^{2}\right) \tag{6.6}
\end{equation*}
$$

A different normalisation is used in [8] so that for $m=1$ the generalised Laguerre polynomial reduces to a multiple of (6.1) ie.

$$
\begin{equation*}
L_{n}^{a}(x)=n!\mathcal{L}_{n}^{a}(x) . \tag{6.7}
\end{equation*}
$$

Using (6.6) and (6.7) the identities (6.2), (6.3)
and (6.5) can be written in a form suitable for generaliseLion $\left(\Gamma(n+a+1)=\Gamma(a+1)(a+1)_{n}\right)$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{L_{n}^{a}(x) z^{n}}{(a+1))_{n} n!}=e^{z}{ }_{o F_{1}}(a+1 ;-x z) \tag{6.8}
\end{equation*}
$$

$\sum_{n=0}^{\infty} \frac{L_{n}^{a}(x) L_{n}^{a}(y)}{(a+1) n_{n} n!} z^{n}=(1-z)^{-a-1} \exp \left[-\frac{z(x+y)}{1-z}\right] \circ F_{1}\left(a+1 ;-\left(\frac{x, y z}{(1-z)^{2}}\right)\right.$

$$
|z|<1 \text { (6.9) }
$$

$$
\sum_{n=0}^{\infty} \frac{L_{n}^{a}(x)}{n!} z^{n}=(1-z)^{-a-1} \exp \left[\frac{x z}{z-1}\right] \quad|z|<1 \cdot(6 \cdot 10)
$$

6.3 The matrix genera alisations

The following definitions and THEOREM 6.1 are taken from [8]. Let S be a positive definite symmetric matrix, $\mathrm{p}=\frac{1}{2}(\mathrm{~m}+1), \mathrm{a}>-1$ and κ a partition of k, then the generalised Laguerre polynomial $L_{\kappa}^{a}(S)$ has the definition (corresponding to (6.1))

$$
\begin{equation*}
L_{K}^{\mathrm{a}}(\mathrm{~S})=(\mathrm{a}+\mathrm{p})_{K} \mathrm{C}_{K}(I) \sum_{n=0}^{K} \sum_{\nu} \frac{(-1)^{\mathrm{n}}\binom{\kappa}{\nu}}{(\mathrm{a}+\mathrm{p})_{\nu}} \frac{\mathrm{C}_{\nu}(\mathrm{S})}{\mathrm{C}_{\nu}(I)} . \tag{6.11}
\end{equation*}
$$

The "binomial" coefficients $\binom{\kappa}{\nu}$ are defined by

$$
\begin{equation*}
\frac{C_{K}(I+S)}{C_{k}(I)}=\sum_{n=0}^{k} \sum_{v}\binom{k}{v} \frac{C_{v}(S)}{C_{v}(I)} . \tag{6.12}
\end{equation*}
$$

In Chapter 7 specific methods for calculating the $\binom{\kappa}{\nu}$ to any order will be considered.

$$
\text { Now the analogue of }(6.10) \text {. }
$$

THEOREM 6.1 ([8] Theorem 1)
The generating function for the Laguerre polynom-
ials is

$$
\begin{align*}
& \left.\operatorname{det}(I-Z)^{-a-p} \int_{b(m)}^{\operatorname{etr}\left(-S H^{\prime} Z(I-Z)^{-1}\right.} \underset{H}{ }\right)(d H)=\sum_{k, k} \frac{L_{K}^{a}(S)}{k!} \frac{\mathrm{E}_{k}(Z)}{\mathrm{C}_{k}(I)} \\
& (x \rightarrow S, z \rightarrow Z) \tag{6.13}\\
& \|z\|<1
\end{align*}
$$

or alternatively

$$
\begin{align*}
\sum_{k, \kappa} \frac{L_{k}^{a}(S) C_{k}(Z)}{k!C_{K}(I)}=\operatorname{det}(I-Z)^{-a-p}{ }_{o F_{0}}^{(m)} & \left(S, Z(Z-I)^{-1}\right) \\
& \|Z\|<1 \tag{6.14}
\end{align*}
$$

where Z is a complex symmetric matrix and $\|z\|$ denotes the maximum of the absolute values of the latent roots of Z. To see that (6.14) is a matrix generalisation of (6.10) write

$$
\begin{equation*}
\exp \left[\frac{x z}{z-1}\right]=0 F_{0}\left(x z(z-1)^{-1}\right) . \tag{6.15}
\end{equation*}
$$

The two theorems that follow are natural generalisations of (6.8) and (6.9). Both are proved by use of the Laplace transform and their Laplace transforms are shown to reduce to (6.14). As in the single variable case, if two functions have equal Laplace transforms then the functions are equal. We use (cf.(6.4))

$$
\begin{equation*}
g(W)=\int_{Z>0} \operatorname{etr}(-Z W) \operatorname{det} Z^{a} f(Z)(d Z) \tag{6.16}
\end{equation*}
$$

where W is a complex symmetric matrix. The appropriate
theory is covered in [7].
In the proof's two standard Laplace transforms are used:

1. CONSTANTINE [7]

$$
\begin{equation*}
\int_{2>0} \operatorname{etr}(-Z W) \operatorname{det} Z^{b-p} C_{K}(Z)(d Z)=\Gamma_{\mathrm{n}}(b, k) \operatorname{det} W^{-b} C_{K}\left(W^{-1}\right) \tag{6.17}
\end{equation*}
$$

2. CONSTANTINE [8]

$$
\begin{aligned}
& \int_{Z>0} \operatorname{etr}(-Z W ?) \text { det } Z^{a} I_{K}^{a}(z)(a z)=I_{m}(a+p, \kappa) \operatorname{det} W^{-a-p} C_{K}\left(I-W^{-1}\right) \\
&(6.18)
\end{aligned}
$$

The generalisation of (6.8).
THEOREM 6.2
For $S>0, Z>0, a>-1$

$$
\begin{aligned}
& \sum_{k, K} \frac{L_{k}^{\mathrm{a}}(S)}{(a+p)} \frac{C_{K}}{}(Z) \\
& (x \rightarrow S, Z \rightarrow Z)
\end{aligned}
$$

Proof

Apply (6.16) to both sides. The lefft hand side becomes

$$
\begin{aligned}
& \sum_{k, K} \frac{L_{K}^{a}(S)}{(a+p)_{K}^{k} k!C_{K}(I)} \int_{z>0} \operatorname{etr}(-z W) \text { det } z^{a} C_{K}(z)(d Z) \\
& \underset{(6.17) k, k}{=} \frac{L_{k}^{a}(S)}{(a+p)_{k} k!C_{K}(I)^{\Gamma_{m}}(a+p, \kappa) \operatorname{det} W^{-a-p} C_{K}\left(W^{-1}\right)} \\
& \underset{(6.16)}{=} \Gamma_{\mathrm{m}}(\mathrm{a}+\mathrm{p})\left[\operatorname{det} W\left(I-W^{-1}\right)\right]^{-a-p} \operatorname{oF}_{0}^{(\mathbb{m})}\left(\mathrm{S}, W^{-1}\left(W^{-1}-I\right)^{-1}\right) .
\end{aligned}
$$

Expanding ${ }_{o} \mathrm{~F}_{1}^{(\mathrm{m})}$ in its zonal series and applying (6.16)
the right hand side becomes

$$
\begin{aligned}
& \sum_{k, \kappa} \frac{(-1)^{k} C_{K}(S)}{(a+p)_{\kappa} k!C_{K}(I)} \int_{Z>0} e \operatorname{tr}(-Z(W-I)) \operatorname{det} Z^{a} C_{K}(Z)(a Z) \\
& =\sigma_{(6.17) k} \sum_{, \kappa} \frac{(-1)^{k} C_{K}(S)}{(a+p)_{\kappa} k!C_{K}(I)} \Gamma_{m}(a+p, \kappa) \operatorname{det}(W-I)^{-a-p} C_{K}\left((W-I)^{-1}\right) \\
& =\Gamma_{m}(a+p) \operatorname{det}(W-I)^{-a-p_{o} F_{O}^{(m)}\left(S,(I-W)^{-1}\right) .}
\end{aligned}
$$

Since $I-W=\left(W^{-1}-I\right) W$, both sides are equal. Q.E.D.
Now the generalisation of (6.9).
THEOREM 6.3
For $\mathrm{S}>0, \mathrm{Z}>0, \mathrm{a}>-1$
$\sum_{k, \kappa} \frac{L_{\kappa}^{a}(S) L_{k}^{a}(Z)}{(a+p) \kappa!C_{k}(\bar{I})} t^{k}$

$$
\begin{aligned}
& \quad=(1-t)^{-m(a+p)} \operatorname{etr}\left(-\frac{t}{1-t}(S+Z)\right)_{0} F_{1}^{(m)}\left(a+p ; \frac{t}{\left.(1-t)^{2} S, 2\right)(6.20)}\right. \\
& (x \rightarrow S, y \rightarrow Z, Z \rightarrow t) \quad|t|<1 .
\end{aligned}
$$

Proof

Apply (6.16) to both sides. The left hand side becomes

$$
\begin{aligned}
& \sum_{k, k} \frac{L_{k}^{a}(S) t^{k}}{(a+p)_{k} k!C_{K}(I)} \int_{Z>0} \operatorname{etr}(-Z W) \operatorname{det} Z^{a} L_{k}^{a}(Z)(d Z)
\end{aligned}
$$

$$
\begin{aligned}
& =\Gamma_{\mathrm{m}}(\mathrm{a}+\mathrm{p}) \text { dep } W^{a-p} \sum_{k, \kappa} \frac{L_{K}^{a}(S) C_{k}\left(t\left(I-W^{-1}\right)\right)}{k!C_{K}(I)} \\
& (6.13)=\Gamma_{\mathrm{m}}(\mathrm{a}+\mathrm{p})\left[\operatorname{det} W\left(I-t\left(I-W^{-1}\right)\right)\right]^{-a-p} \\
& \int_{b(m)} \operatorname{etr}\left[\mathrm{SH}^{\prime} t\left(I-W^{-1}\right)\left(t\left(I-W^{-1}\right)-I\right)^{-1} H\right](d H)
\end{aligned}
$$

The right hand side becomes

$$
\begin{aligned}
& (1-t)^{-m(a+p)} \operatorname{etr}\left(-\frac{t}{1-t} S\right)_{K} \sum_{,} \frac{C_{\kappa}\left(\frac{t}{(1-t)^{2}} S\right)}{(a+p)_{\kappa} k!C_{K}(I)} \\
& \begin{array}{r}
\quad \int_{\text {Z>0 }} \operatorname{etr}\left(-Z\left(W+\frac{t}{1-t} I\right)\right) \operatorname{det} Z^{a} C_{K}(Z)(d Z) \\
\underset{(6.17)}{=}(1-t)^{-m(a+p)} \operatorname{etr}\left(-\frac{t}{1-t} S\right) \sum_{k, \kappa}^{\sum} \frac{C_{\kappa}\left(\frac{t}{(1-t)^{2}} S\right.}{(a+p)_{\kappa} k!C_{k}(I)}
\end{array} \\
& \Gamma_{\mathrm{m}}(\mathrm{a}+\mathrm{p}, \kappa) \operatorname{det}\left(\mathrm{W}+\frac{\mathrm{t}}{1-\mathrm{t}} \mathrm{I}\right)^{-a-\mathrm{p}} \mathrm{C}_{\kappa}\left(\left(\mathrm{W}+\frac{\mathrm{t}}{1-\mathrm{t}} \mathrm{I}\right)^{-1}\right) \\
& =\Gamma_{\mathrm{m}}(a+p) \operatorname{det}[(1-t) w+t I]^{-a-p} \\
& \int_{\mathcal{O}(\mathrm{m})} \operatorname{etr}\left(-\frac{t}{1-\bar{t}} \mathrm{~S}\right) \operatorname{etr}\left[\frac{\mathrm{t}}{(1-t)^{2}} \mathrm{SH}^{\prime}\left(W+\frac{t}{1-t} I\right)^{-1} H\right](d H) .
\end{aligned}
$$

The exponent in the integral reduces to

$$
\frac{t}{1-\mathrm{t}^{\mathrm{S}} \mathrm{SH}^{\prime}\left[-\mathrm{I}+((1-\mathrm{t}) \mathrm{W}+\mathrm{tI})^{-1}\right] \mathrm{H} .}
$$

Comparing the two sides for the terms in det we have $W\left(I-t\left(I-W^{-1}\right)\right)=(1-t) W+t I$. Finally we must show that

$$
t\left(I-W^{-1}\right)\left(t\left(I-W^{-1}\right)-I\right)^{-1}=\frac{t}{1-t}\left[((1-t) W+t I)^{-1}-I\right]
$$

Taking the right hand side gives

$$
\begin{aligned}
& \frac{t}{1-t}(W-t(W-I))^{-1}[I-(1-t) W-t I] \\
= & t\left(I-t\left(I-W^{-1}\right)\right)^{-1}\left(W^{-1}-I\right) \cdot \quad Q \cdot E \cdot D \cdot
\end{aligned}
$$

6.4 The non-central monents of the likelihood ratio statistic

The non-central moments of the generalised variance det(XX') were given in [12] as
$\mathbb{E}\left[\operatorname{det}\left(X X^{\prime}\right)^{k}\right]=2^{k m} \frac{\Gamma_{m}\left(k+\frac{1}{2} s\right)}{\Gamma_{m}\left(\frac{1}{2} s\right)} \operatorname{det} \Sigma^{k}{ }_{1} F_{1}^{(m)}\left(-k ; \frac{1}{2} s ;-\frac{1}{2} \Omega\right)$
where $X X I^{\prime} m \times m$ has the non-central Wishart on s degrees of freedom and noncentrality $\Omega=\operatorname{diag}\left(\omega_{1}\right)$ and the ω_{1} the latent roots fron $\operatorname{det}\left(M^{\prime}-\omega \Sigma\right)=0$. If $X X X^{\prime}$ is as above and $Y Y^{\prime} m \times m$ is a central Wishart on t degrees of freedom then the non-central moments of the likelihood ratio statistic have been given in [7] as
$E\left[\left(\frac{\operatorname{det} Y Y^{\prime}}{\operatorname{det}\left(X X X^{\prime}+Y Y^{\prime}\right)}\right)^{\mathrm{k}}\right]=$

$$
\begin{equation*}
=\frac{\Gamma_{\mathrm{m}}\left(k+\frac{1}{2} t\right) \Gamma_{\mathrm{m}}\left(\frac{1}{2}(s+t)\right)}{\Gamma_{\mathrm{m}}\left(\frac{1}{2} t\right) \Gamma_{\mathrm{m}}\left(k+\frac{1}{2}(s+t)\right)}{ }_{1} F_{1}^{(\mathrm{m})}\left(k ; k+\frac{1}{2}(s+t) ;-\frac{1}{2} \Omega\right) . \tag{6.22}
\end{equation*}
$$

A classical formula for the ${ }_{1} F_{1}$ in Laguerre polynomials is given by RAINVILLE [29] as

$$
\begin{equation*}
(1-t)^{-c}{ }_{1} F_{1}\left(c ; 1+a ; \frac{x t}{t-1}\right)=\sum_{n=0}^{\infty} \frac{(c)_{n} L_{n}^{a}(x) t^{n}}{(1+a)^{n} n!} . \tag{5.23}
\end{equation*}
$$

This generalises to a formula given by JAMES [21] equation (138).

THEOREM 6.4

$$
\begin{gathered}
\operatorname{det}(I-Z)^{-c}{ }_{1} F_{1}^{(m)}\left(c ; a+p ; S, Z(Z-I)^{-1}\right) \\
=\sum_{K, K} \frac{(c)_{K} L_{K}^{\frac{a}{k}}(\mathrm{~S}) C_{K}(Z)}{(\mathrm{a}+\mathrm{p})_{K} \mathrm{k!}} \frac{\mathrm{C}_{K}(I)}{(I)}
\end{gathered}
$$

$$
(t \rightarrow z, x \rightarrow s)
$$

Proof

The proof follows by applying the Laplace transform to S. Rearrangements required are the same as those of
[8] Theorem 1. Q.E.D.
Using the trick (1.17) gives $S=I, Z(Z-I)^{-1}=-\frac{1}{2} \Omega$, and $Z=\Omega(\Omega+2 I)^{-1}$. No attempt is made to evaluate (6.21) and (6.2.2) numerically.

CHAPTER 7

CALCULATION OF ZONAL POLYNOMIALS AND $\binom{\kappa}{\nu}$

7.1 Introduction

Recently JAMES [24] developed an expansion of zonal polynomials in terms of the monoinial symmetric functions $M_{K}(S)$ (defined by (7.1)). Sections 2 and 3 deal with the nume rical calculation of the Bessel functions using the zonal series. In section 3 an algorithm for the recursive evaluation of the $M_{K}(S)$ is stated and proved.

