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SUMMARY -

This thesis is mainly concerned with methods for solving
Toeplitz linear algebra problems in 0(n2) multiplications/divisions.
There are three main aims (i) to find new connexions between known
algorithms, and re-derive some of these using different approaches
(ii) to derive new results concerning the numerical stability of some
aléorithms, and to modify these algorithms to improve their numerical
performance (iii) to derive fast Toeplitz algorithms for new applica-
tions, such as the orthogonal decomposition and singular value decompo-

sition.

In Chapter 2, fast Toeplitz factorization algorithms (FTF's)
are re~derived from the Bareiss algorithm for solving Toeplitz systems
and also from algorithms for performing rank-1 updates of factors. In
Chapter 3, the Bareiss algorithm is related to the Trench Algorithm for

Toeplitz inversion.

Several new results regarding the propagation of rounding errors
in the Bareiss algorithm are derived in Chapter 4. A pivoting scheme is
proposed in Chapter 5 to improve the numerical performance of the

Bareiss algorithm.

In Chapter 6, error analyses are performed on FTF's and some
pivoting is incorporated to improve their numerical performance. The
results of Chapter 3 are used to adapt the Bareiss pivoting procedure to

the Trench algorithm.



vi

Methods are proposed in Chapter 7 to compute the QR factoriza-
tion of a Toeplitz matrix in 0(n%) operations. This algorithm uses the
shift-invariance property of the Toeplitz matrix and a known procedure
for updating the QR factors of a general matrix. In Chapter 8, methods
are described for speeding up the algorithms of the previous chapter, and

several extensions are proposed.

In Chapter 9, two algorithms are proposed to compute the
singular-~value decomposition (SVD) of a Toeplitz matrix in fewer operations
than for a general matrix. The first algorithm is 0(n3) but depending on
the dimension of the problem requires up to 80% fewer operations than for
general SVD algorithms. The second possibly unstable method has complexity
0(n2 log n). A modification of this method is proposed which may enable

the singular values to be calculated stably.
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NOTATION

General Matrix and Vector Notation

Symbol

a

RT

T2

. m
dzag{ai}l
det A

“A"_;"a"

HAHp 3 lal

-—

Explanation

A vector with elements Ays Ggs wve Qpo where m
is the order of a

The matrix with elements Gy s 1=1,...,m3g=1,m,
where m and n are the number of rows and columns
respectively in 4

Row 7 and column § of A

Elements J to k of a, elements # to 7 of a.j

Rows 7 to J of columns k to 7 of A

Rows 7 to g of A; columns k to I of 4

The kth leading submatrix of 4 (unless otherwise
indicated

The transpose of a, 4

The inverse of 4

The reverse of ¢, i.e. if a
T

Il
-~
Q

-
™
"
Q
—
.

then gR=(am,...,a1)
The reverse-transpose of a

The secondary transpose of A (transpose about the
secondary diagonal).AT2=EATE (see below for E)

A diagonal matrix with diagonal elements Agsgss e
The determinant of 4

A matrix-norm of A; a corresponding subordinate
vector-norm of a (1f applicable)

The p-norm of A and a



E .5
Ak” Ak

As5 % “kst

a., a

84, Sa

rel A, rel a

cond A

1>

Aeie)r 204

Explanation

The displaced leading submatrix of 4 with order k

and displacement j: for j=0, Ak!j=A1'k 1+5 kg
> AR *

for j<0, Ak;j=A1+|j|-’k+|jl:1"k

R .o ". . n "
Same as Ak;l s Ak;«l (E: "East"; S: "South")

g AZ:k+1,1:k
) 5 AL .. =

(A %31

1:k,1:k-12 215k, a
~t,1:k

ba, b, . ta l,

The Toeplitz part of 4

max
7,914 5]

J =2 0 : the jth diagonal above the main diagonal

of the Toeplitz part of 4; § < 0 : the |7 lth
diagonal below the main diagonal of the Toeplitz
part of 4.

The cyclic convolution of g and b
A A g e Al where{Ai} are square matrices of
the same order (not leading submatrices of 4)
The computed value of 4,a

The errors in A,a : A-A, a-a respectively

mazx 1ax .
'I,,Jléa’w I/’Z,,JIaYIJ |; léa/a|

The condition number of 4, defined as Latia~ty
A Toeplitz matrix

A block-vector with blocks A(i)

A block-matrix with blocks A(ij)

Block-row 7 and block-column j of A
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Symbol Explanation

Blocks j to k of Aii)s blocks & to ¢ of A

Ai,9:%) 3 Anet,d) (+d)

@53kl Element k,7 of block Z,7 of A
A(k) kth leading block-submatrix of A
ABT,ABR,ABRT Block~transpose, block~reverse, block-reverse-transpose

- v -

of é

Specific Symbols (Latin)

. First
Symbol Explanation Occﬁ??gﬁtef
At At A after the application of G(¢.),G(%.) 7.2.1
T -1 -1
‘ 2
¢ . (T )1,2_%/(1’ )17 3.2.1
Cb Cyclic permutation matrix; (Cp)ij=1 if
J=t+p(mod n), where n is the order of Qp;
(C_)..=0 elsewhere 5.2.2
p g
(+1) . . . .
c Cyclic permutation matrix for Bareiss
step (%7) 6.7
D Diagonal matrix in LDR factorization 2.1
D,D,D,D Diagonal scaling matrices for W,W,#,W 8.4.2
d;sd;sd, Same as dy., doos dos 8.4.2
.k .V ' L] . .
D,D°, etc. D, etc, after the application of
G(6,),G(dy), ete. 8.4.2
d (771 /() 3.2.1
= N 2,1 11
dii Denominator of multiplier ) 6.7
E Exchange matrix; eij=1 if t=n~j+1;
eij=0 elsewhere 2.3
E Matrix partition 4.2

*chapter/section/sub-section (if applicable)
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Symbol Explafiation OCC%%W
E Backward error matrix for Toeplitz
factorization 6.3.1
E(ii) Local error in computing Bareiss
iterate (*Z) 4.4
e Zth column of identity matrix 4.2
F Backward error matrix for Bareiss
algorithm 4.4
fﬁ, fﬁ, etc. Scaling factors for QJ g s €tc. 8.4.3
fi Floating-point operation 4.4
F Initialization procedure for rank-1 update 2.4.1
G " Backward error matrix for rank-1 update 6.3.1
gJ.,g etc. Scaled versions of gj-’éj-’ etc. (e.g.
_J.—fJgJ. 8.4.3
g Backward error vector for Bareiss algorithm 4.4
H(ei) Inverse transform with relation 6, 8.2
J Backward error matrix for Bareiss algorithm 4.4
Kl’Kz (Scalars) Bareiss pivoting parameters 5.3.2
L Unit-lower-triangular matrix in LU factor-
ization 2.1
L (Scalar) Ratio t( k)/e (see below) 4.3
.M(ii) Multiplier matrices for T(ii), defined
by M( z) _p(*t) 3.3.2
M(i) Same as M(”(nﬁz)) 2.3
m,. Multipliers for Bareiss recursion
(mii=nti/dii) 2.2
mite)T First row of Toeplitz part of M(tS) 5.2.2
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CHAPTER 1

INTRODUCTION

1. TOEPLITZ MATRICES
A Toeplitz matrixz is one in which the elements along any

northwest-to-southeast diagonals are all equal. As an illustration

a &x5 Toeplitz matrix has the form

T = t .t t, t, t (1.1)

Each element of a Toeplitz matrix depends only on the difference

of i indice e write t.. [ -
its indices, so we may o a tg-m

Toeplitz matrices arise in a large number of seemingly
unrelated applications of applied mathematics and engineering. Some of

these applications are given in the next section.

There are other types of matrices which are related to
Toeplitz matrices, and to which Toeplitz theory can be adapted, with
suitable modifications and generalizations. Examples are Hankel matrices,
in which the elements along any southwest-to-ncrtheast diagonal are all
equal; circulant matrices, a subset of the Toeplitz class in which each
row is a right-rotation of the previous rows; block-Toeplitz matrices,

where the blocks along any northwest-to-southeast block diagonal are all



equal; block-Hankel and block-circulant matrices; matrices with a
2-level special structure, e.g. a Toeplitz block-structure with
circulant blocks. A different generalization of the Toeplitz class

is the algebra of a-Toeplitz matrices, introduced by Friedlander et al,

[29]. This algebra is the set of matrices of the form

o

T = ZL.U.

a P A

=1

where the {Li} and {Ui} are upper and lower triangular Toeplitz
matrices respectively. Clearly, when o0=2 and UJ=L2=I, Tu is a
Toeplitz matrix. All of the abovementioned types of matrices have
important applications, some of which are given below. In this thesis,
we concentrate on Toeplitz matrices, and mention only briefly how the
results may be extended to related forms, when this is possible. We

do not consider special forms such as band or triangular Toeplitz

matrices.

2. APPLICATIONS OF TOEPLITZ AND RELATED MATRICES

Toeplitz matrices arise in many applications of time series
analysis, image processing, probability and statistics, control theory,
and in mathematical techniques such as polynomial, and rational and
exponential approximation, solution of elliptic and parabolic partial
differential equations and certain Fredholm integral equations. An early
reference to the application of Toeplitz forms is that of Grenander and
Szego [42]. Cornyn's thesis [21] gives a very comprehensive list of

Toeplitz applications and an extensive bibliography (255 references) up



to 1974. For completeness we will repeat most of the applications listed
by Cornyn, but only give some representative references, referring the
reader to Cornyn for a complete list. A later survey of Toeplitz
matrices is given by Roebuck and Barnett [81], who include the important
Toeplitz-related work of Kailath, Morf and co-workers, which has

appeared since 1974.

We now examine some Toeplitz applications in detail. 1In the
field of time-series analysis, Toeplitz matrices occur in linear
filtering or prediction problems [59], [67], [16], [60], [63], [1], [52]
when the signal and noise statistics are stationary. At the end of this
section, we will illustrate one such application by showing how Toeplitz
systems arise in‘the discrete Wiener filter [59]. Levinson's algorithm
for solving this system is the basis for the recently-developed lattice
or ladder filter structure, pioneered by Morf, Lee and others [69],
[58], [61]. Block-Toeplitz matrices arise in multichannel filtering
[88], [4], [65]. In other areas of time-series analysis, Toeplitz
matrices arisc in maximum-entropy spectral analysis [85], antennas and
arrays [82], adaptive beamforming [77], estimates of shaping and

matching filters [88] and fast recursive estimation ([53].

Matrices with a 2-level special structure (Toeplitz and/or
circulant) occur in image processing [2], and in general, 2-dimensionai

processing [51].

In probability and statistics Toeplitz matrices occur in
statistical communication and detection [76], stationary auto-
regressive time-series, and the Ising model of statistical mechanics [45].
In control theory, Toeplitz or Hankel matrices occur in the minimal

realization problem [24], [65], the minimal design problem [se6l, [57],



and the adaptive estimation of control system parameters by Bayesian

methods [5].

In mathematical techniques, Toeplitz systems arise in Padé
approximation [39], [38], [10], (14], [15], [13], spectral factorization
[79], Prony's method for exponential fitting [46], convolution-type
Fredholm equations [73], elliptic and parabolic partial differential
equations [62], orthogonal polynomials [49], [55], and canonical matrix

fractions [25].

The foregoing illustrates the wide variety of applications
where Toeplitz matrices occur. We illustrate one application by

deriving the equations for the Discrete Wiener Filter.

The Weiner Filter Equations [59]

We wish to determine the nature of a linear tapped-delay-line
filter, which, with input bk’ will have output as close as possible
to a desired signal a,- That is we wish to determine the filter
weights {wn}g such that the error

M

a, - ?wnbk-n (2.1)
n=0

is as small as possible in the mean-squared sense. To do this, we
e 2 .
minimize <e; > with respect to the v, Here <-> denotes ensemble

average; for a stationary time-series Lps <Xy 1= lim =—=——= 2 x

From (2.1), and using the fact that the operator <-> 1s linear,

2 2 M . 2
<gf> =<a,> - 2 T w <a,b, >+ <(Zwh, )>
k k T n Tk k-n n k-n

n=0 n=0



Differentiating with respect to wj and setting to zero,

3<ei> . M
e "2<akbk—n> + 2 ? wn<bk-jb
J n=0

o> =0 (2.2)

G=0,.. . M.

Since the processes are stationary the averages in the middle expression
of (2.2) are independent of k and depend only on the difference
between-the indices. In fact <a,b, > =1r .(n), the cross-correlation
_ K k-n ab
< i > = -J i
between ay, and bk’ and bk—ka_n rbb(n Jj), the autocorrelation
. . . . . p ' o = )
function of by, This function is even so we also have bk—gbkAn rbb(g 7
Hence (1.2) can be written
M

nzownrbb(.j—n) = rab(n), J=0,...,M. (2.3)

Eq. (2.3) is a Toeplitz set of equations; they are the well-known

Weiner filter equations.

3. AIMS OF THE THESIS

Note on Operation Counts

Throughout this thesis we will only count the number of
multiplications and divisions as a measure of execution time, since these
operations normally take considerably more time to execute than additions
and subtractions. Moreover, the number of additions and subtractions
is, in all the algorithms discussed, either less than or about the same
as the number of multiplications. We therefore refer to an operation

as a multiplication or division.



Most of the applications of section 2 require the solution

of a Toeplitz set of linear equations

T = b (3.1)

or the related processes of inverting or factorizing T. Some of the appli-
cations require the solution of the full-rank Toeplitz least squares
problem, which is to find « which minimizes HT@—@HZ, where T

is mnm (m > n). A few applications require the eigenvalues, the

singular values, or the complete singular-value-decomposition (SVD)

of T.

In the published literature, much work has been
done on fast (0012) operations or less) methods of solving (3.1),
and the related problems of factorization and inversion; however, little
work has been done hitherto on ways of reducing rounding errors without

sacrificing too much execution speed.

On a different topic, few methods exist that exploit the
Toeplitz property in techniques of numerical linear algebra such as the
QR decomposition, the calculation of the eigenvalues or SVD. We note
that many theoretical results for the Toeplitz eigen-problem have been
obtained [41], but the computational side of these problems has been
neglected. This thesis therefore aims
(1) To improve the accuracy of solving (3.1), retaining
a complexity of 0(n2).
(la) To derive new connexions between the solution of (3.1)
and the problems of factorization and inversion, and
to use these results to improve the accuracy of

solving the latter two problems.

s Vol FNEN



(2) To develop fast methods (< 0(n3)) for linear problems

other than that of solving a set of linear equations.
)
In the next section, we review the main advances in Toeplitz !
i
numerical methods, and in the following section, we state the principal £

results of our investigation of (1) and (2).

4. PREVIOUS WORK ON TOEPLITZ METHODS

In 1947, Levinson [59] was the first to solve a Toeplitz
. ) 2 . . .
set of equations in 0(n") operations. His algorithm solves a
symmetric positive-definite system in SnZ operations and is the

basis for many subsequent Toeplitz solvers and inverters. 12 years

ot

later Durbin [26] solved a more specialized system, the Yule-Walker

equations, in n2 operations. In 1969, Bareiss [6], solved an
indefinite, nonsingular system in Z%ng operations. His approach of
eliminating down the diagonals, is quite instructive, and we will

extend this approach in developing methods with improved accuracy. From 19638
to 1971, Berlekamp and Massey [8], [64] and Rissanen [78] also developed
elimination-type approaches to reduce Toeplitz and Hankel systems
respectively to triangular form; these methods also can handle cases
where a leading wminor is zero, in contrast to many existing Toeplitz
methods. Two years later, Wiggins and Robinson [88] improved the
operation-count in Levinson's algorithm (for a symmetric positive-
definite system) to 2n2 operations, and Markel and Gray [63] rederived
the Wiggins-Robinson algorithm using orthogonal polynomials. In 1974,
Zohar [93] improved the operation-count for a general system to n

operations. In 1979, as a result of a co-operative effort between the



US and the USSR, a Toeplitz software package [87] after the style of
LINPACK was produced. Also in 1979, Jain [48] reduced the complexity
of solving (3.1) from 3n2 to 2n2+8n log n, and incorporated
iterative improvement, requiring 8n log n operations per iteration.
1980 saw a major advance in that Brent, Gustavson and Yun [13] and
Bitmead and Anderson [9] developed Toeplitz solvers with asymptotic
complexity 0O(n Zoggn). However, Brent {[12] has pointed out that =
needs to be fairly large for the new algorithm to be faster than 0(n2)
methods, so there is still a place for the latter. Bitmead and
Anderson also extended their method to «-Toeplitz matrices, as did

Morf [66] independently.

Closely related to the problem of solving linear equations
is the problem of inverting the system matrix. In 1964, Trench [84]
wrote an algorithm which inverted a positive definite symmetric Toeplitz
matrix in Sng operations, and briefly indicated how to extend it to the
non-symmetric case. Zohar [92] re-derived Trench's algorithm in a lucid
manner; his algorithm applied to all 'strongly nonsingular' Toeplitz
matrices, i.e. matrices with no zero leading minors. Justice [49], [50]
derived a Toeplitz inversion algorithm from the recursion relations for
Szegd polynomials. In 1977, Justice [51] used bivariate Szego
polynomials to derive an efficient inversion algorithm for 2-level

Toeplitz matrices.

Also related to the problem of solving linear equations 1is
the problem of factoring T into upper and lower triangular matrices,
though these factorizations have other applications, e.g. in Padé
approximation [14] and spectral factorization [79]. Rissanen [79] was
the first to find an 0(n2) Toeplitz factorizer; Morf [65] independently

developed two factorizers, a row-wise and a column-wise factorizer.



Both these factorizers fail when 7T has a zero leading minor. In 1974,
Rissanen [80] developed a pivoting technique for a Hankel factorizer
which could handle zero leading minors. In 1977, Gibson [31]
interpreted certain intermediate quantities in Toeplitz factorizations
as reflection coefficients. Kailath et al [54] derived a comprehensive
set of results for the factorization of discrete and continuous
o-Toeplitz operators. In 1979 and 1980, Bultheel [14], [15], derived
several significant connections between Toeplitz factorization and Padé

approximation.

There is a strong connexion between Padé approximations and
the solution of Toeplitz systems - i.e. the standard so-called coefficient
Padé problem require the solution of a Toeplitz system. Other authors
besides Bultheel who have used this connexion include Gragg [38],
Graves-Morris [39] and Bose and Basu [10]. Some recent theoretical work on
Toeplitz matrices has been done by Delsarte, Genin and Kamp [95]-[97].

Concerning block Toeplitz matrices, Aikake [4] developed
the first inversion algorithm for block-Toeplitz matrices in 1973.
Agrawal [1] and Agrawal and Jain [2] proposed algorithms to solve
Block-Toeplitz and block-circulant systems in 1976 and 1977 for the
digital restoration of images and for designing constrained least-
squares filters. We have already mentioned Justice's work [51] on
2-level Toeplitz matrices. In 1980, Bose and Basu [11] gave an

efficient recursion for the solution of 2-level Hankel matrices arising

from 2-D matrix Padé approximants.

There have been a few recent studies on the error analysis
of the solution of Toeplitz systems. Cybenko [22] has given a rounding
error analysis for Durbin's algorithm, and has extended it [23] to

Levinson's and Trench's algorithms. Graves-Morris [39] gave a
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comprehensive survey of the numerical calculation of Padé Approximants,
including Toeplitz methods, stating that the latter are unreliable because
of the inability to pivot. De Jong [24] shows that existing 0(n2)

recursive methods for solving the so-called realization problem of systems
theory are unstable. This problem involves the solution of a Hankel

system of equations. He proposes a stable method using orthogonal transforms

which, however, requires O(ns) operations.

Turning now to Toeplitz problems other than the solution
of a linear set of equations, we find that since 1974, Morf, Kailath
and co-workers [68], [53], [58], [28] have developed fast algorithms
for least-squares estimation and prediction with stationary or close-
to-stationary statistics. These problems essentially require the
solution of the foeplitz (and o-Toeplitz) least-squares problem; and
the new methods solve it in 0(pt) operations, where p 1is the order
of the problem and ¢ is the number of observations, compared to
O(pgt) operations for the general least-squares problems. In this
family of algorithms there are fast Kalman and fast square root
estimators; some of the fast algorithms are implemented by the new

lattice or ladder filters.

Pye et al [75] discuss a fast method to find the pseudo-
jnverse of a 2-level circulant matrix, and Hartwig [44] discusses the
Drazin inverse of a Toeplitz matrix. Kung and Kailath [56] propose a
fast algorithm to find the LQ decomposition of a special Toeplitz

matrix, called a generalized resultant matrix, for the minimal design
problem. Morf [65] calculates indirectly the R-factor of the Toeplitz
QR decomposition by finding the Cholesky decomposition of TTT. Cline,

Plemmons and Worm [94] discuss generalized inverses of Toeplitz matrices.

Recently, it has been required to compute the eigenvalues,

singular values, and SVD of Toeplitz or Hankel matrices in certain
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problems of control theory [57] and rational approximation [83].
However, no 'fast' algorithms (complexity less than O(ng)) have yet

been developed for these problems.

5. MAIN RESULTS

Most existing Toeplitz algorithms to solve (3.1) break
down when a leading submatrix of T is singular. It would be expected
that if a leading submatrix of T is ill-conditioned, serious rounding
errors may occur in these algorithms. This has been shown by Cybenko
[22] for Levinson's [59], Durbin [26] and Trench's [84] algorithms for
solving Tx = é, and by de Jong [24] for Rissanen's algorithm [78]
for Hankel reduction. We show that ‘the possible rounding error at step
k 1is proportional to the condition number of the Ty the kth
leading submatrix of 7T, for Bareiss's algorithm [6] for solving (3.1)
and for Toeplitz factorization. Backward error analyses are also given
for Bareiss's algorithm and for Toeplitz factorization algorithms. We
then propose a pivoting scheme for Bareiss's algorithm to help overcome
the problem of error growth when some leading submatrices of T are
ill-conditioned. This pivoting scheme is then extended to Toeplitz
factorizers, and to the Trench-Zohar inversion algorithm by using the
connexions between the latter two algorithms and Bareiss's algorithm.
This pivoting scheme may be considered to be an extension of existing
pivoting schemes to handle singular leading submatrices such as those
of Bareiss, Berlekamp and Massey, and Rissanen [80], and of methods to

handle '"mon-normal' Padé problems [18], which have Toeplitz systems with

singular leading submatrices. We note that our pivoting scheme also
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handles singular leading submatrices, but is not equivalent to Bareiss's
method, since the latter technique requires the triangularization of

a small non-Toeplitz block, in contrast to the method proposed here.

The pivoting scheme is the main result in respect of our
first aim, i.e. to improve the accuracy in solving Tx = é. For the
second aim, to develop fast methods for other Toeplitz problems, we
propose algorithms to find in 0(n2) operations, the factors @ and R
of - T, where @ is orthogonal and R is upper-triangular. These
algorithms are also relevant to the first aim, since solving Tx = b
in this way enables singular and ill-conditioned leading submatrices
to be handled without significant loss of accuracy. To the author's
knowledge, there are no algorithms which calculate & and R explicitly
in 0(n2) operations for a general Toeplitz matrix, though Kung and
Kailath's algorithm [56] calculate ¢ for a special Toeplitz system
called a generalized resultant matrix. The present algorithms assume
no knowledge of control theory or polynomial matrix theory, as is
required by [56], but are formulated in terms of elementary matrix

operations.

Also for our second aim, we examine methods that exploit
the Toeplitz property in the calculation of the SVD and the eigenvalues.
We were unable to find a stable method of finding the Toeplitz SVD in
< O(ng) operations, but we propose an O(ns) method which is 2 to &
times as fast as general methods in several important cases. We also
propose an 0(n2Z0g n) method for the SVD which may be unstable because
it is based on the Lanczos algorithm; however, Parlett and Reid [74]
have given a method for computing eigenvalues by running the Lanczos
algorithm on an iterative basis and using a special method for tracking

the eigenvalues. With their method convergence has been attained even
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for ill-conditioned problems in about &én iterations. We suggest
adapting this device to the O(nglog n) SVD routine, in the hope that
the singular values only (or the eigenvalues if T is symmetric) can

be calculated stably in O(nzlog n)  operations.

6. ORGANIZATION OF THE THESIS

In Chapter 2, some alternative derivations of the Fast
Toeplitz Factorizer (FTF) are given; the first derivative relates FTF
to the Bareiss algorithm; the second relates FTF to rank-1 undate
algorithms for factors. These results will be used in performing the
error analysis oﬁ, and incorporating pivoting into FTF in Chapter 6.
In Chapter 3, the Bareiss algorithm is related to the Trench-Zohar
inversion algorithm. This relation will be used to incorporate
pivoting into the Trench-Zohar algorithm in Chapter 6. In Chapter 4,
an error analysis is performed on the Bareiss algorithm, and in Chapter
5 the pivoting technique is described; the improved numerical performance
of the pivoted algorithm is shown. In Chapter 6, error analyses are
performed on Toeplitz factorization algorithms and pivoting incorporated
into these algorithms and Toeplitz inversion. In Chapter 7 algorithms
are described which computes the QR decompesition of a Toeplitz matrix
in 0(n2} operations. In Chapter 8, Toeplitz QR algorithms are
presented which are faster than those in Chapter 6, though logically
more complex. Some extensions and applications of the algorithms are
also given. Finally in Chapter 9, two algorithms are given which use

the Toeplitz property to accelerate the calculation of the SVD.
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Note on the Numbering Scheme, In any chapter, all theorems, lemmas,

algorithms, procedures, figures and equations are numbered independently
in the form A.B, where A is the section number and B is the order of
occurrence of the theorem of lemma or algorithm or procedure or figure
or equation within the section, Within the chapter of occurrence, the
theorem, etc, is referenced by A,B; otherwise, the theorem, etc. is

referenced by C.A,B., where C is the chapter of occurrence.
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CHAPTER 2

FAST TOEPLITZ FACTORIZATION ALGORITHMS -~ ALTERNATIVE DERIVATIONS

1. INTRODUCTION

In this chapter, we consider the decomposition of the Toeplitz

matrix T into triangular factors. We mainly consider the form

T = LU (1.1)

where I is unit-lower-triangular (ULT) and U is upper-triangular (UT). The
results carry easily over to other forms; in particular, we will briefly

consider the decomposition

T = LDR (1.2)

where L is ULT, D is diagonal, and R is unit upper-triangular (UUT) at

the end of the chapter.

The decomposition (1.1) can be used to solve the system

Tx = b (1.3)

This can be done by solving

LIy =b (1.4)

and Ux =y (1.5)

by forward and back-substitution respectively. Other applications of
Toeplitz factorization are spectral factorization [79], pPade approxima-

tion [14] and minimal design problem of system theory [65].

Rissanen in 1973 [78], and Morf in 1974 [65] independently

developed Toeplitz factorization algorithms requiring 2n2 + 0(n) operations.
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In this chapter, we derive, in two ways, an LU-~factorization algorithm
which is related to Morf's column recursion for the LDR factors. For
the first derivation, we show that Bareiss's Toeplitz elimination
algorithm [ 6], written in 1969, essentially computes the triangular
factors of T; we propose a simple modification of Bareiss's algorithm
that calculates L and U. For the second derivation, we show that
Toeplitz factorizers may be obtained very simply from algorithms which
update the triangular factors of a general matrix by a rank-1 matrix;
a Toeplitz LDR factorizer may thus be obtained from Bennett's [7]
algorithm for updating LDR factors, and the Toeplitz LU factorizer,
derived above, may be obtained from a suitably-modified version of

Bennett's algorithm.

The pdrpose of this chapter is not to present new fast Toeplitz
factorizers, (FTF's) but to point out the connexions between FTF's and
firstly elimination algorithms (e.g. Bareiss's algorithm), and secondly,
rank-1 factor update algorithms. These connexions may be used to derive
the FTF's simply, and will also be used in Chapter 6 in our error analysis

of Toeplitz factorizers.

In Section 2, we review the Bareiss algorithm in detail; it
will be needed in this Chapter to derive FTF algorithms, and also in
Chapters 3-6. 1In section 3, we show how the Bareiss algorithm computes
the triangular factors of T, and propose a modified algorithm, the
adapted Bareiss algorithm (ABA), to calculate [ and U. In Section 4,
we show how FTF's may be derived from rank-1 factor-updaters, and derive
a Toeplitz LDR algorithm from Bennett's algorithm. We then modify
Bennett's algorithm to update the LU factors, and hence derive a Toeplitz

LU factorizer, showing it to be the same as the ABA.
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2. THE BAREISS ALGORITHM

The Bareiss algorithm solves

Tz = b (1.3)

by transforming (1.3) successively into

T(-1)§.= é‘(—-1) , T(1)§_= éfl) , T(-2)§_= kf—2),
T(2)§_= ku) e, T(l-n)£= éfl—n), T(n—1)£.= éfn—l)
(2.1)
where the matrices T(_t) have zero elements along the 7 sub-diagonals,
the matrices T(m) have zero elements along the 7 super-diagonals. Thus,
p(1-n) 5 upper-triangular, and (-1 44 lower-triangular.
Explicitly, (%) and T(l) have the forms
[ (0)  (0) 0) )
to tl tn-l
(-1)
to N
'\,\‘\
\\\\
~ 1)(-i+1) (~i+1)
~i+1) (-i+ -1+
. t e T
T(—t)= 0 1 n-1 (2.2a), and
(~2) ,(~1) (~1)
d NG pi1
t(—i)
~-(i+1) < . .
Toeplitz ~+-Toeplit
oepli z_2+_) \\\\\\\ eplitz
(=) £) (-2)
bl " Po(i41) %o
g
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i (7) (7) )
%o Birl m o Yyl
tf§) - Toeplitz
Toeplitz > t(i)
(3) LA, s
-nti+1 ~1 a
p(t) (2.2b)
(1-1) (1-1)
Sl T CE
: e
|
i \\\\
] S
: .
(0) (0) ™
¥y SRR~ B iy o ;

respectively, for i7=1,2,...,n-1. We have indicated in (2.2) that rows
. (-1) B (7) i

i+1 ton of 77/, and rows 1 to n-z of T , are Toeplitz. Henceforth,

we will bound any Toeplitz block with continuous lines, and any non-Toeplitz
block with dotted lines, as is done in (2.2). The notation in (2.2) also
needs some explanation. The superscripts denote the iteration number and

the subscripts denote the distance from the main diagonal - positive if

above and negative below. In (2.2b), to = tll'

The Bareiss Recursion

(-1-1) and T(i+1) (1)

We now show how 7! are obtained from T and
T(i), and prove (i) that this recursion requires only 4(n-i) operations,
and (ii) T(_$+1)and T(t) have the forms in (2.2), with < replaced by

1+1, and an extra diagonal of zeros.

We first define the shift matrices Z g and Zi :

1 Nn-17
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The effect of premultiplying any matrix A by Zni is to downshift 4 by <
places, and replace the first © rows by zeros; premultiplying A by Z;

upshifts A by 7 places, replacing the last 1 rows by zeros,

The Bareiss recursion is:

(~2-1) _ (-7) () | _ . (=1)

T =7 - m—i—lz—i—IT , wherem_. , = t-i-l/tO (2.3a)
(i+1) _ (1) (~i~1) _ (i), (i-1)

T =T - Ml Zi+1 T , where ms,q = ti+1/t0 (2.3b)

The following Theorem shows the validity of the Bareiss recursion. The
approach is different from that of Bareiss, who derives his algorithm,
rather than stating it in a theorem and proving it; our proof is based
on manipulating matrix forms - patterns of zeros and Toeplitz blocks -
and it appears fo be simpler than Bareiss's derivation. This approach
will be useful in later Chapters when we consider more complicated
variants of the Bareiss algorithm.

(-2) and 7 are of the forms (2.2a) and (2.2b)

(~i-1) 4 T(i+1)

Theorem 2.1 IfT

respectively, then (i) T have the same respective form,
with © replaced by i+, and an extra diagonal of zeros, (ii) the recursion

(2.3) requires 4(n-i)-6 operations.

Proof: (i) Writing out the RHS of (2.3a) explicitly, we have
(-2)
o) T Z-i-lT
-1 [ . e r 3 [
Ci1 | R W
AN 7 t 0
(~i-1) \ 6w = o /!
T = &x R @ 4 (2.4)
t
n-1-1 ‘\\\\0 g \\\\\\\\\\\\\\ n-i-1
TOWS TOWS
{ x—x x z - x
\—\/—j ’ L -—— J

1 zeros 1 zeros
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(~t)
il
in (2.4).- In addition, the last n-%i~I rows of the output

It is clear that ¢ is eliminated by ¢, in the operation

matrix of (2.4) are Toeplitz, and diagonals (~1),(-2),...,(-7)

are zero,
(~1-1)
These three results show that T has the form
( .’E: —————————————————————— .'X)‘
\\\\
\\\
i . |
T( i-1) _ " It
0
T“\\\\\ 0 ~1~1 rows
X :1? - )‘:C
\ i+1 zeros ’
e (i+1)
It can be similarly shown that T has the form
) i+] zeros
ol N m—y
n-i-1 l
TOWS
x
P o QED. (4).
B
0 5 s s scon s i i e Ry

(ii) Consider (2.4). There are 2(n-i-1) non-zero Toeplitz

diagonals in the last n-i-1 rows Z . T(t), so there are

-1-1
as many operations (including the computation of tf;i;/ta)

(-1-1)

in computing T using (2.4). Similarly there are

2(n-1)-3 operations in computing T($+l). QED. (ii).

The Bareiss Nonsymmetric Algorithm (BNA)

We can use the recursion (2.3) to produce T(l_n) and T(n—l) which
have n-1 zero diagonals below and above the main diagonal respectively;

T(l_n) and T(n—l) are therefore upper and lower triangular respectively.

This algorithm is called the Bareiss nonsymmetric algorithm because (2.3b)

cannot be obtained from (2.3a) by replacing -7 and -i-1 by % and <+I respect-

ively. There is also a symmetric version where this can be done.
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Algorithm 2.1 « The Bareiss Nonsymmetric Algorithm (BNA)

(0)

1. Set T T

2. For 72<«0 to n-2 do

(4) _ (1)

(-i-1)  (~7) .
2.1 T <7 - —i—lz—i—JT with m_. ;= _$_1 /% (2.3a)
(i+1) _ () (-i-1) . —c (-i-1)
2.2 T «T — Mg i+JT with m, ; = $+1 /t (2.3b)
Operation Count The number of operations in algorithm 2.1 is
n-2 2
= [4(n-1)-5] = 2n” + 0(n) operations.
=0

Example 2.1%- Steps (-1), (I) and (-2) of the Bareiss algorithm

Step (-I) - use t(O) to elim t(g)

£ (0 gz(w S . 7 2(0)
5 -11 -26 -2 1 0y 0 0 : 0
% 1
-2
~26
3 11
-1 -3
0 -1
10 -1 1

(~1) SN (1)
t2 —> 1 \‘\\tG .
0 -24
\\
1 i5% B
.\\
._4 \\\\\ 8
1 2
17 1 -2 1 o 1 o 2e:—tg—1)

*In these examples, oniy the boundaries of Toeplitz blocks are shown.
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Step (1) - use tg"l) to elim. t§0);
T(O)
1 -3 -11 ~26 -2 1 0
1
2
2 -26 -(-%) B
3
-1
0- l
1 0 -1 3 2 2 Il
T(l)
(1) 1 1
t)—>1 0-2 -7 -18% -14 % % )
F N %
Fl "'\
RS
2 -14
5% ~18%
\\\ 0
1 -7
™,
\'\
-k N -2
\\‘
¥ % 1 3% 2 % 1 0
(1) :
Step (-2) - use to 1 0 -1 3 2 2 1 1
2
to elim. t_, " T(—l) 7 2T(1)
1 -1 -3 -11 -26 -2 1 0 0 0
(1)
tfél) 0 2 2 8 15-24 -3 1%\0 0
0. -2 -7 -18% -14 -k %
¥
14
-18%
-7
\
0 -2
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(~2)

1 -1 -3 =11 -26 -2 -1 0
0o 2 2 8 15 -24 -3 1

0-—-0\\ 4 9 26% 29 -23% -3%

~ "
P E
—1 2 \\\ \\\ —23 7]
N
'\.\ ‘\\
~
-1 N ™ 29
N
'\\\ \\\\
.
- 7;2’ \_\ % 2 6;2’
N ~
\\\ \\\\
~,
0 N RS 9

R, '\\\
% 0 7% -1 -1% 0--—-—-0 4

(-k)

Note on steps and cycles: Bareiss step -k (or k) calculates T

(or T(k))‘ Bareiss cycle k calculates both T(’k) and T(k).

Hence, there

are two steps per cycle.

3. (COMPUTING THE FACTORS OF T USING THE BAREISS ALGORITHM (BNA)

In general, it would be expected that a triangular elimination
algorithm would be related to the corresponding triangularization algorithm.
For Gaussian elimination, the upper-triangular matrix produced by the
reduction is the same as the U-matrix in the LU factorization. We will
see this is also true for the Bareiss algorithm. The situation is different
for the L-matrix: for Gaussian elimination, the array of multipliers (with
the signs inverted) is the L-matrix. This is not true for the Bareiss

algorithm. However, the Bareiss algorithm does produce a lower-triangular

matrix, T(n-l), which is related to the desired L-matrix. '
For compactness, we denote P17 ang p(7-1) by 7(~/ and o
respectively. Before we show the relationship between T(t) and the

triangular factors, we need the following result:
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Lemma 3.1 The upper-triangular matrix T is related to T by
r(~) - M(")T (3.1)
where.M(—) is unit lower~triangular; and the lower-
triangular matrix T(+) is related to T by
) =y (3.2)
(+) . . :
where M is upper~triangular.
Proof: Bareiss [6 ] shows that Eé:) is a linear combination of

rows I to © of T, with the co-efficient of L. being unity,

i.e. for some Mige J=1,¢..,1~1

;. (WpgsWpgereesVy o 70

(U/Ll,uiz,--._,ui,i—l_,z_,o_,-oq,o)T

(1 )
u
so 7= ! i =F M(_)T,
i
i
L AT JJ
where.M(") is unit lower triangular. This proves (3.1).
The proof of (3.2) follows similarly. QED
We now prove the main result of this section:
Theorem 3.1 Let T=Ll/, where [, is unit lower-triangular and y is upper-

triangular, and let T(_) and T(+) be the reduced matrices produced by the

Bareiss algorithm (BNA). Then
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v = (3.3a)

‘and L = t—

1 (+)T2
0o 7T >

(3.3b)

where 2 denotes transposition about the secondary diagonal, or just

secondary transpose.

Proof: From Lemma 3.1, o) =y
ice. 7 =)t ol

Now OM(_))"J is ULT because u(~ is, and () s UT, so,
By the uniqueness of this factorization, (M(—))"1=L
and )y, This proves (3.3a).
For the second part, we have

() =y, (3.4)
where M(+) is upper-triangular by the above lemma. From
(3.4),

7= M(+)—‘1T(+) (3.5)
where (M(+))"1 is upper-triangular because M(+) is. 1In

addition, by equation (2.2b), it can be seen that by

putting i=néi,T(+)is lower-triangular with tO's along the
diagonal.
Taking the secondary transpose of (3.5), anJ using the

fact that TT2 = T because T is Toeplitz,
p =y -1p(+) T2 ;

but it can easily be shown that for any two matrices X and Y
(xr)T% = Yo"

(Use the fact that XT2 (EXE)T, where E is a matrix with

1's along the secondary diagonal and zeros elsewhere; the

relation EE = I is also needed);
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hence 7 = T(+)T2(M(+)FJ)T2

_ tzl T(+)T2 t, (M(+)n1)T2 (3.6)
Now T(+)T2 is lower-triangular with to's along the diagonal
because T(+) has this form, so tal T(+)T2 is unit lower-
triangular. As well, (M(+)'1)T2 is upper-triangular because

=1 is, hence tO(M(”’l)Tg is. Thus in (3.6)
I = t—l T(+)T2
0
(3.7)
and U = tO(M(+)’1)T2

The first equation in (3.7) is the same as (3.3b). QED.

Using the Bareiss algorithm to obtain L and U.

Theorem 3.1 indicates that the L and U factors may be obtained

by executing the Bareiss algorithm and applying egs. (7.3).

As mentioned in the previous section in the remark on operation

(-) (+)

counts, 2n2 + 0(n) operations are required to calculate 777 and T "7

since %nZ + 0(n) operations are required in (3.3b) to multiply T(+)T2 by

tal, gﬂf2+ 0(n) operations are required in all. This can be reduced to

on? + 0(n) operations by adapting the Bareiss algorithm to calculate

L and U directly.

Adapting the Bareiss algorithm to calculate L and U directly.

If we modify Bareiss's algorithm to calculate T(—) and t;lT(+)

(-) and T(+), then by (3.3), the modified algorithm calculates

instead of T
L and U directly. Theorem 3.2 shows that this can be done by a very simple
modification of Bareiss's algorithm:

Theorem 3.2 Let ¢ ) and 707/ be as produced by BNA (algorithm 2.1).

0’
{~) (+)

-1
Then T and to T may be produced by the following modified procedure:
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Algorithm 3.1 - The adapted Bareiss algorithm (ABA)

~(-0) (+0) (+0) _

1. Set T «Tand T to A 1} (3.8a,b)
24 ﬁ(_l);ei(_O) - ;;1 zZ_, %(0), where m 1= 2110) (3.92,b)
5. F(1) F(+0) m, 2, 7=, where m, = ’5§+0)/;g-1) (3.10a,b)
4, For 2<«1 to n-2 do

4.1 E(_i-l)-eﬁ('i) - %;._1 —i«lf{i)’ where Z—i—l Nfiié (3.11a,b)

4.2 TG Eiﬂz”ﬁ(‘i‘“, where m.,, = 7{3’_;/7&( 1) (3.12a,b)
Proof: Easy - show by induction that for 7=0,...,n~1,

T(-1)_ T(--i), (1) _ t;lT(i)_

Compact Version of ABA

The whole of the %(tt) do not have to be stored at each stage of

X ~(-1) ~(-1)
ABA, since by eqs. (2.1la), only t. Lie1,i41:m and §$+9 1 need be calculated
~(-1) D) ~(7/)
to specify T , and only El,i+1:n and _1 ] need be calculated to
specify %( ). Hence Algorithm 3.1 can be written in the following compact

~(-1) _ x(-1)

form using the fact that %, 142, i40:m ~ Virl,i+1in-1 (by Toeplicity) 1n steps

2(a) and 4.1(a).

