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1.

SUMMARY

The flow of vibrational energy between linearly coupled
multi-modal resonant structures can be modelled by a set of parameters
known as 'Loss Factors'. A survey of the literature on the subject shows
that the loss factors have been calculated or measured for some par-
ticular cases only. Further progress on the theoretical side is impeded
by the complexity of the problem and good experimental evidence 1is
therefore highly desirable.

Previous methods for measuring the loss factors are re-
viewed and the 'in situ' method is examined in detail. It 1is noted that
only the 'in situ' method yields the actual loss factors. Particular
attention is given to how the energy balance equations are constructed
from specific measurements. Also, the question of the accuracy of the
method 1s studied carefully; the experimental errors are amplified by
sensitivity coefficients larger than unity.

The 'in situ' method is then applied (over five octave
bands) to a test structure consisting of two thin steel plates welded
at right angles to each other. A digital system is designed to carry
out these experiments. The sampling of data, the computations and
algorithms, the hardware etc. are described extensively. A brief com-
parison is made with a previous (unsuccessful) attempt which used
analogue techniques. Also, future improvements lilke dedicated hardware
or more sophisticated algorithms are discussed. The loss factors ob-
tained experimentally are then examined closely. The influence of the
sensitivity coefficients is evidenced by the internal loss factors.
Various theoretical predictions for the coupling loss factors are com-
pared with the values determined 'in situ'.

It is shown how the actual loss factors of a simple
multi-modal stucture can be determined experimentally by means of a
digital sytem. Large amounts of data and long computing times are
inevitable. Also, experimental errors are amplified by sensitivity
coefficients and substantial inaccuracy can result. Excellent agreement
is found with some theoretical predictions. Finally, it is suggested
that the 'in situ' method is limited to structures consisting of up
to four coupled multi-modal systems.

« « .000000000. ..
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INTRODUCTION

In practical problems dealing with a resonant structure, 1t 1is
essential to be able to determine the distribution and the flow of
vibrational energy betweeﬁ the elements of that structure. This task
is well understood when only a few resonant modes play a significant
role 1n storing, dissipating and transferring the vibrational energy.
However, when many modes take an active part in the process, an exact
analytical or numerical solution 1s rarely possible. Large or light-
welght structures are typical examples of such situations, particularly
when driven at high frequencies - e.g. a large ship powered by a high-
speed turbine, a space vehicle made of very flimsy elements, a turbulent
boundary layer around the wings of an aeroplane etc. An alternate
approach to dealing with such multi-modal structures is offered by a
formalism which is known as Statistical Energy Amnalysis.

Statistical Energy Analysis describes the flow and storage of
vibrational energy between groups of similar modes by a linear system
of algebraic equations., These equations express the steady-state energy
balance of each group of modes, using a set of non-negative parameters
called 'loss factors'. TFor each group of similar modes, the loss
factors are defined as follows. The internal loss factor is the pro-
portion of the average stored energy which is dissipated. The coupling
loss factors are the respective proportions of the average stored energy
which are transmitted to other mode groups. Thus a multi-modal structure
which can be split into groups of similar modes is characterized by the
loss factors of these groups.

To date, the knowledge of coupling loss factors has relied on
wave~transmission type calculations or empirical formulae. The internal

loss factors are usually obtained from decay-rate experiments or some-



2,
times more simply by an 'educated guess'. To make more effective use

of Statistical Energy Analysis than has been previously possible, 1t
would be very desirable to be able to measure the loss factors on
exlsting structures.

Theoretically, this can be done from a knowledge of injected
powers and stored energiles by inverting the equations of the analysis.
However, previous attempts to invert the equations and use measured or
estimated quantities to determine unknown internal and coupling loss
factors have led to negative values for these quantities, with the
exception of a two plate structure Investigated by Biles and Hamid.
Negative values of the 1oés factors are an impossibility 1f the energy
balance equations are to be believed.

This project was aimed at overcoming the difficulties previously
encountered with the in situ determination of the Statistical Energy
Analysis loss factors. Three stages were thought appropriate for this
purpose :- firstly, a detailed analysis of the method, its inherent
drawbacks and advantages; secondly, to develop an experimental technique
to implement this method on built-up structures; thirdly, to apply this
technique to a simple multi-modal structure, compile the experimental
results and draw general conclusions.

In this thesis, the results obtained during those three stages

are described in detail.
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REVIEW OF PREVIOUS WORK

Resonant vibrations do. not always lend themselves to a
deterministic analysis. Physical irregularities and uncertainties
may result in a rather poor knowledge of modal quantities, or the
number of modes may be so high as to render an analytical approach too
cumbersome. Also, the forces acting upon the resonant system may be
of a random nature, e.g. turbulent boundary layer, jet noise. Typical
examples are found in room acoustics or random vibration of lightweight
structures. In such cases however, a statistical approach may be
applicable, whereby characteristics of groups of modes are examined
rather than individual modes. This is the purpose of a formalism which
has become known as Statistical Energy Analysis (SEA).

Statistical Energy Analysis aims to describe a resonant system in
terms of the time-average flow of vibrational energy between groups of
modes. The advantages of such an approach are firstly, that energy is
readily assoriated with more specific dynamic variables such as strain,
mean square pressure, radiated sound etc. Secondly, the SEA model of
the resonant system consists simply of a set of linear equations, one
for the energy balance of each mode group. These equations result from
theoretical calculations of the time-average power flow between linearly
coupled oscillators driven by broad-band white noise.

The first such calculation was performed by Lyon and Maidanik
(Lyon and Maidanik, 1962) and established that the time-average power
flow was proportional to the difference between the uncoupled time-
average modal energies of two weakly coupled oscillators. The
simplicity of this result was very appealing and it 1s probably fair
to say that it was that result which initiated Statistical Energy
Analysis. Next, Newland calculated the power flow between two
oscillators (Newland 1966) and between two groups of oscillators

(Newland 1968 ). In the case of weak coupling, he found the power



flow to be proportional to the difference between the average modal
energies and to the average shift of natural frequencies, introduced

by the coupling. The latter result readily provided a means of
estimating the proportioﬁality constant. The case of strong coupling
between two oscillators was solved by Scharton and Lyon (Scharton and
Lyon, 1968). They proved the time-average power flow to be proportional
to the difference of the time-average actual total energies. The result
held for two oscillators, and also for N identical oscillators coupled
identically to each other. Unlike previous calculations, the type of
coupling was the most general linear conservative coupling (i.e.
stiffness, gyroscopic and inertial coupling) and was of arbitrary
strength. Ungar presented an informative review of such calculations,
and showed how far SEA could be applied to vibrating systems as opposed
to modes or groups of modes (Ungar, 1967). An interesting point was
that the normal modes of a vibrating system could form a SEA model,
either if the modal energies of each group were equal, or if the
couplings between the modes of 2 groups were equal. Scharton and Lyon had
introduced a new way of determining the proportionality constant
between power flow and energy difference, using a wave-transmission
approach (Scharton and Lyon, 1968). Their result was compared with
Newland's by Crandall and Lotz (Crandall and Lotz, 1971), who found
agreement for weak coupling only. Statistical Energy Analysis, as
applied to vibrating systems was examined by Davies in the case of
coupling at discrete points (Davies,1973). He found proportionality
between time-average power flow and uncoupled time-average modal energy
difference. This proportionality, and various estimates of the pro-
portionality constant were checked successfully by Lotz and Crandall

for a beam to beam and a plate to plate system (Lotz and Crandall, 1973)
coupled at a point by a weak spring. Similarly, Remington and Manning

examined a rod-spring-rod system under longitudinal vibration
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(Remington and Manning, 1975). The SEA proportionality constant they

obtained by a wave-transmission calculation compared well with an exact
calculation, both for weak and strong coupling. The transition from
weak to strong coupling was investigated for coupled osclllators
(Chandiramani, 1978) and for coupled dynamical systems (Smith, 1979).

In parallel with these calculations, experimental evidence was
produced to support a statistical approach. Maidanik used a stat-
istical method to estimate the response of ribbed panels to acoustic
excitation (Maidanik, 1962). Lyon and Eichler studied the random
vibration of connected structures like a beam-plate and a plate-plate
system (Lyon and Eichler, 1964). Lyon and Scharton investigated the
energy transmission through a plate-beam-plate system (Lyon and Scharton,
1965). The actual SEA equations were put to the test on a multipanel
structure by Ungar and Koronaios (Ungar and Koronaios, 1968). Another
successful example was performed by Crocker and Price in measuring the
transmission loss of a panel (Crocker and Price, 1969). More recently,
Swift found good agreement between predicted and measured energy ratios
on multipanel structures, using a wave-transmission method to compute
the SEA coefficlents (Swift, 1977). Statistical Energy Analysis has
also been applied fairly successfully to more general problems, e.g.
ship vibrations (@degaard Jensen, 1976). Bies and Hamid investigated
a two-plate structure (Bies and Hamid, 1980). They compared the steady-
state and decay-rate approaches, and measured the SEA coefficients using
an 'in situ' method.

The current state of SEA was compiled very thoroughly in a text on
the subject by Lyon (Lyon, 1975). The text includes theoretical back-
ground, experimental techniques and what is surely the most exhaustive
bibliography on the subject. The general conclusion of the text is
that the SEA equations hold for systems of mode groups which contain
similar modes, the coupling between the groups being the general, linear,

conservative type and of arbitrary strength. Under these conditiomns,



the variables are the actual time-average total energies of the mode
groups.

This result is very appealing in practice: through the SEA co-
efficients, which describe the loss and transfer of energy, the actual
total energies of groups of similar modes are simply related by a set
of linear equations. The transfer coefficients have been dealt with
satisfactorily for a few particular structures as outlined above. As
for the coefficients which characterize the loss of energy, they have
been documented experimentally and empirically for typical structural
materials (Heckl, 1962 - Beranek, 1971 - Cremer and Heckl and Ungar,
1973 - Lyon, 1975) but are liable to large uncertainties in actual
built-up structures.

At present, the limitation of SEA is two-fold. Firstly, the
validity of SEA has been established theoretically only for specific
conditions, although the study of asymptotically correct cases has
suggested a wider range of application. Unfortunately, the analytical
study of multimodal systems seems to require some formidable algebra,
unless some rather drastic simplifications are madeT Therefore, further
knowledge of this aspect probably depends more on experimental evidence
than on new theories, as Fahy pointed out (Fahy, 1974). Secondly,
although particular systems have been studied successfully (see above),
there is no general method to determine the SEA coefficients on existing
structures. Since the accuracy of an SEA model depends on the knowledge
of these coefficients, this is a serious drawback. Several standard
techniques can be combined, but success depends on the particular
problem at hand (Brooks and Maidanik, 1977). Moreover, these standard
techniques do not always seem adequate, e.g. decay-rate experiments
used to determine steady-state quantities or estimates obtained from
uncoupled systems applied to coupled systems.

.i.
See Appendix



In summary, to make more effective use of SEA than has been
previously possible, it would be distinctly advantageous to be able
to measure the various quantities in situ in existing structures.
This would improve knowﬁ models, and hopefully extend SEA techniques

to more complex and practical situationms.
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THE LOSS FACTORS

2.1 The SEA Model and Equations

An SEA model consists of a series of subsystems. Each sub-
system is a collection 6f resonant modes which play significant and
almost identical roles in the flow of vibrational energy through the
actual physical system. The subsystems exchange energy. They also
receive energy from the outside world and dissipate some energy. If
the SEA model is to be useful, one needs simple and general expressions
for the average energy dissipated by a subsystem, and for the average
energy flow between two subsystems.

Multimodal systems under broad-band excitation have been studied
theoretically, and experiments have supported these calculations for
simple resonant structures (see Chapter 1). These studles show that
for each subsystem, the average energy dissipated per unit time Pdiss
is proportional to the average total stored energy E,

Pdiss

=nw E
c

where W, 1s the centre radian frequency of the frequency band con-
taining the modes, and n is the 'Internal Loss Factor' of the sub-
system over that frequency band. The same studies show that the

average power transmitted between subsystems i and j is

trans
Pij = nij wc Ei -n., w E

where nij (1 # j) 1s the 'Coupling Loss Factor' between subsystems

i and j over the frequency band centred at wc. Thus, the energy

balance for subsystem i is written

Pan _ PdlSS

i i



i M M
nj
P / w = n E, + n E, - I n., E
i ii 74 =1 ij 1 i=1 i 7§
(3#1) (i#1)
PinJ is the average power injected to subsystem i, M is the number of

subsystems connected to subsystem 1, Ny 1s the internal loss factor of

subsystem i. Note that in general, nij # nji’ rather nij Ni

where Ni and Nj are the total number of modes in subsystem 1 and j

= T\ji st

respectively.

These energy balance equations, one for each subsystem, establish
a link between the SEA model and macroscopic quantities of the physical
structure. The SEA model can be viewed as a set of non-negative numbers:
the loss factors. They characterize the steady-state behaviour of the
physical system over a certain frequency band. The macroscoplc quan-
tities are the average power Injected into the subsystems, and the total
energy stored In the subsystems. They correspond respectively to
stimuli acting on the system and to the response of its various con-
stituents. Finally, the link itself is linear.

Unfortunately, it is not yet known if the above expressions hold
for groups of modes which differ substantially in terms of their
internal damping, frequency distribution and coupling to other modes.
Further progress in the analytical analysis of broad-band multimodal
interactions is impeded by the unwieldiness of the expressions involved.
Further experimental evidence is therefore highly desirable. 1In
particular, a general experimental technique, which could determine the
loss factors of specific resonant structures, would provide an objective
test of SEA models. The development of such a technique has been the
purpose of this project and its general principle is outlined in Section
2.3. The next section presents general comments about measuring the loss

factors.
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2.2 Measuring the Loss Factors

The loss factors cannot be measured directly. They are deduced
from measurements of other quantities, such as reverberation time, total
stored energy, power injected, power transmitted etc... It is therefore
expected that experimental errors will combine 1n a cumulative fashion.

Given a single subsystem (i.e. a group of similar modes), the
determination of the internal loss factor is, in principle, a simple
inj

matter. In steady-state, the measurement of the Injected power P

and total stored energy E yields the internal loss factor n since

inj _
P =n wc E
In a typical decay-rate situation,
dE _
T now, E

A record of the decaying stored energy E provides n from the exponential
rate of decay.
These apparently straight-forward procedures deserve further
comments.
a) If the 'similar' modes of the subsystem have substantially
different damping coefficients, the two approaches should in general
yield different loss factors, unless the distribution of dissipated
energy among the modes in the steady-state situation is identical to
that in the 'average' decay-rate situation.
b) The measurement of injected power can prove quite a challenge,
e.g. loudspeaker in a reverberant room.
c) It i1s not always easy to decipher a multimode decay-rate curve.
Consequently, is is not always quite clear which method should
be used, and often the choice results from practical considerations.
Consider now several subsystems coupled together. This time, the
energy balance equations contain several loss factors together. Decay-

rate experiments lead to a linear system of first order differential
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equations. Steady-state experiments lead to an algebrailc system.

