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SUMMARY 

Both the non-central Wishart and non-central means 

with knovm covariance distributions can be written as the 

appropriate central distribution multiplied by a factor 

which in each case involves a 0F 1 hYJ;>ergeometric (or 

Bessel) function of matrix argument (JAMES (3]). The 

results of this thesis constitute an assault on the problem 

of evaluating the Bessel functions via asymptotic expansions 

or exact series for arbitrary argument matrices. 

In the first part of this thesis matrix transforma

tions and group integrations are used on the integral 

representations for the Bessel functions to reduce them to 

a form suitable for the application of a method of approx

imation due to G.A. ANDERSON [1]. Asymptotic expansions 

are derived and these are shown to be valid for large values 

of the latent roots of the argument matrix or matrices. 

For the non-central means with known covariance distribu

tion the expansion is used to compute maximum marginal 

likelihood estimates.for the non-centrality parameters and 

to establish a modified Chi-square test on the number of 

non-zero non-centralities. 

P.or the Bessel function of one argument matrix I 

use a differential equation to derive an approximation 

asymptotic in the number of degrees of freedom. The 

result is applied to the likelihood factor of the non-central 

Wishart. 

V 



., 

· ,. 

.I. 

In the latter part of this thesis I consider methods 

for the direct evaluation of the Bessel functions in terms of 

series of zonal polynomials and Laguerre polynomials 

(CONSTANTINE [2]).

By using the Laplace transform for matrix variables I 

prove some generalisations of classical summation formulae 

involving the Laguerre polynomial. A summation formula for 

the determination of the c oefficients(�) (B.ic r CONSTANTINE 

[2]) is proved, as well as other identities involving them. 

These coefficients are then tabulated for the values k=5,6. 

Incidentally an algorithm for calculating the �
µ

, involved 

in expressing a product of two zonal polynomials in terms of 

zonal polynomials, is developed. 

JAMES [4] has shown that the zonal polynomials can be 

expressed in terms of the monomial symmetric functions, where 

the coefficients are easily determined recursively. I 

calculate these for the direct evaluation of the Bessel 

functions in zonal polynomial expansions. By summing the 

first few terms of the series it is possible to study con

vergence for v arious argument matrices. 

The final section is devoted to making numerical 

comparisons of all the methods and giving some idea of their 

ranges of usefulness. 

In appendices I give details of the computer programs 

used as well as considering problems such as the generation 

and storage of partitions and the indexing of arrays. .. 
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CH.APTER 1 

INTRODUCTION 

1.1 General 

The topic is multivariate normal analysis based on

the multivariate normal distribution. Let the mxn matrix 

variate X, with m � n, be distributed as 
1 1 

dF(X.;M,�) = (21r)-2rnndet �-2netr{-½�- 1 (X-M)(X-M)'l II dx 1 3
1 , j 

( 1 .1 ) 

where E[X] = M, X = (x1 ••• x1 ••• xn), x1 = ( xjl ) rnx1 and 

That is, the columns of X form n 

independent samples with x1 from N(m1,�), where 

M = ( m1 •••• mn ) • 

In 1961 JAMES [20] h as given the non-central Wish art 

distribution, which is the distribution of 

XX', ( 1. 2) 

and the non-central means wit h known covariance matrix 

distribution, that is the distribution of tl1e latent r oots 

det(XX'-w�) = o. 

The centr al distribution of XX'(i.e. M=O) was given by 

WISHART [34] as 



I 

2. 

where 

rm(a) = .,;rmcm- 1 > rr r(a - ½(i-1)>
1=1 

and r(a) is the ordinary Gamma function. For the latent 

roots w1 ,w2, • • • •  wm the central joint distribution was given 

by FISHER [11], HSU [13] and ROY [31] as 

(1.6) 

Now if (1.1) is written as 

then both non-cent ral distributions can be written as a like

lihood factor multiplied by the app ropriate central distribu-

tion. That is, the non-central distr ibution of XX' is 

c1 etr(-½�- 1 MM') { etr(M'�- 1 XH)(dH)x(1.4) 
b<n> 

( 1 .8) 

where (dH) stands for the invariant Haar measure on the 

group 0(n) of nxn orthog onal matrices H and 

1 2 

r 2n
1r

2n 

Vol(0(n)) = i (dH) = r (ln)
( 

n 2 
n) 

( 1. 9) 

making c1 = [Vol(0(n))J- 1 to give the integral of (1.8) 

the value unity for M=O• The proc ess of int egration over 

0(n) is called averaging (see JAMES [16],[17]). One 



further integration gives the non-central distribution of 

c2 etr(-½�-1MM') { (dH1 ) { (dH2)etr((�-½M)'H1 (�-½X)H2 )x(1.6)
i(m) i(n) (1.10) 

with the normalising constant c2 = [Vol(O(n))Vol(O(m))J- 1 • 

In [20], JAMES also showed how to expand both 

integrals in series  of zonal polynomials. These polynom-

ials ZK (S), where S is an mxm symme tric matrix, are 

homogeneous symme tric polynomials in the latent roots of S 

corresponding to the partitions 

(1.11) 

of the integer k into not more than m parts. A most 

important property is their aver age over the orthogonal 

group O(m), given by 

ZK' (R)ZK' (S) 
ZK (Im) 

where Im is the mxm identity matrix and 

with 

m 

(a)K = II (a-½(i-1))k (a)n = a(a+1) ••• (a+n-1). 
1=1 1 

( 1 .12) 

(1.13) 

( 1 .14) 

Full definitions, proofs etc. can be found in JAMES [18], 

[19],[20] and CONSTANTINE [7]• 





det(MM' - w�) = 0 

then (1.10) becomes 

(1.20) 

(1.21) 

The oF 1 is called the Bessel function of matrix 

argument and is a generalisation of the familiar univariate 

func ti. on defined by 

co 

oF1 (a;x) = � 
n=O 

(1.22) 

This function appears in the non-central x2
• If variates

Xt are independent N(0,1) then the distribution of 

X2 
= (x1 + ./w) 2 + X2

2 +•••+ Xn 2 is (setting U = X2 ) 

e-½woF 1(½n;tei.m) 1 e-½w w½n-i dw.
22nr(½n)

(1.23) 

Both (1.19) and (1.21) reduce to (1.23) if m=1 but (1.21), 

or the distribution of the non-central means with known 

covariance, is considered to be the generalisation of the 

non-central x.2 • 

1 .2 Historical 

The first results on the non-central Wishart distrib

ution were obtained in 1944 by T.W • .ANDERSON and GIRSHICK [3]. 

They stated the general problem in the form of a multiple 

integral and gave the solution for the rank of M � 2. 

Both results are expressed in terms of the Bessel functions 

Subsequently in 1947 .ANDERSON [2], by transform

ing the general multiple integral, managed to perform 
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some of the required integrations and produced an integral 

representation that appeared to be a matrix analogue of the 

Poisson integral representation of the Bessel function. The 

distribution for rank 3 was obtained in 1953 by WEIBULL [33] 

and in 1955, prior to tre zonal expansions, JAMES [16],[17] 

gave a power series expansion for the general distribution. 

The first definite mention of the non-central means 

with known covariance distribution was in 1961 when JAUES 

(20] gave the general distribution. It has subsequently 

been studied in JAMES (21], (22] where it was shown to be 

the limiting distribution for the general non-central means 

distr"ibution with finite error degrees of freedom and for 

the canonical correlations distribution both of which were 

derived by CONSTANTINE [7]• 

For convenience these two limiting processes will be 

outlined here. If X is such that the mxm matrix XX' 

has the non-central Wishart distribution on s degrees of 

freedom with non-centrality parameters n (defined by 

(1.20)) and Y is such th at YY' has the central Wishart 

distribution on t degrees of freedom, the covariance 

matrix in each case being E, then the distribution of the 

latent roots rp • . .  rm of the matrix R = XX' (XX' +YY' )- 1

is given by 
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CHAPTER 3 

STATISTICAL .APPLICATIONS 

3.1 Introduction 

44. 

In this Chapter we consider an alternative deriva

tion of the asymptotic representation for the Bessel funct

ion of two argument matrices using a parameterisation of 

the Stiefel manifold given by JAMES [23]. The parameter

isation is similar to that used for o + (m) in Chapter 2, 

but the substitution can be nade without integrating out all 

implicit variables. 

In section 2 the leading (asymptotic) term is 

derived for the case consid ered in Chapter 2 i.e. both 

argument matrices are of full rank, while in section 4 the 

technique is extended to derive the asymptotic term when one 

of the matrices is not of full rank. 

Two statistical problems are dealt with: 

1. In section 3 the non-centrality parameters are estimated

by maximum likelihood.

2. In section 5 a likelihood ratio test for the rank of the 

matrix of means M is derived and its sampling distrib

ution is considered.

The final section ties the results of section 5 to 

the wor k  of BARTLETT [4], [5] and LAWLEY [26] in deriving 

multivariate tests of hypothesis. 



I 
r 

3.2 The Stiefel manifold 

We use as our starting point (2.9) of Chapter 2 i.e. 

where k3 = [Vol(O(m))Vol(Vnm)J- 1•

If Hi E Vnm is partitioned as Hi= [H! 1 H!2 ] 

the integrand of (3.1) becomes etr(.AH1BH! 1 ). It is 

necessary to determine where the maximum of this function 

occurs. 

Since H� 1 is the top left hand corner of an

orthogonal matrix, its elements must satisfy the inequal

ities (H2 = (k13) i,j = 1, ••• 11) 

i,j = 1,2, ••• m. 

It is easily seen that the maximum of etr(AB) is attained 

at the matrices 

giving H! the form [H� 1 O]. There are 2m equal maxima. 

It is also clear that we again ha ve the second 

maximum of etr(k;'B) but in the following derivations it is 

ignored. 

Since there is an equal cont ribution from each of the 



I 

I. 

46. 

zD neighbourhoods of the equal maxima we write (3. 1) as

oFf
m

) (½n;tn,W) � 2m k3 {(dB.1 ) {(dB.�)etr(AH1BH� 1 ).

N{r) �[Io]) 
(3. 2) 

Again N(I) contains only matrices in v + (m) so 

H
1 

can be parameterised. Also JAMES [23] has given a 

parameterisation of the Stiefel manifold. Thus we can 

where S,T
11 

are mxm skew matrices and T12 is an 

mx(n-m) rectangular matrix. 

If we let H1 
= (h 1 j), S = ( St j), T = ( t1 j) with

t1 ;1 = 0 9 i and j > m, then writing out the elements 

h1 1 = 1 

hij = 

k1 1 = 1 -

k1 j 
= 

1 :z 2 
2 St jj=1 

S 1 j 

½ :z tr j 
j=1 
t1 j 

+ o ( s2 ) i 1, ..• m 

+ o ( s) i,j = 1, •.• m i j: j 

+ o( t2 ) i = 1, ... m 

+ o( t) i,j = 1, ... n, i /: j.

From the integrand of (3.2), neglecting terms of 

degree greater than 2, 

(3. 3) 



I 
) 
r 

where 

m 

and /\ 
1=1 

For the Jacobian of the t ransformation 

/\ dt13 
j=m + 1 

m m 

stand for /\ ds13, A dt13 
1<j l<j 

respectively.

Substitute (3.3) and (3.4) in the integrand of (3.2).

Since the integrand tends to zero as ls13I, lt13I tend to 

oo, we can change the range of integration to -oo < s13 < oo, 

-oo < t13 < oo to obtain the leading term of the asymptotic 

series. 

Hence f or large values of A and B 

i
m

X Il 
1=1 

12 

-oo

-oo



T 

where 

48. 

To summarise we substitute (3.5) in (3.2) to obtain 

(m) ( ) etr(AB) 
0F1 ½n;tn,w ~ K ---�1---;.:...i.=....,.1�

(
---

) rr c 2det(AB)2 n-m 
1 <j 1 j 

This result is the same as the dominant asymptotic 

term of (2.61). The method of this chapter is much simpler 

f'or determining the leading term but it appears to be  much 

more difficult to exten d in order to obtain further terms of 

the series. 

3.3 Maximum marginal likelihood estimation 

The likelihood factor for the non-central means 

with known covariance distribution is 

etr(-½n)0Ffm>(½n;tn,w). 

We are interested in finding maximum likelihood estimates 

for uJi, •• •Cc.m from the marginal distribution of w
1 , • • •  wm.

Using the asymptotic results, the likelihood 

function can be f'actorised as 

where 



1 

L 1 = etr(-½n)etr(nw)2

L2 = det n-t<n-m) II (w1-wl)-½ 1 < j 

G is the asymptotic series (2.47) and K is a function not 

involving W;i. , ••• C1.fu •

for w1 using We begin by finding an estimate 

L 1 only and improve it by using L1L2• The function G is 

shown to have negligible effect for large enoug h values of 

the Wt• The method of estimation is also due to ANDERSON 

[ 1 ] • 

Taking (3.8) 

Differentiating and equating to zero gives 

and the approximate maximum likelihood estimate 

Now we consider the effect that the function L2

has on this estimate. First expand the terms of l 2 =ln L2

in a Taylor series about the points w1• From (3.9) 
m 

l 2 = - t(n-m) � ln w1 - ½ � ln(w1-wj )• 
1=1 l<j 

Taking the terms separately, with 

ln w1 = ln w1 + 1n( 1 + 0�:)

= r1 (wd + 0�1
Wt

+ •••
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+. . . . 

Combining these results with (3.8) gives 

_.1. � ow, - ow,
21< ◄ ,. ,., � W1 - Wj 

+ • • •  +

where e is the sum of the functi ons f1 arrl g13 and is 

independent of' Cl-'1, ••• Ct.In, Ol.Vj_, ..• <>Ct.In. 

Dif'ferentiating 
1 

= -½+½ w1; - t 11::!!l -½ � 1 

W1 
2

W1 
j I 1 W1 - Wj 

+. . .  • 

Equating to zero and substituting w 1 f'or 

Squaring and expanding binomially, 

+. . .  .

)-:1. 

w1 = w 1 - (n-m) - 2 � w, + ••• •
jll W1-Wj 

(3.11) 

At this point it would appear that this estimate 

could be improved by including the effect of G. By 

considering a numerical example I will show that for large 

values of w1 ,w 1 and for small n the contribution of G 

is negligible, but not so the correction made by including 

Suppose from a normal sample with m=3, n=10 sample 

latent roots of W:1. =100, W2 =64, W3 =36 were obtained. 
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Using (3.11) the estimates for the wt. are easily calculated. 

The exact log likelihood function was approximated 

by l :1. +t 2+g where g = ln G�; and G';: is the series ( 2.47) 

truncated after four terms. An iterative method was used 

to locate the function maximum and its coordinates. 

Comparing the two sets of results. 

iterative (3.11) relative 
error(%) 

W:i. 83.20 84-32 1.35 

Wz 56.24 55.98 0.46 

W:3 33.52 32.70 2.45 

All relative errors fall within reasonable bounds. 

At these values l = 72.92, l :1. = 99.47, ! 2 = -26.10

while g = -0.45. Small changes in the w1 have much 

greater effect on the values of l:1.,l2 than on g. 

Estimation from the marginal distribution is stated 

by JAMES [22] to lead to unbiassed estimates. He illust-

rates this by showing that marginal likelihood estimates·for 

the latent roots of the co variance matrix are unbiassed. 

In order to show the estimates (3.11) are unbiassed esti

mates of the w1 it would be necessary to determine E[w 1] • 

3.4 One argument matrix not of full rank 

Using the parameterisation for t he Stiefel manifold 

it is possible to easily derive the leading term of tre 

asymptotic expansion of the Bessel function when one of the 
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argument matrices is not of full rank but all non-zero 

latent roots are large. In the statistical applications 

this corresponds to n, the matrix of non-centrality para-

meters,not being of full rank. 

ered in the next section. 

One application is consid-

From sections 2.3,2.4 the integrand of (2.6) can be 

reduced to etr(AH1BH� 1 ) so the equation can be written as 

oFim>�n;tn,W) = k1 f (dH1 ) i (dH2 ) etr(AH1BH� 1 ) (3.12)

b(m) b(n) 

where k1 = [Vol(O(m))Vol(O(n))J- 1 • 

Let the matrix A (and hence n = A2 ) have rank 

k < m. That is 

O
J 

k 
0 m-k 

As before we can integrate out over subsets of the 

orthogonal manif'old and since A is of lower rank here, the 

remaining domains of integration are Stiefel manifolds of 

lower dimension. Partition the matrices H1 and H! 1 as 

H _ 
[ 

H3:
J

k H�1 = [ K
i K2 ]m • 1 

- H� m--k
m k m-k 

The exponent of the integrand of (3.12) becomes

tr [[ �• �J[:n 
B [Ki K2 ]] 



Now tr(A1 HfBK1 ) contains only elements of 

Hl E Vmk and of K where 

K = [ ;: J :-m E 110 • • 

k 

We can integrate out over H� for fixed H½ and 

over H� for fixed K by the formulae 

where 

Vol (!) m 
c1 = Vol Vmk 

The equation (3.12) becomes 

Vol (!J n 
C2 = Vol Vnk • 

0Fim) (½n;trr,w) = k2 / (a.Hi) J (dK) etr(A1 HiBK1 )
Vm k Vn k 

where 

Let k+q = m and partition B into 

(3.14) 



where B1 ,B2 are both diagonal matrices. 

matrices 

Hr = [ I* 0 J 

where 

k q 

[ =1 ] I* = 
• • • t1 •

Thus (3.14) becomes approximately 

Then 

Now Hi and K can be parameterised by 

[ Ht ] ( [ S 1 1 S 1 2 ] )
H:1. = H� = exp -Sf2 0 

Ho = [ K H�] = exp (C�t: T�•]) 
where S11 , T11 are kxk skew matrices and S12 kxq and 

T12 kx(n-k) are rectangular matrices. 

dei'initions for S,T and their elements, 

With the obvious 



h11 = 1 -

ht j
= 

k1 1
= 1 -

k1 J
= 

1 � 2 2 s
1,1 

J=1 

St j + 

½ � tr j
j=1 

t13 +

55. 