Algorithm 3.2 - ABA (compact form)

~ (~0) (-0 ~(+0) L =(+0)
Lo £, % b5, 5 be 1% e, 1. 5 Y10t /P05 B2 “t.q/t
) (-0) (+0) 1
~{-1 ~(-0 ~  ~(+0
2. @ ty 0., Ly 1in-1 7 M1 i1, 2:m N A
* where m , = ¢t
-1 %1
~(-1)  ~(-0) ~  =(+0)
M) bz 1%t8m,1 " ™1 Lone1,1
~(1) ~(+0) (-1)
: (a) ES:n,I_eES:n,l 1 %3 :n, 1 - ~(10)
where m, = t, /to—‘/
~(1) ~(4+0) ~ ~(-1)

() t7.5-7,7 t1:mm1,1 = "1 B2, 1



4, For i<1t
4.1 (a)
(b)
4.2 (a)
(b)

o n-=2 do;

~(~t-1)

“i+2,1+2:m

;(—7:-1)
Zit8im, 1

~(1+1)
=1,72+3:n

Z(i+1)
~1:n-i-1,

1
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~(~2) - ~(1) \
“i+1,1+1:n-1 ~i=1%1274+2:n where
W O _ ~(._7’)
s(-2) o~ =(4) Mgl = Vg
~it3:n, 1 -i-1 =8:n~i-1,1
>(Z) o ~(-7-1) \
=1,1+3:n i+1 =i+8,1+3:n where
b~ ~(1) x(-i-1)
L3 o~ (1) miv1= 141/ %0
~Im-1-1,1 i+1 =it+2:n,1

Calculation of L and U using the Adapted Bareiss Algorithm (ABA)

Theorems 3.1 and 3.2 enable us to calculate L and U as follows:

Algorithm 3.3 - Calculation of L and U using ABA

(-)

1. Calculate T and %(+) using ABA.
2. Then L=§(+)T2 and U=E(").

Operation Counts

It is easy to see that ABA requires 2n2 + 0(n) operations to

(=)

calculate T

and §(+)

H

and hence L and U. To solve a Toeplitz system

with k RHS's, ABA therefore requires (2+k)n2 + 0(n) operations. By

contrast, Bareiss's algorithm requires (2 + gk)nz + 0(n) operations.

4.

DERIVATION OF FTF*ALGORITHMS FROM RANK-1 UPDATERS

In this section we show how to derive FTF algorithms by relating

them simply to rank-1 update algorithms. We first show how LU-FTF algorithms

can be derived from LU-updaters, then show how LDR-FTF algorithms can be

derived form LDR updaters.

We then apply these results by deriving an

LDR-FTF algorithm from Bennett's LDR updater, and an LU-FTF from a

*Fast Toeplitz factorization
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modified version of Bennett's algorithm,

4.1 Relation Between LU Rank-1 Updaters and Toeplitz LU Factorizers

The rank-1 update problem often has the form: suppose A=LU,
where I is unit lower-triangular and U is upper-triangular. Find T unit

lower-triangular and [ upper-triangular such that

TW=a+ay =10+ y (4.1)

Several algorithms requiring only 0(n2) operations are available to find

~ ~

I and U. Some of these can be written in the form
1. @&,y Floy (4.22)

£¢.,£f1+13g(t+1)}*_R{z_i,gi.)g(i),y(i)}

2. For 2«1 to n do {Z.,l,:,
(4.2b)

where the {gﬁt),gft)} are auxiliary vectors, F is an initialization

procedure, and R is a set of recursion relations requiring 0(n) operations.

The following theorem shows how an FTF algorithm can be very
simply derived from a rank-1 updater of the type (4.2).
Theorem 4.1 Let T be an nxn Toeplitz matrix, and let L, a unit lower-

triangular matrix, and f, an upper-triangular matrix, be such that
T =1LU ; (4.3)

let F and R specify a rank-1 updater of the type (2.2). Then the following

algorithm may be used to find L and U in 0(n%) operations:

Algorithm 4.1

1. i'1+£'1/t11 s Q_‘[. <. (4.4a)
2. =y eFiz,,, 17t] g a1} (4.4D)
3. For 2«1 to n-1 do

{iQ:n,i+1’ éq;+1,2.-n, §fi+lfﬂﬁi+l)}*'R{ii:n-z,i’ﬂi,z:n-z’ <,y

(4.4¢)
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] A\l e
Let T, L and U be the (n~1)th order leading submatrices

of T, L and U respectively., Then,

T = LU (4.5)

[ (4] [-]
Let T, L and U be the (n-1)th order trailing submatrices

of T, Land U respectively, let ¢:=¢,,, 25:22:n,1 Bad

0o o
g_ EJ 9:m Because T is Toeplitz, T=T, so (4.3) can be

written as follows in partltloned form;

The trailing submatrices on both sides of (4.6) are

o0
= LU + t’lz_nf 4.7)

(4.5) and (4.7) together yield
oo ..
LU = LU - t—lyy_tT (4.8)
[+ [+
(4.8) is a rank-1 update problem, so by (4.2) L and U are

determined from L and U by the procedure
1. &,y e Flo, -wtd (4.92)

2. For 2<1 to n-1 do

AR s e % 1Y) % 4 o

{z-i’—q',"’— t’-—‘l/’

. o
From the definitions of L and L, (4.9b) can be rewritten

2. For 2«1 to n-1 do

e ~ (i+1) (i+1) (1) (1)
{Z n, ¢+1’—¢+1 2: n’ ¥:3 }+R{7 L’—z,l n—l’ sY }

(4.10)
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Now, eq.(4.10) in fact constitutes a recursion for calcu-
lating the columns of L and the rows of U in 0(n2)

2C_(l) (1)

operations. and y can be initialized by (4.9a),

and 1,, and u, can be initialized by (4.4a), the proof
of which is trivial. Hence, (4.4a),(4.9a) and (4.10)

constitute the desired algorithm for factorizing T. QED.

4.2 Relation Between LDR Rank-1 Updaters and Toeplitz LDR Factorizers

A result similar to Theorem 4.1 enables LDRToeplitz factoriza-
tion algorithms to be derived from a certain class of LDR rank-1 updaters:

Theorem 4.2 Consider the rank-1 update problem
gt T
LDR = LDR + oxy (4.11)

Suppose the rank-1 updater for (4.11) has the form

(1) 1Initialize {gfl),yfl),o(l)}<-P{g}y,o,zzl,d1,gj.}
(2) For 2«1 to n do {z,i,zi,zi‘,g(i+1£yfi+lfo(i+l)}+R{}3i,di,gi',_fiféifa(i)}
(4.12a-b)

then the FTF algorithm for T has the form

(1) Initialize lfl’dl’zi-

(2) z*tp., g 1/%175 UL 0m1/b105 Tt

@ &My, oy ePiay,0. adry )

(4) For i<1ton-1do {Lz:n,i+l’1’-i+1,2:n’di+1’£(i+1)’ (i+1)’o(i+1)}
*R{LJ:n—l,i’zi,l:n-l’dz’—fi)’_(i)’c(i)} (4.13a-d)

Proof: Analogous to that for Theorem 4.1.
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4.3 Derivation of a Toeplitz LDR-Factorizer From the Benmnett Algorithnm

Bennett's algorithm

factors, i.e, it finds 5,5 and R such that
T5% = LDR + xCY'

where C is pxp, and X and Y are nxp,

find T, D and R such that

LDR = LDR + G.:X_?HT.

The algorithm in this case is [7 ]:

Algorithm 4.2 - Bennett's Rank-l algorithm (BRI1A)

(1) (1)

1. Sete '+, x '« xand y

2. Set 1+«1

{Main 1loop}

3. Repeat step 3.1 - 3.10, stopping at 3.3 when i=n.

OB ML

T

(1)

3.2 d..<d..+ p(i)y1

11 1

3.3 Stop if i=n

5.0 qt) < oliy (&)
PN L R O
5.6 501 (B (8,

~-1 (1) gfi+1)

3.7 Lo, * L, +dsq

~ ~~1 (1) (i+1)
i

Ly, < Ty *dy P

S o (3)

Q.2

1T

3.10 Increment 2, and go to 3.1.

i L

-1 q(i)p(i)

calculates a rank-p update of the LDR

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

We consider only the rank-1 update:

14)

15a-c)

16a)

16b)

16¢c)

16d)

16e)

16f)

16g)

16h)
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It can be checked that BR1A requires 2n2 + 4n~4 operations.

A Toeplitz LDR factorizer may be derived from Algorithm 4.2
by applying Theorem 4.2. In this case, eqs. (4.15) constitute the
initialization procedure P, and eqs. (4.16) constitute the recursion
relation R.

Algorithm 4.3 -~ Toeplitz LDR factorizer (TLDR)

1. Lo <t /ty 5 g <./t 5 dy<t

2. @ty 1.9/%0 3 ULy 0./ 5 ¢t

5. oMo g Weg; y ey

4. Set 1+<1
{Main loop}
5. Repeat steps 5.1-5.10 stopping at 5.3 when Z=n-1.

p(He o(H)g()

5.1

(i) (i)
5.2 di+1+ di +p Y,

5.3 Stop if i=n-1.

q(i)+ c(i)ygi)

(i+1) (z) (i)
2 T =T Ype1,d

(1+1) (1) ()
H-i 4 Y, E,1:n-1

-1 (i) _(i+1)
5.7 Loyp ie1  tine1,1 T G541 4
-1 _(Z)  (i+1)
rort,om S g 1me1 7 di41 LA
(i+1) () -1 (i) _(7)
5.9 ¢ + e -d; 19 7p
5.10 Increment Z, and go to 5.1.

It can be checked that TLDR requires 2n2 + 6n -~ 4 operations.
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4,4 Modification of Bennett's Algorithm to Update the LU, Rather than

the LDR Factorization

If we make the transformations E=5E, L=Zand z =cy, eq. (4.14)

can be written

IV =10 + xa’ (4.17)

which is the LU update problem. By observing that

Ups = dii (4.18)

¢

o~

g, =dg; (4.19)

and making the transformations

w;, = dgr (4.20)
u, =d. r. (4.21)
NONRCINON )

we can express all the quantities in algorithm (4.2) in forms of li-’ U, ,

—1-
s gri) and Hfi), yielding an LU-update algorithm. We now do this.

dF e

3

7..
-
Putting (4.22) in (4.15c) the latter becomes

51

=z (4.23)

Putting (4.19), (4.18) and (4.16a) in (4.16b), the latter becomes

;’L'i =u,, + e(ﬁ)xq(it)ylg'b)
_ (2) (%)
su.. tx w2, (4.24)

using (4.22).

Putting (4.19), (4.16c) and (4.22) in (4.16f), the latter becomes

A UNCEE

= it "1 = (Er25)
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Putting (4.16e) in (4.16g), multiplying through by Eﬁ and

using (4.21), (4.16g) becomes

. (), (%) (i)
L=dyprg o w2
which, with (4.16b) becomes
i (ﬂ) (1)
wp, = dyPy P
= B ¢(“z(’”), using (4.20), (4.16a) and (4.11).
—* 7 =
(4.26)
ey (i+1) .
Multiplying (4.16e) through by e and using (4.16h), (4.16c) and (4.16a),

(4.16¢e) becomes

1

REC O PR N R NI

17 Ty # 1 =1

(1 - o m(%) (z))( (Z)_ ( )

1 71 (2 7,

r, ) using (4.22)

By (4.16b) the first bracketed term is d /d ;» SO

(1+1) _ 5 51 () (1)) (2)_3-1,(3)
2 = (1’d¢ o) )E dzz T i
= _ Eﬂj zg‘)ii. (using (4.26))

=gt _ Z;i zg'b);q:_ (4.27)

Eqs. (4.15a), (4.23), (4.16d), (4.26), (4.27) and (4.25) form the
basis of an LU-updating algorithm. Assembling these and replacing z by y,
we get

Algorithm 4.4 - Modified Bennett algorithm to solve (4.1) (MBA)

S _ > .’im — (4.28a,b)

2, Set 4«1

3. Repeat 3.1 - 3.10, stopping at 3.2 when i=n

ot (i) (%)
3.1 Ups € Ugy = T Ys (4.28c)

3.2 Stop if { = ¢



R SA PN O R
S wug, b £ {Hy 4!
(1+1) (2) ~~1 (Z) <
3.5 y <Y - uii i Ei~
o ~-1 (1) (i+1)

3.7 Replace © by <+1 ; go to (4.28c).

Operation Counts
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(4.28d)

(4.28¢)

(4.28f)

(4.28g)

The number of operations required to execute algorithm (4.28) is

2 2

o2n° + n - 1 compared to 2n” +4n - n for the Bennett algorithm as described

by equations (4.16); hence the present algorithm is slightly quicker

(by 3n-3 operations) than the Bennett algorithm for this updating problem,.
Yy P p P

4.5 Derivation of Toeplitz LU Factorizer from the Bennett Algorithm

A Toeplitz LU-factorizer may be derived from algorithm 4.4 by

applying Theorem 4.1. Here, eqs. (4.28a,b) constitute the initialization

procedure P, and eqs. (4.28c - 4.28g) constitute the recursion R.

Algorithm 4.5 - Toeplitz LU-factorizer

1. L1+ZT&0;£L+Q.

(1) o). LT
A P T A P A )

3. For 2<1 to n-1 do:

- ﬁ(i+1)+ E(72) _ xé’i) b

3.2 E'£+1,2:n+z'£,1:n-—1 * xgi)ﬂfi)

3.3 yfi+1)+'yfi) - “;iz,i+1 ygi)2¢+z,2:n
34 Loy tr1¥Yina,0? ”;il,i+1 ~£i)—fi+l)

(4.29a,b)

(4.29¢c,d)

(4.29¢)

(4.29£)

(4.29)

(4.29h)
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Relation between Algorithm 4.5 and ABA

()

By making the transformations . , > (OT t ),

il = Sl it 1in
T o~(i) T (i) ~(i)T T (4+1) (%)
Lopn (0 Eipg, 1?0 2 s Lisgin, 1) @04y T (Q??“§1,¢+2:n)’

algorithm 4.5 can be transformed to algorithm 3.2, the ABA. Hence the ABA

and the Toeplitz LU-factorizer are equivalent.

5. CONCLUSION

It is shown that Toeplitz factorization algorithms have been
derived in two ways: from Bareiss's elimination algorithm, and from rank-1
update algorithms. A Toeplitz LU-factorizer derived from a modified version

of Bennett's rank-1 update algorithm is shown to be the same as that

derived from Bareiss's algorithm.
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CHAPTER 3

THE RELATION BETWEEN TOEPLITZ ELIMINATION AND INVERSION ALGORITHMS

1. INTRODUCTION

In this chapter we derive a relationship between one of
Bareiss's Toeplitz elimination algorithms [ 6] and the well-known Toeplitz

inversion algorithm of Trench [84] and Zohar [92].

We describe Zohar's formulation in Section 2, noting a modifi-
cation by Jain [48] which accelerates the Trench-Zohar algorithm (TZA)
when the order of the Toeplitz matrix T is greater than 16. In Section 3,
we Teview Bareiss's symmetric algorithm (BSA). (Note that the term
"symmetric" refe;s to the structure of the algorithm, and does not mean
that BSA can only be applied to symmetric matrices.) We then derive an
extended BSA (EBSA) which calculateé two upper-triangular and two lower-
triangular matrices, and show that if L and U are the triangular factors
of T, then the two upper-triangular matrices produced by EBSA are closely
related to U and U_l, and the two lower-triangular matrices are closely
related to L and L—l. EBSA is similar to an algorithm by Rissanen [79],
but calculates I column-by-column and U row-by-row, whereas Rissanen's

algorithm calculates L row-by-row and U column-by-column.

In Section 4, we modify EBSA, givingthe Alternative Bareiss
Symmetric Algorithm (ABSA), which calculates L_l and U_l only (in fewer
operations than for EBSA). We then derive a relationship between ABSA
and TZA. In a later chapter (Chapter 5), a form of pivoting will be
incorporated into ABSA to improve its numerical performance. This relation-

ship allows pivoting to be applied to TZA.
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Some related work has been done by Bultheel [14], [15], in
which a duality between Toeplitz factorization and inversion algorithms
is shown; the approach is via a matrix interpretation of Padé approximation
algorithms. In the present work, the approach is to extend the Toeplitz
elimination algorithm of Bareiss in a straightforward manner: no mention

of Padé theory is made.

2. THE TRENCH-ZOHAR ALGORITHM

We state without proof the Trench-Zohar algorithm (TZA) for
Toeplitz inversion. Some changes of notation have been made to conform

with the notation in the Bareiss algorithm (introduced later).

Let the input znxn Toeplitz T = [tj

. . be partitioned as follows,
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Now, define T£+1 as the (7+I1)th leading submatrix of T, and let

Bi+1 = TEiz (¢=1, ..., n-1) be partitioned as follows,
T
1 c,
1 -
By = - i = ; (2.1)
A 1
0"% d; 1 M

then B may be calculated as follows:

Algorithm 2.1 (Trench-Zohar algorithm (TZA))

{Initialization}

1. x1+1 - ul”l
2. _6_1'(‘(—741)

3. dj<(-~vy)

{Phase I, main loop: in each pass, calculate ¢, ., é¢+l and Ai+1}
4, For 1<1 to n-2 do
4.1 n.<-(u,, , + czuﬁ) {u.,,v.: first 7 el f }
. i 101 T Y u,,v;¢ first 7 elements of u,v
T
4.2 vy (0 +2; 4
¢ .
7
ety 4
7
4.3 c.
“i+1 /A
| "
ng/hy
MR dR+i7ic
= A =

.

4.5 Ngg A =g v/
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{Phase II - calculate the rest of B from its first row and column}

5. bl <« 1/t A

0'n-1
6. é-1,2:71 < c/tO n-1
7w é-2:n_,1 M é/tOAn—l
8. For i<2 ton do {calculate all bij above the secondary diagonal}
8.1 for j<2 to n-i+1 do bij bt 1,3—1 . i (é_g?— QF QFT)i—z,j-l
0"n-1
9. b..<Db Y ¢, below the secondary diagonal.

1J nt+l-j,n+l-1

Operation Counts -

Phases I and II of the Trench-Zohar algorithm require 2n2 + 0(n) and

n? & 0(n) operations respectively.

Jain's Modification

To solve the system Tx = b, one would normally find T—l by the
above algorithm, then evaluate T—lé: These steps require 4n? + 0(n)
operations in all. Jain's modification [48] enables Tz = b to be solved
in 2n2 + 8n log n + 0(n) operations. In Jain's method, Phase I of the
Trench-Zohar algorithm is executed to find ¢, d and A1t Then the following

formula by Gohberg and Semencul [33]

Tl-

0 n-1

Q.*_'Q.. )

(2.2)
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may be used to evaluatex = Bb, The main work is in evaluating four
matrix-vector products, where the matrices are triangular Toeplitz.
It may be shown [ 3] that such a product may be embedded in a circular

convolution, which may be evaluated in 0(n log n) operations by FFT [20].

3. THE EXTENDED BAREISS SYMMETRIC ALGORITHM

We first describe the Bareiss symmetric algorithm (BSA), which
reduces a Toeplitz matrix to upper and lower triangles ih 2n2 + 0(n)
operations. We then extend BSA to calculate two upper and two lower
triangles, which are closely related to U, U”l, L and L'l, where L and U

are the triangular factors of T.

3.1 Bareiss Symmetric Algorithm (BSA)

BSA [ 6] is very similar to Bareiss's Nonsymmetric algorithm,
described in the last Chapter. BSA generates a sequence of n-I1 pairs

of matrices, the i-th pair of which has the form

L (0o ~=~———~-3% (0) )
7 zero | tO N ‘ tnTl
diags.” A | NAES (41
(-4) = o i
T = t s 7 \’ (3.1a)
NS
(~1) %) (-1)
iyt Yo



43

( () (7) () )
B ti+1 ‘ tn—l
0 \\\\\\\ ()
“i+1
() (7) () ;
ARSI L A tph ; (3.1b)
% —t
M 41 zero
i1(0) N(0) diags.
tl—n ——————————————————— to )

the subscripts in the elements of (3.1a) and (3.1b) denote the distance
above (positive) or below (megative) the main diagonal, and blocks which

are bounded by continuous lines are Toeplitz.

The basic recursion in BSA may be written in the following

matrix form:

Algorithm 3.1 (Bareiss Symmetric algorithm (BSA))

1. (9 (3.2)

2. For <1 to n-1 do: _

(-6)  p(1-2) _ . p(3-1)

2.1 T i Z—i (3.3a)
_ o (1-2) , (i-1) _J1 (I=k-7)
where m_, = t-i /tO and(Z_i)kZ—-{O BLEETE e (3.3b,c)
2.2 T(t)_eT(i—l) —m. 7. T(l—%) (3.4a)
11
_ o (i-1) ,,(1-7) _ 1 (l=k+i)
where m, = t. /to and(Zi)kZ-{o SIEET e (3.4b,c)
. . (1-1) ,
In (2.6a), the effect of Z_; is to downshift T by ©
rows and replace the first < rows by zeros. Similarly, Z; upshifts a

matrix by < rows and replaces the last © rows by zeros. If T(l—t) and

T(t-l) have the forms shown in (3.l1a) and (3.1b) (with Z-I replacing )

it can be checked that T(_t)and T(z) as produced by (3.3) and (3.4) have
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£ null sub- and super-diagonals respectively, So the (n-1) iterates in the
BSA, le_n) and nyklf are upper and lower triangular respectively, and it
will be seen later that they are simply related to L and U. BSA is called
"symmetric" because the recursion for the negative-index iterate (step
2.1) is the same as that for the positive-index iterate (step 2.2}, with

all indices changed in sign. In Chapter 2, we described Bareiss's non-

symmetric algorithm which does not have this property, but is slightly more
efficient.

3.2 The Extended Bareiss Symmetric Algorithm

We wish to extend BSA to calculate L”l and U_l as well as L

and U. We now introduce the multiplier matrices, defined by
M(—z)T = T(—z) (3.5)
M(@)T _ T(t) (3.6)

) ()

T is assumed nonsingular, so M(—i and M are unique. Substituting

=¥/,
(3.5) and (3.6) into (3.2)-(3.4), and postmultiplying by T~ yields a

recursion for the M(ti)
V2 -
e PP (3.8)
W D g w1 5.0

Equations (3.7)-(3.9), together with algorithm 3.1, enable us to calculate

both the T(ti) and the M(ti):
Algorithm 3.2 (Extended BSA (EBSA))
1. 09 - (3.10)

2. M(O) =T (3.11)



3. For 2«1 to n-1 do:

_(-1+1) ,, (1-1)
3.1 m_p =t "/t

(-7) (-1+1)
T =T -m_s

3.3 M(—i) _ M(—i+1) ~m_
o (2-1) , (-1+1)
3.4 m, =t_, / 0

55 p(8) _ pli-1)

5.6 ) o ity

It may be shown by an induction, that M and M

-1

-7

-m-ZoT

plt-1)

M(i—l)

(-2+1)

—m. 7. M(—$+1)
i 77

(~%)

(Toeplitz blocks are bounded by continuous lines)

(-1) _ (—%)

\

)

(i) _

( 1)
( zf\\\\

(1)

(2)

45

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

have the form

(3.18)

(3.19)



40

whence it may be shown that (3.14) and (3.17) require only 7 independent
operations each; recall that (3.13) and (3.16) required only 2(n-i)

n-1
independent operations each, so EBSA requires 'Eli+2(n—i) = 3n%+0(n)

1/:

operations to execute.

In the theorem below, we show how the triangular factors of T

and their inverses are related to the output of EBSA.

Theorem 3.1 Let T=LU, where T is a nonsingular Toeplitz matrix, L

. o o . . () (n—])
is unit lower-triangular, and U is upper-triangular. Let T

( ) o= (1= M(+)::M(n—1) M e T be the reduced and multiplier

matrices produced by applying EBSA to T.

Then: U = T(—) (3.20)
I = [dlag{z/t(+)}f(+)]f2 (3.21)
B = M(") (3.22)
i = [dlag{z/t(+)}M(+)]f2 (3.23)
Proof: By definition, M(")T = T(—)
&= M(’)’JT(’) (3.24)
Now from (3.18), setting i=n-I1, M(—) is unit lower-triangular, so
M(—)—l is also. (=) is upper-triangular. So (3.24) is an LU factoriza-
tion of T, therefore
p = a1
U = T(—) ,

because the LU factorization is unique for L unit triangular. This proves

(3.20) and (3.22).

By definition M (*'r = 1(*/

(+)-1T(+) - (M (+) 1 {t( )})(dlag{l/t(+)}T(+)

i.e. T=M

(3.25)
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Recall from Chapter 2 that for any matrices X and Y,

Taking the secondary transpose of (3.25) and using the above identity,

i —T—(dlag{l/t(+) yr(*+ )72y +) Jdlag{t(+) T2 (3.26)

(+) )y (#) (+)} «

Now T is lower-triangular, so dlag{l/t(+

T(+)

and hence (diag{1/¢.

)T2 is also unit lower-triangular. Also from (3.19), setting

(+)

t=n-1, M is upper-triangular, hence so is the right-hand factor of

(3.26). So (3.26) is again the (unique) LU factorization of T, therefore

(+)}T(+))T2

t~
Il

(dlag{l/t (3.27)

(+) 1 (+)})T2

u = (M aglt (3.28)
(3.27) is the same as (3.21), and (3.23) follows by inverting (2.28).

QED.

4. THE ALTERNATIVE BAREISS SYMMETRIC ALGORITHM (ABSA) -
TOEPLITZ INVERSION
We have shown that EBSA calculates L, U, ! and v7? in 31240 (n)
operations. We now modify EBSA to calculate L-l and U'I in only 2n2+0(n)
operations. We then show how the resulting algorithm, the alternative
Bareiss symmetric algorithm (ABSA) is related to the Trench-Zohar

algorithm.

(=) 4™ ana

From equations (3.22) and (3.23), we require M
diag{tgz)} to generate il and v 1f we omit steps 3.2 and 3.5

from EBSA (algorithm 3.2), we will have an algorithm to calculate the
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desired quantities if we can calculate t(21+1), tgiﬂl), tgi"l) and tg—$+l)
without needing to calculate the rest of T(—i) and T(i). To this end,
we prove the following theorem,
Theorem 4.1 Let T(ti), M(ti) be as in Algorithm 3.2. Let t{ti), be
as in equations (3.la,b). Then the following relations hold:
(-i+1) _ (-i+1)
* s = Moy, AR (4.1)
(i-1) _ (i=2) (~1+2)
o = i e Gie)
(¢-1) _  (71-1)
2 = My, Leigg (4.3)
(-i+1) _ (-~1+2) (1-2)
%o = % - M_p1 Pioa (4-4)
_ L (2-1) -
= to (4.5)
Proof: (4.1) and (4.3) follow from the definitions of M(fl) (eqs. (3.5)

and (3.6)), and (4.2) follows from writing out the (1,7) element of (3.16)
and using (3.1a,b). (4.4) follows from writing out the (1,1) element of
(3.13) and using (3.la,b). Alternatively, (4.2) and (4.4) follow
directly from Bareiss's equations (3.1b). (4.5) is shown

by Bareiss:

QED.

If we omit steps 3.2 and 3.5 in EBSA and insert (4.1)-(4.3),

(4.5)to calculate the elements of T(ti) needed for m,,, we have the

+1
Alternative Bareiss Symmetric Algorithm, which calculates M(—), M(+) and

L(22)

(#9) | ana, by (3.22) and (3.23), B R
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Algorithm 4.1 (Alternative Bareiss Symmetric Algorithm (ABSA))

(0)
1. 1;0 *—‘bo
2. u0 7

3. For 2<1 to n-1 do:

((1-2)  (1-3)

3.1 ¢ meeg. Leg {eq.(4.1)}

5.2 <l i)

55 -V g (Y

s e om0 feq a3))

3.5 (z 1)/t(1 -7)

3.6 M(i)-eM(i'l) - mg ZiM(Z—i)

3.7 08 f (170 g gl 1), (1) G (%) {egs.(4.4),(4.5)}

0 0 "—7,7, ’0 0

Algorithm 4.1 may be written in a more compact form using (3.18)

and (3.19). We observe that the first < rows of M(_t) are the same as

(1-1) . (7)

, and the last 7 rows of M are the same as those of

and m;t) only need be calculated tospecify M("i)

those of M
M(z-l). (-2)

Hence m
(i)

L+1.
and M respectively. So, writing out row 7+ and 1 of steps 3.3 and

(1-7) = (0 (1 t))

3.6 respectively, and noting from (3.18) that m. —1+1,1:1+1 n;

we obtain:

Algorithm 4.1a (ABSA)

(0)
1. tO <—t0
2. (0)<—1

M1



3. For 2«1 to n-1 do:

50

5.1 tﬁé-i)'*ﬁéfEfé Yorit1,1
5.2 m_i<-t££—i)/tgi_1)
33 mé:?fl:i+1<'(0’ mififi) - m-iQﬁgfzfé’O)
St tii—l)'eﬁéf;fé ty:4, 441
3.5 m; <—t£i—1)/tgl-i)
5.6 M) pag By rps O - mgl0n )
R I e B
4 m§:§+l,j+1 = @§:§11,5+1’ —;té,nnj:n = méié,n—j:n’ J=05-..,n-1

The relation between ABSA and the Trench-Zohar Algorithm

The connection between ABSA (algorithm 4.la and the Trench-Zohar

algorithm (algorithm 2.1)) may

(Bre1’1.

(Bi+1).1

where Ti+1

be found by using the following results [48]:

_, =1 \RT

B (Ui+1).i+1 (4.6)
~ ol -1 |RT

- (Ui+l)i+l,i+1 (Li+1)i+1. (4.7)
= LV

We now wish to get the quantities in the Trench-Zohar algorithm in terms

of the quantities in ABSA.

(4.6) and (4.7) become

Using (3.22) and (3.23) (applied to Ti+1)’

(1) (1)
(1’1, My 7:241” %0 (4.8)
T (i) (1) (=%) (2)
(Byoa) 1 = Mot 1:4417%0 = Mie1,1:40477%0 (49
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. ’ 1 . .
The first component of (4.8) = (B'll+.‘l)11 = t;(i) , i.e., using (2.1),

A, = tét) (4.10)

Again using (2.1), (4.8) and (4.9) can be written (components 2 to 1+1):

T _ _(Z)
g T Ty,2:441 (4.11)
ZI?T_ (-1)
4 = M1 (4.12)

Putting (4.11) in algorithm 2.1, step 4.1, we get

_ (7) R

ng = (/g * M e Yaid

(7,)

_(7) _ Tt
=m 101 Lo’ = TE, (4.13)

using algorithm 4.la, step 3.4.
Similarly, it can be shown that
—'1,)

/1': (4.14)

Yg T —'1,-1

Now, by (4.10)-(4.14), algorithms 2.1 and 4.la calculate the same

quantities. Only the notation is different. Thus, if we make the

transformations
(Z) (7,)
ty T torg Y1 T "PoNg
( z)
M,0:4+1 ~ & t 17 “Po¥i o

m(—i) L

—+1,1:2 =

then algorithm 4.la should transform to phase 1 of algorithm 1.

This is easily verified. Hence ABSA is equivalent to phase 1 of the

Trench-Zohar algorithm.
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Derivation of a variant of the Trench-Zohar Algorithm using the Bareiss

nonsymmetric algorithm (BNA)

In a manner similar to that above, we can extend BNA [6 ]

(+)

(which also reduces T to upper and lower triangles, but with tiz normalised
to to) to calculate L,U,L_l and U—l; from the extended BNA, we can derive
an alternative BNA (ABNA) which calculates L—l and U-l in 2n2 + 0(n)

-1

operations. By using the relations between L;J,U.

i ,(B_)

i1, and (Bi)'l’

ABNA can again be used to calculate éfl and QJ , hence it can be shown that
ABNA is equivalent to a variant of the Trench-Zohar algorithm in which

the é’i are scaled by to, rather than xito, in phase 1.

5. CONCLUSION

An extended form of the Bareiss symmetric algorithm (BSA) is
presented to calculate L and U, the triangular factors of a Toeplitz
matrix, together with L—l and Unl, in 3n2 4+ 0(n) operations. From this,
an alternative BSA has been derived to calculate L—Z and U_l only in
2n2 + 0(n) operations. Using relations connecting L_J,U_Z and the first
rows and columns of the submatrices {Ti} of T, it was shown that the
alternative BSA and the Trench-Zohar algorithm were equivalent. An

alternative Bareiss non-symmetric algorithm may be similarly derived,

which is equivalent to a variant of the Trench-Zohar algorithm.
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CHAPTER 4

ERROR ANALYSIS OF BAREISS'S ALGORITHM

1. INTRODUCTION

We now present rounding-error analyses of Bareiss's algorithm
BNA. The main purpose of this chapter is to show that the rounding-error
can increase without limit if a leading submatrix approaches singularity,
showing that BNA is unstable. In the next chapter, we propose a pivoting
scheme for BNA which gives satisfactory results when a leading submatrix
is singular or close to singular. To the author's knowledge, there is
no error analysis of BNA as yet available in the literature, though
Cybenko [22] gives an error analysis of TZA (which, as we saw could be
derived from BSA), and DeJong [24], shows that Rissanen's algorithm [78]
for the triangularization of a Hankel matrix is unstable. Rissanen's
algorithm, however is not equivalent to BNA; to see this, note that if T
is converted to a Hankel matrix by premultiplying by E, the exchange

matrix, Rissanen's algorithm find the factorization

Br = LDIX » 7 = ELDI (1.1)

whereas BNA finds the factorization
T = LDU (1.2)

The factorizations (1.1) and (1.2) are different because (a) EL is a

different shape from L and (b) U # L in general.

In Section 2, we derive several bounds on intermediate quantities
produced by BNA. These bounds are functions of the condition numbers of
certain submatrices of 7. The condition number of a nonsingular matrix

is a measure of its closeness to singularity, and is defined by
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cond A := lalla=1i, (1.3)

In Section 3, we give a forward error analysis of one stage of
BNA, and show that the errors in iterate (k) may be L times the errors in
the previous iterate, where L is proportional to cond Tk+1' In Section 4,
we give a backward error analysis of BNA, showing that if second-order
quantities are neglected the computed solution x, exactly solves a
perturbed system (T + GT)gc = b + &b, where 6T and 8b are computable in

terms of quantities calculated during the execution of BNA.

2, BAREISS ALGORITHM - MISCELLANEOUS RESULTS

The results of this section will be used in Section 3, where a
forward error analysis of one step of BNA is performed. We first consider

what happens when one or more leading submatrices of T are singular.

Lemma 2.1 Let A be any order k+1 matrix (not necessarily Toeplitz).

. . E
Suppose 4, and Ak+1 are singular. Define Ay 3= Al:k,Z:k+1

and Ai = Aé;k+1,1:k' Then either Az or Ai is singular.

Proof: Assume det Ai # 0. Then, since det Ak =0, Hui not all
zero, 1=1,...,k such that igl Q. g$,1 e = OT. Consider
separately the cases a, = 0 and o # 0. If G, = 0, setting
Up7 = 0 gives kgz a; gi,l g = OT = det Ak 0.

k
T
If oy # 0, then az 1:% + E (a. /u ) a; 1k T 0, so, by

a determinental identity,
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k
gl,l:k+1 * (q /q :: &0, 1kl
det 4, . = det "ﬁ“h““-]m L a——
Q:k+1,1:k+1
o B
= det | memmme—m e = 0, (2.1)
AS a
ko %1kt k41
k
where B ;= 1 k+1 + E (o /u ) a. ki1 # 0 because
FE S
det Ay # 0. Hence by (2.1) det Ak = 0. QED.

For the next Lemma, and for the discussion in the next chapter,

the following definition will be useful:

Definition For any matrix 4, the displaced leading submatrix of order 7

and displacement j, denoted by Ai'j; is defined by:

K]

Ai;j i Al:i,j+1:j+i 720 (2.2a)

A, . =4 . S . i 2.2b

39 Hl+1:g|+is1:4 j<o ( )

Eq. (2.2a) shows that for § = 0, 4. . is the matrix contained in an T x 1

sd

box with its top border at the top of 4 and its left border displaced J
places from the left border of A. Eq. (2.2b) shows that for g < 0,

Ai;j is the matrix contained in an < x < box with its left border at the
left of 4 and its top border displaced |j| places down from the top of 4.

Lemma 2.2 Let T be a Toeplitz matrix, and let det Tk # 0,

det Tk+1;i =0, 7= 0,...,7. Then det T # 0, 2=1,...,7+1.,
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Proof: By induction on +. For i=1, suppose det Tk-l = det Ti:g_,_
d
Then by Lemma 2.1, det TZ:k+1,2:k+1 = Q > det T, = 0 (by

Toeplicity), which is a contradictiom, so det Tk-l # 0.,
3

Suppose det Tk;i # 0. Then, if we suppose that det Tk;i+1=0’

we can get a contradiction by the same argument as above,

so det Tk;i+l # 0. QED.

In Theorem 2.1 below, we show that if s + I leading submatrices
oflT are singular, then s + 1 extra zero-diagonals adjacent to the eliminated
diagonals will appear. Bareiss notes this fact without proof. However,
Theorem 2.1 states precisely when and in what form the zero diagonals will
occur. We believe that the proof is not trivial:

Theorem 2.1  Suppose det Tyt = 0(i=1,...,8+1) and det Ty # 0. Then for

some p,q 20 p+q 28, t;'k)= 0. G=0y...505-k~1,...5q.
Proof: By contradiction. Suppose
tg_k)= 0, §=0y.eesp'5-k-1,...,-k=q", (2.3)
(-k) (~k) .
where p'+q' < & and tp'+1’ t—k—q’—l # 0. Consider Tk+p'+q’+2’
which by (2.2) and (2.3) has the form
(x.\ ? 1
k{ SN |
0 - 0—0 t(jk;——x
0 N pt
[
T(-k) - gt p'+1 q'+1
ktp'+q'+2 5
(-k)
0 tp '+1
t(_k)
~k-q'-1
p'+1 \\\\\
(~k)
X twk—Q'-l

(2.4)



57

From (2.4)
(~k) _ (k) 2P 1, (~k) \q U] (~k)
det Tk+p'+q'+2 (t-k~q'—l) St '+l) det Tk p 41 (2.5)
Now [ 6] det T( ?) det Th e h=0,..0sn=ly J=0y...,n-h (2.6)
So by (2.6) and (2.4)
det T = det T( ~k) =0, J=0,. t+1
k+1;4 k+1;9 72 J=0s++,p .
. By Lemma 2.2,
(-k)  _ (-k)
det Tk :p 141 det Tk p'+1 # 0 = by (2.5) det Tk+1’+q'+2 # 0,

which contradicts

det T =0 (i=1,...,8+1), since p'+q'+2 < s+l.

k+7
QED.

Corollary: Suppose det Topi = 0(i=1,...,8+1), but det 7. # 0.

Then BNA breaks down after stage (-k).

. (~k) _ .
Proof: By Theorem 2.1, tk+1 Yt 0, so eq. (2.2.3b) will break
down.
QED.
Remark Bareiss [ 6 ] makes a statement equivalent to this corollary

in his Corollary 2, so the above corollary is not new, but

is included here for completeness.

We next consider what happens to p(=%)

.} a

when the {Tk+z} re close

to singular in the sense that the distance between Tk+i and a singular matrix
is small compared to “Tk+i"' A useful index of '"closeness to singularity"

is the condition number, defined for any non-singular matrix 4 in (1.3).
It can be shown [19] that an equivalent definition is

cond A = M S (2.7)

B singular |B-Al
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Hence (2.7) says that the condition number is the inverse of
the "relative closeness to singularity". Thus if the {Tk+i} are close to
singularity, they have large condition numbers. Theorem 2.1 stated that

(~k) will be

if the {TP+£} were singular, several extra diagonals of T
zero. By a continuity argument, it would be expected that if the {Tk+i}
were close to singular (had large condition numbers) these extra diagonals

would be '"small" compared to the other elements of T(_k).

It would be useful to find a generalized version of Theorem 2.1
that shows that if cond {Tk+i}§’ were all greater than some M, then s of

k)

the diagonals tg— would be less than some bound 8. Such bounds for

s € 2 are shown in Theorem 2.2, but for s = &, the bounds rapidly became
wildy pessimistic. The converse statement - that s of the diagonals tgnk}

are less than § only if cond {Tk+i}§ are greater than M - is easy to show,

and this is done in Theorem 2.3.

The following five Lemmas ((2.3)-(2.7)) are required before

Theorem 2.2.
Lemma 2.3 Let A be a (k+1) x (k+1) matrix with Uep1 kb1’ aiil Kt # 0.
3 3
Then
) -1
VAT o ad" VA7 ) g, e
< B cond Ak (2.8a,b)
-1 -1 |
V™ ) per, 10 VA g )
where S = HAk+1H/HAkH.
Proof: Partition

(2.9)




Lemma 2.4

Proof:
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Ax | - & ] !
then B =T (2.10)
S a] |4
T -1
saf+m =0 = L=-a'p (2.11)
i = A o557
50 “ﬁ“ = Vi )l:k,k+1"/|(A )k+1,k+1|
<z~ Iipl < 1a”lina, 0 o= glaTlinal = 8 cond 4
= A T2 2 N T k1 k%K k
which is (2.8a). (2.8b) can be shown similarly.
QED.