Also, as stated in Chapter 6, in order to proceed with the evaluation of the $L_{k}^{a}(S)$ a method for calculating the $\binom{\kappa}{v}$ to any order is needed. In section 4 a formula for them, in terms of the product coefficients $g_{\nu \mu}^{\kappa}$ (defined by (7.21)), is presented. Of course it then follows that we need to determine the $g_{\nu \mu}^{\kappa}$ and a method using the monomial symmetric function expansion is given in the following section. Finally section 6 contains some summation identities for the $g_{v \mu}^{\kappa}$ and $\binom{\kappa}{v}$ which could prove fruitful if studied further.
7.2 The $Z_{K}(\cdot)$ in terms of the $M_{K}(\cdot)$

The fundamental units of the theory are the zonal polynomials $Z_{\kappa}(S)$. As yet there is no known direct formula for them. JANES [24] found a partial differential equation satisfied by the $Z_{\kappa}(S)$ and showed how to use this
P.D.E to find expansions of the zonal polynomials in terms of the monomial symmetric functions (mst's) $M_{\mathcal{K}}(\mathrm{s})$.

First the definition of $M_{K}(S)$. As usual S is an $m \times m$ symmetric matrix with latent roots $s_{1}, s_{2} \ldots s_{m}$. Let $\kappa=\left(k_{1} k_{2} \ldots k_{r}\right)=\left(1^{\pi_{1}} 2^{\pi_{2}} \ldots i_{1}^{\pi_{1}} \ldots\right) r \leqslant m$. Then
$M_{k}(S)=\sum_{1, j \ldots u} s_{1} k_{1} s_{j} k_{2} \ldots s_{u}{ }^{k_{r}} \quad$ i,j... $u=1,2, \ldots m \quad(7.1)$ where the summation is over all distinct i,j...u for which each distinct term appears once only. The number of terms in the sum is

$$
\begin{equation*}
\frac{[\mathrm{m}]_{\mathrm{r}}}{\pi_{1}!\pi_{2}!\cdots \cdot \pi_{1}!\cdots} \tag{7.2}
\end{equation*}
$$

where

$$
[m]_{r}=m(m-1) \ldots(m-r+1)\left([m]_{r}=(-1)^{r}(-m)_{r}\right)
$$

$$
\text { I'he F.D.E. for } Z_{k}(S) \text { is }
$$

$$
\sum_{i=1}^{m} s_{1}^{2} \frac{\partial^{2}}{\partial s_{1}^{2}} z_{k}(s)+\sum_{1 \neq j}^{m} \frac{s_{1}^{2}}{s_{1}-s_{j}} \frac{\partial}{\partial s_{1}} z_{k}(s)-\sum_{i=1}^{m} k_{1}\left(k_{1}+m-i-1\right) z_{k}(s)=0
$$

where κ is a partition with at most m nonzero parts.
in task here was to write a computer programme using the recurrence relations derived from (7.3) to find the coefficient $c_{\kappa \tau}$ of the expansion

$$
\begin{equation*}
Z_{K}(S)=\sum_{\tau \leqslant \kappa} \mathrm{a}_{K} \tau \mathrm{Mi}_{\tau}(\mathrm{S}) \tag{7.4}
\end{equation*}
$$

where k, τ are partitions of k and the ordering is defined in section 1.4. I found it feasible to compute all values of $c_{\kappa \tau}$ for $k \leqslant 13$.

The formula for the leading coefficient is ($k_{r_{+1}}=0$)

$$
c_{\kappa \kappa}=2^{k} \prod_{\ell=1}^{r} \prod_{1=1}^{\ell}\left(\frac{1}{2} \ell-\frac{1}{2}(i-1)+k_{1}-k_{\ell}\right)_{k_{\ell}-k_{\ell+1}}
$$

and the recurrence relation is

$$
\begin{equation*}
c_{\kappa \tau}=\sum_{\tau<\mu \leqslant \kappa} \frac{\left[\left(\ell_{1}+t\right)-\left(\ell_{j}-t\right)\right] c_{\kappa \mu}}{\rho_{\kappa}-\rho_{\tau}} \tag{7.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{\tau}=\sum_{i=1}^{s} \ell_{i}\left(\ell_{1}-1\right) \quad \tau=\left(\ell_{1} \ldots \ell_{s}\right) \tag{7.7}
\end{equation*}
$$

and $\mu=\left(\ell_{1} \ldots \ell_{1}+t_{\ldots} \ldots \ell_{j}-t_{\ldots}\right)$ for $t=1,2, \ldots \ell_{j}$ such that when the elements of μ are arranged in descending order the inequality $\tau<\mu \leqslant \kappa$ is satisfied. Tables for $k=6,7$ (Table 7.1) and $k=8$ (Table 7.2) are given. A table for $k=9$ would have 31 rows and columns with some of the entries having 9 digits. This would most certainly require at least two pages and seems to me to be too vast to cope with by hand anyway.

The tables in [24] are for $k=1, \ldots 5$ and do not go far enough to reveal a very interesting point. For $k=6$ there are two zero entries in the table. These zeros are easily explained. For example

$$
Z_{\left(41^{2}\right)}(S)=270 M_{\left(41^{2}\right)}(S)+0 M_{\left(3^{2}\right)}(S)+\cdots
$$

Note that in the lexicographic ordering a partition of 2 parts follows one of 3 parts. If S has 2 non-zero latent roots then clearly $\mathbb{M}_{\left(41^{2}\right)}^{(S)}=0$ and by the ory $Z_{\left(41^{2}\right)}(S)=0$ but $M_{\left(3^{2}\right)}(S) \neq 0$ hence its coefficient must

$$
\begin{aligned}
& \text { 三 }
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\underset{\sim}{i}} \underset{\sim}{\underset{\sim}{x}} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{x} \underset{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ヨ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Э } \underset{\sim}{n} \stackrel{\circ}{\square} \stackrel{a}{\sim} \stackrel{\circ}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ज } \\
& \therefore \stackrel{n}{3}
\end{aligned}
$$

$\stackrel{6}{n}$
*

$$
\begin{aligned}
& -\stackrel{\substack{m \\
\stackrel{y}{m} \\
\sim}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
2111111 \\
11111111
\end{array} \\
& 11111111
\end{aligned}
$$

By a generalisation of the above it is easy to prove LEMMA 7.1

If partition κ of r parts is followed in the lexicographic list by a partition τ of less than r parts, then $c_{\kappa \tau}=0$.
7.3 Zonal series and evaluating the $M_{K}(S)$.

The Bessel functions have the zonal series definiLions

$$
\begin{align*}
{ }_{o} F_{1}(c ; R) & =\sum_{k, \kappa} \frac{C_{\kappa}(R)}{(c)_{k} k!} \\
{ }_{o F_{1}}^{(m)}(c ; R, S) & =\sum_{k, k}{ }^{(m)} \frac{C_{k}(R) C_{\kappa}(S)}{c)_{k} C_{k}(I) k!}
\end{align*}
$$

where
and

$$
C_{\kappa}(S)=c(\kappa) Z_{\kappa}(S)
$$

$$
c(\kappa)=\frac{\chi_{[2 \kappa]}(1)}{1 \cdot 3 \ldots(2 \mathrm{k}-1)} \quad . \quad \text { The character }
$$

$\chi_{[2 \kappa]}(1)$ is easily calculated using a modified form of the expression given by JAiME [22] for $C_{K}(I)$. Its consideralion is left to Appendix 3. From (7.4) it is clear that with $c_{\kappa \tau}$ known everything depends on the evaluation of the $\mathrm{M}_{\kappa}(\mathrm{s})$ 。

Direct evaluation of (7.1) by summing over all $[\mathrm{m}]_{\mathrm{r}}$ permutations and dividing by the repetition factor $\pi_{1}!\ldots \pi_{1}!\ldots$ is a very tedious process. What is needed is an algorithm for building up a table of the $M_{K}(S)$ by expressing each psf in terms of mst's of lower degree.

The clue is given by VAN DER WAERDEN [32] in exercises 5,6 on page 82.

Quoting directly with $(m)=\sum_{1=1}^{n} x_{1}^{m}$
"5. Let

$$
\left(k_{1} \ldots k_{h}\right)=\Sigma x_{1} k_{x_{1}}{ }_{2}^{k_{2}} \ldots x_{h}^{k_{h}}
$$

with the summation performed on all distinct permuted terms which may be obtained if we take the order of the subscripts different from 1,2,...h. Prove that

$$
\begin{align*}
\left(k_{1} \ldots k_{h}\right)(m) & =c_{1}\left(k_{1}+m, k_{2} \ldots k_{h}\right)+c_{2}\left(k_{1}, k_{2}+m, \ldots k_{h}\right)+\ldots \\
& +c_{h}\left(k_{1}, k_{2} \ldots k_{h}+m\right)+c_{0}\left(k_{1} \ldots k_{h}, m\right) \tag{7.10}
\end{align*}
$$

where the coefficients $c_{1}(i=1, \ldots . h)$ and c_{0} indicate how many of the integers in the symbols to which the y belong are equal to $k_{1}+m$ and to m, respectively.
6. Solve the formula found in Ex. 5 for ($k_{1} \ldots k_{h}, m$)..." The equation (7.10) is not strictly correct but a corrected version is given by (7.11). Let $K=\left(k_{1} \ldots k_{r}\right)=\left(1^{\pi_{1}} \ldots i^{\pi_{1}} \ldots\right)$ and also let $\left(k_{1} \ldots k_{r}\right)$ indicate the msf of m variables associated with the partition K. Abbreviate
r part msf $\equiv \mathrm{msf}$ associated with r part partition. The one part msf or power sum r_{t} can be written $M_{(t)}$ or just (t).

Considering the product of M_{K} and $r_{t},(7.10)$ is replaced by

THEOREM 7.1

$$
\begin{align*}
\left(k_{1} \ldots k_{r}\right)(t)= & c_{1}\left(k_{1}+t, k_{2} \ldots k_{r}\right)+c_{2}\left(k_{1}, k_{2}+t, \ldots k_{r}\right)+ \\
& +c_{q}\left(k_{1} \ldots k_{q}+t \ldots k_{r}\right)+\ldots \\
& +c_{r}\left(k_{1} \ldots k_{r}+t\right)+c_{0}\left(k_{1} \ldots k_{r}, t\right) \tag{7.11}
\end{align*}
$$

where

$$
\begin{array}{ll}
c_{q}=\frac{\pi_{1}+1}{\pi_{j}} & \begin{array}{l}
k_{q}=j \\
k_{q}+t=1 \\
c_{0}=\pi_{1}+1
\end{array} \\
t=i
\end{array}
$$

REMARKS
In particular

$$
\begin{array}{ll}
c_{1}=\frac{1}{\pi_{j}} & k_{1}=j \\
& k_{1}+t=i \quad \text { and } \quad \pi_{i}=0
\end{array}
$$

The terms on the right hand side of (7.11) are not necessarily distinct. When like terms are collected together all resulting coefficients are integers. As a numerical example $(2211)(1)=\frac{1}{2}(3211)+\frac{1}{2}(2311)+\frac{3}{2}(2221)+\frac{3}{2}(2212)+3(22111)$

$$
=(3211)+3(2221)+3(22111) .
$$

The table building algorithm is given by COROLLARY

$$
\begin{align*}
& \text { A rearrangement of }(7.11) \text { gives } \\
& \left(k_{1} \ldots k_{r}, t\right)=\frac{1}{c_{0}}\left\{\left(k_{1} \ldots k_{r}\right)(t)-c_{1}\left(k_{1}+t \ldots k_{r}\right)-\ldots\right. \\
& \tag{7.12}
\end{align*}
$$

REMARKS
This says that any $\mathrm{r}+1$ part mf can be expressed in terms of r part $m s f^{\prime} s$ and a power sum. The power
sums are easily calculated. For the 2 part msfis

$$
(k)(t)=(k+t)+c_{0}(k, t)
$$

where

$$
c_{0}=\begin{array}{ll}
1 & k \neq t \\
2 & k=t
\end{array}
$$

and hence

$$
(k, t)=\frac{1}{c_{0}}\{(k)(t)-(k+t)\} .
$$

Similarly we can calculate all required $r+1$ part $\mathrm{msf}^{\prime} \mathrm{s}$ When the appropriate r part ones are known.

Note that if $k_{1}=k_{1+1}$ the two msf's $\left(k_{1}, \ldots k_{1}+t, k_{i+1} \ldots k_{r}\right)$ and ($\left.k_{1} \ldots k_{1}, k_{1+1}+t, \ldots k_{r}\right)$ are eqüai but are treated separately in (7.12) as in (7.11). This seems naive for hand me thods but for computing purposes the "dumb" way is often the best way to make sure that all cases are considered. By hand it would be only necessary to determine the distinct $\mathrm{msf}^{\prime} \mathrm{s}$ and multiply by the coefficients $\pi_{1}+1$.

$$
\text { The final step is to verify }(7.11) \text {. }
$$

Proof
Let $\left(k_{1} k_{2} \ldots k_{r}\right)$ be a msf in the indeteriminates $\mathrm{s}_{1}, \mathrm{~s}_{\mathrm{g}} \ldots \mathrm{s}_{\mathrm{m}}$.

Then

$$
\begin{equation*}
\left(k_{1} k_{2} \ldots k_{r}\right)(t)=\left\{\Sigma s_{u}^{k_{1}} \ldots s_{v}^{k_{q}} \ldots s_{w}^{k_{r}}\right\}\left\{\sum_{v=1}^{m} s_{v}^{t}\right\}_{0} \tag{7.13}
\end{equation*}
$$

Perform the product on the right hand side. Now the numbere of terms in which $s_{v} k_{q}+t$ occurs, with $k_{q}=j$, is

$$
\begin{equation*}
\frac{[m-1]_{r-1}}{\pi_{1}!\ldots\left(\pi_{j}-1\right)!\ldots} \tag{7.14}
\end{equation*}
$$

However the indeterminate $s_{\mathbf{v}}$ can be associated with k_{q} in only $1 / \pi_{j}$ of these terms as s_{v} must also be associated equally as often with the $\pi_{j}-1$ other parts also equal to j • Since v may take m possible values the total number of terms of the form $s_{u}{ }^{k_{1}} \ldots s_{v}{ }^{k_{q}+t} \ldots s_{w}{ }^{k_{r}}$ is

$$
\begin{equation*}
\frac{m}{\pi_{j}} \frac{[m-1]_{r-1}}{\pi_{1}!\cdots\left(\pi_{j}-1\right)!\ldots} \tag{7.15}
\end{equation*}
$$

Let $\left(k_{1} \ldots k_{q}+t \ldots k_{r}\right)=\left(1^{\pi_{1}} \ldots j^{\pi_{j}-1} \ldots i^{\pi_{1}+1} \ldots\right)$.
Then the number of terns in its associated nsf is

$$
\begin{equation*}
\frac{[\mathrm{m}]_{\mathrm{r}}}{\pi_{1}!\ldots\left(\pi_{j}-1\right)!\ldots\left(\pi_{1}+1\right)!\ldots} \tag{7.16}
\end{equation*}
$$

and

$$
c_{q}=\frac{(7.15)}{(7.16)}=\frac{\pi_{1}+1}{\pi_{j}}
$$

The term $s_{u}{ }^{k_{1}} \ldots s_{v}{ }^{k_{r}} s_{w}{ }^{t}$ occurs in

$$
\begin{equation*}
\frac{m[m-1]_{r}}{\pi_{1}!\cdots \pi_{1}!\ldots} \tag{7.18}
\end{equation*}
$$

ways, while if $\left(k_{1} \ldots k_{r}, t\right)=\left(1^{\pi_{1}} \ldots i^{\pi_{1}+1} \ldots\right)$ this has

$$
\begin{equation*}
\frac{[\mathrm{m}]_{\mathrm{r}+1}}{\pi_{1}!\cdots\left(\pi_{1}+1\right)!\cdots} \tag{7.19}
\end{equation*}
$$

terms and

$$
c_{0}=\frac{(7 \cdot 18)}{(7 \cdot 19)}=\pi_{1}+1 .
$$

7.4 The formula for $\binom{\kappa}{\nu}$

The "binomial" coefficients $\binom{\kappa}{\nu}$ are defined by (6.12) while the $g_{v \mu}^{k}$ are given by

$$
\begin{equation*}
C_{v}(\mathrm{~S}) \mathrm{C}_{\mu}(\mathrm{S})=\sum_{\kappa} \mathrm{g}^{\kappa}{ }_{\mu} \mathrm{C}_{\kappa}(\mathrm{S}) \tag{7.21}
\end{equation*}
$$

where k is a partition of $k=r+s$
ν is a partition of r
μ is a partition of s.
μ is a partition of s_{\bullet}
The relationship between $\binom{\kappa}{\nu}$ and $g_{\nu \mu}^{\kappa}$ is given by the THEOREM 7.2