+ • • • i = 1 , •.. k

• • •  i = 1 , •.. k, j = 1, ..• m

+ ••• i = 1, ..• k

• • •  i = 1, •.. m, j = 1, ..• k.

For the integrand of (3.15), neglecting terms of 

degree greater than 2, 

k k k 

= � a1b1-½ � � {a1b1S! j +a1b1tfj+2a1b j s13t13J 
1=1 1=1 j=1 

This expression can be summarised in the notation of quad

ratic forms as before to facil itate using the standard 

integral (A.1.5). 

section 2 and 

Let .§1 3 and Q1 j be as defined in

ij: )� 

Since det Q 1 j = af(bf-bj) > O, Q 1 j 
is positive definite.
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Then 

For the Jacobian of the transformation 

k m k 

I\ I\ ds 1 j , /\ d t1 j ,
1=1 j= k+1 l<j 

k n 

I\ I\ dt13 
l=1j=k+1 

stand for /\ ds13,
t < j 

respectively. 

Again the method is to substitute (3.16) and (3.17)

in the integral of (3.15) and change the range of integration 

to -oo < s13, t1 j < oo to obtain the asymptotic representa-

tion. 

f (a.Hy) f (dK) etr(�HrBK1 ) 

N((IO]) �[�])

X 

X 

k m 

11 
1 =1 j=k+1 

k n 

IT II 
1=1 j::m+1 

f 
0°] exp ( -½..§ 1 j Q

1

�: j..§ 1 j ) d..§ 1 j 

r exp(-½a1b1t�J)dt1j 
-oo



= 

exp 1!1

a1b1)C2v)½k(k-1)(2v)½kq(2v)½k(n-m)

- m - n-m) •IT Ctj 2 IT IT [af(bf-bj)] 2 TI (a1b1)2

l<j 1=1 j=k+1 1=1 

Finally the substitution of (3.18) in (3.15) gives 

a Fi m) ( ½n;tn, W) ~ 

where 

For k=m this agrees with (3.6).

3.5 A BA.�TLETT-LAWLEY type test of rank 

The aim is to develop a l ikelihood ratio test on 

the rank of the matrix of means M • This is also a test 

on the number of non-zero non-centrality parameters W1• 

The equivalence of the two follows from 

LEMMA 3.1 

rank (M) = number of non-zero w1• 

Proof 

Since the covariance matrix Z is positive definite 
1 1 

rank (M) = rank (MM 1 ) = rank (Z-2MM'Z-2) 

where z-2 is the positive definite square root of z- 1
•
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The matrix � 2MM'� 2 is symmetric an:l hence it s rank is 

equal to the numb er of non-zero latent roots. The matrix 

�-1 MM' has the same latent roots. Q.E.D. 

First we consider the likelihood ratio test of the 

hY]?othesis H0: M = O 

against 

On the alternate hypothesis the likelihood function is 

and the test statistic is 

Now 

-2 ln A= tr W = w1 +•••+ Wm

and putting X = (x1 ••• xn) where x1 an mx1 column 

vector 

tr W = tr �- 1x:x 1 = � x{ �- 1 x1•

1=1 

On Ho each term has a x2 distribution on m degrees of 

freedom so tr W has a x
2 distribution on mn degrees of 

freedom. 

A more general hYJ?Othesis is nON considered. We 

wish to test Ho M has rank k < m

against H1 M arbitrary. 

By LEMMA 3.1 this is equivalent to the test or 

Ho Wit+ 1 = • • •  = Ctln = 0 

against H1 all W1 > o.



We now derive the test statistic and consider its 

asymptotic distribution. The test statistic used is 

A = -2 ln /\ = Wk+ 1 + ••• + Wm

and rather than interrupt the argument at this point, the 

long but straightforward derivation is given in Appendix 2. 

The derivation is a modification of one given by 

RAO [30]. There he is considering what he calls a test of 

dimensionality on the matrix of means. 

It is interesting that the criter ion A is deriv

able, as most BARTLETT-LAWLEY type test statistics for test

ing these intermediate hypotheses, such as the test that a 

subset of tre latent roots of the covariance matrix are 

equal, are merely a contraction of the statistic derived 

for the overall test, such as the sphericity test. 

Now by asymptotic theory A is distributed as x
2 

where degrees of freedom = number of parameters in H1

number of parameters in H0•

The null hypothesis states that M has rank k. This 

means that k r(Jll vectors of M are linearly independent 

and the remaining m-k rows are unknown linear combinations 

of' these. Thus Ho involves kn + k(m-k) parameters. 

Clearly H1 involves mn. 

degrees of freedom f'or x
2

•

Summarising 

Hence there are (m-k)(n-k) 
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THEOREM 3.1 

To test H0 : M has rank k < m against H1 : M 

arbitrary, use the statistic 

On Ho A ~.x� where d = (m-k)(n-k). 

In the spirit of LAWLEY [26] we can improve our 

approximation by finding a ·multiplier c such that cA is 

more nearly 

·in JAMES [ 23]. 

·A new approach to this problem is given 

It involves the determination of the

conditional distribution of the last q sample roots given

the first k.

Now using the asymptotic result (3.19) the joint 

distribution is given by the 

THEOREM 3.2 

The asymptotic distribution of the la tent roo ts 

w1 , ••• wk, Wk+ 1 , ••• wm depending on the non-centrality 

parameters lLlj_, ••• Wit is 
m 

f(W1•••Wk,Wk+ 1 •••wm;ll.lj_,•••Wic) A dW1 1=1 
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where 

As in [23] there are two very use:f'ul corollaries. 

COROLLARY 1 

The first k sample roots are asymptotically suff-

icient for the population root s uJi,. ••u.Jir.•

COROLLARY 2 

The conditional distribution of the last roots 

Wk+i'. • .wm, given the first k, is 

k m 1.

= const. IT IT (w1-w3) 2 

1=1 j=k+i 

exp(-½ 1 w1) IT W1½( n-k-�-1) IT (w1-w3) A dW1• 
j=k+i 1= k+1 k<1<j�m 1=k+1 

(3.25) 

and this does not depend on t he population parameters 

The la st line of (3.25) is essentially the null 

distribution of wk+1, ••• wm on n-k degrees of freedom. 

One degree is lost for each variable conditioned on. The 

test of rank can now be made using this conditional distrib-

ution. 
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If k were zero, then the distribution of the likeli

hood rati o stat istic A would be derived from the distribu-

tion in the second line of (3.25}. 

X� = A 

where 

d = g_n. 

The result is 

In testing the la st 4 root s when k ft O, as a 

fir st approximation one could ignore the factor involving 

w1 , ••• wk if these were large. In this case (3.26) would 

be correct as a first approximation but in (3.27) n is 

replaced by (n-k) and we have 

d = q(n-k). 

(Of course (3.27) could be written 4(n-k) as k=O in that 

case.) 

By considering the factor involving w
1

, • • • wk we 

obtain the refinement of the form cA, which is more nearly 

X�• Expanding the product,with Wk >> Wk+1, ••• wm 

= 

= 

= 

= 

II W1 2
4 II 1 

k ( 1 m ( 

1=1 j:k+1 -�)
½

)

+ 0(;1 ))) 

II w 1 2
4 II 1 

k 1 k 
( 

A
-- + 0(;1 )) !=1 1=1 

(1 A k 1
--h-+

21 :::1 Wt 

2W1 

o(.1)) t Wt ½g_•
W l =1 
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Using (3.29) the distribution (3.25) is approximated 

as 

fk = const.(1-½A1 t, + o�)) tw 1 ½q .null distribution 

(3.30) 

where the null distribution is given by 

Define the following notation for eXl)ectation. 

E0 = expectation with respect to the null distribution (3.31)

expectation with respect to the modified distribution 
( 3.30 ). 

To a first approximation, by (3.26) and (3.28)

E 0 [A] = d = q(n-k) 

E0 [A2 ]= d(d+2). 

To i'ind the constant of (3.30) we have 

1 = E1 [1] = E0 [const.(1-½� i + 0(�))
1
�1

w1
½q

] 

= const.(1-½d; ..1.. + 0(1)); w1 ½q
W1 W 1 = 1 

and the modified distribution takes the form 

• null distribution.

The improved multiplier c comes from 

(3.32a) 

(3.32b) 



Thus.to order w-1 we have 

( 1 
+ 1 ! 1; 1 f = x� 
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and the results of this section are summarised as 

THEOREM 3.3 

The statistic 

is an improved. statistic and is asymptotically distributed 

as 

Connections with MANOVA and canonical correlations 

This problem of rank, or number of non-zero non

centrali ties, is now shown to be allied to the general 

MANOVA situation. The results (3.21), (3.22), (3.23), 

(3.26), (3.27) and (3.28) of the previous section can all be 

derived as limiting cases. 
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l 

Let Xmxn, Ymxt oe sample matrices on n,t degrees 

of freedom respectively wit h  the columns all normally and 

independently distributed with common covariance matrix �. 

Also E[X] = M, E[Y] = o.

Thus the likelihood ratio statistic to test H0 :M=0 

against H1 : M arbitrary is 

[ 
det YY' 

J 
½(n+t)

m .1.(n+t) 
"= det(XX'+YY1) = 1�1 

(1-ri) 2 

where the r1 are the latent roots of 

det[XX' - r(XX 1 +YY')] = O. 

Asymptotically 

The test was proposed oy BARTLETT [5] and by considering the 

expectation of -2 ln" he derived an improved approxima-

tion. Allowing for the notational changes n ➔ n+t, q ➔ m, 

p ➔ n, this has the form

-(t - ½(m-n+1)] � ln(1-r1) ~ �n•

BARTLETT [4], [5] also proposed that in order to 

test that M has rank k, the statistic to use is 

(3.41) 

which is asymptotically x2 on g(n-k) degrees of freedom. 

In [26], LAWLEY considers a further a djustment term. 

Let the f 1 be solutions of 
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If the f1 estimate population parameters fi1
2 then the 

approximation is (1 - r1 = (1 + f1)- 1)

k 1 m 
[t - ½(g_".'"n+1) + � -f] z ln( 1+f i ) ~ x� 

1=:I. 1 j=k+:I. 

where d = (m-k)(n-k). 

Now it was shown in section 1.2 that the non-central 

means with known covariance distribution can be obtained as 

a limit from the general non-central means distribution with 

the substitutions 

w _ r1t
1 - 1 - r1 

and then letting t ➔ oo• 

r - w, 1 - Wt + t 

Take the right hand side of 

(3.37), substitute for r1 and let t ➔ oo to give 

� 
exp(-½� w1) = etr(-½W)

1 = :I. 

which is the result (3.21). 

Similarly substitution for r1 in (3.39) and (3.40) 

and letting t ➔ oo gives (3.22) while the limiting process 

applied to (3.41) yields (3.23). Under this limiting pro-

cess the asymptotic distribution of -2 log� is still a X2

on the appropriate number of degrees of freedom, thus yield

ing (3.26), (3.27) and (3.28). 

Also if we substitute tf1 = w1 then as t ➔ oo 
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(3.42) becomes det(XX: 1
- w�) = 0 and (3.43) becomes 

q n+1 k 1 ] 
m W t [1 - - + � - ln IT (1 + .!!l.t ) 

2t 1=1W1 l=k+i 

which is precisely (3.36). 

One final link is with the canonical correlations 

distribution. As was shown in section 1.2 the general 

canonical correlations distribution tends to the non-central 

means with known covariance distribution under the substitu

tions w 1 = tr1 2, w1 = tp1 2 and taking the limit as t ➔ oo. 

To test the hypothesis P1t+ 1 = ••• = Pm = 0 

BARTLETT [4] proposed the statistic (n ➔ t, p ➔ m, q ➔ n, 

s ➔ k) 

x2 = -[t - ½(m+n+1)]1og IT (1-r 1
2 )

1=k+1 

where x
2 has (m-k)(n-k) degrees of freedom. The 

multiplier was modified by LAWLEY [26] to give an improved 

approximation. Quoting equation (8) (n ➔ t, p ➔ m, q ➔ n) 

this improved multiplier takes the form 
k 1 t - k - ½(m+n+1) + � -::-,r.

1::1r1 

Substituting this in (3.44), putting r1 2 = t- 1 w1 and 

letting t ➔ oo gives (3.36). 
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CHAPTER 4

THE BESSEL FUNCTION OF ONE .ARGUMENT 

4.1 Introduction 

Here we apply the reduction process of Chapter 2 

to the Bessel function 0F1 (½n; txx') and obtain an 

asymptotic expansion valid for those X such that XX' has 

large latent roots. The result is easier t o  obtain than 

(2.58) ani is made even easier by borrowing freely the 

results of Chapter 2. 

ANDERSON'S integral, in the case m=k, is derived 

as a stage in the pr ocess and in section 7 we see how (2.11)

can be obtained by averaging (4.4).

Statistically the Bessel function of one argument 

matrix appears as part of the likelihood factor of the non

central Wishart distribution. 

Direct substitution for H in (4.1) again leads 

to obviously wrong results so some preliminary integrations 

are in order before setting H = exp(S). 

4.2 ANDERSON'S integral 

Directly from JAMES [21] comes the integral 

oF1 (½n; fXX') = k1 f etr(XH1 )(dH) 
bcn) 

and using (2.9), with H1 E �nm 



oF1(½n; txx') = k2 { etr(XH1 )(dH1)

�nm 
(4.2) 

where k1 = [Vol(o(n))J- 1, k2 = (Vol(Vnm)J- 1 and 

H = [H1 H2] E O(n). 

Again this can be shown to be a function of the 

latent roots of XX' only. Diagonalise X by the trans-
formati on of LEMMA 2.1. Set X = D[A O]E with DE O(m), 

EE o(n), A= diag(a 1 ) and the a 1
2 are the latent roots of 

det(XX' - a2I) = O with af > •• •> a� > o. 

the integrand of (4.2) gives 

Subs ti tu ting in 

etr(XH1 ) = etr([A O]EH1D) 

and it is clear that EH1D E Vnm• Change variables to 

K1 = EH1 D and since E,D are constant matrices (dK1 )=(cl.B1 ). 

Hence (4.2) becomes 

0 F,(½n; txx') = k2 l etr([A O]K,)(dK,),

.nm 

Applying the Stiefel manifold transformation of 

HERZ, 

where T is an mxm real matrix with T1 T � I, U E Vn-m ,m 

and there is now the added restriction of n � 

measures (dK1) = det(I-T1 T)½(n-2m-1)(dT)(dU)

2m. For the 

and for the 
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integrand of (4.3)

So (4.3) becomes, on integrating (dU) over Vn-m,m 

oF1 (½n;tXX') = k3 { etr(AT)det(I-T'T)½(n-2m-1)(dT) (4.4)

T'f�r 

where 

Equation (4.4) is ANDERSON'S integral for the case when the 

matrix Xmxn is of rank m. 

POISSON integral (1.30). 

For m=1 this reduces to the 

The integration over T'T � I must be reduced to 

one over o(m). Let T = HS where He o(m) and S an 

mxm symmetric positive definite matrix. 

(dT) = (d.H) IT (d 1 +d j )(dS) 
1 < j 

From (2.14) 

(4.5) 

where d1 , •.• dm are the latent roots of S, and (4.4) 

becomes 

0F1 (½n; tXX') = k3 r (dH) I (dS)etr(AHS)

b(m) S�I 

x det(r-s2)½(n-2m-1) IT (d 1
+d

j )•
1 < j 

The three steps of the classical approximation are 

now applied. Transfor m U = I-S, Uhas latent roots 



u1 = 1-d1 and (4.6) becomes 

0F1(½n; fXX') = k4 ( (dH)etr(AH) 
6(m) 

71. 

[(dU)etr(-AHU)[det U(I-½U)]½(n-2m-1) IT 
(

1 - U1�Uj)

U�I 
1 < 3 

(4. 7b) 

with � = 2½m(n-m-2)k3 • Expand binomially to o btain the 

series ( 2.17). Apply THEOREM 2.1 term by term to (4.7b) 

with the series substituted and th e range of integration 

extended to U > O, sinc e  the latent roots of A are 

assumed la rge. This gives, with R=AH, R- 1=H'A- 1

0F1(½n; fXX') � ks det A-½(n-m) 

with � 

r etr(AH)( 1 + i dK CK (R-1))(dH) 
b(m) k ," 

as in (2.20) and 

4.3 Finding the maxima 

Now (4.8) can be  split in ro integrals over the dis

joint subsets v+ (m) and 0-(m). Making use of the device 

H+ = JH of Chapter 2, we get 

r f(H;A)(dH) = r f(H;A)(dH) + r f(H;A*)(dH) 

b(m) 6+(m) b+(m) 

where f stands for the integrand of (4.8) am

A=�= diag(a1 •••8.m-1,-8.m)• 
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To rind the stationary points 0£ tr(AH) over 

o•(m) we have, taking differentials ani equating to zero, 

d tr(AH) = tr(AH(H' d.H)) = 0. (4.10) 

Us ing LEMMA 2.2, (4.10) implies that AH is s ymmetric. 