Let 4 be a (k+1)x(k+1) matrix. Then

-1y

-1 9
“Ak 17 = I(A )k+1,k+1|(1 + B cond Ty )" + HAkH

where
B = HAk+1H/HAkH

Partition A,A_l as in (2.9). Then, from (2.10),

7
AkE + §Q~ =T

-1 41 T
SO E =4, —Ak bg = k %-Q using (2.11)
ot o f
-1 _ =
so Ay .4 _ +h | n
& oo 1
so 14710 < 4l + |43l |(1 + 8 cond T,)% usin
k+1 k k+1, k+1 k &

Lemma 2.3. QED.
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Lemma 2.5 Define TE . = (T )

k+1;5 1:kt1,1:%° £1$k+laj

T2:k+1,1:k+1

k+l;7 ' £ 1
=1, 1k+1

and T

and B := max {llTE

N Tiﬂ;ju }T, |

Then, after step (-k) of the Bareiss algorithm

|t( k)[ (1 + B cond Tk)z
—d < ,; iz0 (2.12)
Wirzeg' 04 Tpgiap145 ~ B cond Ty
|t£;k) | (1 + B cond Tk)g
ey < 7 2 k+1 (2.13)
ﬂTi+1H cond Tk+1 .47 ~ B cond Iy
Proof; It is easy to showthat for g 2 0
(-k) _ ;
tj - 1/(T£+1 k+1+,7 k41 k+1 Gl 1)
From Lemma 2.4 and eq. (2.14),
H(T ) eV < VT0 + (14 8 cond 1) /It( k)
(-k) 2 -1
87 1< (1 + 8 cond 1) /10 (Tiﬂ P BN

from which (2.12) follows. The proof of (2.13) is similar.

QED.

Lemma 2.6 Let F be any n x n matrix, let G=F_1 and let gst‘

be the element of G with largest magnitude. Then

’ 5 o f h 5L & o | <1
= 42, 0,f, + €, Where a, ;= —— = |o,| =
t. %;11: . T L g, Zte

i

r  _ T
and € = gs/gst (2.15a-c)



61
Proof: Expand e f‘j = ﬁsj’ divide through by g_,, and take f%j
to the leftr~hand-side, This shows (2,15) for the Jjth

component. QED.

Lemma 2.7 Let M:=min(cond Tk’ eond Tk+1)’

[ ! N
6 = max(IITk_/_lll/llTkll,IITk+lll/.|Tk,_k+1",“Tk_,_l“/"Tz;kH")

wvhere

S o= ' = (

Testkr1 *= Torkr1, 1:% 209 T£;7<+1 (T n, 1:k-12E2:%, k1"

Then

3 g2

cond Ti;k+1 cond Tk b Z_M/[Z B(3k+1)].
Proof: Let % := t. and 1t = t. i=1 k+1  (2.16a,b)
—_— =1 " =i,1:k =1 7 Li,1:k+1° 2ot ’ ’

Let (Tk+1) . be the element of Tkll with largest magnitude.

Then, applying Lemma 2.6 to Tk+1’ we get the following

relation between (k+1)-column vectors

7 k+1 7 7
E$ = Zgl azzl + & IGZISJ, § =e /(Tk+1 Jl (2.17)
1#1

Removing the last column of (2.17), and using (2.16), we
get the following relation between k-column vectors

k+1
T _ T T R n =
Ei = ZE th + €, where g := El:k (2.18)

1#1

Let (Til)qp be the element of Tiz with largest magnitude.

Applying Lemma 2.6 to Tk, we have

-— *
£ o= 2, Bty 7 |37 |<1, & q/ch ) (2.19)
I#p

If we replace the term Eg in (2.18) by the RHS of (2.19),

(2.18) can be written

k
T tT T T T '
= _Z - . = . = !
Ei =g & i1 * 0L7<+:l?'fk+1 R adé > 97 ¢ 0L’L-,-Otpep IGZISZ'

L7p (2.20)

*BZ is not related to the B in the Lemma statement.
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Taking tf to the left of (2,20), and substituting the
resulting expression for E? into (2,19), we get

3 B, k

T _ T t.T T T
B = iZs Bitrt 2T P - 125 08 - Mt s 058 )
Z#p #p (2.21)
& Bs
We consider separately the cases o7 S 1 and i e,
1 ~ |

B1
Case 1. —F <1
%1

(2.21) shows that Ti'k+1 can be made singular by adding

B

1
$ + = 1 (-e- uJG) to tp’ so the distance between Ti;k+1

a singular matrix is <lel + 128l. Hence, applying (2.7)

and

cond T°

pike1 = 1Mo gqg1/ 0l + 12813 (2.22)

-1
I~

8 -1
> llTk;k+1||/{|(Tk+l)j 1" Le2| (T3 }

k )qp

by the definition of e and §.

Now I(T I/(k+1) and I(Tk ) | 2 “Tilﬂ/k, so

k+1 l - k+1

this becomes

A s s k+1 2k
cond T,. 2 r; . /1 + }
k 1 k
1 kg |
g “/{(k+1) Tk 1 s 2k Tk }
ks k+1 cond T Kt cond Tk
. "Tk ek 1" { k+1 s 2k }—1
“Tk 1" cond Trss cond T4,
1 (k 2k.=1 _ M
=25 Y twY T = wReD (2.2%)
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Case 2. — > 1
(s

[P § XY

Rearranging (2.21) so that Ek+1 is on the left, we see

4
v

that Ti;k+l can be made singular by adding 7 (—E—aj§+8 8)
k+1 1
to Tptre
Then, as for (2.22)
oy, 1M

s s k+1
eond Tk’_kﬂ > |ak||lTk;k+1|I/{l|Ell + 2lsl} > B73%rT) (2.24)
using (2.22) and (2.23).

. U I . .. T

Define vy i= (f; 7.5 90 by ppr! 204 & 3= (Bpge g0 Sppr/-
Then, from (2.17)
UT = g a UT + o UT + éT 2.25
D = g2y % By Oy Zerd TS (2.25)

1#1
Eq. (2.25) shows that Ti-k+l may be made singular by adding

£

T .T T
s Cke1 T Ekwz O Y 0 SO

o “T§;k+1"
cond T, > (2.26)

ks k+1 lak+1|“2k+1“ + el

We now consider two sub-cases: Hak+1 Ek+1“ < 2H§H and

“ak+1 Ek+1“ > 2lgl.

Case 2(a). Hak+1 Ek+1“ < 2l

(2.26) becomes

cond Ti;k+1 > HTi;k+1“/(3H§“),

By a development similar to that in which (2.23) was derived

from (2.22), this becomes

cond Ti;k+l > M/[38(k+1)] (2.27)
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Case 2(b). "ak+1 gk+1"22ﬂgﬂ

-

From (2.26)
"_Ti‘k““ <oy, o wy, Melel < 0o, w0
cond P T Tk <k+1 T g TR+l <k+1

ks k+1

3 3
< Floggs 1 Tppg" = Elak+l|6“1€;k+1" (2.28)

(2.28) and (2.24) give

g 3 g2
cond Tk;k+1 cond Tz;k+1 > MV{Z B (3k+1)} (2.29)

Eqs. (2.23), (2.24) and (2.29) cover all possible cases.
It is clear that the bound in (2.29) is less than or equal
to the bounds in (2.23) and (2.24), so (2.29) is true in

all cases. QED.

(~k)

We can now bound some of the diagonals {tj } if the condition

number of Tk+1’ Tk+2 are bounded by M.

Theorem 2.2 Let M := min(cond Tk+1,cond Tk+2)' Then
tg—k) (1 + B cond Tk)2
(1) < (2.30)
"Tk+1" cond Tk+1 - B cond Tk
tg—k) (1 + B eond Tk)g
(i1) " “ < 7 (2.31)
T — B cond T
k+2 3 8 2 k
E-cond Ik+1;k+2 B4 (3k+1)
t(zk; (1 + 8 cond Tk)z
or = (2.32)
VT vs! . 4 -8 cond T,
E—cond T§+1;k+2 BZ(3k+1)

where B is as in Lemma 2.5.
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Proof: (2.30) follows directly from Lemma 2.5. (2.31) and (2.32)
follow from Lemmas 2.5 and 2.7. QED. é
Remarks Theorem 2.2 shows that if Tk+1 is ill-condjitioned,
( k) 5 , . ..
| I/“Tk+1 is small. If Tk+2 is ill-conditioned as well,

then M will be large, and Lemma 2.7 shows that either or

both of Tiil pg and TE+1 yg Will be ill-conditioned.

f Ti+l;k+2 is ill-conditioned, but T§+1 Tt is well-

conditioned, Theorem 2.2 shows that t( k)/“T is small. '

T£+1 Tt D is well-conditioned and Ti+1 1o is ill1-
( k)

I
conditioned, then ¢_ / Tk 2 is small. TS+1 epn &

Ti+1'k+2 are both ill-conditioned, then (2.12), (2.13) and
b

lemma 2.7 show that the product

t(—k)

(k)
t7 " . Y1

is small.

"Tk+2“ ﬂTk+2H a

We showed above that if cond Tk 1 and cond Tk+2 were bounded
by M, we could put an upper bound on tg ~kJ and tg“k) t(lké, which
is 1nveraely proportional to M. We conjecture that this holds in general,

i.e. if cond Tk+' > M, ¢=1,...,8, then 1 an upper bound for diagonals

(-k) (-k) ( k) (-k) _
t—k-l-q""’t s 1, ,...,tp , where p+q+I=s. We have been unable
to find realistic bounds, but our limited experience suggests that
if Tk+7""’Tk+ﬂ are ill-conditioned, s of the diagonals of I( ~k) adjoining

(-&)

and including to , are small compared to the largest Toeplitz diagonal

of T(—k).

It is easy, however, to prove a slight eneralization of the
y ; P g g

(-k)

converse of this conjecture. We can show that if s of the ¢,

m . . - .
small, then ik+1""’Tk+s are ill-conditioned; in fact, for a given
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k+1 <% <k+s, there are s ill~conditioned submatrices, including E

the leading submatrix. In theorem 2.3, Tk+1;j’ etc. are as defined in eq.(2.2). ?a
Theorem 2.3 Let ltg—k)|s € 5 g=rkelegyeees=k=1;5 05e0e,p (2.33) K
— === ;
L= . L .
Then cond Tk+1;g > Tk+$;J /lelp+q+1)], i
1,JeS 1= {1,d:1<i<p+q+l,~q<j<p} ﬁ
3 A (-k) o . . i
Proof (outline) By writing out T explicitly using (2.2.2), it can P
(-k) e . .
be seem that at least one row (Tk+z,g)r s TrdeS, ktl<r<kti, ,
consists solely of zeros and elements in the set {tg—k)} of |
(2.33).Hence, by (2.33) "(T£+k) .) .H < e(p+q+l). From
. (-k) _ . . .
Bareiss [ 6], (Tk+t,g)r = (T k+i,') + linear combination
r-1 (-k) . )
of {(Tk+i;j)u-}r-k’ hence T-e (kal,J)P is singular,

, 7 gbosition r
where ¢, = (0y.0.0,1,04...0). So, by (2.7)

. LN/ [elptq+l)].

(- k) ,
) _H > "fk+1,d

cond Ty, ;o2 1T ATy
QED.

3. BAREISS ALGORITHM - INCREASE IN ERROR BOUND

We now bound the increase in relative error from step (-k)
to step (k) of BNA, and show that this increase is bounded only by a

quantity proportional to cond Tk+1' Computed quantities, will be

denoted by bars, the error a-a by 8a, and the relative error IGa/al

by rel a (a#0).

We then define the relative error of a computed matrix 4,

denoted rel 4, by

rel A := maxldalal/haxiaial, where Gaij =G - Qg

Tsd Tsd



67

_ (~2) (%) : (~t) (Z)
We also denote Ti+1;-n-and Tl:nni}'-" the Togplltz parts of T and T
respectively, by Tfpi) and Ifﬂ) respectively, for 7=0,...,n-1. Throughout

chapters 4-6, y represents the machine precision. The result of this section is

Theorem 3.1 Let € :=|t5_k)L and let E be such that*rel Ef"k) < UR
and rel i{k"l) < pR, and let 8 be as in Lemma 2.5. (3.1a-d)
Then * relrifk)s WLR, (3.2)

where L := t(—k)/e, with®
—_— max

(gl cond T - Becond T
. kt1 2k < L < cond Tk+1 X
"Tk+1" cond T(1+B cond Tk).(n—k)
o Max . (3.3a,b)

i Va1, M s

and R3 is given by

1+ éi-s'cond Tg/LZ
Ry

to .
R3 a= TE , where B' := m;x H:igkul[
1 - f'eond k/L I k"

R B' cond Ti
R2 = Rl(l + E;zﬂ and Rl = R(1 + T ) (3.4a-d)
Proof: By writing out element rs of the Bareiss recursion (2.2.3),

setting Jj=s-r, tg') =

by computed quantities, we get

t;;) and replacing exact quantities

- (k-1 - =(- = gy =
t(k) . t;k ) _ g, t;_i), where m;, = t£ )/tg k) (3.5a,b)
(k-1) (k-1)
By (3.1) latj | < wre 7, where (3.6)
(+) _ max,. (+)
tmam - u,v(zk )uv :

*L,R,Rl, etc. are all scalars here.
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Using the assumption rel (%/y)s relX + rely, we get from

(3.5b) 2

(k—I) t("k)

(k1) S 2 mm maze &
rel mk < prel tk + rel € £ uR |t(k'1)1 + - (by 3.1b,c)

t(k—l)
mazx
R ——?E:57'+ L . (3.7)
e, |
It can be easily shown that
(k—l) (k-1)
= tk (TE) g k,J+1

= trgz;l)sgrltl({k—lu cond Ti where B! := mgxllfl g ||/||TE||

(3.8a-c)
.w
So (3.7) becomes rel mk uRl
cond TE It
where R, := R|1 + ——— —— T —:l—&JL . (3.9a,b)
! L g

Now, using (3.1b), (3.9a) and the assumption rel(xy)<relx+rely,

( k) (-k), | +(- k)l}

A

ls(m (%)) R | tur,L + wRE

Imk
< Imkt;;s)l{uRJL + uR}

R
o
R, L

i

|mk - k)|uR L, where R, i= Rl(z +

(3.10a,b)
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From (3.5a), (3.6), (3.10a), and the assumption

|stxty) | < |6x| + |8yl
|at§k)| < ﬁCRté§;1)+|mkté;§)|LR2), which, with (3.8b),

< u(RtikHl)B'cond Tﬁ + Imkté;i)lLRz), which, with
(3.5b), (3.3a)

s,uL/lmk t;;z)l(RB'cond Ti/Lz + Ry) (3.11)

Also, using (3.5a),

ot

;z; > |m ek |- |8f (K-1)1, wnich, with (3.8b),
> |m (K g t¥ g tcond 77|, which, with (3.5b) and
(3.3a)
> |myt ™ k)kz ~ B'cond fE/L) . (3.12)
=(k)

(3.11) and (3.12) yield rel I, "= uLRS, where

Ry 1= Ry(1 + 3 R L eond TE/L )/(1-8'cond To/L)  (3.13a,b).

2

(3.13a), (3.8c), (3.9b), (3.10b) and (3.13b) together give

the result (3.2).

The left—hand bound in (3.3a) may be found by applying
Theorem 2.2 to bound € above, and (2.7) to bound t( ~k)
below. -The right-hand bound in (3.3a) may be found by

using (2.7) to bound €& Dbelow, QED.
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Theorem 3.1 shows that if Tk+1'approaches.s;ngularity, the
(k)

relative error bound for T, °, and hence the elements of subsequent

iterates, may increase without limit.

Computer Results deomonstrating Loss of Accuracy

Table 3.1 shows a 6 x 6 Toeplitz matrix, A, selected such that

det A, is small. (det A,=0 if a31=-%). The right-hand side is such that

3 3
the exact solution is (Z,1,...,21). It is seen that the sizes of errors
in the solution elements range from 0.007 to 0,069, and the ration
Real /lal ~ is 0.69, which is pathological considering the relative

machine precision u % 10—16. This therefore bears out the above arguments.

gm OF TLL-COMD BLOCK, DIST FROM SINGULARITY
3,54-8 '

INPUT YOEFLITZ MATRIX T
4,659

. 8.608 1.800 6.659 c.00¢ J.000
€.608 4,689 £.600 1.600 6.6¢0 2.809
4.733 8.060 4,699 8. 669 1.60¢ 6.008
5.869 4.733 6.400 4.698 8.600 1.209
3.689 5.000 4.733 6.0eR 4,049 8.000
1.660 3.60¢ 5.000 4.733 5.900 4.000

EXACT GOL OF TEX = B 15 (1,1,...,1?

BAREISS ALG (BNA)3

ERROR MNORM » @.6518D-@}
ERROR UVECTOR
9.691¢D-01 -9.3516D-01 -9.5126D-21 -0.6696D-02 0.1674D-01 ©.2¢91D-01

Table 3.1 : Application of BNA to matrix with an
jll-conditioned leading submatrix of order 3.
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4. BAREISS ALGORITHM r~ BACKWARD ERROR ANALYSIS

Here. we show that the computed solution z, is the exact

solution of the perturbed system,

(T + 8T)x = b + &b .

Neglecting second-order quantities, 1671 and Wébl can be bounded in terms
of quantities computed during BNA. Theorem 4.1 gives 8T and &b in terms
of certain error matrices F and J, and error vectors ¢ and @. Theorem
4.2 gives bounds for F, J, g and k.

We first recall the Bareiss recursion

p(-8) _ (1) _ ., p(i-1) .
. -1 -1
P8 gD g o) -
e 4.5
L o
and define 7(~%), 7% 5% and 5™ as the result of applying recursion

(4.1)-(4.4) without rounding error, but with the {mté} replaced by {ﬁ+i}.

Also, assume T is nonsingular, and define the multiplier matrices by

M(ti)T _ T(ti) (4.5)

Putting (4.5) in (4.1) and (4.2) yields

(-5) _ (18 _ . 5 (o1

M il

(1) _ (1-1) _ g (=)

M 7
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It can then be shown by induction, using (4.5) and (4.6) that,M("z) is
) - nLS
LT and ¥ is ur. similarly #0°% ana 4%’ can be shown to be ULT and

UT respectively.
We then have
Theorem 4.1 Assume w.l.0.g.* that ¢, # 0. Then the solutions

E; and %r-of the upper and lower-triangular systems

i(l—n)g' _ E{l—n) (4.7)
f(""l)Ei = E(n—l) (4.8)
are the exact solutions respectively of the perturbed systems
[T + (L + esL)F]'a_Eu =D+ (L + 8L)g (4.9)
[T + t Loy + su)”t J]BEZ =b+ t Tow + su)t? (4.10)

where L is ULT and Uis UT such that T = LU; 8L = (M(J‘”))'l—(M(l’”))‘l;

_ C&(n-l))—l_(M(n—l))-l 3
F o= T(l—n) _ }(l—n) (4.11)
g s é(l—n) _ é(l—n) (4.12)
J o= T(n—ll _ i(n~1) (4.13)
E :=_E(n—1) _ é(n—l) (4.14)
Proof: It is clear from the definition of é(+$) that M A(+$)b = b(+$)
(4.15)

Using the definitionof F and g in (4.7),

(1) Fis, = 1:)( 1-n) g
ile. ( (l—n)T n F) “(l—n)b +g (using (4.6) and (4.15)).
or** (T + (M(l"”))“lF)a_?; =D+ (M(l )y (4.16)

*Otherwise BNA fails. **M(J ~n) cannot be singular since it is ULT.
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In Chapter 2 it was shown that (Theorem 2.3.1)

a1 o g,
so )~ < 1+ sz,

“(l—n))—l_aw(lfn))—l-

where 8L := (M (4.17)

Putting (4.17) in (4.16) yields (4.9). The proof of

(4.10) is similar. QED.

For the relations (4.9), (4.10) to be useful, we must find

bounds for IFl, lgh, lJl and HEH. We first need the following Lemma:

Lemmna 4.1 n-1
L (1-n).(p) (1-n)_(-p)
B N E + N E .18
F P21 ( b FO ) (4.18)
o= nb g1 ), y(1-n) 4 (-p) o 155
p=I 'p - 2
n-1 '
J = pzl {N(n—Z)E(p) 4 NEn—l)E(-p)) (4.20)
w5 @) @), 1) () (4.21)
- p:l p - -—p - .
where E(tp) and @(tp), the local errors committed in calcu-
lating 7(1P) and E(tp), are given by
p(-p) - p(1-p/)_ ﬁ_pz_pf(p'l) + g(P (4.22)
7(0) _ p(p-1)_ 2, 7(-p) 4 P (4.23)
E(—p) _ E(l—p) . %szﬁpé(p—l) + @(-p) (4_24)"
Z)(P) - ;:,(P‘l) = ;?zpzp E("p) + }z(p) (4.25),

+(n-1)

and the th are given by the following recursions:
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(~p)
N 0; N = 4.26
p s X C )
N(—i) - N(l—i)a - .N(inl)
p p -t -tp
i_-p'l'l, [ 2 o:n—l
() (i-1) = (~2)
Np . Nb - mizil\lp , (4.27a,b)
(p-1) (~-p)
v =0; N = 4.28
p -p I ( )
N(i) _ N(i—l) _ %;Z.N(l’i)
-p -p 1 -p
T=Pseeo =2
(-1-%) _ (-1) = : (1)
v, =n_ - _gif1iV (4.29a,b)
(n-1) _ .(n-8) = (1-n)
o =W N (4.30)

(riote that (4.30) is just (4.29) with 2=n-1).

Proof: We prove by induction on k that
k) Aek) K k) _(p) |, o(-K) (-p)
T - T = 3z (n"%g'P 1 E p]
p=1 'p -p
k=1,...,0n-1,
. ~ k
F(k) _ p(k)_ 5 y(K)plp) + y(®gP [ (4.31,4.32)
p=1 'p -p

and then, setting k=n-I1 will yield (4.18) and (4.20).

We first show (4.31) for k=I. From (4.22)

-0 2 (0 i g (0 g .55

and from the definition,

E I S &
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Equations (4.33) and (4.34) = T{"l) 6(1) = E("l), (4.35)

The RHS of (4.31), with k=I is, using (4.26a) and (4.28b)

p(Dp D1 p(-1) A5

1

The result follows from (4.35) and (4.36).

Now, consider (4.32) for k=I. The LHS of (4.32), using

(4.26b), (4.28a) and (4.29a) to evaluate the N's, is
N(J)E(l) (1) (-1)

(1) (-1)

1 _1 =F - ﬁlzlE (4.37)
From (4.23),
T(l) _ T(O) _ ﬁlzlf(—l) (1)
(0 -, n(=-1) = ~1 1
=0 _ M2 T ). mlzlE( ) 4 gV (4.38)
using (4.35).
By definition 7% = 1(% -7z 20V (4.39)
Eqs. (4.37) and (4.39) prove (4.32) for k=l.
Assume now that (4.31) and (4.32) are true also for
1=2,...,k.
From (4.22),
m(-k-1)_ z(-k) - =(k) (-k-1)
T =T i g, B I+ E
k
_ ~(=k) (k) _.(p) (-k)(-p), = ~(k)
=T + pgl (Np E + N—p E )—m_k_lz_k_lT +
k
(k) p(p) 5 (k) (~p) ) . (-k-1)
* 21 (Mg g?x-1"p M_gendb ket p )1E

using (4.31) and (4.32).

So
A(-k-1)_1(~%) ~ ()
M g1kt F
, 7; e (k))E(p) ,
p— p ; By Sy |

(-k) - (k) (

-p) (-k~1)
F N, gy g% g N V)Y HE
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Using (4.27a) and (4.29b), this becomes

p(ke1) _ Ak 5 (k)

k1 k1 K
Ko (ke1) (p), (<k=1) (D) (knl)
+ % (N gP/ =K igt P2y 4 g4 which,
p=1 P -p
with (4.26a,b)
_ h(-k) - ~(k)
=T —m—knlznk—lT +
k+1 .
(-k-1) .(p) (-k-1) (-p)
+ (N E'P + E 4,
p=1 'p P g (4.40)
But, by definition,
Nke1) | 5(-k) = ~ (k)
T =T S LR (4.41)

and, subtracting (4.41) from (4.40) yields (4.31) with %k
replaced by k#I. The proof for (4.32) is similar. This
~ completes the proof of (4.18) and (4.20). The proof of
(+p)

(4.19) and (4.21) is analogous, with references to F

being replaced everywhere by references to @(fp). QED.

Upper Bounds on F,J,g and k

We now use Lemma 4.1 to get bounds on the elements of F,J,g and K.

Theorem 4.2 Assume that the result of any of the floating-point

operations +, -, x or % satisfies

fllx op y) = (1 + €)(x op y), |e|su (4.42)
: : .. .. max .. max
where u is the machine precision. Let T := ;" Itijl and n =" |bi|'

Then Vi,j- |fij|s4(n—1)uur, |jij|54(”"1)U“T: Igiis4(n—l)uan [ki|S4(n—1)uan

n-1
where o= || (14 lmz|). (4.43a-¢)
I-n
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We first evaluate a bound for lf%jl‘ Consider the

term Nélﬂn)E(p) in (2,31). From (4.23)
(p) _ (p) (p-l) - n(-p)
ey =ty (b m, z+p,a) (4.44)

Using (4.42),we can write the floating-point version of

the Bareiss recursion (4.2) as

=(p)_ =(p-1) —( -p)
'/,ij—(1+e){tij —(1+e’)mp +’J} lel,let] < w  (4.45a,b)

Putting (4.45a) in (4.44) and neglecting second order
quantities,

(p) -(p—l) ={~p)
10 tij E+€')mpt$+p,g (4.46)

From BNA, eqs. (4.1) and (4.2), it may be shown by

induction on p that, neglecting second-order quantities,

p-1
|t(p“1)| <1 TT (1+|m;|) (4.47)
L=1-p
p-1
5 15 < T (2l 448
o T 1 my |/ (4.48)

Putting (4.47) and (4.48) in (4.46), and using (4.45b)

we get p
|e(p’| < out [T (2#|my[). (4.49)
1J l=-p

It may be similarly shown by induction on p that

1-n n-1

(N(l—n)E(p))i_ smg‘?: |e£p.)| T (2#lmy ) TT (2#{my )
p J J J l=-p-1 l=p+1
(4.50)
where for convenience we define mz=0 if 2| > n-1.
(4.49) and (4.50) together give
(1-n) 5 (p) =
(N P7y .  <ouc TT (1+|mz|) (4.51)
& I-n
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We can similarly bound

gl < sy 'T—'lll(l+|m 1) (4.52)
~p g 1en A ’

Putting (4.51) and (4.52) in (4.18) yields the result
for Iféjl. The results for Igijl’ Igil and ‘kil are

similar. QED.

If we ignore the second-order quantities SL.F and dL.g

in (4.9) we see that the =-norm of the equivalent
perturbation in T is bounded by 4n(n-2)utlLl _a. This
bound is pessimistic because of the approximations used
%n Theorem 4.2. However, the factor a can be compared
with Wilkinson's "growth factor" g [89 which, for partial

pivoting, can be bounded only by Zn—l. In fact, if the

(2n-2)
multipliers ImZ[ <1, thena < 2 , the square of the

bound on g.

The bounds (2.52) also show that BNA is unstable, because
as, say, Tk%i approaches singularity, |m k-ll and hence,

iFl, kg, Igl and Ikl increase without bound.
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5. CONCLUSION

After several preliminary results were derived regarding the
size of elements of Bareiss iterates as a function of the condition
number of certain submatrices of T, forward and backward error analyses
were performed on BNA, Both these analyses, though yielding only pessimistic
error bounds, show that BNA is unstable, in the sense that the error
increases without bound as the condition number of any leading submatrix

approaches infinity.
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CHAPTER 5

THE PIVOTED BAREISS ALGCRITHM

1. INTRODUCTION

As we have seen in the previous Chapter, the appearance of a
large multiplier is a warning of a possible loss in accuracy. A large
multiplier results when a pivot element is small. In BNA, a small pivot
can only occur in calculating a positive-index iterate, as the pivot for
a negative-index iterate (NII) is always to (see equation 2.2.2b). In

(-k) |
0

Lemma 4.2.5we saw that the pivot for calculating T(k), namely, %
small when Ty, ijs ill-conditioned. In either case we must modify BNA
to select another pivot which is not small. The new algorithm is the

pivoted BNA (PBNA). We will also briefly describe a pivoted BSA (PBSA).

As mentioned above, Bareiss [ 6] proposes a pivoting scheme to
cater for zero leading minors, but it requires the triangularization of
a non-Toeplitz submatrix. Our algorithm will avoid the need to do this,
In lecture notes, Morf states that the Berlekamp-Massey algorithm [8]
can be modified to handle zero leading minors, but not in & numerically-
robust manner. Rissanen [80] describes a pivoting scheme to handle zero
leading minors in Hankel matrices. To the author's knowledge, there are
no previous pivoting schemes which treat non-zero leading principal minors

in Toeplitz matrices for the purpose of improving numerical performance.

In section 2, we describe the various pivoting procedures which,
in section 3, are combined in a number of strategies which attempt to
improve the numerical performance of the Bareiss algorithm. Also in
section 3, it is pointed out that the pivoting procedures are equivalent

to the calculation of elements along certain paths in the Padé table.



81

In the Padé literature, algorithms for some of these paths, such as rows
and diagonals are known. The pivoting viewpoint is new, and many of the

known Padé algorithms follow simply from this approach.

We showed in Chapter 4, that when a leading submatrix is ill-
conditioned, serious error growth may occur if BNA is used. In section 4,
we analyze the simplest strategy, PBA-1, showing that when this is used,
no such error growth can occur, provided the pivots actually used are not
small. We conjecture that this result is also true for any pivoting

strategy.

In section 5, we indicate how to introduce pivoting into the

Bareiss Symmetric Algorithm (BSA).

2. PIVOTING PROCEDURES FOR THE BAREISS ALGORITHM

Here we explain, with the aid of "shape" diagrams, how pivoting
may be incorporated in BNA. We will leave until later the discussion of
the pivoting strategy, which involves selection of the pivot elements to

get the best numerical performance.

Note on Shape Diagrams

A shape diagram indicates the areas of a matrix that are
Toeplitz, non-Toeplitz and null. Elements of the matrix are at the
intersection of the grid lines. Toeplitz areas are bounded by solid
lines, non-Toeplitz areas are bounded by dotted lines, and all other
areas are null. Extra information is put on the diagram as needed. So
in Figure 2.1, areas A and B are Toeplitz, areas C and D are non-Toeplitz,

and areas E and F and null.
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Fig. 2.1 - Example of a shape diagram

2.1 The Basic Pivoting Procedure

We henceforth denote the Toeplitz part of any Bareiss iterate
o o
(*z) b Ti_z)

T , an element in the first non-zero diagonal above the zero-
b (+1) o (x2) . . )
and of T, by tA , and an element in the first non-zero diagonal
~ ' (x7) (k-1) .
below the zero-band by tg - At step (-k), BNA uses ty as pivot and
eliminates t;l_k), as is shown by the dashed arrow in Figure 2.2. It is,
however possible to use tgknl) as pivot to eliminate tzl_k).
J{ i HH
T E= el i I P . o il ! =
o 1 o ui:f[P I . _;ﬁ“‘_ = ‘fﬂt Pivot -
+ i -0_ ] 1 j?'l;mﬂ “569\ T} N L
1 01 SivaE N m
I =k . . 1L I
H) K e 0K Ay
PR N NN
™ - PRI -
I I i [Pt I 8
1 T 1
1 | i | i
I | I
Fig. 2.2 - Form of Tgl—k) and Tgk_l) in BNA, with pivot choices
(k-1) (k-1)
ty s by .
(1) BNA pivot (dashed arrow)
(-k) (1-k) (k-1) _ J(1-k) , (k-1)
7, “ Tagopirte" ™ok T4] e where m_, = %, /tB (2.1a,b)
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(ii) Alternative pivot (dotted arrow)

(-k) (1-k) (k-1) _ (1-k) ,, (k-1)
Ty “ Tagmkr1s ~ Mk T*l:n—k‘ where m_; = tA /tA (2.2a,b)
At sfep (k), BNA uses tg_k) as pivot and eliminates tﬁk—l), as is
shown by the dashed arrow in Figure 2.3. It is, however, possible to use
7,/_(—k) (k—l).

B as pivot to eliminate tB

1
I

i 11 =5=m T s
| S
TR wme ‘ AN
%) ' e T R
jl R 7t L
\d T & 0 I I
+ | : e eEax
-
N ] i
J i
Fig. 2.3 - Form of Ti—k) and T(k), with pivot choices
(-k) (-k)
ty s tg -
The two alternative operations in Figure 2.3 are given by:
(1) BNA pivot (dashed arrow)
(k). o(k-1) (k) _ L (k-1) , (k) i
/1 T*l:n-k' = T, ~, where ) /tA (2.3a,b)
(ii) Alternative pivot (dotted arrow)
(k) (k-1) (-k) _ (k-1) , (-K)
T © T*l:n—k—l' - m TZ:n-k°, where m, = tB /tB (2.4a,b)

Reversed-order BNA

(~%k) {k)

Normally in BMA, we calculate T first, then 7. However,

(k) before T(—k). This will be useful in one of the

we could calculate T
pivoting procedures to be described later (C-cycles). The diagrams and
equations corresponding to the reversed-order BNA are similar to those

above.
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At each cycle k, we have the choice of whether to perform step

(-k) or step (k) first; and at each step, we have the choice of whether

to eliminate above or below the zero-band.

All pivoting procedures

discussed below are obtained from these basic pivoting operations.

Example 2.1:

Basic Pivoting Procedure

Suppose after step (-1) of BNA we have

T(-l)
1 -1 -3 -11 -26 -2 1
t("l)
-2 o0, 2 2 8 25 -24 -3
7 \\ r
1 \
\\'\ ("1)
0 o
'\\\
1 \
®4+ i
-4 \\\
‘\\\
1 .
7 1 -¢ 1 o 1 70
(-1)
Step (1) of the normal BNA-use %,
L(0)

-11 -26 -2 1

tgi,) tiw £(0)

0 1 -1 -3 -1 =26 -2 1 0
1) 1 1
-3 2 -2
-24 2 -26
15 8 -11
8 i =1 -3
2 IE 0 -1
2) : 1 0 -1 -3 2 21 1
to elim. t§0) ~~~~~~~~~~~~~~~~~~~~~~

. .



\l/ 85
A1

1 0 -1 -7 -18% -14 -1 %

% R 3
2 \\‘~\\ -14
& -18%
1 S _;
% S -2

1 0 -1 -3 2 2 1 1

Step (1), alternative pivot -use tf;l) to elim. th):

-2 1

-26

0 -1 o0 000 0 0 0
1 0 -1 -3 2 2 11 o0 000 0 0 0
T(l)

0. 1 -5 -18 -34 -17 25 3
1 \\\\ 25
1 \\\ -17
-6 .. -34
2 . -13

2 2 -6 1 1 0 -1 -5
0 "‘1 —3 2 2 1 1 _1
1 o -1 -3 2 2 1 1
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. !
Remark: Note that the Toeplitz part of T(l) above consists of a
triangle and a trapezoid, whereas in BNA, the Toeplitz part always

consists of two triangles (see e.g. the fifth matrix in the above

example) - we call this latter form the Bareiss form. In general, the

Bareiss form will be lost whenever non-Bareiss pivots are used. We may
wish to restore the Bareiss form to enable BNA to be resumed. This is :

discussed later.

2.2 The Extended Pivoting Procedure: Backtracking

It sometimes happens that at step kX of BNA, neither tz"k)

té—k) (see Figure 2.3) are satisfactory pivots. Within certain

constraints, it is possible to select a pivot different from t(_k)

A
(-k) . (-k) o e : . .
tB . Suppose we wish to use tP (indicated in Figure 2.3) as pivot,
(-k) (-k)

. .
and b is p places above ?A

nor

This cannot be done immediately,

(k-1) (-k)

because several of zero-diagomals in T will be destroyed. tP

can, however, be made available for pivoting by backtracking in a way

(-k)

that, in principle, moves the zero-band of T up p places so that it

k). The zero-band of T(k-l) will also be moved up p places,

B

adjoins t;_

so that the new Ti_k) and Tgk—l) look as follows:

|
|
|

ey
Srlay 1
|
|
|
I
.

i\i

@,

[
Tlolz
|

718

; ! -
I E =

|
] I.I|_

i/
|
|

—
4
1
T

o}

RNEEENA AN : T i B
ST N Y

TS ] -

EEEEEEEE i i 5 S 1 '

|

Fig. 2.4 - As for Fig. 2.3, but with zero-band moved up
p places (p=3).
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té_k) can then be used as pivot, as is shown in Figure 2.4.
Note again that the Toeplitz blocks above are not in Bareiss form, i.e.
do not have two Toeplitz triangles each. After the new pivot is used,

it may be desired to recover the Toeplitz triangles so that BNA may be

resumed. This so-called restoration is discussed later.

Note that we may wish to move the zero-band down instead of up.
The methods discussed in the following allow the zero-band to be moved

in either direction.

Suppose we wish to move the zero-band p places (p>0 up: p<0:
down). There are two cases to consider, |p| > k and |p| < k. If
|pl > k, we must go back to the beginning, and modify BNA to eliminate

the desired diagonals. We call this operation Backtrack Procedure A

(BPA). If |lp| = k, we have a choice of two methods, Backtrack Procedure B

(BPB) or Backtrack Procedure C (BPC). In BPB, we go back |p| cycles and

then use the basic pivoting procedure to eliminate the desired diagonals.
In BPC, we repeat the following procedure lpl times: go back one cycle
by running the normal BNA in reverse, then go forward one cycle, selecting
the pivots to move the zero-band one place in the desired direction.
Whether BPB or BPC is to be preferred depends on the pivoting sequence

and will be discussed in the section on strategy.

We explain the backtrack procedures in detail below.

2.2.1 Backtrack Procedure A (BPA)

Let p be the desired displacement of the zero-band (positive
for upshift, negative for downshift). We proceed as in BNA except that

. . . . 5
we start by eliminating ?p-z and tod instead of t—l and tl’ respectively.
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When p>0 the first two steps of Backtrack Procedure A can be shown as

follows:

| | | | | |
8elep {2 Nddel 4o Hnin ate—t—
L . 1 I i 1 1 ol
'.._'.__ -
1l fall] {71
T ,r" 5 r ll Lr
£ : Py [ i
' I = l bk | 1
tn |i % 1 Y O T
! AN il l N
\ s - LN
N imale 1o LS —» | I
PR AN = i £ N w B =T
- i NH l - N
] | v
| 2hd L : \0 =
l L 1
J‘l
i BT N X
O ®
. 2 - (=) |5 i B
Step | (17 FUseEk I te il i -
T e
) e =11 ()
4 bl || N
L B
L | =
g o o
A INA N LD
IR B
= ot 'ﬂ s l ,}' N \_{
el o v g A A
= : g L ot NN 4 \I'_'_'_‘ i i
i- $uN 5 1! T;Il{ f \I\\ 8 —"9 \§\ |
i ] [} 3 L -
Ad
I | 0 T L ]
1 1 | | L EENE

Fig. 2.5 - Steps (-1) and (1) of Backtrack Procedure A.

We continue eliminating below diagonal p in the negative-index
iterates and above diagonal p in the positive-index iterates. After step
-k, the matrices will have the form of Figure 2.4. Backtrack Procedure A

may be stated formally as follows, where p is the desired shift:

procedure 2.1 - Backtrack Procedure A  {l,r :row pointers; 7 : cycle counter}

1. T(O) «T; 1+«2 r<nl;i+1 (3.5a-c)
(-1) (1-1) (2-1) o (1-2) , (i-1)
2. T < TZ:n. -m_s Ty p s where m_, = tb—i /%9 (3.6a,h)

APy
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3. Stop if 1 = k.

() (i-1) (-1) _ (2-1) , (-%)
4. Iﬁ:r.+ Tl:r. - miTZ:n.’ where m; = tb+i /#p (3.7a,b)

5. 1«41 +1; 1+«1+1; r<r-1; go to 2.

Note that the procedure is the same as BNA, if p is set to zero.

Example 2.2
Normal Bareiss - Use th) to elim. th):
1 0 3
(2\\1 6
Y
\\ \\
N “ \\1
\\ \\ \
\ \ 4\

desired pivot

position
(-1)
t;S
Backtrack Procedure A - use t;o) to elim. t£0):
T(O) ZJT(O) T(—l)
1 2 1 0 3 0 0 0 0 0 1 2 0 3
2% 0 1B~ 1 -1%
O
> 2 SN2
N ~
N N
\\ \\
;2/ \\\J%I

-5 k¥ 2 -2 0

available for
pivoting

-

e e ,r:.m -
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Note that tg-l) in BPA is different from tg_l)

the example above. The strategy described later aims to keep this

in BNA, as is shown by

difference small.

2.2.2 Backtrack Procedure B

In this case, we go back to iterates - (k- |p|) and (k-;lpl),
and select pivots in such a manner as to move the zero-band in the
desired direction. To move the zero-band up, we perform a series of
A-cycles; to move the zero-band down, we perform a series of C-cycles.

A and C-cycles are described below.

A-cycles.
(1) Step (-2 - 1). With #gt) as pivot, eliminate tz_l).
(ii) Step (7 +1). With tg_l_l) as pivot, eliminate tﬁt).

Figure 2.6 shows a typical A-cycle. The initial zero-band displacement
(ZBD) is p, and the final ZBD is p +1. It can be checked from Figure 2.6

that the operations in an A-cycle are:

Procedure 2.2 : A-cycle

) (1), . = e . . (-1)
Input: T ;5 h,J : indices of first and last rows of Toeplitz part of T 3
r,s : indices of first and last rows of Toeplitz part of T(i).

(-1-1) (-1) (i) ) _l(-t) (1) .,
1; T « T - m—i-lc}—h-lsr,s—lT , Wwhere m_._q —tz /tA (2.8)
2. otH1) (2 _ (-1-1) _ (%), (~i-1)
i <~ T mi+10ﬁ-r3h+1,jT , where e g tA /tA (2.9)

3. h<h+1; r<r+1,

Note: Cj is a cyclic permutation matrix, defined by (Cﬁ)pq=ap—q-j(mod )’

Sjk is a selection matrix: (Sjk)pqzo except for j<p=q<k, when (Sjk)pqzl'



91

L |
i 1 i L 1 __ 1
_-t~
O 2
o » .8
NI a
% | =
ot Al 4_ |&
P 218 _;0+
-~ _ o N | i i
1 L] / 1
- Ly O .
- W o \. T
4 o P

u
A~

o0

(DY

E eyl {e) -
= ol 8 - A | 1
o L ....._1._ IE e " 5 - “
| LN — A __ Av - {ola s \no.. m
? : .,vﬁc el AT e e
; 3 i KL AT ]
2 =Y [ SEEE ) s
o H $] 1
W ~= 1 | m‘ f.\ / _r
n ml. Ll .“J
i e L o)
1 o 1...& <~ 1
[ o b Lo o
I fai _ o’
[ !
1 X
H_. - (= .
P B T — 1 - il
..l % 4n. ....M. ot
” . L 1 2 T Iy =
fd - o £ . T
ST _ : .
1 b n_v Pt = I“al_ ]
| i =/ | =] |y
i = iy L e,
i = [S¥E ¢ & 1 : nvmn o
o“. 7 - ,lhllu A= g._
2] : L
" | v — | * : in}
o} o Lol O e
3 LAY .slu 2.0 3 dm
= b = i ) :
S [3 PR 1 ) -
_ & [ AT T i
= _ < 4
! i
< i (B
. ot

Fig. 2.6 - Steps (-i-1) and (Z+1) of a typical A-cycle.