If k, r, s, k, ν, μ are as defined above, then

$$
\begin{equation*}
\binom{\kappa}{v}=\binom{\mathrm{k}}{\mathrm{~s}} \sum_{\mu} \mathrm{g}_{v \mu}^{\kappa} . \tag{7.22}
\end{equation*}
$$

The proof will follow from an easily established identity

LEMMA 7.2

$$
\begin{equation*}
{ }_{0} F_{o}^{(m)}(I+A, B)=\operatorname{etr}(B)_{o} F_{0}^{(m)}(A, B) \tag{7.23}
\end{equation*}
$$

Proof
From the integral definition the left hand side of (7.23) is

$$
\begin{aligned}
{ }_{o F} O^{(\mathrm{m})}(I+A, B) & =\int_{O(m)} \operatorname{etr}\left[(I+A) H^{\prime} B H\right](\mathrm{d} H) \\
& =\operatorname{etr}(B) \int_{O(m)} \operatorname{etr}\left(A H^{\prime} B H\right)(d H) \quad \text { Q.E.D. }
\end{aligned}
$$

Proof (THEOREM 7.2)

Writing the hypergeometric functions of (7.23) in zonal series

$$
\sum_{k, k} \frac{C_{k}(I+A) C_{k}(B)}{k!C_{k}(I)}=\left\{\sum_{s, \mu} \frac{C_{\mu}(B)}{s!}\right\}\left\{\sum_{r, v} \frac{C_{v}(A) C_{\nu}(B)}{r!C_{v}(I)}\right\} \cdot \text { (7.24) }
$$

Since all three zonal series converge everywhere in $A, B>0$ we can take the Cauchy product of the right hand side to give

$$
\sum_{k=0}^{\infty} \sum_{r+s=k} \frac{1}{r!s!} \sum_{v, \mu} \frac{\mathrm{C}_{v}(\mathrm{~A})}{\mathrm{C}_{v}(\mathrm{I})} \mathrm{C}_{\nu}(\mathrm{B}) \mathrm{C}_{\mu}(\mathrm{B})
$$

$\underset{(7.21)}{=} \sum_{k} \sum_{r+s=k} \frac{1}{r!s!} \sum_{v, \mu} \frac{C_{\nu}(A)}{C_{v}(I)} \sum_{\kappa} g_{\nu \mu}^{\kappa} C_{\kappa}(B)$.
Rearranging gives

$$
\sum_{k, \kappa} \frac{C_{k}(B)}{k!} \sum_{r+s=k} \sum_{\nu} \frac{C_{\nu}(A)}{C_{\nu}(I)}\binom{k}{s} \sum_{\mu} g_{\nu \mu *}^{\kappa}
$$

Equating coefficients of $C_{K}(B) / k$! for this and the left hand side of (7.24) gives

$$
\begin{equation*}
\frac{C_{K}(I+A)}{C_{K}(I)}=\sum_{r=0}^{k} \sum_{\nu} \frac{C_{\nu}(A)}{C_{\nu}(I)}\binom{k}{s} \sum_{\mu} g_{\nu \mu}^{k} . \tag{7.25}
\end{equation*}
$$

The defining relation is

$$
\frac{C_{\kappa}(I+A)}{C_{k}(I)}=\sum_{r=0}^{k} \sum_{v} \frac{C_{v}(A)}{C_{v}(I)}\binom{\kappa}{v}
$$

and the comparison of this with (7.25) gives (7.22) . Q.E.D. If we put $A=a I$ in the defining relation the result is

$$
(1+a)^{k}=\sum_{r=0}^{k} a^{r} \sum_{v}\binom{k}{v} \text { for each } K
$$

and comparison with the binomial expansion of $(1+a)^{k}$ gives LEMMA 7.3

$$
\begin{equation*}
\binom{k}{r}=\sum_{v}\binom{\kappa}{\nu} \text { for all partitions } \kappa \text { of } k \tag{7.26}
\end{equation*}
$$

This shovis the connection between the "binomial" coefficients $\binom{\kappa}{v}$ and the true binomial coefficients $\binom{k}{r}$.

A computer program was written to determine the $\binom{\kappa}{\nu}$ for $k=1,2 \ldots . .9$. The values obtained are in decimal form. The values $\mathrm{k}=1,2,3,4$ have been given by CONSTANTINE [8] as fractions. The tables for $k=5,6$ (see TABLES 7.3, 7.4) were obtained by printing out the values to 8 decimal places and converting these manually to fractions. It will be shown later on that the $g_{v \mu}^{k}$ are rational and this implies that the $\binom{\kappa}{\nu}$ are too. The programming is discussed in Appendix 4 -
7.5 The $\mathrm{g}_{\mathrm{k} \mu}^{\kappa}$ and products of monomial symmetric functions. THEOREM 7.2 gives the relationship between $\binom{\kappa}{\nu}$ and $g_{\nu \mu}^{\kappa}$, but from a practical viewpoint this result is useless unless the $g_{v \mu}^{k}$ are known. In this section is presented an algorithm for generating them. This method has been programmed for a computer evaluation of the $g_{v \mu}^{\kappa}$ and hence the $\binom{\kappa}{\nu}$ for κ a partition of k and $k=1,2, \ldots 9$. Details are in Appendix 4.

Let $\kappa, \tau, \delta, \varepsilon$ be partitions of $k=r+t$ $\alpha, v \quad$ be partitions of r β, μ be partitions of t.

$k=5$

TABLE 7.3 The $\binom{k}{v}$
κ

(0)	1	1	1	1	1	1	1	1	1	1	1
(1)	6	6	6	6	6	6	5	6	6	6	5
(2)	15	$3 / 13$	9	3	8	$19 / 3$	5	5	4	$7 / 3$	\cdot
(12)	\cdot	$11 / 3$	6	7	7	$26 / 3$	10	10	11	$38 / 3$	15

$\left(1^{3}\right)$	\cdot	\cdot	\cdot	$5 / 2$	\cdot	$10 / 3$	7	5	8
$(1+)$	15	$39 / 7$	$148 / 35$	$9 / 7$	\cdot	\cdot	\cdot	\cdot	\cdot
(31)	\cdot	$66 / 7$	$66 / 7$	$61 / 7$	8	$11 / 13$	4	\cdot	\cdot
$\left(2^{2}\right)$	\cdot	\cdot	$21 / 5$	\cdot	7	$11 / 3$	\cdot	5	$5 / 2$

$\left(21^{2}\right)$	\cdot	\cdot	\cdot	5	\cdot	$20 / 3$	$46 / 5$	10	$52 / 5$	$1+2 / 5$
$\left(1^{4}\right)$	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	$9 / 5$		\cdot	$21 / 10$
	$33 / 5$	15								

(5) $6 \quad 10 / 9$

(41)	-	44/9	12/5	9/4	-	-	-	-	-	-	.
(32)	-	-	18/5	-	6	14,/9	-	-	-	-	-
(312)	-	-	-	15/1+	-	20/9	24/7	-	-	-	-
($2^{2} 1$)	-	-	-	-	-	20/9	-	6	3	-	
(21^{3})	-	-	-	-	-	-	18/7	-	3	14/3	
(15)	.	-	-	-	-	-	-	-	-	$4!3$	6

(6) 1
(51) • 1
(42) • • 1
$\left(41^{2}\right) \cdot \quad \cdot \quad 1$
(3)
(32.1)
(81^{2})
(2, ${ }^{3}$)
($2^{2} 1^{2}$)
(2.16)
$\left(1^{6}\right)$

TABLE J.A The ($\left.\begin{array}{l}k \\ v\end{array}\right)$

Assume for convenience $r \geqslant t$. Drop the argument matrix i.e. put $\mathrm{C}_{K}=\mathrm{C}_{\kappa}(\cdot), \mathrm{M}_{K}=M_{K_{K}}(\cdot)$ as the matrix or its size does not enter into any of the following relationships. From (7.4)

$$
\begin{equation*}
\mathrm{C}_{K}=\sum_{\tau \leqslant K} \mathrm{a}_{\kappa \tau} \mathbb{M}_{\tau} \tag{7.27}
\end{equation*}
$$

Where $a_{\kappa \tau}=c(\kappa) c_{\kappa \tau}$. Now using (7.27)

$$
\begin{equation*}
\mathrm{C}_{\nu} \mathrm{C}_{\mu}=\sum_{\alpha \leqslant \nu} \sum_{\beta \leqslant \mu}^{\sum} a_{\nu \alpha} \mathrm{a}_{\mu \beta} M_{\alpha} M_{\beta} . \tag{7.28}
\end{equation*}
$$

Let $M_{\alpha}=\left(f_{1} \ldots f_{r}\right) M_{\beta}=\left(h_{1} \ldots h_{t}\right)$ and it is essential in the following that none of the parts f_{1} and h_{j} are zero. Then the psf of highest weight obtainable from the product of M_{α} and M_{β} is $M_{\tau}=\left(f_{1}+h_{1} \ldots f_{t}+h_{t} \ldots f_{r}\right)$. Let

$$
\begin{equation*}
M_{\alpha} M_{\beta}=\sum_{\delta \leqslant \tau} e_{\alpha \beta}^{\delta} M_{\delta} \tag{7.29}
\end{equation*}
$$

(analogous to (7.21) for give). Then (7.28) can be written as

$$
C_{\nu} C_{\mu}=\sum_{\alpha \leqslant \nu} \sum_{\beta \leqslant \mu} \sum_{\delta \leqslant \tau} a_{\nu \alpha} a_{\mu \beta} e_{\alpha \beta \beta}^{\delta} M_{\delta}
$$

The mst's of highest weight in C_{ν} and C_{μ} are M_{ν} and M_{μ} respectively, Let the nsf of highest weight in $M_{\nu} M_{\mu}$ be M_{K}, then if we define $e_{\alpha \beta}^{\delta}=0 \quad \tau<\delta \leqslant K$, (7.30) can be written as

$$
\begin{equation*}
C_{\nu} \quad C_{\mu}=\sum_{\delta \leqslant \kappa} d_{\nu \mu}^{\delta} M_{\delta} \tag{7.31}
\end{equation*}
$$

where

$$
a_{\nu \mu}^{\delta}=\sum_{\alpha \leqslant \nu} \sum_{\beta \leqslant \mu} a_{\nu \alpha} a_{\mu \beta} e_{\alpha \beta}^{\delta} .
$$

The defining relation for the $g_{\nu \mu}^{\mathcal{K}}$ can be written as

$$
\mathrm{C}_{\nu} \mathrm{C}_{\mu}=\sum_{\delta \leqslant \kappa} \mathrm{g}_{\nu \mu}^{\delta} \mathrm{C}_{\delta}
$$

so a sequential comparison of the coefficients in (7.31) and (7.32) will give us the $\mathrm{g}_{\nu \mu}^{\delta}$.

For example

$$
\mathrm{C}_{\kappa}=\sum_{\varepsilon \leqslant \kappa} a_{\kappa \varepsilon} M_{\varepsilon}
$$

and equating the coefficients of M_{K} gives

$$
g_{\nu \mu}^{\kappa}=\frac{d_{\nu \mu}^{\kappa}}{a_{\kappa \kappa}} .
$$

Subtract $\mathrm{g}_{v \mu}^{k} \mathrm{C}_{\kappa} \quad$ from (7.31)

$$
\begin{aligned}
& \mathrm{d}_{\nu \mu}^{\kappa} \rightarrow 0 \\
& \mathrm{a}_{\nu \mu}^{\delta} \rightarrow \mathrm{d}_{\nu \mu}^{\delta}-\mathrm{g}_{\nu \mu}^{\kappa} \mathrm{a}_{k} \delta \quad \delta<\kappa_{v}
\end{aligned}
$$

Then if τ is immediately below κ in the lexicographic list

$$
g \tau_{\mu}=\frac{\partial_{\nu \mu}^{\tau}}{\partial \tau \tau}
$$

and so on. Thus we can express the $g_{v \mu}^{k}$ in terms of the $a_{\kappa \delta}$ (known) and the $e_{\alpha \beta}^{\delta}$.

The calculation of the $e_{\alpha \beta}^{\delta}$ is quite straightforward, at least in principle. Let

$$
M_{\alpha} M_{\beta}=\left\{\Sigma s_{1} f_{1}^{f_{j}} f_{z} \ldots s_{q}^{f_{r}}\right\}\left\{\Sigma s_{u} h_{s_{v}} h_{2} \ldots s_{w}^{h_{t}}\right\}
$$

and take all possible products ie.

$$
\begin{equation*}
M_{\alpha} M_{\beta}=\sum_{\varepsilon \leqslant \tau} b_{\varepsilon} M_{\varepsilon} \tag{7.35}
\end{equation*}
$$

where the ε are not necessarily distinct partitions. Adding together all b_{ε} for the same partition will give the $e_{\alpha \beta}^{\delta}$.

What are the b_{ε} ?
THEOREM 7.3

$$
\text { Let } \begin{aligned}
\alpha & =\left(f_{1} \ldots f_{r}\right)=\left(1^{\varphi_{1}} 2^{\varphi_{2}} \ldots\right) \\
\beta & =\left(h_{1} \ldots h_{t}\right)=\left(1_{1} \psi_{1} \psi_{2} \ldots\right) \\
\varepsilon & =\left(\ell_{1} \ldots \ell_{n}\right)=\left(1^{\lambda_{1}} 2^{\lambda_{2}} \ldots\right)
\end{aligned}
$$

where M_{ε} is a possible product, then

$$
b_{\varepsilon}=\frac{\lambda_{1}!\lambda_{2}!\ldots}{\varphi_{1}!\varphi_{2}!\ldots \psi_{1}!\psi_{2}!\ldots}
$$

REMARK

> As an example
$(211)(11)_{(7.35)}^{=} \frac{1}{4}(321)+\frac{1}{4}(321)+\frac{1}{4}(312)+\frac{1}{4}(312)$

$$
+\frac{6}{4}(222)+\frac{6}{4}(222)+\frac{6}{4}(3111)+\frac{4}{4}(2211)
$$

$$
+\frac{4}{4}(2121)+\frac{6}{4}(3111)+\frac{4}{6}(2211)+\frac{4}{4}(2121)+\frac{2 L}{6}(21111)
$$

$$
=
$$

$$
(321)+3(3111)+3(222)+4(2211)+6(21111)
$$

Proof

finally a proof of (7.36) when the product term of (7.34) has the form

$$
s_{1}{ }^{f_{1}} \ldots s_{q}{ }^{f_{q}+h_{u}} \ldots s_{v}{ }^{f_{v}+h_{w}} \ldots s_{r}{ }^{f_{r}} s_{x} h_{1} \ldots s_{z} h_{t}
$$

There are two cases

1. $f_{q}=f_{v}=i$.

With $q, v, x . . . z$ fixed, the number of possible terms is

$$
\frac{[m-t]_{r-2}}{\varphi_{1}!\cdots\left(\varphi_{1}-2\right)!}=
$$

Now $s_{q} \cdot s_{v}$ can be associated with $f_{q} ; f_{v}$ in $\frac{1}{\varphi_{1}\left(\varphi_{1}=-1\right)}$

$$
\begin{equation*}
\frac{[m]_{\mathrm{t}}}{\psi_{1}!\psi_{2}!\cdots} \tag{7.37}
\end{equation*}
$$

True the total number of terms is

$$
\frac{[m]_{r+t-2}}{\varphi_{1}!\varphi_{2}!\ldots \psi_{1}!\psi_{2}!\ldots}
$$

Let $\varepsilon=\left(f_{1} \ldots f_{q}+h_{u} \ldots f_{v}+h_{w} \ldots f_{r}, h_{1} \ldots h_{t}\right)=\left(1_{1} \lambda_{1} \lambda_{2} \ldots\right)$ and the associated mf has total number of terms

$$
\begin{align*}
& \frac{[\mathrm{m}]_{r+n} t-2}{\lambda_{1}!\lambda_{2}!\cdots} \tag{7.39}\\
& \mathrm{b}_{\varepsilon}=\frac{(7.38)}{(7.39)} \text { as required. }
\end{align*}
$$

Then
2. $f_{q}=i \quad f_{v}=j$.

With $q, v, x, \ldots z$ fixed, the number of terms is

$$
\frac{[m-t]_{r}-2}{\varphi_{1}!\ldots\left(\varphi_{1}-1\right)!\cdots\left(\varphi_{j}-1\right)!\ldots}
$$

Now S_{q} can be associated with f_{q} in $\frac{1}{\varphi!}$ ways,
s_{v} can be associated with f_{v} in $\frac{1}{\varphi_{j}}$ ways,
and the number of ways $q, v, x \ldots z$ can be chosen is still given by (7.37). The rest of the proof is the same as for case 1.