Thus AH= H'A, or element by element a 1 h 1 3 = h3 1 a3• For

i = 1, 

j = 2, ••• m. 

Since the rows and columns of H are normalised 

h� 1 + � hj 1 = 1 •. 
j:2 

By  assumption a
3 

< a1, j = 2, ..• m and the above are contra-

dictory unless h31 = O, j = 2, •.• rn. 

j = 2, ••• m. Thus we can write 

where H1 e o(m-1), and by repeati ng the argument on H1,

±1 
• 

H = • 

• 

± 1 

Hence for tr(AH) the maximum is tr(A) at H = I 

and for tr(A*H) the maximum is tr(A*) at H = I. 

Unlike the Bessel functi on of two argument matrices, 
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we have a unique maximum for tr(AH) over He �+ (m) and a 

unique maximum for tr(A*H) similarly, rather than the 2°1 

equal maxima over each subset as befo re. However we argue 

as before that for large values of A and A* the integrands 

on the right hand side of (4.9) are large o nly in the neigh

bourhood of  the maximum of tr(AH) and tr(A*H) respective

ly. Thus (4.9) approximates to 

[ f(H;A)(d.H) � { f(H;A)(dH) + / f(H;A*)(d.H). 

(m) �(I) �(I) 

4.4 Approximating the integral 

We concentrate on  

(4.12) 

g(A) = { f(H;A)(dH) (4.13) 
�(I) 

but the same procedures may be applied to g(A*). 

Now N(I) contains only HE o+ (m) so apply the 

parameterisation H = eJCI)(S) where S is an mxm skew 

symmetric matrix. 

m 
2 

= 1 - ½ � s 1 j + o(s2 ) 
j=1 

i = 1, .•• m 

Also N(I) ➔ N(S=O) 

+ o(s) i fi j. 

and (d.H) = J(S) IT ds 1 3 where 
1<j 

J(S) is given by (2.37).

Substituting for H in f(H;A) = etr(AH)(1+F(H;A)). 



First 

Thus 

g(A) 

tr(AH) = 

(4.15) 

For large values of a1 the major contribution to 

the integral (4.15) comes from integrating over values of 

Stj near the origin so the range of integration can be 

extended from N(S=O) to U {s13:-oo < s1 3 < oo}. Further-
1 < j 

more let A- 1 = diag(a1 1 ) = diag(a1), R- 1 = (P13) and

with the a1 * the elementary symmetric functions of the 

latent roots of R- 1
•

Firstly 

and secondly a1 *
2 is easily found, while since P1J=a3h

j1



= 

Substituting in F(H;A) gives �(S;A) and it is 

easily seen that all terms derived from (4. 1 5) are evaluable 

using 

f exp(-!,ds2)ds = [ �,] ½

r s2r exp(-',ds2) ds = [ �,r J ½ 
r = 1,2, .•• 

-oo

and the integral of an odd power of s gives zero. 

Substitution and integration of all terms from (4. 1 5) 

gives 

g(A) 

and stopping at terms of second degree in 

1
+ m(n-3)(n-5)(n-m)(n-m+2)� �a1 

m 1 
+ ra(n-3)(n-m)(m-2)1�

j 
k�1 ak(a1+a j)

(rn-2)(5m-11) � 3 + 5m2 -23m+38 � � -,---r-1�----
+ 2.6! l<j (a1+a3) 2 6! t< j t<k(a1+a3)(a1+ak)

j<k 
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4.5 Proving the approximation 

Using HSu•s LEMMA we can show that (4.18) is an 

asymptotic expansion for the integral (4.13) for large 

values of A. 

THEOREM 4.1 

Let A = diag(a 1 ) be mxm \'vi th  a1
>a2> • •• >am>O. 

Then for A large and g(A) defined as in (4.13) 

g(A) ~ 

Proof' 

(2w)f
m

(
m
-i)etr(A)

II (a 1 +a
j
)2

1<.1 

• 

The proof follows the lines of that for THEOREM 2.3. 

Set A =  a1X, x1 = a1
1 a1, etr(AH) = [etr(XH)]a1 etc ••• Q.E.D.

Again i t is easy to show that 

g(A*) = O(exp(-2am)g(A)) 

indicating the relative unimportance of the second term. 

4.6 Summary 

From (4.8) and (4.13)

oF:1. ( ½n;tXX') � k5 det A-½(n-m) [g(A) + g(A-:C)].

The results may be summarised in the 

THEOREM 4.2

Let the matrix XX' have latent roots Then 

for large values of the at the Bessel function has the 

asympitotic representation 
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F (.:Ln.J..vv/) .,.. 0 1 2 ,4.r.A -
k etr(A) 

IT (a 1 +a j )½det A½(n-m)
l<j 

G(A) (4. 22) 

where G(A) is given by (4.19) am k = 2i-m< 2n-m-s)rro C½n)
,,fm(m+1) • 

Setting m=1 this reduces to 

F (.1.n ·t· x2 \-. 2½(n-3) ex

(1 (n-1) (n-3) + Cn+1) (n-1) (n-3) (n-5) 
) 

0 1 2 ' r-·
,/1, x-½(n-1) - 8x 128x2 • • 

which agrees with the first few terms of (1.31). 

Again numerical evaluations are left for Chapter 8. 

4.7 The averaged ANDERSON'S Integral. 

The integral (2.11) can be deduced directly from 

(4.4) by averaging over the orthogonal group. 

left hand side of (2.11) 

Take the 

oFi m ) (½n;fA2 ,B2) = c1{ 0F1( ½n;fA2HB2H 1 )(dH)
�(m) 

(4.23) 

where c1 = [Vol(0(m))J- 1• The -argument A2 HB2H' has the

same latent roots as BH'A(BH'A)' so (4.23) becomes 

0Fi m ) (½n;fA2 ,B2) = c1{ oF1(½n;fBH'A(BH'A)')(dH)
bcm> 

• 
[ [ etr(BH'AR)det(I-R'R)½(n-2m-1)(dR)(d.H)(4�4) C2 

(m) 'R�I

where = rm C½m)rm(½n)c2 m m2 • 
2 1r rm ( ½(n-m)) 

Making the substitution 

T'=R and using the fact that tr(XY) = tr(X'Y') with 

X = BH1 A, Y=T' gives (2.11). 
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CHAPTER 5 

THE P.D.E. ASYMPTOTIC FORMULA FOR 0F+

5.1 Introduction 

The result of Chapter 4 for the Bessel function of 

one matrix argument was given in terms of inverse powers of 

the latent roots and was asymptotic on these becoming large. 

In this Chapter we consider an asymptotic expansion for 

0F1 (½n;R) (R mxm symmetric) where the series is given in 

powers of n- 1 on the condition that the matrix R depends 

on n. 

The asymptotic expansion is derived using a system 

of partial differential equations given by MUIRHEAD (27]. 

The system is a generalisation of that given by JAMES [17] 

for 0F 1 ( ½m;R) and many of the results used in section 2 are 

taken from that paper. 

Finally the expansion is related to the 0F1 appear

ing in the likelihood factor of the non-central Wishart 

distribution. 

5.2 Using the dii'ferential��fili.Qn§ 

Let R be an mxm complex symmetric matrix with 

latent roots R1 ,R 2 , ••• Rm• Then from MUIRHEAD [27] 

THEOREM 5.1 

The function 0F 1 ( ½n;R) is the unique solution of' 

each of the m differential equations 



i = 1,2, ••. m 

subject to the conditions that 

( a) F is syrnme tric in R1 ,R2 , • • •  Rm , and 

(b) F is analytic about R=O and F(0)=1.

In statistical applications the matrix R is 

restricted to being positive semi-definite. That is all 

R 1 � O, i = 1,2, ..• m. However ror the expansion an even 

more restrictive condition is needed. 

form 

f'or each n, 

Let R have the 

where S is a fixed mxm symmetric matrix. 

Thus vire can determine the behaviour of 0F 1 
as n-too. 

LEMM.A 5.1 

lim 0F 1 (½n;R) = etr(2S) 
n-ieo 

Proof 

Expand 0F1 in a zonal series and take limits. 

Since the series is absolutely convergent, the order of the 

operations of' summation and taking limits can be reversed. 

Thus, substituting R=nS 

lim 0F 1 ( ½n;R) = 
n-1ao 

Now C,c (nS) = nkcK (S) and taking limits the individua l 

terms reduce to C,c (2S)/k!. Summation of' these terms gives 
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the required result. Q.E.D. 

First we obtain a system of PDE's in tre latent 

roots 81 ,82 , • • •  sm of s. Make the transformation (5.2).

Then R 1 = nS 1 and differentiating L - 1 oF 02F 1 � 
dR 1 - n 0S 1 'oR-i-� n2 � 

The system (5.1) becomes 

8 a2 F [ 1 1 ( 1 ) _
2
1 � s 1 � _ j_ � s 3 aF = nF1 � + 2n-2 m- + 3# 1 S 1 -83jo8 1 23#1 S 1 -S3 as j 

i = 1,2, ••• m. 

Now using (5.3), for large values o f  n the function 

0 F1 can be factorised in the form 

F = etr(2S)G 

and we get PDE's for G. Differentiating partially in (5. 5) 

oF etr(2S) oG + 2 etr(2S)G
as 1 =

081 

o2F etr( 2S) o2G etr(2S) :-
1 + 4 etr(2S)G.

as;v 
= 

�+4

Substituting in (5.4) and cancelling an etr(2S) gives the 

i = 1,2, ••• m. (5.6)

By the co ndition (a) on the solution of (5.1), F is 

a symmetric function. Als o etr(2S) is a symmetric function. 

Hence from (5.5) G is also a symmetric functi on. This 

suggests that we try a series expa nsion in elementary sym-

metric functions. That is, a solution of t he form 
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G = 1 + 

where the Pu(a) are polynomials in the elementary symmetric 

JAMES [17] has shown h ow to transform from a PDE in 

the variable s to a PDE in the elementary symme tric functions 

of them. Let a3< 1 > for j = 1,2, •.• m-1 denote the jth 

elementary symmetric function of the variables S 1 ••• Sm 

omitting S1. Introducing the dummy variables 

ao = ao ( 1) = 1 

a3 = 0 j = -1,-2, ..• and 

a� t � 0 j = -1,-2, ... and 

we have the relationship 
(1) (1)aJ = S 1 a
j
_ 1 + aJ

m+1,m+2, ••• 

m, m+1, ..••

-oo < j < 00

i = 1,2, .•• m. 

The partial derivative formulae are 

m ( 1) 0
� av-1 � 

y = 1 vay 

On substituting for the partial de rivatives and 

applying (5.8), (5.6) gives 

i = 1,2, ..• m. 



To proceed we need the following 

LEMMA 5 • 2 ( [ 1 7 ] p 3 71 ) 

8 2 . 

If s1 ,s2 , • • •  sm are indeterminates and a1 ,a2 • • • am

the elementary symmetric functions of them, and ai 1 ' ••• ���

the elementary symmetric functions of s 1 • • •  Sm with S1

omitted and if Ao(a),A1(a), .•• ru_ 1 (a) are functions of 

a1 ••• am such that 

then ¾(a) = O, A1 (a) = o .... f'm_ 1 (a) = o.

Using the LEMMA 5.2 each of the m PDE's in (5.9) can 

be expanded into a sy stem of m PDE's. Each member of 

(5.9) will give the same system of derived PDE's. Equating 

the coefficients of a��� to zero for j = 1,2, ••• m we have 

+ 4

m c 3 > a2 G' 1 • oG 
� Cµv (Si - .. Sm) aa aa + 2Cn+1-J) -

V , µ: 1 µ y 
Oaj 

Z av 
V=i 

j = 1,2, .•• m

where C(j) - c(j)
µv - vµ and for µ � v 

aµ+ v- j 1 � j � µ

C( j) 
0 µ < j � V j 1,2, ••• m. µv = = 

-aµ+ v - j V < j � µ + V

0 µ + V < j 

(5.10) 

Written more explicitly, the system of differential 

equations (5.10) is 



j = 1 : 

tr 

j = 2: 

( a6 1) )

[ a1 a2 • • • • am 
• 

[ 
a2 • 
• 
• .

[ 
• • 0 • 
am 

oG m 
+ in-+ 4 � av2 oa1 Y=1 

( ai 1 > )

[ -1 0 • • • • 
0 a2 as•• 

[ tr • • as
• .

[ 
• • 
0 am 

aG 

• 

o2 G 
aa"2' 

•••• 
1 • 

• • 
• • 
• • 
• 
a2G 

oam oa1 

oG +oay 

0 

4a1
G = 

o2 G 
oa1 oam 

. 

o2 G 
dam 2

] 
(a�:iaµ)]

0 
] 

aa-
+ ½(n-1) aa2 

- 4 aa1 

= 4G. 

For the general PDE ( ( 1) )aj- 1 

[f 
o 0 -1

-1 -a1 

[ 
• 0 

• 
• 

tr [
0 -1 -aJ-3

-1 -a1 
-aJ-s -aJ-2

[ 
aJ aj+ 1 • • .am

0 aj + 1 ,. 

• 
" • 0am

+ ½(n+1-j)%� - 4 aG = 0

83. 

] 

] (5.11a) 

] 

(5.11b) 

J 
] 

(a�:�aµ) J 
J 
] 

(5.11c)

aaj-1 
j = 3 ... m.
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Substitute for G in (5.11) using (5.7) and equate

coefficients of powers of n-1. 

Term independent of n(u=O). 

j = 1 : .1. aP 1 ( a) 
+ 4a1 = 0 (5.12a) 2 aa1

j = 2: .1. aP + 
2 aa2 

= 4 ( 5.12b) 

j > 2: .i. ap 1 
2 aa j 

= o. (5.12c) 

Hence P1 (a) is a function of a1 and a2 alone 

and must ha ve the form 

(5.13) 

Condition (b) on (5.1) is needed here to provide a unique sol

ution to the equations (5.12). If 8=0, then 0F 1 (½n;n8) = 1 

and hence G=1. Thus P 1 (0)=0 and c0
=0. Substituting 

(5.13) in the equations (5.12a) and (5.12b) gives the solu

tion 

j = 1 : 

j = 2: 

j = 3: 

Sol ving 

Next the coefficient of n- 1 .
.1. dP2 
2 aa:1. 

= 8a1 

.1. dP2 
2 aa2 

= -4

.1. dP2 = 322 aa3

the system 

+ 32a:1. 
2

- 32a2

- 32a1 + 32a2
-

j > 3:

under condition 

- 32a1 a2

16a1 
2

dP2 =aa
j 

(b) 

o. 

+ 16a1 
3

By consider ing successively the coefficients of  

-
2 

-
3 th 1 • 1 n , n , • • • • e po ynornia s 

The number of terms per polynomial increases sharply with u 



as Pu(a ) is a po ly nom ial. o f degree 2u. Rather than eval-

uate further Pu ( a) , we n ow consider a series ex pansion in

ano
t

her set of' symme tr ic fun ctions tha. t gives f'ewer terms

per po l
ynom i a l

.

5. 3 
The direct method

Le t us co ns ide r  a series of' the form 

where the Qu
(r

)
are pol

ynom ials in the power sums r 1 ,r2 ...

Solv
in

g

Thi
s

is analogous to (5.7). 

S
ub stitu ting (5. 16

) 
directly into (5.6

) 
give

s

i = 1 , 2, • • •  m. 

T
e r m  in de pe ndent of n (u= O

)

.1. 0Q 1 + 4S 
1

= 0 
2 oS1 

i = 1,2 ••• m. 

Q
1

(r) =

-48

1

2 
+ sim ila r terms i 

=

1, ••• m. 

C
ombin i ng  all m re su lt s and eX];)ress in g the solution in 

t
e

r
m

s o
f 

povrer sums
Q

1

(r ) 
= - 4r2 • (5.18

)

1 

T
he coe ffi cien t o f  n

' 

oQ2 - 16
S1 

+ 8 � sj + 32 S 1r2 + 6 48
1 2 

oS 1 - j
#

1 
• 1 i = , ••• m .



Integrat1ing 

+ similar terms.

Combining all m results 

It is easily seen that 

r2 + 2 Z 81831<j 

r2
2 = r4 + 2 Z S1 2s3

2

1 <j 

86. 

and substitution in (5.20) gives the answer in power sums as 

For general u, the m equations have the f'orm 

oQ.u + 1. = -2S1
c)2Qµ (m-1) oQu - 8S1

oQu 881 Q.u oS 1 0S1 2 + 0S1 
-oS1 

-[ 
S1

oQ.u - 83 
oQµ

0S1 08_.t 
S1 - s j

j;fi 
( 5. 22) i = 1 , •.• m. 

5.4 The two methods, a comparison 

From JAMES [21] comes a table of' zonal polynomials in 

terms of' power sums and elementary symme tric functions. By 

equating the two 
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Substitution in P1 and P2 shows that 

but Q
1 

and Q2 only involve half as many terms as P
1 

and 

P2 • 
From this it is inferred that in general Qu wil1 

contain less terms than Pu but one can be converted into 

the other if necessary. 