Example 2.3 - A cycle
T : " (-2) (
The inputs are the Toeplitz parts of T and T

displacement of 2.
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2) with a zero-band

The example shows the working of an A-cycle.

(2)
T1:6.

7 2 0---0 4 3 -5 1 3 -2 5 00 2 1 1
o \\ \\
3 \\ \\\ "'5 1 \\ \\ 1
\\\ \\ A \\
=7 e B 3 8 b N2
\\\ \\ \\ \\
4 N 4 -8 NI /)
\\\ s \\\:
6 . 0 1 Y,
\\ 1 s
N
3 6 ¢4 -1 & 7 2 4 i1 -8 8 1 3 -2 6
A-cycle, step (-3) : use t£2) to eliminate tz_z):
(-2)
T3:8
0
3 -2 5 0--0,
N
-(2) x 1
8
-8
1 -8 8
7 2 0 0 4 3 -5 1
-3 11 -8 0z--0---0, 1 -6
\\ \\
-3 B \\\ 1
\\ S
-12 . 0
N |
22 .0
<4
SNt
1 22 =12 -3 -3 11 -8 ™0
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A-cycle, step (3) : use tz_s) to eliminate tig):
(2) (-3)
T1:6. So673: 8.
A
3 -2 & 0--0, 2 1 1 0 0
\ N
NN 1 -3 11
1 NN elim.
RN
8 \\ \\ - (Z)X -3
\ \
N \
-8 N0 -12 0
] [}
N |
N |
1 N/ 22 0
[}
4 1 -8 81 2 -2 5 1 22 -12-3 -3 11 -8 V|
(3)
T1:6.
3 -2 5 0 0 a 1 1
7 =19 14 5 0---0—-—0\\—13
\\ \\\
14 e Q
AS |
16 N
N :
-43 ~0
2 -43 16 14 7 -19 -14 )
C-cycles:

Recall that a C-cycle‘moves the zero-band down. Cycle (i+1) is:

(i) Step (¢ +1). With té-t) as pivot, eliminate t;t).
(ii) Step (-i -1). With t;t+l) as pivot, eliminate tg'i).

Figure 2.7 shows a typical C-cycle. The initial zero-band displacement
(ZBD) is -q and the final ZBD is -g -1. It can be checked from Figure

2.7 that the operations in the C-cycle are:
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Procedure 2.3 - C-cycle

Input: As for Procedure 2.2.

(i+1) (7) ' (-1) _ (i), (-1)
T «7T - mi+1ch+1—rsh+1,jT , where mi+1'—tB /tB (2.10)

1 here m . =t(7H ()

(-2-1) (-1~1)
2, .7 «T - sg =ty [t

M_i-1"p-1"pr,s-1

(2.11)

Example 2.4

The inputs are the Toeplitz parts of T(_Z) and T(Z) with a zero-band

displacement of -2. The example shows the working of a C-cycle.

5 6 -2 1 1 4 =2 3 o, 2 -7 8 10 -1 ¢4 1
[N
3 (RN
o -2 o\ ¢
PN \\ AN
N 4 RN -1
\ A N \
\ \ \ N
10N N 13 8 N 10
\ \ N ‘\
\ \ \ \
3 \\ \\ 1 1 \\ N\ 3
\ \ AN
\\ \\ \\ \\
-2 8 1 0--0 & 6 —ZJ -5 1 8 3 0---0 2 <=7
C-cycle, step (3) : Use té_z) to eliminate téz):
(2) (-2)
T1:6. 21736
0, 2 -7 3 10 -1 4 1
4
-1 -(3) %
10
3
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(3)
T1:6'-
o -13 -26 9 7 -4 -8 7
0 \\ =8
! ~
1 Y
Ny \\ -4
\\ \\
-1 \\ \\ 7
N N
7 =1 ~N0--0--0 -13 -25 9
-5 1 8§ 3 0 0 2 7
C-cycle, step (-3) : Use tlgg) to eliminate tlg-‘g)
(-2)
T3:8-
5 6 -2 1 1 4 -2
A
Y
] \
0\ Y
\\ N
NN
. N\ \\
Elim 3 \\ \\
\\ \\\
-2 3 1 0--0 5 6_2\L 0
(-3)
T3:8-
5 -7 =27 10 8 0 -10 10
N =10
[ BEN
| AN
0 N 0
| N
] \
0, S 8
\\ \\
10 VO---0--0 & -7 =37 10
-2 3 1 0 0 5 g =2
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Fig. 2.7 - Steps (7+1) and (-i-1) of a C-cycle
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Special Note on the use of C-cycles for BPB

We indicated before that when the desired pivot, t;_k) is

above the zero-band, we make it available for pivoting by executing p
A-cycles to move the zero-band up p places. If the desired pivot is

below the zero-band, say in position tfi?;_q, as shown below,

AL 5 B

b

i b 5]

[ =
/

ERRRRHASEERERENNR

then we must move the zero-band down not g places, as might be supposed

from the diagram, but g+I1 places. This is a consequence of the following

two facts:

(a) 1In any C-cycle, p(*) is calculated before (-

(b) It can be shown that for any C-cycle (and also for A and BNA cycles)

=y

Tii) is Ty

with a scaling factor applied and the zero-band shifted

up one piace by any backtrack procedure.

To see that g+1 shifts are required, observe that if the zero-band is

moved down only g places, we get, at step k, ignoring the constant scaling

|
]
i

factor, SR LT
s |
=l i N ;-
EEEEE HEAERE mANENEMERENNEARE
[ L i it
f 00 | ] l. ] [ 1
LT T | J‘“j'*] 1] i b
e § — __- O ¢ - —r SR P I. _.i_i-‘- - e
= : _‘I_,_. .,.;,_..ll;. i —
. 4 i 3 [ PR EL S !
k | :
N |
i
. |
]

o
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(-k)
then, at step (-k), we must use t %
-K-q
(-k)

our intention to use t—k-q-l as pivot; therefore, we must move the zero-

as-pivot; however, this frustrates

band down g+1, rather than g places. In short, we need an extra shift
when doing C-cycles because the desired pivot now appears in the positive

k) (-k)

index iterate T( , rather than the negative index iterate T .

BPB - Summary

Suppose at step k we wish to use a pivot which is g places above

or below the zero-band. We execute

Procedure 2.4 - Backtrack Procedure B

1. If the pivot is above the zero-band, set p=q, otherwise set p =-q-1.

2. et 7 1Pl T(k‘l?’l).

(-k)

3. I1f p >0, execute p A-cycles, yielding T and T(k)

with ZBD

1
]

kJ (k)

else execute |p| C-cycles, yielding p("K) and 1 with ZBD

]
e

Suppose té-k) is made available for pivoting by the execution

(-k)

of BPB. In general, this will be different from the t? produced by

BNA. The strategy described later aims to keep this difference small.

2.2.3%3 Backtrack Procedure C (BPC)

This is an alternative method to BPB for moving the zero-band

in a Toeplitz iterate. Here, BNA has to be run in reverse, and for this,

+ + T
the Toeplitz partsof the multiplier matrices M("Sfdefined by M(—S)T 1= T("S)

,.

are required. These can be calculated by a recursion similar to that in

steps 3.3 and 3.6 of ABSA. We now describe the reverse BNA (RBNA).
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The Reverse BNA : R-cycles

Let A, be the Toeplitz part of any matrix A. Suppose Tg_S)
M,(;s), T?) nd M(S) are given, and we wish to calculate T(l S) 421_3),
(l—s) (1 s) (s-1) _ ,(s-1
Let My h 3. and M, = Mu:v- (2.12a,b)
(s) (-s) (1 s) (s-1)
Then Mh+1 J* h+1,,j - m—sMu:v—l- (2.13)
(s) _ (s) (s-1) (-s)
M =M o1 =M1 T msMh+1:J" (2.14)

o
Now the M,iJ’) are completely specified by their first row,

denoted m( ’b)T. It can be easily shown from (2.13) and (2.14) that

: Zn'_(-s)T E(I—S)TCZ’Z ~ m_SE(S—l)T

(2

~(g)T ~(5=-1)T ~(-8)T
m =m - msm (2

Equations (2.15) and (2.16) may be rearranged to calculate

.15)

.16)

Mys M_gs a(s-—l) and E(J_S) from Q(S) and r_rl(—S) . The last nonzero component
of (2.16) is
~(g) _ _~(-8) _ e(s) pe(-8)
Moyp1 = MMgr T M T T s+1/v (2.17)
Equation (2.16) may be re-arranged to give
E(S—Z)T _ E(S)T 4 ';nlsﬂ(-s)T (2.18)
The first component of equation (2.15) is
~(-g) _ ~(s TN _ ~(-s8) po(s-1)
my = -m__m, e =My / (2.19)
Equation (2.15) can be rearranged to give
~(1-u°,|T (f‘)T (s-l)T .
= (m L C_q (2.20)
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Equations (2.15) - (2.20) are the desired recursion for m_gs Mg and the

Toeplitz parts of u® 1 ana uf1-8)

Note that (2.12) = 7077%/ = Tﬁ'.“".) and 751 = p(5=1) nq
: ‘d° uve
that (2.13) and (2.14) imply
(-s) _ (-8) _ _(1-8) (s-1)
To 0 = Tppaige™ Manege T LIPS R (2.21)
(s) _ (s) _ (s-1) (-s)
P N R N Mol p41e e (2.22)
respectively, so from (2.21) and (2.22),
(s-1) _ n(s) (-s)
Tyevete = Turo-1o * MsTji1:5. (2.23)
(1-s) _ (-8) (s-1)
Ti1ege = Tnetege T MeTurv-10 (2.24)
§£1-3) is also part of Tgl—S). The first n-1 elements are, by Toeplicity
(1-s) _ (1-8)
th, 11 = o (2.25)
and using the definition of the multiplier,
(1-s) _ ~(1-8)T
Yy L t., (2.26)
imi (s-1) .. .
Similarly, the last row of T, is given by

(s=1) _ ,(s-1) ‘
ty, 2n = Lp-1,1:m-1 (2.27)

(s-1) _  (s-1)
tv:l ‘ - "nzv' 1;'1
_~(s-1)T T L.
= Cop Lo s by Toeplicity.

(2.28)
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Equations (2.17) - (2. 20), (2.23) - (2.28) constitute tl

/

.ﬂ-

desired recursion for RBNA. We call this an R-cycle, summarized 11<Fhe _;'g
<o .k_l‘

following procedure:

Procedure 2.5 : R-cycle

( s) (-8) ~(g)T (s) (s) ~(s)T
Input: Th+1 s m s Ty, = u peTe m .

QEeratiégiz Execute in order equations (2.17) - (2.20), (2.23) - (2.28).

. (1-8) _ (1 s) ~(1-g)T (s-1) _ ~(s-1)T
Output: T, Ty, . g mg s M s Ty = Tﬁ:v- s Mgs M ;

BPC - Description

i

Having described RBNA, we can now give BPC. Suppose we have
calculated 7(7%) 4nd wish to use t(k ; as pivot. As for BPB, in the

case we must move the zero-band down g+1 places. The procedure is:

Procedure 2.6a : BPC:zero-band downshift

(1) Recover Té?;%) (this requires only 2n storage locations).

(ii) For © « 1 to g do:

(a) Run an R-cycle of RBNA to get TiZ—k) nd Tik 2).
(b) Run aC-cycle to give T(l & and Tik 1 with the zero-bands

moved down one place. It may be readily checked that the

~(t+]
recursions for the mr_t)T in the C-cycle are:
~(k=-1)T _ ~(k-2)T ~¥? k)Z’CT
,;_KI = -

._ my.

~(1-k)T  ~(2-K)T ~(k~1)T
n =n - ml_kﬂ
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(¢) Calculate T(-k), T(k) by a further C-cycle (which results in

the zero-band being moved down the q+1§E-place).

Similarly, if we wish to use t;_k),(p >0) as pivot, we must move the zero-

band up p places; we do this as follows:

Procedure 2.6b : BPC - Zero-band upshift

i (1 k)
(1) Recover T eem

(ii) For © < 1 to p-I1 run R and A-cycles alternately.

(-k)

(iii) Calculate T 5 T(k)

by a further A-cycle.

Fig. 2.8 shows the working of one cycle of BPC.
Example 2.5 '

Example 2.1 of Chapter 2 shows the working of the normal BNA.

Consider iterate (-2) of that example

T(—Z)

1 -1 -3 =11 -26 -2 -1 0

0 2 2 8 15 -24 -& 1
0-——-0 26% 29 -23% -3%
Desired Pivot —1} ‘\ S?\\\ Normal -23%

(-2) S BNA pivot

Position ¢ _4 > -7 ‘\\ ‘\\ 29
7% \\\\\\ 26%

0 \\\\\\\ 9

% 0 -7% -1 1 0--20 4

(-2)

Suppose we wish to make t_4 accessible by using BPC. We first recover

Ix_l), T(l) from memory (see example 2.1 of Chapter 2), m _f 2% and a(l)T

(working not shown):



T(—l) T(l)
1 -1 -3 -11 -26 -2 1 0 1 0\ -2 =7 -18% -14
\\
o_ 2 2 & 15 -2¢ -3 I % N
N N
1 s -3 2 N
\\ N
N N
0 N -24 s \\
\\ N
7 S 15 1 N
\\
-4 “a 8 -%
N
N
1 A 2 ¥-% 1 3% 2
N
7 1 -4 1 o0 1 0 2 7 0 -1 3 2 2
~(-1)T ~(1)T
= (- = (%. %
22-1:2 ( 1, 1) Zn—l_,l.'.? (2_, 2)
Now, by equatior{ (2.17) my = -(%)/1 = -%
R N(O) - (L —
by equation (2.18) m, 7., = (%) + (-%)(-1) = (1)
5 1:
by equation (2.19) m_; = -1/1 = -1
i ~(0) _ _
by equation (2.20) m;.57 = (1) + (-1)(0) = (1)
Applying (2.23) we get
(1) (-1)
Tl:?' T2;8'~
1 0. -2 -7 -18% -14 % % 0\ 2 2 8 15 -~24 -3
b AN
% S % 7 &
N \
= \
2 \\ ~14 0 \
N N\
3% s ~18% +(~%) 1 AN
\\ \\
1 \\ "‘7 P4 \
N \
~% \\ -2 1 h
\\
¥ % 1 3% 2 % 1 0 1 1-41 0 1

-%
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1

-3

~24

15
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1 1

P/ ~a

2 ~26
~3 ~11
~1 ~3

Applying (2.27), t(o) =(0-1-32211)
=8,2:8

Applying (2.28), tgg) — (1) x (1) = 1

(0) (

Hence the Toeplitz part of T (in fact, the whole of T 0)) has been
reconstructed. The Toeplitz part of T(_O)(=T=T(0)) can be similarly

reconstructed*. Next we perform:

BPC, Step (1) - use tfg) to elim tgo)(C—cycle)
p(0) 2,700

1 -3 -11 =26 -2 1 0 7 -1 -3 -11 -26 -2 1

1 -2
-2 -26

-26 ~11

-(1)x%

-11 -3

-3 ~1

-1 1

1 0-1 383 2 2 1 1 0 0

*The first iteration of step 2.1 of BPC (Procedure 2.6a) requires the

-1)
recovery of T(t(k 1))

(+(k-1)) o p(+(k-2))

by an R-cycle. We could instead, at any cycle Kk,

store T This requires only 4n locations.
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T(l)
! 0\ -2 2 ~8 <15 24 3 =1 3
\
1w 3
~
~
0 by ~24
N
“
Pl N q—15 r @ﬂ
AN
b
g B -8
N\
HI N N "\2
AN
N

-1 -1 4 -I o -1 0 -2 ~

By (2.29) %(?)T=1(1 0)-(1)(0 1)=(1 ~1)
-1:2

BPC, step (-1): use tfi) to elim. tfg)

(0) s

(1)
1,77

&

1 -1 -3 -11 -26 -2 1 0 0 -2 -2 -8 -15 24 3 -1

-2

-26
-(-1)x
-11
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T{ﬁl)

1 ~3 =5 =19 =41 22 4 1

0 4
A Y
2 S5 22
N
N
1 N : —41
AN
~
Hl N F\1 9
A
AN

~2 \ -5

By (2.30), my -2/ T= (1 0)-(-1)(1 -1) = (2 -1)

(~1) (1)
1

BPC, step (2): use t_2 to eliminate ¢

T(l) 0132,7T("1)

Q\ -2 -2 -8 =15 24 & -1 0 1 -3 -§ =19 -41 22 4
22

-41

~19

-5
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T(Z)
?\\HJ% -3% -10% ~24% 3% 14 1
(2) ~
t | N
-4 0 A 14
(scaled) \\\ N
2N \\\ 3%
N ~
N ~
~1% \\\ S -24%
\\ \\
3 ~ AN ~10%

N
% 3 -1 ¥ C0---20 -1% -3%

-1 -1 4 -1 0 -1 0 -2
1 0 -1 3 2 2 1 1
Recall from the special note on C-cycles that Tiz) above is a

(2)

scaled version of Tg_z) with a zero-band displacement of (-2), so t2q

(indicated above) is a scaled version of tf;Z). Recall also that as in

BPA and BPB, t(zl) will in general be different form tf;g) in BNA. The

strategy later aims to keep this difference small.

Cost of Backtracking

It is clear that backtracking requires O(Ipln) operations, where p
is the zero-band shift, so Elpil must not be more than about 2n for a pivoting

procedure to be viable. In the strategy described later, which caters for

ill-conditioned leading submatrices, we aim to keep Elpi|~n.

y Y SN
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Fig.
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2,3 Restoration of Bareiss Form

We have discussed above two types of pivoting: the basic
pivoting procedure, which allows a 2-way choice at each step, and N
backtracking, which allows the zero~band to be moved to enable other é
elements to be used as pivot. We noted above that both the basic pivoting |
procedure and backtracking result in the Toeplitz part of the iterates |
losing their Bareiss form. To illustrate, Fig. 2.9 shows Toeplitz blocks i

in Bareiss form and non-Bareiss form. ‘

=]

B

Fig. 2.9 - Toeplitz block with (a) Bareiss form
(b) non-Bareiss form

After a series of pivoting operations, we wish to convert the
Toeplitz parts of the iterates back to Bareiss form to enable the Bareiss

algorithm to be resumed. We call this operation restoration to Bareiss

form (RBF). RBF can be performed by executing BPC to move the zero-band
back to the Bareiss position, but a more economical method, requiring only
half the number of operations per cycle, is to eliminate the diagonals in
such a manner as to reduce the Toeplitz trapezoids to Toeplitz triangles.
When the Toeplitz trapezoid is above the zero-band, as is shown in Fig.
2.9a, we can restore the Toeplitz block to Bareiss form by executing g

A-cycles, where g is the modulus of the zero-band displacement (ZBD).

ZBD = -2 in Fig. 2.9b. Each A-cycle raises the zero-band one place.
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Similarly, if the Toeplitz trapezoid is below the zero~band,

we can restore the Toeplitz block to Bareiss form by executing q C-cycles.

In summary, we have

Procedure 2.7 ~ Restoration of Bareiss Form (RBF)

Input: T(ti), with zero-band displacement p.
Operations: If p>0, execute p C-cycles

else execute [p| A-cycles.
Output:‘ T(t(i+|pl)), with no zero-band displacement.

Non-completion of RBF

It can be seen from the above procedure that if n~i<|p|, RBF
will not run for |p| cycles, and the resulting matrices will not be in
Bareiss form, but will have non-Toeplitz trapezoids with base-lengths
|p|-n-< and |p|-n-i+1, which will require 0(|p|—n—i)3 operations to
reduce. One method of overcoming this problem is to run RBF as long as

possible (i.e. to cycle n-1) and then do the following procedure:

(i) augment the Toeplitz matrix, i.e. increase its order to n+m and
add m extra diagonals (say of zeros) above and below the main
diagonal (fig. 2.10 shows a typical augmented Toeplitz matrix).

(1-n) and T(n—l)

(ii) find the Toeplitz part of the augmented T using

M(l-n) and M(n—l).
(iii) use BPC to move the zero-band back to its Bareiss position.

Note: There is no restriction on the displacement of the zero-band when

BPC is used; however, recall that BPC takes twice as many operations

per cycle as does RBF.
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Fig. 2.10 - (a) Original Toeplitz Matrix
(b) Augmented Toeplitz Matrix

Solution of Reduced System of Equations

The pivoted BNA will not produce upper and lower triangles, as

BNA does; we can, however, get a column-permuted upper triangle from the

output of BNA as follows:

Procedure 2.8

(1)

(ii)

For normal BNA-cycles, C-cycles and BPC-cycles, save the first

row of T(-ﬁ) which has © zeros in it.

(-1) (1)

For A-cycles, save the first row of both T and T'*’ which has

1 zeros in it.

To see how to get a permuted upper-triangle, it can be checked

that sequences of the four different pivoting procedures produce the

following shapes when steps (i) and (ii) are carried out:
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Fig. 2.11 - Shapes produced by various pivoting procedures

The complete matrix is a combination of these shapes, such as in Fig. 2.12:

= —H= B e At 1
ik & ; NP 0| I 11 SOGRRAR (i

e o S B fEE AR B T B

S i = S 1 K
RN 1.1 o iy S e == L5
— i :‘:kzﬁyc_res_‘";_'
W 1O 0 T £ e |

i s e R J———————

3 S LR =
NA-cycles

BPC-cycles | .

UL N DS Sl TR P S

T Lecycles |

‘___—:__F::”:j:: -:: “j\_ — ey S M R

Fig. 2.12 - Typical matrix produced by Procedure 2.8
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The n rows selected by taking rows labelled H to G, F to E, D to C and
B to A are a column permuted UT. This can be seen by putting columns
labelled A to B, C to D, E to F and G to H in columns 7, n-I,...,1

respectively.

2.4 Pivoting Operations -~ Summary

We have described three pivoting operations: the basic pivoting
operation, backtracking and RBF; the last two operations, in fact are also
made up from combinations of the basic pivoting operations (viz. A, C and
R-cycles) executed according to a particular sequence. There is also a
close relation between particular sequences of the basic pivoting procedure
and algorithms for finding padé approximants on a particular path through

the Pade table. This relation will be examined later.

We now wish to incorporate pivoting operations in a strategy
that gets the best possible numerical performance from the Bareiss
algorithm while keeping the backtracking overheads to 0(n2) operations.
Such a problem has connexions with the problem of optimizing the path
through the Padé table to the desired approximant, from a numerical point
of view, but this is an interesting and separate study, and we will not
got into it here. The strategy we will describe in the next subsection
is not optimal, but is designed to handle cases where several leading
submatrices are ill-conditioned; as we have seen above, BNA may suffer

a serious loss of accuracy in these cases.
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3, PIVOTING STRATEGIES

We describe a simple strategy which caters for the case when
a single submatrix is ill-conditioned, and then some more general
strategies for the case in which when several nested submatrices are

ill-conditioned.

3.1 Simple Pivoting Strategy

According to theorem 4.2.3, the appearance of a small pivot

tg-k) in BNA indicates that T, , is ill-conditioned, and by Theorem
4.3.1, the relative error of the elements of the computed matrices may
increase by a factor oflt(—k)/t("k)L where t{°%) .= maxlt("k)l. The basic
) max 70 mazxe E J
pivoting procedure allows the choice between two pivots, tg_k) and
(-k) .o o (=k) . : (~-k) (-k) .
t
t—k—l’ so if to is small compared to tmax but ke 1S
not, selection of the latter as pivot might be expected to give better
results than selection of the former, as done by BNA. After using tﬁifi
(-k)
as pivot in step (k) we should then eliminate %, in step (-k-I1). This
step should be quite accurate, as tgﬂk) is small and therefore the

multiplier m_1_1 would normally be small. The above remarks suggest the

use of the following pivot strategy:

Algorithm 3.1 - Pivoted Bareiss Algorithm, Strategy 1 (PBA-1)

. (-k) , (=k)
1. Execute BNA, until for some X, |t0 /tmax

<§, where § is some

'predetermined small quantity, or until k=n-I1, in yhich case, exit.

2. If |t(—k)| < It(_k)l, we can do not better by selecting t(_k), so
~-k-1 0 ~k~1
continue with BNA; else do
b -1
2.1 With t(kf; as pivot, eliminate tgk )

2.2 With tik}'as pivot, eliminate tg—k)
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(-k-1) (k)

2.3 Restore Bareiss form by using tl to eliminate tk .

2.4 Go to 1.

PBA-1 is programmed on p.Al.
Selection of §

If there is a-priori knowledge of the condition number of

T 8 should be set such that pivoting occurs ifP‘Tk+1is ill-conditioned,

k+1’
e.g. suppose it is known that cond Trpg > M and cond T, <m 1 # kt1,

(~k)
0

m << M. Then, limited experience has shown that ¢ is of the order

of'(m/M)té—k) is > ~ t;;i)/m. Hence, setting 6 = 1/A/M, the geometric
mean of these quantities, should maximize the chance that pivoting will
occur iff necessary. In a test example, cond Tk = 106 and the other {Ti}

had condition number of 10 to 100, so we set § = 10_3.

If thére is no a-priori knowledge of condition number, & should
not be made too close to unity, otherwise the multiplier arising from
step 2.2 will no longer be small; the best we can then do in step 2.2
is to select the larger of the two elements as pivot. This modified
procedure, however will cause the zero-band, to be shifted from its
normal 'Bareiss' position; and we observed above that if it is shifted
too far (i.e. if the numbef of shifts, g, is greater than n-k), RBF cannot
be completed, and the matrix must be augmented and BPC used. 1In this case,
the strategy is much more involved, and the operation count is at least
50% greater (because of the need to accumulate the multipliers for BPC).
We could alternatively limit the zero-band displacement to n-k. However,
at that stage, there will be no further choice of pivots, so if any of
these pivots are small, there may be a loss of accuracy. If we are willing
to accept this, or reduce a non-Toeplitz matrix, as will be the case when

g > n-k, we can select § = 1, i.e. we select the larger pivot each time.

*If and only if.
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If there is no a~priori knowledge of condition number, but we
wish to limit the increase in error-bound to a factor of L per step, we

can proceed as follows. We will see later that the increase in error at

() ,,(+2)

each step is bounded by ~ ltm pivotl’ so we should select the pivot

e (£3) ,, (#8) | . _ : . e
satisfying Itmax /tpivotl < L. It may happen that neither pivot satisfies

this condition, but this is a limitation of the simple pivoting strategy.

Another way to proceed is to note that the total increase in

error is bounded by ~ TTYt(tt)/t(tt)

; so if the desired accuracy is €
mazs ptvot)’ Y

(-2)

and the machine precision is u, we should select each pivot tpivot as
follows: select t;;ﬁét to move the zero-band back to the Bareiss position
if i
T (t;éi)/t;gét) < (e/u)" (3.1)
g=1

otherwise, select the larger pivot. This strategy attempts to keep
TTYt;i;)/t;E;ét) > 1/c whilst minimizing the displacement of the zero-band:
however, for n even of moderate size, the condition (3.1) will seldom be
satisfied, and the strategy will select the larger pivot each time, so that

there is a risk of RBF being unable to terminate. This is also a limitation

of the simple pivoting procedure.

Effectiveness of the Simple Procedure

We remarked above that the simple procedure works well if tgfk)

is small compared to t;;z), but tfik; is not. Theorem 4.2.3 states that,

in this case, Tk+1 js ill-conditioned, and that if Tk+2 is well-conditioned,
(~k) (~k)

neither t—k—l nor tl will be small. Hence the simple procedure works

well when a single submatrix is ill-conditioned.
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The result on page A.7 bear this out. In the 6x6 input

7.1
matrix, T, is badly-conditioned (it would be singular if t31=’/;5).When

3
BNA is run, the error in the solution is 0,69, compared to a machine

precision of 10q16, When PBA-~1 is -run, the error is a modest multiple

of the machine precision. When several of the té’k) a g—k),

(~k)

as well as to , are small (e.g. this will occur when several leading

bout t

submatrices are ill-conditioned), the simple procedure may not give good

results. The more general strategy described below caters for this case.

3.2 General Pivoting Strategy

By Theorem 4.2.3, the appearance of several small diagonals

t(-k): §=0,...,p; -k-1,...,-k-q indicates that {{T, A }k+1+q

J 137 J=-q 1=k+1 s

all ill-conditigned; Theorem 4.3.1 shows that for j=0, the relative error

k)

in the elements of the matrices arrived at by using tg— as pivot may

(-k)

increase by a factor of ltmax /tg_kgi and we conjecture that this is
also true for non-zero j. Hence, to reduce the loss of accuracy, we must
choose pivots in such a manner as to avoid the small pivots that arise

from the reduction of ill-conditioned submatrices of T in our reduction

sequence.

3.2.1 Submatrix charts

Before we describe our pivoting strategy, it is instructive to
jllustrate the reduction sequences - the sequences of submatrices of T
triangularized when BNA and the various pivoting procedures are executed.

These reduction sequences can be shown on a submatrix chart, illustrated
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below;

(n-1)

X
+(r,8)
displacement| 0 —1

X

-(n-1)

1 > n
order

Fig. 3.1 Submatrix chart

A submatrix chart provides a framework for illustrating
the n2 unique contiguous submatrices that can be selected from a Toeplitz
matrix. Numbers on the x-axis represents the order of the submatrix, and
numbers on the y-axis, its displacement from the main diagonal. Thus the
matrix in the (r,s) position is Tr;s' The areas denoted '"X" are not

feasible submatrices, since |displacement| > (order of T) - 1 in the

area; such a matrix would include some elements outside the nxn Toeplitz

matrix.
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Fig. 3.2 shows the reduction sequence for BNA. In it,

Tl, ng‘,!,Tn,are successively reduced.
X
path of
BNA
0
X

Fig. 3.2 Reduction sequence for BNA
Fig. 3.3 shows the possible paths for the basic pivoting
procedure. Selecting both pivots above the zero band results iﬁ path A;
path B results Qhen there is one pivot above and one below; and path C

results when both pivots are below. In fact, A and C cycles produce paths A

and C respectively, and BNA cycles produce path B.

X
A
> B
(s
C
X

Fig. 3.3 Alternatives - basic pivoting procedure
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Fig. 3.4 shows a typical path for Backtrack Procedure A,

When the zero-band for T

been reduced.

(=1)

X
displ.| —
e
gttt
7
pivots q _,///
places down X
from Bareiss
position
I order—>

" is in diagonal (-g-1), submatrix T, has

Tha

Fig. 3.4 Reduction sequence for BPA

Fig. 3.5 shows a typical path for BPB.

To move the zero-band

down g places, we go back g steps, and take the down-path for g cycles.

Fig. 3.5 Reduction sequence for BPB
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Fig., 3.6 shows a typical path for BPC. To move the zero-band

down q places, we go back one step then follow the sawtooth path shown;
each "tooth' consists of a back-step (resulting from a cycle of RBNA)
and a downward forward step (resulting from a cycle where both pivots

are selected below the zero-band).

(1,0) = E—l-—! (k+1;0)

X

(k+1;~q)

Fig. 3.6 Reduction sequence for BPC

 Fig. 3.7 shows a path in the non-feasible region. This normally
occurs if the zero-band is shifted too far in the pivoting. If the Toeplitz
matrix is augmented (say, by diagonals, there will be a new, larger

feasible region, which provides a wider choice in reaching (n,0).

’

s e Iy w(—Feasible region of matrix
A¥. augmented by m rows and

~

r#///z §§§;~ columns

(1,0) = > (nm, 0)

A
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Connexions with Padé Approximants

Bultheel [14] shows that the essential system to be solved in

finding the [Z/J] Padé approximant is Ti
4

X = 0eg. Therefore, the
reduction sequence in a submatrix diagram is equivalent to a corresponding
path in the Padé table. Therefore, there is a close relationship between
some of the reduction sequences derived above and algorithms in the liter-
ature on computing various paths in the Padé table. Bultheel [14] gives
an excellent survey of the algorithms available, and shows that (i) row-
pafhs compute the triangular factors of a Toeplitz matrix and (ii) diagonal
and antidiagonal paths compute the triangular factors of a Hankel matrix
Thus, the application of the BPP to calculate a row or diagonal path
yields algorithms which are the same as Bultheel's; however, the basic
pivoting procedure is an alternative way of looking at Padé paths, and
essentially generalizes Bultheel's Toeplitz and Hankel algorithms - both
are special cases of particular sequences of the basic pivoting procedure.
We can apply this observation by noting that the path AB in Fig. 3.8
produces the factors of a Hankel matrix with principal submatrices

T

Tl;n—l’ T2;n-2""’ n;0 °

n;0

A

I;n-1

Fig. 3.8 Path to factorize a Hankel matrix

*Basic pivoting procedure.
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We also believe that the concept introduced in BPC, 1i.e.
reversing the Bareiss algorithm, is new. There is one related reference
in the Toeplitz literature; Huang and Cline [47] proposes an algorithm
to reverse the Trench algorithm, but [47] makes no mention of the related
concept of going backward in the Padé table, which is in fact what RBNA
does, as is shown in Fig. 3.9(a). Pivoting can also be introduced easily
into RBNA (by reversing the basic pivoting procedure) so that as well
as going left in the submatrix (or Pade) table, we can also go back along

the diagonals or anti-diagonals, as shown in Fig. 3.9(b).

X
%_—-
X
Fig. 3.9(a) Path of RBNA (b) Possible paths of pivoted

RBNA

3.2.2 Strategy Incorporating BPB, BNA and RBF

We now consider a strategy which aims to avoid ill-conditioned
submatrices in the reduction sequence. Fig. 3.10 illustrates what to do
in the case where t(_k),..,,t(—k)

_k..q

matrices with order k+I to k+2+p+q and displacement -q to p are all

all small, (implying that all sub-

ill-conditioned).
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E L
D x x X x X
B.’L‘x.’L‘.’E.’XIP
A Cltm‘cmx‘r ___________
0 " w G
x X X X X
% e Dl w x}q
I-n

Fig. 3.10 Reduction path around an jll-conditioned block

In terms of the pivoting procedures, what happens is as follows.

We execute the normal BNA (path AB) until the ratio Itg_k)/té;ﬁ)l is
smaller than a preset value, § (we leave discussion of the selection

. e gs (-k)
of 6§ until later ). This indicates that cond Tk+1 > “Tk+1"/(6tmax ).
We then look at the pivots on either side of tg_k). If tfi?;,...,tg_k)

are also less than &, then all the matrices illustrated by x's are
j11-conditioned, and we must avoid using pivots from the bottoms of the
lower-triangles derived from these matrices. In Fig. 3.10, we used BPB

(~k)

(path BCD) to slide the zero-band up p places to make tp available

for pivoting. If the block of x's were closer to the left boundary, and
q < k, we would use BPA instead to get to point D. We then use t(-k) as
pivot (point E), and continue to do so for another p + g cycles (path EF),

then restore to Bareiss form. This pivoting strategy can be summarized

as follows:
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Algorithm 3,2 ~ Pivoted Bareiss'Algorithm, Strategy 2 (PBA~2);

Using BPB for Backtracking and RBF

1. Execute BNA, until for some k, ltg’k)/té;i)l < §, or until k=n-1I1,

If k=n~1, exit,else do:

2. Find p such that lt;_k)l-z set (7%

(=k) . :
o ,Itj | <68, §=0,...,p-1

(-k)

(-k) l
max

regegl 2O

Find g such that |t s ltg—k)l < 8§, g=-k-1,...,-k-q

k)

available>for

(-k)

pivoting, else move the zero-band down g+I places to make t-k-q—l

3. If psq+l, move the zero-band up p places to make t;—

available for pivoting (see procedure 2.3, BPB).

4. Do ptq BNA-cycles
5. Execute RBF.

6. Go to 1.
PBA-2 is programmed on p.A.8.
Problems with PBA-2

PBA-2 works well if there is a block of ill-conditioned sub-
matrices and all other submatrices are well-conditioned. If there is a
wide range of condition numbers, or if there are several blocks* close

together, the situation is less clear-cut.

Problem 1 - Pivot drift

The appearance of several small pivots tfiké,...,t;"k) indicate
that T are all ill-conditioned. However, the converse

k+1;—q""’Tk+l;p
. (-k)
ft

does not necessarily hold, i.e. 1 , the chosen pivot is not small,

. e 3 . ¥ } . .
Tk+l;p+1 (at point "E" on Fig. 3.10) is not necessarily well-conditioned

If it is ill-conditioned, this will be revealed after BPB is performed

- the new t;’k) will be small and possibly unsuitable as a pivot i.e.
G-t("k).
max

< This change in té—k) we call pivot drift. There are several

*Blocks of ill-conditioned submatrices on the submatrix diagram.
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ways we can try to overcome this problem. One method is to search until

tcﬁk) is considerably larger than all of the elements between t( k)

p
the zero-band. The following Lemma then shows that, in general, the

ratio t;_k)/t;;i) will not be changed much after backtracking.

Lemma 3.1 Let t be the output of step (~k) of BNA, and let tJ
be the output of any pivoting procedure which moves the

zero-band - to displacement p, so that

~( k)_ ( k) _(-k) ~(-k) ~(-k)_ ”( k)
0 t; = '—tp—l =0, p>0, or t_,_ J—t—k Pallr —k+p =0,
(H)_Jy () pe0-
Let j(max) be such that ¢ =| J(max)l Then
F(-K) (k) (1+4¢.)
Z = - e, (3.2)
~(-k) (-k)
tj(max) tj(ma:x:) (1 +€J(max))

where for any <,
c; < |8, condly u(gT,tg’k),.. £ (%) 78R, poo

T(-k) 2(- k) ~(-k)

(-k)
k+p.’ k+p+l:"' kl_,oj) /t " p<0

Bp condi It

.

and sp = HTH/HTk;pH

Proof: We prove the Lemma only for the case p>0. The proof for
the case p<0 is similar. It was shown by Bareiss, that
in BNA, tg ~k) is a linear combination of tZ—ko""’él-’

and that the coefficient of tZ- in the linear combination

is unity. Hence for some {ai} and k+1 < 1 < n,
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NI bkl ()
t1. i1 itk Tl —— %) S1+pi kip
%
= Z vk, apitep 1, 14p: ktp (3.33,D)

Similarly, for any backtrack procedure 3 fai} not all zero

such that for k+I < 1 < n,

Z

> I=kt+1
g—k) Gty gekmis T prlle == Fort,
- 1=1 ~K#+ir k+1- Skt1514p: k+p

MR

M=

i=1 (17/27/, 1+p.‘k+p s ak+1£k+1,1+p:k+p- (3.43,1’))

Now %( ~kJ = OT and a

Crrl, 14pikip = k+1 # 0, because since

k;p = Tl:k,1+p:k+p is nonsingular, the summation term
in (3.4b) is non-zero. Hence (3.4b) can be written

k

- '
QT izl 0Lifi,1+p:7<+p * §k+l,1+p:k+p’
where ué 2= Z;/Zk+l (3.5a,b)

Subtracting (3.5a) from (3.3b),

k
T ,_ (-K) -
g fk+1 I+p:k+p ? (a; - o )E$,1+p :k+p
=1
= Gu Tk , where (Gu) = o.~ol
;P 1
I (3.6)

=254 T Kp

o= Yok~ S

-

R i R L P S

T tem— W
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i . o~
Subtracting (3.3a) from Ot

mth component, we get
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x eq.(3.4a), and taking the

~e1 (k) (-k) _ . T : .
Gr1 tim " tim T (B g s etyg s WRICH
. -1
with (3.6) = ~g Tk B (tZ—k,m""’thl,m) (3.7)
Replacing t{mk) by %g-k), etc, where j=m-1, (3.7) becomes
~-1 ~(-k) (-k) _ (-k)
47 tJ tj = ejtj s
S Sy A (-k) -
where Ej = - Tk;p(tl-k,m"'"tZ-l,m)/tj 3 (3.8a,b)
Taking norms and using the definition<3ng
(- k) ( k) (-k)
(3.8) = lejl < Bp condi u(o >t p 1 )/t I
' (3.9)
h = Ik sle,
where Bp / ksp
] ( k) (-k)
Let j(max) be such that ¢ = Itg(max)|' Then (3.2)
follows from (3.8a). QED.
We see from the above Lemma that if {tg k)}p = are small
compared to t(—k), then the ratio ;( ~k) t;as) will be
little changed from t( k)/‘(_k) unless T is badly-
d maz ksp

conditioned. In the absence of any knowledge of

condT

that |t( k)|> K, t( ~k)
number) as well as being 2 §-¢

(k)
max "
(-k)

%;p’ a reasonable way to proceed is to find p such
s 1=1,...,p-1 (where K, is some large

Alternatively, we could

simply search untilité’k)lz K8+t ~ .~ where K, is some

constant > 1. Then, assuming arbitrary pivot drift with

a uniform probability density function, the probability

that the new't(—k)ls set (7K 35
p max

< 1/K2, in the absence of
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any knowledge of cond Tk-p If we use one of these strategies and the
K .

(

)
new pivot is still < 6°tm;§)’ we must use BPC to move the zero-band down
untillté"k)lz G!tégi) (note that we wish to use BPB whenever possible

since it is more efficient than BPC).

Problem 2
Running into ill-conditioned blocks during backtracking and

RBF. Fig. 3.11(a) and (b) show these respective situations:

rTrexxx rTrxxxrxx
F o ) ) I v rrxxxxx
4 \\:DL\% Bx xxxxx e’ A N A R o 4
N
x xC <}- B Y A B I I XX LXLILX
x % ;35 x XXX Ex LV I R
\
‘\ XXX ITX xrarxxrx
NE

Fig. 3.11 - Running into ill-conditioned blocks on (a) BPB (b) RBF

In fig. 3.11(a), AB is the Bareiss path and BC is the path* of
the attempted BPC. To avoid the block at C (evidenced by a small pivot)
we can use BPC instead of BPB, following the path DE. We could also use
a hybrid strategy, using BPB wherever possible (because it is faster than

BPC) and using BPC to avoid any blocks encountered.