In the particular case $t=1$, the formulae agree with those for c_{q} and c_{0}.

The coefficients $g_{\nu \mu}^{\kappa}$ have already been tabled for $k=1,2, \ldots 7$ by KHATRI and PILLAI [25]. Their methods were based on the expansion of the zonal polynomials in terms of the elementary symmetric functions and the power sums. The limiting factor in this approach is the comparative difficulty of expressing the zonal polynomials in terms of these functions versus their expression in msf's.
7.6 Summation identities for $\binom{\kappa}{\nu}$ and $g_{v \mu \boldsymbol{\mu}}^{\kappa}$.

This chapter is concluded with some formulae that are useful in checking that the values for $\binom{\kappa}{\nu}$ and $g_{v \mu}^{\kappa}$ are correct. One such formula (7.26) has already been given. All results are obtained by using identities similar to (7.23) and multiplying out. Coefficients of $\mathrm{C}_{\boldsymbol{\kappa}}(\mathrm{S})$ are then equated. Throughout this section $k, r, s, \kappa, \nu, \mu$ are as defined for (7.21). The matrix S is $m \times m$ positive definite.

IDENTITY 1

$$
\begin{equation*}
\operatorname{etr}[(x+y) S]=\operatorname{etr}(x S) \operatorname{etr}(y S) \tag{7.40}
\end{equation*}
$$

LEMMA 7.4

$$
\begin{equation*}
(x+y)^{k}=\sum_{r+s=k} x^{r} y^{s}\binom{k}{r}_{\nu, \mu} \sum_{\nu, \mu} g_{\nu \mu}^{k} \tag{7.41}
\end{equation*}
$$

Proof

Expand the term on the left hand side of (7.40) in a zonal series. Expand the terms on the right hand side similarly and take their Cauchy product. Equate the coefficrents of $C_{\kappa}(S) / k!$. Q.E.D.

COROLLARY 1

$$
1=\sum_{\nu, \mu} g_{\nu \mu}^{\mathcal{K}} \quad \text { for } r, s \text { fixed. }
$$

Proof

$$
\begin{gathered}
\text { Set } y=1 \text { in (7.41). } \\
(1+x)^{k}=\sum_{r=0}^{k}\binom{k}{r} x^{r}=\sum_{r=0}^{k}\binom{k}{r} x^{r} \sum_{v, \mu} g_{v \nu \mu}^{\kappa} \text {. Q.E.D. }
\end{gathered}
$$

COROLLARY 2

$$
\begin{equation*}
2^{k}=\sum_{r+s=k}\binom{k}{r}_{v, \mu} g_{v \mu}^{k} \tag{7.43}
\end{equation*}
$$

Proof
Set $x=y=1$ in (7.41). Q.E.D.
Many other formulae can be easily established. These are perhaps mainly useful for checking the tables of $g_{\nu \mu}^{k}$.

IDENTITY 2

$$
\begin{equation*}
\operatorname{det}(I-S)^{-a-b}=\operatorname{det}(I-S)^{-a} \operatorname{det}(I-S)^{-b} \tag{4}
\end{equation*}
$$

$$
\mathrm{a}, \mathrm{~b} \text { real }
$$

or in hypergeometric function notation

$$
\begin{equation*}
{ }_{1} F_{0}(a+b ; S)={ }_{1} F_{0}(a ; S)_{1} F_{0}(b ; s) \tag{7.45}
\end{equation*}
$$

LEMMA 7.5

$$
\begin{equation*}
\left.(\mathrm{a}+\mathrm{b})_{\kappa}=\sum_{r+s=k}\binom{\mathrm{k}}{\mathrm{r}}_{\nu, \mu} \sum_{, ~(\mathrm{a}}^{2}\right)_{\nu}(\mathrm{b})_{\mu} \mathrm{g}_{v \mu}^{k} \text { 。 } \tag{7.46}
\end{equation*}
$$

Proof

Expand both sides of (7.45) in zonal series, perform the Cauchy product and equate coefficients. Q.E.D.

For fixed k, various values of a and b may be chosen to generate a set of simultaneous linear equations for the $g_{\nu \mu}^{k}$. All coefficients can be chosen as rational by taking a, b rational. Thus the $g_{v \mu}^{k}$ are rational. IDENTITY 3

JAMES [21] lists the KUMMER relation (equation (51))

$$
\begin{equation*}
{ }_{1} F_{1}(a ; b ; s)=e \operatorname{tr}(S)_{1} F_{1}(b-a ; b ;-S) \tag{7.47}
\end{equation*}
$$

LEMMA 7.6

$$
\begin{equation*}
\frac{(a)_{k}}{(b)_{K}}=\sum_{s=0}^{k}(-1)^{s}\binom{k}{s}_{\nu, \mu} \frac{(b-a)_{\mu}}{(b)_{\mu}} g_{v \mu}^{K} \tag{7.48}
\end{equation*}
$$

Proof
Expand in zonal series, etc. Q.E.D.
COROLLARY

$$
\begin{equation*}
\frac{(a)_{K}}{(b)_{k}}=\sum_{s=0}^{k}(-1)^{s} \sum_{\mu} \frac{(b-a)_{\mu}}{(b)_{\mu}}\binom{\kappa}{\mu} . \tag{7.49}
\end{equation*}
$$

Proof
Rearrange (7.48) as

$$
\frac{(a)_{k}}{(b)_{\kappa}}=\sum_{s=0}^{k}(-1) s \sum_{\mu} \frac{(b-a)_{\mu}}{(b)_{\mu}}\binom{k}{r} \sum_{\nu} g_{\nu \mu}^{k}
$$

and apply (7.22). Q.E.D.
Both (7.48) and (7.49) could be used to give systems of simultaneous linear equations for $g_{\nu \mu}^{\kappa}$ and $\binom{\kappa}{\mu}$.

CHAPTER 8

NUMERICAL EVALUATION

8.1 Introduction

It now remains to consider the arithmetic worth of the various formulae for the numerical calculation of the one and two argument Bessel functions. The evaluations are over three ranges, one each for small, medium and large values of the latent roots. A section is devoted to each range of values and within each section both the one and two argument functions are considered.

Each section begins with an outline of the formulae used and this is followed by the results obtained when a few specific values are input to computer programmes written to perform the evaluation.

Results are good for very small and very large values. The limited results obtained for some medium values are encouraging but inconclusive in the case of the single Laguerre expansion. Results for the double Laguerre expansion are rather discouraging. However an extensive computer evaluation programme would be needed to verify these assertions.

The value $n=10$ was used in all evaluations. 8.2 Small latent roots - zonal series

Direct summation of the zonal series is the method to be used when the latent roots are all small. Both the
one and two argument Bessel functions can be evaluated using the same computer programme by making use of the identity (1.17). That is

$$
\begin{equation*}
o F_{1}^{(m)}\left(\frac{1}{2} n ; R, S\right)=\sum_{k=0}^{\infty} \sum_{\kappa} \frac{C_{k}(R) C_{K}(S)}{\left(\frac{1}{2} n\right)_{k} k!C_{K}(I)} \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{o} F_{1}\left(\frac{1}{2} n ; R\right)={ }_{o}^{(m)}\left(\frac{1}{2} n ; R, I\right) \tag{8.2}
\end{equation*}
$$

It was decided to restrict the evaluations to the cases $m=2$ and $m=3$.

One argument matrix:

Two argument matrices:

It is clear that very good accuracy is obtainable for latent roots with values less than 1. For one argument matrix about 4 significant figure accuracy is obtainable if the leading latent root is less than about 8 while for two argument matrices, to obtain the same accuracy the leading latent root should be less than 4 (only for $n=10$).
8.3 Medium value latent roots - Laguerre series

First the single Laguerre series. Substituting for
$L_{K}^{a}(S)$ using (6.11), noting that $p=\frac{1}{2}(m+1)$ and using the scaled zonal polynomials $\mathrm{C}_{\kappa} *(\mathrm{~S})$ defined by

$$
\begin{equation*}
\mathrm{C}_{\kappa}^{*}(\mathrm{~S})=\frac{\mathrm{C}_{\kappa}(\mathrm{S})}{\mathrm{C}_{\kappa}(\mathrm{I})}=\frac{Z_{K}(\mathrm{~S})}{Z_{K}(\mathrm{I})} \tag{8.3}
\end{equation*}
$$

the equation (6.19) becomes
${ }_{o} F_{1}^{(m)}(a+p ; S, z)=$

$$
\begin{equation*}
\operatorname{etr}(Z) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \sum_{k} C_{n}(Z) \sum_{n=0}^{k}(-1)^{n} \sum_{\nu}\binom{k}{\nu} \frac{C_{\nu} *(S)}{(a+p)_{v}} . \tag{8.4}
\end{equation*}
$$

Setting $a+p=\frac{1}{2} n$, this is evaluated in the form

$$
\begin{equation*}
{ }_{o} F_{1}^{(m)}\left(\frac{1}{2} n ; S, Z\right)=\operatorname{etr}(Z) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \sum_{\kappa} C_{K}(Z) A_{k}(S) \tag{8,5}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{\kappa K}(S)=\sum_{n=0}^{k}(-1)^{n} \sum_{\nu}\binom{\kappa}{\nu} \frac{C_{\nu} *(S)}{\left(\frac{1}{2} n\right)_{\nu}} . \tag{8.6}
\end{equation*}
$$

As a test, values were chosen for which the zonal series converged to an answer after summing all terms to $\mathrm{k}=9$. For $\mathrm{n}=10$, $\mathrm{n}=2, \mathrm{~S}=\operatorname{diag}(7 \cdot 5,2 \cdot 5)$. $Z=\operatorname{diag}(5,0 \cdot 5)$ a
value of 108 (correct to 3 significant figures) was obtained. Using these values in the Laguerre series (8.5) no satisfactory results were obtained while summing to $\mathrm{k}=9$.

$$
\text { By introducing a scaling factor } c \neq 0 \text { considerable }
$$ improvement is possible. We have the identity

$$
\begin{equation*}
o F_{1}^{(m)}\left(\frac{1}{2} n ; c R, c^{-1} S\right)={ }_{o F_{1}^{(m)}\left(\frac{1}{2} n ; R, S\right)} \tag{8.7}
\end{equation*}
$$

which follows easily from the fact that

$$
\begin{equation*}
\mathrm{C}_{\kappa}(\mathrm{cR})=\mathrm{c}^{\mathrm{k}} \mathrm{C}_{\kappa}(\mathrm{R}) \tag{8.8}
\end{equation*}
$$

Thus from (8.7), (8.5) becomes

$$
\begin{align*}
o_{1} F_{1}^{(m)}\left(\frac{1}{2} n ; S, Z\right) & =o_{1}^{(m)}\left(\frac{1}{2} n ; c S, c^{-1} Z\right) \\
& =\operatorname{etr}\left(c^{-1} Z\right) \sum_{k} \frac{(-1)^{k}}{k!} \sum_{\kappa} C_{K}(Z) A_{\kappa}(c S) c^{-k} \tag{8.9}
\end{align*}
$$

and clearly from (8.6)

$$
A_{\kappa}(c S) \notin c^{k} A_{K}(S)
$$

Summing the series (8.9) using the above values and $\mathrm{c}=10$ also gave 108. This indicates that it may be possible to obtain improved convergence by a suitable choice of a scaling factor. This introduction of an extra parameter is not possible in (8.1) as

$$
\mathrm{C}_{\kappa}(\mathrm{cR}) \mathrm{C}_{\kappa}\left(\mathrm{c}^{-1} \mathrm{~S}\right)=\mathrm{C}_{\kappa}(\mathrm{R}) \mathrm{C}_{\kappa}(\mathrm{S})
$$

and the effect is lost unlike the case (8.9).
Similar results can be obtained for the one matrix case by se+ting

$$
\begin{equation*}
{ }_{o} F_{1}\left(\frac{1}{2} n ; R\right)={ }_{o} F_{1}^{(m)}\left(\frac{1}{2} n ; c R, c^{-1} I\right) . \tag{8.10}
\end{equation*}
$$

As already stated no sensible results were obtained for the double Laguerre series even with the introduction
of a scale factor. A far more extensjve study would be necessary however to verify this as well as to confirm and perhaps improve on results obtained from (8.9).
8.4 Large latent roots - asymptotic formulae

The asymptotic formula used for the one argument matrix case is, from (4.22) and (4.19)

$$
\begin{equation*}
o F_{1}\left(\frac{1}{2} n ; \frac{1}{4} X X^{\prime}\right)=\frac{k_{1} \operatorname{etr}(A)}{\prod_{1<j}\left(a_{1}+a_{j}\right)^{\frac{1}{2}} \operatorname{det} A^{\frac{1}{2}(n-m)}} G(A) \tag{8.11}
\end{equation*}
$$

where k_{1} is given in (4.22) and

$$
\begin{equation*}
G(A)=1-\Lambda_{1} \sum_{i=1}^{m} \frac{1}{a_{1}}-\Lambda_{2} \sum_{1<j} \frac{1}{a_{1}+a_{1}}+o\left(\frac{1}{a}\right) \tag{8.12}
\end{equation*}
$$

where

$$
\Lambda_{1}=\frac{1}{8}(n-3)(n-m) \quad \Lambda_{2}=\frac{1}{12}(m-2)
$$

For two argument matrices, THEOREM 2.4 gives

$$
\begin{equation*}
o_{1}^{(m)}\left(\frac{1}{2} n ; \frac{1}{\hbar} \Omega, W\right)=k_{2} \frac{\operatorname{etr}(A B)}{l_{1} \frac{1}{} c_{j} j_{j}^{\frac{1}{2}} \operatorname{det}(A B)^{\frac{1}{2}(n-m)}} G(A, B) \tag{8.13}
\end{equation*}
$$

where k_{2} is given in (2.58) and

$$
\begin{equation*}
G(A, B)=1-\Lambda_{1} \sum_{1=1}^{m} \frac{1}{a_{1} b_{1}}-2 \Lambda_{2} \sum_{1 \neq j} \frac{a_{1} b_{1}}{c_{1 j}}+O\left(\frac{1}{a^{2}}\right) \tag{8.14}
\end{equation*}
$$

A simple lower bound on the values of a_{1} for (8.11) and of a_{1}, b_{1} for (8.13) can be obtained simply. For two matrices first. Assuming the a_{1}, b_{1} are large and well spaced, we have

$$
\begin{aligned}
c_{i j} & =\left(a_{1}^{2}-a_{j}^{2}\right)\left(b_{1}^{2}-b_{j}^{2}\right) \\
& =a_{1}^{2} b_{1}^{2}\left(1-\frac{a_{j}^{2}}{a_{1}^{2}}\right)\left(1-\frac{b_{1}^{2}}{b_{1}^{2}}\right) \\
& \approx a_{1}^{2} b_{1}^{2}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{a_{1} b_{1}}{c_{1 j}} \bumpeq \frac{1}{a_{1} b_{1}} . \tag{8.15}
\end{equation*}
$$

Also since the a_{1} and b_{i} are ordered in a decreasing sequence

$$
\begin{equation*}
\frac{1}{a_{m} b_{\mathrm{m}}} \geqslant \frac{1}{a_{1} b_{1}} \quad i=1,2, \ldots m \tag{8.16}
\end{equation*}
$$

Hence since the Bessel function must be positive we would like to have

$$
\Lambda_{1} \sum_{i=1}^{m} \frac{1}{a_{1} b_{1}}+2 \Lambda_{2} \sum_{1 \neq j} \frac{a_{1} b_{1}}{c_{1 j}}<1
$$

and using (8.15) and (8.16) this becomes

$$
\frac{1}{a_{m} b_{m}}\left(\Lambda_{1} m+2 \Lambda_{2} m(m-1)\right)<1
$$

The solution is

$$
\begin{equation*}
a_{m} b_{m}>\frac{1}{8}(n-3)(n-m) m+\frac{1}{6} m(m-1)(n-2) \tag{8.17}
\end{equation*}
$$

For $m=2, n=10$ this gives

$$
a_{m} b_{m}>14, \text { i.e. } \quad a_{m}, b_{m}=4
$$

and for $m=3, n=10$

$$
a_{m} b_{m}>19, \text { i.e. } a_{m}=5, b_{m}=4 .
$$

A programme was written to calculate the first four correction terms for $G(A, B)=1-T_{1}-T_{2}+T_{3}+T_{2}$.

	a_{1}	b_{1}	T_{-1}	T_{2}	T_{3}	T_{4}
$m=2$	8,4	8,4	0.54	0	0	.09
	16,8	16,8	0.13	0	0	.005
	24,12	24,12	0.009	0	0	.0025
$m=3$	$15,10,5$	$12,8,4$	0.41	0.01	.004	.046

Thus (8.17) provides an adequate lower bound when the higher values have the form $a_{1}=(m-i+1) a_{m} \quad i=1,2, \ldots m-1$.