The method of Section 3 is more dire ct as no cha nge 

of variable s  is required in the PDE(5.6) before substituting 

On the negative side �1e main disadvantages appear 

to be the evaluation of the term 

and the combination of m results like (5.19) into the 

polynomial (5.20) where the method is one of trial and error. 

The s olution of (5.22) introduces functions that are not 

power sums or even elementary symmetric functions e.g. 

For the first method the main problem is to write 

down the system of equations for each Pu• The general 

equation (5.10) is not as simple as (5.22) because the 

coefficients ct�> depend on the equation, but the solving 

is trivial since we nee d only work in terms of elementary 

symmetric functions. 
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The main asset of the first method is that i t  would 

be quite simple to write a computer programme to evaluate 

the polynomials Pu(a) recursively. For the second method, 

the term (5.24) seems to need human intervention to handle. 

Also there is this problem of mixed terms and their convers

ion to power sums. 

5.5 Statistical applications 

The non-central Wishart distribution involves the 

Bessel function 0F1 (½n;t�- 1 MM'�- 1 XX') where n is the 

number of degrees of freedom of the sample matrix Xmxn, 

E[X] = M and the columns of X are normally and independ

ently distributed with common covariance matrix �. 

Let XX' = nS, then E[S] = � + fMM 1 and S is 

clearly bounded in probability as n ➔ oo. For n large S 

can be treated as a constant matrix. Thus XX' can be 

considered as a function of n alone for n sufficiently 

large, satisfying the condition of LEMMA 5.1. 

The Bessel function can be written as 

Approximating for n 

large gives 

0F1 (½n;nT) � etr(2T)G(n;T) 

where G can be expanded as in (5.7) or (5.16). 

This approximation would be particularly applic

able to power function calcula tions. There we are dealing 

with small deviations from trn cent ral distribution. In 
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particular, it should be most useful for situations involving 

only one non-zero latent root or perhaps more generally a 

sm all number of them non-zero. 

The approximation could also be used to evaluate 

the likelihood function of the non-central Wish art distribu

tion, viz., 

I ts usefulness would be. limited to that part of the r ange 

for which the la tent roots of nT are small or the s ample 

size would need to be large. 

No numerical c alculations were done to determine 

the region of application of the approxim ation. This would 

be an extensive study in itself. 
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CHAPTER 6 

.THE LAGUERRE POLYNOMIAL L:(s) 

6.1 Introduction 

All previous asymptotic expansions are only valid 

for large n or for argument matrices wit h large latent 

roots. For small values the zonal series converges rapidly 

enough. The problem is that for "medium" values the asympt

otic expansions do not work and.the convergence of the zonal 

series is too slow. 

The aim of this Chapter is to work with the zonal 

series for the 0F 1 functions and by rearrangerrent of series 

obtain more rapid convergence. The series will be rearrang

ed in terms of the generalised Laguerre polynomials introduc

ed by HERZ [ 1 2] and CONSTAl'lTINE [ 8]. Two such rearrange

men ts will be demonstrated. Both are applicable to the one 

and two argument Bessel. 

A similar Laguerre type expansion exists for the 1 F
1•

This is involved in the non-central moments of the generalis

ed variance ani the likelihood ratio statistic. The expans

ion is included for reasons of completeness only. 

The numerical work is left to Chapter 8. All 

matrices referred to in the following sections are mxm. 

6.2 The classical results 

Let us first review the classical fo rmulae for func

tions of a single variable. Referring to Chapter 10, 
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Section 12 of ERDELYI ET .AL [9] we see that the Laguerre 

polynomials l�(x) are defined as 

n=O 

and 

n = 0,1,2, .... 
a > -1 

The ident ities to be generalised are 

tg(x) n ( )-½a z (2( )½]r(n+a+1) z; = xz eJa xz 

(6.1) 

(6. 2) 

i n!l�(x)l�(y) 
n=o (a+1J n

Zn ( ) [ z(x+y)J ( xyz ) = 1-z - a- :1 exp - 1 _ z _ 0F :1 a+1; ( 1-z) 2 • 

Both can be proved by applying tm Laplace transform 

g(w); f e-••v•r(v)dv. 

Apply to z in (6.2) and y in (6.3) and in both cases 

they reduce to the main generating function for Laguerre 

polynomials i.e. 

As is well lmown (and easily verified) the functions 

J and 0F :1 are related by 

A d iffere nt normalisation is used in (8) so that for m=1 

the generalised Laguerre polynomial reduces to a multiple of 

(6.1) i.e. 
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L� (x) = n! l�(x). 

Using (6.6) am (6. 7) the identities (6.2), (6�3) 

and (6.5) can be written in a f'orm suitable for generalisa

tion (r(n+a+1) = r(a-t.1)(a+1)n) 

(6.8) 

[ z(x+y}-1 ( xyz ) zn = (1-z)-a-1 exp - 1 _ z _ 
0F1 a+1; (1-z)2 

i L�(x) zn = (1-z)-a-1 exp[_g_J 
n=O n! z-1 

6.3 The matrix generalisations 

lzl < 1 (6.9) 

lzl < 1. (6.10) 

The following definitions and THEOREM 6.1 are taken 

from [8]. Let S be a positive definite symmetric matrix, 

p = ½(m+1), a> -1 and K a partition of k, then the 

generalised Laguerre polynomial L�(S) has the definition 

( corresponding to (6.1)) 

The "binomial" coefficients 

= 

fK) are defined by
\v 

(6.11) 

( 6 .12) 

In Chapter 7 specific methods for calculating the (:) to 

any order will be considered. 

Now the analogue of (6.10). 



T
HE

O
RE

M 
6.1 ([ 8 ] Theorem 1)

The ge nera ti ng func tion for the Laguerre polynom-

i
a

ls i
s

det
(

I-z
)
-a-p { etr (-SH 1Z(I - z) - 1 H) (d.H) 

&(m) 

(
x ➔ 

S
, 

z

➔
Z

) 

or a lterna tive
l

y

� L�(S) C,c(Z) 

k,K 
k! C

K
(I

) =

llzl
l

< 1

de t(I - z
)-a-p 

0
F6m) (S,Z(Z-r

)
- 1

)

llz
ll 

< 

C,c(Z) 
CK (I) 

(6.13
) 

( 6.14)

whe
re 

Z is a co m
p

l
e x s y mm etric matrix and llz

ll 
denotes 

the max imum of t he a bsolu te values of the latent roots o f 
z. 

T
o see t hat 

(6.14
) 

is a ma trix generalisation of (6.10
)

wri te 

(6.15) 

The tw o  theo
r e ms that follow are natural generalisa -

t
i on

s 
of (6.8

) 
an d (6. 9 )

. 
Both are proved by use o f the

La
p

lac e  tra ns for m  a
r:d th

e
i r  Laplace transforms are shown to

re
duce 

to (6.14) . As in the single variable case, if two 

funct io n s  have e
qu

a l L
ap

la c e transform s then the functions

ar
e e

qu
a

l. 
W

e 
us e (cf.(6. 4))

g(W ) = { etr(- ZW)de t zaf(Z)(dZ) 

±>0 

wne re W 
i
s a c o mp le x  symm etri c matrix.

(6.16
)

The appropriate 
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the
or

y

i
s c

ov ere d in [7].

In the p ro ofs two standard Laplace transforms are

use
d :

1
. 

CONSTANTINE [7] 

{ e
t r (-ZW)de t z

b
- pCK(Z) (dZ) 

=

rm (b,K) det Vr
bC,c(w -1.) 

i
> o 

(6.17) 

2
. 

C

O

NS TANT I NE [ 8

] 

{ e
t r (-Z\tY )de t Z8L:(z)(dZ

) 
=

�
>

0 

Th
e 

gene r a lisation o
f 

(6. 8) .

THEOR EM 6
.
2 

k
,K 

For 
S

> 
0

, 
Z 

>
0, a > -

1 

L: S
C Z 

a +p 

K

k !C,c I

(
x-+ 

s, z-+ 
z

) 

Proo
f 

(6.18
) 

(6.19) 

Ap pl
y 

(6.16
) 

to both sides. The left hand side 

bec omes

( )�(S) ( )  
[ 

etr (- ZW)de t zacK ( Z) ( dZ
)a+p 

K

k! C

,c 

I 

>
0 

= r
m

(a+p) [de t W(I-
V

r-
1. ) J-

8 -P
0F�m) (s,w-1.(\�r1.-r

)-1.
)
. 

(6
.

1.
4)

E

xp

an
d ing 

0

F;,m>
in its zonal series and applying (6.16

) 



the right hand side becomes 

= rm(a+p)det(W-I)-a-p 0F� m ) (S,(I-W)- 1).

Since I-W = (W- 1-I)W, both sid es are equal. Q.E.D. 

· Now the generalisation of (6.9).

THEOREM 6.3 

For S > 0 , Z > 0 , a > -1 

L� ( S) L: ( Z) tk 

(a+p),ck!C,c (I) 

= (1-t)-m(a+p)etr(- 1�t(S+Z))oFi m)(a+p;Tf�t)2S,Z) (6.20)

(x ➔ s, y ➔ z, z ➔ t) ltl < 1. 

Proof 

becomes 

( 6 .13) 

Apply (6.16) to both sides. The left han d si de 

rm(a+p)[det W(I-t(I-W-1))J-a-p

f etr[SH't(r-W- 1 )(t(I-W- 1 )-I)- 1H](dH) 
6(m) 



The right hand side becomes 

(1-t)-m(a+p)etr(- _:,t_s) �1-t k K 
' 

CK((1�t)2 S 

a+p Kk!CK I 

I etr(-Z(W + 1�t I))det z•cK (Z)(dZ) 
>0 C,c

= ( 1 -t) - m < a + P > e tr (-_:,t_S) � 
(6.1.7) 1-t k,K I 

rm (a+p,,c)det(W + 1�tI)-a-pC,c ( (W + 1�t·r)·1)

= rm(a+p) det[(1-t)W+tIJ-a-p 

{ etr(- 1�tS)etr[ (1�t)2SH' (W + 1�tr)- 1H](dH). 
bcm> 

The exponent in the integral reduces to 

1:tsH 1 [-I+((1-t)W+tr)-1JH. 

Comparing the two sides f'or the terms in det we have 

W(I-t(I-Vv 1 )) = (1-t)W+tI. Finally we must show that 

Taking the right hand side gives 

i�t(W-t(W-I))- 1 [I-(1-t)W-tI] 

Q.E.D. 

6.4 The non-central moments of' the likelihood ratio statistic 

The non-central moments of' the generalised variance 

det(XX') were given in [12] as 
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E[det(X.X')k] 
= 2 km rmfk+ts) det �k F( m )(-k•�s•-�fl)

rm ½s 1 1 , 2 , 2 (6.21) 

where XX1 mxm has the non-central Wishart on s degrees of' 

f'reedom and noncentrality n = diag(w1 ) and the w1 the 

latent roots from det(MM' - c&) = o. If' XX' is as above 

and YY'mxm is a central Wishart on t degrees of' f'reedom 

then the non-central moments of' the likelihood ratio 

statistic have been given in [7] as 

[ ( det YY' )k] 
E det(XX.�+.YY') _ =

(6.22) 

A classical f'ormula f'or the 
1
F 1 in Laguerre poly

nomials is given by RAINVILLE [ 29] as 

(1 t)-c ( 1 
xt

) 
00 (c)0L� x t0

- 1 F 1 c ; +a; t-1 = � -r.1-
n ' • n=o \ +a n. (6.23) 

This generalises to a f'orrnula given by JAMES [21] equation 

(138). 

THEOREM 6.4

(t ➔ Z, X ➔ S). 

Proof' 

(6.24) 

to s. 

The proof' f'ollows by applying the Laplace transform 

Rearrangeme nts required are the same as those of 
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[8] Theorem 1. Q.E.D. 

Using the trick (1.17) giv es S=I, z(z-r)- 1 = -½n,

and Z = n(n + 2r)- 1• No attempt is made to evaluate (6.21) 

and (6.22) nu merically. 



CHAPTER 7 

CALCULATION OF ZONAL POLYNOMIALS AND ( �) 

7.1 Introduction 

Recently JAMES [24] developed an expansion of zonal 

polynomials in t erms of' the monomial symmetric functions 

Sections 2 and 3 deal with the 

numerical calculation of' the Bessel functions using the zonal 

series. In section 3 an algorithm for the r ecursive evalua-

tion of' the MK (S) is stated and proved. 

Also, as stated in Chapter 6, in order to proceed 

with the evaluation of the L�(S) a method for cal cula ting 

the (:) to any order is needed. In section 4 a formula 
Kf'or them, in teI•ms of the product coefficients gyµ (defined 

by (7. 21)), is presented. Of course it then f'ollows that we 

need to determine the � µ and a methai using the monomial 

symmetric function expansion is given in the f'ollowing section. 

Finally section 6 contains some summation identities 

for tbe g�
µ 

and (:) which could prove fruitf'ul if stud

ied further. 

The fundamental uni ts of t he theory are the zonal 

polynomials ZK (s). As yet there is no known dir ect form-

ula for them. JAUES (24] found a partial differential 

equation satisfied by the ZK (S) and showed how to use this 
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P.D.E to find expansions of the zonal polynomials in terms of 

the monomial symmetric functions (msf's) MK(s). 

Fir st the def'ini tion of MK (S). As usual S is an 

mxm symmetric matrix with latent roots s�,s2 • • •  sm• Let 

(k k k ) (1 1T1.21T2 -1T1 ) K = 1. 2••• r = ••• i ••• r � m. Then 

i,j ... u = 1,2, ••• m 

where the s ummation is over all distinct i,j ••• u for which 

each distinct term appears once only. 

in the sum is 

[m]r 

The number of terms 

where [m]r = m(m-1) ..• (m-r+1) ((m]r = (-1)r (-m) r )• 

The P.D.E. for ZK (s) is 

where K is a partition vri th at most m nonzero parts. 

My task here was to write a computer programme using 

the recurrence relations derived from (7.3) to find the co

efficients c,a of the expansion 

where K,T are partitions of k and the ordering is 

defined in section 1.4. I found it feasibl e to compute all 

values of c
KT for k � 13. 



101. 

The formula for the leading coe f ficient is (ki- +1 =0) 

and the recurrence relation is 

where 

Pr = 

[ ( t 1 + t ) -(t j -t) ] CK µ

PK - PT 

(7.7) 

and µ = (l1 • • •  t1+t •.• t
j
-t •.. ts) for t = 1,2, ... t

j 
such 

that when the elements of µ are arranged in descending 

order the inequality r < µ � K is satisfied. 

Tables for k = 6,7 (�able 7.1) and k = 8 (Table 

7.2) are given. A table for k = 9 would have 31 rows ani 

columns with so me of the entries having 9 digits. This 

would mos t certainly require at least two pages and seems to 

me to be too vast to cope with by hand anyv✓ay. 

The tables in [24] are for k = 1, •. 5 and do not go 

far enough to reveal a very interesting point. For k = 6 

there are two zero entries in the table. 

easily explained. For example 

These zeros are 

Note that in the lexicographic o rdering a partition o f  2 

par ts :follows one of 3 parts. If 8 has 2 non-zero latent 

roots then c 1 early M ( 412 ) ( S) = 0 and by the ory

z(412) (8) = O but M(32) (8) f. O hence its coef ficient must
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be zero. 

By a gener alisation of t he above it is easy to prove

LEMMA 7.1 

If partition K of r parts is follovred in the

lexicographic list by a partition r of less than r parts,

then C,cr = o.

7.3 Zonal series and evaluating the MK(S)

tions 

where 

and 

The Bessel functions have the zonal series defini-

0F 1(c;R) 

( m) ( ) oF :1. 
c ;R ,S = 

� 
k I IC 

� 
k,IC 

C,c (R) 
(c),ck! 

C,c (R)C,c (S)
(c),c CIC (I)k! 

C,c (S) = c ( IC ) Z,c ( S)

= X[2K](1)
C( IC) 1.3 ... (2k-1) 

The character 

X
[2JC]

(1) is easily calculated using a modified form of the

expression given by JAMES [22] for C,c (I). Its considera

tion is left to Appendix 3. From (7.4) it is clear that

with c,cr known ever ything depends on the evaluation of the

Direct evaluation of (7.1) by summing ov er all [m]r

permutations and dividing by the repetition factor

1f:1. ! .• 1r1 ! . . • is a very tedious process. What is needed is

an algorithm for building up a table of the M,c(S) by ex-

pressing each msf in terms of msf' s of lower degree.
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The clue is giv en by VAN DER W.AERDEN [32] in exercises 5,6 

on page 82. 

Quoting directly with 

"5• Let 

(m) = h mLt X11 = 1. 

with the summation performed on all distinct permuted terms 

which may be obtained if we take t he or der of the subscripts 

different from 1,2, ••• h. Prove that 

(7.10) 

where t he coefficients c 1 (i=1, •.. h) and c0 indicate how 

many of the integers in the symbols to which they belong are 

equal to k 1 +m and to m, respectively. 

6. Solve the formula found in Ex.5 for (k 1. ••• kh,m). • ."

The equation (7.10) is not strictly correct but a 

corrected version is given by (7.11). Let 

K = ( k1. • • • kr ) = ( 11T 1. • • • i 1T 1 • • • ) and al s o 1 et ( k1 • • • kr )

indicate the msf of m variables ass ociated witl� the part-

i tion K• Abbreviate 

r part msf = msf associated with r part partition. 

The one part msf or power sum rt can be written M(t) 

or just (t). 