A combination of both techniques has been suggested (Brooks and
Maidanik, 1977) involving ratios of steady-state energies and ratios
of decaying energies. A purely steady-state approach seems simpler
to implement. Measurements of the steady-state injected powers and
stored energies, for various power injection configurations, result in
a linear algebraic system, which can theoretically be solved to find
all the loss factors of the system under examination. Also, it seems
more consistent to estimate steady-state quantities from steady-state
situations, since 1t 1is not clear when the steady-state loss factors
can be used in decay-rate situations and vice versa (Bies and Hamid,
1980). In some cases, one can isolate certain subsystems (e.g. by
severing or blocking the other subsystems) in order to estimate the
internal loss factors from measurements on a single system, but this
is not always physically possible, nor justified.

In short, the so-called energy balance method, whereby all loss
factors are determined from a steady-state energy balance system of
equations, should provide an attractive and consistent approach to the
determination of the steady-state SEA parameters.

Unfortunately, earlier attemps have lead to negative loss factors
(a physical impossibility of course), probably because of experimental
error accumulation (Lyon, 1975 p 218). 1In fact, to quote R.H. Lyon:
"The procedure for parameter evaluation just described is not an
established method... There is no reported analysis of the sensitivity
of the derived parameter values to small errors in measured energy and
input power values." The only successful evidence of this method was
given by Hamid (Bies and Hamid, 1980 - Hamid, 1981). This evidence
seemed sufficiently encouraging to justify a more systematic approach,
involving in particular the design of a general experimental method and

a sensitivity analysis. The next chapters are devoted to the presen-
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tation of this work, while the basic principle 1is outlined in the next

section.

2.3 Deduction of Loss Factors from Energy Balance Equations

The energy balance'equations can be written in a general matrix
form,
(E) () = (P/w))

For a system of order two, i.e. consisting of two subsystems:

E E -E 0 (n P /w
1 1 2 11 1 ¢
- (1]
0 -E E E n P /w
1 2 2 12 2 ¢
n
21
n
- 22&

If one is to deduce the loss factors from measurements of El, Ez’

P1 and Pz, four linearly independent equations have to be constructed
from the general case above. These four equations can result from

two different power injection configurations. For a system of order N,
N2 linearly independent equations are required to determine the N2 loss
factors, thusN different power injection configurations must be analysed.
The loss factors are the solutions of the linear algebraic system of N2
equations. If the model has good physical significance, thils system
should never be ill-defined. However, the system results from experi-

mental measurements of the injected powers P, 's and stored energies

i

Ei 's, and is therefore only an approximation to the actual system.

Consequently, the solutions of that system are, in turn, approximations

of the loss factors. The relative errors é£~have the general form

An AE AP
—_— = ___.+ —_—
n a E b P
AE AP .
where T and 5 are the relative errors on the average stored

energies and the average injected powers respectively. The experimental
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errors are amplified by the sensitivity coefficients a and b. These

sensitivity coefficiente are greater than unity and depend on the loss
factors (they also depend on the experimental procedure, i.e. the power
injection configuration.) This means that certain systems will be
harder to amalyse than others. In fact some systems might prove im-
possible to resolve, when the SEA model fails to represent the physical
reality (Brooks and Maldanik, 1977). The sensitivity coefficients are
derived in the next chapter for a system of order two.

Alternatively, system [1] can be solved for E1 and E2 and the
relative errors on the average stored energies expressed thus

AE _ _ An o, 4 AP
n P
The new sensitivity coefficients ¢ and d indicate how the response E
of the system is affected by the characteristics of the system itself
(i.e. the loss factors) and by the outside world (i.e. injected power).
In other words, ¢ and d determine whether or not the model is able to
. An AP

predict E accurately, given a knowledge Y and 7 of the system.
Note that here again, the sensitivity coefficients depend on the loss
factors and the power injection configuration.

In summary, the loss factors can, theoretically, be obtained from
the energy balance equations, provided that the injected power and

stored energy can be measured for each subsystem. The limitation lies

in the sensitivity coefficients which amplify the experimental errors.

.+ .000000000...
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EXPERIMENTAL PROCEDURE

3.1. The Basic Principle

Given a SEA system of order N (i.e. N subsystems), N2 linearly
independent energy balance equations are required to determine the N2
loss factors from measurements of average broad-band injected powers and
stored energles. Generally, one should measure N injected powers and
N stored energies simultaneously, and this should be performed for N
linearly independent situations. The latter condition is achieved by
choosing N different power injection configurations.

A good choice for the N different power injection configurations is
to inject power into only one subsystem at a time. Firstly, the N2
energy balance equations obtained in this way are obviously linearly
independent. Secondly, N - 1 input powers are known to be zero, and
this leaves only one input power to be measured. Thirdly, if all input
powers are equal to zero but one, only one stored energy and the non-
zero injected power need be measured simultaneously. This is readily
proved by noting that, although the values of the stored energies depend
on the non-zero injected power, the distribution of these stored energies
does not. Consequently, a power injection configuration, like the one
just described, is fully investigated, simply by performing N dual
measurements, each consisting of the non-zero input power together with
a stored energy Ei’ where 1 = 1, .. N.

For a system of order 2, the 4 linearly independent equations

which result from the above method are:

E /P E /P -E /P o | [n 7] ”l/wc—\

l(X. 1(1 10. o 28 ].B 11

0 -E /P E /P E /P n 0

o o 28 lB 28 ]‘B 12
= [2]

E- /P E® /P° -E° /P~ 0 n 0

I 2 iz 2 25 2g 21

0 -E” /P~ E® /P~ E” /P~ l/wc
i 1Y 2 25 25 26 26 22 i A
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where the subscripts o,B,y and § refer to distinct experiments, the
subscripts 1 and 2 refer to a subsystem, the non-primed quantities
correspond to the power configuration P2 = 0, and the primed quantities
to the power configuration P1 = 0.

It was the aim of this project to construct systems like system [2]
for a given resonant structure. However, before dealing with the
experimental aspects of this investigation, the next section is devoted
to the sensitivity coefficients arising from system [2].

3.2, The Sensitivity Coefficients

For the purpose of thissection, system [2] can be rewritten using

a condensed notation:

E E -F. 0 | [n T P17

1 1 2 11

0 -E E E n 0
1 2 2 12

= [3]

E” E” -E” 0 n 0
1 1 2 21

0 -E* E” E” n 1
i 1 2 2 |22

The solutions of system [3] are as follows:

E° - E E
2 2 2
n | n_ = —
11 A e A
E” E -E°
1 1 1
n == n =
21 A 22 A
where A= EE”~ - E E”. The loss factors, n , n , n and n are
1 2 21 11 12 21 22

greater than or equal to zero, and therefore

A 20 E°2E ; E » E°
2 2 1 1
Consider a random variable x, a function of other random variables
u,v,w etc....

x = f (u,v,w ...)

The varilance of x, ci , can be approximated by (Bevington, 1969):
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2 . 2 (9%Xy2 2 (9%y2 2 (9%y2
ox oy (au) + oy, (Bv) + Ow(aw) + ....

2 (3% X 2 9, dx 2 2%, 3x
N 20uv (au)(av) e uw (Bu)(aw i 20vw (Bv)(aw + om0

where 02, g2 and 02 are the variances of u, v and w, and g? , o2
u v w uv uw

and céw the covariances between u, v and w.

The 4 loss factors nll’ n

, N and n are functions of 4
12 21 22
measured quantities: E , E , E° and E° . These quantities are obtained
1 2 1 2

by identical experimental procedures, and therefore present identical

statistical characteristics:

a2 o2 o2 o2, o2
E E E E E
1 2 1 2
E 2 E 2 E‘Z E‘Z EZ
1 2 1 2

Moreover, these experiments are performed over different time intervals,
and are therefore uncorrelated. Thus, the various covariances between
the 4 random varilables El, E2, EI and E; are equal to zero. With these
simplifications, the variances of the loss factors can be calculated,

and their relative errors estimated as follows:

on 2 on 12 on 2 an 2
02 =g2| | 4 o2 | A 4oz | A 422
n.. E|JE E |3E E°| 3E E°| 9E
ij 1= 1 2" o - -1 22
2 i 2 T 2 12
o2 _ %5 |E2|""ij 4 B2 any E-2(%04 2|20}
N5 2 L9E 23K 1 \3E” 3E~
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The sensitivity coefficients, S are then given by

ij
an, . |% an, . 1% an, . |2 an,. 12 | %
g =1 | g2l _1j 2| 13 ,«2-[__1.1 2| 1
i3 7 El OE + B 3E + L1|_E)E‘ + B I5E”
ij _ 1 2 1 2
Now define:

b = ;—~ b = ﬁgl
1 11 2 22

These dimensionless parameters indicate the coupling strength (in the
SEA sense) between one subsystem and the other. For each subsystem,
they provide a measure of the relative importance between the average
energy dissipated internally (as indicated by the internal loss factor
”11)’ and the average energy transmitted to the other subsystem (as
indicated by the coupling loss factor nij)'

After some elementary (but tedious) algebra, the sensitivity

coefficients are expressed thus:

b(1+b)[b(1+b)+b (1+b4 Y
1 1 1 1 2 2

511= 1+ 2
_ 2
[( L+b) (1+b) ~b bZ]
. . 1+2b2(1+b2)[b1(1+b1)+b2(1-+b2)] L
22 [(1+b)(1+b)—bbJ2
1 2 1 2
(1+b)(1+b)[(1+b)(1+b)+bb];§
1 2 1 2 1 2
S = § = 1+ 2 —
I 2 [(1+b)(1+b)—bb]2 }
1 2 1 2

S , 8 and S S are displayed in Figure 1 for a realistic range
11 22 12 21

of values b1 and b . Several interesting points arise from these
2

results:



11
,_12 B
b1‘10.0
- 9 -
o 6 -
, wbl-3.0
i b =1.0 ]
‘—b.|=0.3
bl-ﬂ.l
0,3 1.0 3.0 10.0 N
S
22 =
bl 0.1

b1-1.0

b1-10.0

812" 8y

12 4
b =10.0

. 9 -~

-~

6 s {
b,=3.0
b,=1.0

- =0.3 .

3 by
b1=0-1
0.3 1.0 3.0 10.0

1 Sensitivity Coefficients versus coupling strength b
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a) S and S are always larger than 1.

11
b) S =S is always larger than v 3
12 21
¢) The Sij's are small for b1 and b2 small. They are large for

b and b 1large.
1 2

d) S1 is very sensitlve to bl when b 1is larger than 1. It 1s
1 1

not sensitive to b2, even for b1 large. Similar results apply

for S
22
e) S =S is sensitive to b or b only if b and b are
12 21 1 2 1 /7 2
larger than 1. Thus if b or b is small, S =8 remains
1 2 12 21
small.

A general conclusion is that the loss factors of strongly coupled
subsystems (i.e. H_and b2 large) cannot be resolved. Also, 1f only one
subsystem is strongly coupled, in the sense of having a large b, the
corresponding internal loss factor has a much larger sensitivity co-
efficient than the other three loss factors.

Unfortunately, for systems with more than two subsystems, the
analytical determination of the sensitivity coefficlents becomes very
cumbersome so that any generalization to N subsystems does not seem
possible. A computer simulation might provide the answer, but this
was beyond the scope of this project. However, the general trends,
established for a system of order two, should prove useful when

dealing with more complex systems.

3.3. A Description of the Experiments

3.3.1.

The experimental principle described in Section 3.1. was applied
to a simple mechanical system under broad-band excitation. The system
chosen consisted of two thin steel plates welded along two edges at
right angles to each other (the system is described in Section 3.4).

The two subsystems considered were the flexural modes of each plate,
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taken from a frequency band Aw centred at W

The stored energles were deduced from the mean transverse square
acceleration, according to:

2
M <a (w)>x,t

E =

w2

where E is the average flexural energy stored in a thin homogeneous
plate of mass M at a radian frequency w, <a2(w)>x N is the space and

b ]
time average of the transverse square acceleration. <a2(w)>x ¢ was
b
estimated from measurements of the transverse acceleration, using

accelerometers, at m points spread randomly over the surface of the

plates, according to:

I
| =
e~ 3

<a? > <a? > .
a‘(w) x aj (W) "

> € i

1
The injected powers P were deduced from the point-force f and

point-acceleration a at the point of excitation, according to:

P = <f . fa.dt>t .

f and a were supplied by a force-acceleration transducer 1inserted
between the electro-mechanical power source and the point of excitation
on the plate. In order to obtain meaningful average quantities, power
was successlvely injected at 5 different locations on each plate
(Cremer and Heckl and Ungar, 1975 pp. 291-297).

3.3.2.

In a first attempt to measurec the injected powers and stored
energies, analog techniques were used. A substantial amount of time
was devoted to this approach, but for reasons given below, it was
eventually abandoned. If is therefore felt, that only a brief account
of the techniques used, and the problems encountered, 1s justiffed.

The point-acceleration was integrated, then multiplied by the

point-force to provide the instantaneous injected power. The square
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transverse acceleration was simply obtained by squaring the transverse

acceleration. Both operations (i.e. multiplying and squaring) were
performed by AD 530 integrated circuits ('Analog Devices' series). The
instantaneous injected power and square transverse acceleration were
then time-averaged through long time-constant integrators. These slowly
varying signals were then sampled and averaged by an Intel - 8080
microprocessor.

As one would expect, the main problem encountered was associated
with the measurement of the injected power. The signal to noise ratio
was rather poor after integration of the point-acceleration, even though
the original, severalmilli-Volts strong, point-acceleration was first
amplified, then integrated, and finally high-pass filtered. Also, the
integrator introduced a small phase shift which could only be approxim-
ately compensated. In comparison, the point-force signal, typically one
Volt strong, reached the multiplier in its original condition. There
were other problems associated with this technique. From a practical
viewpoint, the same experiment had to be repeated as many times as there
were frequency bands of interest, since the frequency resolution was
equal to the bandwidth of the injected power. Another repetition factor
was imposed by the limited number of analog channels available. In short,
the final result was a rather tedious and inaccurate procedure.

Nonetheless, this procedure was applied to the two-plate system
described in Section 3.4. Eleven 1/3-Octave bands centred at 200 Hz,
250 Hz, 315 Hz, .... 1600 Hz and 2000 Hz were investigated. In these
bands the mode count ranged from 20 modes in the 200 Hz band to 200
modes in the 2000 Hz band. On each plate, power was injected at 5
different locations and the transverse acceleration was measured at
16 different locations. The time averages were performed over 20 second
intervals. Only 2 analog channels were avallable, one for the injected

power and the other for a single transverse acceleration. Consequently,
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19.6 hours of actual sampling were required. The energy balance

equations obtained in this way are presented in Table 1, and the
resulting loss factors in Table 2. Upon examination of Table 2, the
200 Hz and 250 Hz bands Seem plausible. The 315 Hz, 400 Hz and 630 Hz
bands appear rather doubtful in conjunction with the first two bands.
The six remaining bands exhibit negative loss factors, without any
distinct pattern, and were therefore definitely unsuccessful.