Also for one argument matrix we arrive at the bound

$$
\begin{equation*}
a_{m}>\frac{1}{8}(n-3)(n-m) m+\frac{1}{2 h} m(m-1)(m-2) \tag{8.18}
\end{equation*}
$$

For $m=2, n=10, a_{m}>14$ and for $m=3, n=10, a_{\pi}>19$.
Similarly writing $G(A) \simeq 1-T_{1}-T_{8}+T_{3}+T_{4}$.

	a_{1}	T_{1}	T_{2}	T_{3}	T_{4}
$m=2$	30,15	0.7	0	0.12	0.14
	60,30	0.35	0	.03	.03
$m=3$	90,30	0.31	0	.03	.02
	$60,40,20$	0.56	.003	.06	.12
	$90,60,30$	0.37	.002	.03	.05
	$120,80,40$	0.28	.001	.01	.03

Thus (8.18) also provides a lower bound on the a_{1} in the sense that if a_{m} does not satisfy it, absurd values are certain to result.

In most cases $1-T_{1}-T_{2}$ will lead to an approximation with at least 2 significant figures, however much higher values of the latent roots are necessany for the
leading terms themselves to provide an adequate approximation to the true value.
8.5 Concluding remarks

Excellent results are obtained for small and large values of the latent roots. It appears though that much work is necessary to produce conclusive results on the worth of introducing a scale factor in the single Laguerre expansion and on the double Laguerre expansion.

Another interesting possibility is that the asymptotic series of Chapter 5 may produce better results for small values of the latent roots. The removal of the term etr(2S) may well yield more rapid convergence than the zonal series. Similarly, the Laguerre series too may very well be more rapidly convergent for certain small values of the latent roots. Certainly much theoretical and numerical work remains to be done.

APPENDIX 1

A.1.1 Calculation of the d_{k}

The coefficients d_{κ} are related to the c_{κ} by (2.20) and these can be evaluated from (2.17). From the formula of CONSTANTINE [7] equation (31)

$$
\begin{align*}
\operatorname{det}\left(I-\frac{1}{2} U\right)^{\frac{1}{2}(n-2 m-1)} & ={ }_{1} F_{0}\left(-\frac{1}{2}(n-2 m-1) ; \frac{1}{2} U\right) \tag{A.1.1}\\
& =\sum_{k},_{\kappa}\left(-\frac{1}{2}(n-2 m-1)\right)_{\kappa} \frac{C_{K}\left(\frac{1}{2} U\right)}{k!}
\end{align*}
$$

Also $\prod_{1<j}\left(1-\frac{u_{1}+u_{i}}{2}\right)$ is a symmetric function of the $u_{1}, \ldots u_{m}$. Let $a_{1} \%$ be the $i^{t h}$ elementary symmetric function of the u_{1}, then the product has the expansion

$$
\prod_{1<j}\left(1-\frac{u_{1}+u_{i}}{2}\right)=1+\gamma_{1} a_{1} * \gamma_{2} a_{2} \%+\gamma_{3} a_{1} * 2+0\left(u^{2}\right)
$$

To evaluate the γ_{1}, consider the product in an array form as

$$
\begin{array}{r}
\left(1-\frac{u_{1}+u_{2}}{2}\right)\left(1-\frac{u_{1}+u_{3}}{2}\right)\left(1-\frac{u_{1}+u_{4}}{2}\right) \cdot\left(1-\frac{u_{1}+u_{m}}{2}\right) \\
\left(1-\frac{u_{2}+u_{3}}{2}\right)\left(1-\frac{u_{2}+u_{4}}{2}\right) \cdot\left(1-\frac{u_{2}+u_{m}}{2}\right) \\
\cdots \\
\cdots \\
\left(1-\frac{u_{m-1}+u_{m}}{2}\right)
\end{array}
$$

By the symmetry it is sufficient to count the number of times a typical term occurs in order to determine the γ_{1}.

To obtain a term of degree r, choose u_{1} 's from r terms and 1 's from the remainder.

We will find the coefficients of $u_{1}, u_{1}{ }^{2}$ and $u_{1} u_{2}$. For degree 1.

Note that u_{1} occurs in terms of row 1 only and there are $m-1$ terms. The coefficient of $-\frac{1}{2} u_{1}$ is $m-1$. For degree 2.

Similarly $u_{1}{ }^{2}$ can be obtained from the terms of row 1 in $\binom{m-1}{2}$ ways.

The product $u_{1} u_{2}$ is obtained in two ways. Choose u_{2} from the leading term and u_{1} from any other term in row 1. This can be done in $m-2$ ways. Also choose u_{1} from any term in row 1 and u_{2} from any term in row 2 . This can be done in $(m-1)(m-2)$ ways: Combining, the coefficient of $\frac{1}{4} u_{1} u_{2}$ is $m(m-2)$.

To express the results in terms of the a_{1} * remember that

$$
\Sigma u_{1}{ }^{2}=a_{1} *^{2}-2 a_{2}^{*}
$$

and the expansion from the array is

$$
1-\frac{1}{2}(m-1) a_{1} *+\frac{1}{8}(m-1)(m-2) a_{1} * 2+\frac{1}{4}(m-2) a_{2} *+o\left(u^{2}\right)
$$

JAMES [21] gives tables of the zonal polynomiais in terms of the elementary symmetric functions and these can $\bar{d} \in$ solved to express the $a_{1} ;$ in terms of the $C_{K}(U)$

$$
\begin{align*}
a_{1} * * C_{(1)}(U) \quad & a_{1}^{* 2}=C_{(2)}(U)+C_{\left(1^{2}\right)}(U) \\
a_{2}^{*}= & { }^{3} C_{\left(1^{2}\right)}(U) . \tag{U}
\end{align*}
$$

Substituting in (A.1.2) and collecting terms gives

$$
\begin{aligned}
1-\frac{1}{2}(m-1) C_{(1)}(U)+ & \frac{1}{8}(m-1)(m-2) C_{(2)}(U)+ \\
& \frac{1}{16}(m-2)(2 m+1) C_{\left(1^{2}\right)}(U)+o\left(u^{2}\right) \cdot(A \cdot 1 \cdot 3)
\end{aligned}
$$

Multiplying the two series (A.1.1) and (A.1.3) and using the zonal product formula

$$
\left[C_{(1)}(U)\right]^{2}=a_{1}{ }^{2}=C_{(2)}(U)+C_{\left(1^{2}\right)}(U)
$$

we get

$$
\begin{align*}
1-\frac{1}{2}(n-3) C_{(1)}(U)+ & \frac{1}{32}(n-3)(n-5) C_{(2)}(U)+ \\
& \frac{1}{32} n(n-5) C_{\left(1^{2}\right)}(U)+o\left(u^{2}\right) .
\end{align*}
$$

As a check none of the c_{κ} coefficients depend on m.

A.1.2 The evaluation of (2.42)

There are three types of integral involved. All can be evaluated using standard bivariate normal integrals.

LEMMA A. 1.1
Let P, Q be 2×2 symmetric matrices and $\underline{s}=\left(s_{1}, s_{2}\right)^{\prime}$. Then if Q is positive definite

$$
\begin{align*}
& \int_{-\infty}^{\infty} \int_{-\infty} \exp \left(-\frac{1}{2} \underline{s}^{\prime} Q \underline{\underline{s}}\right) \mathrm{d} \underline{s}=\frac{2 \pi}{\operatorname{det} Q^{\frac{1}{2}}} \\
& \int_{-\infty}^{\infty} \int^{\prime} \underline{s}^{\prime} P \underline{s} \exp \left(-\frac{1}{2} \underline{s}^{\prime} Q \underline{s}\right) \mathrm{d}=\frac{2 \pi}{\operatorname{det} Q^{\frac{1}{2}}} \operatorname{tr}\left(Q^{-1} P\right) \\
& \int_{-\infty}^{\infty} \int^{\prime} \underline{s}^{\prime} \underline{s} \exp \left(-\frac{1}{2} \underline{s}^{\prime} Q \underline{s}\right) \mathrm{d} \underline{s}=\frac{2 \pi}{\operatorname{det} Q^{\frac{1}{2}}} \operatorname{tr}\left(Q^{-1}\right) . \tag{A.1.7}
\end{align*}
$$

((A.1.7) is of course the particular case of (A.1.6) with $P=I_{2}$)

Considering (2.42) we have

$$
c_{1 j}=\operatorname{det} Q_{1 j}=\left(a_{1}^{2}-a_{j}^{2}\right)\left(b_{1}^{2}-b_{j}^{2}\right)>0
$$

and the leading principal minor is $a_{1} b_{1}+a_{j} b_{j}>0$, hence $Q_{1 j}$ is positive definite. Thus

$$
\begin{aligned}
K(A, B) & =\prod_{1<j} \int_{-\infty}^{\infty} \int \exp \left(-\frac{1}{2} \underline{s}_{1 j}^{1} Q_{1 j} \underline{s}_{1 j}\right) d \underline{s}_{1 j} \\
& =\frac{(2 \pi)^{\frac{1}{2} m(m-1)}}{\prod_{1<j} c_{1 j}} .
\end{aligned}
$$

Also to calculate the terms required for (2.47)
$(1+\varphi(S, T ; A, B)) J(S) J(T)=\left(1-\alpha_{1}\left(\sum_{1} \alpha_{1} \beta_{1}-\frac{1}{2} \sum_{i<j} \underline{S}_{1}^{\prime} P_{1 j} \underline{S}_{1 j}+\theta\left(S^{2}\right)\right)+\ldots\right)$

$$
\begin{equation*}
\times\left(1-\frac{1}{12}(m-2) \sum_{i<j} \underline{s}_{\left.1 j \underline{S}_{1 j}+0\left(s^{2}\right)\right)}^{\prime}\right. \tag{A.1.9}
\end{equation*}
$$

where $d_{1}=\frac{1}{8}(n-3)(n-m)$. The substitution of (A.1.9) in (2.40) gives

$$
\begin{align*}
g(A, B)= & \operatorname{etr}(A B)\left\{K(A, B)-\alpha_{1} \sum \alpha_{1} \beta_{1} K(A, B)+\frac{1}{2} \alpha_{1} L_{1}(A, B)\right. \\
& \left.-\frac{1}{12}(m-2) L_{2}(A, B)+\frac{1}{12}(m-2) \alpha_{1} \sum \alpha_{1} \beta_{1} L_{2}(A, B)+\ldots\right\} \tag{A.1.10}
\end{align*}
$$

where

$$
\begin{align*}
L_{1}(A, B) & =\int_{B} \int_{j} \sum_{1<j} \underline{s}_{1 j}^{\prime} P_{1 j} \underline{s}_{1 j} \exp \left(-\frac{1}{2} \sum_{1<j} \underline{s}_{1 j}^{\prime} Q_{1 j} \underline{s}_{1 j}\right) d \underline{s}_{1 j} \tag{A.1.11}\\
(A \cdot 1.6) & \frac{(2 \pi)^{\frac{1}{2} m(m-1)}}{\prod_{1<j} c_{1 j} \frac{1}{2}} \sum_{1<j} \operatorname{tr}\left(Q_{1} j^{-1} P_{1 j}\right)
\end{align*}
$$

and

$$
\text { Now } P_{1 j}=\alpha_{1} \alpha_{j} \beta_{1} \beta_{j} Q_{1 j} \text { so } \operatorname{tr}\left(Q_{1} \bar{j}^{1} P_{1 j}\right)=2 \alpha_{1} \alpha_{j} \beta_{1} \beta_{j}
$$

and

$$
Q_{1} \bar{j}^{1}=\frac{1}{c_{1 j}}\left[\begin{array}{cc}
a_{1} b_{1}+a_{j} b_{j} & -a_{1} b_{j}-a_{j} b_{1} \\
-a_{1} b_{j}-a_{j} b_{1} & a_{1} b_{1}+a_{j} b_{j}
\end{array}\right]
$$

giving $\quad \operatorname{tr}\left(Q_{1} j^{-1}\right)=\frac{2\left(a_{1} b_{1}+a_{i} b_{1}\right)}{c_{i j}}$.
Substitution of these results in L_{1} and L_{2} and their substitution in (A.1.10) gives

To list the terms in increasing powers of $\frac{1}{a_{1} b_{1}}$ note that

$$
\frac{1}{c_{1 j}}=\frac{1}{a_{1}^{2} b_{1}^{2}\left(1-\frac{a_{1}^{2}}{a_{1}^{2}}\right)\left(1-\frac{b_{j}^{2}}{b_{1}^{2}}\right)}>\frac{1}{a_{1}^{2} b_{1}^{2}}
$$

$$
\begin{align*}
& g(A, B)=\frac{(2 \pi)^{\frac{1}{2} m(I I n-1)} \operatorname{etr}(A B)}{\prod_{1<j} c_{i j}{ }^{\frac{1}{2}}}\left\{1-\frac{1}{8}(n-3)(n-m) \sum_{i=1}^{m} \frac{1}{a_{1} b_{1}}\right. \\
& +\frac{1}{16}(n-3)(n-m) \sum_{1<j} \frac{1}{a_{1} b_{1} a_{j} b_{j}}-\frac{1}{6}(m-2) \sum_{1<j} \frac{a_{1} b_{1}+a_{j} b_{j}}{c_{1 j}} \\
& \left.+\frac{1}{k 8}(n-3)(n-m)(m-2) \sum_{k=1}^{m} \frac{1}{a_{k} b_{k}} \sum_{i<j} \frac{a_{1} b_{1}+a_{1} b_{1}}{c_{1 j}}+\cdots\right\} \text {. } \tag{A.1.13}
\end{align*}
$$

$$
\begin{aligned}
& I_{z}(A, B)=\int_{\&} \int_{j} \sum_{i<j} \underline{S}_{i j} \underline{S}_{i j} \exp \left(-\frac{1}{2} \sum_{i<j} \underline{S}_{i j} Q_{i j} \underline{S}_{i j}\right) d \underline{S}_{1 j} \\
& (A . \overline{1} .7) \frac{(2 \pi)^{\frac{1}{2} m(m-1)}}{\prod_{1<j} c_{i j} \frac{1}{2}} \sum_{1<j} \operatorname{tr}\left(Q_{1} j^{-1}\right) \text {. }
\end{aligned}
$$

Some rearrangements of terms then give the results (2.46) and (2.47).
A.1.3 Further terms of the series

Putting $R^{-1}=B^{-1} \mathrm{H}_{1}^{\prime} \mathrm{A}^{-1} \mathrm{H}_{2}^{\prime}$ the next terms of $F\left(H_{1}, H_{2} ; A, B\right)$ are $d_{(2)} C_{(2)}\left(R^{-1}\right)$ and $d_{\left(1^{2}\right)^{C}\left(1^{2}\right)}\left(R^{-1}\right)$. Expressing the zonal polynomials in terms of elementary syminetric functions gives
$\frac{1}{128}(n-3)(n-5)(n-m)(n-m+2) C(2)+\frac{1}{128} n(n-5)(n-m)(n-m-1) C\left(1^{2}\right)$
$=\frac{1}{128}(n-3)(n-5)(n-m)(n-m+2) a_{1} * 2-\frac{1}{32}(n-5)(n-m)(m-2) a_{2} \%$.

Now $a_{1} * 2$ can be found by squaring (2. $2 U_{4}$) and the second elementary symmetric function of the matrix $R^{-1}=\left(\rho_{1},\right)$ can be found by taking the sum of the 2×2 principal minors ie.

$$
\begin{aligned}
\rho_{1 j} & =\sum_{u=1}^{m} \beta_{1} h_{u 1} \alpha_{u} k_{j u} \\
a_{2} * & =\sum_{1<j}\left(\rho_{11} \rho_{j j}-\rho_{1 j} \rho_{j 1}\right) \\
& =\sum_{1<j} \sum_{u, v=1}^{m} \alpha_{u} \alpha_{v} \beta_{1} \beta_{j} h_{u 1} h_{v j}\left(k_{1 u} k_{j v}-k_{j u} k_{1 v}\right) .
\end{aligned}
$$

On substitution for the $h_{1 j}, k_{1 j}$ in terms of $s_{1 j}, t_{1 j}$ if all four indices i, j, u, v are unequal then each term is clearly $O\left(s^{4}\right)$ and will be disregarded.