Cons idering the product of MK and rt, (7.10) is 

replaced by 



THEOREM 7.1 

where 

Co = 1Tt + 1 

REMARKS 

In particular 

C - -

kq = j 
kq+t = i 

t = i. 

.k1 = j 

104. 

1 - 1Tj k1 +t = i and 1T1 = O. 

The terms on the right hand side of (7.11) are not necess-

arily distinct. When J.ike terms are collected together all 

resulting coefficients are integer s. As a numerical example 

( 2 211 ) ( ·t ) =½ ( 3 211 ) +½ ( 2311 ) -ti ( 2 221 ) -ti ( 2 21 2) + 3 ( 22111 ) 

= (3211)+3(2221)+3(22111). 

The table building algorithm is t:;iven by 

COROLLARY 

A rearrangement of (7.11) gives 

( k 1 • • • kr , t) = �
o { ( k1 • • • kr) ( t )-c1 ( k 1 + t .. , kr )- • • • • 

-Cr (k1 • • •kr+t) l

(7.12) 

REMARKS 

This says that any r+1 part msf can be expr essed 

in terms of r part msf's and a power sum. The power 
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sums a
re eas ily ca lculated .

(k)(t) 
= 

( k+ t) +

where Co= 

1 k J 

k 
= 

a
n

d hen
ce

For the 

Co (k , t) 

t 

t 

2 part 

(k, t
) = ..1..t (k

) 
( t) - (k+ t) l

. 

Co 

msf''s 

Sim ila rl y w
e 

c
an 

cal cula te all required r+ 1 part msf's 

when the appropriate r pa rt ones are known. 

No te that if k
1 = 

k1+1 the two msf''s 

(k
1 

.• k
1 +

t, k 1+i-• kr)
and (k

1 
••• k1,k1+ 1+t, ••• kr

) 
are equal

but 
a

re trea t
e

d sep a r ately in (7
.

12
) 

as in (7.11). This 

s
eems n aive f

or 

han d methods but fo r computing purposes the

11 dumb" wa
y 

is o fte n the best way to malre su re that all cases

are cons
ider ed. B y hand i t would be only necessary to

d
e

te rm ine the distinc t msf' s am. multi ply by the coefficients

1T 1 +
1 • 

The fin a l step is to verify (7.11)
. 

Proof
Let (k

1 
k

2 
• • •• kr) 

be a msf in the indeterminates

Then

r" k1 kq kr l r � t l = 
t

L.J 

Su • • • " S v • • • Sw 5 l L.J Sv 1•V=
1 

Perf
orm t:i.1 e pr od

u
c t  on the righ t hand side. Now the num b e

r

of term s  in w hic
h

kq+t
S y 

occurs , vri th kq = j, is
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[m-1]r-
� 1T1 ! ... (1rj -1 ! ....• 

Hov!ever the indetermina te Sy can be associated with lcq

in only 1/1T
j 

of these terms as sv must also be associated 

equally as of'ten with the 1Tj -1 other parts also equal to j. 

Since v may take m possible values the total number of 

terms of the form k
:1 

kq+t kr 
Su • • •Sy • • • Sw is 

Let 

Then the nu m"'ber of terms in its associated msf is 

and 

The term 

terms and 

[m]r

ffiJ.51 7T J + 1
Cq = TT::f6Y = 

7T j 
• 

k
:1 kr t 

Su • • • Sy Sw occurs in 

m [rn-1 Jr 
7T :1 ! ..• 7T1 ! ••• 

[mJr+:1 

Co = tt.m = 7T1+1· ■ 

(7.18) 

(7.20) 
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The "binomial" coefficients (:) are defined by 

(6.12) while the " gvµ 
are given by 

where K is a partition of k = r+s 

v is a partition of r 

µ is a partition of s. 

The relationship between 

THEOREM 7.2 

(:) and K gvµ 
is given by the 

If k,r,s,K,v,µ are as defined above, then 

(7.22) 

The proof will follow from an easily e stablished 

identity. 

LEMI.IA 7.2 

Proof 

From the integral definition the le ft hand side of 

(7.23) is 

( m) ( 
) oFo I+A,B 

I' 

= / etr[(I+A)H 1 BH](dH) 
b(mJ 

= etr(B) ( etr(AH'BH)(dH) 0 

�(m) 
Q.E.D. 
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Writing the hypergeometric functions of (7.23) in 

zonal series 

� C,c(I+A)CIC(B 
k ,IC k! cl( r

(7.24) 

Since all three zonal series converge everywhere in A,B > 0 

we can take the Cauchy product of the right hand side t o  give 

� _L � Cv (A) IC 
( ) - � � � C ( ) b gvµ CIC B .

(7.21) k r+s=k r!s! v ,µ v I IC 

Rearranging gives 

C
,c 

(B) 
k! 

Equating coefficients of C,c (B)/k! for th is and the left 

hand side of (7.24) gives 

C,c (I+A) 
CIC (I) = 

The defining relation is 

and the comparison of this with (7.25) gives (7.22). Q.E.D. 

If we put A =  aI in the defining relation the 

result is 

(1+a)k = 
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and comparison with the binomial expansion of' (1+a)k gives 

LEMMA 7.3

(!) = � (:) f'or all partitions K of' k.

This shoVTs the connection between the "binomial" coef'f'icients 

(:) and the true binomial coef'f'icients (!) . 

A computer program was written to determine the (:) 

f'or k = 1,2 ••.• 9. The values obtained are in decimal form• 

The values k=1,2,3,4 have been given by CONSTANTINE [8] as 

frac�ions. The tables f'or k = 5,6 (see TABLES 7.3, 7.4) 

were obtained by printing out the values to 8 decimal places 

and converting these manually to :fracti ons. It will be 

shown later on that the i;,µ are rational and this implies 

that the (:) are too. The programming is discussed in

Appendix 4.

7.5 The K 

Svu and products of' monomial symmetric f'unct�. 

THEOREM 7.2 gives the relationship between (:) and 

but :from a practical viewpoint this result is useless 

unless the Ft,µ are lmown. In this section is presented 

an algorithm for generating them. This method has been 

prog rammed for a computer evaluation of' the and hence 

the (:) for K a partition of k and k = 1,2, •.• 9. 

Details are in .Appendix 4.

Let K,r,o,£ be partitions of' k = r+t 
ex, V be partitions of r 

/3,µ be partitions of' t.



k = 5 

K 

(5) (41) ( 32) (312 ) (22 1) ( 213 ) ( 15 ) 

(o) 1 1 1 1 1· 1 1 

( 1 ) 5 5 5 5 5 5 5 

(2) 10 7 16/3 13/3 10/3 2 • 

(12 ) • 3 14/3 17/3 20/3 8 10 

( 3) 10 23/5 8/5 7/5 . 
. 

(21) • 27/5 42/5 33/5 15/2 9/2 . 

(13) • . • 2 5/2 11/2 10 

(4) 5 8/7 • . 0 • . 

(31) • 27/7 8/3 7/3 0 • • 

V ( 2
2 ) . . 7/3 • 5/3 . . 

(212 ) . • • 8/3 10/3 18/5 

(14) • • • 0 . 7/5 5 

(5) 1 • • 0 . • • 

(41) . 1 • . 0 • 0 

(32) . . 1 • . . 0 

(312 ) • • • 1 . • • 

. 

(22 1) 1 . • . • . 0 
• 

(2P) • • • 0 
( • 1 . 

( 1 5) . • • 0 . 1 



k --= 6 

K 

(6) ( 'J 1 ) (lr2) (l1F) ( 3'') (.521 ) (318 ) ( 2") (2�F) ( 21') ( 1' )

(0) 

( 1 ) 6 6 6 6 6 6 ,; 6 6 6 CJ 

( 2) 1 5 .51,/3 9 5 8 19/3 ';, 5 4 7/.5

( 1::: ) 11/3 6 7 7 26/j 10 10 11 .58/3 15

(3) 20 56/5 2a/5 26/'J 16/5 28/1 ') .8/5

( 21 ) . Lil+/5 72/5 123/10 81i/5 74/5 57/5 15 12 7

(13) 5/2 10/3 7 5 s 13 ?O 

(4) 1 5 39/7 l-1-8/35 9/7

(31) 66/7 66/7 61/7 8 14/3 Li 

( 22 ) 21/5 7 11/3 5 5/2 

(212 ) 5 20/3 1+6/5 10 52/5 1+2/5

( 1 � ) 9/5 21/10 33/5 15

(5) 6 10/9

(41) 44/9 12/5 9/4

V (32) 18/5 6 1Lr/9

(312 ) 15/I.J. 20/9 24/7

( 221) 20/'3 6 3

( 213 ) 18/7 3 14/3

(15 ) 1,/3 6

(6)

( 51 )

( Lr2)

(412 )

(3'i_}

' 
(321)

( )1 3 )

( 2
8

) 

( ;?:: 1 '-) . 

(;:, ·1" )

( 1 G )

'l'Al3LE 7.y 'i'he (K\v
i 

' 
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Assume for convenience r � t. Drop the argument matrix 

does not enter into any o f  t he following rela tionships. 

From (7 .4) 

Now using (7.27) 

(7.28) 

the follo1N ing that none of the parts ft and hJ a re zero.

Then the msf of highest weigh t obtainable from the product 

of Ma and. M:13 is Mr = (f1 +h1 • • •  fe+ht•••fr)• Let 

(analogous to (7.21) for gvµ)• Then (7.28) can be written 

as 

Cv Cµ = (7.30) 

The msf' s of h ighest weight in Cv and Cµ are 

Mv and Mµ respectively. Let the msf of highest weight 

then if we define 

(7.30) can be written as 

where 
8 

dvµ = 

(7.31) 
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The defining relation for t� [fv
µ 

can be written as 

so a sequential comparison of the coefficients in (7.31) and 

(7.32) will give us the 

For example 

and equating the coefficients of MK gives 

dK ,..JC - �
t!,vµ - 8.icK •

Subtract from (7.31) 

/(' dvµ ➔ 0 

Then if T is immediately below IC in the 

list 

gtµ = ?-�,,u, 
aTT 

and Thus we the 
/(' 

so on. can e xpress gyµ 

(known) and the 
6 

aK6 ea13 • 

lexicographic 

in terms of the 

The calculation of the 0 is quite straightforward, ea13 

at least in principle. Let 

and take all possible products i.e. 

(7.34) 
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where the e are not necessarily distinct partitions. Add

ing together all be for the same partition will give the 
6 

eaa. 

What are the be? 

THEOREM 7.3 

Let ex = (f1• • • efr) = ( 1cp12<P2 •••• ) 

/3 = (bi•• •ht) = (1'P12'P2 •••• ) 

e = (t1"•••tn) = ( 1 "1 2 /\2 • • • ) 

where Me is a possible product, then 

be = 1 1 ,1, 1,1, t 
cpi • 'P2 • • • • 'f i • 'f 2 • • • • •

• 

REMARK 

As an example 

(211)(11) 

Proof 

= t(321) + t(321) + t(312) + t(312) 
(7.35) 

+ t(222) + f(222) + f(3111)+ t(2211)

+ �(2121)+ f(3111)+ t(2211)+ ¼(2121)+ ¥-(21111)

= (321) + 3(3111) + 3(222) + 4(2211)+ 6(21111).
(7.29) 

finally a proof of (7.36) when the product term of 

(7.34) has the form 

There are two cases 

1. f
q 

= fv = i. 

With q,v,x ..• z fixed, the number of possible terms is 



1 13
. 

Cj)1 ! . . .  ( cp 1 
- 2 ) ! . . •

[m-t]r-2
• 

No w  Sq,
S
v ca n be assoc ia te d 

wi
t h f

q,fv i n
1 

Cj>

1 (

Cj)

1
-

1

) 
terms and th e num be r o f way s  the in d ices q,v,x • •• z can be
chosen i s

Thu s the total nu mbe r  of term s  is

[mJr+t-2 (7.38)

Let e = (f
1

• • • f
q

+hu •• •f
v

+h

w
••• f

r
, h

1 
.. .  h

t
) = 

(
1
"1

2
"2 • • • •

) 

and the associated msf ha s  to t a l  n umber of terms

Then

2. fq = i fv = 
j.

(mJr+t-2 
/\1!¾ z !  • • • •  •

as requi red.

With q, v ,x, .•• z fixed, the
n um

b
er o f  terms is

Now
S
q 

S
v 

[m-t]r-2 
Cj)1 ! ••• (cp1- 1)! • • •  (cp

3
- 1)! • • •  

can be 

can be

assoc i ated 
w

ith

asso ci ate d w i th

fq in

fv in 

• 

j_ ways,q> 

q> 3  
way s, 

and the number of wa ys q, v
,x ..• z c an be chosen is still

given by (7.3 7 ). The re s t  o f the p
roo

f is the same as for

case 1. 
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In the particula r case t=1, the fo rmulae agree with 

those for Cq and c0 • 

The coefficients r/vµ have already been tabled for 

k = 1,2, ... 7 by KHATRI and PILLAI [25]. Their methods 

were based on the expansion of the zonal polynomials in terms 

of the elementary symmetric functions and the power sums. 

The limiting factor in this approach is the comparative diff

iculty of expressing tre zonal polynomials in terms of these 

functions versus their expression in msf's. 

7.6 Summation identities for(:) and gvu.

This chapter is concl uded with some formulae that are 

useful in checking that the values for (:) and ffv µ are

correct. One such formula (7.26) has already been given. 

All results are obtained by using identities similar to 

(7.23) and multiplying out. Coefficients of CK (s) are 

then e g_ua ted. Throughout this section k,r,s,K,v,µ are as 

defined for (7.21). 

definite. 

IDENTITY 1 

The matrix S is mxm positive 

etr[(x+y)S] = etr(xS)etr(yS) (7 .40) 

LEMMA 7.4

(7.41) 
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Proof 

Expand the term on the left hand side of (7.40) in a 

zonal series. Expand the terms on the right hand side sim-

ilarly and take the ir Cauchy product. Equate the coeffic-

ients of CK (s)/k!. 

COROLLARY 1 

Q.E.D. 

for r,s fixed. 

Proof 

Set Y=1 in (7.41). 

COROLLARY 2 

Proof 

Set x=y=1 in (7.41). Q.E.D. 

Q.E.D. 

Many other formulae can be easily established. 

These are perhaps mainly useful for checking the tables 

of Ffv µ. 

IDENTITY 2 

det(I-S)-a-b = det(I-8)-a det(I-S)-b (7.44) 

or in hypergeometric function notation 

1F0 (a+b;S) = 1F0(a;S) 1Fo(b;S). 

a,b real 

(7.45) 
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LEMMA 7.5

(7.46) 

Proof 

Expand both sides of (7.45) in zonal series, 

perform the Cauchy product a:rrl equate coefficients. Q.E.D. 

For fixed K, various values of a and b may 

be chosen to generate a set of simultaneous linear equations 

for the All coefficients can be chosen as rati onal 

by taking a,b rational. Thus the ffv
µ 

are rational. 

IDENTITY 3 

JAMES [21] lists the KUMMER relation (equation (51)) 

LEMUA 7.6

Proof' 

COROLLARY 

Proof 

; (-1) s(k) �
S:0 S v,µ

Expand in zonal series, etc. Q.E.D.

Rearrange (7.48) as 

� = � (-1)5 z1<-})" (kr) zv· T'b)"; s=O µ b µ 

and apply (7.22). Q.E.D. 

(7.47) 

(7 .49) 

Both (7 .48) and (7 .49) could be used t o  give syst
ems of simultaneous linear equations for g�

µ 
and (:)

.



CH.APTER 8 

NUMERICAL EVALUATION 

8.1 Introduction 
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It now remains to consider the arithmetic worth of 

the various formulae fo r the numerical calculation of the 

one and two argument Bessel functions. Th e evaluations 

are over three ranges, one each for small, medium and large 

values of the latent roots. A section is devoted to each 

range of values and within each section both the one and 

two argument functions are considered. 

Each section begins with an outline of the formulae 

used and this is followed by the results obtained when a few

specific values are input to computer programmes written to 

perform the evaluation. 

Results a re good for very small and very la rge 

values. The limited r esults obtained fo r some medium 

values are encouraging but inconclusive in the case of the 

single Laguerre expansion. Result s for the double Laguerre 

expansion are rath er discouraging. However an extensive 

computer evaluation programme would be needed to verify 

these assertions. 

The value n=10 was used in all evaluations. 

8.2 Small latent roots - zonal series 

Direct summation of the zonal series is the method 

to be used when the latent roots are all small. Both the 



1 1 8 • 

one and two argument Bessel f'uncti ons can be evaluated using 

the same computer programme by making use or the identity 

(1.17). That is 

and 

It was decided to restrict the 

cases m=2 and m=3• 

One argument matrix: 

rn=2 

rn=3 

Two 

m=2 

m=3 

R value 

2 1 1·7961424950 

4 2 3· 14383941 

8 4 9·034 

16 8 61 • 4 

3 2 1 3·202536 

6 4 2 9·624 

12 8 4 74·5 

argument matrices: 

R 

2 1 

4 2 

8 LJ 

16 8· 

3 2 1 3 

6 4 2 6 

12 8 4 12 

s 

2 

4 

8 

16 

2 

4 

� 

1 

2 

4 

8 

1 

2 

4 

value 

2·38036499 

23•94 

2x 104

9·5360 

250 

evaluations to 

sig. 
figs. 