Clearly, there was room for improvement. The amnalog circuitry
needed to be reviewed, with particular attention to low frequency noise
and phase distortion. Also, more channels were required. However, the
lack of flexibility in the frequency domain seemed unavoidable. These
were serilous obstacles to overcome, for possibly little benefit. It was
therefore resolved to abandon the analog approach, and digital techniques
were adopted.

3.3.3.

This new approach had many advantages over the previous one. The
complex analog circuitry was replaced by a serles of amplifiers, one
for each channel. The amplified analog signals (the point-force,
point-acceleration and transverse accelerations) were then digitized
by a multi-channel data acquisition system. The spectra of the injected
power and square transverse accelerations were obtained from these
digitized signals by a series of computations. Since the spectral
quantities were available, the frequency resolution could be made less
than the bandwidth of the injected power, thus reducing considerably
the required number of experiments.

The data acquisition and data processing system is described in
Chapter 4, and its performance is analyzed in Chapter 5. It was applied
to the test structure of Section 3.4, and loss factors were deduced
successfully from the energy balance equations, over a frequency

range of 5 Octave bands.



TABLE 1

ENERGY BALANCE EQUATIONS

1/3 - Octave EI[S] _ EZ[S] EI[S] E;[s]
Band [Hz] x 10 x 10 x 10 x 10
200 3.07 1.92 1.79 3.89

250 2.45 1.43 1.55 3.20

315 3.47 2.66 3.34 3.44

400 3.10 1.94 2.90 3.06
500 2.86 1.58 3.30 2.58
630 2.43 1.36 1.49 4.11
800 1.81 2.82 0.79 2.24
1000 1.50 1.19 1.73 2.80
1250 1.38 1,22 10.37 5.52
1600 1.48 1.00 20.80 2.10
2000 1.45 1.28 6.85 2.78

N.B. Divide solutions by w, to find loss factors.



24,
TABLE 2

LOSS FACTORS

1/3 - Octave " LI Ny LA
Band [Hz] x 1000 x 1000 x 1000 x 1000
200 1.9 1.8 1.7 1.2
250 2.0 1.6 1.7 1.0
315 1.3 4.4 5.6 0.21
400 1.1 2.0 3.0 0.22
500 1.4 2.3 4.8 X
630 0.87 0.43 0.47 0.30
800 X 3.1 0.87 1.1
1000 1.2 0.87 1.3 X
1250 X X X 2.3
1600 X X X 1.1
2000 X X X 0.94

N.B. a 'X' indicates a negative value.
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3.4. A Description of the Test Structure

The test structure consisted of two rectangular thin steel plates
welded along two edges, at right angles to each other. The plates are

described in Table 3.

TABLE 3
Plate 1 Plate 2
Size : 1.2m x 1.2m Size : 0.9m x 0.6m
Area : 1.44m? Area : 0.54m?
Thickness : 1.00mm Thickness : 0.40mm
Mass : 11.10 kg Mass : 1.66 kg
Modal density : 0.49 mode/Hz Modal density : 0.46 mode/Hz
Critical frequency : 12.7 kHz Critical frequency : 31.8 kHz
Zp : 89.80 kg/s * Zp : 14,37 kg/s *
Density : 7700 kg/m3 Density : 7700 kg/m3
et 5050 m/s *%* S 5050 m/s **

* Zp is the space and frequency-average point-input-impedance (Beranek,

1971). **cL is the speed of longitudinal waves.

The common join between both plates was 0.9m long and included one
corner of plate 1 and one edge of plate 2. Two strings were attached
to an edge of plate 1 in such a way as to have both plates hanging
vertically. The plates were not constrained in any other way. The
configuration is illustrated in Figure 2. Five holes were drilled at
random in each plate to provide attachment points for the power injection
device. Another 16 holes were drilled at random in each plate to provide
attachment points for the accelerometers. By 'drilled at random' is
meant that no specific location was chosen, although two criterions were
used to determine the overall pattern. The first was that no two holes

would be closer to each other than 10 cm. The second was that all holes
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Fig. 2 Test-structure : two thin steel plates welded together

#1 is 1.0 mm thick
#2 is 0.4 mm thick
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1.2 m



would be at least 10 cm away from the plate edges. All holes were
4 mm in diameter.
The accelerometers and the power injection device were bolted

to the plates. Nelther plate was artificlially damped.

.. .000000000...
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DATA ACQUISITION AND DATA PROCESSING

4.1. Analog Signals

Two physical quantities were to be measured simultaneously: the
average broad-band point;injected power and the average broad-band
stored energy. The injected power P was deduced from the point-force
ftr and point-acceleration a . sensed by the force-acceleratlon trans-

ducer. For a glven radian frequency w,

P) = <f_(u,t) . [ a_(w,t). dt >

where < >t is a time-average quantity.

The stored energy E was estimated from the average of the trans-

verse accelerations apl—i recorded on a plate as follows:
wm
M 1
Ew) = — = ) <a?2 (u,t)>
w2 ™21 pl-i t

M is the total mass of the corresponding plate. The plates were driven

with white noise in octave bands centred at 125 Hz, 250 Hz, 500 Hz, 1 kHz

and 2 kHz. It was considered that 8 transverse accelerations (i.e. m =

would provide an adequate average. Hence a total of 10 analog signals

were considered with frequencies ranging from 22D 88 Hz to 2000 x V2 =

2
2.8 kHz.

4.2. The Hardware

A 10-channel, 8-bit analog to digital (A/D) converter with a
maximum sampling rate of 6250 Hz per channel was used to digitize the
10 analog signals. 8-bit accuracy was thought ample for the purpose,
and 6250 Hz being greater than 2 times the highest frequency component
(i.e. 2 x 2.8 kHz = 5.6 kHz), no aliasing resulted. The A/D converter

was activated by a 16-bit word mini-computer: LSI - 11/02 with RT - 11

operating system. The total core memory available was 24 K words, (N.B.

IK = 1024 = 210) equivalent to 48 K samples by packing two 8-bit samples

8)
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in one word (i.e. one sample per byte). Mass storage was on single-sided

double-density 8-inch floppy disks, each providing space for 10 times
the core memory. For processing purposes, the data was copied from
floppy disk to 9-track magnetic tape and transferred to the 60-bit word
high-speed University computer: CYBER - 173 with a Network Operating
System/Batch Environment (NOS/BE).

4.3. The Software T

4,3.1.

The spectra of the average injected power and the mean square
acceleration were estimated from the time series, using a Fast Tourier
Transform algorithm (FFT) in conjunction with a Kalser-Bessel window.
The Fast Fourier Transform is a well known approximation to the continuous

Fourier Transform, and together with aKaiser-Bessel window, 'leakage' is

reduced to a minimum.
4.3.2.

The mean square acceleration spectrum is given by the power

spectral density (PSD).
PSD(w) = < api(w,t)>t

or

PSD(w) = %‘ Re { Apl(w) ; Apl(wYﬂ

using the complex vector notation, and where '*' denotes the complex

conjugate operator.
Consider Xp’ p=0,1... N-1 (N a power of 2), the FFT of X
m = 0,1... N-1, which is the time series obtained by sampling apl(w,t).

Apl(m) is approximated by Xp thus:

Apl(o) =X ; Apl(Qp) = 2 Xp p=1,2... N/2
fs
Qp =P x4 ( fS = sampling rate)

It follows that:

+See Appendix for more details
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PSD (o) =% Re (A 1(0) . A (0)*} =

N —

*,
Re {xo . xo}

=1 i
PSD(QP) 7 Re{APl(Qp) i Apl(ﬂp) } 2 Re {xp . xp 1

Xp is computed using an N/2 - long FFT computation (Brigham, 1974 p. 169)
at the expense of some rearranging of the results. Finally, PSD(QP) is
multiplied by a quantity called 'parseval', in order to satisfy

Parseval's theorem which states that

Doox gz = L 1x 2
X =1 =S X 3
=0 L N2 p=0 P

N

Zi |-

m

and to make up for the loss of energy imparted when windowing the signal.

'parseval' is then given by

N-1
ol |
1 =0
parseval = —
N2 N-1 5
7 | x . window (i) |
m=0 "

where window (m) represents a value of the window function.
4.3.3.

The average injected power for a given radian frequency w is

Pw) =< f_(u,t) . [a  (u,t).de > .
This can be rewritten, using the complex vector notation and Fourier

Transforms, with j = V=1

P(w) = % Re{Ftr(w) l::wi Atr(w)]*}
Consider Fp and Ap, p.= 0,1... N-1 (N a power of 2), the FFT's

of fm and a, m= 0,1... N-1 which are the time series obtained by

sampling ftr(w,t) and atr(w,t) respectively. Ftr(w) and Atr(w) are

approximated by Fp and Ap thus:
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Feel@) = F o o Arp(0) = Aj

Ftr(Qp) = ZFP : Atr(Qp) = 2Ap p=1,2... N/2
fS

Qp =p X N

It follows that,

N

- = N =i
P(QP) = = Re {2Fp . ( 2 Ap)* } =2 Re {Fp . ( a Ap)* 1

2
p |

p=1,2... N/2

Fp and Ap are computed from flTl and a using one N-long FFT computation,
at the cost of some sorting of the results (Brigham, 1974 p. 167).

1
Finally P(Qp) is multiplied by (parseval 1 x parseval 2)/i in order to

satisfy Parseval's theorem, and to make good the loss of energy

imparted when windowing the signals, where

N-1
ENE
parseval 1 = LS L
N2 N-1
z | £ window (m) | 2
m=0
N-1
I la_ |2
1 m=0
parseval 2 = —
N2 N-1 :
b a_ . window (m) |
m=0

4.3.4.

The choice of a particular window has a considerable influence on
the final result of an FFT computation. Fundamental aspects were
found in various texts on signal processing (Brigham, 1974 - Stanley,
1975 - Tretter, 1976). A very detailed review of data windows was
given by Harris (Harris, 1978). Essentially, the best choice amounts
to a reasonably narrow main-lobe and very small side-lobes. This is

illustrated in Figure 3. One such window is the Kaiser-Bessel window,
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with a parameter of 3 (Harris, 1978 - Tretter, 1976).

was used throughout this project.

4.3.5.

The modal density of a thin homogeneous plate does not depend on
frequency. This motivated the choice of a constant frequency resolu-—

tion. The width of one 'bin', or frequency point of an FFT spectrum,

f

is given by Tf- where fS is the sampling rate and N 1s the number of

samples. Thus the highest constant frequency resolution was dictated

by the largest number of samples, Nmax (a power of two because of

the FFT algorithm), compatible with the LSI -11/02 memory size.

This window

33.

Bearing in mind that 48 K samples could be stored in the mini-computer,

and that 10 channels were required, Nmax

Consequently, time series as recorded in Table 4 were used.

of one 'bin' was 1.5 Hz in all cases.

was found equal to

212 =

TABLE 4

4096,

The width

Number of Samples

Sampling Rate

Octave Band

N fS [Hz] Centre Frequency [Hz]
4096 6250 2000
2048 3125 1000

1024 1560 500

512 780 250

256 390 125
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Unfortunately, the width of one bin is far from being the

frequency resolution of a spectrum derived from an FFT computation.
Firstly, the window has a certain bandwidth, typically 3 bins (Harris,
1978). Secondly, owing to the random nature of the measured signals,
and the poor variance of the FFT spectral estimator, many spectra
computed from uncorrelated time series must be averaged in order to
approach the mean with a.reasonable degree of confidence. The number
of such spectra can be reduced by grouping several bins together.
Clearly a compromise must be sought, since a high frequency resolution
and a small amount of data are mutually exclusive.

4.4. Computations

Consider one time record as the sampling of the 10 channels:
1 time series for the transducer's point-force, 1 for the transducer's
point-acceleration and 8 for the 8 transverse accelerations. The FFI's
of the two time series from the transducer were combined in the
frequency domain, as explained in section 4.3.3., to yield one FFT
spectral estimate of the injected power. The PSD's of the 8 time
series recorded on one plate, computed as outlined in section 4.3.2.,
were averaged to yield one FFT spectral estimate of the 8-point stored
energy. Thus, one time record produced an estimate of both the
injected power and the 8-point stored energy. A maximum resolution
of 20 modes was thought appropriate, which meant that a minimum of
30 bins could be grouped together as each plate's modal density was
about 0.5 mode/Hz. Even then, it was found that about 100 time records
were required for the arithmetic averages of both spectral estimates
to fall within 2.5% of their mean. Such a measurement of the injected
power and 8-point stored energy (i.e. 100 time records) was referred
to as one experimental point, when performed over the 5 Octave bands
of interest. It was made up of 5 x 100 'time records', or 5 x 100 x
10 'time series'.

TSee Appendix
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The ratios of the stored energy spectrum over the corresponding
injected power spectrum, were then averaged over the five driving
points of each plate. This was done four times, as explained in the
previous chapter (section 3.1), and the corresponding four spectra
were used to generate one linear system of four equations for each
frequency point. The solutions of one such system were the four
loss factors which characterized the flow of energy over the correspond-
ing frequency band (i.e. the band containing the bins which were
grouped together).

The sequence of operations just described was implemented in six
steps (some of the computer programs, written in PASCAL, are given in
appendix):

1) Together with information relevant to the actual experiment
(e.g. sampling rate, amplifier gains etc ...) 96 time records were
collected on floppy disks for each Octave band in turn, using an
LSI - 11/02 computer. This amounted to 7.6 Mbytes (one sample per byte)
per experimental point, which fitted on 16 floppy disk sides. The
computer time for one experimental point was about 55 mins, which
included only 5 mins 16 secs of actual sampling, the difference being
the time taken to write on disk. The 20 experimental points took a
total of 18 hours 20 mins computer time and amounted to 152 Mbytes
of data.

2) The raw data was copied from floppy disk to 9-track magnetic
tape at a density of 800 BPI. One experimental point (7.6 Mbytes)
fitted comfortably on a 2400-ft tape, using 512-byte blocks.

3) Each data tape was then copied (in duplicate) on the CYBER.
Each copying operation used 18.5 secs CP (Central Processor) and about
27 mins 30 secs PP (Peripheral Processor). This step naturally required

two tape units (this takes time on a multi-user system!).
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4) Each experimental point was transferred from 9-track tape

to the CYBER's mass storage, and the 16-bit 2's complement integers
were converted to 60-bit integers in the process. Each transfer took
3 mins 51 secs CP and'about 15 mins PP.

5) The time records were processed and averaged. Each experi-
mental point took 1 hour 26 mins CP and about 18 mins 45 sec PP,
giving a total of 28 hours 40 mins CP for the 20 points (this however,
included the unpacking of the data).

6) The linear systems were constructed and solved.

The programs which performed these 6 steps were mainly written
in PASCAL (cf. Appendix). Although the efficiency of the code generated
by a present-day PASCAL compiler is not as good as, say, an optimised
FORTRAN compiler, the computer times quoted above are representative
of the amount of 'number crunching' required.