Also $i=j$ is impossible and $u=v$ makes the term (...) of (A.1.15) zero. Only six combinations can possibly lead to a contribution. They are

$$
\begin{array}{lllll}
\text { 1. } i=u \quad j=v & \text { 3. } \quad i=u & \text { 5. } \quad j=u \\
\text { 2. } i=v \quad j=u & \text { 4. } & i=v & 6 . & j=v
\end{array}
$$

Substitution in (2.40) and combination with the results (A.1.13) gives

$$
\begin{aligned}
& G(A, B)=1-\frac{1}{6}(m-2) \sum_{1 \neq j} \frac{a_{1} b_{1}}{c_{1 j}}-\frac{1}{8}(n-3)(n-m) \Sigma \frac{1}{a_{1} b_{1}} \\
&+\frac{1}{48}(n-3)(n-m)(m-2)\left\{\sum_{1 \neq j} \frac{a_{1} b_{1}+a_{j} b_{j}}{a_{1} b_{1} c_{1 j}}+\sum_{1 \neq j \neq k} \frac{a_{1} b_{1}}{a_{k} b_{k} c_{1 j}}\right\} \\
&+\frac{1}{128}(n-3)(n-5)(n-m)(n-m+2) \sum \frac{1}{a_{1}^{2} b_{1}^{2}} \\
&+\frac{1}{128}(n-m)\left(n^{3}-n^{2} m+2 n^{2}+8 m^{2}-10 n m+23 n-5 m-2\right) \sum_{1 \neq j} \frac{1}{a_{1} b_{1} a_{j} b_{j}}+\cdots \\
& \quad\left(A_{1} 1 \cdot 16\right)
\end{aligned}
$$

APPENDIX 2

RAO [30] considers the case of the columns of M defining a k dimensional plane rather than $\mathrm{a} k$ dimensional subspace. He also assumes repeated sampling on each of n populations. The derivation of (3.23) that follows is a simplified version of the proof of result (8c.6.4) p 475.

First we need a LEMMA from [30]. Let A m×m symmetric have latent roots $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{m}$ and corresponding latent vectors $\mathrm{p}_{1}, \ldots \mathrm{p}_{\mathrm{m}}$.

LEMMA A.2.1 (1f.2.8)
Let $\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{k}}$ be mutually orthonormal $\mathrm{m} \times 1$ vectors. Then

$$
\sup _{x_{1}, \ldots x_{k}} \sum_{i=1}^{k} x_{1}^{\prime} A x_{i}=\sum_{i=1}^{k} \lambda_{1}
$$

and the supremum is attained when $x_{1}=p_{1}, i=1, \ldots k$.
Now the likelihood function is, apart from a constant,

$$
L(M)=\operatorname{etr}\left[-\frac{1}{2} \Sigma^{-1}(X-M)(X-M)^{\prime}\right]
$$

and the likelinood ratio is

$$
\lambda=\frac{\sup _{H_{0}} L(\mathbb{M})}{\sup _{H_{1}} L(\mathbb{M})}
$$

Asymptotically

$$
x^{2}=-2 \log \lambda=-2\left[\sup _{H_{0}} \ln L-\sup _{H_{1}} \ln L\right]
$$

and on $H_{1}, \mathbb{M}=X$ giving $\ln L=0$. Thus we must find

$$
\chi^{2}=\underset{H_{0}}{\inf } \operatorname{tr} \Sigma^{-1}(X-M)(X-M)^{\prime}
$$

Make the substitutions $Y=\Sigma^{-\frac{1}{2}} X, N=\Sigma^{-\frac{1}{2}} \mathrm{M}$ to give

$$
\begin{equation*}
\chi^{2}=\inf _{\mathrm{H}_{0}} \operatorname{tr}(\mathrm{Y}-\mathrm{N})(\mathrm{Y}-\mathrm{N})^{\prime} \tag{A.2.2}
\end{equation*}
$$

where N has rank k on H_{0}. Let $Y=\left(y_{1}, \ldots y_{n}\right)$, $N=\left(\eta_{1}, \ldots \eta_{\mathrm{n}}\right)$ then (A.2.2) becomes

$$
x^{2}=\inf _{H_{0}} \sum_{1=1}^{n}\left(y_{1}-\eta_{1}\right)^{t}\left(y_{1}-\eta_{1}\right)
$$

If $\alpha_{1}, \ldots \alpha_{k}$ form an orthonormal basis for the space spanned by the columns of N, then

$$
\eta_{1}=\sum_{j=1}^{k} \beta_{1 j} \alpha_{j}=A \beta_{1}
$$

where $A=\left(\alpha_{1} \ldots \alpha_{k}\right)$ and $\beta_{1}^{\prime}=\left(\beta_{1} \ldots \beta_{1 k}\right)$. The i th term of the sum to be minimised in (A.2.3) has the form $\left(y_{1}-A \beta_{1}\right)^{\prime}\left(y_{1}-A \beta_{1}\right)$ and for fixed $\alpha_{1}, \ldots \alpha_{k}$, this corresponds to the sum of squares to be minimised on the linear model $E\left[y_{1}\right]=A \beta_{1}$. By the usual theory, the residual sum of squares is (noting that $A^{\prime} A=I_{k}$) $y_{1}^{\prime} y_{1}-y_{1}{ }^{t} A A^{\prime} y_{1}$. Thus we have to find

$$
\min _{\alpha_{1} \ldots \alpha_{k}}\left\{\sum_{1=1}^{n} y_{1}^{\prime} y_{1}-\sum_{i=1}^{n} y_{1}^{\prime} A A^{\prime} y_{1}\right\}
$$

and since the first sum is a constant this reduces to finding

$$
\max _{\alpha_{1} \ldots \alpha_{k}} \sum_{i=1}^{n} y_{1}^{\prime} A A^{\prime} y_{1}
$$

Now

$$
\begin{aligned}
\sum_{1=1}^{n}\left(A^{\prime} Y_{1}\right)^{\prime}\left(A^{\prime} Y_{1}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{k}\left(a_{j}^{\prime} Y_{1}\right)^{\prime}\left(\alpha_{j}^{\prime} Y_{1}\right) \\
& =\sum_{j=1}^{k} \alpha_{j}\left(\left(\sum_{1=1}^{n} Y_{1} Y_{1}^{\prime}\right) \alpha_{j}\right.
\end{aligned}
$$

and by LEMMA A.2.1

$$
\begin{equation*}
\max _{\alpha_{1} \ldots \alpha_{k}} \sum_{j=1}^{k} \alpha_{j}^{\prime}\left(Y Y^{\prime}\right) \alpha_{j}=w_{1}+\ldots+w_{k} \tag{A.2.4}
\end{equation*}
$$

where the w_{1} are the latent roots of

$$
\operatorname{det}\left(Y Y^{\prime}-w I\right)=\operatorname{det}\left(\Sigma^{-\frac{1}{2}} X X^{\prime} \Sigma^{-\frac{1}{2}}-w I\right)=0
$$

Also

$$
\begin{equation*}
\sum_{1=1}^{n} y_{1}^{\prime} y_{1}=\sum_{1=1}^{n} \operatorname{tr} y_{1} y_{1}^{\prime}=\operatorname{tr} Y Y^{\prime}=w_{1}+\ldots+W_{m} . \tag{A.2.5}
\end{equation*}
$$

Combining (A.2.4) and (A.2.5) we have the result THEOREM A.2.1

$$
\begin{equation*}
\chi^{2}=\min _{H_{0}} \operatorname{tr} \Sigma^{-1}(X-M)(X-M)^{\prime}=w_{k+1}+\ldots+w_{m} \tag{A.2.6}
\end{equation*}
$$

where the w_{1} are the latent roots of $\operatorname{det}\left(X X^{\prime}-w \Sigma\right)=0$.

APPENDIX 3

CALCULATION OF THP COEFFICIENTS $c_{K 工}$

A.3.1 The programme

A FORTRAN computer program was written to perform the calculations outlined in section 7.2. The purpose was to calculate the coefficients $c_{\kappa T}$ for $k \leqslant 13$. These coefficients were written on to magnetic tape and used as input to computer programmes for summing zonal series and series of Laguerre polynomials.

A listing of the programme is given at the end of this Appendix and in the following sections important mathematical and practical features are discussed. Other features are explained by comments in the listing and by reference to the appropriate formulae.

A.3.2 The generation of partitions

It is preferable that the partitions of a given k be generated in decreasing order (section 1.4). The following algorithm is such that when given a partition it generates the one immediately below it. It is perhaps easiest understood in terms of a verbal flow chart.

Let $\kappa=\left(k_{1} \ldots k_{r}\right)$ and its successor is
$\tau=\left(\ell_{1} \ldots \ell_{s}\right) . \quad$ Both are partitions of k and all parts are non-zero. The algorithm is initialised by presetting the first partition

$$
k_{1}=k, \quad r=1
$$

1. Input the current partition $\left(k_{1}, \ldots k_{r}\right)$.
2. If $k_{1}=1$, all partitions of k have been
generated. Stop. Otherwise go to step 3.
3. If $k_{r}>1$, set $s=r+1, \ell_{u}=k_{u}, u=1, \ldots r-1$, $\ell_{r}=k_{r}-1, \ell_{r+1}=1$. This is now the new partition ready for use and storage. Afterwards return to step 1 with τ as the current partition.
4. Otherwise, find i such that $k_{1}>1, k_{1+1}=1$.
5. Set $\ell_{u}=k_{u}, u=1, \ldots i-1, \ell_{1}=k_{1}-1$.
6. The sum of the remaining $k_{u}, u=i+1, \ldots r$ is $r-i$ so find s, α such that

$$
0<\alpha=r-i+1-\ell_{1}(s-i-1) \leqslant \ell_{1}
$$

7. Set $\ell_{u}=\ell_{1}, u=i+1, \ldots s \sim 1, \ell_{s}=\alpha_{\text {. }}$ Use and store this new partition and return to step 1 with $\boldsymbol{\tau}$ as the current partition.

Relating this to the programme listing. The subroutine KAPPA generates the successor of the supplied partition while PSET initialises the list by setting $\mathrm{k}_{1}=\mathrm{k}, \mathrm{r}=1$.
A.3.3 Storage of partitions

A binary representation of the partition is generated. This minimises the storage needed to record them for later use in the program.

Consider the "Young" diagram for the partition 42^{21}.

For convenience the diagram is written vertically instead of its usual horizontal configuration. Coding 1 for a shift right and 0 for a vertical shift, the partition $42^{2} 1$ can be uniquely represented by the binary sequence 10011010. This binary sequence can then be stored in one computer word rather than using one word for each part of the partition. Incidentally the number of 1 's equals the number of parts in the partition and the number of 0 's is equal to the value of the largest part.

Another advantage of this binary representation is in improving search efficiency. The comparison of the actual partitions is not very convenient on a computer. This is replaced by a search of t he list of binary representations (of a given k or set of k 's) to see if a given binary number is on it. Thus after the partition μ is generated from $\boldsymbol{\tau}$ and the elements sorted into decreasing order, the next step is to find its binary representation. It is then a simple matter to see if $\mu \leqslant \kappa$ by comparing its binary representation with the list of binary representations of all partitions of k from κ to τ.

A call to the function IBIN generates the binary representation of the partition. The function is coded in COMPASS (the assembly language for the CDC6400) a more convenient language for this type of operation. Since all parts of a partition are non-zero the binary representation ends with at least one 0 . The actual representation genaerated by IBIN has this final 0 eliminated. A reason for doing this is given in Appendix 4.
A. 3.4 The calculation of $c(\kappa)$ and $\chi_{[2 \kappa]}(1)$

The normalising factor $c(\kappa)$, for converting Z_{κ} to C_{κ}, and the character $\chi_{[2 \kappa]}(1)$ are calculated conveniently using formulae derived from JAMES [22] equation (3.2).

Let $k=\left(k_{1}, \ldots k_{r}\right)$ be a partition of k into r non-zero parts. Then from JAMES [21] equation (21)

$$
\begin{aligned}
& c(k)=2^{k} k!\frac{\prod_{1<j}^{r}\left(2 k_{1}-2 k_{j}-i+j\right)}{\prod_{i=1}^{r}\left(2 k_{1}+r-i\right)!} \\
& (3.2) \\
& =2^{k} \prod_{1=1}^{r}\left(\prod_{j=1}^{k_{1}} \frac{A(i)}{\left(k_{j}+j\right) j} \prod_{j=1}^{r-1}\left(1-\frac{2 k_{1}+j}{2 k_{1}+j}\right)\right) \quad(A \cdot 3 \cdot 1)
\end{aligned}
$$

where $A(i)=k_{1}+\ldots+k_{1-1}, A(1)=0$ and

$$
\begin{aligned}
& \chi_{[2 k j}(1)=(2 k)!\frac{\prod_{1<j}^{r}\left(2 k_{1}-2 k_{j}-i+j\right)}{\prod_{1=1}^{r}\left(2 k_{1}+r-i\right)!} \\
&\left.\left.=\prod_{1=1}^{r} \prod_{j=1}^{k_{1}} \frac{(B(i)+2 j-1)(B(i)+2 j)^{r-1}}{\left(k_{1}+j\right) j} 1-\frac{2 k_{1}+1}{2 k_{1}+j}\right)\right) \\
&(A \cdot 3 \cdot 2)
\end{aligned}
$$

where $B(i)=2\left(k_{1}+\ldots+k_{1-1}\right), B(1)=0$.
The subroutine ZONCHAR is used to generate the coefficients $c(\kappa)$ using (A.3.1), and these are then stored on magnetic tape along with the $\mathrm{c}_{\boldsymbol{\kappa} \boldsymbol{\tau}}$. They are used in calculating the $C_{\kappa}(S)$ from the $Z_{\kappa}(S)$ when evaluating the generalised hypergeometric functions.

The formula (A.3.2) was used to write a separate computer programme to calculate the characters listed in TABLES 7.1 and 7.2.

```
    THTS PROGRAM EVALUATES THE COEFFICIENTS C(KAPPA,NU) THAT ARISE WHEN
    THF ZONAL FOLYNOMIALS Z(KAPPA) ARE EXPRESSED IN TEKMS OF THE MONOMIAL
SYMMETRIC FUNCTIONS M(NU).
THE PROGRAM ALSO GENERATES AND STORES THE PARTITIONS
KAPPA = (Kl.KZ....KR),THEIR BINARY REPRESENTATIONS AND THE CONVERSION
FACTOR FROM Z(KAPPA) TO C(KAPPA)
    PROGRAM NY(INPUT.OUTPUT.TAPEIO)
    COMMON KP(500.15).LGTH(500).CK(500).RK(500),IPOS.K.NPART
    COMMON/A/KKK(20)
    DIMENSION KO(15),KC(15),KBS(15),CO(500)
    DIMENSION ZONCH(500),NN(500)
    NO1001I=1.20
1001 KKK(I)=20%(I-1)
    PR!NT4!
41 FORMAT(1HI)
    M=20
OUTPUT OF DATA FOR K=1
    NPART=1
    NN(1)=1
    ZONCH(l)=1
    LL=1
    KP(1,1)=1
    WRITE(10.144)NPART
    WRITE(10.142)NN(1).ZONCH(1),LL,KP(1.1)
    CO=1.
    WRITE(10.149)CO(1)
    DOROK=2.13
    GENERATE AN ORDERED LIST OF THE PARTITIONS OF K
        IPOS=0
        C.ALL PSET(K.KO.M.MS.LTH)
    GOTOl
    3 CALL KAPPA(K.KG.MOMS.LTH)
    l IPOS=IPOS*I
    nOlOI=1.LTH
10KP(IPOS,I)=K@(I)
    KP(IPOS.LTH+1)=0
    LGTH(IPOS)=LTH
    C\triangleLCULATE AND STORF C(KAPPA,KAPPA) . RHO(KAPPA) -
    NORMALISING FACTOR ANI) BINARY REPRESENTATION FUR
    E\triangleCH PARTITION KAPPA
        CALL EAD
        CALL RHO
        CALL ZONCHAR(LTH.K.KG.7ONCHR)
        ZONCH(IPOS) = ZONCHR
        NN(IPOS)=IHIN(K(J.LTH)
        IF(MS-1)3.2.3
    ? NPART=IPOS
    write the uata on magnetic tape
    WRITE(10.144) NWNAT
i44 FORMAT(IG)
    OO2OI=1,NPADT
    LL=LGTH(I)
20 WRITE(10.142)NN(I).ZONCH(I).LL.(KP(I,J),J=1.LL)
142 FORMAT(O6.E20.13.1413)
    GTEP THROUGH THE PARTITIONS KAPPA ONE BY ONE
    NPAR=NPART-1
    DOTOIZ=1.NPAR
    CO(IZ)=CK(IZ)
    LMT=LGTH(I 7)
    0071J=1.LMT
71 KBS(J)=KP(Il.J)
    F(IP EACH KAPPA STFN THROIIGH ALL TAU = (LI.LZ....LS)
    PFLOW KAPPA
        {ZZ=IZ+1
        |O3nT=IZZ.NPART
        N=0
        SUM=0.
        ML=L(GTH(I)
```