11 

9 

4 

3 

7 

4 

3 

sig. 
figs. 

4 

1 

none 

5 

2 

( 8 .1) 

(8.2) 

the 
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It is clear that very good accuracy is obtainable 

for latent roots wit h values less than 1. For one argument 

matrix about 4 significant figure accuracy is obtainable if 

the leading latent root is less than about 8 while f or two 

argument matrices, to obtain the same accuracy the leading 

latent root should be less than 4 (only for n=10). 

8.3 Medium value latent roots - Laguerre series 

First the single Laguerre series. Substituting for 

L�(S) using (6.11), noting that p = ½(m+1) arrl using the 

scaled zonal polynomials CK *(S) defined by 

the equation (6.19) becomes 

0Flm)(a+p;S,Z) = 

Setting 

() � (-1)
k

� C (Z) t ( 1)n � (Ky)etr 
z k�O k! :: ,. n�O - � 

this is evaluated in the form 

F < m ) (.in· S Z) 
0 1 2 ' ' 

where 

(8.6) 

As � test, values were chosen for which the zonal 

series converged to an answer after summing all terms to 

k=9• For n=10, m=2, S=diag(7·5,2•5). Z=diag(5,0·5) a 
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value of 108 (correct to 3 significant figures) was obtained. 

Using these values in the Laguerre series (8.5) no satisfact

ory results were obtained while summing to k=9• 

By introducing a scaling f actor cJO considerable 

improvement is possible. We have the identity 

which follows easily from the fact that 

CK(cR) = c
k cK (R).

Thus from (8.7), (8.5) becomes 

oFim)(½n;S,Z) = 0Fim ) (½n; cs,c- 1 z) 

= etr(c- 1 z) � (-1 )
k 

� CK (Z)A,c(cS)c-kk k! K 

and clearly from (8.6)

AK(cS) J ck.Aic(S).

(8.8) 

Summing the series (8.9) using the above values anal 

c=10 also gave 108. This indicates that it may be possible 

to obtain improved convergence by a suitable choice of a 

scaling factor. This introduction of an extra parameter is 

not possible in (8.1) as 

CK (cR)CK(c- 1 S) = CK (R)CK (S) 

and the effect is lost unlike the case (8.9).

Similar results can be obtained for the one matrix 

case by se�ting 

(, ) F(m)(1 • R -11) 0F1 2n;R = 0 1 2n, c , c • (8.10) 

As already stated no sensible results were obtained 

for the double Laguerre series even with the introduction 
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of a scale factor. A far more extensive study w ould be 

necessary however to verify this as well as to confirm and 

perhaps improve on results obtained from (8.9). 

8.4 Large latent roots - asymptotic formulae 

The asymptotic formula used for the one argument 

matrix case is, from (4.22) and (4.19) 

where k1 is given in (4.22) and 

G(A) 

where 

A1 = t(n- 3)(n-m) 

For two argument matrices, THEOREM 2.4 gives 

etr(AB) G(A,B) 
TI c ½det(AB)½(n-rn)

l < j 1 j 

where k2 is given in (2.58) and 

(8.11) 

(8.12) 

(8.13) 

( 8.14) 

A simple low er bound on the values of a1 for 

(8.11) and of a1,b 1 for (8.13) can be obtained simply . 

For two maTrices first. 

and well spaced, we have 

Assuming the a1,b 1 are large 
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and 

� � 1 
Cq - a

1 
b

1 • 
(8.15) 

Al
so since th e  a

1 
and b

1 
are ordered in a decreasing

s eque
n

c
e 

1 9.mbm
i = 1 ,2 , .•• m. (8.16) 

H
ence s ince th e  Bes

s
el 

!'unc tion m us t be positive we would 

like to have 

and u sing (8.15
) and (8.16

) 
this b ecomes

T he soluti on is 
ambm > t(n-3 )(n-m ) m + tm ( m -1) ( m- 2).

F
or m=2, n=10 th i

s g ives 

8.m b

m 

> 

14
, 

i • 
e

•
am , 

b

m = 4

and for m
=3, 

n=
10

(8.1 7 ) 

A pr ogr amme was writt
en to ca lc u la t e the first fo u r correct 

ion ter ms fo r  G( A,B) � 1-T
1
-T

2
+T 3 + T i• 
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a
1 b1 T1 T2 

T3 T4 

8, 
4 

8, 
4 0.54 0 0 .09 

1 6

, 
8 16

, 
8 0.13 0 0 . 005 

24, 12 2 4,12 0.009 0 0 . 0025 

m=3 15,1 0
, 5 1

2

, 8, 
4 0.41

0.01 . 004 .
046

Thus (
8.1 7

) pro vides an a dequ ate low er bound when the higher

values have t
le form a

1 
= (m-i+1 ) 8.m i = 1

,
2, ••• m-1.

Also for one argument ma trix we arrive a
t the bound

am> t (n-3) (n-m)
m + i i;m(m- 1) (m- 2). 

F
or m=2

, 
n=1 0

, 
a m> 14 and for m= 3

,
n=10, am> 19. 

S i
m

i l
arl y  w

r
i

t
i

n
g

G (A) � 1
- T

1
- T

2
+ T

3
+T

4
•

a
1 T1 T2 T3 T4

m=2 30 ,15 0.7 0 
0.1

2
0. 1 4

60,3 0
0.3

5 0 
. 0

3 
.0

3 

90,30 0.31 0 .
0

3 .
0

2 

m=3 60 ,40, 2 0 0.56
.00

3 
.06

. 12 

90,60,30 0.37 .
00

2 .03
.05

12 0, 80 
,

40 0
.
28

.00 1 .0 1
.0

3 

(8.18)

Thus (8.
18) also prov

i
d es a lo. ve r  boun d on the a

1

in the 

sense 
that if am does n ot 

sa tis f y  it, absur d value s are

cert
a

in to re sult .  

I
n most ca ses 1-

T1
-

T2 
will lea d to a n a pproxima-

tion with at l
east 2 

s i

g
nifican t fig ur e s, however muc h

higher values of 
the l

aten t 

roo
ts are necessa ry fo r the
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leading terms themselves to provide an adequate approxima

tion to the true value. 

8.5 Concluding remarks 

Excellent results are obtained for small and la rge 

values of the latent roots. It appears though that much 

work is necessary to produce conclusive results on the 

worth of introducing a scale factor in the si ngle Laguerre 

expansion and on the double Laguerre expansion. 

Another interesting possibility is that the asymp

totic series of Chapter 5 may produce better results for 

small values of the latent roots. The removal of the term 

etr(2S) may well yield more rapid convergence than the 

zonal series. Similarly, the Laguerre series too may very 

well be more rapidly convergent for certain small values of 

the latent roots. Certainly much the oretical and numerical 

work remains to b e  done. 
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APPENDIX 1 

A.1 .1 Calculation of the d,c 

The coefficients d,c are related to the C,c by 

(2.20) and these can be evaluated from (2.17). 

formula of CONSTANTINE [7] equation (31) 

det(I-½U)½(n-2m-1) = �F 0 (-½(n-2m-1);½U)

From the 

= � (-½(n-2m-1))ic 
CK(tu) • 

k,K k. 

Also IT (1 - u, +u1) is a symmetric function of the u�,•••Um•
l<j 2 

Let a1 * be the ith elementary symmetric function

of the u1, then the product has the expansion 

To evaluate the y1, consider the product in an array for m 

as 

• 

• 

• 

( 1 _ Um�/ +Um) • 

By the symmetry it is sufficient to count the numb er of  

times a typical term occurs in order to determine the Yt • 
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To obtain a term of deg
ree r, choose u1's from r terms

and 1
'

s from the re ma in der
. 

W
e will find th

e coe fficients of u1 ,u1
2 and u1 u2•

F
or d

e
g
re

e 1.

N
ote that u

1 

occur s  in terms of row 1 only and 

th
ere 

a re m-
1 ter

ms.
Th

e 
co efficient of -½u1 is m-1.

For d
e

g
ree 

2.

S imilar
l

y
u
1
2 

ca n  be obtained from the terms of

ro w  1 in (m2 1 ) w ays.

T
he p

r oduct u
1

u

2 

is o bta ined in two wa ys. Choose

u
2 

from the lead in
g 

term a ni u
1 

from any other term in

ro w  1. T
his can be done in m-2 wa ys. Als o choose u

1

from any te rm in r ow 1 and u
2

from any term in row 2. 

This ca n  be done in (m-1)(m -2 ) ways .

coeffi cient of fu
1

u
2 

is m (m- 2).

Combining, the 

To expr ess th e  resu lt s in terms o f  the a1*

r
em e

mber that

and the expan sio n  f
rom the a rray is

1 
- ½(m-

1

)a

1

* + ¼(m-1) (m -2)a
1
�

2 + t(m- 2)a
2

* + o(u 2).

(A.1.2)

J
AMES [ 21] 

gives ta ble s o f the zon al po lynomials in

te rms of t he  elemen tary symme
tri c functions a nd  thes e c an  be

solved to expr
ess the a

1 
::. in term s o f the C,c (U)
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= Cc2)(U) + c(12)(U)
= fC ( 12) (U) •

Substituting in (A.1.2) and collecting terms gives 

1 - ½(m-1 )Cc 1) (U) + ¼(m-1) (m-2)Cc 2 ) (u) + 

-fs(m-2)(2m+1)C(12)(U) + o(u2 ). (A.1.3)

Multiplying tre two series (A.1.1) and (A.1.3) and using the 

zonal product formula 

we get 

1 - t(n-3)Cc 1) (U) + w(n-3)(n-5)Cc 2 )(U) + 

-hn(n-5)C(12 )(U) + o(u2 ). (A.1 .4) 

As a check none of the cK coefficients depend on m. 

A.1.2 The evalu ation of (2.42)

There are three tYJ?eS of int egral involved. All can 

be evaluated using standard bivariate normal integrals. 

LEMMA A.1.1 

Let P,Q. be 2x2 symmetric matrices and 

Then if Q, is positive definite 
00 

f f exp ( -½_;l Q&) d.§
21T = 

det Q,2

00 

f f .§'Ps eX]? ( -½.§ 1 �) d.§=
27T tr(Q,- 1P)

det Q2
(A.1. 6) 

-00 

ff�'.§ exp(-½.§' Q.s) ds 27T tr(Q.- 1),.
det Q2

-00 
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((A.1.7) is of course the particular case of (A.1.6) with 

P = I2 •)

Considering (2.42) we have 

Ctj = det Q 1j = (a1
2 -aj

2)(b 1
2-bj2 ) > 0 

and the leading principal minor is a1b1 + aj bj > O, hence 

Q 13 is positive definite. Thus 

K(A,B) = i�j f f exp(-½��3Q1j�lj)d�1j 

(A.1 .5) 

-oo 

(21r)½m(m-1)
1 • 

TI C1 j 2t<j 

(A.1.8) 

Also to calculate the terms required for (2.47) 
I 

(1+�(S,T;A, B))J(S)J(T)=(1-d1(�a1�1-½ � S1jP1j Stj+�(s2 ))+ •• ) 
1 1 < j- -

x(1 - rt(m-2) � �1jStj+o(s2)) 
1 < j 

-

(A.1.9) 

where d1 = t(n-3)(n-m). 

(2.40) gives 

The s ubstitution of (A.1.9) in 

g(A,B) = etr(AB) [K(A,B)-d1�a1�1K(A, B)+½d1 L1(A,B) 

where 

- n(m-2)L2(A,B) + nz(m-2)d1 �a1�1L2(A,B)+ ••• J

(A.1.10) 

L1(A, B
) = l l 

I I 

� S13P 1j Slj exp(-½ � S13Q 1 jS1j)ds1◄ 
l<j- - l<j- - - � 

(A.1.11) 

(A.1.6) 
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and 

and 

gi v
ing

t (Q -1
) 

2(a1b1+a,b:d
r i

j = C1
3 • 

S
ub

s ti tu tion of these results in L
1 

and L2 and

th eir s ubs ti tution in (A. 1 .10) gives

g

(
A

,
B

) 

To list the te r ms in inc re as in g pov!ers of note that

_ _....,

__ ___ _ 
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Some rearrangements of terms then give the results (2.46) and 

(2.47). 

A..1 • 3 Furtheuerms of the series 

Putting R- 1 = B-1HfA-1Hf the next terms of

F(H1 ,H2 ;A,B) are d(2 )C(2)(R-1) and d(12)C(1 2 )(R-1).

Expressing the zonal polynomials in terms of elementary 

symmetric functions gives 

12a(n-3)(n-5)(n-m)(n-m+2)C(2) + mn(n-5)(n-m)(n-m-1)C(12)

= rl,r(n-3)(n-5)(n-m)(n-m+2)a1
° 2 - h(n-5)(n-m)(m-2)a2 :::. 

(A.1.14) 

Now a1 ,:� 2 can be found by squaring (2.44) and the 

second elementary symmetric function of the matrix 

R-1 
= (p13) can be found by taking the sum of the 2x2

principal minors i.e. 

Pl j = 

(A.1.15) 

On substitution for the h 1 3,k13 in terms of

s13,t 1 3 if all four indices i,j,u, v are unequal tben

each term is clearly O(s4 ) and will be disregarded. 
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Also i=j is impossible ani u=v makes the term( ••• ) of 

(A.1.15) zero . 

a cont ribution. 

Only six combina tions can poss ib ly lead to 

They a re 

1 • i=U j:::v 3. i=U 5. j=U

2. i=V j=U 4. i=V 6. j=V •

Substitut ion in (2.40) and combinati on with the 

results (A.1 .13) gives 

(A.1 .16) 
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.APPENDIX 2 

RAO [30] considers the case of the columns of M

defining a k dimensional plane rather than a k dimension-

al subspace. 

n populations. 

He also assumes repeated sampling on each of 

The derivation of (3.23) that follows is a 

simplified version of the proof of  result (8c.6.4) p 475. 

First we need a LEMMA from [30]. Let A mxm sym-

metric have la tent roots /\1 ;;io /\2 ;;i: ••• � t-m and corres-

ponding latent vectors p1 ,•••Pm• 

LEMMA A.2.1 (1f.2.8) 

Let x1, ••• xk be mutually orthonormal mx1 vectors. 

Then 
k It 
� xf A x1 = � A1

1=1 1=1 

and the supremum is attained when x 1 =P1, 1=1, ••• k. 

Now the likelihood function is, apart from a con

stant, 

L(M) = etr[-½ �- 1(X-M)(X-M)']

and the likelihood ratio is 

/\ = 

Asymptotically 

sup L(M)Ho 
sup L(M)

H1 

X2 = -2 1 A = ...;.2[ 
sup ln L - sup ln L]og Ho H1 

and on H1, � = X giving ln L = o. Thus we must find 
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x2 =
i
� tr h-1(X-M)(X-M)'. (A. 2 .1) 

1 1 

Make the substitutions Y = h-2X, N = �-2M to give 

x2 = inf tr(Y-N) (Y-N) /Ho 

where N has rank k on H0 • Let Y = ( Y 1 , • • • Y n ) ,

x2 = 

If a1 , ••• ak form an orthonormal basis for the 

space spanned by the columns of N, then 

�t = h fi1JaJ = A fit 
j=1 

where A= (a1 • • •  ak) and fif = (fi1p .. fi1k)• The ith 

term of the sum to be minimised in (A.2.3) has the form  

(Y1 - A fi1)'(Y1 - A fi1) and for fixed a
1

, ••• ak, this 

corresponds to the sum of squares to be minimised on the 

linear model E[Y1] = A fit• By the usual theory, the 

residual sum of squares is (noting that A'A = Ik)

Thus we have to find 

i Y1'AA'Y1]
1 = :t. 

and since the first sum is a constant this reduces to find

ing 

Now 

n

�Y1'AA'Y1• 
1=1 



n 

� (A'y )' (A'y) = 

1 = 1 1 1 

= 

and by LEMMA A.2.1 

where the w1 are the latent roots of 

Also 

1 1 

det(YY 1
- wI) = det(�-2XX 1 h-2 - wI) = o. 

�Y11Y1 = 1 = 1 

n 

h tr  Y1Y1' = tr  YY' = W1+ ••• +Wm• 
1=1 

Combining (A.2.4) and (A.2.5) we have the result 

THEOREM A. 2.1 

where the w1 are the latent roots of det(XX'-w�) = o. 



.APPENDIX 3 

CALCULATION OF THE COEFFICIENTS cKr 

A.3.1 The program me

135 . 

A FORTRAN computer program was written to perform 

the calculations outlined in section 7.2. The purpose was 

to calculate tra coefficients cKr for k � 13. These 

coefficients were writ ten on to magnetic tape and used as 

input to computer programmes for summing zonal series and 

series of Laguerre polynomials. 

A listing of the programme is given at the end of 

this Appendix and in the following sections important math-

ematical and practical features are discussed. Other feat-

ures are explained by comments in the listing and by refer

ence to the appropriate formulae. 

A.3.2 The generation at' partitions

It is preferable that the partitions of a given k 

be generated in decreasing order (section 1.4). The foll

owing algorithm is such that when given a partition it 

generates the one immediately below it. It is perhaps 

easiest understood in terms of a verbal flow chart. 

Let K = (k1 ••• kr) and its successor is 

r = (t 1 • • •  t 8 ). Both are partitions of k and all parts 

are non-zero. The algorithm is initialised by presetting 

the first partition 

k1 = k, r = 1. 