In spite of the many months spent to reach this particular hard-
ware-software combination, it is believed that these computer times
are only upper bounds of what can be done. Dedicated hardware, machine
language, improved software techniques, faster processors etc ....
offer attractive future improvements. Consequently, 1t secms approp-
riate to conclude this chapter by discussing some improvements which
readily come to mind.

4.5. Discussion - Improvements

Step 1 - 2

Most of the time was spent outputting the sampled data to a

storage medium. The total sampling time was less than 2 hours for the

19.6
2

whole experiment (compare this with the hours of the 'analog
method'). Thus a good l0-channel analog tape recorder could reduce
the time spent 'in situ' to a few hours. The sampling device (i.e.

the LSI - 11/02) could be fitted with a digital tape unit, thus avoiding

the tedious replacement of floppy disks and suppressing step 2 entirely.



37.
Step 3 - 4

512-byte blocks were used on all magnetic tapes. Longer blocks
would improve the storage capacity of the tapes by reducing the number
of IRG's (Inter Record Gaps). The unpacking and integer conversion
could be written in machine language and performed together at this
stage. This would probably reduce the processing times of step 5,
which includes the unpacking, by as much as 25%.
Step 5

The essence of this step is to deduce spectral quantities
accurately from the least amount of data in the shortest possible time.
Using the FFT algorithm 1is a well-known, fast and efficient way of
approximating the continuous Fourier Transform. A reputedly good
window was used throughout the computations, namely a Kaiser-Bessel
window. Unfortunately, when dealing with non-deterministic quantities,
the number of uncorrelated time series required to reduce the variance
of an FFT-based estimator is very large. The use of overlapping time
series could reduce the amount of data significantly, provided that
the overlapping records are almost uncorrelated. For instance, 50%
overlap, and yet less than 10% correlation, can be achieved with a
suitable window, e.g. Kaiser-Bessel 3 (Harris, 1978). 1In the case of
the P.S.D., where the phase information is not needed in the frequency
domain, the Maximum Entropy Method (MEM) could be used successfully.
The Maximum Entropy Method provides a P.S.D. estimator of better
variance and frequency resolution than its FFT counterpart (Haykin,
1978). However, the computation must be performed in real arithmetic,
and this is a disadvantage if a high-speed computer is not available.
The Maximum Entropy Method was never actually used when processing the
data for this project, basically for two reasons. Firstly, the FFT
algorithm is at present more familiar to the engineering community.
Secondly, an FFT computation was required anyway to evaluate the injected

power. However, the Maximum Entropy Method was considered at an earlier
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stage, and deserves a brief mention here. A program+based on the
comprehensive (and simple) flowchart by Andersen (Andersen, 1974),
was developed to gain some understanding of this method. The power
spectra obtained by MEM were smoother, with a better variance and
accuracy than those obtained by FFT, especially when dealing with
random signals. Figure 4 shows FFT and MEM at work on some simple

signals.

Step 6

The ratios of the stored energy to the injected power, E/P, were
averaged over the 5 driving locations of each plate in order to
construct the energy balance equations. Instead, one could use the
least squares principle to find the system which fits the set of data
best (Bies and Hamid, 1980). This was tried on one of the five Octave
bands, as explained in section 5.4. Differences of less than 107 in
the loss factors resulted.

4.6. Summary

A digital method was developed to measure the spectra of the in-
jected power and the 8-point stored energy. The method used the Fast
Fourier Transform algorithm to compute the desired spectral quantities
from sampled time series. It was applied to the two-plate structure
of section 3.4. About 150 Mbytes of data were collected in 20 hours
on a mini-computer, and processed in 30 hours on a high-speed computer.
The data processing included 86,400 FFT computations. Consequently,
large amounts of data and long computing times seem inevitable, and the
practicability of the method clearly depends on the availability of fast
data logging and data processing facilities. Hence it is hoped that the
hardware and the software presented in this chapter, as an experimental
tool, will provide an informative starting point for future investiga-

tions. Having now dealt with the implementation of this digital

..'.
See Appendix
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technique, the following chapter is dedicated to the examination

of the quantitative results. In particular, the loss factors will

be examined in detail.

. ..000000000...
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EXPERIMENTAL RESULTS

5.1. Time Variance

As explained in the previous chapter (section 4.3.5.), given a
frequency resolution, many uncorrelated spectral estimates must be
averaged in order to achieve reasonable accuracy. The higher the
desired frequency resolution, the larger the amount of data required.

The quantities measured on the test structure were of a random
nature and their spectra exhibited resonant peaks. These two
attributes were responsible for the large amount of data. A frequency
resolution of 30 bins was chosen, which corresponded to 20 modes.
This guaranteed a good statistical average of the modal quantities,
without loosing much in terms of frequency resolution. The required
amount of data was determined in the following manner. Power was
injected into plate 1, and X time records were sampled on plate 1 for
each of the five Octave bands, according to Table 4 of the previous
chapter. After some computations (see section 4.4), X spectra of the
power P injected into plate 1 and X spectra of the 8-point energy E
stored in plate 1 were available, with about 25 -~ 30 bins grouped
together. Consider Am’ the average of m uncorrelated spectra, then

| A - A ]

1lim mrt1] m 100 _ 1lim s - 0
m > ® A m > ® m
m
or
lim A = A
N m actual
m 0

In other words, Am is an asymptotically unbiased estimator. Table 5
presents the behaviour of Gm corresponding to the averages of the X
spectra of E and P for the five Octave bands. Taking a deviation of
up to 5% as an acceptable error on the ratio E/P corresponds to the
§ = 2.5% entry in Table 5. This determined the choice of about 100

time records.
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TABLE 5

LAST RECORD m WITH DEVIATION §

125 Hz Octave 250 Hz Octave 500 Hz Octave 1000 Hz Octave 2000 Hz Octave
8 26 bins together 26 bins together 27 bins together 25 bins together 25 bins together
(%] 190 time records 141 time records 184 time records 198 time records 190 time records
m(E) m{P) m(E) m(P) m(E) m(P) m(E) m(P) m(E) m(P)

100 X X X X X 2 2 2 2 2
75 X X X X X - - - 3 -
50 X 2 2 3 X . - - - 3
25 X - 6 6 5 5 5 5 7 8
10 6 10 - 12 15 15 17 11 21 21
5.0 23 11 17 40 29 29 26 31 34 38
2.5 26 66 27 107 30 61 70 75 55 82
1.0 126 100 130 131 173 165 131 198 168 167

'X'

no record found for corresponding §

' : no record found for corresponding §, but

a larger § was recorded previously

4
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5.2. Space Variance

Each plate of the test structure was driven at five different
points. The energy balance equations were constructed from the
four (22) average values.of the corresponding five E/P ratios. As
mentioned earlier, one might prefer to construct the linear system
which fits the available data best, in the least squares sense.
This approach will be examined briefly in a following section. Which-
ever way is chosen, five E/P ratios were determined experimentally,
their only difference being the power injection location, and it is
informative to examine the spread of these five ratios around their
mean. Before however, it must be reminded that, given a frequency

resolution of r bins the E/P ratios are given by

<E>

and not by

where <> indicates that r bins are averaged together. The normalized
standard deviations 00 of the five E/P ratlos are presented in Table 6,
using the condensed notation of section 3.2. (see system [3], Chapter 3).

oo(x) being defined as follows:

= 1
X = =
m

1§ 2| 2
O(X)—[-H‘l z (xi—x)]

o, (x) =

5.3. The Loss Factors

5.3.1.
As a result of the experiments outlined in the previous chapters,

the test structure's energy balance equations were determined over



20 modes (30 bins) together

Frequency co(El) Uu(Ez) oo(hl) oo{Ez}
(Hz) [ %} [%] [%] [z]
110 8.1 6.3 14,1 12,2
155 3.8 12.2 8.8 17.1
199 9.7 28.3 14.6 14.2
243 14.3 10.6 19.9 11.9
287 5.1 9.4 22.6 15.9
331 9.6 12.5 16.5 18.4
376 19.7 23.2 11.4 9.6
420 6.1 1813 9.7 16,8
464 18.083 18.1 10.8 18.4
508 7.5 11.4 18.3 16.7
552 15.0 7.7 18.9 17.7
597 15.9 9.5 28.5 16.0
641 21.6 13.0 26.3 14.7
685 10.3 * 32.4 * 30.1 *k 42.9
731 17.8 16.4 28.4 18.2
778 17.3 * 36.0 * 37.4 25.5
825 20.7 17.8 27.2 ** 51.3
872 26.5 20.8 *% 43,2 * 39.4
919 * 39,1 24.3 ® 33,5 * 32.9
966 22.5 21.4 21.7 * 32.8
1014 11.8 22.9 26.3 9.7
1061 13.5 21.0 13.3 12.7
1108 20.4 17.7 24.5 24,2
1155 15.7 1.7 4.0 11.3
1202 15.2 10.3 12.8 22.1
1249 14.8 4.8 22.4 14.3
1296 17.0 5.2 15.9 16.4
1344 17.8 13.7 14.0 26.1
1391 25.9 20.1 16.8 20,7
1436 1.0 13,9 7.1 * 0.0
14814 14.1 16.2 28.9 9.3
1525 6.0 17.8 * 30.0 7.9
1569 16.6 22.4 25.9 26.1
1613 15.5 5.8 15.6 17.1
1657 5.8 5.7 22.8 19.8
1701 27.6 4.3 8.6 27.3
1746 7.6 17.5 * 31.0 14.4
1790 21.5 9.5 19.4 21.2
1834 7.6 19,1 ** 50.3 10.8
1878 18.0 17.6 21.9 17.3
1922 2).9 1.7 23.6 8.3
1967 16.1 17.0 11.2 25.7
2011 15.4 16.1 17.0 20.6
2055 13.6 21.5 19.0 16.1
2099 17.7 * 35.8 18.4 26.3
2143 * 16.2 19.7 8.7 26.6
2188 15.7 16.6 * 33.6 * 39.4
2232 12.6 7.1 20.6 6.0
2276 14,2 20.3 24,7 12.4
2320 * 34,1 7.5 20.4 26.5
2364 20.2 *k 44.] 17.4 24,6
2409 14.4 13.0 *h 40,7 22.5
2453 22.9 21.5 25.3 18.6
2497 10.7 26.0 8.9 22,2
2541 18.8 4.4 15.1 4.2
2585 28.7 20.4 22.4 19.5
26130 7.4 18,3 16,3 23.8
2674 24,7 20.2 21.1 21.2
2718 5.8 17.1 9.3 * 31,9
2762 l4.6 20.7 26.2 26.6
2806 16.4 12.6 26.8 25.2

' % ' : between 30 and 40
'x% ' : over 40
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TABLE 6.b.

40 modes (60 bins) together

45.

Frequency OO(EI), GO(EZ) oo(El) OO(EZ)

[Hz] [%] (%] [%] [%]
133 5.0 5.7 9.8 9.5
221 12.0 12.8 16.7 7.7
309 5.3 5.8 21.0 14.4
398 10.6 18.6 9.2 10.2
486 13.5 13.2 13.2 16.8
575 8.8 2.9 22.5 10.7
663 10.1 17.9 18.9 * 26.4
751 13.5 11.1 21.6 * 28.1
840 18.7 14.3 * 27.2 *% 37.4
928 * 26.0 21.7 20.8 23.9
1016 13.9 15.7 13.8 13.7
1105 14.6 10.1 22.1 16.1
1193 10.4 9.0 11.1 11.0
1282 11.4 6.1 6.3 14.7
1370 15.0 12.8 5.7 15.6
1458 11.1 13.2 22.1 15.2
1547 10.0 16.6 16.9 18.7
1635 9.1 2.1 14.2 17.1
1724 17.7 12.2 14.1 15.7
1812 14.5 6.7 * 26.5 11.2
1900 19.0 8.0 18.8 9.7
1989 9.4 15.8 13.6 6.3
2077 14.3 * 26.2 11.3 14.8
2166 * 25.6 13.7 21.9 23.5
2254 9.7 9.5 20.7 7.5
2342 22.3 23.6 11.9 22.3
2431 18.6 16.7 ** 30.0 14.7
2519 10.5 21.4 3.1 14.8
2607 16.2 6.9 11.4 19.2
2696 14.6 13.4 14.9 12.2
2784 11.5 14.5 18.6 16.9

vtx ! between 25 and 30
'k ! over 30



TABLE 6.c.

80 modes (120 bins) together

Frequency o (E . ) SR (EZ) % (E;) o (E;)
[Hz] [%] (%] [%] [%]
265 8.5 9.1 11.8 7.5
442 9.5 13.5 5.8 8.3
619 7.3 7.2 *% 24.1 14.2
796 6.9 7.1 *% 23,0 *% 23,5
972 * 17.2 10.8 * 15.7 * 19.1
1149 10.4 7.9 12.8 7.9
1326 12.3 5.5 5.7 11.2
1503 9.7 9.1 13.5 * 15.6
1680 11.8 5.8 10.6 13.9
1856 10.3 5.4 *% 23.3 8.4
2033 8.0 * 19,2 9.9 7.4
2210 14.8 9.7 * 18.4 14.3
2387 * 18.5 % 18.1 * 15.4 13.9
2563 4.0 12.9 5.6 4.6
2740 9.0 8.1 11.9 5.5
w0 between 15 and 20
'okk ! over 20
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the five Octave bands centred at 125 Hz, 250 Hz, 500 Hz, 1000 Hz
and 2000 Hz. Groups of 20 modes were consldered first (i.e. the
maximum frequency resolution), then groups of 40 modes and 80 modes.
The energy balance equations and the resulting loss factors are
presented in Table 7 and 8 respectively. Note that the solutions of
the energy balance equations (see system [3], Chapter 3) presented in
Table 7 must be divided by W, > the centre radian frequency of the band,
in order to obtain the loss factors of Table 8.
5.3.2.

The first point of interest was that the group size did not
affect the loss factors substantially. The results obtained for 80
mode groups (Table 8.c) are approximately the arithmetic average of the
results obtained for 40 mode groups (Table 8.b), and similarly, 40 mode
groups correspond to the average of 20 mode groups (Table 8.a). The
80 mode group 1loss factors (Table 8.c) are presented graphically in
Figure 5. Note the use of linear scales. A few remarkable points
are apparent from Table 8 and Figure 5.

a) All loss factors have the same order of magnitude and do
not exhibit a strong frequency dependence.

b) There are some negative results, but for nllggll (i.e. the
internal loss factor of the large plate). Moreover, except for one
isolated section, the negative values are concentrated in the 2000 Hz
band.

c¢) The loss factors present a 'peak' in the 700 - 1000 Hz
interval. nllpresents some negative values in this range.

- -3
d) nlldecreases steadily from 1.5 x 10 3 to 0.5 x 10 over

the frequency range 125 - 1500 Hz, and is the smallest loss factor.

e) nzzdoes not diverge much from an average value of about

3

2.0 x 10 ° and is the largest loss factor.
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TABLE 7.b.