FOR EACH TAU GENERATE $\triangle L$ L POSSIBLE

$$
M(1=(L 1 \ldots L I+T \ldots L .1 \otimes T \ldots L S)
$$

$M M=M L=1$
OOSOIA $=2 . M L$
ID=IA-1
1)050 [$8=1.10$
$M N=K P(I, I A)$

1) 060 IC $=1 . \mathrm{MN}$
() $040 \mathrm{~J}=1 \mathrm{ML}$
$40 K C(J)=K P(I \cdot J)$
$K C(I A)=K C(I H)+I C$
$K C(I A)=K C(I A)-I C$
$K K=K C(I B)-K C(I A)$
FOR EACH MU SORT THE ELEMENTS INTO DFCREASING ORDER
ANO FIND THE RINAHY RFPRFSENTATION
CALL SHORT (KC.ML)
IF (KC (ML) •EO.O) GOTO12
$M L T=M L$
GOTOIB
$12 M L T=M L-1$
1e $N N N=I B I N(K C . M L T)$
TEST IF THE SORTELI MII IS AOMISSIRLE

$I S=I-1$
n073 J=I2.IS
IF (NNN-NN(J))7」.38.73
73 CONTINUE
GOTO6O
3日 $S U M=S U M+K K * C O(J)$
$N=N+1$
60 CONTINUE
50 CONTINUE
IF (N) B1.82.81
8? $\mathrm{CO}(I)=0$.
GOTO30
81 IF (ABS (SUM)-0.5)82.82.83
$83 \mathrm{CO}(I)=\operatorname{SUM} /(\operatorname{RK}(I Z)-\operatorname{RK}(I))$
3n CONTINUE
CUTPUT THE COEFFICIENTS ONTO MAGNETIC TAFE

WRITE(10.149)(CO(LL) •LL=IZ.NPART)
149 FORMAT (9F 15.1)
70 CONTINUE
WRITE (10.149) CK (NPART)
gO CONTINUE
STOP S END

CALCULATES THE LEADING COEFFICIENT C(KAPPA.KAPPA) ACCORDING TO (7.5)

SURROUTINE EAU
COMMON KP $(500 \cdot 15) \cdot L G T H(500)$, CK (500) •RK (500).IPOS.K. NPART
$P R=1$
LTH=LGTH(IPOS)
DO10I=1.LTH
$K L=K P(I P O S . I)$
$L L=K L-K P(I P O S \cdot I+1)$
DO10J=1.I
$A=(I-J) / 2 .+(K P(I P O S \cdot J)-K L)+0.5$
$10 \mathrm{PR}=\mathrm{PR}$ * $\mathrm{COF}(\mathrm{A} \cdot L \mathrm{~L})$
$C K(I P O S)=P R * 2$. \#\#K
RETURN 5 ENT

CALCULATES THE $(A)_{K}=A(A+1) \ldots(A * K-1)$

FUNCTION COF (A,K)
$C=A$
$I I=1$
3 IF (II-K) I• ?.4
$1 C=C *(A+I I)$
$I I=I I+1$
GOTO3
$4 C O F=1$.
RE TURN
$2 C O F=C$
RETURN \& ENT

SUBROUTINE PHO
COMMON KP $500 \cdot 15)$, LGTH (500), CK (500), RK (500), IPOS.K.NPPART
SUM=0
$I=L G T H(I P O S)$
1)010J=1.I

A=KP(IPOS.J)
10 SUM = SUM $+\Delta 4(A-J)$
RK (IPOS) = SUM
RETURN \$ END

CALCULATES THE NORMAI.TSING FACTOR FOR CUNVERSION FROM $2(K A P P A)$ TO C(KAPPA) USING FORMULA (A.3.1)

SUGRDUTINE ZONCHAR(P,K.KAPPA,ZONCHR)
INTEGER P.K.KAPPA,KADK.O
CIMENSION KAPPA(P)
REAL ZUNCHR.PR
$K A P K=0$.
$P R=1$.
1)O10I=1.P
$K A P P A I=K A P P A(I)$
DO20J=1.K $\triangle P P A I$
PR=PR*FLOAT(KADK + J) /(FLOAT (KAPPAI + J) बFLOAT (J))
?. 0 CONTINUE
IF (I.EQ.P) 1.2
2 $\quad \mathrm{O}=\mathrm{P}-\mathrm{I}$
0030J=1.()
$P R=P R *(1,-F L \cap A T($?*KAPPA $(I * J)) / F L O A T(2 * K A P P A I+J))$
30 CONTINUE
$K A P K=K A P K+K \cdot A P P_{\triangle} I$
10 CONTINUE
ZONCHR = 2 0 K *PR
RETURN S ENTJ

SUAROUTINE PSET (K.KP.M.MS.LGTH)
DIMENSION KP(I)
$K P=K$

1) $10 \quad \mathrm{I}=2 \cdot \mathrm{k}$

-

$M S=0$
LGTH = 1
RETURN
ENTRY KAPPA
IF(K.EG.1) (i) TO 37
$M S=0$
$0011 \mathrm{KM}=1 \cdot K$
$J=K-K M+1$
$N=N+K P(J)$
IF(KP(J).GT.1) GO TO 3G
11 CONTTNUE
37 CONTINUE
$M S=1$
LGTH $=K$
RETIJRN
36 CONTINUE
$3 \quad \operatorname{IF}(K P(J+1) . G T .0)$ GO TO 4
$K P(J)=K P(J)-1$
$K P(J+1)=1$
LGTH $=\mathrm{J}+1$
IF (LGTH.GT.M) GO TO 9
IF(KP.EQ.1) GO TO 37
RETURN
$K P(J)=L 0=K P(J)-1$
$M M=J$
$M M=M M+1$
$N=N-L D$
IF(N.LT.O) GO TI) 5
$K P(M M)=L D$
GO TO 6
$N=N+L 0$
$M M=M M-1$
$K P(M M)=N$
$\angle G T H=M M$
IF (N.EO.O) LGTH = LCITH -1
$M M=M M+1$
1رO 27 IM $=$ MN. K
$27 \mathrm{KP}(I M)=0$
IF (LGTH.GT.M) in TV 0
IF (KP.EW. 1) (G) TO 37
RETURN
END

	IDENT	IRIN		
	ENTRY	IHTM		
-	USE	18)		
KK	BSS	20		
	USE	-		
IRIN	HSS	1		
	St4	1		
	SA1	H?		
	SB2	$x_{1}+\mathrm{H}_{1}$		
	SAL	カi>-R4		
	SA1	$\times 2+K k-1$		
ST	SH2	M $7-\mathrm{H}_{4}$		
	EQ	H1.H2.RE		
	SA3	$\mathrm{H}_{2}-\mathrm{H}_{4}$		
	1×2	$\times 2 \times 3$		
	SA3	Re^{2}		
	1×2	$x ?-\times 3$		
	5×2	$\times 3+94$		
	SA3	$\times 2+k k-1$		
	1×1	$x_{1} \times 3$		
	JP	ST		
RF	AX6	$\times 1$		
	J	IHIN		
	Calculates	THF. PAFTITIOM FURIM	ITS HINARY	RFPRESENTATTON
NTHI	ENTRY	NIHI		
	BSS	1		
	S84	1		
	SAl	ml		
	SB1	$\times 1$		
	SA?	4 ?		
	5×6	H_{4}		
	5×3	B4		
LI	2R	HI. EM		
	981	$\mathrm{HI}-24$		
L	8×4	$\times 20{ }^{\text {¢ }}$		
	ZR	$\times 4.011$		
	SAO	H3-H1		
	L×3	1		
	JP	LI.		
JI	5×5	$x+$ - ${ }^{\text {a }}$		
	L×3	1		
	Jt	L		
EN	SAG	[3		
	JP	ज1तt		
	END			
	SORTS THE NECREASING	$\text { ELEMENTS } 1 \text { 1....LI T T.. }$ gante	-•LJーT...LS	OF MU INTO
	IDENT	SHCIRT		
	FNTHY	S-I)HT		
SHORT	RSS	1		
	SAI	${ }^{H 2}$	4	
	SH2	$\times 1-1$	$\stackrel{1}{4}$	
EL	S83	A		
	SP_{4}	H,		
ES	EO	H2.43.FF		
	SAL	($1+\mathrm{H}_{3}$		
	SA3	A $2+1$		
	1×4	$\times 2-\times 3$		
	PL	x_{4}. EK		
	RX6	$\times 2$		
	R× 7	$\times 3$		
	SAG	$\triangle 3$		
	SA7	A)		
	SB4	$\mathrm{H}_{4}+1$		
EK	$5 \mathrm{HO}_{3}$	8 $7+1$		
	.1P	E $¢$		
ED	ZR	A4. SHORT		
	SB2	H		
	2 H	R P. SHIMET	-	
	JP	EL		
	END			

APPENDIX 4

CALCULATION OF THE $g_{v}^{\kappa} \mu$ AND ($\left.\begin{array}{c}k \\ \nu\end{array}\right)$

A.4.1 The programme

The FORTRAN programme listed at the end of this Appendix is designed to generate the coefficients $g_{v \mu}^{k}$ and $\binom{k}{\nu}$ for $k \leqslant 9$ using the formulae of sections 7.4 and 7.5. Only the coefficients ($\left.\begin{array}{c}\kappa \\ \nu\end{array}\right)$ are retained on magnetic tape. These are used in the calculation of the Laguerre polynomials. The coefficients $g_{\nu \mu}^{k}$ are not saved as they are only used here to calculate the $\binom{k}{\nu}$ and as indicated in section 7.5 they have already been tabled for $k \leqslant 7$. Basically the programme is designed to calculate the $g_{\nu \mu}^{k}$ and it is then a simple matter to selectively sum them to derive the ($\left.\begin{array}{c}k \\ \nu\end{array}\right)$.

The evaluation of the b_{ε} and an efficient method of storing them are discussed in the next two sections. A.4.2 The product of $\mathrm{msf}^{\prime} \mathrm{s}$, the b_{ε} and the $\mathrm{e}_{\alpha \beta}^{\delta}$

Let α be a partition of r with m parts β be a partition of t with n parts ε be a partition of k with p parts under the conditions $k=r+s, m \geqslant n, \quad m \leqslant p \leqslant m+n$. Let $\alpha=\left(f_{1}, \ldots f_{m}\right), \beta=\left(h_{1}, \ldots h_{n}\right), \varepsilon=\left(\ell_{1}, \ldots \ell_{p}\right)$. It is important that all parts be non-zero. Zero parts would lead to unwanted extra terms.

As for (7.34) and (7.35) the product of mst's is

$$
\begin{align*}
M_{\alpha} M_{\beta} & =\left\{\Sigma s_{1} f_{s_{j}} f_{2} \ldots s_{q} f_{m}\right\}\left\{\Sigma s_{u} h_{s_{v}} h_{2} \ldots s_{w} h_{n}\right\} \tag{A.4.1}\\
& =\sum_{\varepsilon \leqslant \tau} b_{\varepsilon} M_{\varepsilon}
\end{align*}
$$

where $\tau=\left(f_{1}+h_{1}, f_{2}+h_{2}, \ldots f_{n}+h_{n}, f_{n+1}, \ldots f_{m}\right)$. The ms's M_{ε} are formed by taking all possible products in (A.4.1). At the $i^{\text {th }}$ stage:

Select i elements from $f_{1}, \ldots f_{m}$ to give the subset $S_{1}(\alpha)$. Select i elements from $h_{1}, \ldots h_{n}$ to give the subset $S_{1}(\beta)$. Arrange the elements of $S_{1}(\alpha)$ in some order and hold it fixed. Then permute the elements of $S_{q}(\beta)$ in all possible ways and after each permutation add the se elements to the corresponding ones of $S_{1}(\alpha)$. To each generated list append the $\mathrm{m}-\mathrm{i}$ remaining elements of α and n -i of β to form a partition ε. Each partition ε is associated with a possible msf $M_{\text {e }}$ from (A.4.1).

For example $m=5, n=4$, $i=3$:
$S_{3}(\alpha)=f_{1}, f_{3}, f_{5}$
$\mathrm{S}_{3}(\beta)=\mathrm{h}_{1}, \mathrm{~h}_{2}, \mathrm{~h}_{6}$.
Two possible permutations of $S_{3}(\beta)$ are
h_{1}, h_{4}, h_{2} and h_{2}, h_{1}, h_{6}
to give

$$
\begin{aligned}
& \varepsilon_{1}=f_{1}+h_{1}, f_{3}+h_{6}, f_{5}+h_{2}, f_{2}, f_{4}, h_{3} \\
& \varepsilon_{2}=f_{1}+h_{2}, f_{3}+h_{1}, f_{5}+h_{4}, f_{2}, f_{6}, h_{3} .
\end{aligned}
$$

Summarising, for fixed α and β we may have $i=0,1, \ldots n$. For each i we generate all i element
subsets $S_{1}(\alpha)$ and for each $S_{1}(\alpha)$ we generate all possible i element subsets $S_{1}(\beta)$. For each pair of $S_{1}(\alpha)$ and $S_{1}(\beta)$ we generate all possible permutations of $S_{1}(\beta)$ befone adding it to $S_{1}(\alpha)$. The remaining $m+n-2 i$ elements of α and β are appended to generate an ε. Using (7.36) the b_{ε} is calculated.

After all acceptable combinations of $S_{1}(\alpha)$ and $S_{1}(\beta)$ are used we are left with the $e_{\alpha \beta}^{\delta} \beta$ for the product of M_{α} and M_{β}.

The selection of all possible subsets $S_{1}(\alpha)$ for a partition α is done by the pair of subroutines SELSET and SELGET. The routine SELSET initialises by setting $S_{1}(\alpha)=f_{1}, \ldots f_{1}$ while the routine SELGET generates a new $S_{1}(\alpha)$ on each call. Similarly for all $S_{1}(\beta)$ of β. An example suffices to illustrate the principle. Set $m=5$, $i=3$.

SELSET $\quad f_{1}, f_{2}, f_{3}$ SELGET 1. f_{1}, f_{2}, f_{4}
2. f_{1}, f_{2}, f_{5}
3. f_{1}, f_{3}, f_{4}
4. f_{1}, f_{3}, f_{5}
etc....
The permutation of $S_{1}(\beta)$ is performed by the pair of subroutines PERSET,PERGET. Subroutine PERSET initialises arrays and returns the identity permutation, while the routine PERGET generates a new permutation from the current
one using an algorithm given by LEHMER (p 23) in BECKENBACH [6].
A.4.3 Storing the b_{ε}

Every time a new b_{ε} is generated this must be added to the accumulated total associated with that partition. One method of storage is to convert ε to its binary representation and use this to search a list of the binary representations of all partitions κ of k and then increment the associated coefficient. This is slow and inefficient as much searching is involved.

A much faster method is to use the binary representation of ε as an index. For example: partition binary representation index (base 10)

4	1000	8
31	1001	9
2^{2}	110	6
21^{2}	1011	11
1^{2}	1111	15

(the final 0 has been dropped as per Appendix 3). Thus any $\mathrm{b}_{(4)}$ is added to storage location 8 any $\mathrm{b}_{(31)}$ is added to storage location 9 etc... .

As stated before each κ has a unique index. The largest index for $k \leqslant 9$ is 511 (corresponding to 1^{9} having the binary representation 111111111). Only some of the storage locations are used for $k \leqslant 9$, but the increase
in speed of operation far outweighs the disadvantage of needing 511 storage locations reserved for the 97 partitions of $k=1, \ldots 9$.