1. Input the current partition (k1, ••• kr)•

2. If k1 = 1, all partitions of k have been 
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generated. Stop. Otherwise go to step j. 

3 • If kr > 1 , set s = r+ 1 , tu = ku , u = 1 , • . • r-1 , 

This is now the new partition 

ready for use and storage. Ai'terwards return to 

step 1 with 7 as the current partition. 

4. Otherwise, find i such that k 1 > 1, k 1+1 = 1.

5. Set lu = ku, u = 1, •.• i-1, t1 = k 1-1•

6. The sum of the remaining ku, u = i+1, •.• r is r-i

so find s,a such that

0 < a =  r-i+1-t 1 (s-i-1) � t 1• 

Set lu = t 1 , u = i+1, ••• s-1, ls = a. Use and store 

this new partition ani return to step 1 with -r as 

the current partition. 

Relating this to the programme listing. The sub-

routine KAPPA generates the successor of the supplied par

tition while PSET initialises the list by setting 

k1 = k, r = 1. 

A.3.3 Storage of partitions

A binary representation of the partition is generat

ed. This minimises the storage needed to record them for 

later use in the program. 

Consider tre "Young" diagram for the partition 

42 2 1. 
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4 2 2 1 

• • • • t 

➔ 

• • • t

➔ ➔ 

• t

• t

➔ 

For convenience the diagram is written vertically instead of 

its usual horizontal conriguration. Coding 1 f'or a shif't 

right and O for a vertical sh ift, the partition 422 1 can be 

uniquely represented by the binary sequence 10011010. This 

binary sequence can the n be stored in one computer word 

rather than using one word for each part of' the partition. 

Incidentally the number of 1's equals the number of parts 

in the partition am th e nunib er of O's is equal to the value 

of the largest part. 

Another advantage of this binary representation is 

in improving search efficiency. The comparison of' the 

actual partitions is not very convenient on a computer. 

This is replaced by a search of t re list of bina ry represent

ations (of a giv en k or set of k's) to see if a given 

binary number is on it. Thus after the partition µ is 

generated from r and the ele ment s sorted into decreasing 

order, the nezt step ie to find its binary representation. 

It is  then a simple rra. tter to see if µ � JC by comparing 

its binary representation with the list of' binary represent

ations of'  all partitions of' k from ,c to r. 
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A call to the function IBIN generates the binary 

representation of the partition. The function is coded 

in COMPASS (the assembly language for the CDC6400) a more 

convenient language for this type of operation. Since all 

parts of a partition- are non-zero the binary representation 

ends with at least one o. The actual representation gen-

erated by IBIN has this f in.al O eliminated. 

doing this is given in Appendix 4. 

Ac3•4 The calculation of C(K) and X[2Jc](1) 

A reason for 

The normalising factor c(K), for converting ZK to 

CK, and the character X[2Jc](1) are calculated convenient

ly using for mulae derived from JAMES [22] equation (3.2). 

Let K = (k1 , ••• kr) be a partition of k into r 

non-zero parts. Then from JAMES [21] equation (21) 

r 

II ( 2k 1 + r-i ) ! 
1=1 

where A(i) = k1+ ••• +k1_ 1, A(1) = 0 and 

(2k)!
r 

II (2k1+r-i)!
1=1 

r (k1 (B(i)+2j-1)fB(i)+2j) r -i
( = II II (k . . II 1 

1=1 j=1 1+J J j=1 
- 2�Lt.1))2k1+j 
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where B(i) = 2(k1 + •.. +k1_ 1 ), B(1) = O. 

The subroutine ZONCHAR is used to generate the 

coefficients c( K ) using (A.3.1), ani the se are then stored

on magnetic tape along with the cKr • They are used in 

calculating the CK (S) from the ZK (S) when evaluating the 

generalised hypergeornetric functions. 

The formula (A.3.2) was used to write a separate 

computer programme to calculate the characters listed in 

TABLES 7.1 and 7.2. 



THtS PROGRAM EVALUATES THE COEfflCIENTS C(KAPPA,NU) THAT ARISE WHEN 
THF ZONAL POLYNOMIALS ZCKAPPAl ARE EXPRESSED IN T�RMS OF THE MONOMIAL 
SYMMETRIC FUNCTIONS M(NU), 
TME PROGRAM ALSO GENERATES AND STORES THE PARTITIONS 
KAPPA ■ (Kl,K2,,,,KRl ,THEIR BINARY REPRESENTATIONS AND THE CONVERSION 
FACTOR FROM Z(KAPPA) TO CCKAPPAl 

PROGRAM NY(INPUT,OUTPUT,TAPElOl 
COMMON KP(500•15) •LGTH(SOO) ,CK(SOOl ,RK(SOOl ,IPOS,K,NPART 
C0MMON/A/KKK(20) 
DIMENSION KQ(l5l,KC(l5),KBS(l5l,COC500l 
DIMENSION ZONCHl500l,NNC500) 
1)010011=1,20 

1001 KKK(ll=2<><>(!-ll 
PR!NT41 

41 FORMAT(lH!) 
M=20 

OUTPUT OF DATA FOR K=l 

NPART=l 
NN ( J l =! 
ZONCH ( l l =1 
LL=l 
KP I l • l) = I 
wR!TE(JO,J44)NPART 
WRITE ( 10, 1421 NNC l l ,ZONCH ( l l ,LL,KP ( J, l l 
CO=!. 
WR I TE ( 10 • 14'1 l CO ( l l 

D0RQK=2ol3 

GENER�TE AN ORDERED LIST nF THE PARTITIONS OF K 

tPO<;=O 
CALL PSETCK,KQ,M,MS,LTH) 
GOTOl 

3 CALL KAPPACK,KQ,M,MS,LTHl 
l !POS=IPDS•l 

OO!ot=l,LTH 
10 KP(!POS,!l=KO(!I 

KP<!POS,LTH•ll=O 
LGTH(IPOSl=LTH 

CALCULATE ANO STORE C::<KAPPA,KAPPAl , RHO(KAPPAI , 
NORMALISING FACTOR ANIJ BINARY REPRESENTATION FOR 
EACH PARTITION KAPPA 

CALL EAD 
CALL RHO 
CALL ZONCHARILTH,K,KQ•ZONCHRl 
Z0NCH(IPOSl=Z0NCHR 
NN(tPOS)=!BJN(KQ,LTHl 
If IMS-1) 3,2,3 

2 NPART=!POS 

WRITE THE DATA ON MAGNETIC TAPE

WRITE ( 10, l44l'JPAIJT 
;44 FORMATCll',i 

1)0201=1,NPAPT 
LL=LC,THC I)

20 WRITEl10ol42)NNC!),ZONCH(ll,LL•IKPC!,J),J:1,Ll) 
]42 FORMAT(Ob,E?0,13,1413) 

<;TEP THROUGH THE P�RT!TIONS KAPPA ONE BY ONE 

I\JPAR:NPART-J 
D07Q!Z=l,NP,1R 
co I I Z) =CK c I Z> 
LMT:LGTH < I Z l 
Q071J=l,LMT 

71 KBS<Jl=KP(l7,J) 

FOR EACH KAPPA STFP THR011r;H ALL TAU 
PfLOw KAPPA 

JZZ=IZ•l 
11030l=!ZZ,NPORT 
N=O 
SUM=O, 
ML:L(;TH Cl) 

!Ll,L2,, .. L<;) 



FOH EACH TAU GENER•TE ALL POSSIBLE 

Ml) = cu ... LI•T. .. L J-T. •• LS) 

MM=ML•I 

0050!A=2,ML 
ID=IA·l 
ll050!B=!, ID 
MN=KPC!,IAl 

0060IC=l,MN 
0040J=l,ML 

40 KC!Jl=KPC!,Jl 
KCC!Bl=KCCIBl•IC 
KCCTAl=KCC!Al·IC 
KK=KC(IBl•KCCIAI 

FnR EACH MU SQRT THE ELEMENTS INTO OFCREAS!NG ORDER 
ANO FINO THE R!NARY RFPRF5ENTAT!ON 

CALL SHORTCKC,MLl 

IF<KC(MLl,EQ.OlGOT012 
MLT=ML 
GOTOJB 

12 MLT:ML•I 
18 NNN:IB!N(KC,MLTl 

TEST IF THE SQRTEO MU IS AOMISSIBLE 

TF TRUE ADD APPROPRIATE TERM TO THE SUM AS PfR (7.61 

!S=!·l
0073J= I Z ,r S 
!F(NNN•NN(JI 17J,3B,73 

73 CONTINUE 
G0T060 

38 SUM:SUM•KKOCO(J) 
N=N+l 

60 CONTINUE 
50 CONTINUE 

!FCNlBl,82•81 
82 CO<ll=O, 

G0T030 
Bl !FCABS(SUMl•0.5182,82,AJ 
83 CO CI l =SUM/ C RK CI Z l ·RK CI l l 

3n CONTINUE 

CUTPUT THE COEFFICIENTS ONTO MAGNETIC TA�E 

wRITE<l0,149l CCOCLll ,LL=!Z,NPART) 

14Q FORMATC9F15.ll 
70 CONTINUE 

wRITE(l0,l49)CKCNPARTl 

BO CONTINUE 
STOP S ENO 

CALCULATES THE LEADING COEFFICIENT CCKAPPA,KAPPAl ACCORDING 
TO (7,5l 

/ 

SUBROUTINE EAD 

COMMON KP !500, J5l ,LGTH (500) ,CK (500) ,RK (5QOl, IPOS,K,NPART 

PR=] 
L TH:LGTH C IPOSl 
OOloI=l ,LTH 
KL=KPCIPOS,Il 
LL=KL-KPCIPOS•t•ll 
0010J=l,I 
A=CI-Jl/2,+CKPC!POS,Jl-Kll+n,5 

10 PR2pR°COF(A,LLl 
CKCIP0Sl=PRo2, ooK 
RETURN � ENfl 

CALCULATES THE CAI 
K 

FUNCTION COF(A,Kl 
C=A 
II=! 

3 JF<IJ-Kl},?,4 

l C=C•CA+lll

Il=Il•l
C,0T03 

4C0F=l, 
RETURN 

2 COF:C 
RETURN !' ENO 

A(A+J) ,., (A+K•ll 



10 

9 

CALCULATES TH� AHOIKAPPAI ACCORDING TO 17,71 

SUBROUTINE PHO 
COMMON KP1500•15l ,Lr,TH1500l ,CKl500) ,RKl5001,IPOS,K,NPART 
SUM=O 
I=LGTH I IPOS> 
110\0J=l.Y 
A=KPIIPOS,JI 

10 SUM:SUM+A•IA-Jl 
RK I IPOS> =SUM 
RETURN li ENO 

CALCULATES THE NOAMALlSINr, FACTOR FOR CONVERSION FROM 
ZIKAPPAI TO CIKAPPAI USING FORMULA IA,3,ll 

SUBROUTINE ZONCHARIP,K,KAPPA,ZONCHRI 
INTEGER P,K.�APPA,KAPK,Q 
nlMENSJON KAPPAIPI 
REAL ZUNCHR,PR 
KAPK:0, 
PR=\, 
[J010I=l,P 
KAPPAl=KAPPAlll 
D020J=l,KAPPAI 
PR=PR•FLOATIKA�K+J)/iFLOATIKAPPAl+Jl•FLOATIJI l 

20 CONTINUE 
IF I I ,Ell,Pl l •2 

2 Q=P-1 
D030J= l • ll 
PR=PR0 il,-FL0ATl?•�APPAll•JII/FLOATl2°KAPPAT+Jl l 

30 CONTINUE 
1 KAPK:KAPK+KAPPAI 

10 CONTINUE 
Z0NCHR=2••K•PR 
RETURN $ END 

SUijROUTINF PSETIK,KP,M,MS•LGTHI 
[)!MENSI ON KP I 1 l 
KP = K 
1)0 10 1=2,K 
KP I I l = 0 
,..5 = 0 
LGTH = l 
RETURN 
ENTRY KAPPA 
JF IK,EQ, l l lit1 TO 37 
MS = 0 
N = 0 
D0 11 KM = 1 ,K 
J = K-KM+l 

l l 

N = N + KP I Jl 
IFIKPIJl,GT,11 r;o Tll Ji<, 
CONTTNUE 

" 

6 

5 

37 CONTINUE 
MS = l 
LGTH = K 
RETURN 
CONTINUE 
IF IKP IJ•l I ,r;J ,Ol GO TO 4 
KP(J) = KPIJl - l 
KPIJ+l) = 1 
LGTH = J+\ 
IFILGTH,GT,Ml GO TO g 
IFIKP,EQ,\) GO Tn 37 

RETURN 
KPIJ) = LD = KP(J)-1 
MM = J 

MM = MM + I 

N = N-LD 
JFIN,LT.0) GO frl 5 

KPIMM) = LD 
GO TO 6 

N = N+LD 
MM = MM - l 
KPIMM) = N 
LGTH = MM 
JF IN,E0,0) LGTH Lr,TH - I 
MM = MM • I 
DO 27 IM = Ml'•, 

27 KPIIMl = 0 
IF ILGTH,GT ,'-'l r,n T,1 o 
IFIKP,El.l.Jl (,0 Tfl 37 

RETURN 
END 



l(K 

ST 

RF 

NTH! 

LL 

L 

JII 

EL 

EK 

EP 

CALCULATES lHf AJNARY REPRESENTATION OF A PARTITION 

!DENT 
ENTRY 
USE 
B55 
USE 
EISS 

584 

SA! 
5B2 

<;A2 

<;A I 
5B2 

fQ 

SA3 
JX2 
SA3 
JX2 
SX2 

SA3 
IX I 
JP 

BX6 

JP 

R2 
X\ •'"'I 

l'i?-R4 

X2•J<;K-1 
><?-H4 

Hl .1-12, Rf 
R?-84 

)(�• )( 3 

R2 
X?-X3 

ll' ?+P4 

>'?•K.K- l 
Xl•<3 
ST 
X\ 

Jd[N 

CALCULATES THF. PAPTJTlll" fµoM [TS RJNARY AFPPESENTATTON 

ENrnY 

HSS 

SB4 

SAi 
SB! 

SA? 

SX6 

SX3 
ZR 

<;Bl 

BX4 

ZR 

SAb 

LX3 
JP 

sx-, 

LX3 
JP 

SA6 
JP 

ENO 

NIH[ 

I 

l 
"1 

'l 
H?. 

'i4 
l-l4 

H l .F,-, 
>' t-"4 

X2<>'t J 

X4 • J11 

·!l•r,J 

I 
LL 

<;OATS THE fLE ""'JT<; I 1 ••• LI +T ••• LJ-T,. ,LS OF MU JNTO 
f\ECAEA 5 I 1,c, '1'1l1r � 

1 OE.'JT 

fNrnY 
ASS 

SAi 
5B2 
St!3 
5B4 

fQ 

SA2 
SA3 
JX4 

PL 
EIX6 
RX7 

SA6 
SA7 

SB4 

583 

,IP 

ZR 

SB2 

ZR 
JP 

ENO 

SHfl'<T 

c;.,mn 

l 
l:l2 
X 1 - I 

�11 

H1 

A?• �3. F'P 

Rl •H3 

A2•1 
X?-X3 

X't- • EK 

(2 

. , 

A1 

�?. 

H,. + 1 

'l l+ I 

f<; 

,i4,<;HORT 

H?-1 
A?• <;.jlll:iT 

FL 
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CALCULATION OF THE ftµ AND ( � ) 

140. 

A.4.1 The program.me

The FORTRAN programme listed at the end of  this 

Appendix is designed to generate the coefficients i;,µ and 

(�) for k � 9 using the formulae of sections 7.4 and 7.5.

Only the coefficients(�) are retained on magnetic tape. 

These are used in the calculation of the Laguerre polynom-

ials. The coefficients (fv
µ 

are not saved as they are 

only used here to calculate the (�) and as indicated in 

section 7.5 they have already been tabled for k � 7. 

Basically the programme is designed to calculate the �
µ

and it is then a simple matter to selectively sum them to 

derive the (�). 

The evaluation of the be and an efficient method 

of storing them are discussed in the next two sections. 

A.4.2 The product of msf' s, the be: and the 6 

ea B 

Let a be a partition of r 

/3 be a partit ion of t 

e be a partition of k

under the co nditions k = r+s, m ;;;,; n, 

important that all parts be non-zero. 

lead to unwanted extra terms. 

with m parts 

with n parts 

with p parts 

m � p � m+n. 

Zero parts would 
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As for (7.34) and (7.35) the product of msf's is 

The msf's 

Me are formed by taking all possible products in (A.4.1). 

At the 1 th stage: 

Select i elements from f1,•••fm to give the subset S1(a). 

Select i elements from �, • • .hn to give the s ubset S 1 (/3) •

Arrange the elements of S1 ( a) in some order and hold it 

fixed. Then permute the elements of 81(/3) in all possible 

ways and after each permutation add these elements to the 

corresponding ones or s 1(a). To each generated list 

append the m-i remaining elements of a and n-i of /3 

to form a partition e:. Each partition e: is associated 

with a possible msf' Me fro m (A.4.1). 

For exaraple m = 5, n = 4, i = 3:

S3 (a) = f1,f3,f5

S3 (/3) = h1 ,h2 ,h,. 