ENERGY BALANCE EQUATIONS (40 modes together)

Frequency E [s] E [s] E-[s] E°[s]
1 2 1 2
[Hz]
133 6.3 1.9 4.8 4.4
221 4.8 0.95 2.0 2.3
309 4.1 1.2 2.5 2.9
398 3.2 0.78 1.4 1.6
486 3.5 0.68 1.5 1.4
575 2.8 0.67 1.4 1.2
663 2.5 0.72 0.58 0.98
751 2.5 0.73 0.34 0.36
840 2.4 0.67 0.44 0.68
928 1.5 0.43 0.64 0.45
1016 1.6 0.50 0.78 0.67
1105 2.0 0.58 0.77 0.90
1193 1.6 0.57 0.68 0.74
1282 2.0 0.61 0.55 0.70
1370 1.9 0.50 0.52 0.56
1458 1.7 0.41 0.57 0.56
1547 1.7 0.52 0.47 0.54
1635 1.6 0.53 0.47 0.50
1724 1.9 0.56 0.37 0.48
1812 1.8 0.50 0.30 0.47
1900 1.5 0.57 0.28 0.39
1989 1.5 0.53 0.39 0.46
2077 1.2 0.60 0.30 0.40
2166 1.1 0.47 0.36 0.51
2254 0.90 0.60 0.28 0.54
2342 1.1 0.62 0.31 0.52
2431 1.0 0.67 0.26 0.47
2519 1.1 0.61 0.28 0.45
2607 0.98 0.60 0.25 0.42
2696 0.99 0.61 0.20 0.54
2784 1.0 0.72 0.20 0.42




TABLE 7.c.

ENERGY BALANCE EQUATIONS (80 modes together)

Frequency EI[S] EZ[S] EI[S] E;[S]
(Hz]
265 4.6 1.0 2.0 2.4
442 3.3 0.74 1.4 1.5
619 2.7 0.69 1.0 1.1
796 2.4 0.69 0.37 0.45
972 1.6 0.45 0.68 0.51
1149 1.8 0.57 0.72 0.82
1326 2.0 0.57 0.54 0.64
1503 1.7 0.48 0.51 0.55
1680 1.7 0.54 0.42 0.49
1856 1.7 0.49 0.29 0.43
2033 1.4 0.58 0.35 0.43
2210 0.99 0.53 0.32 0.52
2387 1.1 0.64 0.29 0.50
2563 1.0 0.61 0.26 0.44
2740 1.0 0.65 0.20 0.49




TABLE B.a.

LOSS FACTORS (20 modes together)

Freguency " "2 "1 nzz
[Hz] % 1000 x 1000 x 1000 x 1000
110 1.8 1.5 3.8 1.2

155 1.7 1.1 2.6 0.65
199 1.1 0.78 1.6 2.7
243 1.1 0.85 1.7 1.7
287 0.97 0.67 1.3 1.1
331 1.2 0.73 1.7 0.58
376 0.96 1.0 1.6 1.8
420 0.7 0.56 1.2 1.7
464 0.58 0.55 1.3 1.7
508 0.69 0.75 1.6 1.9
552 0.46 0.72 1.4 1.9
597 0.85 0.80 1.7 1.1
641 0.40 0.84 0.92 1.9
645 0.24 0.90 0.57 0.26
731 -1.2 2.4 0.91 7.9
778 -1.9 1.3 1.6 7.9
825 * 0.78 0.37 2.6
872 0.43 0.87 1.2 1.7
919 *% 1.7 2.5 4.5
966 0.45 1.7 3.2 2.2
1014 0.35 1.2 1.5 1.9
1061 0.37 0.77 1.2 1.7
1i08 0.35 0.52 0.78 1.2
1155 0.22 1.0 1.1 1.7
1202 0.26 0.73 0.86 1.5
1249 0.20 0.97 1.1 1.7
1296 0.11 0.61 0.48 1.5
1344 0.14 0.65 0.68 2.1
139} WK 0.84 0.89 2.0
1436 0.30 0.46 0.52 1.5
148] 0.12 0.83 1.2 2.0
1525 -0.17 1.3 1.4 2.7
1569 0.11 0.58 0.42 1.5
1613 -0.04 1.0 0.99 1.8
1657 -0.05 0.90 0.74 2.3
1701 -0.08 0.72 0.65 2.2
1746 -0.14 0.78 0.40 1.9
1790 -0.13 0.75 0.40 2.0
1834 0.02 0.60 0.41 1.9
1878 -0.12 0.97 0.56 2.1
1922 -0.21 0.83 0.51 2.5
1967 -0.18 0.98 0.75 2.0
2011 -0.03 0.74 0.54 1.6
2055 -0.94 2. 1.1 2.7
2099 -0.31 1.2 0.61 2.1
2143 0.03 0.77 0.57 1.6
2188 0.09 1.2 0.96 1.3
2232 -0.15 1.3 0.56 1.3
2276 -0.05 1.3 0.69 1.5
2320 -0.26 1.4 0.76 1.5
2364 -0.14 0.97 0.45 1.3
2409 -0.26 1.2 0.67 1.8
2453 -0.47 1.4 0.36 1.4
2497 -0.40 1.4 0.64 1.5
2541 -0.19 1.0 0.47 1.7
2585 -0.70 2.0 0.82 2.0
2630 -0.22 1.0 0.41 1.5
2674 -0.09 0.97 0.31 1.0
2718 -0.14 0.84 0.27 1.3
2762 -0.77 1.7 0.35 1.6
2806 -0.41 1.2 0.49 1.7

* g = 2.0 x 108
11
¥ = <=3.6x 10 °
11
*kk = -1,2 x 10 °

11
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TABLE 8.b.

L0SS FACTORS (40 modes together)

22
x 1000

12 21
x 1000

x 1000

11

x 1000
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TABLE 8.c.

LOSS FACTORS (80 modes together)

53.

Frequency N 1 rl12 nz 1 n22
[Hz] x 1000 x 1000 x 1000 x 1000
265 0.93 0.69 1.4 1.7
442 0.71 0.65 1.2 1.7
619 0.48 0.76 1.1 1.9
796 ~0.58 1.7 0.89 4.9
972 0.19 1.5 2.3 3.0
1149 0.32 0.75 0.93 1.4
1326 0.09 0.70 0.66 1.8
1503 0.11 0.75 0.80 1.8
1680 -0.08 0.85 0.65 2.0
1856 -0.08 0.73 0.44 2.0
2033 -0.25 1.1 0.69 2.0
2210 -0.01 1.1 0.66 1.4
2387 -0.28 1.3 0.56 1.5
2563 -0.34 1.3 0.54 1.6
2740 -0.26 1.1 0.32 1.3
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f) n12 has a small upward trend with frequency, and n21 a
small downward trend. They 'meet' between 1200 Hz and 1700 Hz.
5.3.3.

It was shown in Cﬁapter 3 how sensitivity coefficients of the
various loss factors depended on the following two parameters (see
Figure 1, Chapter 3):

n
1z 21

b =
1

rI11 n22

Examination of Figure 5 shows that b2 is approximately equal to 0.5.

bl is approximately equal to 1.0 for frequencies lower than 700 Hz,

and approximately equal to 5.0 for higher frequencies. At frequencies
where spurious results were obtained for nll’ it is highly probable

that b1 is also larger than unity. Of course, the loss factors of
Figure 5 are estimates of the actual loss factors, distorted by
experimental errors, and amplified by the actual sensitivity coefficients.
Using these estimates to deduce sensitivity coefficients will naturally
yield only approximate values. However, these approximate values lead
to the interesting conclusion that nllhas a much larger sensitivity
coefficient than the other three loss factors (see Figure 1, Chapter 3).
This large sensitivity coefficient and the fact that a significant
systematic error was introduced in the 2000 Hz band ( see A/D

converter in Appendix ), explain why spurious results were
obtained for nll only, and why they were concentrated in the 2000 Hz

band.Jr

5.4. The Radiation Loss Factor

The radiation loss did not contribute significantly to the
total internal loss. This is readily verified by computing the

radiation loss nra for each plate and comparing it with the internal

d

loss factors deduced from the energy balance equations. Noad is

obtained from the coupling loss factor between a panel and an infinite

+ See also section 5.6
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acoustic space as follows (Lyon, 1975 p. 300):

Read ()

nrad(w) - wM

where w 1s the radian frequency, f 1is the frequency, Rfad is the

radiation resistance, M is the total mass of the panel. For f < fC

(the critical frequency), Rr is given by

ad

4 pch P

- _c in "} 1
R_ (D) n B sin  (£/f )%

where p is the density of air, ¢ i1s the speed of sound in air, Ac is
the wavelength at the critical frequency fc, P is the perimeter of
the panel, B is a coefficient taken equal to 1 for a free panel. The
critical frequency fC is approximated by

£ 12500
thickness[mm]

[Hz]

The radiation losses obtained from these expressions are shown in
Table 9. They are smaller than the total internal loss factors by

one order of magnitude.

TABLE 9

Radiation Loss Factors

Frequency n n
[Hz] ll-rad 22-rad
125 2.7 x 10°% 2.8 x 10"
250 1.9 x 10 * 2.0 x 10"
500 1.3 x 10 % 1.4 x 10"
1000 9.5 x 10 % 1.0 x 10~ *
2000 6.9 x 10 ° 7.1 x 10 °




5.5. The Theoretical Coupling Loss Factors

Wave-transmission calculations provide theoretical estimates
of the coupling loss factors. The coupling loss factor between

two joined plates is given by (@degaard Jensen, 1976):

where cgi is the group velocity 1in plate 1, Lij is the length of
the junction between plates i and j, Si is the area of plate 1, and
Tij is the transmission efficiency between plates i and j across the
junction. For a homogeneous plate of rectangular cross-section, cgi

is approximately given by (Cremer and Heckl and Ungar, 1973):

c ~ 2 (1.8 ¢

1
el £)*

L %1
where L is the speed of longitudinal waves, ti is the thickness of
the plate and f the frequency.

Clearly, such calculation of the coupling loss factor depends
on how Tij is estimated. The test-structure had a right-angle
corner junction (see section 3.4). In first approximation, a wave
normally incident to the junction was considered. However, this
normal incidence transmission efficiency Tij(o) can be a rather
primitive estimate (Plunt, 1980). A better estimate (or at least

more sophisticated) is the average transmission efficiency across

the junction Tij’ where the average is taken over all possible

angles of incidence. 1,, is computed thus:
i)

o 1
T,. = é rij(e) . d(sinb) [4]

where rij(e) is the oblique incidence transmission efficlency for an
angle of incidence 6. After some lengthy computations, Cremer and

Heckl arrived at the following expression (Cremer and Heckl and Ungar,
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1973, p. 401):

2, [(«2 - 891 - s2)1*

Ti:l(e)= 2 2 2 214 ) ) 2:1% 2
vl wij{[(Kij +82)(1 + 8] + [(.<ij -s2)(1 - sH)]* + %

where s = sin 6. If the panels i and j are made of the same homogeneous

substance,
2
K, 2 = — and ¥ = Al

t t
ij t ij £,

where t, and t, are the thicknesses of panels i and j respectively.

i 3

Tij was evaluated from equation [4] on a pocket calculator,
using Simpson's rule. Note that the integrand is zero for angles larger

than the total reflection angle. The results are presented in Table 10.

TABLE 10

Transmission Efficiency

. -3
t = 1.0 x 10 °m t = 0.4x10  m
1 2
< 2= 2.5 ;3 ¥,=016 ; 1,000 = 0.167 ; 7, = 0.124
k2= 0.4 3 ¥ =6.25 3 1 (o) = 0.167 ; = = 0.0785
21 21 21 21

-1 1
n = 1,92 x 10 X T X ===
12 12 v £
=1 1
= 3.23 x 10 X T X .

" 21 /f

L L
These are tabulated in Table 11 for both normal (n12 and n21) and
average oblique incidence (n 7 and nzf). The theoretical coupling loss
12
factors are compared with those deduced from the energy balance equations

in Figure 6. The agreement 1s striking between n measured in situ
21

and n21 calculated for an average oblique incidence (except for the



TABLE 11

THEORETICAL COUPLING LOSS FACTORS

4

Frequency M2 n:; 1 z 271‘
(Hz] x 1000 x 1000 x 1000 x 1000
133 2.8 4.7 2.1 2.2
265 2.0 3.3 1.5 1.6
442 1.5 2.6 1.1 1.2
619 1.3 2.2 0.96 1.0
796 1.1 1.9 0.84 0.90
972 1.0 1.7 0.76 0.81
1149 0.94 1.6 0.70 0.75
1326 0.88 1.5 0.65 0.70
1503 0.83 1.4 0.61 0.65
1680 0.78 1.3 0.58 0.62
1856 0.74 1.3 0.55 0.59
2033 0.71 1.2 0.53 0.56
2210 0.68 1.1 0.51 0.54
2387 0.66 1.1 0.49 0.52
2563 0.63 1.1 0.47 0.50
2740 0.61 1.0 0.45 0.48
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Fig. 6a Coupling loss factor measured 'in situ' and theoretical prediction

for normal incidence and average oblique incidence
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Fig. 6b

Coupling loss factor measured 'in situ' and theoretical prediction
for normal incidence and average oblique incidence
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unexplained peak).

5.6. Flexural to Longitudinal Wave Transformation

The loss factors were deduced from energy balance equations
which were based on the ‘energy stored in the flexural modes of the
test-structure. The energy stored in the longitudinal modes was
neglected. The following considerations deal with the validity of
this approximation.

Consider a flexural wave of unit energy, normally incident
at the right angle corner between two plates. A fraction L of
this unit energy incident wave is transmitted across the junction
as a flexural wave, and similarly, a fraction p is reflected. A

FF

fraction TFL of the unit energy incldent wave 1s transmitted as a

longitudinal wave, and similarly a fraction Prr 1s reflected.

Evidently,

T + 1 = 1 .

Tt PEr FL | PRL
Cremer and Heckl (Cremer and Heckl and Ungar, 1973 pp 316-334) have
derived expressions to compute these transmission and reflection
efficiencies. A computer program was written to evaluate these

(rather complicated) expressions. The results are plotted on Figure 7,
covering the five Octave bands of interest for the test-structure.

As can be seen from Figure 7, longitudinal waves are only likely to

play a significant role in the 2 kHz Octave band.

5.7. The Least Squares Method

The energy balance equations can be written in a general form

i_ i
p Jgnj Ej

where nj is the loss factor between subsystem j and i (i.e. a coupling
loss factor when j # i, and internal loss factor when j = i), and

i
. i .
j is the energy stored in subsystem j when P~ is injected into sub-—
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system 1.

Consider

Applying the least squares principle yilelds the following k equations:

_90_ i,2 -
Oy [ E o ] °

or

i1 de _Hs
i ny ({ E{ B y P E,

h| 1

This symmetric system of k equations can be solved to find the k loss
factors. A program was developed to construct such a system from

the data recorded on the test structure. This was applied to the

500 Hz Octave band, taking 80 modes together. The resulting loss
factors (Table 12) were not substantially different from those
obtained previously (Table 8). Thus, the simpler procedure of

averaging the results appears quite adequate.