Fig. 3.11(b) shows FG, the attempted RBF path. To avoid the
block at G, we could use BPC instead of RBF, following the path FH.

Alternatively, we could use a hybrid strategy as before.

*Note that the previous iterates T(tt) should be stored for use by BPB.

To store n-1 iterates requires 2n2 locations.
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3.2.3 Strategies incorporating BPB, BPC, BNA and RBF
We now present some modified strategies in view of the

discussion above.

Algorithm 3.3 - Pivoted Bareiss Algdrithm, strategy 3 (PBA-3):

Using BPC for Backtracking and RBF (Programmed on p.A.21).

1. Execute BNA, until for some k, Ito , or until k=n-1.

(-k) ,, (<k)
/) <

I1f k=n-1 exit, otherwise do

2. Find p such that |t( k)l rgaﬁ),lt('k)l < 8, j=0,...,p-1
Find g such that |t££§é_q| > G-té;z),| ( k)|< §, J=-k-1,...,-k-q

3. 1f p < g+1, move the zero-band up using BPC, until the available pivot,

t;-k) M TR

, satisfies
p max

(Note that p' may be greater than P),

else move the zero-band down using BPC until the available pivot,

(- k) e k) s (- k)
b ok-1- q' -k-1-q' max

, satisfies |t (Note that g' may be >.q).

4. 1If p < g+1, set s=p'+q otherwise set g=p+q'. ¢ is the new block-size.

Skirt the block by executing s BNA-cycles.
5. Restore to Bareiss form using BPC.

6. Go to 1.

Algorithm 3.4 - Pivoted Bareiss Algorithm, strategy 4 (PBA-4):

Using a hybrid strategy for backtracking and RBF

1. Execute BNA, until for some K, ltgwk)/t;;§)| < &, or until k=n-I.

1f k=n-1, exit, otherwise do

EI NN E RN 1,
2. Find p such that lt | = b 204 |t . | = K max {] I}
; ~k -k (~%&) (-k
Find g such that ltﬁk-;-ql > G-téax) and |t leq| > K,om max{ |t ke ;l}q
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3. (a) 1f p < q+l, move the zero-band up p places using BPB. If any
( %)

block is encountered (as evldenced by a pivot < Gt ), go

around it using BPC. At the end of the hybrid procedure, check

(0)| 5 (K

if Itp e * If not, slide the zero-band up further

(K| 5 (R,
(- k)/t( k)l_

using BPC, until a p' is found such that [¢
If this does not occur, select p' to max1m1ze[t
in this case, T is ill-conditioned.

(b) As for (a), but searching for a q' below the zero-band such that

L=k (~k)
i —k—l—q’lZ AL

4. 1f p < g+1, set s=p'+q, otherwise set s=p+qg'. s is the new block-size.

Skirt the block by executing s BNA-cycles.

5. Execute RBF. ' If any block is encountered (as evidenced by a pivot
< Gt;;;) in magnitude), go around it using BPC.

6. Go to 1.

Algorithm 3.4a - Pivoted Bareiss Algorithm, Strategy 4a (PBA-4a):

modified pivot selection strategy

Same as for PBA-4, except for step 2, which is replaced by:

. (-k) (-k) (-k) (-k
2. Find p such that |tp | = k8-t 7> Itj | < k8¢ ax), J=0,...,p-1
(- k) (-k) (k) ( k)
Find g such that |t_, q| > K, 8t 0 ltj | <k, 8¢ 7, j=-k-1,

Selection of §

If there is a-priori knowledge of the condition numbers of the
submatrices of T, & should be set such that pivoting occurs if an ili-

conditioned submatrix is encountered, e.g. suppose it is known that a few

cs-k-p

submatrices have condition number greater than ¥, and the rest have condition

numbers less than m, where m<<M. Then, limited experience has shown that
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during BNA, the ill-conditioned blocks w111 be evidenced by pivots tg -k)

of order'—t(ﬁkf; and the well-conditioned blocks will be evidenced by

M mecx
(- k)/m

pivots > about t Hence, setting

§=1A'M (3.10)

the geometric mean of these quantities, should maximise the chance that
pivoting will occur iff necessary. In 'a test example, some submatrices
had a condition number of 104—106 and the rest had condition numbers of
10 éo 100, so we set & = 10—3, One case of interest where there is
a-priori knowledge is the non-normal Padée problem, where some submatrices

are numerically singular. In this case, M = O(uul), where u—l is the

. e . X
machine precision. A reasonable value for & is w*®.

If there is no knowledge of condition number but we wish to
1imit the increase in relative error per step to some quantity &, we

: . . e (1) () .
should, as for PBA-1, find a pivot satlsfylng ptvot/t ] 1/£, instead

of specifying a fixed value for 8. (Recall our conjecture at the beginning

of subsection 3.2 that the increase in relative error is bounded by a
(1) . (3)

max’ pzvot
increase in relative error is then bounded by a factor of TTYt

(1)

We should therefore select each pivot ¢
pivot

|). As for the simple pivoting strategy, the total

(+1) , (#1)
/’pﬁvot)

factor of |¢

to satisfy

1 .
(+7) (+7) (z/7)
jul p@vot/tmax ) =z (u/e) (3.11)

With this strategy and for n of even moderate size, the maximum allowable

(1)

pzvot is about unity, and this will result in extensive

value of lt(ﬁ)/
backtracking; in the worst case, the algorithm will search most of the
available pivots at every stage, resulting in an O(ns) operation count.

To keep the 0(n2) complexity, we could 1imit the number of pivots searched
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to some (small) integer 7, but occasionally some very small pivots that
violate the condition (3.11) will then be used. There is essentially a
tradeoff between accuracy and complexity, but the exact nature of the
tradeoff depends on the particular problem, and much more work is needed

on this topic.

Selection of Kl

This is required in step 2 of PBA-4a, Again, if we have some
a-priori knowledge of the condition numbers of the submétrices, we can
use Lemma 3.1 to select Kl to ensure the pivot drift is less than a given
quantity a. Usually, we have no such a-priori knowledge, so we must

assume Tk-

is well-conditioned (say cond Tk
s ]

q'vk) and select Kl accordingly.

.
3

Selection of K2

This is required at step 2 of PBA-4b. 1In this case, we assume

that if lt;—k)l > KZG-t;;ﬁ), the probability of it drifting to be less
than G-t(_k) is —1-. Hence X, need only be a moderate integer, say 10,
maxe K2 2

(-k)

for It;—k)l to remain 2 S.tmax after backtracking in most cases. Where

this is not so, we then simply use BPC to find an appropriate pivot.

Results
The 13x13 Toeplitz matrix on P.A.19 has A1:4’1:4, A2:5,1:4,

A and 4 all ill-conditioned, a change of only ox107% being

3:6,1:4 1:4,2:5

required to make the singular; thus A4,.,.,A7 are also ill-conditioned.

Execution of BNA produces at step (-3) the form
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X e _— S xjw
a2 T
SR <
€z €4 & x
€.
T(—S) _ 2
51.,
oY
€
. €, € €
where ki|< 10_4t;;z). The machine precision is 10-16; and the results

on P.A.19 shows’that the relative error in the solution of T§=§ is 0.026.
Using PBA-2 and PBA-3, the relative errors in the solution of T§=§ are
ax1071% and 12x2071¢ respectively, still moderate multiples of the machine

precision.

4. TINCREASE IN ERROR BOUND - SIMPLE PIVOTING STRATEGY

We show in the next theorem that if Tk+1 is badly-conditioned,
but Tk;l and Tk;-l are well-conditioned, the increase in error bound will
not be large if PBA-1 is used, whereas Theorem 4.3.1 shows that when BNA
is used, the error bound increases by a factor proportional to eond Tk+1'

m(-k) Eik'l)

Theorem 4.1 Let e, R, Rl’ u, B" Ty ', be as in Theorem 4.3.1.

Also, let y := It(ifé/té;§)| and assume *that v#0., Then if PBA-1 is
(~k)

executed, and at cycle k%, t—k—l is selected as pivot,

*Otherwise PBA-1 fails
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wR, v Er + B y® cond 1,)/(1-8 v cond T, ),v<1/, condr
. . 3 k Kk B k
(1) *rel T, <

9 1
w8 'Rycond zﬁ/Y LY 2 /g cond T,

2
where R, := R(1 + 8), Ry := R (1 + v R/R,)

p(-k-1) ung—lcond ™

(ii) rel T s

where R8 0= R7/{(1—3'L—ZeondT£(1‘+ Y_J)}, R, i= R6(1 + y/cond Ti),

(k)

Ry := B’R5(1 +v), By i= R, (1 + rel T, /(uRlL))

Proof: By following the errorsthrough as in Theorem 4.3.1, we get,

in analogy to the equation after (4.3.10).

latgk)| t(k -1)

uiR + |m k ( k)|R /v}, where R, = R(1 + v)

4
(4.1)

It is easily shown, in analogy to eq. (4.3.8), that

t(k_l)

_ (4.2)

s,BItol cond T,

Continuing the analogy to Theorem 4.3.1, and using (4.2),

we get (cf. (4.3,13))
~(k)

rel T, < uy RZ N
R 2
where R, = R, (1 + —=- v~ eondT,)/(1 - B vy condT,). (4.3)
2 Rl k k

This bound cannot be used if y 2 1/B condi. An alternative

bound can be derived by using

-1}
tézx ‘< s’ltik 1)lcord TE (4.3.8)
(k=1) E :
and |t0] < 'ty cond T (a special case of 4.5.8) (4.4)

**Defined as in Theorem 4.3.1.
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in (4.1), vhere

|5t§k)| < u(RB z-|t£k“1)’|eond Ti + R48'lt£k"1) |/cond1€/72 (4.5)

B t It(k)l > lt(k)l - It(k-l)h so (4.6)
rel E(k)s uB*cond Ti(R + R4/Y2) = uB'CondT% R3/y2
2
- N, (S :
where Ry = R4(1 + R, R) QED (i)

Eqs. (4.3) and (4.6) prove the first part of the theorem.

We now trace the errorsthrough step (-k-I1). Observe that
in PBA-1

( k), (k) .( k)/t(k-l)

J m_g g = [ty = (4.7)

is the inverse of m_%:used in BNA, so its relative error

is the same. Thus from (4.3.9a)

t("k)

rel ﬁ—k—l < wR, L, where L := ¢ - /€ (4.8)
Now,
= (k) (k) = (k)
|6(m_k 7 J+k 1)| < Im ke lt e ll{rel m_g g + rel t'+k- }
(k (k)
< Im_k_ )|reZ m_g_ g+ Im-k—l maxl

(k)
K~ 1 masx

A

|m lrel.m_j,_ 1{1+reZT* )/relm 19 gl

4.9
which with (4.8) and (4.7) is

(k) =(k)
1

(-k) , (k)
= uR5 max |t ax/tk
Now from PBA-1

(k) £(k=1)
mazx masx

|, where R, := R (1+rell,

5 /(uRlL‘)) (4.10)

(—k)| (k-l) +

-1
max |t0|’

+ |m Mty o

. _ (-k)
since my = to/t—k—l .
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(k)

( k), (k- 1) nl k-1
et e R At P

So |s(m )| < yrgt

which, with (4.3.8)

' (-k
< pR6Y ond Tg max)’ R6 = B'RS(J + v) (4.11)

So from PBA-1

(-k-1 ~k +k
|6tj )| lét( )l +]| 8m m_g_1t (+k)1! < uR7y condTEt( k)
where R7 = R6(1 + S S Sy
eond Ti Re
(-k-1) (~k) (k)
=0 tmax = tmax l -k—ll
( k) (k—l) -1
bz ™ | (k)l Il
k
_ (=K =i -1
= tmax (1-B'L" ~cond Ti(l + v 2 ))
so rel T(_k—l) < uRgY_lcond Tz,
. - -1
where R8 = R7/{(1—B’L 1 cond Ti(l +v J} (4.12)
QED.

A slightly tighter bound than that given by Theorem 4.1 can be

(k—l)l by

obtained by observing that in (4.11) we majorized lt( k)/t
B'(1-+Y_ Jeond Ti . If this is not done, we get the following result:
Theorem 4.2 Let u, R, R5 and B be as in Theorem 4.1, Then

ret T{* < ur (165 K| Ry i= Ry(14v) A1-8"07 0ond 5 (1)}

Proof: Elementary.
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Discussion
. -1 . -2 TE
For typical values of y(10 ~ to 10 ") and for Tk and X welln
conditioned, it can be seen that R9 % Bg % - % R. Hence Theorem 4.1(i)

and Theorem 4.2 show that the error bound increase is approximately

|t(ti)/t(fi)

o pivot' at each step. Hence the simplé pivoting strategy will work

providing y is not too small.

This analysis can be extended to a more general pivoting strategy,
but the working is tedious. We conjecture that the same conclusion will

(+1) , (+2)
b /Ppivot]

result, i.e. the error bound increase will be approximately | pivot

at each step.

.5, INTRODUCTION OF PIVOTING INTO THE

BAREISS SYMMETRIC ALGORITHM (BSA)

We can get a pivoted BSA by replacing all BNA-steps by BSA-steps,
but leaving the pivoting steps unchanged. So, the pivoted BSA (single

strategy) could run as follows:

Algorithm 5.1 (PBSA-1)

(-k)

(k) o
0 /tmaxl < §, or until k=n-1.

1. Execute BSA, until for some k, |t

If k=n-1, exit, else do

2. Perform step 2 of PBA-1, and go to 1.
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6. CONCLUSION

Methods have been proposed to introduce pivoting into the
Bareiss algorithm, and a simple error analysis and some examples suggest

that an improved numerical performance results.
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CHAPTER 6

NUMERICAL ASPECTS OF TOEPLITZ FACTORIZATION & INVERSION

1. INTRODUCTION

In the previous two chapters, we discussed (i) the
propagation of rounding errors and (ii) pivoting in the Bareiss
algorithm for Toeplitz elimination. In this chapter, we discuss these
topics in two related Toeplitz problems - Toeplitz factorization by the
adapted Bareiss algorithm (ABA), and Toeplitz inversion by the
Trench-Zohar algorithm (TZA). 1In Section 2, we use the forward error
analysis of the Bareiss non-symmetric algorithm (derived in Chapter 4)
to show that ABA’ is unstable, that is, we show that after step k the
error bounds increase by a factor proportional to cond Tk+1' As
mentioned in Chapter 4, De Jong [24] has shown that Rissanen's
algorithm for triangularizing a Hankel matrix is unstable; we observed

that Rissanen's algorithm was not equivalent to ABA.

In Section 3, we perform a backward error analysis of ABA
and other Toeplitz factorizers by relating the backward errors of the
latter to the backward errors of rank-1 update algorithms for factors.
In section 4, we derive a factorization interpretation of the pivotéd
Bareiss algorithm(PBA), enabling pivoting to be incorporated into
Toeplitz factorization. In section 5, we use the forward error analysis
of PBA (derived in Chapter 5) to show that the possible large increase

in the error bound of ABA is avoided in the pivoted factorizer.

Cybenko's [22] error analysis of TZA shows that the error

bound at step k increases without limit as cond T ©, In

k+1 v
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section 6, we give a-simple example that demonstrates this. We then use
the connexion between BSA and TZA, derived in Chapter 3, to introduce
pivoting in TZA. By modifying our error analysis, of the pivoted
Bareiss algorithm, we can show that the instability which occurs when

cond Tk+1 + o is now avoided.

2. TOEPLITZ FACTORIZATION - INCREASE IN ERROR BOUND

Recall from Chapter 2 that the adapted Bareiss algorithm
(ABA) could be used to find the ILU-factorization of T. ABA is the
same as BNA except for the initial matrices. In BNA the initial matrix

for both the PI and NI iterates was T, but in ABA, the initial

matrices for the PI and NI iterates, denoted T(_O) and T(+0),
were T and t;lT respectively.
At the conclusion of ABA, we had
y = p(1-" 2.1)
and p = pm-1)7T2 (2.2)

where L is ULT, was UT, and LU = T.

We now consider the propagation of rounding errors in ABA
from step (-k) to step (k). The operations in step (k) are exactly
the same as for BNA, and the error analysis is the same, so Theorem 4.3.1
may be applied directly. Recall the definitions:
for any scalar quantity a, sq:=a-a, where a is the computed value of a,

for any matrix 4, rel 4 := maxldaijl/maxla

i
15d T5d g

A, := Toeplitz part of 4.
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Then we have

Theorem 2.1 Let tgiﬂ) be the exact quantities produced by ABA,
let l (- k)l ( k) max|(T( k))..l, K: = (—k)/ , and let
i g _ mam i
M, B,.K and R be as in Theorem 4.3.1. Then (i) rel T( )-\ pARg,
.. (k)
(i) ]Mt k+1[ WARGE (2.3a,b)
ar - RBeond T iz, Al
ooy T, %O ke K o< L1:k41,
(31) 77 ° sond T(1rB oond T 20n Ry < * < 0ond Tpyq mae _u -
k+1 k v
where the ﬂi ot of (2.3b) is an element of the matrix L in (2.2).
Proof: Parts (i) and (iii): as in Theorem 4.3.1. Part (ii):

Eq(2.3b) follows from (2.3a), the definition of

rel T(k), and eq.(2.2). Theorem 2.1 shows that ABA

(k)

is unstable, i.e. as cond T, ~®, A > @ = rel T, is
k

unbounded. Example 3.1, given later, shows that the

error in ABA may be arbitrarily large.

3. TOEPLITZ FACTORIZATION - BACKWARD ERROR ANALYSIS

In this section, we derive bounds on the perturbation

matrix, E, defined by
LU =: T +E.

Recall from Chapter 2 that FTF's could be derived from
rank 1 factor updaters (RIFU's). We will show that the perturbation
matrices for FTE's are simply related to the perturbation matrices for
the associated RIFU's, so previous error analyses of R1FU's can be used

in the analysis of FTF's

This section is organized as follows: In subsection 3.1,

a simple relation (Theorem 3.1) is proved between the perturbation



143

matrices of MBA, the modified Bennett algorithm(MBA) and the adapted
Bareiss Algorithm(ABA). In subsections 3.2 and 3.3, Fletcher and
Powell's error analysis is modified to calculate the perturbation
matrices for MBA in the general and Symmetric positive-definite cases.

In subsection 3.4, Theorem 3.1 and the results for MBA is used to analyze
ABA - a-posteriori bounds for FE are derived for the general case, and
a-priori bounds are derived for the positive-definite case. In subsection

3.5, a variant of Theorem 3.1 is used to analyze a Toeplitz LDR factorizer.

3.1 Relation Between the Backward Errors for MBA and ABA

The relationship is contained in the following theorem:
Theorem 3.1 Let L and U be the factors of T computed by ABA.

Let E, the backward error matrix for ABA, be such that

IU = T + E; ' (3.1)

let L' and U’ be the (n-1)th leading principal submatrices of

I and U respectively, let x be the computed value of t,., l/tll’
Z2:n,
g = -th 't v S e w5t
let y := 1, 2:m-1° and let I and U ©be factors of L'U'" + XYy

computed using MBA. Let G, the backward error for MBA, be such that

—dmk = - ~-T
LU =L'U" +xy +G, (3.2)

and let p be the machine precision.

Then (i) elj =0, J=1,...:%3 (3.3)

(ii) Bleill <y, 1=2,...,n such that e.q = Eiltil (3.4)

(iii) ei+1,j+1 = eij + gij’ 1=2, .. sNs J=85c0.5M (3.5)
Proof: (i) From (3.1), (T+E)1j e Rllulj = l'ulj . tlj

using (2.4.29b) = elj =0 (3.6)

(ii) For floating-point calculations, we may assume [89]

that
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Fllxoy) = (1+e)(xoy), |e| =, (3.7)

where fl denotes the result of a floating-point
computation and o is +, -, X, OT /.

For 1=2,...,n, (3.lj gives

(T+E)i1 = gilull = Qiltll’ which using (2.4.29a),

(1+€i1)(til/t11)t11’ €7 <y (3.8)

QED (ii).
(iii) Consider algorithm 2.4.4 with the substitutions
L+L',U~U', T Y > Y T > I*, U~ U*, and compare
it with algorithm 2.4.5 with the substitutions L —+ 7

and U~ U. We show inductively that

I* =1 Ut =

L L2:n,2 n’ & U2:n,2:n (3.9)
To do this, denote the {g(i)} and {g(t)} computed
by algorithn 2.4.4 as {%*(ﬂ)} and {Q*(i)}, and those

computed by algorithm 2.4.5 as {§(1)} and {é(t)}. It is

clear from (2.4.28c,d) and (2.4.29c,d) that é’(l) = §(1)

and Q*(l) _ 2(])' Suppose é*(i) _ %(1) and

é*(i) = Q(i). Recall from the theorem statement that
Hence

i 91 .= 7 ! o= 7
we defined %-if S'1:11—1,71 and A BT
the inputs to step 2, iteration < of algorithm 2.4.4
are the same as those to step 3, algorithm 2.4.5. Since

the operations are the same, the outputs will be the

same in rounded calculations. Hence T4, =2 5,
-7 2,1+l
- = - (1+1) _ =(i+1) - (T+1) _ =(i+1)
* = * = * =
“i. = Yis,0mm © 2 and g g

This completes the inductive proof of (3.9).
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Using (3.9), the definitions of L', U', % , and y o

and (2.4.29a,b),

2141, 2:m%0m, 541 N Lis1, 11,541 * 944
e Ry Mg T RGPy (3.10)
The (i,4) element of (3.1) yields
RF TR S
Sihilarly
L1 % a1 = Pig1,g41 T Ciaa, g4

ti5 * Cit1, 441

(T Toeplitz) (3.12)

Putting (3.12) and (3.13) in (3.10) yields

+ g, QED(iii).

€i41,4+1 = %44 g

Corollary 2.1 Let E;Gglgeil and p be as defined above. Then,

the elements of E are given explicitly by

o 4-1
91k, j-k i

A
<,

z
k=1
€.

£J -1
€omgrt, 1Pa-ge1 * 2, Gick, gk

L3

. < L > g . §
leggug, gl S0 77 - (319

Proof: Trivial.
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Thus, to find bounds for E, we find bounds for &G by
adapting the error analysis of Fletcher and Powell [27] for rank-one

updates, then apply (3.13).

3.2 Bounds for the Backward Errors of MBA

The approach follows that of [27], but some details are
different, since a different rank-1 updater, the composite-t method,
is considered. Also, [27] considers only the positive-definite case,
whereas we consider the indefinite case, and then in the next sub-
section, specialize the analysis to the symmetric positive-definite
case. It will be found that in the indefinite case, stability cannot
be guaranteed (in the sense that 3 cases where the error is
unbounded - see example 3.1), and only a-posteriori bounds can be
derived. The symmetric positive-definite case is stable, and a-priori

bounds can be derived.

Throughout this sub-section, we refer to MBA, given in
algorithm 2.4.4. The inputs to the algorithm, L,U,x,Y, and the

~ ~

outputs from the algorithm, L and U are related by

W = v + ay”

It can be shown by induction that the first 1-1 elements

of & ; and u; are null, (¢=1,...,n). It is also easily checked

that the quantities involved in the ith basic step satisfy

A x(z+1)y(t+1)T -0 . + x(t)y(l)T (3.14)
S s < =.1-1. - ¢
Consider the errors incurred in the ith basic step. For ease of
notation, we rewrite & i’%ief(i)’ﬂ(i)’z i’gi ,§(£+1) and Q($+1) as

&,uT,g,g,g*,g*zlg* and y* respectively. Eq. (3.14) can then be



147

rewritten

z*u*T + iyt = o+ xy (3.

15)

Computed quantities will be denoted by bars. We wish to bound the error

G(ﬁ) 'in carrying out (3.15), defined by

e+ 2T = g+ g + 6

The quantities on the left of (3.16) are the exact data for the next
basic step. It therefore follows that the complete computed
factorization is an exact factorization of a perturbation of the

original problem given by

A=1" + s_r:'}_/T + G (3
where ¢ := 26", (3
so bounds on G may be obtained from bounds on the G(t).
Note that 4 is now a computed matrix.

Following Wilkinson [89], we find that the following
calculations are made when the ith step of MBA is executed with
rounding errors:

B=ux, (3.

u% = (I+e, . ~(1+e, . i | =1 5k

: ( elJ)(ud ( eZJ)ByJ), J=z1 (

r% = 2, . .- . 2 i =1

4 (1+e3J)(acJ (1+e43)623), J = i+l (3.

v . ] ) 2 *®

T4 = _ -—;{_ . > .

" (1+e5j)(£j (1+e6j)yxj), J = i+l (3.

—* = - - ——,g ] > 3 3

yj (1+e7j)(yj (1+e8J)Yug)’ J = i+l, 3

(3.

16)

.17a)

.17b)

18a)
18b)
18c)
18d)
18e)

18f)

where ey and €g52€942 " each represent separate errors bounded by

gygaﬂ;
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u, the relative machine precision. Following the method of [27] we

can manipulate eqs. (3.18), eventually obtaining

(i) _ 5
gjk

+e ., .te . Ate

2
171178357855 6j'61"62i+0(“ ))

A1

- 2
* o - e —e. A40(
+ gjuk(eli+82i e 93j 843 e6J+0lu ))

, - - 2
- - L IVEd . - - -
zjuk( e4j)+xjyk(eli+e2k+e3j eme %o e8k+0(u ))

- 2

We now find first-order bounds on G, as is done in [27]. Neglecting

the 0(u2) terms, we have from (3.19)

(4 il an |5 o -
lgji)|:su{?lxgyk|+6|x§yk[+7Iﬂguil+6|2juz|+lqukl} (3.20)

From (3.17b) and (3.20) and writing 5; as x(t+l), i; as L.

., etc.
J 2 >

JT
»n ()
> lgs |
i=7 Ik

IA

|95kl

n . . . .
(i+1)y, (1+1) (1+1), (Z) & e
U 7ij’[?lacj Hyk |+6|xj ly |+7|2jiﬂuik|

IA

+ 6|£jiﬂu£k|+|2jﬂukl} , (3.21)

where all the quantities on the RHS of (3.21) are computed quantities,

L) L (D)

and 0.
k ( )
o
Define X := [g(Z),g(Z),...,f(n)] and Y := |Y
Lé(n)T

Then (3.21) may be written completely in matrix notation:
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| i
le} < u{7|XHYl-7|§(1)Ha(1)T|+6lX|Z|Y| 3
+ 7|INT|+6| DN U +| U]} (3.22) v
where for any matrix 4, |4| = [Ia%jl]’ and 2 1is the shift matrix é
0 | -
1, f
7z = N
o\
10

Now from (3.22)

le| < w{7|xiy|+6|x|z|x|+7|Dhu]+7 | Dl U]+|ohU]+|ZiU| }
= u|x| (71462) | 2| +u(|T|+| L)) (7|U|+|U]) (3.23)
Eq. (3.23) provides first-order a-posteriori bounds on the elements
of G. Unfortunately, (3.23) requires 0(n3) operations to evaluate
compared to 0(n2) operations for MBA itself. A cruder bound which
requires only 0(n2) operations to evaluate may be obtained by

observing that for any two vectors a and b,

, .
|a"bl < Nl bl , < Nl BN, = (Blag ) (2], ])

r c
Let a; = "gi.ul’ and q. := Hg.iﬂl . (3.24)

Then from (3.23)

6] < wa® (7146205 Fen (T 487 (7 0T (3.25)

This bound is of the type derived by Wilkinson [89], which relates the
backward error to the largest element encountered during the

algorithm.
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Remark on the Bound

Only a-posteriori bounds for & can be derived in the
indefinite case, and stability cannot be guaranteed, since we can

find examples where the errors are unbounded, such as:

Examgle 3.1
Take

-1-2¢ 1

R |, &=yt
-1 1 0 -1

where |el< u%, where Y 1is the machine precision.

Here

) [-1-26 1] - T [ £ 1]

A=1LU L J and A = A+xy = L J
1+2e 0 - 1+2¢ 0

have spectral condition numbers bounded by (2+48)2 and (1+|€|2)

respectively, so both are well-conditioned. Executing MBA, we get

1+€ 1+¢
§(1) . ( > ; g(z) - _( \

0 0 )

B« I+e
2

~ (—1—2€> . (1+€){1+e\ B I§1;2€

=i 142€ \y/ 1 comouted
1+2¢ omp

) exact

Since the computed value of le is zero, the algorithm will fail at step
7 (eq.(2.4.28f)), 1i.e. the error will be unbounded. (In exact

arithmetic, Yy = - lig-).

3.3 Bounds for the backward errors of MBA:positive-definite-

symmetric case

Continuing our development in analogy with [27], we observe

that when the matrices are symmetric the terms involved in the ith

——rs
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step are related by

A — ghpk A % *

Y o*x where © yi+1/Pi+J (3.26)
y = ox, where © := yi/h%_ (3.27)
u* = d*L*, where d*x := ﬂzi (3.28)
Y = dg, where d := Ujss (3.29)

so that (3.20) can be written

() SAL AT A ol TP AT % &) T
16001 < uirlasasl + eloige] + 7120k + slan Rl + labn )

(3.30)
It can be shown [27] that
d* o
a . é* . (3.31)
Define
. 1Y% Y%
aj := |2*7|02]s @y o= ] [8;5 wi == Exdls =3l
Y Y
W, i= |o] |xj| and » := |d*/d| (3.32a-¢)
Then (3.30) can be written, using (3.31)
(i) dy9% % ko *
Ig | < u{7w Jof + 6rutoy + 7atay + 6raap + ajak} (3.33)

Following [27], we can use the Cauchy-Schwartz inequality on the last

three terms in (3.33) to obtain
lg(z)l S wlwj (Pugeons )+ [7ad +(6r+1)a2]%[(6r+7)a #2 2]%} (3.34)

In the symmetric case, the computed matrix 4 in (3.17a) satisfies

the equation
-1,
A= E T 43 Ty
p=1" .p’p=.P

. n
Y o, (t)x(t)T + 3 G(p)

g d
P p=ip - -,

E--
p_.



152

where 0, := ygt)/xéz) and is analogous to the definition in (3.27).
In the positive-definite case, all the ZP and dp are positive. The
diagonal elements of this matrix equation then give the inequality

IGLI%I (1)) < (aJJ+haJ)” (3.35)

where H := Z|@

NowAthe definition of H, expression (3.34), definitions (3.32a-e), the

Cauchy-Schwartz inequality and expression (3.35) give the bounds (recall
that &*=Ei d=d etc.):

(L) .
h,.=h, = | | (5 < &)
kJ gk 1_1
(1+1) {(1+1) ~ vy (1)
u{f R e T e I LA A

+ [72 dJL + (6r=+1) 2 dJL i [(6r+7) 2 d!L MERLAIL
i= | I I il l kil *1% km (3.36a,b)

where 7 := mzmldi/dil.

so with (3.35)

h

2 u{(7+6r)jv/(_ajj+hjj) (aythyg) + /[7ajj+(6r+1)ajj] [(65+7)ay, 40,1}

(3.37)

By letting J = k, it follows that
hjj < (6p+7)ua. J+a N/ (1-(7+62) Gu).

We consider separately the cases o > 0 and o < 0, where 0o is
defined as in (3.27). For the case o > 0, we get, when

= (746%)nu < %

g = 700903/ (3t ) (Fagagang)+/ (75 +(69+1)a ) ((6947)aygcrang)
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Also 2.. >a.. when o >0, soO
Jd Jd

|gjkl < W(25+1) (6v+8)Va Jakk, § <% (3.38)

when & > %, we must use (3.23) or (3.25).

When g < 0, we get a very satisfactory result, since

| [<1=>f»<1 so h, {13u+0(u)}(a +a..), and the h.. term
Jd 551 “EE Jdd

in (3.37) is of second order, and may be neglected in a first-order

analysié, as is done by Fletcher and Powell. Eq. (3.37) then becomes,

using # <1 and Qoo < Aot

Jd Jd

Igjk' < 14(u+1)¢ajjakk o< 0 (3.39)

Notice that (3.39) is entirely a-priori, so for O < 0, stability is
guaranteed. For o > 0, the update algorithm can be modified in a
manner similar to that indicated in [27], which will give a-priori
bounds. We do not pursue this point here, for in the case of interest

which arises from Toeplitz matrices, ¢ < 0.

3.4 Bounds for the backward errors in the adapted Bareiss algorithm

for Toeplitz factorization

Let F be the backward error matrix as defined in (3.1).

Then from (3.13)

min(i-1,4-1)

< r
leijl = uci-jlti+j—1| + z |gi-k,j—k‘ (3.40)
IO, 729
Ce s =
t-d 11, >
where from Theorem 3.1, G is the backward error in computing
Isft = L0 +Z§L + G, (3.41)
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where I' and U' are the leading submatrices of the computed
upper and lower triangles, x is the computed value of -t,.. Z/tll
Z2:n,

- .
and y =T g
We now evaluate E for the general case. Applying (3.25) for the

problem (3.41),

,cT

6| < g (71462) 5 + uE ") (7520 (3.42)

where the operators P and ¢  are as in (3.24), and X* and Y*
are the matrices of auxiliary vectors produced by MBA. We showed in
Theorem 3.1 that X* and Y* were the same as ¥ and Y , the matrix

of auxiliary vectors produced by ABA, and also that I* =1

2:mn,é:n

and U* =7 where I and U are the computed Toeplitz

2:n,a:m
factors. Also by definition L' = Zn—l and U' = ﬁn-l’ so the (p,q)
elements of (3.42) can be written

-p, =P =D =P =P -c ,~C
< (79 +6y. ) + WL+ ) (7u +u_ ) 3.43
|9 < W (T 60g) + WRHh, ) (Phgtug, (3.43)

Putting (3.43) in (3.40) yields

min(i-1,5-1) o

: . - -7
leggl vty glegyyql +v 2 Wy (7Y 0% et
+ (T F ) (735 _3H g4y 3.44
i-k' t-k+1 -k u ~k+1 (3.44)

The bounds (3.44) require 0(n2) operators to evaluate.

When T is symmetric positive-definite (PDS), (3.41) becomes

L*U* = L'0' - x*(ax*) where a > 0, so we can use (3.39) and (3.40)
to give
-1
|eij| ukzzz4(k+1)|t -4, 1| (i < 4)
= 7u|t.- |7 (i+1) (¢ < g)
. i+1-451 } (3.45)
and ]eijl < “'ti+1-j,1[+|eijl (i > g)
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This is an a-priori bound and indicates that the FTF algorithm is stable

in the PDS case.

3.5 Other FTF algorithms

As we saw in Chapter 2, other Toeplitz LU algorithms,
and Toeplitz LDR algorithms, may be derived from different rank-1
updaters by using theorems 2.4.1 and 2.4.2. The error analysis of
the LU updaters may be obtained using (3.13). For LDR factorizers,

the analysis of (3.13) is the slightly modified form

J-1

©5 = Cigati-in ¥ Z Tik, ik e jez, gl S ¥ (340

We illustrate by analyzing algorithm 2.4.5 , the Toeplitz
IDR factorizer based on Bennett's algorithm. Fletcher and Powell give
an error analysis of the latter, so using these bounds (their eq. (5.30))

and (3.46) we obtain

5.2 , 49,
Ieij] < u[tiﬁ._l,z[(g,j + 54 - 26). (3.47)

This completes the discussion on the backward error analysis

of FTF algorithms.

4. RELATION BETWEEN THE PIVOTED BAREISS ALGORITHM

AND TOEPLITZ FACTORIZATION.

It can be seen from eqs. (2.1) and (2.2) that the triangles
produced by the Bareiss algorithm are simply related to the Toeplitz
factors. It would be expected that the reduced matrices produced by
the Pivoted Bareiss algorithm (PBA) are related to some factorization

of the Toeplitz matrix. In this section, such a relationship is proved
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for any PBA where BPA and/or BPB are used, i.e. only A, C and BNA-cycles
are executed. Further work is required to find a factorization
representation where BPC is used.

Note: We will henceforth refer to BNA-cycles as simply B-cycles.
This is convenient because A,B and C cycles are variant of the Bareiss

recursion that move the zero-band up 1,0 and -1 places respectively.

The following algorithm calculates two matrices, one ULT and
the other UT, from the output of the PBA. It will be shown presently
that the product of these matrices is a row and column-permuted

version of T.

Algorithm 4.1 (Programmed on p.A.31)

tet {7(*"}

be the output of any PBA containing only
A,C and B-cycles defined by procedures 5.2.2 , 5.2.3 and eq. (2.2.3).

respectively. Let ny and 7o be the number of A and C-cycles

respectively. Then, carry out the following steps:

1. Form the two permutation vectors § and v as follows:

1.1 §, <1, + 1: vl “na + 1

1.2 For k <« 1 to n-1 do 1.2A, 1.2B or 1.2C if cycle k is

an A,B or C-cycle respectively:

, k k
1.28 &, . % mtn{si}l—l, Vps1 +-max{vi}1+1
1.2B s « max{s.}k+1- v, . * max{v.}k+1
’ k+1 17177 Tkt 171
1.2C = +—max{s.}k—1- v, . min{v.}k+l
’ k+1 1°1 7 Tk+1 71
2. Let P, be the permutation matriz which on premultiplication moves

1

TOWS 8758554435, to rows I1,2,...,n respectively. Let P, be the
permutation matrix which on premultiplication moves TOws vl,v2,...,vn
to rows 1,2,...,n respectively.

Note: If PA is a certain re-ordering of the rows of 4, then the
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same re-ordering of the columns of 4 is (PAT)T, or APT. Note
also that any permutation matrix P is orthogonal.

3. Set g<mn, h=< no
4. gt <P BT L 0w /G u, <t P
* =1 l—n-nc =1 2.1 7117 <1, -1y . 2

5. For k< 1 to n-I do 5A, 5B or 5C if cycle k is an A,B, or

C-cycle respectively:

(-k)RT

. (-k) (-k)
1toig). 5 Ewer T LN TS G TR LI T

S5A. &' P t Ty (n). P / k+1 N

Zok+1 =

g < g-1, where A(Z) and po(Z) are the rows with <

elements to the left and right of the zero-band respectively.

(k)RT LK) PT ~(-k)
4 . ' .
5B. 27,7 < Prtorgr R T Ekn P41, k25 Yer1. € Each). Myel
(K)RT L(k) PT ~(k)
’ N ! .
5C. a1 “ Pi%g).? L 1e1 € Flait Mt 10 Pre1. © Exim e M’

h < h-1.
We now show that L and U are the desired triangular factors:
Theorem 4.1 Let PJ,P I and U be as produced by algorithm 4.1. Then:
(i) L and U are ULT and UT respectively.
(ii) LU = Pjin.

Proof: () Let g, and hk be the value of g and 7%

respectively after cycle k of algorithm 4.1 and let
nA(k) and nc(k) be the number of 4 and ( cycles
respectively after cycle k¥ of the PBA. It is easily

seen from loops 1.2 and 5 that

gy = nA—nA(k) and smin(k+1) r= min{s.}§+1 = nA+l—nA(k) 4.1)
_ o kt1 _
hk = nc-nc(k) and vmin(k+1) i= mzn{v } = nC+1-nC(k) (4.2)

It is also clear from loop 1.2 that

{Si} = perm*{s_ . (k),...,(smin(k))+k—1}, which wi?h (4.1)

mwn

perm{gk_1+1,...,gk_1+k} 4.3)

*permutation
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n—-g—k+1
However, by definition {t ( k) .} k-1 are all zero
p(gg_459",,_
Ir-1
-ty \Ik-17* (-k) k
= {(t 2 (e ol E } are all zero = {(P oy i, ).}
Ik-1 Telg 17+ v g

gk-

are all zero = L is upper-triangular. With steps

5A(ii), 5B(ii) and 5C(iii), we have L is ULT. The

proof that U is UT_ is similar to the proof that L

is LT. QED (i)
(ii) Let dk be the displacement of the zero-band from
its Bareiss-position at step k (+: above; -: below).
Recall from Chapter 5, fig. (2.9) that the Toeplitz
parts of T(_k) and T(k) have the forms (for dk < 0):
. e | L HEH
k= 1dy 5[ b=t EE
1 1 | - 1 R ;
I | A ! ~] l*—. l l A E
EERmEL@AAA i }-ak: OO R T
L] | 30 LK) 6 N NN I 5
L{' ‘)___'_f:I__' 1.0_ - ]{'{. i || ” ._l_?._
it T ! I 0 I N e
i W = il W I O i i i
1 EEEN RS N : 1=
B S ' . e o
ERAR H-H e - rin S
TF K ‘ i} O O A 0 O B i ] O O
] | 114
| l iENRREES R
It can be shown by induction on % that t( k) and
Eik) are linear combinations of xtl };+k. This fact,
together with the shapes of T( k) and Tik) implies
that
(=K oA }hk_l—dk+14k
“xh, ) Zi.°h, ~d, +1
k- k-1 "k
(4.4a,b)
h, .~d +1
(k) _ k-1 "k
and 2V Z.c.{fi }h _d
k-1"° k-1 Tk
Since dk increments with A-cycles and dk decrements
with C-cycles, we must have
d

[3

*linear combination

= d0+nA(k)-nC(k) B nc—nA+nA(k)—nC(k).



So if cycle k was an A or B-cycle,

hk_l—dk+1 = hk-dk+1 = nA(k)—nA(k)H (using 4.2)
= smin(k+l)’ (using 4.1).
So by (4.4a),
. (k+1)+k s
(-k) S min : k+1
t = l.e.{t.} = l.e. {t. } 4.5)
—k(hk_l). —t-smin(k+1) -t."8,
With steps 5A(ii) and 5B(ii), and the definition of E(tk).
8
- k+1
= %
Eq. (4.5) =, Py =n.l.c. {1_57;.}81 METBRE
_ k+1
=n.le. {(P,T); },
_ T k+1 .
) P n.l.c.{(PlTPZ)i} ;T g, is row k
k of the unique U-factor of PJTPg. The proof when cycle k

ijs a C-cycle is similar. We can similarly show that

L g7 is column k of the unique L-factor of PlTPg.