THIS PROGRAM CAI．CIJLATES THE LONAL FOLYNUMIAL WHONUCT ANU GENERALISEO RINIMIAL COFFFICTENTS AI ONG THF．I TNES OF SECTICNS 7.4 ANI） 7.5
THE GENERALISEJ HINOMIAI COEFFICIENTS ARE STOFED（IN magnf IC taff Fur filturif use

PROGRAM AKL（INPIT：OUTDIT•TAPEIO•TAPECO）

＊L（42）
COMMON／STAF／KCC（10）
COMMON／STAPT／HP（11）•NH（4ट）•1／RS（11）
O \triangle TA NH／0．1．1．5．11，15．21．2H．36．45．55．06．78．41．105．1つ0．116．153．

1）Δ TA NP／1．そ．4．7．1う．14．30．45．67．97．1．34／
DATA NHS／（1．1．4．10．75．53．119．239．492．प57•14（1）
DATA KCC／0．？．4．70．77．19a．475．968．1480．40．37ノ
UIMENSIOIN MPATR（14？，2）•N（2ก2）
COMMON APR（64世4）
DIMENSI（1）（ $\times 111) \cdot 1 \times(17)$
COMMON／FA／FAC（1）
COMMON／A／KK（こ））
UO10011＝1．つ0
$1001 K K(I)=2$ が $(1-1)$

$F \Delta C(10)=3+24800$ ．
149 FORMAT（9F）5．1）
144 FORMAT（IG）
142 FORMAT（O6．F20．13．12）
INPUT THE DATA WHITTEA OAI MAGNETIC TOFE EY THE DUNGQAM OFSCRTBED IN $\triangle P$ FドNいIV 3
CALCILATE＂HE COFFFICIENTS A（KAPPA．TAU）OF（7．27）
IPOS＝0
1）010IJK＝1•1 \cap
READ（10．144）NPADT
OO2OJ＝1．NPART
IPOS＝IPOS +1
2ก READ（ $10 \cdot 14$ こे）NIV（IPrsS）・フ（J）•（TH（IPOC）
$I I=N B S(I J K)$
D03nI＝1．NPLRT
REAO（10．149）（C）（LL）•LL＝I ．NWART）
$0040 \mathrm{~J}=1$ ．NHNんT
$L L=I I+I+N F(.1)$
$4 \cap \operatorname{COR}(L L)=C 0(1) * 7(T)$
？$?$ CONT INUF
10 CONTINUF．
$N(1)=0$
D099I＝1．2（1）
$90 N(I+1)=N(1)+4 \geqslant$
HRTNT41
4）FURMAT（1H1）
00501＝2．10
$I P R=0$
1）051IXYフ＝1．पムヶム
ᄃ1 $\triangle P R(I X Y 7)=$ ．
$I X=N P(I)$
$I Y=N P(1+1)-1$
$J=I$
4 $J=1-1$
$k=\uparrow-J$
$1 x x=0$

＞ $1 x x=1$
₹ $[\Delta=N(J+1)-\{(1)$
$I N=\operatorname{rat}(K+1)-N(N)$
$1 x y=1 x x+1$
1）（）$\angle O J A=1$ ．I：

＊ 1 $Y Y=1$
GOTOR 3
A）$\quad[y Y=J \Delta$
\＆J UURUJH＝IYY．IA
II＝NWS（J）
$L L L=N H S(K)$
$M M=N$ HS (1)
$J S=N P(1)+1-1$
JST＝NNP（． $1+11-1$
$K S=N P(r)+1--1$
$K S T=N \nu(k+1:-1$
$I O R=I+H+I$
NHATH（iPH．1）＝（，ノく）
NPDIK（IN＋，）$=$（M－I
1） 1 ） 7 （1）MA $=15 \cdot 12 T$
Ui） $70 \mathrm{MH}=\mathrm{r} 5 . r>$ T

SFLECT A PAIR OF MARTTTIONS
ALPHA A PARTITIUN OF H
BETA A PAPTITION IFF T
$L A=L T H(M A)$
$L H=L T H(M H)$ IF（LA－LR）GH．RU．RY
6R CALL NIBI（LA•Ivt（MA），Kr）
CALL NIRI（LH．IIN（MH），KA） $L A=L B$
$L B=\operatorname{LTH}(M A)$ GOTOb7
AQ CAIL NIRI（L．A．NII（MA）．KG）
CALL NIRT（LH．NM（HA），KH）
\＆ 7 MMA $=M A-N P(1)+1$
$M M F=M H-N P(K)+1$
$L L \Delta=I I+J \Delta+\operatorname{RH}+(141 A \Delta)$
$L L B=L L L+J R+M K(M M R)$
$\Delta C=C O R(L L A) * C O R(L L R)$
FACA $=F K A C(K A \cdot 1 A)$ कFRAC（KR，LH）
$F \triangle C H=\triangle C / F A C A$
DO1101L＝J．LQ
$110 K C(I L)=K A(I L)$
DO120IL＝1．1 H
12．）$K(L A+1 L)=K M(1)$
$L A B=L A+L F$
CALL SHORT（A）．1，（R）
$N N N=\ln \operatorname{IN}(\times C \cdot L(B)$
LL＝（NO）E $\times($ nitin • 1）+1 （IPR）
$\triangle P R(L L)=F P A C(K C \cdot L A 13)+F \Delta C B+\wedge P K(L L)$
On130JJ＝1．1 1
CALL SELSFT（I．y．JJ． $1 \cdot(1 \mathrm{C} \cdot \mathrm{LA})$
GOTOL 31
124 CAI．L SELGFT（Lx．JJ．N．．115．LA）
lF（MS） 130.131 .130
131 CALL SELSET（t．Y．JJ．AY・いGY．LF） GOTO： 33

IF（MSY）134．133．144
133 IF（JJー1）13n．136．136
$13500140 \mathrm{IL}=1 \cdot \mathrm{~L} \Delta$
$140 \mathrm{KC}(I L)=k A(I L)$
$J J A=L \times(1)$
$J J R=L Y(1)$
$K C(J J A)=K C(J J A)+K n(J, I m)$
JJC＝LA
DOI50JL＝1．L．M
IF（IL－JJH）15！．150．15］
151 JJC＝JJC＋ 1
$K C(J J C)=K$ W（IL $)$
ín CONTTIIJF
CALL SHORT（KC．JIT．）
NNN＝IHIN（KC．JJS）

 GOTOl3K
 GOTUl 37
 1F（MSX）13H．137．134
137 U01601L＝1•1ロ
$16 \cap K C(I L)=K \Delta(I L)$
U！1701しL＝3．JJ
$J J A=L \times(11)$
JJR＝LY（TL）
$170 K(1 J J \Delta)=K(.1 . J J 4)+K R(1 . J 4)$
$J J C=L A$
DO）HOTL＝1．LH
00190 TLL＝1．JJ

19の CONTINUF
$J J C=J J C+1$
$K C(J J C)=K H(1 L 1$
181 CONTINUF
ion CONTINLIF
CALI SHINT（KC．．．JJ．）
NNN＝INIH（ÑC．JJC）

$\triangle A P R(L L)=F$ A．C（ar．JJ J）＊FACH．APP（LL） GOTOl 34
130 CONTINJE
7 In CONTINUF
NPART $=$ NR（I＋1）－- （i）
IN＝N（IPR）
$N P \triangle R=N P C R 1-1$

DO? $10 M A=1$. NPAF
$M B X=M A+1$
$L L=I M+M A$
$L X=M M+M A+N H(M A)$
$A P R(L L)=Z R=\triangle P R(L L) / C(1 Q(L L X)$
-D0220MR = MRX.NPAPT
$L L=I M+M R$
$L L \quad x=M M+M A+N H(M R)$
$220 \operatorname{APR}(L L)=\triangle P R(L L)-2 \operatorname{Roc} O R(L L X)$
210 CONTINUE
$L L=I M+N P A R T$
$L L X=M M+N P A D T+N H(N P A R T)$
$A P R(L L)=A P R(L L) / C \operatorname{Cl}(L L x)$
$I M M=I M+N P A R T$
$I M=I M+I$
DO230LL = (M. IMM
$\operatorname{IF}(\triangle B S(A P R(L L))-1 . F-171231 \cdot 231 \cdot ? 3 n$
2コ1 $A P R(L L)=0$.
23n CONTINUE
60 CONTINUE
IF (.J-K) 52.52.4
5) $Z=F A C(I)$
$I X=N P(I)$
$I Y=N P(1+1)-1$
NPART $=I Y-I X * I$
II = I-I
$M C A R=0$
$K C C C=K C C(I)$
DO310IA $=1 . \mathrm{KCCC}$
$310 \operatorname{CO}(I A)=0$.
D0320JJ=1.II
$Z Z=Z /(F A C(J J) \otimes F A C(I-J J))$
$I X=N P(J J)$
$I Y=N P(J J+1)=1$
DO3 $30 \mathrm{MA}=\mathrm{J} \times$.IY
$N N N=N N(M A)$
DO340MB =1.IPR
IF (NNN-NPA [Q(MP3.1))341.342.341
34 I IF (NNN-NPAJR(MH. 2)) 340.342 .34 n
342 DO350MC=1.NPART
$L L=N(M B)+M C$
IF (ABS (APR (LL)) $=1 \cdot E=10) 350 \cdot 350 \cdot 351$
351 MCC=MCAR +MC
$C O(M C C)=C O(M C C)+A P R(L L)$
350 CONTINUE
340 CONTINUE
OO36OMC = 1. NPART
$M C C=M C A R+M C$
$360 \quad C O(M C C)=C O(M C C) * Z Z$
$M C A R=M C A R+N P A R T$
330 CONTINUE
320 CONT INUE
WRITE (20) (CO(LL) •LL=1•KCCC)
PRINT241•(CO(LL) •LL=1•KCCC)
241 FORMAT (X10F13.4)
50 CONTINUF
STOP \& END

SURROUTINE DENSFT(I .N.AS)
DIMENSION D(10).E(10). A (10).L(10)
INTEGER A.D.E
$M S=0$
$N N=N-1$
OO10I =1.NN
$D(I)=0$
$E(I)=1$
$A(I)=I+1$
10 CONT INUE
7 RETURN
ENTRY PERGET
$J=N N$
$8 \quad A(J)=A(J)-E(J)$
IF $(A(J)-J-1) 1 \cdot ? \cdot 1$
$1 \operatorname{IF}(A(J)) 3 \cdot 2 \cdot 3$
$3 I=J+1$
$K=A(J)$
6 IF $(I-N N) 4,4.5$
$4 K=K+D(I)$
$I=I+1$
GOTO6
5 $I H=L(K)$
$L(K)=L(K+1)$
$L(K+1)=[H$
GOTO7
? $E(J)=-E(J)$
$0(J)=1-0(J)$
$J=J-1$
IF(J)9.4.4

- $M S=1$

IH=L (2)
$L(2)=L(1)$
$L(1)=I r$
RETURN \& EN」

```
    SIJRHOMITNE SHI SHT(I,T.M.MS.IV)
    HIMFNGSON1,||
    MS="
    I-(T+1)=1)* I
    M=?
    L())=1
    3 1F(:^-1)1.2.1
    1 M=M+1
    L(M)=L(M-1) + )
    GOTO3
    > RE TIRN
    ENTAY SEI_GFT
    n [F(I.(n)+1-I_(n+1))4.4.05
    & L(M)=L(M)+1
        GOTO3
    4 M=M-1
    IF(M)A.T.A
    7 NS=1
    RETUHN F FIII
```



```
NIN
MP USE IS
INDEX
    CALCULATES FAC(PHTI)OFAC(PHIZ)O... AS RFJUIHEOIN (7.36)
\begin{tabular}{|c|c|c|}
\hline & IDENT & FRAC \\
\hline & Eintiry & FRAC \\
\hline & USE & ／Fn／ \\
\hline FAC & BSS & 10 \\
\hline & USE & 4 \\
\hline ONE & UATA & 1. \\
\hline FRAC & HSS & 1 \\
\hline & SAI & ONF \\
\hline & Bxo & \(\times 1\) \\
\hline & S83 & 30 \\
\hline & SAL & 4 ？ \\
\hline & SBL & \(\times\) ？ \\
\hline FV & SHC & －2－1 \\
\hline & 20 & H2．Fp \\
\hline & SAl & \(\mathrm{Hl}+\mathrm{H}\) ？ \\
\hline & SAC & ＋1－1 \\
\hline & I× 3 & \(x 1-x 2\) \\
\hline & 2R & \(\times 3.5 \mathrm{~L}\) \\
\hline & SA5 & H．3＋FAC \\
\hline & Fxb & メラのメヶ \\
\hline & SH3 & （1） \\
\hline & ．JP & FV \\
\hline FL & SH3 & ＋3＋1 \\
\hline & JP & FV \\
\hline 5 R & SA5 & H3＋Far \\
\hline & F×6 & \(\times 50 \times 6\) \\
\hline & JP ENU & FR＾C \\
\hline
\end{tabular}

\section*{BIBLIOGRAPHY}
1. G.A. ANDERSON: An asymptotic expansion for the distribution of the latent roots of the estimated covariance matrix, Ann. Math. Statist. 36 (1965), 1153-1173.
2. ToWi ANDERSON: The non-central Wishart distribution and certain problems of multivariate statistics, Ann. Math. Statist. 17 (1946), 409-431.
3. T.W. ANDERSON and M.A. GIRSHICK: Some extensions of the Wishart distribution, Ann. Math. Statist. 15 (1944), 345-357.
4. M.S. BARTLETT: Multivariate analysis (with discussion), J.R. Statist. Soc. (Suppl.) 2 (1947), 176-190.
5. M.S. BARTLETT: A note on the multiplying factors for various \(\chi^{2}\) approximations, J.R. Statist. Soc. B 16 (1954), 296-298.
6. EDWIN F: BECKENBACH: "Applied Combinatorial Mathematics", University of California Engineering and Physical Sciences Extension Series (1964), John Wiley and Sons, Inc.
7. A.G. CONSTANTINE: Some non-central distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963), 1270-1285.
8. A.G. CONSTANTINE: The distribution of Hotelling's generalised \(T_{o}^{2}\), Ann. Math. Statist. 37 (1966), 215-225.
9. ARTHUR ERDELYI et al.: "Higher Transcendental Functions", McGraw Hill (1953), New York.
10. A. FRDELYI: "Asymptotic Expansions", Dover (1956), New York.
11. R.A. PISHER: The sampling distribution of some statistics obtained from non-linear equations", Ann. Eugenics 2 (1939), 238-249.
12. C.S. HERZ: Bessel functions of matrix argument, Ann. of Math. 65 (1955), 474-523.
13. P.L. HSU: On the distribution of the roots of certain determinantal equations, Ann. Eugenics 2 (1939), 250-258.
14. L.C. HSU: A theorem on the asymptotic behaviour of a multiple integral, Duke Math. J. 15 (1948), 623-632.
15. A.T. JAMES: Normal multivariate analysis and the orthogonal group, Ann. Math. Statist. 25 (1954), 40-75.
16. A.T. JAMES: The non-central Wishart distribution, Proc. Roy. Soc. (London) Ser. A 229 (1955), 364-366.
17. A.T. JAMES: A generating func tion for averages over the orthogonal group, Proc. Roy. Soc. (London) Ser. A 229 (1955), 367-375.
18. A.T. JAMES: The distribution of the latent roots of the covariance matrix, Ann. Math. Statist. 31 (1960), 151-158.
19. A.T. JAMES: Zonal polynomials of the real positive definite symmetric matrices, Ann. of Math. ㄱ4 (1961), 456-469.
20. A.T. JAMES: The distribution of non-central means with known covariance, Ann. Math. Statist. 32 (1961), 874-882.
21. A.T. JAMES: Distribution of matrix variates and latent roots derived from normal samples, Ann. Math. Statist. 35 (1964), 475-501.
22. A.T. JAMES: Inference on latent roots by calculation of hypergeometric functions of matrix argument, "Multivariate Analysis", Ed. by P.R. Krishnaiah, Academic Press (1966).
23. A.T. JAIES: Tests of equality of latent roots of the covariance matrix, International Symposium (July 1968), Dayton, Ohio.
24. A.T. JAMES: Calculation of zonal polynomial coefficients by use of the Laplace-Beltrami operator, Ann. Math. Statist. 32 (1968), 1711-1718.
25. C.G. KHATRI and K.C.S. PILLAI: On the non-central distributions of two test criteria in multivariate analysis of variance, Ann. Math. Statist. 32 (1968), 215-226.
26. D.N. LAVLEY: Tests of significance in canonical analysis, Biometrika 46 (1959), 59-66.
27. R.J. MUIRHEAD: Systems of partial differential equations for hypergeometric functions of matrix argument, (submitted to Ann. Math. Statist.).
28. K.C.S. PILLAI and A.K. GUPTA: On the non-central distribution of the second elementary symmetric function of the roots of a matrix, Ann. Math. Statist. 39 (1968), 833-839.
29. EARL D. RAINVILLE: "Special Functions" p 212, The Macmillan Company (1960), New York.
30. C.R. RAO: "Linear Statistical Inference and its Applications", John Wiley and Sons (1965).
31. S.N. ROY: p-statistics or some generalisations in analysis of variance appropriate to multivariate problems, Sankhyā 4 (1939), 381-396.
32. B.L. van der WAERDEN: "Modern Algebra. Volume I" (English translation), Frederick Ungar Publishing Co. (1949), New York.
33. M. WEIBULL: The distribution of \(t-\) and F-statistics and of correlation and regression coefficients in stratified samples from normal populations with different means, Skand. Aktuarietidskr. 36 Supple. (1953), 1-106.
34. J. WISHART: The generalised product moment distribution in samples from a normal multivariate population, Biometrika 20 (1928), 32-43.```