.+ .000000000.. .



TABLE 12

LEAST SQUARES FIT (500 Hz Octave Band)

65.

3.2 3.2 -1.1 0.0 1.98 8.2
3.2 6.5 =2.3 -1.,1 1.72 4.8
-1.1 -2.3 1.5 0.73 3.26 2.0
0.0 -1.1 0.73 0.73 J 4.67 3.9
L L =
2.1 2.1 -0.74 0.0 1.91 6.7
2.1 l"-l ""1.5 -0o74 2-71 402
-0.74 -1.5 0.87 0.44 3.89 1.1
0.0 =-0.74 0.44 0.44 7.10 2.8
L. i L L
Fr n n n n
SERSEEH n11 12 21 22
[Hz] x 1000 x 1000 x 1000 x 1000
442 0.71 0.62 1.
619 0.49 0.70 1.0 1.8
N.B. The loss factors are the solutions to the above systems,

divided by w, -
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CONCLUSTON

The Statistical Energy Analysis (SEA) loss factors of simple
multi-modal structures can be determined 'in situ' by solving the
energy balance equations of the SEA model. These energy balance
equations result from spectral estimates of energies stored in, and
powers injected into the various elements (i.e. groups of similar modes)
of the model. It is therefore essential to include in the model all
significant forms of vibrational energy, and to be able to measure
accurately the corresponding stored energies and injected powers.

The loss factors are obtained indirectly from measured quantities,
and experimental errors are therefore magnified by sensitivity coef-
ficients greater than unity. In general each loss factor has a differ-
ent sensitivity coefficient. Consequently, some loss factors can be
determined more accurately than others. Also, the sensitivity coef-
ficients depend on the actual loss factors. A detailed analysis of
two coupled systems showed how the sensitivity coefficients compare with
each other. In brief, the internal loss factors have larger sensitivity
coefficients than the coupling loss factors.

The 'in situ' method was applied to a test-structure consisting
of two thin steel plates welded at right angles to each other. The SEA
model consisted of the flexural modes of each plate, i.e. two coupled
multi-modal systems. In order to determine the stored energles and
injected powers with good accuracy, a large number of measurements was
found to be inevitable. As one would expect, a delicate aspect was the
measurement of the injected power. Analogue techniques were found to
be very tedious, inflexible and fairly inaccurate. Consequently, a digital
system was designed to perform the experiment. This system lived up to
expectations, and the test-structure was analysed over five Octave-bands

by using a sizeable amount of data and computing time.
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Possible improvements on the hardware as well as the software
aspects were discussed in some detail. In the light of this discussion,
it appeared that the '"in situ' method is limited to only a few coupled
multi-modal systems. This is because the complexity of the method is
directly proportional to the square of the number of systems. An upper
limit of four coupled systems is suggested, but this is arguable. At
any rate, it seems quite certain that the 'in situ' approach is not
applicable to complex structures with say one hundred multi-modal
systems e.g. a very large ship. However, such complex structures could
perhaps be broken down into smaller structures, and these analysed
separately.

The data collected on the test-structure was processed to
provide some indication on the spread of the measured quantities around
thelr mean. The stored energy (obtained from an average of eight trans-
verse accelerations) was averaged over five driving points. A rather
wide spread was observed for these five estimates. Consequently, the
space-average of the various quantities could be further improved at
the cost of an even larger amount of data - e.g. twelve transverse
accelerations and ten driving points. An accurate time-average of the
spectral quantities was found to require approximately one hundred
uncorrelated estimates (N.B. depending on the desired frequency resol-
ution). This number could be reduced by using more sophisticated
algorithms and techniques.

The loss factors measured 'in situ' on the test-structure presented
some interesting properties -- the detrimental effect of the sensitivity
coefficients was clearly demonstrated --— the '"in situ' coupling loss
factors and their theoretical predictions were in good agreement. 1In
fact, excellent agreement was found between one coupling loss factor

and the average-oblique-incidence wave-~transmission prediction.
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In summary, a digital system which implements the 'in situ'

method has been developed and applied to a test-structure. Loss factors
were determined successfully over five Octave-bands. The 'in situ'
method was found to have.two inherent drawbacks : a certain degree of
inaccuracy and the necessity for very large numbers of measurements.
However, when theoretical predictions are not available or cannot be
fully trusted, this method is probably the best suited to provide all
steady-state loss factors at once.

It is hoped that the techniques and results outlined in this
thesis will provide useful information for future applications of

Statistical Energy Analysis to engineering projects.

« « .000000000...
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APPENDIX A

EQUIPMENT

Noise Source

The nolse source used throughout this project was a Bruel & Kjaer
Random Nolse generator type 1402. The random noise was fed through an
analogue Bruel & Kjaer Band-pass filter set type 1612. The resulting
Octave-band white noise was then applied to a Bruel & Kjaer Mimi-shaker

type 4810.

Force-acceleration Transducer

The acceleration signal was supplied by a Bruel & Kjaer (B&K)
miniature accelerometer type 4344 (serial number 378473), the force
signal by a plezo-electric crystal under compression. Both the accelero-
meter and the crystal were mounted in a compact form as shown in Figure
Al which represents the force-acceleration transducer schematically.

The tensioning nut was adjusted to ensure linearity of the force
signal. The force and acceleration signals remained in phase when
driving the transducer without load or with a mass-load at frequenciles
ranging from 80 Hz to 3 kHz. This proved the internal loss of the
transducer to be negligible for all practical purposes.

Calibration was performed by measuring the force/acceleration ratio
at the five Octave-band centre frequencies for a range of mass-loads
(see Table Al). TFor each frequency, a linear regression line was fitted
through the experimental data. These five equations were then averaged.
The voltage sensitivity of the transducer's accelerometer being known,
the force calibration constant was easily deduced. These steps are
shown in Table A2.

The driven side and the driving side of the transducer were bolted

respectively to the B&K mini-shaker and the test-structure.
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TABLE Al
f[Hz] f/a. f/a f/a fl/a
no load | 14 gr load | 27 gr load | 47.2 gr load
125 66.6 97.2 121.3 171.3
250 57.7 83.9 108.3 145.3
500 60.0 86.7 110.8 148.9
1000 60.5 87.9 113.5 165.3
2000 58.9 85.2 110.6 146.4
TABLE A2
. Correlation
f[Hz] Linear Regression CoefFicient
125 f/a = 2.20 x m[gr] + 65.6 0.99840
250 f/a = 1.86 x m[gr] + 57.9 0.99998
500 f/a = 1.88 x m[gr] + 60.1 0.99999
1000 f/a = 2.22 x m[gr] + 57.9 0.99718
2000 f/a = 1.86 x m[gr] + 59.3 0.99978

Average Equation:

Acceleration Calibration Constant:

f/a = 2,00 x m[gr] + 60.2

for accelerometer #378473

Force Calibration Constant:

for piezo-electric crystal

0.304

0.304 x 2.00 = 0.610

mV/ms.-2

71.

or 3.29 m.s 2/mV

V/N or 1.64 N/V



72.

Accelerometers

The mean-square acceleration of each plate was obtained by
averaging several (eight) point accelerations. These point accelerations
were supplied by B&K miﬁiature accelerometers type 4344, bolted to the
plates. The frequency response of these accelerometers widely covers
the five Octave~bands of interest (centred from 125 Hz to 2 kHz). Each
accelerometer weighed about 2.7 gr and in view of the plates' thicknesses
correction for mass-loading was applied according to the following

formula :

- Z + jwm

a a X
actual measured Z

where W is the angular frequency, m the mass of the accelerometer and
Z the space- and frequency-average point-input impedance (Beranek,
1971).

Only the original cables were connected to the accelerometers,
hence no correction for cable capacitance was needed and the factory

calibration constants were applicable, as shown in Table A3.

Amplifiers

Ten pre-amplifiers and ten amplifiers were specially built to be
able to measure the signals issued by the nine B&K 4344 accelerometers
and by the piezo-electric force sensor. These amplifiers were
calibrated to within 2% relative error over the frequency range of

interest -1.e. 80 Hz to 3 kHz.

Analogue/Digital Converter

A 10-channel 8-bit A/D converter was used to digitize the signals
sensed on the test structure. The -5V to +5V range was covered by

linearly spaced integers ranging from -128 to +127,



TABLE A3

CALIBRATION CONSTANTS FOR BRUEL & KJAER ACCELEROMETERS TYPE 4344

Serial # 820 473 | 0.324 mV/m.s > | 3.78 m.5 2/uV

Serial # 820 477 | 0.261 mV/m.s"> | 4.66 m.s™>/mV

-2 -2
Serial # 820 478 0.287 mV/m.s 4.24 m.s /mV

=2 =2
Serial # 820 479 0.269 mV/m.s 4.52 m.s /mV

Serial # 820 480 | 0.320 mV/m.s 2 | 3.85 m.s >/mV

Serial # 820 481 | 0.312 mV/m.s 2 | 3.92 m.s 2/mv

Serial # 820 482 | 0.299 mV/m.s > | 4.09 m.s”2/mV

Serial # 820 484 | 0.292 mV/m.s™> | 4.20 m.s"2/mV
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A characteristic of random noise is the presence of spikes and

sudden surges in amplitude, This meant that on average only six to
seven bits were significant in order to avoid truncating these spikes
and surges.

A systematic error on the injected power resulted at high
frequencies because of the A/D converter's operating mode. Given a
sampling rate fs [Hz], a 'start conversion' signal was 1issued by a clock

1
every [s]. Upon receipt of this signal, the converter would sample
s

the ten channels sequentially at 6.2 us intervals, then transfér the
results to computer memory, and then wait for the next clock signal.
The force and acceleration signals issued by the transducer were always
connected to the first and second channel respectively, which meant a
lag of 6.2 us between these two signals. The relative error E intro-
duced on the average product of the force F and the velocity V (time

integration of the acceleration) can be estimated as follows,

%; cos (9 + 2uf.At) - %;-cos ()
E:
£l cos ¢
2

where ¢ is the actual phase, f the frequency and At the time lag. Thus,

E = cos (2mf.At) - tg(9) x sin (2mf.At) - 1

and with 2mf.At < 2w x 3000 x 6.2 x 10_6 = 0.1169

E < 0.0068 + tg(¢) x 0.1166 = 0.12 x tg ¢ .

In conclusion, the error is likely to be significant at high frequencies
(i.e. in the 2 kHz Octave-band) if ¢ is close to 90° (which corresponds

to zero injected power).

.« .000000000. ..
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APPENDIX B

COMPUTER PROGRAMS

Programs which performed general purpose tasks are not presented
here - e.g. standard deviation, plotting, averaging, solving a linear
system of algebraic equations etc. Programs which performed specialised
operations are also omitted - e.g. data unpacking, data transfer to and
from magnetic tapes, least-squares fit to the data as an alternate way
to construct the energy balance equations etc. It was thought that
only three computer programs should be described here: the sampling
program, the processing program and a program to compute a linear
prediction filter.

The sampling program was used to collect the data from the test-
structure. As such it shows how the 'in situ' experiment was actually
performed. The processing program was responsible for most of the
'number crunching'. This was where calibration constants, experimental
data, Fast Fourier Transform etc., all came together. The linear pre-
diction filter program was used to compute the Maximum Entropy PSD.

As one of the most obvious and promising improvements discussed in
Section 4.5, it is not felt out of place here.

The structure of a well-written PASCAL program immediately tells
how the problem is solved. The 'identifiers (i.e. the names of variables,
procedures, types etc.) speak for themselves., Also the structured var-
iables designed by the programmer indicate what tools are used. For
example -— constant memory = 20480 -- variable core : array [l.. memory]

of integer -- procedure fillcore(core). To study a PASCAL procedure
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(a program is also a procedure), one starts with the 'heading'

which contains the variables, types and constants defined within that
procedure. Next one takes the 'body' which is the sequence of operations
performed by the procedure. Each of the following three programs should

be examined according to this method.

Program 'sample'

Program 'sample' collects binary data from an A/D converter and
stores it in file 'data' on a floppy disk. Since the data cannot always
fit on a single disk, the program Interrupts after filling one disk with
a large file, waiting for a new mass storage volume to be inserted.

Data relevant to the experiment, such as amplifier gain, sampling rate
etc. 1is appended to each file. Note that each 8-bit sample is stored
in one half 16-bit word.

Procedure 'tune' issues an audible signal when a new mass stor-
age volume is required. Procedure 'arget' 1s the machine language
external procedure which drives the A/D converter. Procedure 'nextname'
increments the file name attribute by one when the current mass storage
volume is full -e.g. "MYDATA.104" becomes 'MYDATA.105". Note that it is
up to the experimenter to make sure that the number of data records

(i.e. 'numinlot') will fit on a single mass storage volume.

Program 'process'’

Program 'process' computes the injected power and the 8-point
stored energy. The input file 'data' contains 'numinlot' time records
(see Section 4.4). The external file 'sys' contains the physical
characteristics of the test-structure. After computation, the output
files 'pow' and 'energ' contain 'numinlot' injected powers and 8-point

stored energies respectively.
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Procedure 'getready' computes various quantities such as

amplifier gains, point-input impedance, frequency seperation etc.
needed by the program. Procedure 'init' computes the Kaiser-Bessel
window, using the external function MMBSIO which returns the Io Bessel
function. 'inpower' inputs the transducer's force and acceleration
data. 'FFT2C' is an external function which performs a Fast Fourier

Transform according to the following formula

N-1 ZHjI;\]—k
X = 3 X - e p=0,1.. N-1 (j = /-1).
P k=0
'outpower' finds the average injected power (see Section 4.3.3). 'scpow'

scales the injected power according to the calibration constants,
amplifier gains and A/D converter sensitivity. 'inpsd' inputs the trans-
verse acceleration data. ‘'outpsd' finds the power spectrum of the
transverse acceleration (see Section 4.3.2). ‘'acengy' scales the power
spectrum of the transverse acceleration to obtain the point energy stored
in the plate according to calibration constants, amplifier gains, A/D

converter sensitivity and mass-loading correction.

Program 'linpred'

Program 'linpred' finds a Linear Prediction filter which fits the
time series contained in file 'data'. The filter coefficients ay
k= 1,2.. 'order' and the error power 'pow' are output on file 'fil'.
The computations proceed according to Andersen's flowchart (Andersen,
1974). The order of the filter (i.e. the number of coefficients) 1is
determined by the Final Predictionerror criterion (FPE) as given

by Haykin (Haykin, 1979).