Two possible permutations of S3 (/3) are 

h1 ,h4 ,h2 and h2 ,h1 ,h4 

to give 

E:1 = f1+h1 ,f�+h,,f5 +h2,f2 ,f4 ,h3 

E:2 = f1+h2 ,f3 +h1 ,fs+h4,f2,f,,h3 • 

Summarising, for fixed a and /3 we may have 

i = 0, 1, ••• n. For each i we generate all i element 
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subsets S 1 (cx) and for each St (ex) we generate all possible 

i element sub sets S 1 (/3). For each pair of S 1 (cx) and 

S1(/3) we gener ate all possible permutations of S1(/3) 

befo�e adding it to S 1 (a). The remaining m+n-2i elements 

of ex and {3 are appended to generate an e. 

(7.36) the be is calculated. 

Usi ng 

After all acceptable combinations of S 1 (a) and

S 1 (/3) are used we are left with the e&
'3 for the product 

of Ma and M'3 • 

The selection of all possible subsets S 1 (a) for a 

partition a is done by the pair of subroutines SELGET_and 

SELGET. The routine SELSET initialises by setting 

S 1 (ex) = f'u •.• f 1 while the routine SELGET generates a new 

S 1 (cx) on each call. Similarly for all S 1 (/3) of {3. 

An example suffices to illustrate the principle. 

Set m = 5, i = 3. 

SELSET f1, ,f2 ,f3 

SELGET 1 • f1, ,f'2 ,f1,. 

2. f1, ,f2 ,f5 

3. f1, ,f'3 ,f1,. 

4. f:i., f3 ,f5

etc .... 

Tht.. permutation of 81 (/3) 

of' subroutines PERSET,PERGET. 

is performed by the pair 

Subroutine PERSET initial-

ises arrays and returns the identity permut ation, while the 

routine PER.GET generates a new permutation from the current 
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one using an algorithm given by LEHMER (p 23) in BECKENBACH 

[6]. 

A.4.3 Storing the be 

Every time a new be is generated this must be 

added to the accumulated total associated with that partit

ion. One method of storage is to convert e to its binary 

representation and use this to search a list of the binary 

representations of all partitions K of k ani then 

increment the associated coefficient. This is slow and 

inefficient as much searching is involved. 

A much f aster method is to use the binary represent-

ation of e as an index. For example: 

partition binary representation index 

4 

31 

22 
21 2 

1 4. 

1000 

1001 

110 
1011 
1111 

8 

9 
6 

11 
15 

(base 

(the final O has been dropped as per Appendix 3). 

Thus any b('-) is added to storage location 8 

any bc 31) is added to storage location 9 

etc... . 

10) 

As stated before each K has a unique index. The largest 

index for K". ,:::; 9 is 511 ( correspoming to 19 having the 

binary representation 111111111). Only some of the 

storage locations are used for k ,:::; 9, but the increase 



1
44

. 
in speed of operation fa r  o ut we ighe t he disadvan t

�g e  o f

needing 5
1

1 stor a ge loca tions re se rve d  fo r  the
9
7 :partitions

o f k = 1, • . •  
9
. 



THIS PROGRAM CILCULITfS THE LONAL POLYNUMIAL µwnnucr oNU 
I.ENERAL!SEO R{N'l'llAL COFFF!CTENTS Al ONG THF L !NE� OF 
SFCT!ONS 7.4 A'IJ1 7.5 
THE GENERALISEU ijlNONJAL COEFFICIENTS ARE srnPtD ON 
MAGNFTIC TAPf F11D F'lTlJl-if USE 

PRQGRA'°' AKL I 1'<PllT. OtlTD• IT• TAPE IO, TAP[20) 
COMMOf\ NN I 1- n 1 • LT-; I 1 4 n 1 • COP I I 060 I • co I 4 0 321 • KA I 1 (J) • K" I IO I • KC I In 1 • 

<>l I421 
COMMON/STA�/KCClllll 
COMMON/STA PT/, F' 11 \ 1 • iJ,< I•? 1 , llR� I 11 1 
OITA NH/0, 1,-,.,,.111. 15,?! ,2H.J6,4':,.SS•o6,7'i,�l. I 05, 1 ?Oo 1 JO•\�,. 

nl 7}, 190,21 r,.? � l-?t.. �-C7fi, l(IQ,3?5,3r..,1,...1tH.�nh,4·��.4ht;, 1+C.,,-,,l-;i?r,�t,1, 
<>5'lS,1>30·6�"• l,11. 741. 7on.�?n,Bn1 / 

ilATA NP/I,;,,,. 7, l?-1'-', Hl,4<;,h7,'l7, J.l�/ 
DATA NhS/0,J ••• )P,?5•"••l!'l,219,4'l2,�57,\Shn/ 
DATA KCC/0,?,�. 1n.77,14o,41':,,'lnR,l4bU,403?/ 
LJP,ENSI0I, ,"Pnl;,I1<?,2> ,Nl?n2I 
COMMON APPI�•�4) 
IJ1MfN5[0I1 L 'II 11 ,1 YIJOJ 
COMMON;FA;FnC1ln> 
COMMON/A/1'� l,'1) 
LJOl 001 l =l, ,r: 

JOO! KK1!>=2*<>\l-11 
FAC I l) =J. � FAC 12) =?. � FAC 13) =6. i FAC 141 =2•, < Far I'll =1?,,. 
FACl6I=720. < FoCl'>=5140. \ FICIA):40320, I •A(l4):36?rl80, 
FACl10I=3h2KAOU. 

l4'l FORMATt9FJ5,ll 
144 FORMAT I In> 
142 FORMATIO�•F?0,11•1<1 

INPUT THE f)ATA •H!TTF'• n" �1A<,NETJC THE. 8Y THE P�n(jo,.H 
f1F5CR!BED !1' APPOltlf' 1 
(ALCLILATE. ··,-,, (OFFF]rtE••T, \KAPPA,TAUl OF (7,271 

IP05=0 
lJOJ OIJK=l, J n 
REAOll0,)44)NPAOT 
0020J=l ,Nf's'<T 
!P()S=!POS•) 

zn �EAfll 10• \4?lN" I {P•I�1 •7 IJl •L.THI JPO,l 
ll=�•BSl!J�l 
fl030l=l ,NPLOT 
REAfl\10.]49) ICJILL> ,LL=l,NPART) 
0040J=l ,NPM<T 
LL=ll•l•NeU) 

on CORILLl=C()I Jl�7Ill 
30 CO"ITINUF 
10 CONTINUE 

Nl\)=0 
00991=1,2(•! 

qq NlJ♦)):t,rlll••> 
PRJNT4l 

4j FUR"1ATl)Hl) 
00501=2,10 
!PR=O 
JJO<;l IXY7=J , u 4e.o 

"1 APRIIXY7l= . 
Ix :s,p I I ) 
I Y :t1P I I• l l -1 
J=! 

,� J= 1-1 

�=T-J 
I XX=l' 
lF(J-,C:/C?• -- ··, 

, l H=l 
� lA:t:!->(J•ll- P( I) 

l t":tJ� t t4- • l \ - i:-,..,, l 
l>V:!X)•l 
llilAOJA= l, J. 
Gnrn IAJ .�,> -1', 

� 1 I Y Y = 1 
G0T'1ti3 

,, IYY=JA 
,, UUI\UJH=Jv,.r, 

l I= t<S I J l 
LLL=NH�l�l 
M"':NbSll 1 
JS:NPIJl+ J -\ 
JST=t,P 1.J• \ 1-1 
KS:r-1P(� l • *--1 
KST=NPl••Jl-1 
!PP=IP•« I 
1'\JPA li-l ( i ,i->'"'. 11 = f JC:..\ 
NP�fl-o'(p.,1---._.11: ! � 
1)1l70MA= Jc.._. 1,T 
Ul)7QMH:t'c;.� T 



SFLECT A PAIR OF PAWTJTTONS 

ALPHA 
BETA 

A P4RTITTON nF k 
A PnPT]TTOM 0F 1 

LA:LTHIMAl 
LA:LTHIMfll 
IF(LA-LR)�H•A�,�� 

6R CALL Nll3] IL ,i,IJ("1Al ,KP! 
CALL NIA! ILH,litlfMl<l ,Kol 
LA=U:I 

Lt3:LTrllMAI 
t,0T0b7 

fQ CALL N!Hl ILa.rJr1('101 •""l 
C•LL NIAi (LH•'"ilM�I .�Al 

f7 MMA=MA-�IP ( .ll • I 
fr-l�R=MH-NP ( I< I+ I 
LLA=ll•Jh+t! (1"1IA{\) 
LLB=LLL•Jfl•�Hl'1�hl 
AC:COWILLAJOCn�(LL�I 
FArA=FkAC l•••I "I °Fl-lAC f!(A,Lkl 

FACfl=AC/FACA 
OOllOIL=l •L' 

lli KCilLl=KAilLI 
DOl?O!L=l ,I." 

l?� r<C(LA•lll=•"l'll 
LAR=LA•Lf< 
COLL SHORT'" ,I '" 
NNN:lnt,,i,,-,L Iii 
LL=INilE.Xi ,tt, ,ll•I llP>'i 
APR I LL I =FP"C Ir (, L-1•'1 •·F ACI;• APf' I LL l 

00110JJ= l •I 1 
CALL <;ELSFTIL.V,JJ, , ,,,LA! 

GOT0131 
114 CAIL SE.LGf T ILV .JJ••·· 1'i,LAI 

]F!M51130,!1],Jl0 
131 CALL SEL<;ETIL.Y,JJ, ,.,,,.,,Y,Lkl 

GOTOl 33 

\"A CAIL SFLGfT II <,J ), •<•• <;Y,L•<i 
IF(M5'1'1 \34,133,l <4 

133 IFiJJ-1113"•1<"•1'• 
135 D0]40]L=J,LA 

140 KC(JLl=KAIILI 
JJA=LXIJI 
JJ�=LY<ll 
r< C ( J J A I =KC ( .I J" I • K � I J. I H I 
JJC=LA 

D0\"-0IL=l •I.� 
IF!IL-JJHI 1"-1,l�r.,J<;J 

1•1 JJC:JJC,J 
KC!JJCl=K'<CILI 

1•0 CONTIIC•Jf 
CALL 5,..1,�1 cKr, 1 w1 
NNN=IH],1Kr,J.Jr1 
LL=tNr·E'W 1�1 • il • 1 r • .:n.,1 
APP I L LI = F" r I c • , , r 1 ·• F , r"' • 11 PR c Lu 
GOT013H 

PA CALL PE.h'iET IL•, JJ,1 <,Y) 
G0Tll]37 

\1Q CALL Pf�G�T(LY.JJ.,A��) 
l F c 1, S X l l le , I 17, I 3 ·• 

\:7 uOlhOIL=\•I • 

]AO KCC!Ll=•sc1L1 
un1701L=l•.JJ 
JJA=U C II l 
JJR:LY I !LI 

171 r<rcJJAl=n:r.JJ•l•<.«C l J'<l 
JJC=L• 
DOp<OIL=l ,L4 

Ulll'lO!LL=l ,JJ 
IF C IL-LY t I LI ) l I'"' ,l H \ , H 0 

1 q � co,11 n,uF 
JJC=JJC•l 
r<C iJJCI =l\�I lL I 

18 \ CO'lTI NUF 
!PO CONT lcWf 

CALI �H(WT (K(,.JJCJ 
NN'I= I H] II { ,, , J JC I 
LL=lN(\fV{tJII ,I)• .(JO>') 
APA c LL l =F ,, ,r { ,r . J J( l °F ,ci-, • APP C LL I 
GOTO 134 

110 CO'IT IN·JF 
70 CO'ITINUf 

NPAMT=Nl-'{J•>l- �{ ·, 
l�=NIJP'li 
Nl-'oR=�.1-'<Pl -1 



00210MA=\•NP•R 
MBX=MA•l 
LL=IM•MA 
LLX=MM+MA•N�(Mn) 
APRILLl=ZR=•PRILLI/COAILLXI 
00220MA=MR••NPAPT 

• LL= IM+MR 

LLX=MM•MA+Nk(MRI 
22n APR(lll=APRILLl-lR•rOR(LlX) 
21 O CONTINUE 

LL=IM+NPART 
LLX=MM+NPAPT+NA(NPART) 
APR (LL l =APR (LLl /Cr\R (ll '( l 

lMM=IM+NPART 
IM:JM•l 
00230Ll=!M. [MM 
IF !ABS I APR I LL l I -1. F:- \ � l 231 • 2 31 • ?.3 n 

211 APRILLl=O. 
23n CONTINUE 

60 CONTINUE 
IF(J-Kl,2•5?•• 

5? Z=F•CIII 
IX:NPIII 
IY:NPll•ll-1 
NPART=IY-1••1 
II=J-1 
MCAR=O 
KCCC=KCCl!l 
003JO!A=l•KCCC 

3\0 CO(JAl=O. 
00320JJ=l•II 
ZZ=Z/IFACIJJl•F•Cl[-JJ) l 
I X:NP IJJl 
IY=NPIJJ•l l-1 
00330MA= JY .[ Y 
NNN:NNIMAI 
00340MB=l•IPR 
IF (NNN-NPA \R (Mrl • 1) l 341 • 342, 34 l 

341 IF(NNN-NPAJR(i"'H,211341",342.340 
342 003SOMC=l•NPART 

LL=NIMBl+MC 
IFIA�SIAPRILLl l-l.E-101350•350•351 

351 MCC=MCAR+MC 
COIMCCl=COIMCCl•APRILLI 

150 CONTINUE 
34 O CONTINUE 

00360MC=l•NPART 
MCC=MCAR•MC 

160 COiMCCl=COIMCCl•ZZ 
MCAR=MCAR•NPART 

330 CONTINUE 
320 CONTINUE 

•RJTEl201 ICOILLI •Ll=l,KCCCl 
PRINT241, ICOILLI ,LL=l,KCCC) 

241 FORMATIX10Fl3.Ri 
SO CONTINUE 

STOP $ ENO 

SURROUTINE P£,.Jc.;;�T(! .N.•-45) 

0 I MENS I ON � I 1 0 I •EI 1 0 l • • I 1 n l •LI 1 0 I 
INTEGER a.o,E 
MS=O 

NN=N-1 
00101=1,NN 
0111=0 
EI I l =l 
A I I l =I• 1 

10 CO"ITINUE 
7 RETURN 

ENTRY PERGET 
J=NN 

8 AIJ)=AIJI-EIJI 
IFIAIJI-J-111•2•1 

1 IF IA IJl l 3,2.J 
3 l=J•l 

K=AIJI 
6 1FCI-NN)4,<>,S 
4 K=K+D(ll 

1=1'1 
GOT06 

s IH=LIKI 
LIKl=LfK+ll 
LIK•ll=lH 
GOT07 

? EI.JI = -E I J l 
OIJI =1-0IJl 
J=J-1 
IF I Jl 9,�,"" 

o MS=\ 
IH=Ll2l 
LI 2 l =L 11 I 
LI 1 l =In 
RE TUl4N � Er� .1 



•IN 

NP 
MA 

StJi:\�(1•J r Tr-iE �"I .,, C:.► T (1 • f ..... M"t.1,i) 

fl!MF'<<;j,'1•1 I '111 
M',:I) 

L ( T • 1) =1 I+ l 
M:J 
L (JI =1 

l !Fi..,-(11•?•1 
] M:M+ 1 

LIMl=Ll"-11•1 

GOTOJ 
� RE TllRN 

ENTRY SFLh•T 
,, IFILl'41+!-L<••1I>�,�•<; 
c; LIMl=L(l-l)+l 

GOTO) 
4 M:M-l 

IF (M) t-.. 7 .,-, 

7 l'<;:j 
REHJ4'< � HI' 

CHEC�c; T�F I l"T 111- kJ l'\�Y "-'f.PQt:SEt-.tTA f l{IM<; ,, .. .., •'"'Tr r ,,, ,;,, 
K6PPA A If) ;..Jfl!l!J t\; T1-w u•)SJT Jn11.• OF ,-p·•dlJHI "I� Tr 

!DENT 1ri11£x 

EIIITRY 1111110 
USE II 

855 \ 41'\ 

USE 
USE 1SHAT I 

BSS 11 
B55 53 
USE 

11110£ X BSS 1 

SAi '11 
SA2 '<? 

SA) X2+NP-1 

SR2 11:J•NIJ-;, 

Stl3 1 
AG SAt H,?+AJ 

IXJ q-•2 
LR K 3, R'4 

5"3 -d+ l 

JP 1'(; 

RM SXh Kl 
JP [Ill/JEX 
ENIJ 

CALCULATE<; FACl"YTll•FAC(PHl2l•••• AS RF'lU(lffll !"I 17. J6) 

!DENT FllAC 
ENTRY Fts�C 
U<;E /F�/ 

FAC 8S5 to 

USE � 

ON£ DATA 1. 

•R•c tlSS I 

SAi ON� 
AXb '1 

SB3 llO 

SA2 ➔� 

582 '2 

•V Sll2 "l-1 
V> "?,FP 

SAi "1l+H2 

SA2 �1-1 
IXJ , 1-x2 
ZR Xl,FL 
SAS l<J+FAC 
FKb t::;1),<f, 

583 K� 

JP FV 

FL SH3 ii)+ l 
JP FV 

•R SAS rt1•F 4r 
FX6 �o;••n 

JP F>l•C 
EIIIU 

TH[S P,H1u"A" AL<;,l C•LLS 1111N AN'1 �MOAT 

THf<;E rl4V£ AL"F. •llY »EF" LI <;TEO 
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