QED.
Corollary Algorithm 4.1 can be used to compute the following
permuted factorization of T:
VA
T = P LUP, . (4.6)

"2

5. PIVOTED TOEPLITZ FACTORIZATION - AVOIDANCE OF

INCREASE IN ERROR BOUND

We noted in the last chapter that in the pivoted Bareiss

algorithm PBA, the error bound increase for step (-k) to step (-k-1) is

proportional to [t(-i%t(fk)l, where £(K) is the pivot element.
max’ “piv piv

Algorithm 4.1 is merely a rearrangement of the outputs from PBA,so the error

* normalized 1.c.: normalized such that the last coefficient is 1.
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propagation is the same. Hence the possible large increase in error
pound which occurs in the normal Toeplitz factorizer can be avoided by

a judicious pivoting strategy.

6. TOEPLITZ INVERSION - INCREASE IN ERROR BOUND

In this Chapter, we have so far discussed the numerical
aspects of Toeplitz factorization. We next consider error propagation
in the Trench-Zohar algorithm (TZA) for Toeplitz inversion - later,

we will propose a pivoting scheme to improve its numerical performance.

Cybenko [22] has performed an error analysis on TZA, and
we do not repeat it here. He has found that for an indefinite Toeplitz
matrix, TZA is unstable, i.e. the increase in error bound at any cycle k
is unbounded. The following simple example illustrates this point.
We work through TZA (Algorithm 3.2.1) in both exact arithmetic
(unbarred quantities) and rounded arithmetic (barred quantities). Note

that the matrix 7T being inverted is well-conditioned (cond T = 9+0(¢),

E'S ‘Eil).
Example 6.1

€,7€, = OM, €48y = By, |B] < 1.

|€1|2 < 1, |e2|2 < 1, Y = machine precision

e T o7 '
>ty =1, u = (165,000 = [14€,,0]
Step 1. A; = €,-Ey+€,Ey = (a+B)u; X, = €;-€, = ap, since |8| < 1.
2 = = .
Step 2. ¢; = ¢; [el 17.

Step 3. d, = al = [—1-82].
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. 2 =
Step 4.1, i=1. 1y (1—81) 5Ny (1-231).
" 2 —

Step 4.2, i=1. Y; = (1+52) 5 Yy (1+252).

Step 4.3, i=1. nl/xl = (1—51)2/(a+6)u; nz/kl = (1—231)/au

(1»81)2(1+€2) (1-2e,) (1+e,)
e,-1 - €1 -
(0+B)U i au
Coy = 3 €9 T
(1—61)2/(a+8)u (1-2¢) /o

Step 4.4, i=1. Y/A; = (11e,)%/ (orb)us Y, /h, = (1+2ey)/on

(1e,)%/ (@00 ) (e )
ég = 2 s ag =
(1+€2) (81—1) (1+2£2)(€1—1)
_1_g2 + —1—82 +
(o+B)u ] | (o+B)u
2 2
(1-e,)" (1+e,)°  _ (1-ge,) (142¢€,)
Step 4.5, <=1. kz = (o+B)Y - § KZ = au -

(a+B) 1 o

So, ignoring second-order terms,

2 : -1, _
since (T )11 e 1/K2. (6.1)

A ir

|X2—A
2

rel X? o= ‘ %IB/aI% reZ(T_l)

Eq. (6.1) shows that as a > 0, reZ(T_l)ll + o, i,e. the error at

cycle 1 of step 4 is unbounded.

7. PIVOTED EXTENDED BAREISS SYMMETRIC ALGORITHM

Recall from Chapter 3, section 3 that the EBSA (algorithm
3.3.2) was derived from BSA (algorithm 3.3.1) by appending the calculation
+7 .
of the multiplier matrices M("%), defined in eq. (3.3.5,6).. Similarly,

a pivoted EBSA (PEBSA) may be derived from PBSA (algorithm 5.5.1) by



162

appending the calculation of the multiplier matrices (if BPC is used,
the rmultiplier matrices are calculated anyway). All steps in PBSA (in

fact, in any PBA) except reverse BNA steps have the form

. + l- + [ +I e -—
T(iz) - T(_(m 1))_m+.c(_@)s(_z)T(+(¢ 2)), (7.1)
() . ; . . (£1) . .
where ( is a cyclic permutation matriX, S is a selection
matrix, i.e. a diagonal matrix of the form Sgii) =1, = jl""’jZ
and sé?t) =0 elsewhere, and & =0 or 1. Using T(ii) =: M(it)T
in (7.1) and postmultiplying by T_l, we get
. | i) (4t) (F (de
M(iw) - M(—(t 1))_m+.c(_¢)s(_t)M( (i-2)) (7.2)

So to convert PBSA to PEBSA, we simply add a step of the

form (7.2) after every step of the form (7.1).

8. THE PIVOTED ALTERNATIVE BAREISS SYMMETRIC ALGORITHM

AND PIVOTED TRENCH-ZOHAR ALGORITHM

In Chapter 3, we derived the alternative Bareiss Symmetric

algorithm (ABSA, algorithm 3.4.1) which calculates the m . and not
n
T(_z)

" from EBSA as follows:
(+1)

the

3

(a) Drop all steps with T on the left-hand-side, i.e. steps of

type (7.1).

(b) Let n_. and d. . be the numerator and denominator of m, .
7 +7 +7

respectively.

Calculate n_. and d.. as follows:
17 t7

(1) Check if ny; ©OF d+i is available from the previous step.
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(ii) Calculate n,. OT d+i using the Bareiss recursion, if possible.

+7 .
(iii) Otherwise, use the identity m(_t)t _ t(it)
-p. =-q pq

(8.1)
We can use the same technique to get a pivoted ABSA (PABSA)
from PEBSA. Step (b) needs further explanation, as different operators

are required for different types of pivoting steps.

Calculation of Myss dti

+7 +7 :
Let t(—t) t(’i) be elements in the first non-zero diagonal

A B
: o
respectively above and below the zero-band of Ti_t), the Toeplitz part

of T(it). Then, the following can easily be checked from the diagrams

in Chapter 5:

BSA  PBA-1 (steps 2.1 § 2.2) A-cycles B-cycles C-cycles*

(1-7) (1-1) (1-%) (1-7) L(1-1)
n; tB tA tA tB bB

(1-1) (i-1) (i-1) (1-1) (i)
di tB tA tA tB tB

(i~1) (i-1) (i-1) (i-1) (i-1)
n, tA tB tA tA tB

(1~2) (-1) (-2) (-1) (1-1)
di tA tB tA tA tB

Table 8.1: Numerators and Denominators of Multipliers

for Various Pivoting Operations.

. i
Table 8.2 shows how tﬁiﬁ) and té”t) can be calculated

(the relation can be checked from the recursions in Chapter 5):

*For C-cycles, step (i) precedes step (-1).



PBA-1

BSA (steps 1.1 § 1.2) A~cycles B-cycles C-cycles R~cycles
{8 | 4f170) y y6n1) use (1) use (8.1) I $i1%/ g1ty | 0
tg—i) use (8.1) t;l"i)—m_itgi'l) t;l"i)—m_it;i_l) use (8.1) use (8.1) m;i—lféi)
tﬁi) use (8.1) tﬁ?"l) use (8-1) use (8.1) tﬁi"l)—mitgl_i)- mi+1t£_i-1)
téi) tg;““ _mitgl““ use (8.1) téi‘l) t}gi-z) use (8.1) t]gi*l)
Table 8.2: Calculation of tﬁti) and t;ti) for various pivoting operations.

252"
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Tables 8.1 and 8.2 can be used to calculate the o) and d+i

at each step.

Derivation of PABSA directly from PBSA

It is clear that we can combine the two derivations
(PBSA > PEBSA and TEBSA - PABSA} as follows:
(a) Replace all steps of type (7.1) with steps of type (7.2).

(b) Calculate Mo dii using Tables 8.1 and 8.2; My, = nii/dii .

PABSA - Compact Form

Note that in (7.2) the rows of M(il) being changed make up

a Toeplitz block of the form e xz

so the first row completely specifies the block. Thus (7.2) can be

~(+7
written in terms of m(_i)T, the first row of the Toeplitz part of

o5 _ (+1) _

M( *7)

If Cs and S Sab’ where Cs and Sab are

as defined in Chapter 5, eq. (5.2.8c,d), it can be checked that (7.2)

can be written as follows:

~(+i)T

(i(i-z))Tcz _a+s_mii%(¥(i—2))T e
+ ¥

13
13

> (8.2)

where »r _ 1is the index of the first row of the Toeplitz part of M(ii).

The procedure for converting PBSA to the compact PABSA is now as

follows:

Procedure 8.1
(a) Replace all steps of type (7.1) with steps of type (8.2).

() Calculate yss dii using Tables (8.1) and (8.2); mii=nti/dii'



2-choice Pivoted ABSA

We now apply procedure 8.1 to get a PABSA which corresponds

to PBSA-1 (algorithm 5.5.1). PABSA-1 allows a choice of two pivots at

166

each step (k). We postpone discussion of the pivot selection strategy

until section 10,

Algorithm 8.1 - PABSA-1 (Programmed on p.A.41)
~(x0)T ., (0) ., (0) . (0)
1. m “ ey to < to, tl <« tl, -1 t_1 . (8.
{Normal ABSA loop, with pivot selection test}
2. For k<« 1 to n-1 do
2.1 m_k (1 k)/t(k—l) (s.
22 %(-R)T . a(l-k)TC_l_m_k%(k—l)T (8.
(~k) (1-k) (k-l) . (-k) ~(-%k)
2.3 to <« to m_k % ; if k #n-1, t—k—l «m CL]E 1
(k-1) ,,(1-k)
2.4 my, + tk /tO (8.
2.5 Select tg-k) or (kk; as pivot. For the latter, do
pivoting procedure P.
(k) (k=1) . (k) (k)T
2.7 to “« tO ; if k #n-1, tk+1 <m E.k+2 (8.

{Simple pivoting procedure P - corresponds to step 2 of PBA-1}

(k-1) ,, (-k)
P1. m, to /t_k_
~(k)T  ~(k=1)T  ~(=k)T . (k) (k)T .
P2. m <« m =, m C—l’ _7 m C—ZE 75
(k) (k=1)
b
P37 g t('k)/t(k)
p4 %(-k-l)T ~(k)T ~(k)T ( k-1) ( k) .
¥ = = M_je-17 s -k- —k 1 -k~ 1
(-k-1) ~(-k-1)T
t—l cm E.k+2
{RBF}
p5 (k) ,, (-k-1)

Mep1 © tk /t-l

(8.

(8.

(8.

£ (k)

Sa-d)

6)

7)

(8.8)

9)

10)

11)

12)

13a-c)

14)

1 )

(8.

(8.

15a-c)

16)



167

~(k+1)T  ~(k)T ~(-k-1)  , (k+1) (k).
foe R ¥ j dg, Y
(k+1) (k+1)T
ter1 T L (8.17a-c)
{Move Ti_k—Z) and ﬂ[k+l) to the bottom and top
respectively.}
(-k-1) (-k-1), ,(-k-1) (-k-1), ,(k+1) (k+1)
PI. tgs TP %o ctp st T vty
(k+1) (k+1)
P8. Set k < k+2, and return to step 2.1l.

Multi-choice Pivoted ABSA

More general pivoting schemes, involving BPA, BPB and possibly

BPC, may be incorporated by

using procedures 7.1 to adapt the

corresponding PBSA. We do not go into detail here.

pivoted Trench-Zohar Algorithm (PTZA) (Programmed on p-A.41)

As remarked in Chapter 3, ABSA is just TZA with different

notation. Hence PABSA is a
formulated as a pivoted TZA
in Chapter 3 (egs. 3,4.15),

pivoting procedure.

Results

pivoted version of TZA. PABSA can be
by using the notational transformations

with suitable modifications in the

We will not elaborate this here.

Table 8.3 show the results of applying (i) TZA and (ii) the

2-choice PTZA on a Toeplitz

><1013 to t31 would make

matrix with T3 close to singular (adding -6x

T

3 singular).

TZA gives very inaccurate

results, whereas the error in the 2-choice TZA is a moderate multiple

of the machine precision.



gIZE OF ILL-COND BLOCK, DIST FROM SINGULRRITY

3,5d-13

INPUT TOEPLIT
8.000
4.000

~34.000
5.000 -3
3.000
1.000

Z MATRIX T
4.0600 1
8.008 4.000
4.0080 8.080
4.009 4.000
G.000 -34.900
3.000 5.000

6.000
1.000
4,000
8.690
4.000
~34.000

2% RESULTS FOR TREMCH-ZOHAR ALG.¥%%

INVERSE OF T

0.042 -0.01@ -0.022

0.011
0.0602

09.018 -90.006¢2
0.030 0.005

0.034 -0.001 9.010
-0.131 2.173 -0.0e1
0.214 -9.131 0.034

ERROR MATRIX
-0.320eD-01
-0.605D-81
-0.935D-01
-0.179D+00

0.416D-01
@.126D+00

INFINITY-NORM

= T¥T.INVERSE - IDENTITY

-6.001
-0.025
0.002
2.005
0.830
0.002

-9.3160-01 -@.135D-0@1
-@.160D-02 -0.110D-81

9.224D-01
0.95%6D-02
-8.109D+00 -
~-9.118D+00 -

OF ERROR MATR

6.335p-02

@.7540-01

0.602D-01
©.929D-01

2.000
6.000
1.660
4.008
g8.800
4,006

-2.094
-9.002
-9.6a5
-90.00c
0.018
9.011

-8.116D-01
-@.979Db-8¢2
9.397D~03
@.215D-01
4.871D-81
-9.8320-01

IX = 2.520D+00

3.000
2.000
6.600
1.600
4.000
8.000

9.004
-9.004
-8,.001
-9.02¢e
-2.010

9.0842

-8.679D-02
~-@.57%5D-62
-9.371D-03
6.178D-81
0.185D-01
9.738D-01

3% RESULTS FOR PIVOTED TRENCH-ZOHAR ALG., STRATEGY 1 3%

INVERSE OF T
.041
0.008
0.006
©.839 -

-0.120
e.213 -

ERROR MATRIX
~@.278D~16
@.291D-15
9.444D-15
-8.,167D-15
-6.301D-14
é.178D-14

INFINITY-NORM
READY

@.008 -0.021 2.000@ -0.084
0.818 0.060 -0.025 -0.001
9.628 0.003 0.004 -0.025
0.003 8,009 8.003 9.600
8.179 -9.003 0.028 9.018
2.120 ©.039 8.0606 ©.008
= TYT.INVERSE - IDENTITY
@.222D-15 8.¢ 8.162D-15
-Q.472D-15 0.111D-15 -0.226D-16
-9.208D-16 8.2220-15 @.165D-16
-0.555D-16 9.141D-15 0.0
9.5550-15 0.860D-15 9.191D-15
-9.197D-14 -©.888D-15 ©.1120~-14
OF ERROR MATRIX = 0.649D-14

2.09%4
-0.904
2.0600
-9.921
-g.008
0.041

9.651D-16
0.128D-15
~-0.173D-16
0.295D-16
@.444D-15
©.694D-16

-8.3300D-02
-0.122D-61
-@.123D-01
-9.157D-91
©.250D-061
6.250D-01

©.278D-16
9.971D-16
©.971D-16
-0.668D-16
-9.278D-15
0.666D-15

Table 8.3 - Inversion of a Toeplitz matrix with ill-
conditioned leading submatrix of order 3
using TZA and 2-choice PTZA.
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9. AVOIDANCE OF ERROR GROWTH IN PABSA FOR PTZA.

We perform an analysis similar to that for PBNA (Theorem 5.4.1)
to show that the possible serious error growth in TZA, as evidenced

by exémple 6.1, is avoided in PTZA (or PABSA). The result is:

Theorem 9.1 Let rel m( k) rel %(k_l)rel ték—l) and rel ték_l) be
(-k (k ~(-k)
<R, e =|t Ny o=t )| = ~<im (9.1a-g)
Then: (i) rel %(k) < uRBG/a, where Ry := (1+B§%cond Tk(u/e)g)/(Z—Bcond Tka/e)
where Rl := R(1+20/8) and B := Hﬂl/HTﬂl
(ii) rel a(-k—l) < WB'Rg cond Tge/u, where
Ry 1= R/(1 - 8" cond T(8 cond Ty + 0/a)),
R a 1
R, := R, (1 +5—- .
2 Ry 8 B! condTE
R4 := R3(1 + Bcondia/@), 3 R (1 + evel m )/uRzﬁ),
B! = ITJATY, Ry i= R(1 + &/0)
(iii) rel tg_k'l) suBZB'R7 cond Tg(g)-cond T, eond 119
where R7 = R5/(1«-BB' cond Ti cond Ty, e/o)
Proof: We proceed by following the errors through in the same

way as for PBNA (Theorem 5.4.1).
k+1

(i) From (7.8b) da < 2 6( ( k)_t) < uR9, where

8 := ;-k)HIH and E; ke m%xlangl (9.2a-c)
Similarly &e < WRr® - (9.24d)
Note that 6 is an upper-bound for t(az)

Applying a forward error analysis to (8.13a),and using

(9.1b), (8.12), (9.1c), (9.1d) and (9.1a), we get

|67( | < ucem n(2) 4 |mit %) R 0/0) 9.3)

where RJ := R(1+20,/0).

ey



170

T
L—

~(k-1)T t(k—l)

It is easily shown that (Tk )1 =m / 0 , SO |

~(k-1) (k-1) “
Mo slto |eond TkAITﬂl (9.4) :

3

Also, using (9.2b) and (8.12) '
(1) #

0 I

my ] = o 7 (9.5) 5

oll 71| %

Putting (9.4) and (9.5) in (9.3), we get

lsmiH | < uRJ(e/a)lmk%;;ﬁ)l(1+3(R/Rl) cond T, (/0)%),

where B.:= HZH/HTkH (9.6a,b)

Also from (8.13a)
’ ~(k) ~( k) ~(k-1)

M | K marac = Moo (9.7
Putting (9.4) and (9.5) in (9.7) yields

~ ~(-k '

k) > I, =K | (1-Beonar (o/8)) (9.8)

QED (i)

Result (i) follows from (9.6) and (9.8).

(ii) We continue following the errors through step (-k-1)

as we did in Theorem 5.4.l,replacing the tgii) by

m(it) I by 6/ and § by o/b.

~(k ~(k - k k
A < g 09 1o iy ptim_ge g V1870 |/

N( )lrel M3 (1+rel E(k)/rel ﬁ—k—l) (9.9)

G(m;k

Im_k_

Eqs. (8.14), (9.2d) and (9.1d) give

rel m_j , < UR,8/e, Ry = R(1+€/8) (9.10)

Putting (9.10) and (8.14) in (9.9), and using the fact
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eq. 5.0.4)  that [t |=lefE |15 1prconary,

T
" . Il kll ’
)
/';n(k) \
(k) : “max '
Slm g gy ) < ,wssve\lt(k_l)l,cond r
0 - )
. ~(k)
where R3 := 32(1+e rel m /uR2e). (9.11a,b)

Using (9.4), (8.13@) and (8.12) we get

~(=k)
~ (%) (2-1) 1 (%% T Mo\
m o< |t [ +
mae 0 \ "Tﬂl ol ),

(9.12)

Putting this in (9.11a) and using (9.2b) we then get

6(m_k_1%§k) uR B! cond TZ = k)e/a s
where R, := RS(1+8 cond rka/e) (9.13)

So from (8.15a) and (9.13),

|| < ur B cond T (8/0),

d
R a 1
where R_:=R (1 + 5+ 5« — % (9.14)
5 4 Ry ) B'condTg
Also from (8.15a),
~(-k-1) _ ~(-k) ~(k)
Moz Z Moz~ |m M_k-1 maac‘
. s ~(k)
Using the definition of m_, . and majorizing m

using (9.12), and using (5.44) and (9.2b), we get

’;Ir;;];—l) > N;ai) (1- B cond TE(B eond Tk + 6/0.))(9 153

Eqs. (9.14) and (9.15) give result (ii). QED(ii)
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¢

(iii) Using (8.15c), 8t _ < max

(-k-1) l ~(-k- l)l St
g "3 i k+2

which, using (9.14),

WRr B' cond Ti %;;i)(e/a)uzu, which, by lemma (4.2.3)
< pR5BB' cond Tﬁ cond Ty, (6/a) Tl (9.16)

It can be seen from (4.2.7) that

lt(—k-l)

~(-k-1)
4 I

et k+2") (9.17)

| <cona Tk+2/(m

By working through algorithm §.1, we have

AR g (DR

M, )/ (a tik"l))ﬁé‘k) (9.18)

il

By Lemma 4.2.3, |E£‘k)|

< B cond Tk’ S0

eqs. (9.16), (9.17), (9.18) and (5.4.4 ) together give

0

rel tf;k'l)s uBZB’R7aondT§cond?kcondi+2(&),
. €BB'
where R7 := R5/(l == cond Ti cond Tk)

QED(iii)
Discussigg

As an example consider the case where T is well-conditioned

but Tk 7 is ill—conditioned, with cond Tk = 10, cond Tg = 10,
-5
cond T§+1 , 0/0 = 55- and /6 = 10°°. Suppose also that 8 and

B! are about unity. This will be true for well-balanced matrices.

Thus R, = R, =, £ R, £ R (in general R, will be a modest multiple

of R), so the increase in relative error bound from step (-k) to
step (k) is about ©/a = 20, and from step (-k) to step (-k-1) is
Y/o - cond Ti = 200. For TZA, the increase in relative error bound would be

expected to be about 8/ = 105.
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10. PIVOT SELECTION STRATEGY
Recall from Chapter 5 we selected a pivot tg_k) satisfying
|t("k)/t(_k)| > §. However, 7% is no longer available in PABSA.
J max ma.x

(-
tﬁ k), but it may not be very

© (defined in 9.le) is a bound for
tight. If, we use either the 2-choice scheme or a multi-choice scheme
with BPC for backtracking, we can use the multipliers 1in our pivot
strategy. From the backward error analysis of BNA, we know that the
growth in the perturbation matrix at each step (*2) 1is bounded by
(1+|mii|)' This result suggests that the following heuristic will

work for the case in which a few {Ti} are very ill-conditioned, and

the rest are well-conditioned.

Procedure 10.1

1. Let g be the target upper-bound on the growth in the
perturbation matrix at each step.

2. Execute ABSA, until at step (kJ, (1+|mkl) > g, where

o (k-1) , (-K)
me =ty [ty
3. For a 2-choice pivoting strategy, do 3A, else do 3B
3A. Select tg—k) or tfi?; to minimize the multiplier

3B. For the more general pivoting procedure, execute
the following loop

3B.1 Set p=0, gq=0.
3B.2 Repeat
3B.2.1 p<p+l; q+qtl
3B.2.2 If p=I1, move zero-bands up one place

using BPC. If p > I, move zero-bands
_of outputs of previous execution of

3B.2.2 up one place using BPC.
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3B.2.3 If p=1, move zero-bands of original

T(_k),T(k_l) down a place using BPC.
1If p > 1, move zero-bands of outputs
of previous execution of 3B.2.3 down a
place using BPC.

(-k) ), 727;)

. L(=k) ,, (k)
Until |t t > g-1
mtil | . /_p > ¢

plz g-1 or It-k—p
or p = n-k (10.1a-c)
t('k)

3B.3 If (10.la) is true, use , as pivot; if

(10.1b) is true, use tf;?; as pivot;
otherwise use the pivot that minimizes the

multiplier.

11. CONCLUSION

Error analyses have been pecformed on Toeplitz factorization
algorithms showing that they are unstable; a simple example is
given to show that Toeplitz inversion is also unstable. Pivoting has
been incorporated into these algorithms, and error analyses and
results show that the pivoted algorithms have a better numerical

performance than the unpivoted algorithms.
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CHAPTER 7

FAST TOEPLITZ ORTHOGONALIZATION

1. INTRODUCTION

We have so far considered ways of improving the numerical

performénce of 0(n2) methods to solve the Toeplitz set of equations

Tz = b . (1.1)

1

We now pursue a different approach, which, however, has
application to fhe accurate solution of (1.1). In Chapter 2, we
solved (1.1) by first computing the LU-decomposition of T. Because
of the structure of T, it might be expected that other common matrix
decompositions could be calculated in 0(n2) operations. In this

chapter, we consider the orthogonal decomposition

where § is orthogonal, i.e. QTQ = QQT = I, and R is upper-triangular;
we develop algorithms to calculate @ and R in 0(n2) operations. The
QR-decomposition of a Toeplitz matrix has received little attention
in the literature, though some related work has been done [69] which
solves the least-squares Toeplitz problem in 0(n2) operations using
lattice or ladder recursions. For the minimal design problem of

control theory, Kung and Kailath [56] consider the case where T has
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the special form

t; Iy - I
\ X
N\ N
\ A
\ AN
\ LY
T = 0 . \ (1.3)
N\
N \

\ \,
; I t

where the Ei's are vectors, and effectively compute the L& decomposition
(I lower-triangular), though L does not appear to be calculated explicitly,

but via the relation
L =71

The matrix in (1.3) is part of a '"wector circulant matrix".
The present algorithms can be extended to block-Toeplitz matrices (Chapter
8) and we conjecture that they can be extended to vector-Toeplitz (and
circulant) matrices as well. The presenf algorithm is described in terms
only of elementary matrix operations, assumes no knowledge of control
theory or polynomial matrix theory, which is required by [56]. Morf [65],
in considering minimal realizations, calculates R (but not @) for a
general (block) Toeplitz matrix by performing a "fast!" Cholesky factoriza-
tion of TTT. To see this, let R be the upper-~triangular Cholesky factor

of T, 'sb that

7 = 7R (1.4)
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But from (1.2) T'T = R'Q QR = F'R (1.5)
so that from (1.4), (1.5) and the uniqueness of the Cholesky factorization,
R=R. The algorithm described below calculates R(§ @) without forming TTT.
The present algorithms can of course be used to solve (1.1) and tests have
shown that it is more stable than methods not involving orthogonal
transformations. Other applications include the least-squares solution
of Toeplitz systems which arise in the Covariance Method of linear
prediction [60], [67], and in Prony's method for functional approximation

[46].

In this chapter, Section 2 describes an algorithm by Gill, Golub,
Murray and Saunders, which is used to develop the orthogonalization
algorithms. In Section 3, the first orthogonalization algorithm, FTO1
(FTO: fast Toeplitz orthogonalization) is presented. FTOl calculates
only R explicitly; a method will then be given to solve (1.1) using R
only. This method is a particular case of a technique for general matrices
which Paige [71] has shown to be numerically stable. The second
orthogonalization technique, FT02, which calculates @ and R explicitly,
is presented in Section 4. (1.1) can easily be solved when T is factorized

in this manner.

The next chapter will describe orthogonalization algorithms
that are about one-third faster than FTO0l and FT02, but are logically
more complex. It will also be shown how to halve the operation count in
all algorithms by using fast plane rotations [30] instead of the normal

plane rotations which are the basis of the FTO algorithms.
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2. THE GILL-GOLUB-MURRAY-SAUNDERS ALGORITHM (GGMS)

This algorithm [32] is needed for the derivation of the
orthogonalization algorithms in Sections 3 and 4. The GGMS algorithm
reduces a matrix which is the sum of an upper-triangular to a rank-1
matrix (UT+R1) to upper-triangular (UT) form. We first describe the
algorithm, then give some properties of the algorithm, which will be

needed later.

2.1 Description of the GGMS Algorithm

The GGMS algorithm reduces a UT+RI matrix to UT form in two
phases: first from UT+RI to upper-Hessenberg (UH), then from UH to UT.

The process may be illustrated as follows:

»

The rows below the subdiagonal are eliminated from the last to the third
using plane rotations. A typical stage of the reduction for a 7x7

matrix is

o o0 0 0 0 = X

Here, +'s denote the elements of a rank-1 block. If we choose a rotation
in the (4,5) plane to null the (5,1) element, clearly the (5,2) and (5,3)
elements will also be nulled by the same plane rotation since they are

part of a rank-1 block. Thus after this'plane rotation, we have
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o o o + + + 8
S © © + + 8 8
o o © + &8 8 8
o o 8 8 8 8 8
o 8 8 8 8 8 8
8 8 8 8 8 8 8
8 8 8 8 8 8 8

Thus rows 7,6,...,3 may be eliminated below the subdiagonal by suitably-

chosen plane rotations in the (6,7),(5,6),...,(2,3) planes respectively.

@ e ——

The subdiagonal elements are eliminated from the top-left to the
bottom-right, using plane rotations. A typical stage of the reduction

for a 7x7 matrix is

(=
l{"\h "
ok
8 8 8 8 &
8 8 8 8 8 8
8 8 8 8 8 8 8
8 8 8 8 8 8 8

The (4,3) element can be eliminated by a suitable rotation in the (3,4)
plane. Thus, elements 2,1),03,2),...,(7,6) may be eliminated by
appropriate rotations in the (1,2),(2,3),...,(6,7) planes respectively.

The general GGMS algorithm is stated in Algorithm 2.1.

Notation - We denote G($i) as the plane rotation matrix applied in the
(1,7+1) plane in phase I, and G($i) as the correfponding plane
rotation matrix in phase II. ‘We denote A% and Ai as the
transformed matrices after the application of G($i) and G($i)
respectively. This terminology is similar to Wilkinson's A(i)

in Gaussian elimination, [g9] which is the transformed matrix

after the ith column has been eliminated.
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Input The nxn matrix A of the form UT+RI.

Procedure {Phase I - UT+R1 ~UH}

1. Set AT <A.

2. For Z<n-1 downto 2 do {elim row i+1 below subdiagonal using

plane rotation G($i)}

141
i+1,1/r

2

A
2.1 cos $i < ai?l/r ; sin $i<-a

i1 2

it1.2 )
1+1,1

where r < (ail )+ (a

A

SN 5
2.2 A* “G($,)A

{Phase II - UH~>UT}

3. Set A" «A*
4. For i<1 to n-1 do {eliminate (i+1,7) element using plane

rotation G($i)}

g 5

v v
R 1-1 - -1
4.1 cos ¢.<«a..” /r ; sin ¢.<«a. .
¢1 i1 2 ¢z a¢+l,¢

' v v
V/-1:--1 2 1-1 2
where »r < (aii )7+ (ai+l,i)

¥

0 .V
4.2 4% <6(;) et

Remark It may be seen that the GGMS algorithm requires (2n-3) plane

rotations in all. These rotations require 4n2 + 0(n) operations

to execute.

2.2 Miscellaneous results - GGMS algorithm

The following properties of the GGMS algorithm will be required

later:
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Lemma 2.1 The product of the plane rotations that triangularizes 4 in

the GGMS algorithm is ’
n-1 . 2 .
s = T el TT 63
=1  ° -1 7

where the products indicated by II are defined by

k
T 4; = A dp g -+ 4y
=1
Proof Trivial
Definition Define the partial products
() .-=.TT G(¢j)
J=n-1

:
sT0hy) o= TT G(h) ¥ (by)
g=2 7

ST($.) and ST(E.) may be considered to be the product of all the plane

rotations up to and including G(¢ .) and G(¢ ) respectlvely

Clearly ST(¢ 1) = ST ST(¢ JA = A and ST(¢ ) = A

The following may then be shown:

Lemma 2.2
i "
ag; = Vg, ! =l)
Proof The plane rotations G(¢n_1), G(¢n_2), I G(¢i) modify only

rows 7 to n, so the norm of these rows is invariant, i.e.

]
t —
! Liin,1 =1 Gien,1 ; (2.2)

Lied k denotes elements 7 to J of the kth column of X.
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Also in GGMS, G($n—1)""’6($i) respectively eliminate

elements 7,...,%+1 of the first column (see comment on

Algorithm 2.1, step 1), so

dil =0, k=i+l,...,n
[ gi:n,l Il = ail (positive) (2.3)
and (2.2) and (2.3) = (2.1). QED.
Legma 2.3 cos $i = ail/ugi:n,lu ; sin $i =“Q¢+l:n,1“/"2i:n,1“
Proof In step 2.1 of the GGMS algorithm, iteration 7,
aé?l =a;q (2.4)

because G($n_1),.l.,G($i+1) do not modify row 7., Also,

from Lemma 2.2,

A
1¥1  _
ay1,1 = "41im, 1" (2.5)
A A
2, it 2 V/E | 2
and Vlayy )+(agyy )7 = Vagptlag g, g1 la; ., 1"
(2.6)

using (2.4) and (2.5). Putting (2.4)-(2.6) into step 1

of algorithm 2.1 yields the result. QED.
7’5 ai.
Lemma 2.4 aw = —la' ||gi:n’1|l B >3
71
Proof The plane rotations G($n—1)""’G($i) only modify rows

i to n, so the norm of these rows is invarient, i.e.

gt I = la. I
1N,y J —LIN,J
ai .
=4 |, I
a g1:n,1 2 (2.7
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because the elements of A below the diagonal are part of

a rank-1 matrix. Also in GGMS G(¢n—1)’G(¢n—2)""’G(¢i)
successively eliminate elements nyn=1,...,1+1 in the Jth
column (i>j) (see comment in step 1), so

a;j =0, k=T1+1,...,7

1% . = db, .
SO Q¢:”;J azg > (2.8)
and the result follows from (2.7) and (2.8). QED.
j v 2 ~ g g 4
Lemma 2.5 .S’Tg.j =T a(vy) TT 6o maLZTAR
1=1. 1= d
’ Aspq s
where o = LT2d g, I
a. =j+1:n,1
g1
2 21:4,5 |
] :ds
Proof gfgl := ST($j+1)g,j = a ; (2.9)
0

because (i) the plane rotations that make up ST($j+1)
' A
do not modify rows I to J (i) a = agii

. by Lemma 2.4
sd
(iii) the plane rotations in ST($j+1) respectively eliminate
elements 7,7-1,...,J+2.

v.

Also =0 (2.10)

o
J+1,d
because in step 4.1 of algorithm 2.1, Ej is selected to

eliminate the j+1,J element,

A
.

3¢

8

and

—j+e:n g%+2:n

because the plane rotationsG($j_1),...,G($j_1) do not
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modify rows j+I1 to n
= 0 using (2.9) (2.11)

so because of (2.10) and (2.11),

T _ I
ST_Q.J- = ST(d)n_l)g_.j g = ST(¢j)_q.j (2.12)

=Tir a(%.) Tgra(q‘b.)sT(&. P a
ig o C gy E Jt1’ =

: ;B
: 2 . =133
= i| G(¢i) [ G(¢£,) a , using (2.9)
=2 1=4 0

QED.

3. FAST TOEPLITZ ORTHOGONALIZATION, VERSION 1 (FTO 1)

Recall that we wish to find @ orthogonal and R upper-triangular
such that

T = @R (3.1)

In the algorithm to be described in this section, only R is
calculated explicitly. It will then be shown how Ax = b may be solved
using R only. In the next section jt will be shown how to generate g

in 0(n2) operations, if this is desired.

3.1 Outline of the Algorithm

We give a brief outline of FTO 1, pointing out how R may be
calculated in 0(n2) operations. We present only the main idea in this

subsection, leaving the mathematical details to the following subsections.

Let T have order 7, and denote the leading principal submatrix

of T as Tn (n—l)R(n—l) (n-1)

R(n—l)

Let Tn—l =q , where @ is orthogonal and

~1°

js upper-triangular. Then, the following will be shown later:
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(a) If T is Toeplitz, a certain matrix of the form

r & X ooy e e T Y

R(n—i)

may be converted to the upper-triangular matrix R by the application

of the GGMS algorithm, which uses (2n-3) plane rotations.

(b) R+C, where C is a certain rank-1 matrix, may be converted to

a matrix of the form

, s )

R(n—l)

L Q? < )

by another application of the GGMS algorithm.

The operations in (a) and (b) may be written compactly as

x £ - == ) ( z )
(n-1)
© GGMS GGMS N N
. (n-1) plane add plane o
i R > R C > R+C > - (3.2)
& rotations (rank-l) rotations .
| @ ) — =

Now the transformations in (3.2) require 0(n2) operations,

or 0(n) operations per column. The essential property is that because T

X . ] : -1 o N
is Toeplitz, a matrix with R(n ) as the trailing submatrix can be

converted to another with R(n_l) as the leading submatrix in 0(n2)

operations. This property enables us to calculate R(n-l) and (as a

by product) R in 0(n2) operations: writing out only the kth column*

*x. 4 denotes the kth column of a matrix X.
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of (3.2),
x GGMS GGMS r! Z“l)]
plane add plane
—> > (R +C). > 3 , (3.3)
gfz:i) rotations ko e 5 rotations l 0
we see that (3.3) suggests a recursion for calculating gfz_l) from EIZ:§).

The plane rotations in (3.3) require only 0(n) operations, so all of
R(n_l), and as a by-product, R, may be calculated in 0(n2) operations.
The complete procedure is summarized below:

1. Initialize r., and gf?_l) (easily done)

2. k<2

{Main loop}

' 2
3. Convert (n-1)| to r., by plane rotations
L L k-1 =k
4, Stop if k=n.
5. Add ¢.g to ., (C is a rank-1 matrix)

(n-1)
r.

6. Convert (R+C).k to —k by plane rotations.
0

7. k <« k+1

8. Go to step 3.

Remark Several details, such as the calculation of the rotation matrices,
the 'x's in step 3 and c-x in step 5 have not been discussed
here. This will be done in the following subsections, when the
algorithm is derived in detail. It will be seen that the
computation of these quantities is only a minor part of the

total work of the algorithm.
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3.2 Preliminary Results

The following results are basic to FTO. Here, the matrices

and transformations in (3.2) are derived.

Define é =

and let T be partitioned

t g? W
T =
= because T is Toeplitz
(3.4)
Then ‘ \ o ]
Fr = B : R (3.5)
Q(n—l)T v R(n 1)1

B is the matrix on the left of (3.2). Since R has the form UT+R1, the
GGMS algorithm can be used to transform it to R, an UT matrix,using 2n-$

plane rotations. Let éT be the product of these plane rotations. Then

&% =g (3.6)

The GGMS algorithm was described in the last section. We now assert
that R is the upper-triangular matrix required in (3.1), because from
(3.5)

7= Qr'= ()R ,
an orthogonal decomposition of T. The transformation (3.6) is the

first operation in (3.2).
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Next define 5 =

where u, v and t are as in (2.4) and f? denotes % with its elements

reversed.
T
Then R(n—l) Q(n-l)g#
dr =
RN
= B+e (07,00, vhere g, = [0,...,0,1]
T
g1 g(n=1) R
and R :=
R
5o R=3T- e (07,0 = T - G, (7,0))
RT RT
=T - e, 0,00) =TGR - e, (0",0))
- Fatr - e (FF,00) = Tar - gy, 00)
= ETQ(R+C), where C := -gﬁ (Q#ILO) (3.7)

Thus, (3.7) states that R+C, where C is a rank-one matrix, may be transformed
to E'by an orthogonal transformation, since 5 and @ are both orthogonal.

The GGMS algorithm can be used again to transform R+C to ﬁlusing 2n-3 plane

rotations. If §T is the product of these plane rotations,

= Yo WU

-

T e E I s
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5Tk = E| where R:=RiC =R - gﬁ (Q?T,O) (3.8)

The rank-1 matrix C is that added in the second operation in (2.2), and
the transformation (3.7) is the third operation in (3.2). Rewriting

(3.2) using (3.5) and (3.7), we get

. GGMS GGMS
t u? plane plane (1) Q(n—l)g€
rotations add rotations
> [R > |R+C| — > ‘
Q(n—-l)TE R(n—l) 2T C='_§Z£ (_U_RT,O) %; =T QT l . :
4 R
(3.9)

The operations in (3.9) form the basis of FTO.

’

3.3 FTOl - The Main Recursion

In subsection 3.1, we showed that writing out the kth column of (3.2)

(n-1)

yielded a recursion for the columns of R (3.9) is a detailed version

of (3.2), so writing out the kth column of (3.9), we have

g1 GOMS oams  [p%T)
rotations add rotations
— > r + c —_—
. =k T =k =k
Pt 1, kK dn. “n-k *. - , 0
e Ly .
Lo Lr
(3.10)

The transformations in (3.10) constitute a recursion by which
each column of R(n-l) and B can be calculated in O0(n) operations. However,
(3.10) cannot be used in its present form for Toeplitz orthogonalization,
because the GGMS plane rotations and the elements of q,. cannot all be
calculated with the available information. However, by using Lemma 2.5,
(3.10) can be transformed to a form which uses a subset of the GGMS plane
rotations and elements of gn.that can be easily calculated from known

quantities.

~pp-
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E—-

Doing this, we let {$i}i—1’ {E.}?-l be the plane rotations

that make up éT. Applying Lemma 2.5, the first transformation in (3.10)

-
P—

can be written .
Xk

— N

k . 2 . Up-1 }

ro o« T 6oy T Go | (1)

t=1 =k e 3

1

}.

uk-l | 4| |

n-1)| ° (3.11a)

Loy

where ST($k,Ek) denotes the product of all the plane rotations from

G($k) to G('¢k).

2 v, n-1 .
el? {ei}l be the plane rotations that make

up ET. Again applying Lemma 2.5, thé last transformation in (3.10) can ;

Now, let {éi}

be written

Loy
——
(n-1) T
Tk k2 o Fask,k T Vnek In, 10k
< ]T (o) T\' G(8) o ,
0 i=1 i=k k
0

i 2
v, Ni-lg, ;.07 -

where oy = U, % ] gﬂ,k+1:n I =

As in (3.11a), we rewrite this transformation as

151

r—"ﬁk
( (n-1) ( T
% L1,k ~ Pnk In,1:k
« sT(ék,'ek) op (3.11b)
0 0

“

where ST(ék,ék) denotes the product of all the plane rotationsfrmnG(ék)
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The transformations (3.11) can be written compactly as

req
— ( T
r '1 .
Uy 2k, kK Pn-k In, 1:%
plane
rotations add oy
T ¥ > 1)"k T? D
-I_’..(n—l) S (¢k,¢k) (-‘Un_k d;,l:k.’ ak’g ) o J
Loy,
T
plane gfz_l)
rotations
— > (3.12)

The transformations in (3.12) again constitute a recursion for

(n-1) A Ay
and R, but only {qni’ ¢i’ ¢; ei, ei}isk are

the columns of R
required, rather than all of the GGMS plane rotations as needed by (3.10).
This subset of the {qni’ ¢i’ ¢i’ ei, Gi} is easily calculated from known

quantities. This is most conveniently done by presenting FTOl, and proving

the relevant formulae.