Given a time series x n= 1,2.. N, a linear prediction filter

of order m has the following properties:
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m
- it 1xn—1 + azxn_2 + e 8 Xim™ kzl a, X _»

"
i
xe
|
»

mhl, m2, ..N (forward operation)

=}
N

~13

= + e win =
n n,b a1xn+1 a2Xn+2 i i am Xn+m k=1 ak xn+k

n=1,2.. N-m (backward operation)

where the filter coefficients ay k=1,2 ..m are chosen in order to

minimize the forward and backward error powers Pf and Pb given by

) ) 2
P, = e 2 = (x - x_)
d n=mt1 n, f n=m+1 n,f n
N-m N-m
= 2 - 2
Py Z en,b Z' (Xn,b xn) ’
n=1 n=1

The Maximum Entropy Power Spectral Density PSDMEM of the time series X

n=1,2 .. Nis then given by (Haykin, 1979)

L ]
PSDMEM(f) = pow_/fs o
torder' 2™ F |2
1 - Zl ak e g

where f is the frequency, 'pow' is the error power as computed by
program 'linpred', fS is the sampling rate of X5 a k= 1,2.. 'order'
are the linear prediction .filter coefficients as computed by 'linpred’

and j is V-1,



program sample ; 79.

const
namelen = 15 ;
wordnum = 5 ;
memory = 20480 ;
field = 6 ;

var

data : file of integer ;

core : array[l..memory] of integer ;
name : array[0..namelen] of char ;
dot : O..namelen ;
samples,channels,words,totalwords : integer ;
gain,samplrate,count : integer ;
gains : array[l..10] of integer ;
wordcount ,samplecount : integer ;
numoflots,numinlot : integer ;
lotcount,recordcount : integer ;

ch : char ;

procedure ask ;

begin {ask}

writeln ; writeln ;

write('sampling rate ?') ;

break (output) ; readln(samplrate) ;

write('how many samples ?')

break(output) ; readln(samples) ;

write('how many channels ?')

break(output) ; readln(channels) ;

writeln ;

for count := 1 to channels do begin
write('dB gain for channel ',count:2,' :') ;
break(output) ; readln(gain) ;
gains[count] := gain ;

end ;

writeln ;

write('# of data files ?') ;

break (output) ; readln(numoflots) ;

write('# of records in 1 data file ?') ;

break(output) ; readln(numinlot) ;

end {ask} ;

* procedure display ;

begin {display}
writeln ; writeln ;

writeln('sampling rate --——————=—=—————- :',samplrate:field) ;
writeln('# of samples ———- -— :',samples : field) ;
for count := 1 to channels do begin
writeln('gain for channel ',count:2,' ———=———=——- :',gains[count]:field) ;
end ;
writeln('# of data files —-—————————————- :' ,numoflots:field) ;
writeln('# of records in 1 data file --- :',numinlot:field) ;

writeln ;
write('first data file name is :') ;
count := 0 ;



repeat

write(argv[2]4[count]) ;

count := succ(count) ;
until argv[2]t[count] = chr(0) ;
end {displayl ;

procedure nextname ;

begin {nextname}
count := 0 ;
repeat count := succ(count) until argv[2]+[count] =
if argv[2)4[count+3] <> '9' then begin
“argv[2]+[count+3] := succ(argv[2714 [count+3] ;
end else begin
argv[2]4[count+3] := '0" '
if argv[2]4+([count+2] <> '9'" then begin
argv[2]+[count+2] := succ(argv[2]+[count+2] ;
end else begin

argv([2]4[count+2] := '0' ;
argv[2]4+fcount+l] := succ(argv[2]4[count+l] ;
end ;
end ;

end {nextname} ;

procedure arget(var samples : integer ;
var core : array[1l..memory] of integer ;
var totalwords : integer) ; fortran ;

procedure tune ;

var

count : integer ;
procedure pause(t : integer) ;

const
a=1.0;

var

re : real ;
cl : integer ;

begin {pause}
for cl := 1 to t do begin
re := a/a*a/a*afa*a/a*a/a*a ;
end ;
end {pause} ;

procedure ring ;

const
bell = chr(7) ;

begin {ring}
write(bell) ;
break (output) ;
end {ring} ;

80.



begin {tune}

count := 0 ;
repeat
count := succ(count) 3

pause(10000) ; ring ;
pause(2500) ; ring ;

pause(2500) ; ring ;
pause(1500) ; ring ;
pause(1500) ; ring ;
pause(2800) ; ring ;
pause(1500) ; ring ;
pause(1500) ; ring ;
pause(1500) ; ring ;
pause(2500) ; ring ;
pause(1500) ; ring ;

until count = 3 ;

end {tune} ;

procedure doit ;

begin {doit}

dot := 0 ;

repeat dot := succ(dot) until argv[2]+[dot] :

for lotcount := 1 to numoflots do begin
writeln ; writeln ;
write('insert new volume !!1')
break (output) ; tune ; readln(ch) ;
rewrite(data,argv[2]t) ;
datat := samplrate ; put(data) ;
datat := samples ; put(data) ;
datat := channels ; put(data) ;
for count := 1 to channels do begin
datat := gains[count] ; put(data) ;
end ;
datat := numinlot ; put(data) ;
for recordcount := 1 tgo numinlot do begin
arget (samples,core,totalwords) ;
for wordcount := 1 to words do begin
for samplecount := 0 to samples-1 do begin
datat := core[samplecount * wordnum + wordcount] ; put(data) ;
end ;
end ;
writeln('record ',recordcount:1,' in data file ',lotcount:l) ;
break (output) ;
end ;
for count := 0 to namelen do name[count] := argv[2]+[count] ;
name[dot+4] := chr(0) ;
reset(data,name) ;
nextname }
end ;
end {doit} ;

begin {main}

ask ;

words := channels div 2 + channels mod 2 ;
totalwords := samples * wordnum ;

display ;

writeln ; writeln ;

write('all OK ?7'")

break (output) ; readln(ch) ;
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if ch = 'Y' then begin

doit ;
end else begin

writeln ; writeln ;

writeln('Wrong entry. Try again !!!') ;
end ;
end.

N.B. Program 'sample' was written for the NBS-Pascal compller. As such
it presents some 'non-standard' features :-
a) external file variables can be omitted from the program
declaration
b) external file names are found in an array of pointers
called 'argv'
c) function 'break(filevariable)' empties the file buffer
d) structured constants are allowed
e) procedure and function declarations allow a type
declaration instead of an identifier

etc.



program process(data,pow,energ,sys,input,output) -

const
bitunit = 0.0390625 ; {V/bit}
transaccel = 3290.0 ; {m.s"2/v}
transforc = 1.64 ; {N/V}
accelmass = 2.7 ;3 {grl.
pi = 3.14159 ;
accl = 3.78 ; {m.s”2/mv}

H
acc2 = 4.66 ;
acc3 = 4.24
acchd = 4.52 ;
aceb = 3.85 ;
accb = 3.92 ;
acc7 = 4.09 ;
ace8 = 4.20 ;
kaiserparam = 3.0 ;

maxrecord = 4096 ;
windowlen = 2048 ; {maxrecord/2}

maxpowtwo = 12 ; {power of two of maxrecord}

type

plate = record
last : boolean ;
mass : real ; {kg}
area : real ; {m
thick : real ; {mm}
dens : real ; {kg/m3}
speed : real {m/s}

end ;
complex = (rel,imag) ;

workvector = array[l..maxrecord] of array[rel..imag] of real ;
scrapvector = array[0..maxpowtwo] of integer ;

windowtype = array([0..windowlen] of real ;
buffer = arrayl[l..windowlen] of real ;
blokfile = segmented file of real ;

var
xx : workvector ;
iwk : scrapvector ;

windpow,windener : windowtype ;

samples,samplediv2,samplediv4,srate,channels,numinlot,powtwo :

parseval,parsevall,parseval? : real ;
impedance,scale, templ,temp2,fqunit : real
gains : array[l..10] of real ;
~ thisplate : plate ;
system : integer ;
sys : file of plate ;
data : file of integer ;
outbuf,averag : buffer ;
pow,energ : blokfile ;
cntrec,cnt : integer ;

function findgain(dB : integer) : real ;

const
shift = 5 ; {Ian's design} ;

var

temp : real ;

.
]
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integer ;



begin {findgain}

temp := (dB - shift) / 20.0 ;
findgain := exp(temp * 1n(10)) ;
end {fingain} ;

procedure getready ;

var
count : integer ;

begin {getready!

writeln('which system?') ;

read (system) ;

for count := 1 to system-1 do get(sys) ;

thisplate := syst ;

srate := datat ; get(data) ;

samples := datat ; get(data) ;

channels := datat ; get(data) ;

for count := 1 to channels do begin
gains[count] := findgain(datat) ;
get(data) ;

end ;

numinlot :=

powtwo := 0

samplediv? :

repeat
samplediv2 := samplediv2 div 2 ;
powtwo := succ(powtwo) ;

untill samplediv2 =1 ;

samplediv2 := samples div 2 ;

samplediv4 := sgsamples div 4 ;

datat ; get(data) ;

samples ;

scale := sqr(bitunit) * transaccel * transforc / gains[1] / gains[2] ;
impedance := thisplate.dens * thisplate.speed

* sqr(thisplate.thick * 0.001) ;
impedance := impedance * 4.0 / sqrt(3) ;

templ := 2.0 * pi * accelmass * 0.001 / impedance
temp2 := sqr(bitunit) * thisplate.mass / 2.0 / pi ;
fqunit := srate / samples ;

end {getready} ;

procedure init(length : integer ; var window : windowtype) ;

var
tableentry,tableinterval, templ, temp2,param : real ;
count : integer ;
iopt,ler : dnteger ; {parameters for Bessel function}

function MMBSIO(var iopt : integer ;
var arg : real ;
var ier : integer) : real ; fortram ;

begin {init}

param := kaiserparam * pi ;

lopt := 1 ;

templ := MMBSIO(iopt,param,ier) ;
tableentry := 0.0 ;

tableinterval := pi / length ;



for count := 0 to length do begin
temp2 := param * sqrt(1l.0 - sqr(count / length - 1.0)) ;
window[count] := MMBSIO(iopt,temp2,ier) / templ ;
tableentry := tableentry + tableinterval ;

end

end {init} ;

|

procedure inpower (var xx : workvector ; var window : windowtype) ;

var
numl,num2,denoml ,denom2 : real ;
count : integer ;
realpart,imagpart,temp : real ;

begin {inpower}
nunl := 0.0 ; num2 := 0.0 ;
denoml := 0.0 ; denom2 := 0.0 ;
for count := 1 to samples do begin
if count-1l <= samplediv2 then temp : window[count-1]
else temp := window[samples—count+l] ;
realpart := datat ; get(data) ;
numl := numl + sqr(realpart) ;
realpart := realpart * temp ;
xx[count,rel] := realpart ;
denoml := denoml + sqr(realpart) ;
end ;
for count := 1 to samples do begin
if count-1 <= samplediv2 then temp
else temp

= window[count-1]
window[samples—count+1] ;

° oo

imagpart := -datat ; get(data) ;
num2 := num2 + sqr(imagpart) ;
imagpart := imagpart * temp ;
xx[count,imag] := imagpart ;
denom2 := denom2 + sqr(imagpart) ;
end ;
parsevall := numl / denoml ;
parseval?2 := num2 / denom2 ;

end {inpower! ;
procedure outpower(var xx : workvector ; var out : buffer) ;

var
count,shift : integer ;
reall,real2,imagl,imag2 : real ;
freq,incr : real ;

begin {outpower}
parsevall := parsevall / sqr(samples) ;
parseval2 := parseval2 / sqr(samples) ;
parseval := 0.5 * sqrt(parsevall * parseval2) ;
out{1] := 0.0 ; {no DC allowed}
iner := srate * 2.0 * pi / samples ;
freq := 0.0 ;
for count := 2 to samplediv2 do begin

freq := freq + incr ;

shift := samples + 2 - count ;
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reall := xx[count,rel] ; rcal2 := xx[shift,rel] ;
imagl := xx[count,imag] ; imag2 := xx[shift,imag] ;
out[count] := abs(parseval / freq
* (-sqr(reall) + sqr(real2) - sqr(imagl) + sqr(imag2))) ;

end ;
end {outpower} ;

procedure scpow(var out ; buffer) ;

var
count : integer ;

begin {scpow}
for count := 1 to samplediv2 do out[count] := out[count] #* scale ;
end {scpowl ;

procedure zero(var av : buffer) ;

var
count : integer ;

begin {zerol
for count := 1 to samplediv2 do av[count] := 0.0 ;
end {zero} ;

procedure inpsd(var xx : workvector ; var window : windowtype) ;

var
num,denom : real ;
count : integer ;
realpart,imagpart,temp : real ;

begin {1inpsd}
num := 0.0 ; denom := 0,0 ;
for count := 1 to samplediv2 do begin
if count <= sampledivé4 then temp := window[count-1]
else temp := window[samplediv2-count+l] ;
realpart := data+t ; get(data) ;
imagpart := -datat ; get(data) ;
num := num + sqr(realpart) + sqr(imagpart) ;
realpart := realpart * temp ;
imagpart := imagpart * temp ;
xX[count,rel] := realpart ;
xx[count,imag] := imagpart ;
denom := denom + sqr(realpart) + sqr(imagpart) ;
end ;
parseval := num / denom ;
end {inpsd} ;

procedure outpsd(var xx : workvector ; var out : buffer) ;

var
count,shift : integer ;
reall,real2,imagl,imag2,sine,cosine : real ;
arg,incr,realpart,imagpart : real ;



begin {outpsd}

parseval := parseval / sqr(samples) ;

realpart := xx[1l,rel] + xx[1l,imag] ;

imagpart := 0.0 ;

out[1l] := parseval * (sqr(realpart) + sqr(imagpart)) ;

incr := pi / samplediv2 ;
arg := 0.0 ; .
parseval := parseval / 2.0 ;

for count := 2 to samplediv2 do begin
arg := arg + incr ;
shift := samplediv?2 + 2 ~ count ;
reall := xx[count,rel] ; real2 := xx[shift,rel] ;
imagl := -xx[count,imag] ; imag2 := -xx[shift,imag] ;
cosine := cos(arg) ; sine := sin(arg) ;
realpart := reall + real2 + cosine * (imagl + imag2)
- sine * (reall - real2) ;
imagpart := imagl - imag2 - sine * (imagl + imag?2)
~ cosine * (reall - real2) ;
out[count] := parseval * (sqr(realpart) + sqr(imagpart)) ;
end ;

end {outpsd} ;
procedure acengy{(accel : integer ; var out : buffer) ;
var

sensitivity,massloading,freq,temp : real ;

count : integer ;

procedure select (number : integer ; var sens ! real) ;

begin {select}

case number of

1l : sens := accl ;
2 : sens := acc? ;
3 : sens := acc3l
4 : sens := acch ;
5 : sens := acch ;
6 : sens := accht ;
7 : sens := acc/ ;
8 : sens := acc8
end ;
sens := sens * 1000.0 ;

end {select} ;

begin {acengy}
select(accel,sensitivity) ;
out[1l] := 0.0 ;
freq := 0.0 ;
temp := temp2 * sqr(sensitivity / gains[accel+2]) ;
for count := 2 to samplediv2 do begin
freq := freq + fqunit ;
massloading := 1.0 + sqr(templ * freq) ;
out{count] := out[count] * temp * massloading / sqr(freq) ;
end ;
end {acengyl ;



procedure add(var out,av : buffer) ;

var
count : integer ;

begin {add}
for count := 1 to samplediv2 do av[count] := av[count] + out[count] ;
end {add} ;

procedure divide(var av : buffer) ;

var
count : integer ;

begin {divide}
for count := 1 to samplediv2 do av[count] := av[count] / 8.0 ;
end {dividel} ;

procedure copy(var buf : buffer ; var fil : blokfile) ;

var
count : integer ;

begin {copy}

for count := 1 to samplediv2 do begin
filt := buffcount] ;
put (fil) ;

end ;

putseg(fil) ;

end {copy} ;

procedure FFT2C(var a : workvector ;
var m : integer ;
var iwk : scrapvector) ; fortran ;

begin {main}
reset (data) ; rewrite(pow) ; rewrite(energ) ; reset(sys) ;
getready ;
init(samplediv2,windpow) ;
init(sampledivé4,windener) ;
for cntrec := 1 to numinlot do begin
inpower (xx,windpow) ;
FFT2C (xx,powtwo,iwk) ;
outpower (xx,outbuf) ;
scpow (outbuf) ;
copy (outbuf ,pow) ;
powtwo := pred(powtwo) ;
zero(averag) ;
for cnt := 1 to 8 do begin
inpsd (xx,windener) ;
FFT2C(xx,powtwo,iwk) ;
outpsd (xx,outbuf) ;
acengy (ent,outbuf) ;
add (outbuf,averag) ;
end ;
powtwo := succ(powtwo) ;
divide(averag) ;
copy(averag,energ) ;
writeln('done record ',cntrec:1l) ;
end ;
end.
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program linpred(data,fil,output) ;

const
samplemax = 4096 ;
ordermax = 100 ;

yar
data : file of integer ;
fil : file of real ;
coeff,oldcoeff : array[l..ordermax] of real ;
forw,backw : array[l..samplemax] of real ;
order,count,samplenum : integer ;
pow : real ;

procedure filter ;

var
fpe,oldfpe : real ;
exitout : boolean ;

procedure initialize ;

var
cnt : integer ;

begin {initialize}

pow := 0.0 ;

samplenum := 0 ;

while not eof(data) do begin
samplenum := succ(samplenum) ;

forw[samplenum] := datat ; get(data) ;
pow := pow + sqr(forw[samplenum]) ;
end ;
pow := pow / samplenum ;
for cnt := 2 to samplenum do begin
backw[ent-1] := forw[cnt] ;
end ;
order := 1 ;
fpe := pow * (samplenum + order + 1) / (samplenum - order - 1)

end {initialize} ;

procedure power ;
var
num,denom : Teal ;

cnt ! integer ;

begin {power}

num := 0.0 ; denom := 0.0 ;
for cnt := 1 to samplenum-order do begin
num := num + forw[cnt] #* backwl[ent] ;

denom := denom + sqr(forw[ent]) + sqr(backw[ent]) ;
end ;
coeff[order] := 2.0 * num / denom ;
pow := pow * (1.0 - sqr(coefff[order])) ;
oldfpe := fpe ;
fpe := pow * (samplenum + order + 1) / (samplenum - order - 1)
end {power} ;

e
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procedure error ;

var
cnt ¢ integer ;

begin {error}

for cnt := 1 to order-1 do oldcoeff[cnt] := coeff[cnt] ;
for cnt := 1 to samplenum-order do begin
forw[cnt] := forw[ent] - backw[cent] * coeff[order-1] ;

backw[ent] := backw[cent+l] - forw[ent+l] * coeff[order-1] ;
end ;
end {error} ;

procedure coefficients ;

var
cnt ¢ integer ;

begin {coefficients}
for cnt := 1 to order-1 do begin
coeff[ent] := oldcoeff[cnt] - oldcoeffl[order-cnt] * coeff[order] ;
end ;
end {coefficients} ;

begin {filter}
initialize ;
power ;
exitout := false ;
repeat
order := order + 1 ;
error ;
power ;
coefficients ;
if fpe > oldfpe then exitout := true ;
until exitout ;
end {filter} ;

begin {main}

reset(data) ;

filter ;

rewrite(£fil) ;

fil4 := samplenum ; put(fil) ;

fil% := order ; put(fil) ;

filt := pow ; put(fil) ;

for count := 1 to order do begin
fil+ := coefflcount] ;
put(fil) ;

end ;

end.

...000000000...
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APPENDIX C

STATTISTICAL ENERGY ANALYSIS OF COUPLED MULTI-MODAL STRUCTURES

An attempt 1s made here to study analytically two linearly coupled
multi-modal structures. The steady-state modal responses to pure—tone
excitation are solutions to a system of linear algebraic equations.

This system can be solved analytically in two simple cases :- firstly
when only few modes are involved e.g. a one-mode system coupled to a
two-mode system; secondly when the inter-modal couplings and the modal
forces are equal. The first case is fairly obvious since it amounts

to solving a small linear system of equation. The.second is non-trivial
since a n+m by ntm system has to be solved (n and m are the number of
modes in each system). The solution of this second case is presented
here in detail.

The actual.Statistical Energy Analysis equations are obtained by
integrating over the frequency variable the sums of modal response
complex products which correspond to average stored energies, average
transmitted energies and average dissipated energies. 1In the simplest
case (i.e. one mode coupled to one mode), the algebra is heavy, but
manageable (Lyon, 1975). The second simplest case however (i.e. one mode
coupled to two modes), very quickly produces some formidable algebra,
and the case of identical couplings and identical modal forces likewise.
Consequently, the analytical calculations were not pursued any further,
and only the general procedure is outlined here. It is believed that
a computer simulation of these equations would yield some interesting
results. This however, was judged to be well beyond the scope of this

project.



92.

Consider two linearly coupled systems ¢ and B. Under fairly
general assumptions (Lyon, 1975), the steady-state modal amplitudes
Xak and XB% to a pure-tone excitation at angular frequency w satisfy
the following system of equations (the subscripts o and B refer to

system o. and B respectively, i = v-1):

m
2 = M2 = - _ 2
Mu[(wuk we) + iwaak] Xak Fak jzl[ (KBajk w OBajk) + tiBujk] XBj

k=1,2 n
[C1]
2 2 v 2
M - = - - + 1 X
8 (wBR w?) + imGB2 XBZ FBE jzl (Kasz w Oaﬁjl) wYaBjZ] 5
L= 1,2.. m

System o of total mas Ma has n modes with resonance frequencies Wik

and internal dampings Gak' System B of mass MB has m modes at mB

k 1s an elastic force coefficient, ¢ an inertial

L

with damping 682'

force coefficient and y a gyroscopic force coefficlent. The subscripts

of these force coefficients read as follows: is the elastic force

8ok
coefficent from mode j of system B to mode k of system a. Fak is the
amplitude of a modal excitation force.

It is important to bear in mind the physical meaning of these
modal quantities. Using the mode shapes wak (r) k =1,2.. n and wﬁl (r)
£ = 1,2,.m(which satisfy the boundary conditions plus the usual orthog-

onality relationships) where r stands for the space coordinates, the

coupling coefficients are given by
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ok = | FCSug () ¥y (F)e ¥g, (r). dr

junction

KBGRRE ECSBa(r)' wak(r). me(r)‘ dr

junction

where ECSaB (r) is the elastic coupling strength between o and B
(N.B. the junction between a and B is implicity defined as the region
of space where ECSaB (r) # 0). Similar expressions can be written

for the o and y coefficients. Also, the modal forces Fak satisfy

Fak (t) = J fa(r,t). wak(r). dr
o

where fa(r,t) is the external force acting on system a, with

_ 1wt
Fak(t) = Fak . e

in the case of pure-tone excitation at angular frequency w. Finally,
the steady-state modal amplitudes Xak(t) are related to the generalized

displacement Ea(r,t) of system o in the usual way:

n
£ (r,t) = kzl X 1 (8 ¥

with

iwt

Xuk(t) = xak . e

in the case of pure-tone excitation at w. Clearly, similar relations

hold for system RB.
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In the case of conservatlve coupling (i.e. no energy dissipated

by the coupling elements) it is easily shown (force from mode B2 to mode

ok times velocity of ak equals force from mode ak to mode B times

velocity of BR) that « o

aBir - “gari’ %aBit

System Cl can now be rewritten

Bati 29 Yapiz = Yganj”

Ma[(wui - W)+ iwﬁak] Xy = Fak - z [(Kkj - wzokj) + tikJ]xBj

i=1

k=1,2..n

or in a matrix form

A 0 ------ ..-.0 T eeso0ee seves T x
1 .. . =11 1m (11
0 A l. - -
L) 4 2. L]
L I .x C L I I U T ) .- .
0 0 n 'nl Tom on
T %, SN T % 0 ¢ | X
11 1n u1 F . B1
i 0 ' . :
- O u .
: : om0t s
. : 0 .
*.1 ........ - * L B L I B - ! x
Tml T B s M Bm

|

an

.81

Bm

[c3]
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with

>
]

2 _ .2
Kk Ma[(”ak W) + 1w 6ak]

-2_2
MB[(mﬂl w?) + 1w §_ 1]

My B

1

= - .2
Tha [(ka w okz) + 1w Ykzl

and where '*' denotes the complex conjugate operator.

It is clear that a general solution of system C3 cannot easily
be found. However, as mentioned earlier, two simplified cases can be

examlned with some hope of success.

First consider the (now well-known) case with two modes (Lyon,

1975). System C3 is reduced to

1 11 ] a3 o o

11 1 B1 B1

Then
A= Ay - |'r|2
and
. Fu T ) Fau - FBT
YW Tn | 7y A
XB =.% A Fa _ EBA ; qui
T* FB

The time averages of energy quantities like the transmitted power, the
dissipated power etc. are given by expressions like :-

power transmitted from o to B = %-Re {(—T*Xa)(ks)*}



96.

= Re {(—T*xa)(-iwxg)} R

1l

Re {(~7X,) (ka)*}

N =

power transmitted from B to «

I
|~

Re {(-1X ) (-iwX*)} ,
B o

N | =

= g *
power dissipated by o Re {(iwéaMuXa)(Xa) 1

1
= E—Re {(imGaMaXa)(—imX:)} i

The Statistical Energy Analysis Energy Balance equations are
then obtained by integrating these energy quantities (expressed as the
real part of complex products) over the frequency variable like

+ o0

power flow (white noise) = power flow (w). dw
These integrals can theoretically be evaluated from tabulated expressions
(Gradshteyn & Ryzhik, 1980, p. 218-219).

In this simple case, the

computation cap actually be carried out analytically (See Lyon, 1975).

consider three modes.

A T T X F
1 11 12 o1 01

T * 0 X F
11 " 81 B1

T * 0 X F
21 P B2 B2

) and XB can easily be found, but the complex products which

9 :

System C3 1s reduced to

r~

the integrals over the frequency variable are formidable.

correspond to the average energy quantities are extremely cumbersome and

Consequently,
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the calculation was abandoned, thus leaving this case unresolved.

Finally, consider the case where all coupling coefficlents

and modal forces are equal (see above for physical meaning).

C3 now reduces to

This system can be solved analytically as follows.

determinant along the first row :

A Ouizszasins s 0

0%. ".

: .. 0

Dieevnnonnes 0 )
n

T* . et ieees ceoT®

TR T

A Ogwwaiama o 0 Tiwiomn wio s wiwe T X
ol. - : : o1
: 7.0 . = :
M A Teeses L X‘
O | An T T — )
T Giare scvimiwre s LT TR O 0 X
P . ]1 é . 81
. . 0° . K .
: 2 : 0 :
TX, e eroneseT® ey e e X
T 0 o™ Bm

| R -~ T
T o mouss e mialinec T
[V e L)
1 - 2
L] * 00

Oaiaiiis evivin a 0y

trf s s w0 0 8 20

Develop the

System

[ca)



+ (—l)nT

+ (_1)n+1T

............

.
.
-
. .
. .
. .
- -
. .
. .
-
.

-----------

-----------
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0x0,.0..,..0 Tasiaa eis seis e T
2y g : :
: ) . .
Oz.i%%.00 sans 0 A Tasms sonEn i T

oot (el | m

0
. 1. - :
. . : . .0

[ =]
o
g =

. - m—l

TR e eooaeTH Onis & - wszesmimion 0

or

n+l 1

A= AlAl + (-1)nTD1 + (-1) ™ +..ee0.tF (-1)n+m_1T 1
2

D .
m

Al is similar to A and therefore initiates a recursion.
The other m determinants can be written in the same form after appropriate

row permutations :

AO"'."..O T-cuvo-o--.-T
. 2 . .

cs e e e O

Di = (—1)1"1 k=1,2..m .

TR e tienernesTH 0...........0
. . U § (e 0
- - ].
= : 0 -

. '.”k—& .
. . k+1 0
TR i it veeceseT® 0....00..0 1
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Now computation of Di also initiates a recursion since it can be

developed along the first row as

0 A d.......O T aecavevs sinieiain T
fede fy 1 :
) Onerennnnn N . )
e R S ceuT* O..... dogend = 2D TEEmE S SR (D
. X u} .. N
. 0. ° :
: vd W1, 8
. s % o 5.t
: s p e WY,
3 L .o
™, ... % 515 Osrais wwwisss 0 um

where the remaining terms are zero by virtue of having two identical rows.

Now we have

1
A =aa + Do+t 4 ... + DY
1 1 2 m
Al = ...,
and
1 2
D) = Aznk
2
D, = -

These recursive formulae produce, after some manipulations, the following

result
1 1 1,1 1 1
A=(l A ocox)(u " "‘u)[l_ lle(_+_+-n-+"")(“+— +--.+—)]
A X A vl
1 2 n’ 'y 2 m ) B LT m
or
) ?
A=w w0 - Ile X ﬂ m
a0 BO k=1 ok =1 BL



where

= )
“ak

‘"‘ =
BL u1

Now from system |C4|, X

|-

o]

I
o]

jessocoscne

Computation of XOL1 proceeds in i1dentical fashion to A's : develop the

determinant along the first row and find two recursive relationships.

X A X
1 2

XA X
1 1

X u X
2

ceeX A
n

ceeX W

eeeX Ak—l X Ak+1

neeX Mg X Hen

is expressed as
o1

X coeX A
n

X eoX U
m

Finally, one obtains for the steady-state modal responses

Fun

go ~ g

1 "BR

X =T X

m

n
- 2
"a0"g0 = |7 kzl"ak L ey

2=1

oJ

|
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- *
FB“aO Fu T kzl “ak .
X =T = T X =+ .
Bj B3 _ 2 0 m Bl © A
ﬂaO"BO ITI z Trak Z “BR
k=1 =1

These results could be used to compute the complex products which
correspond to average energy quantities, and which could be summed
over the total number of modes, then integrated over the frequency

variable from —» to +® using tables of integrals (see above).

. . .000000000...
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