3.4 FTOl - The Algorithm

The algorithm in outline is, as we have seen:

. . (n-1) -~ - . ~ A
1. Initialize 2.5 r.y , ¢1, ¢Zand 9y (Note - there is mo ¢1 and 61).

2. For k<2 ton do

2.1 Calculate $k’ $k’ 6k’ ék and Dt from known quantities.

(n-1)

2.2 Calculate 2.4 and g,z_‘ using the recursion (3.12) {end of outline}.
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The algorithm in detail is presented and proved in Theorem 3.1.

Theorem 3.1 Let T be an nxn Toeplitz matrix, and let @ orthogonal and

R upper triangular such that T=QR. Then R may be calculated

- v

in 0(n2) operationsby the following algorithm, where all

intermediate quantities (except ci;="£i:n,1"’ Oi:="g¢:n,1")

are as defined in the foregoing:

Algorithm 3.1 - FTQE‘(Programmed on p.A.48)
{Initiélization}

S LI

2. Tp* oy ey

3. f11<-t11 . {R is as in eq.(3.5)}
4. o, « rpy {og o=z, i}

5. 65 < et

6. cos $1 < 511/51 ; sin 71)1*52/51

7 qnl(—tnl/rll

N/ ~
8. 62 < l-qnl {ci 1= "gi:n,lu}
9. F171%731 " U1 Pua

10. cos 6, <« rll/rll s sin B, < t1102/r11

{Main loop - calculate 2. and L. from i and r. .

11. j<2

(n-1) (n-1)

(n-1) (n—l)}

J-1

{Phase I -~ calculate 2 using eq. (3.11a)}

12.1

r . . €
—J:J:J

[#15

(n-1)
~:5-1,3-1
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12.2 if j#n do {calculate and apply G($j)}

. (n-1)
Yo, /7

12.2-1 Pj.7+(zj-1 - E r. j—l’j—l’

12.2.2 &. . <52 - 32 (6. :=1ln I}

12.2.3 cos q>.<—r'jl/cj ; sin ¢, =
12.2.4 _z';.j+G($ )r.

12.3 if j#2 do.{rest of GGMS upsweep}

12.3.1 for i <j-1 downto 2 do g.jw(&i)g_.j

{GGMS downsweep, excluding G(Tbj)}

12.4 for 4<1 to j-1 do . .<G(¢.)P.
or 1 oJ 0 Zes* (¢%)£J

{if j#n, calculate and apply G(}'bj)}

12,54 if j=n then Z'—'g'"-é’j 5 stop

r.. P .
12.5B else 12.5B.1 »r.. <—\/z°2l .+r'2. . 5 cOS ¢.+-ﬂ-; sin ¢.<——'711—“1 :
— Jd Jd "~ J+1,d J r.. J 7.
. \ dd Jd
.. .
=1:5-1,4g
12.5B.2 r..<| P..
—d Jd

0
. )



(n-1)

{Phaée I1 - calculation of L using eq. (3.11b)}

{Calculate § apply G($j)}

J-1
12.6 gq .« (t .- q,: Los)/Ps:
ng ng 4=1 W Jd
o~ ~2 2
12.7 . 0. - .
J+1 J .qng

>

12.8 8.<q ./5. ; sin 8. « T, .
| cos 6 an/crJ ; sin °g+1/5;]

J
f r -t T 1
22:5,5 " ‘i n,1:7

, < -t .0

12.9  F!, I

9

12.10 F!. < G(8.)B!.
=J (J)“J

{Rest of GGMS upsweep}

12.11 if j#2 do

12.11.1 for i<j-1 downto 2 Qi-’f‘”ai)i-'j

{GGMS downsweep, excluding G(8 J-)}

12,12 for <1 to j-1 do i.'j+G(Bi)i.'j

{Calculate and apply G(vej)}

(n-1) A ~ 2
12.13 21 it p w1l
T3 \/PJJ F+1,7
i ~ W
r! . .
=1:9-1,9
(n-1) (n-1)
12.14 2" n
S S P S

0
S )

v ~
: cos B.,<«rl./r..

(n-1)
dJ Jd’ Jd

N ¥
3 sin ©

J
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o~ (n—l)
P! Jr. . :
J+1,J/ Ji ’



12.15 g < j+1

12.16 Go to 12.1

{End of main loop}
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The proof for each step of algorithm 3.1 is indicated in the table below.
Step Proof
(n-1)  _(n-1), _ (n-1) _
1 o P IR I PO I L P gL
2 Similar to 1.
3 Defined in eq. (3.5)
4. Definition - See comment on step 4.
5 Use the definition ¢. := lir. I
1 —:n,1.
6 From Lemma 2.1.
7 Equate (n,1) element on either side of T=@QR
8 Use G, := “gi:n,lu (see comment)
9 Defined in eq. (3.8).
10 If GGMS is applied to %, we get by step 3, algorithm 2.1:
~0 _ 2 !
¥, =Ty (3.133)
N ?11 because G($n—1)""’G($2) do not modify row 1.
Also rg =r§ (3.13Db)
= ng:n,lﬂ = G,t,, using Lemma 2.2 and the
definition for Ei .
Then step 10 follows if (3.13a) and (3.13b) are substituted
in step 4.1, Algorithm 2.1.
11 J is the row counter.
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Step Proof
12.1 Defined in eq. (3.5)
. _ An-1)T . _ (n-1)T(n-1)
12.2.1 By eq. (3.5), 22:n,1 =4 EQ:n,l ; but Tn—l =@Q R )
so Q(n—l)T = R(n”l)_TTI hence r = R(n—l)—TTT
- n-1° =2:n,1 n-1 =2:n,1
=T
o z, so r,  may be obtained by back-
- - - (?’l—l ) T . n
substituting in R Ez:n,z =2.
12.2.2 Use the definition 0j+1 o= “£j+1:n,1"'
12.2.3 _From Lemma 2.

12.2.4, 12.3, | These steps constitute the premultiplication of igj

12.5A, 12.5B.1 k .2 X
by 1 G(o,) TT G(3,), hence by eq. (3.1la) the
i=1 i=j

output is Bosg -

.V
12.5B.1 The output of step 12.4 is 2951. Substituting this in

step 4.1, algorithm 2.1 yields 12.5B.1.

12.6 Equate (n,J) element on either side of T = gR.
12.7 Definition 041 1= "gn,j+1:n“
12.8 Follows from Lemma 2.2 and the definition of 7 ; (eq.3.9)
12.9, 12.10, These steps constitute the premultiplication of the
12.11, 12.12, vector on the right of eq. (3.11b) by
and 12.14

i,z

1T erey) 1T arey)

=1 =]

(n-1)
Z.4

hence by (3.11b) the output is
0
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Step Proof
| ~jt1
12.13 By eq. (2.9), the RHS of step 12.9 is ¥, s, so the output
g P
of step 13.12 is

J-1 2
G(o,) TT a(d,) :J;J - :351

1=1 =7

Substituting this in step 4.1, algorithm 2.1 yields 12.13.

QED.
3.5 Solution of the System Tx=b using K only.
T can be decomposed in the form
T = LW (3.14)
where I is lower-triangular and W is orthogonal. Then
T = b
= LWz =D
so x = Wzl (3.15)

It has been shown by Paige [71] that the system (3.15) can be
solved stablyfusing L only by substituting W = ir (obtainable from

3.14) in (3.15), yielding

z =157 (3.16)

It is easily shown that LT = R, where R is the output when

FTOl is performed on TT.

*1f the accuracy of L is comparable to that obtained using
normal orthogonalization techniques, then relx=0(ucondT),
rather than 0(ucond2T).
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4. CALCULATION OF BOTH @ AND R EXPLICITLY : FTO 2

In this section, we extend FTO 1 to calculate @ explicitly,

as well as R. Some preliminary results are given in subsection 4.1.

. T . 3 . .
A column recursion for @ is given in subsection 4.2, and a row

recursion for QT is given in subsection 4.3. In subsection 4.4, the

row recursion for QT is combined with FTO 1 to give FTO 2, which

calculates the columns of R and rows of QT (i.e. columns of @) together.

4.1 Preliminary Results

The notation is as in section 2.2, and the results are

analogous to eqs. (3.6), (3.8) and (3.10).

Rewriting (3.5)

SO
therefore

We also have

Or =k

STQTT = éTﬁ = R using (3.6)

5% or ¢ = & (4.1)

T = QSR = Q

G (T-e, (v ,0)) = R - @ 7,00 =

2y

gTQT(T - gﬂ(QFT,O)) ~5R=R using (3.8)

SO

or T - _e_n(y_RT, 0) = (g3)R . (4.2)
But Fr - e,(7,00) =R

or T - _e_n(y_RT,O) - 3R, (4.3)
and (4.2) and (4.3) =@ = @5 or F =5 - (4.4)

For convenience denote

yio= o, ¥ Do g T 2§ and T = i (4.5)

then (4.1) and (4.4) become

(4.6a,b)

=2
I

A

=
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Note that these results are analogous to (3.6) and (3.8). -

Writing f and ¥ in (4.6a) and (4.6b) explicitly, we have the transformations

GGMS GGMS (n-1)
1 . . Y
rotations .[ rotations
> Y ] > (4.7)
\___._v-q_——/ \_'___"f"__’
Y Y

This is another transformation of the type in (3.2) or (3.10), in which
a matrix with Y(n—l) in the trailing submatrix is transformed to one
with Y(n—l) in the leading submatrix in O(nz) operations. This property

(n-1) (and, as a by-product, Y) in

can be used as before to calculate Y
0(n2) operations. We present a column recursion which can be used only
when all the GGMS rotations have been previously calculated (say by FTO 1),
and a row recursion in which only $. E., 8. and Bj are required to

Jd J d
(n-1)  The vow recursion is required if FTO 1 is to

calculate Hj and
be extended to calculate @ explicitly, since not all the GGMS rotations

are available during the execution of FTO 1.

4.2 The column recursion for Y

Writing out the jth column of (4.7) we have

,

0 GGMS GGMS y (-1
rotations y. rotations J
_— *d —_— (4.8)
(n-1) ST 32 0
< j" 1
L\———w-——J \__N.,,___J
E. j E- j
which is the desired recursion for the columns of Y(n_l) and Y. As

noted before, all the GGMS rotations are required, so FTO 1 must be

run before the recursion (4.8) can be executed. The algorithm is
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Algorithm 4.1 - Column recursion for Y

t——

1.y <€) = [1,0,...,0]

2. j+2
{Main loop - one pass for each column of Y and Y calculated}
2T
3. e < Sy,
Y- LA

4. Stop if j=n.

5. .er < Eﬂébj

(n-1) _ =
G 4 C Y1in-1,5
7. J<g+l
0
8 Hej | (n-1)
Y51
9. Go to 3.
 Proof Step 1 is clear from the L.H. matrix of (4.7), and the main

loop is simply an implementation of the recursion (4.8).

QED.
4.3 The row recursion for Y

The calculations are essentially the same as in the column

. -1

recursion, but they are re-arranged to calculate Y and Y(n / row-by-row,
and only $j’ Ej’ §j and Bj are required to calculate the jth row of these
matrices. Before presenting the row-recursion, we need some preliminary

definitions and results.

Preliminaries

Consider the plane rotations that convert Y to Y in (4.7).

J A .
Define Vo= T 6(6.)Y (4.9)
k=n-1 J
¥ B 2 .
¥ = Ti( ch.) TT 6(é.) ¥ (4.10)
k=1 I k-1 Y

-

¥/ and ¥¥ can be considered to be Y after the application of G($j)
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~

and G(Ej) respectively, The definition for v/ and ¥ are analogous to

definitions for A% and 4% in the GGMS algorithm.

. A v
. (1) _ *d «(2) ,_ sd-1 «(3) ,_ :d-1 _
Next, define Hj. o= Hﬁ- 5 Hﬁ. . Hj. and ﬂj. : Hﬁ- (4.11a-c)

The significance of the definitions (4.11) is as follows. Consider what
happens to the jth row as the GGMS rotations are applied to ¥ on the
L.H.S. of (4.7). Row J§ will only be changed by G($j), G($j_1), GK&j-l)
and G(Ej). So ﬁg?), éé?) and Hé?) are the results of the first, second

and third changes to row j. The result of the fourth change is Hﬁ .

If we now consider the plane rotations that convert Y to 4
in (4.7), we may define YJ, YJ, ygl), HQZ) and yég) in a manner analogous
to definitions (4.9), (4.10), (4.1lla), (4.11b) and (4.11c) respectively.

Define the compressed rotation matrix for angle Y by

cos ¥ sin ¢
T(y) :=

~sin ¢y <cos ¥

Then the following results may be easily shown:

Lemma 4.1 (i) [ (1)) ()
- 3 X Y.
=T($.) (4.12)
- (2) J (1)

i+1. i1,

( ( A

(i) Y W .(3)
g ] i

T YR (4.13)
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Lemma 4.2 (i) ( (?) ) ( . )
o = r(éj) 7 (4.14)
-11,7+1.J L%H'J
a [z | £ )
(3) = r(Bj) (2) (4.15)
i+1. i+1
( J u )

The recursion

By re-arranging eqs. (4.12)-(4.15), we obtain a recursion for

s(1) «(2) (3) (1) (2) ~ 4 (3)
Yip1.» Yge1.0 L0 Hjpa.0 Hgpn.0 Lyea.o 20 00 Yip1 *

Writing the first equation in (4.12) with géi; on the L.H.S.,

(1) _ (1) - A LA

Hj+1. = (Hj. yﬁ.cos ¢j)/51n ¢j (4.16)
Writing the second equation in (4.12) and both equations in (4.13)
explicitly:

ééi; B 7éj. sin ¢ + Héi; cos ¢ (4.17)

- .(3) Y, N (2) . v,

yﬁ. = Hj. cos ¢j + Hj+1 sin ¢j (4.18)

s (3) «(3) _. +(2) "

Hg+1 = 'Hj sin ¢j + yj+1- cos ¢j (4.19)
Writing the first equation in (4.14) with ﬂgi;.on the L.H.S.,

(1) (1) a .2
Ej+1. - Y, cos ej)/51n ej (4.20)

Writing the second equation in (4.14) and both equations in (4.15)

explicitly:
(2) _ (1)
Hj+1. = Hﬁ. sin e + Hg+1 cos eJ (4.21)
_(3) (2) v
u; = 4;. cos 6 + L1, sin Bj (4.22)
(3) (3) (2) “

Hj+1. = -Hj. sin e + ﬂg+1 cos eJ .23)
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Using the definition of Y and f,

Hipg, = (0 B 1im-1/ (4.24)

The set of equations (4.17) -~ (4.24) is fully recursive, thus we have
our desired recursion for the rows of Y and Y using $j, éj’ éj and éj
only. Some initialization is required, but we postpone this to the
next subsection in which the row-recursion for Y is combined with FTO 1
to produce an algorithm which calculates recursively the rows of Y and

/
the columns of R.

4.4 Calculation of R and Y in 0(n2) operations - FTO 2

We simply present the algorithm and prove the steps involving
the calculation of Y. We do not repeat the steps which are the same as

in FTO 1, but refer tothem by step number in algorithm 2.

Theorem 4.1 A Toeplitz matrix T may be factored in the form T=QR, where ¢
is orthogonal and R is upper-triangular, in 0(n2) operations
by the following algorithm. All notation is as in the

foregoing.

Algorithm 4.2 - FTO 2 (Programmed on p.A.54)

{Initialization}
1-10 Initialize r(n_l) » v G,y P g @ (=y, ), ©
) 11 > Y1710 “171° TP T11° T2 I U151’ %22
¥,, and 61’ as in steps 1-10 of FTO 1.
(n-1) _ (n-1) . (n-1) ~ (n-1)
11. Yy _1 n-1, /717 H'PY « (0, sy ) s dge <Yy, s 0) ;
T
y +£'_1. g, =
1 rq 1 —1
L] 1 q 3 -
12. Hé_) <+ (HJ_ - Y45 coOs ¢1)/51n ¢1 H yé ) < =Yy, sin ¢1 + Hé )cos ¢4
13. Hé?)+ (EJ. - Y. cos él)/sin 61 H yfg) -4, sin e + yél)cos él



204

{Main loop - calculate gﬁj, gf@ﬂl), Y and Ys,

(n-1)
J }

14. Jg<2
{Phase I : calc. Efj using eq.(3.11a), and Hj using eqs. (4.16)

-(4.19)}

15.1-15.5 Same as steps 12.1-12.5 of FTO 1, but replacing step 12.2.1

of FTO 1 by

. (n-1)

ri1% Y51, Loin,1
/

{Calculation of H&'}

. (n- 1)
15.6 Hj.<-(0 yﬂ 1.
’(1) ’(1) a . n . 0(2) . A .(1) ~
15.7 Hj+1 < (y - Y5, cos ¢j)/51n ¢j E Hj+1 Y, sin .-+gj+1.cos ¢j
= (3)
o E'
15.8 “. . J
c5) | T L2
Y511, i41.
. . (3)
15.9 If j=n, set Yy, = Yy and stop
(n-1) (n-1) .
{Phase II - calc. ». . using eq. (3.11b) and yﬂ using eqs.(4.20)-(4.23)}
{Calculation of r(q 1)}
15.10 - Same as steps 12.6-12.14 of FTO 1, but replacing step 12.6 of
15.18  pro 1 by
qnj < yjn
{Calculation of lf 1)}
(1) (1)_ A .2 (2) _ (1) -
15.19 Hg yﬂ Hj cos ej)/51n ej u3+1 gj> sin € & + Hg+1 cos ej
yj' Hjn

15.20 ¥
(3) |© T80 1 (g
Yiv1. i1,



205

15.21 (.f"l) “Higipe1
15.22 J <« g+l
15.23 Go to 15.1 {End of main loop}
Proof
Step Proof
1-10 Proved in FTO 1
11(i) Equate column 1 on either side of ' , = Y(n—l)TR(n_l)

11(ii), (iii), (v) |Definitions - eq. (4.5)
11(iv) Equate column 1 on either side of T = YTR
12(31) Consider the effect of the GGMS rotations on row 1

in the first 9peration of (4.7). Row 1 is only
changed by G(¢1), SO

Y4 4= gJ cos 61 + g;l)§in 61 = step 12(1)
12(ii) Because there is no G($1) yé?’:gg?)=_gi_ sin 51 +

gél) cos 61, by Lemma 4.1.

13 Proof is analogous to that for step 12.

14 Row and column counter.

15.1-15.5 Proved in FTO 1. The relation r. = {n_l)t follows
from the definition (eq.(3.5)). GTj-1. Zgin-1

15.6 Definition (eq.(4.5))

15.7-15.20 This is the recursion expressed by eqs. (4.16)-(4.23).

15.21 Definition (eq.(4.5)).
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4.5 Solution of Tx = b using @ and R

If Tx = b

then QRx = b
Rz =qb

*

which is easily solved.

5. CONCLUSION

Algorithms have been presented which calculate (i) F only
(ii) both @ and R, where the orthogonal decomposition of a Toeplitz
matrix T is T=QR. The methods are based on an algorithm by Gill, Golub,
Murray and Saunders, which triangularizes a matrix of the form (upper-
triangular+rankll) using plane rotations, and the shift-invariance
property of T is used to generate an algorithm requiring 0(n2) operations.
The actual operations counts are for an order-n matrix: (i)9£n2+0(n)
operations to calculate R only (ii) 25n2+0(n) operations to calculate
R and Q. In the next Chapter, another algorithm is presented which
requires only 7%n2+0(n) and 19n2 operations in cases (i) and (ii)
respectively, but is logically more complex. It will also be shown

how to use modified or 'fast!' plane rotations to approximately halve

all of those operation counts.

X FT02 can be used to solve Tx=b in Of) space, by finding
.fhe QR decomposition of T (LQ decampesition of T).
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CHAPTER 8

FAST TOEPLITZ ORTHOGONALTZATION IT

1. TINTRODUCTION

In the last chapter, we described algorithms to calculate,

in 0(n2) operations, the orthogonal decomposition
T = QR (1.1)

of a Toeplitz matrix R, where @ was orthogonal and R was upper-triangular.
Algorithm FTOl calculated R in 9%n2 operations* and algorithm FTO02
calculated both € and R in 25n? operations. In this chapter, we describe
several extensions to these results. In section 2, we describe an
algorithm, FT03, which is related to FTOl, but requires only 7%n2
operations to calculate R. In section 3, we describe an algorithm
FTO4, which is related to FT02, but requires only 19n2 operations to
calculate @ and R. In section 4, we indicate how £§§E_Givens transforms
can be used to reduce the operation counts in FTO3 and FTO4 by almost half.
Only one of the accelerated algorithms, FTOS (corresponding to FT03) is
given in detail, but the other . is easily generated by adding suitable

jnitialization and housekeeping to the fast recursions.

The accelerated routines are logically more complex than the

original routines because of the need to keep track of scaling factors.

In section 5, we describe some extensions to the work on
orthogonalization of rectangular Toeplitz matrices, solution of the
Toeplitz least-squares problem and orthogonalization of block Toeplitz

matrices.

*As in previous chapters, we count only multiplications and divisions.
The lower-order terms are omitted in the operation counts.
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The algorithms described in the following only apply when T

is nonsingular. The algorithms have been extended to cater for some

singular cases, but this work is not yet complete and will not be presented

here.

2. FAST TOEPLITZ ORTHOGONALIZATION VERSION 3 (FTO03)

In this section we describe an algorithm which calculates R

in 7%n2 operations, compared to 9%n2 operations for FTOl. The new

algorithm FT03, is logically more complex than FTOl, but the derivation

is analogous.

2.1 Outline of the Algorithm

Recall from section 3.1 of the last chapter, eq.(3.2), that

for T Toeplitz we could perform the following transofrmations

F _ - _ 1 = .]
) I (2n-3) (2n-3) N
GeMS add GaMs |
. (n-1) > R — R+¢ —> ||
" g rotations G rotations ;
x J |z

(2.1)

- - -1) -
(n-1) is the upper-triangular factor in Tn—l = Q(n J)R(n 1) (Q(n 1)

orthogonal), C is a rank-1 matrix and the GGMS rotations are the rotations
used in the Gill-Golub-Murray-Saunders orthogonal-factor update algorithm

[32]. The GGMS algorithm was described in detail in the last chapter.
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There is a more efficient alternative to (2.1) which can be

written
(2| - = ~ z) ' x )
N (2n-3) R (n-1) i
GGMS replace I1:n=1+| Inverse (n-1) |

) R (7’1-1 ) > R > RT —_— > R -

) rotations last row |V, t | transforms

@ - -~ x|x

\ 4 . J

(2.2)

where “inverse transforms are related to Givens rotations and have the

same operation counts. They will be defined in the next sub-section.
Eq. (2.2) requires 3n + 0(1) transforms (GGMS or inverse) compared to
4n + 0(1) transforms for 2.1, so the former procedure requires 25% fewer

operations than the latter. Here, as for FTOl, we can get a recursion

for the columns of R(n—l) and (as a by-product) R by writing out the kth
column of (2.2)
(n-1)
z 1, r,
B GGMS e Tnverse .
—_ > > _ (2.3)
(n-1) . ~k — -
5 7 | rotations o transforms z
The recursion suggested by (2.3) is:
1. Initialize r., and gf?_l)
2. k<2
{Main loopt}
x
3. Convert (n-1) to r., by GGMS rotations
r,
- k-1
4. Stop if k=n
5. Replace rnk(=0) with v ..
1,,(7»1—1)
-k by inverse transforms

6. Convert E‘k to »

X



210

7. k<~ k+1

8., Go to 3,

Remarks: Step 3 is performed exactly as in FTOl. The details of

step 5 will be given in the next subsection. The recursion

(2.3) calculates R and R(n"l) with 25% fewer transforms

than are needed by FTOl.

2.2 Preliminary Results

In this subsection,. we derive a method for converting

"1in-1 (n-1) -
BT to a matrix with R as its leading submatrix, as required
)

st
in the second operation in (2.2). We proceed by first describing a method

R(n—l) Q(n—I)TuR

to convert the matrix R :=

ST l "

RT

We then re-arrange this method so that given R and gn_=(2 ,t), we can

calculate the rest of E.

Calculation of R from R.

Define, as in the last chapter,

[ Q(n—l)

10

(2.4)

¢ E

to R by plane rotations.

?:?”5;7 —

W



Because T is Toeplitz, it may be partitioned in the following two ways:

Then

E has the form

.

e

———

-,
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)
T uR t uT
n-1 - -
= ¥ .'{
. (2.5) ’
RT i
L 2 t { 2 Tn..l é
R(n—l) Q(n—l)TER
= R (2.6)
RT t

, and may be converted to upper~triangular

form by applying n-1 plane rotations which successively eliminate n-1

elements of the bottom row from left to right.

after the (4~I1J)th plane rotation, we have the matrix R

the form

'};(1:-1) _

3

.

.’L‘H—r\nﬂﬂhxw
~

~ L]
-~ L]
~ .

To see this, suppose

Flen) which has

~ | o
0 ML - o~ o X TOW T

~ .
-~ -
~ .

~
0 = ~ 0 = = =~

1

J

(t,n)element

then the (%,n) element can be eliminated by applying a suitable rotation

in the (Z,n) plane.

Algorithm 2.1
5(0)+ %

1.

2%

For 1«1 to n-1 do:

~(1=1)2
2.1 pi < V{rii

The complete process is:

+ ;;z-j)g, cos e <—r(t 1)/b 3 3zne -er(¢ 1)/b

(2.7a-c)
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2.2
) ~(1) . ~(v,n1)
£i- cosei S@nei ¢~
« (2.8)
~(7) . ~(1~1)
T, —stnei cosei | T,
3. R« ECn-l)
Denote G(ei) as the 4th rotation matrix. Then, by algorithm
2.1,
n-1
R = SIE& where ST -rr G(O ), (2.9a-c)
q
where gl;Ai denotes Aq Aq-l . Ap for any set of matrices Ai' We used

this notation in Chapter 7.

The following results, which can be easily shown from Algorithm

2.1, will be required later:

ni?) = g;_, l1<i1<nl, 0<p<=z (2.10a)
gg?) =TI 1<si<nl, 2<p<mnl (2.10b)
Calculation of E from R and ;
l1:n=1- =N

We proceed by re-arranging the operations in Algorithm 2.1.

We use an inductive argument. Suppose r. and ?(? 2 are known. Then,

we can calculate zi-’ zﬁ?) and 6; as follows. It is clear that in (2.7a),
(% 2) & ~(7)

P =Trs and by (2.10a) and (2.10b) r, =r.. and v, =ris, SO (2.7) can

be re-arranged to give

s 2 ~(2-1)2_ _ . ($ 1) 7~
r. —-w/rii -r o s secei = rtt/r$$ tanei /r (2.11a-c)
Also from (2.10a) and (2.10b), N(f’ ~1) r. and }7{ ¢) =r; , so (2.8) can

be rearranged to give



*The orthogonal decomposition of an arbitrary matrix using plane
rotations and/or reflections is stable even for singular matrices.

The present algorithm may be unstable because the functions secH,

and tan® are unbounded. However, it can be shown that secGi,

and tanei are bounded by (HTH/HTn_JH) condTn_l. The algorithm
can be run on an augmented matrix, so that secei, and tanei are

bounded by (HTn+1H/HTnH) condT. In other words, secei and tanei

are large only if T is ill-conditioned.

- .

ol

T e e o -
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\—i‘ 1t
o (2.12)
() tand,  secd ;?“I)

Eqs. (2.11) and (2.12) are the desired relation for calculating ei, E.

t-
and ;;ﬁ) from r.. and r(t i and from the basis of a recursion for
calculating R el from R and ;h_. We call the transformation an
$N- - g See facing
inverse transform, since it effectively reverses the effect of (2.8). poge

The complete recursion is:

Algorithm 2.2 - Conversion of R to R by Inverse Transforms

N(O) « W, 4] | (2.13)

2. For 2«1 tom-1 do:

2 ~{1—1)2 . _ ) (1 1) ;>
-*'\/_ ;5 sech, rtz/rzz tand o / (2 14a-¢)
2.2 |7, secei —tanﬂi T )
(%) +-—tane secd li=1) (2:1%)
—1 7 Z ~7e

Denote H(ei) as the Zth inverse transform matrix. Then, by

algorithm 2.2, and noting that ;(7 =t r,.

Rl:n—l' Rl:n_1¢ - ,

=3 - where S = H(6 _ JH(B o)...H(0,) =,.g;|; A(o)
r’ﬂ' 7_), 5 t
_ (2.16)

Now, recall from the previous Chapter that the matrix on the left of (2.2)

is

-
W

(2.17)

Q

(nnl)TH R(n—l)
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a_nd. th.a-t STR = ,Rp_

.l Nl = 2 =
where ST = T G(¢i) T G(¢i) is the product of Givens
rotations, (2.18a,b)
Rewriting (2.2) using (2.17), (2.18) and (2.16) we get
T ( 1
t U GGMS R
- . 1:n-1
rotations
‘ éT > R | —_—
Q(n—l)TE g(n-1) 2PT, .
i . . N \
R
Piomsa R(n—l) Q(n—l)TgR
transf.
= (2.19)
s
|

The operations in (2.19) are basic to FTO3.

2.3 FT03 - The Main Recursion

In section 2.1, we saw that writing out the kth column of (2.2)
yielded a recursion for the columns of R(n—l). (2.19) is a detailed
version of (2.2), so writing out the kth column of (2.19), we have

for 1 <k <n

u (n-1)
k-1 GGMS L1in-1,k L.k
rotations First k
r
et T R : P
r_7 ST Yy k. 1nve£§e ransf. i
- _— =2 Sk
Tk (2.20)
Notice in (2.20) we use only the first k inverse transforms
k
5y = 1T H(e ) (2.21)

1=1
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since it is clear that the last n -~ 1 « k transforms have no further
effect on column k. Following Chapter 7, (eq. 3.12), we can rewrite the

first transformation in (2.20), yielding

“k-1 plane T1in-1,k
rotations
> P —_— - >
~ ¥ _-k
(n=1) | S ($,5,)
Lok-1 k* Tk Yu-k
(n-1)
r,
first k
“Inverse s I <k<m (2.22)
transf. 0
Sk

where ST($k,Ek) is defined as in eq. (7.3.11b).

The  transformations (2.22) constitute a recursion for the columns of
R(n—l) and R, and only {% $ 0.} are required at step k, and these

s Y 2 % Vilisk q P K,
can easily be calculated from known quantities. This is most conveniently

done by presenting FTO03, and proving the relevant formulae.

2.4 FTO3 - The Algorithm

The algorithm (in outline) is:

1. Initialize r ., gf?—J{ El .  (Note - there is no $1).

2. Initialize 61.
3. For k<2 to n do
3.1 Calculate $k and Ek from known quantities.
3.2 Calculate 7 4 using the first part of (2.22).
(n-1)

3.3 Calculate 7 4 using the rest of (2.22)

3.4 Calculate ek from known quantities.

The algorithm in detail is presented and proved in Theorem 2.1. Note
that the steps corresponding to steps 1, 3.1 and 3.2 of the Outline are

exactly the same as in FTOl1l, and in fact are FTOl steps 1-6 and 12.1-12.4.
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‘Note also that we use j instead of k as the column pointer.
Theorem 2.1 Let T be an nxn Toeplitz matrix and let § orthogonal
and R upper-triangular such that T=QR. Then R may be calculated in 0(n?)

operations by the following algorithm:

Algorithm.2.3 - FT03 (Programmed on p.A.72)

{Initialization - steps 1-6 are the same as in FTOl}

(n 1)

O VAR TP
' (n- 1)2

SV =Y )
3. r11<- tll
4. 01 < rll
5 c_. < r2 - £2

2 11 11

6. cos El < fll/él 3 8sin ¢, < 62/61

7. sech, «r l/r(” 1), tan®; « v, /T(”'l)

( -1) (n 1)}

{Main loop - calculate s and », from r.i g and 7,

8. J<2
{Phase I - calculate E'j using first transformation of (2.22). Steps
are same as for FTOl, Phase I}

tl-

J
9.1

I’l A B
~iidsd L(n=1)
-1:5-1,4-1

9.2 if j# do {calculate and apply G($j)}

j-2
i (n-1) (n-1)
9.2.1 I’jl < (Zj—l - 1;21 ri,J 1 1’+1 1)/ —l,j—l,

where 2 i= Ty sty g
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. a
9.2.2 0. < G, - 1
dJd

9.2.3 wwf—%ﬂ%;sm%+oﬁ/%
0.2.4 » .« G(6.)7
2. G0
9.3 if j#2 do {rest of GGMS upsweep!
9.3.1 for 2<«J ~ 1 downto 2 do %-j “ G($i)%-j

{GGMS downsweep, excluding GK&j)}

9.4 for 2<1 to j-1 do ».. <« Glo ) .
J-+ 8224 b5/L ;

{if J#n, calculate and apply G(Ej)}

9.5A if j=n, then g,j-e %'j ; stop
9.5B else 9.5B.1 1"--*—‘\/_’;42.,4-132, . 3 cos Tb_(.iﬁl; 37:7’1?1)-'(_ J+1.,J
: - Jd Jd J+1sd JOr.. J r..
Jd Jd
=1:5~1,g
9.5B.2 r .«
=g r..
Jdd
0
(n-1)

{Phase II - calculation of r.; using rest of (2.22)}

{First J~1 inverse transf. H(el)""’H(e' )}

J-1
(n-l)
ij secei —tanei Pij
9.7 for 2«1 to j-1 do “«
T ~(2) ~(1-1)
P”J —tanei secei Pnj
{Calculate and apply H(ek)}
- -~ - — -l
9.8 (n 1) / (J 1)2 ; sece,-er,./r{? 1), tanb . < r(J 1)/ (n )
g dd JJ- J ng Jd

{End of Main Loop}
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Steps 1«6 and 9.1-9.5 are the same as in FTOl and were
proved there, Step 7 follows by putting (2.12) and the
definition of ﬁ into (2.13b,c). Step 9.6 follows from
(2.12), steps 9.7, 9.8a carry out the application of

. r .
{H(Bi)yé to (L in=Tsd , so are true by the last part

v,
n-J

of (2.21). Steps 9.8b,c follow from (2.13b,c) and the

defintion of E. QED.

CALCULATION OF BOTH @ AND R EXPLICITLY: FTO4

In this section, we extend FTO3 to calculateq explicitly, as

Some preliminary results are given in subsection 3.1. A column re-

. } . . e . T,
cur51on‘f0rQI is given in subsection 3.2, and a row recursion for & is

. . . . . T .
given in subsection 3.4 In subsection 3.5, the row recursion ford is

combined with FTO3 to give FTO4, which calculates the columns of R and

rows of QT (i.e. columns of @) together. It will be seen that the

recursions have two phases, one involving GGMS rotations and the other

involving inverse rotations, introduced in the last section. The phase

jnvolving GGMS rotations is exactly the same as for FTOZ.

3.1 Preliminary Results

i gl DTy

As in Chapter 6, define

zlgT

Q(n—l)T

Y
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|
Q(nnl)T 0
and Y= =7, G.1)
J E
We showed in Chapter 7 that
v=s5Ty (3.2)

vhere ST is the product of GGMS rotations used in FTO1l, and defined in

(7.2.18).
Now we rewrite (1.1) T = @R (3.3)
and from (2.6) T = &, which with (2.9) yields

T = QSR (3.4)

If T is nonsingular and ros > 0 (as was the case in FTO1-FT03},

the decomposition T=QR is unique, so

eqs. (3.3) and (3.4) = Q=85 = Y =57% (3.5)
When T has rank p < n, then Rp+l:n.= 0 and Rl:p' and Q-l:p are unique

if R has the following form,where j(Z) is the index of the first non-zero

element of 2.,

ri (i) >0 1SEP
§(i) > §(i-1), 2<isp

(This form is related to the row echelon form, in which case the first

equation above is replaced by r; B = 1).
£

The procedure described below has been modified to cater for
some cases of singular T. We conjecture that it can be generalized to

cater for any T.

Recall from section 2 that R = S?ﬁ (2.9)..
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Eq. (2.9) could be rearranged to yield

Rl:n«1~ Rl:n-l
=5 | _

t r

- -

where S, the product of inverse transforms, is as in (2.16).

Similarly, (3.5) may be re-arranged to yield

~

Yl:n—l' Yl:n—l-
=3
gno gn
Yl:n—l- Yl:n—l-
i.e. =5 (3.6)
T
Yn. gn

Egs. (3.2) and (3.6) may be written together as

T
1 ] 4 GGMS Yiin-1-| inverse
rotations transf.
(n-1) | ———> | ¥ | ™ T >
g o ET En S
(3.7)
This is another transformation of the type (2.19), in which a matrix
with y(n-1 as the trailing submatrix is transformed to one with ym-1

as the leading submatrix in 0(n2) operations. This property can be used

2= (and, as a by-product, Y) in 0(n?) operations. We

to calculate Y
present a column recursion which can be used only when all of the GGMS
rotations and inverse rotations have previously been calculated and saved

(say, by FT03), and a row-recursion in which only ¢j’ ¢j and 6. are required
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to calculate yj‘ and gé?ﬂl). The row recursion is xequired if FTO3 is

to be extended to calculate § explicitly, since not all of the GGMS

rotations are available during the execution of FTO3.

3.2 The Column Recursion for Y

Writing out the Jth column of (3.7), we have

0 GGMS Y9emed. i inverse y(n-l)
rotations - Liad transy. )
. B e .| — 3.8)
(n-1) 7 Y. i =~ (
. - 0 )
Q°J-1 ST s ynﬂ
—
Y.d

The column recursion for Y can be written down immediately from (3.8).
Note that FTO3 must have been previously run to supply the GGMS and

inverse transforms.

Algorithm 3.1 - Column Recursion for Y

be ¥.1°%
2. J+«1
{Main loop -~ one pass for each column of Y and y(n-l) calculated}

3. Y% érg.j

4. Stop if j=n

(n-1)

g.j - gl:n—l,j

5. <8
) 0

Yng

_ 0
6 Y 41 % | (n-1)

Y.4

7. §<g+1

8. Go to 3.
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3.3 The Row Recursion for Y

Eq. (3.7) shows that there are.two main phases in the Y
recursions in the GGMS rotations and the inverse transforms. Phase I
of the row recursion is the same as phase I of the row recursion of
Chapter 7 - eqs. (7.4.16)~(7.4.19). We rewrite these equations here,

and note that Y. and Yy, must be initialized as in Chapter 7.

égi;. = (g;?)- ?j. cos$j)/sin$j (3.9)
;_/ﬁ; = b sind + g_/;i; cos} . (3.10)
y. = %(3) cos:bj + Zigié sin:bj (3.11)
Qéi;_ = —é;?) sin;j + Q;ié.coséj (3.12)

Phase II of the row recursion may be written down directly from

the inverse transforms without any re-arrangement:

~(0) _ T
In,1in-1 4 ' (Blc5)

r ‘
(n-1) _ )
gj. secej tanej gj,l:n—l
_ (3.14)
70 ~(§-1)
Yn,1:n-1 rEan8; 8gcl, Yn, 1:n-1
\ J \
. m.m N _ (nv-\l)
and from the definition Yip1. = (0, Y1 ) (3.15)

Eqs. (3.9) -~ (3.12), (3.14) and (3.15) constitute the desired row recursion

for Y. using $j’ Ej and Gj only. Some initialization is required, but this is
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postponed to the next subsection in which the row-recursion for Y is
combined with FTO3 to give an algorithm which calculates recursively the

rows of Y and columns of R with 75% of the transforms required in FTO2.

3.4 Calculation of R and Y in 19n2 operations ~ FTO4

FTO4 is presented in Theorem 3.1. All the steps involving R
have been proved in FTO3, all the steps involving Phase I of the

calculation of Y have been proved in FT02, and the steps involving Phase II

of the calculation of Y follow directly from (3.13) and (3.14), hence d

no proof is necessary. For brevity, the steps involving F which are

the same as in FTO3 have not been repeated, but referenced by their FTO3
step numbers.

Theorem 3.1 A nonsingular* Toeplitz matrix T may be factored in the
form T=QR, where @ is orthogonal and R is upper-triangular, in 19n2

operations by the following algorithm:

Algorithm 3.2 - FTO4 (Programmed on p-A.78)

{Initialization}
1 -7 Initialize r(n—l) r 7 T,y O E and 06, as in steps 1-7
» . 11 * Y1712 Y110 Y15 T2 V1 1 P
of FTO3.
(n 1) (n-1) (n-1) T g T
8. Y1, < 1. ne1,7/P11 5 Yg.t (0537 )5 ¥y Ea/Paad Yp7E
{same as FTO2, step 11}
(1) 5 -(3), . (1) =~
9. <—(al Yy COS¢1)/8$ﬂ¢1, y2 +—21.szn¢1+g2_ cos¢1 {same as FTO2,
step 12}
10 500/ = 0'; 37(1)‘ = -y tan 6, {eqs. (3.13, 3.14)}
. Qn,l:n-l - Y dpn,lin-1 J1,1:n-1 1 KISk tTe )
{Main loop - calculates r ., _(3“1) ; and Q(n 1y

11. J <2

*FT04 has been modified to cater for some singular cases. We conjecture
that it can be modified to handle any T.

B — e
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using eqs.(3.9)~(3.12}}

{Phase I n Calculate » - using eq,(2,22a), and gj
™e N B .

{Calculation of 2 j}

12.1-12.5 Same as steps 9.1 to 9,5 of FT03, but replacing steps 9.2.1
of FTO3 by rjl yJ 1= tz:n,l and adding "Qn.+ Qn." before the
Ustop" in 9,5A.

{Calculation of y J}
' (n-1)

12.6 = & (U )

' Y3 Yj-1.
i (1) (1) . n .o~ 2(2) . A s (1) -

12.7 Qj+1t*_(gj. ~- Hj.cos¢j)/stn¢j, gj+1f-'gj- szn¢j +y J+1 cos¢j

. (3)  _~ . (2) (3) . (3) - (2) v
12.8 ajf_zj- cos¢j + gj+1 s¢n¢ oo J+1 _Qj. szn¢ + y 4. cos¢j
(n-1) (n-1)

{Phase II - Calculate r n using (3. 22c) and using (3.14)}
y

.d
{Calculation of P(Z 1)}

12.9-12.11 Same as steps 9.6-9.8 of FTO3.

{Calculation of ;n_l)}
(n—l) ~(j-1) .
12.12 _J. 3_43.-‘1:”_13ece‘7 yn,l n_ltanej,
~(g) _ ~(F- 1)
Y 1:n-1 = Y. 1:m- ltane + an, seceJ {eq.(3.14)}

12.13 j<g+1

12.14 Go to 12.1 {End of Main Loop}

e
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4. THE USE OF FAST GIVENS TRANSFORMS

IN TOEPLITZ ORTHOGONALIZATION

In this section, we review fast Givens transforms (FGT's).
We then incorporate FGT's into FTO3, and describe an algorithm, FTOS5,
which is almost twice as fast as FT03. We indicate how to incorporate
FGT's into FTO4 as well, but do not state the resulting algorithm in
detail; as it is quite long, and can be easily generated by adding

suitable initialization and housekeeping steps to the fast recursions.

4.1 Review of Fast Givens Transforms

FGT's were first introduced by Gentleman [30], but Hammarling
[43] gives a clear exposition. A sequence of FGT's can be applied
without square-roots until the last step, at which point, » square-roots
are required to recover the correctly-scaled result. In addition, each
FGT requires 2n operations, compared to 4n operations and a square
root for a normal Givens transform. In incorporating FGT's into
Toeplitz orthogonalization, we are unable to avoid the square-root
computation at each FGT, but we can retain the 2n operation count per

transform.

The basic idea of the FGT is as follows. Suppose the operand

U

TOWS gi and gg are, represented in scaled form, i.e. as dlyg and dgyg

respectively. Applying the rotation 0, we have [90]

Q;T cosb sind dl ( gg
= ) 4.1
g'T -8ind cosb d2 yg (4.1

9 pt
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dl cosf d2 sind}

=

1

., T
"dl sind d2 cosh Yo
d, cosb 1 tane(dZ/d ) T
| 4 1 Y1
d, cosb tand (dl/d ) 1 £
2 - A Ya

T
11
=3 where di=dlcose, dé=dgcose
4t oL
242
EET 1 tane(d2/d1) y? H?
and = _ = @G , say. (4.2a-e)
géT —tane(dl/dz) 1 gg Qg

Eq. (4.2) states that to calculate the scaled rows after the rotation 0,

we premultiply the scaled rows by

1 (tand)/p
, where p := dl/dZ R
-p tanb 1

then multiply the scaling factors by coeb. Clearly (4.2) requires only

o2n + 0(n) operations.

If tand, cos6 and the scaling factors are not required explicitly,
then 512 and 521 may be calculated without square-roots as follows. The
analysis follows Wilkinson [90]. Suppose we wish to annihilate
Loy = d2y2t. Then from (4.1), we have

~(sind) dgy1p *+ (cosbldgyg, = 0 (4.3)
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By manipulating (4.3) and (4.2b,c) the following may be shown;

~ . d. , )
919 7 tand ( Z/dl) 2 th/(dly:lt

’ (4.4a-d)
e a; [(dlylt) / (dzyzt 2y2t) ]

2
dy’ = , [(dlylt)/(dlylt 2y27‘;)]

Notice only the squares of the scaling factors are used in
eqs. (4.4). Eqs. (4.4a-d) constitute the normal FGT. Thus the
FGT requires no square-roots during the reduction process, but if correct
scaling of the reduced matrix is required n square roots are needed at the end.
In our algorithﬁ, tand, cosé and the scaling factors are required explicitly,

so we must use the normal Givens method for calculating cost and sind,

then apply (4.la-e).

4.2 Incorporation of FGT's into FTO3 -~ Algorithm FTOS

The basic recursion of FT03 is eq. (2.22):

Up1 El:n—l,k

rotn's

n-1)| T~ - Lk >
Pl | 5 (4t Yok
e b v -
Lk Tk
(n—l)
—t (4.5)
inverse transf. 0
Sk 1 —_—

1%
&
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We will develop two proceduyes by which the plane rotations and inverse
transforms in (4.5) can be done in two instead of the normal four opera-

tions that are normally required. These procedures will be the basis

for FTOS5.

Consider the first transformation in (4.5). Suppose % % is

represented as

g Uy
r o = Tok = D (4.6)
~k o = Uk :
e (n_l)
D i
and r , is represented as
I1% W
'k < W=D (4.7)
Ik |

Then by (4.2), the plane rotations ST($k,Ek) may be carried out by FGT's
as in procedure 4.1. The superscript notation used in Wk, Wk, etc. is the
same as that used in Chapter 7 (Notational remark, algorithm 2.1- Wk is

the result of applying all the transforms up to rotation $k to W.

Procedure 4.1

-~

Wk .

1. wkk < wkk (4.8)
2 &k < & cos ; 4.9)
) kk kk k ’

x

3. rk+1,k « Ty sin % (4.10)
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4, For 7 <kl downto 2 do

A

1
. 1 (tan¢ )t /4,
41 e (b0« ek (4.11)
~ b $
n(tanqb?;)di d. +1 % 1
7 i
Yik . ik )
4.2 . <« o, (¢.) R (4.12)
7 ke bi+1
i+1,k 1+1,k j
"3 itl T A .
4.3 di+1,k <« di+1,k cosd, s d’ik+dik cos, (4.13a,b)
.0 Y Y . 9 7 o (4.14a-d)
5. Wyt Wy s dy vl Vg CUgy ot dl
6. For ©<1 to k-1 do
1 «inl
) 1 (tan¢ )dz+1/d
6.1  ,(4,) « L3 (4.15)
z.—
—(tan¢ )d / ii1 1
i-1
Yik A Yik
6.2 - < Qk(¢i) N (4.16)
t+1 k t+1 k
t 1 2 % *
6.3 dik(_dik cos¢ di+1,k+di+l,k cosé, (4.17a,b)
Jeel el K- k1,2, k ,2.%,
7. Ep vy vig s Trg [T )T Ty 171
cos; -#rkil/r ; d -edkil CO8G, 3 Wyq, <Py ,/d (4.18a-¢)
k™ Tkk TTkK> Tkk o kK K “kk kK Tkk :

It will be shown later (Theorem 4.1) that the scaling factors aik, etc.
are the same in all columns, so the @k($i) and @k(ﬁi), which depend

only on the $i’ Ei and the scaling factors, are also the same in all
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~ -~

3

¥
Lk L
7

The steps 4,1, 4.3, 6.1 and 6.3, in which the @k(¢£) and atfle etc. are

columns, Hence we may write ¢k(¢i) = ¢C¢ﬁ), etc., and d§+l etc.

calculated, may therefore be omitted except when i=k~I, i.e. when
-~ . 2
¢(¢i)’ d§+l etc. are first calculated for that value of 7.

Procedure 4.1 may be replaced by the following more efficient

procedure.

Procedure 4.2

k.
1. gy <l (4.19)
k. n
24 dk <—dk cosd, (4.20)
& . L
3. rk+1,k*"Pkk szn¢k (4.21)
1 (tand d%a
) 11’3/ 1
4. (¢, 4= o~ % 3
LFe tand,_ ), /dx 1
cki1 .
T R L ) YR,k |, Ur-1,%
dk <—dk cos¢k_1; dk-1<'dk—1 coséy_43 e <e¢(¢k_1) 3
Ykk Yrk
(4.23a-d)
i s
Yk Yik
5. For i+k-2 downto 2 do | 2 < o(3,) - (4.24)
Wirl, k Yitl, k
gl 3
Yik . Vik
6. For ¢<1 to k-2 do v <« ¢(¢i) A (4.25)
‘4 ¥

Wipl, k Vit k
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Q
1 @an&k_l)dk 1/
7. el 40 < . : (4.26a-d)
~(_tan‘&>k_1)d§:§/‘d;§—l 1
K2
°o_v e N wk'-l)k wk"‘l,k
K1 k-1 Y v
dk <—dk cos¢k_1, "y +'®(¢k—1) ~k01
Ykk Ykk
ki1 wkels k- k-1,2 )2,
8. e < dk Wi 3 <—-\/(r’ ) +(rk+l k (4.27a,b)
cos ¢k <« Pkk /Pkk’ tan ¢k <« Pk+1 k/rkk (4.28a,b)
71 v
dk < di cos ¢k; Wy © Pkk/dk (4.29a,b)

It is easy to see that procedure 4.2 requires only 4k+0(1) operations,
compared to 8(k) + 0(1) operations to compute ST(¢k,$k)% X using Givens

transforms.

Consider the last transformation in (4.5). We first need a fast
inverse transform (F.I.T.) procedure. This can be derived from the fast
Givens procedure (eqs. 4.2b,c,d) by observing that in a F.I.T; dl’ g?,
dé and géT are required and everything else is known. Rearranging (4.2b-d)
yields

. 4 > N r — -
dl = dl/coae 5 d2 = d2 co8b ; (4.30a,b)
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y? N yg - gg tan® Cdz/di) )
» (4.31)
vy = iy tand(d,/d,) + vy

Eqs. (4.31) constitute a F.I,T. Applying (4.30) for the first
k-1 inverse transforms in (4.5), calculating and applying the last inverse
transform as in FTO3, step 9.7 and assuming that the scaling factors are
the same in all columns (proved in Theorem 4.1), we get Procedure 4.3,

which transforms P'k to » , in 2k+0(1) operations compared to 4k + 0(1)

operations using inverse transforms. Note that Eﬁ%) = d(k)gé?) in this
procedure:
Procedure 4.3
~(0)
1. ow,' =0, g (4.32)
{First k-1 fast inverse transforms}
2. For 2«1 to k-1.do
{C4,C9: FIT coefficients, deflneg in 4.38}
_ (-1
2.1 wik =Wy - C (6. )w (4.33)
~(1) - ~(1-1)
2.2 w ke = 'CZ(Gi)wi W (4.34)
{Calculate and apply last inverse transform}
3. ~(k—1)"'d(k i) w % _‘ﬁ\/ 2 N(k-—l)Z (4.35a,b)
nk k 5 )
eos 0, < 1, /7 tan 9, < r(k 1)/? (4.36a,b)
k< Tl i k 4,368,
~(k), ~5(k-1) .3 abe =25 =
dn < dn cos 9y; dk<-dk/cosek, wkk<'rkk/dk (4.37a,b)

~(k-1) 15 , = ~(k-1)
0,00 « @R fa yeans,s cple,) « (4 /4,7 tansy (4.38a,b)
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We now prove that the scaling factors produced when recursion (4.5) is

implemented with FGT's, are the same in all columns.

'L+1 C'Z’L

% &zzl and d , be the scaling factors

Theorem 4.1 Let &

of row i when the first transformation in (4.2) is implemented by

procedure 4.1, and let d(i) and d(z)

and n when the last recursion in (4.2) is implemented as in FTO03, but with

be the scaling factors of rows < and n

fast inverse transforms. Then these scaling factors are the same in

all columns, and are given by the recursion

dgg = d; i= dm) d(O) =1 (4.39a,b)
dlk = dl b= cos%l (4.40)
alk = le := d, cost, (4.41)
dgg = d; o= dg_g (4.42)
d%k = &E = 5i cos &i (4.43)
c‘ifé;] = c'Z;E:J 2= dz’: cos;];?ﬁl (4.44)
dii] = diil = di:l cos& (4.45)

itk 71 T i-1
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d'k =2d. ;= dzﬁl cosh . (4,46)

=d. := di/cosei (4.47)

~(1) (i) (i-1)
dnk = dn i=d, cosb (4.48)
Proof: By (4.3), dlk = dl = 1 which proves (4.39a).

The proof of (4.39b) is similar.

o 0 v .
By (4.17a), with Z=1, dik=d1kcos¢i = cos$, using (4.14b).

-

This proves (4.40). From (4.2),

._IYJ —_IYZ_r " . .
=13 SO dlk = dlk = dlk cosb, using (4.1b)

- wn

1

d

1% cosel using (4.28)

= dl cosél, using (4.40). This proves (4.41).

We now show (4.37)-(4.45) by induction on %, with the result

for all columns k¥ being proved in parallel. Assume now

that di—l,k e di-l, k=1_,. . .,n.

From (4.5) r .y = i 1, k-1 so dsq = di—l,k—l = d{—l which

proves (4.42).

~

.1: . ~ . ~ X
From (4.13b), dik . dik cosé, = di cos¢, using (4.42).

This proves (4.43).

- e ~ .

el 3 . .
From (4.13a), dik = dik cosp, ;= di cos¢i_1 using (4.43).

~

This proves (4.44).

-1 _ &a—l é?-l
7

From (4.17b), dik =dsg cos¢iF1 = cos&iﬂl using (4.44).

This proves (4.45).
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s S :
From (4.17a), d@k . d’Lk @OS‘P,& . d’L 003‘1)7; using (4.45).
This proves (4.46).
The proof of (4.47),(4.48) is similar. QED.

Outline of FTO5

Procedures 4.2 and 4.3 from the basis of a recursion by which
R and R(n_l) may be calculated in approximately half the number of opera-

tions required by FT03. The algorithm is, in outline

1. Initialize El’ Wy dl’ 0,5 511 and 31.

2. For k<2 to n-1 do 2.1-2.4, then for k=n do 2.1 and 2.2;
2.1 Calculate ff)kas in FTO3.

2.2 C(Calculate ¢($k—1)’ W g dk’ ¢($k_1) and $k as in procedure 4.2.

2.3 Calculate ek as in FTO3.

(k)

2.4 Calculate F.I.T. for 6, g-k’ Ek and dn as in procedure 4.3.

FTO5 - The Algorithm

All of the steps have been previously proved (in FT03) or are
trivial to show, except for step 9.2. Step 9.2 is proved

below.

Algorithm 4.1 - Fast Toeplitz Orthogonalization, Version 5 (FTO5)
(Programmed on p.A.84)

{Initialization}

1. G, “EZ:n,lu

2. Pyp eVt g4

_2 2 %

4
3. rgg < (P, +t7) {recall that t ;= ¢}
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4, taﬁ@ <&/t ; d -ecOsE-«t/r, d, = 1; dl =1
1 2 1 - 1 11 1 1

5. wyg € rll/dl
6. cos B, * Pil/rll; tan61+—vn_1/?11

7. dll%-dl/eosgl

8. wy; =71yy/dyy

{Main loop}

9. For k<2 to'n-1 do

; Ug-1 . w
8.1 Wy ” 5o dpg

Y1rke1, k-1

9.2 if k#n do {calculate $k}

k-2
- 2

5 Wi k-1 si)/i’knl,k—l’ where 2z = Tﬁ-z’ toin, 15

811 < (Bpoq
g * 81/ %-1

2 ;2 0%
9.3 <« (ck - rkl)

Okt1

9.4 tan$k « 6k+1/%k1 5 costy < %kl/ak

9.5 Calculate @($k_1), @(Eknl), W g dk and Ek;using procedure 4.2.
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9.6 Calculate r % Ek, d;k)and bk using procedure 4.3.

Proof of step 9 .2

We showed in Chapter 7, FTO2, that

%2:n,1 = R(n_l)-Tg, where g.:= TTEé:n,Z (4.49)
or R(n-l)Téz:n-J =3z,
S0 R£—1%2§n—1 = gz, vwhich by (4.7 ) becomes .(4.50)
(Bn—lﬁﬁ—l)T%Z:n—l =&
or ﬁﬁ_ g = 3, where g := Bn—J%Z:n—l (4.51)

(4.51) may be solved by back-substitution which is step 9.2.

Operation Count

The operation count for FTOlA is 4n? + 0(n), compared to

2

7%n® + 0(n) for FTO3.

4.3 Incorporation of FGT's into FTO4

Recall that FTO4 calculates @ (and Q(n—l)) as

well as R (and R(n—l)), FTO3 is essentially FTO4 plus a recursion which

calculates Y := QT and Y(n*l) = Q(n—l)T row-by-row. If we incorporate FGT's
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and FIT's into the Y, Y(n;l) recursion, and append the new recursion to
FTO3, we have an algorithm which calculates Q@ and R in approximately

half the number of coperations of FTO4,

Incorporation of FGT's into the first part of Y-recursion

The Y-recursion is given in eqs. (3.19)-(3.12),(3.14),(3.15).

Eqs. (3.9) and (3.10) may be rearranged to give

- (1)

Vi1, -cot$j cosec$j éj.

= (4.52)
b (2) ~ n = (1)
Qj+1. —cosec¢j cot¢j Qj.

We now derive a 'fast' form for (4.52), in analogy to the way the FGT

was derived in (4.2). Suppose Qj = f} Qj_and Q<1)= f(l) g;?)

Y p , Where

}3 and fgl) are scaling factors. Then (4.52) can be written
() [ ooty ety ][5 0 | s W
L ééi; | : | —cosec$j cot$j || 0 }gl)J | é;?) J
f —}300t$j fgl)cosec$j ] | éj. 1
|ty Yty | |7
' fECOtéj 0 | (-2 (sec$j)jc:7(.1)/j"j1 [ éj, ‘
- | 7 3“5-”@“%, L-(sec%)j@j@(u ; | Q,;?)J ’
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. (1) (2 w(1) - (1) w(2) +(2)

S0 gj+1 and y _can be represented as f3+1 €j+l and j}+ﬂ €j+1,’ where
p(1) _ g e w(2) _ Ww(1) N
fj+1 ' fJ 00t¢j B fj-l'l - fj COt¢j (4.53)
(@)} c oW Y [ s
9541, -1 (3ec¢j)fj /j’j Qj. w
and = (4.54)
- (2) W(1) , (1)
?'jH‘J -(oec¢ )f /f 1 J g5, J
. \ \

Eqs. (4.53) and (4.54) are the desired ‘fast! form for (4.52), requiring

o2n + 0(1) operations, compared to (4.52).

We next write out the fast form of (3.11) and (3.12).

Let _;3 = f(S/g(si where €§3) is a scaling factor. Egs. (3.11)-and

(3.12) constltute a Givens transform, so we can write down the

corresponding FGT using (4.2):

_oW(3) = W(3) _ (2,
Ty = 35 e0o%5 5 Tian = T341°0%% S
) ” (2) ,-(8) r 2 (3
g 1 (tan )59/ 557 gg_) )
- (4.56)
“(3) =~(3) (2) - (2)
| 9541, k ~-(tan )f /f 1 ) g+,

To accelerate (3.14), we note that they constitute an inverse transform with
angle 6. We may write down the corresponding fast inverse transform directly
using (4.31). This, combined with (4.53-4.56), constitute a recursion by
which the fﬁ_ and gj_ and therefore the Qj-(zfﬁgj-) can be calculated in
approximately half the number of operations as in FT04. Combining FTOS with
this recursion therefore gives an algorithm that calculates @ and R in
approximately half the number of operations as FTO4. We do not give the

detailed algorithm here.
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5, TOEPLITZ ORTHOGONALIZATION - SOME EXTENSIONS

We now describe three extensions to the FTO algorithms, which
hitherto have been used to orthogonalize a square Toeplitz matrix. We
consider (i) the orthogonalization of a rectangular Toeplitz matrix,
(ii) the related Toeplitz least-squares problem,and (iii) orthogonaliza-

tion of block Toeplitz matrices.

5.1 Rectangular Toeplitz Matrices
The orthogonalization of a rectangular Toeplitz matrix is
described by the next two theorems.

Theorem 5.1 Let T be a full-rank mxn Toeplitz matrix, m 2 n. Let
T = QR (5.1)

where @ has n orthogonal columns (of length m) and R is an nxn upper
triangle. Then:
(1) R may be calculated by applying n cycles of FTOl or FTO3
to T#*, where T* is any mxm Toeplitz extension of T.
(ii) @ and R may be calculated by applying71 cycles of FTO2 or FTO4

to T*,

Proof: Let T* = Q*R*. (5.2)

Applying the first n cycles of FTOl or FTO3 to I'* yields
* * = N — NAp# = 0% *
R.l:k' From (5.2), Tl:k. T=4 R.l:k Q.l:kRZ:k,l:k
which is a factorization of the form (5.1), so R = R% S
. 1:k,1:k

This proves (i). The proof of (ii) is similar. QED.

Remark; The method can be modified to handle some cases where rank

T <n . We conjecture that it can be extended to handle any T.



241

LI t
Theorem 5.2 Let T be an mxn Toeplitz matrix, Let I' = QR, where 4
is orthogonal (mxm) and R is ammxn matrix with fij=0, 1>g. Then;

(1) R alone may be calculated by applying FTO1 or FTQ3 to T#*, a
Toeplitz matrix with T as its first n columns, and

(1i) @ and R may be calculated by applying FTOZ2 or FT04 to T*.

Proof: Let T* = Q#R* = T = T#* 1.k = Q*R* 1:% which has the form
T=éﬁ}; so applying FTOl or FTO3 to T* yields the desired

matrix R, and applying FTO2 or FTO4 to T#* yields @ and R.

QED.
5.2 Solution of the Toeplitz Least Squares Problem
Let T be an mxn rectangular Toeplitz matrix with m > n.
The least-squares problem seeks that x which minimizes
e = I - bu2 , (5.4)

where x has length n and b has length m. One example is the covariance
method of linear predictive coding. Morf et al [67], has proposed the

efficient solution of the normal equation
1z = 7 (5.5)

by making use of the 'close-to-Toeplitz' structure of TTT. Lee et al.
proposed methods to minimize lel, by various ladder (or lattice)
recursions [58]. The Toeplitz least-squares problem ‘may also be solved

by making use of R, or both R and @ as calculated by FTO.

Finding £ using R only

Let T = QR where @ is mxn and R is nxn. Then (5.5) becomes

¢ qre = 7'

FIrTrlp (5.6)

= X
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which enables x to be calculated in 0(mn) operations. Since (5.6) is
based on the normal equations (5.5), the condition number of the problem
is condgT, which may cause difficulties whencondT is large. A better
approach, first proposed by Golub [34] for general matrices is described

next.

Finding Z£ using @ and R

Golub [34] shows that x is the solution of

Rz = §'b (5.7)

The error term may be found by direct calculation, or alternatively,
if @ (an orthogonal matrix with @ as its first »n columns) is calculated

as in Theorem 5.2, then "gﬂg = "Q?n+1:m é“Z . (5.8)

5.3 Block Toeplitz Matrices

The development of the recursion for block Toeplitz matrices
ia analogous to that for scalar Toeplitz matrices. Let p be the block-size.
The basic block-operation is performed by applying a sequence of p
Householder transforms, instead of the Givens transform used in the scalar

case. In analogy to eq. (7.3.9) we can show that*

T | QT Block
GGMS ope :
> RoR- g, (o) ——s
S L ’ >
Q(n—l)TV | R(n--l) e
\ - R
. g _ .
R
Block (n-1) (n~1)R,BR
GGMS ops R 2 QB
— >
; (5.9)
37 of | T
- |
-

*Block matrices are denoted by script letters, block vectors by underlined
capitals. BR and BRT are block-reverse and block-reverse-transpose respect-

ively. g(n-) is ‘the nth block-row of Q.



243

where T, the block-Toeplitz matrix with block~order » and block-size p
is partitioned

-

T = =

Z T (nﬁl) -

T v ' . T (ne1) ‘HBR
|

T is the (Z,1) block of T, Q(n ) is the nth block-row of Q and BR denote

block-reversal. At a typical stage in phase I the block GGMS reduction

of h, we have the form*
B N
r v
Bio1)
Het : B e
) > <(]
}'?k+1 _/ 0 0
(k+1,1) :
0
Bira)
The matrix - %31 can be reduced to upper-triangular form by p
R(k+1,1)

householder transforms, yielding

T g
Bi91)
- }.? .

‘k (k-1,1) '

R = /Zﬂ ]

ﬁk / . 0 \\
(k1) :
0 (1]

*A is the %,Jth block-element of A.

(i)
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The basic GGMS block-operation is performed by applying this sequence 4

of p householder transforms. In Phase II of the block GGMS algorithm,
a block upper-Hessenbergmatrix 1is reduced to an upper-triangle. This can vl
be done, in analogy to the scalar case, by n-1 GGMS block-operations é

starting at the top of the block~diagonal and working to the bottom.

From (3.9), the basic recursion can be developed, in analogy b

to (7.3.12)* :

Utk-1)| block ops Regin,k) = V(n—k)gﬁn,l:k)
e Ry gy —
sin-1)| Shido o 0K A x)
-(.k) 0
\__\7_—/ X - y
(k+1) ~
R k+1
“(0 k) N E(.k)
B
block ops o
——— 2 (5.10) '
ST (k, %) 0 a
- “’ ‘I
B x)

where Sg(k,k) and Sg(k,k) are the products of the block operations from
the kth upsweep operation to the kth downsweep operation. The recursion
(5.10) requires 4k block-operations to execute, sO the whole algorithm

requires 2k block-operations.

Here, we will only indicate how the block-operations in the
upsweeps of the block FTO, are calculated. All other steps are straight-

forward and analogous to FTOl.

*4(,k) is the kth block-column of A; 4(1:k,k) consists of the first k

block-elements of 4(.k)'
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Calculation of Upsweep Block-Operations (UBO's)

Tt is sufficient to show how to calculate the UBO in the first

GGMS transformation in (5.9). The UBO's in the second GGMS are calculated

in the same way. At the beginning of step k, we have ﬁkkl) and é?kl)'

We wish to calculate é?;il 1) and the set of p to Householder transforms
by which

) '72

B Btr)

Kt is transformed to

R(k+1,1) )

It is sufficient to show what to do for the first Householder transforms

and first row of R?Zil 1)~ the other desired quantities are calculated
. 3

similarly.

By norm-invariance, we have*

K s 2 ikt 2%
P(k1)11 T ["f(kz).lu i (r(k+1,1)11) ]
'k“f\'l _ !7; 2 a 2 ;2,
so P 11 = [T’ - Yo d (5.11)

Let L]
R 1)

KT
P k1,101,

Recall that the blocks are of order p. s
M

gp+1.'15 unknown, except for ap+1;1 = r(k+1,1)114

In the Householder method g2'p+l 1 is eliminated by forming

N . ’ ..
@ikl is the kIth elemeunt of the 7,4 block of A,
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() T, 2 ) ) 7
AT = (I - w /204, where u = lazg) £ .87 Gpgavandypyy 41

where s = "9,1"
7 7 .
wuul' g ue
50 A -4 =24 - =, where = ta, (5.12)
2K 2K - B
Uu CT
1 st .
therefore 254) =a; - 1 :
: © ook
2 2 ~
T 2K (1), _ K> %
¢ =, 4, T ) = u .11, ~ Lk, 11.° (5.13)

which can be calculated from known quantities.

(1)

From (5.12), therefore a; s i=2,...,p can be calculated from known

o)

quantities:
\ U GT
(1) _ 1= . )
a, " =a; - 2K2 5 $72,...,p (5.14)
and f 5.12 'k;I = q = (cT g U. a. )/ 5.15
nd from (5.12) 2p,7 1)1, = %pp1, T (€7 421 Mg S0 per ©ELD)

Eqs. (5.11), (5.13), (5.14) and (5.15) enable us to calculate the first
Householder transform and the first row of é?;il 1) The other House-
~ 3
holder transforms and the rest of é?;ﬁl 1) can be calculated in the same
2

way.

Block FTO - Concluding Remarks

A block FTO analogous to FTOl can be written from the recursion
in (5.10). The block-operations in the upsweeps are calculated by the
method outlined above. The total operation count for the block FTO
is 3%p3n2, Other block FTO algorithms analogous to FTOl to FTO4 can

be developed.
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6, CONCLUSION

We have described two ways to accelerate FTO algorithms
developed in Chapter 7. By using a logically more complex recursion,
we can reduce the computing load by about 25%. By incorporating Fast
Givens Transforms, we can reduce the computing load by a further 50%
(approximately). We have also described some sundry extensions to the
FTO algorithms - orthogonalization of rectangular Toeplitz matrices,
solution of the Toeplitz least-squares problem, and orthogonalization

of block-Toeplitz matrices.
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THE SINGULAR-VALUE DECOMPOSITION OF TOEPLITZ MATRICES

1. INTRODUCTION

Let 4 be a real mxn matrix, m2n. It is well-known [37] that 13
U,z and V with dimensions mxn, nxn and nxn respe;tively such that

_ A= UZVT (1.1)
where U = vy = = I, and I = diag(ol,...,on). The matrix U
consists of the n orthonormalized eigenvectors associated with the n
largest eigenvalues of AAT, and the matrix V consists of the ortho-
normalized eigenvectors of ATA. The diagonal elements of I are the
non-negative square roots of the eigenvalues of ATA; they are called the

singular values. We shall assume that

012022..,.201120.

The decomposition (1.1) is called the singular value decomposition (SVD).

There are alternative representations [37] to that given by (1.1);
however (1.1) is the most useful for computational purposes, SO we only

consider this form here.

The SVD provides a very convenient and stable method of solving
several common problems of linear algebra. Some of these are [35]:
(i) solving a set of linear equations with a nonsingular matrix,
particularly when the system is ill-conditioned;

(ii) more generally, analyzing the system Ax=b where 4 is a general
mxn matrix: the SVD can be used to determine whether the
system is consistent, whether the solution is unique, and what
the general form of the solution is;

(iii) solving the least-squares problem: find x such that
IIAQ;Q_HZ and IIE_“g are minimized, where A is the general mxn

matrix with m>n;
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(iv) finding pseudo-inverses [35]; and

(v) =~ approximating matrices by matrices of lower rank.

Recently it has been found desirable to calculate the
SVD of Toeplitz or Hankel matrices. Two such applications are
rational Chebyshev approximation on the unit disk [83] and in Hankel-

norm reductions: of system theory [571.

In such applications, an SVD algorithm which takes advantage of
the ‘Toeplitz structure to reduce the number of arithmetic operations would

be useful. To the author's knowledge such an algorithm is not at
present available. In section 2, we review the SVD algorithm of
Golub-Reinsch [37] and a modification thereof by Chan {17]. In sections
3 and 4 we present two algorithms which are further modifications of
the Golub-Reinsch algorithm and take advantage of the Toeplitz structure
to reduce the computing load by 50-80% or more, depending on the

parameters of the problem.

2. . THE GOLUB-REINSCH ALGORITHM

The Golub-Reinsch algorithm (GR) [37] is a very stable method
for finding the SVD. GR has two phases - a direct phase in which 4 is

(0), and an iterative phase in

reduced to a bidiagonal matrix J
which J(O) is reduced to the diagonal matrix I. Both the techniques
described in this report use the Toeplitz property to ""'speed-up"

the first phase of the Golub-Reinsch algorithm. The second phase is
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unchanged, except for re-orderings in the sequence of computation of
certain matrix products. We describe GR below, and later a modification

by Chan [17] which is faster when m>2an.

Algorithm 2.1 - The Golub-Reinsch Algorithm (GR)

Phase I (direct) - reduction to bidiagonal form:

4 is transformed by two sequences of Householder Transforms [89]

Tk Y, and @® }?‘2, such that
g, 0
NN
N
S ___p(1),(1)___gln=2) _ |0_ | _ ;(0), 2
0
(1)

an upper-bidiagonal matrix. If we let 4 =4 and define

2k _ p(R) (k) g 8 )
A(k+1) 0 A(k+%)Q(k) (k=1,2,...,1-2)
then P(k) is determined such that a££+%)=0, (1=k+1,...,m)

(k%) _
ki

and Q(K) is determined such that a 0, (j=k+2,...,n)

It can be checked that no previously-nulled elements are filled

at any stage.

The singular values of J(O) are the same as those of 4. Thus
if the SVD of
J(a) e GZHT (2.2)
then A= PGZHTQT

so that U=PG, V=QH with pip(¥ .. ™, Q::Q(l)...Q(”"z).



251

Phase I1 (iterative) - reduction to diagonal form:

J(O) is iteratively diagonalized by a variant of the QR method

so that

S0, D,y (2.4)

where J(i+1) _ S(i)TJ(i)T(i)

where S(i) and T(i) are products of plane rotations and are therefore
orthogonal. The {T(i)} are chosen.so that the sequence M(i)=J(i)TJ(i)
converges to a diagonal matrix while the matrices S(i) are chosen so that

all J(t) are of bidiagonal form. The products of the T(t)'s and S(i)'s
are the matrices HT and GT respectively in (2.2). Details are given

in [37].

Operation Counts:

In discussing operation counts, we count only the number of
multiplications and divisions, as on most computers, the addition/subtraction
time is much less than the multiplication or division time. Moreover, it
can be checked that the number of additions/subtractions is about the
same as the number of multiplications/divisions in all the algorithms
discussed herein. Thus the number of multiplications and divisions is
a reasonable measure of computing time. We also ignore all lower-order
terms in operation counts, e.g. Smnz + 0(mn) + 0(n2) will be written

as 3mn2.

In GR, Chan [17] gives the following operation counts for the
various parts of the algorithm:

1. Bidiagonalization

(0)

Reduction from 4 to J

1 [»}
( )...P(n) mnd—ns/S operations

2 3 .
2(mm”-n"/3) operations

Accumulation of P=P

(1) (n-2)

Accumulation of 9=@ ~7...Q on’/3 operations
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II1. Diagonalization - operations per iteration

Accumulation of S(i) on P 2mn operations
. (1) 2 .

Accumulation of I on ¢ 2n~ operations

Reduction from J(O) to Z 0(n) operations

It is reported in [37] that the average number of iterations, k,
required for II is usually less than 2n. Chan has run the Golub-

Reinsch. algorithm with k=2n and has found it quite accurate.

The Golub-Reinsch Algorithm (GR) can be speeded up by using
nfast" Givens transforms [30] in Phase II. In this case, all the

operation counts in this phase are halved.

Table 2.1 shows the total operation count for GR, assuming
that k=2n, with and without accumulation of U and V, using slow and

fast Givens transforms in Phase Il:-

Fxplicit Calc.of | No explicit Calc. .

Uegv of UGV

. 3
Slow Givens 2 3 2 "

Transforms mn 4 dn 2(mn” - 3)
) 3

Fast Givens &wnz . PR 2(mn2 A
Transforms 3

Table 2.1 - Operation Counts for Golub-Reinsch Algorithm
assuming that k=2n.

Chan's Modification of GR (GRC)

Chan proposes a modification of GR which is more efficient
than GR when m/n is greater than about 2, and is about twice as

efficient when m/n is about 10. His procedure is:

Algorithm 2.2 - The Golub-Reinsch-Chan Algorithm (GRC)

1. Convert 4 to upper-triangular form R using Householder Transforms,

so that
§A=R
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where @ is the (orthogonal) product of the Householder Transforms

(@ is not calculated explicitly).

2. Find the SVD of R using GR such that

B = WEYT

3. Then the SVD of 4 is

I
I
&
s

A
where U =g _E_ }m
0
(-]
n
and V=Y.

GRC has an extra phase at the beginning, viz. triangularization

3

of 4, which requires mn2 - E—-operations.

3

than these are saved in step 2 when %-is large, because the algorithm then

However, many more operations

. : 5 7
operates on an upper-triangular matrix with é{n+1) non-zero elements

instead of a full mxz matrix. Table 2.2 shows the operation counts for

GRC, assuming that k=2n:

Explicit Calc. of

No Explicit Calc.

Ugv of U &V
. I PG £ 3
Slow Givens Transforms 3mm”~ + 93n m- + n
Fast Givens Transforms 3mn2 + 5%n3 mn2 + ns

Table 2.2 - Operation Counts for Golub-Reinsch Algorithm
as modified by Chan, assuming that k=2n.

3. TOEPLITZ SVD BY FAST TOEPLITZ ORTHOGONALIZATION

To calculate the SVD of a Toeplitz matrix A, GRC may be

accelerated by using Fast Toeplit

two other modifications, as described below:

z Orthogonalization (FTO), together with
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(1) In step (1) of GRC, convert A to R and calculate Q'l*n using*
Fast Toeplitz Orthogonalization (FTO) rather than Householder

Transforms. This will require O(mmn) operations rather than

ng—n%/S operations in GRC.

(2) If U and V are not required explicitly, replace phase I of
step 2 (bidiagonalization of R) by the following procedure:
Use fast Givens transforms to zero out the elements of R above

the superdiagonal {r_.} either row-by-row or column-by-column,

i’ j=i+1

starting with L To illustrate, suppose we are eliminating

the {Pij} row-by-row and we wish to eliminate qu. We perform

two fast Givens transforms as follows:

column g
} _
XX 1st rotation
to zerolout r

X X rq
x X (l_‘)l"
— Pd

s

r;w___e B x@o 000
LxXxxxrxxrx
TXrXrarrxx
xTXx XXX 2nd rotation to zero out
b - the (q,q-1) element introduced
Tx XX )
(:) by the 1st rotation.
Lol I A o
}st rotation 1 ) i
introduces
non-zero xx
element at *

position (q,q-1)

Figure 3.1 - Elimination of rpq

*Q‘l'n denotes columns 1 to n of &.
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) 3 ; 4 3 .
~n° operations, compared to the % #»n operations

This procedure requires - 3

3 .
required by GR in bidiagonalizing R without taking advantage of its
structure. This procedure, using slow Givens transforms was suggested

by Chan, but rejected because there was no computational advantage

over GR. The simple modification of using fast Givens transforms

saves the —;‘—ng operations here.

0

instead of using Householder transforms, as in GRC. This is possible

_ %
If U is required explicitly, calculate the product Q{---] directly

since Q'l-n is available from step 1. This procedure requires mn

operations, rather than the 2mn2—n3 operations required by GRC.

We present the modified procedure:

Algorithm 3.1 - Modified Golub-Reinsch-Chan Algorithm (MGRC)

1.

2.

51

4.

Perform the decomposition A=Q.1:nR using Fast Toeplitz Orthogonalization.

I1f U and V are not both required explicitly do step 2A; otherwise do

step 2B:

2A. Use fast Givens transforms to zero out the elements of R above
the superdiagonal row-by-row oOT column-by-column, starting with T
The elimination is performed as in Fig.3.1l.

2B. Transform R to upper-bidiagonal form using Householder transforms,
as in GR. Accumulate the row-transforms on XT, and the column
transforms on YT.

Diagonalize the bidiagonal matrix as in GR.

1f U is required explicitly, compute U=Q.1.nX. Note that V=Y.

Operation Counts

We compare operation counts for GR, GRC and MGRC in Table 3.1.

Fast Givens transforms are used throughout in the bidiagonalization phase:



256

Calc. of
~ V&V Explicit Calculation No Explicit Calculation
Algorithm \ of U and V of U and V
2 3
GR sm® + en’ 2(mm’ - %?_)
GRC 3mn2 + 5%n3 mn2 + n3
2 3 2n3
MGRC mn” + 6 n 5t 0(mn)
+ 0(mn)

Table 3.1 - SVD of a Toeplitz matrix: Comparison of Operation Counts for
GR, GRC and MGRC, where Fast Givens Transforms are used
and k=2n.

Discussion

For m>>n, a very common situation, MGRC requires one-third of
the work of GRC and one-fifth of the work of GR when U and V are both
required explicitly; when U and V are not required explicitly, MGRC is
as order of magnitude faster than both GR and GRC because there is no

mn2 term.

For m=n, MGRC is slightly faster than GRC and slightly slower
than GR when U and V are both required (however MGRC is faster than GR
as well when %—> g-); this is the one case where MGRC is slightly worse
than GR, (though better than GRC) and arises because accumulation of X
followed by multiplication by Q'l:n is not optimal here; it would be
betterlto accumulate X QB—Q‘l:n (i.e. premultiply Q?Z:n by the Householder
and Givens transforms yielded by steps 2B and 3). However, the asymptotic

operation count would still only be equal to that of GR.

For m=n and when ¢ and V are not required explicitly, MGRC requires

one-third of the work of GRC and one-half of the work of GRC.
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In summary, therefore, if 4 is Toeplitz, MGRC is 2-5 times
as fast as GR or GRC except in the follo@ing cases:

*m=n, U,V both required (worst case) - MGRC, with a slight

modification requires about the same work as GR and GRC.

*m>>n, U,V not required (best case) - MGRC is an order of

magnitude faster than both GR and GRC.

4. TOEPLITZ SVD BY GRAM-SCHMIDT BIDIAGONALIZATION

The second Toeplitz technique involves replacing phase I of GR
by a Gram-Schmidt-type (GS) bidiagonalization technique, and using the
Toeplitz form of A to accelerate the slowest part of the GS bidiagonaliza-
tion. Phase II of GR is accelerated (as was done by Chan) by

re-arranging the accumulation of U.

We first state and outline the proof of Algorithm4.1, the GS
bidiagonalization technique. The method was first proposed by Golub [35].

Algorithm 4.1 - GS Bidiagonalization

Input Matrix A(mxn; m2n)
Output Matrices W(mxn), B(nxn) and X(nxn) such that
= WBXT (4.1)
W has orthogonal columns, B is upper-bidiagonal, and X
is orthogonal.

Procedure 17 Set £‘1<-[1,0,...,0]

-

2. W g«Az g 5 byge v gl w w 1/by; (4.2a-c)

3. For j<2 ton do

T o7
3.1 ng W A bJ 1,5-1 __J 13
(4.32-c)
AT T
b. . ,<tllx .ll; = x ./b.
G.d-1" "G g —-J/ Fsd-1
5 .=b. } e b <D Nw. &0 /D
3.2 D s<Az bi g 50505 Py I s 0 5/b;;
(4.4a-c)

*g_j denotes the jth column of X.
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Proof (Outline) It is clear from (4.2b,c), (4.3b,c) and (4.4b,c) that

hzd = lad =1, J=1,....m (4.5)

In addition, (4.2)-(4.4) respectively yield

by ¥Woq = Ax. (4.6)
b ier B = g1 AD1,51 £ o
bjj W = Aggj - bj—l,j Q:j_j (4.8)
And it is easy to show that (4.5)-(4.7) imply that
AX = WB (4.9)
and WA = B (4.10)
are satisfied by W,X and B.
It can be proved by induction that
x?. X.,, = 0, k < g (4.11)
Leg Lo
Wl ., =05 | 5= 2eesm (4.12)
ik

(4.11) and (4.12) are easily shown with j=2. For j>2, assume that (4.11)
and (4.12) hold for J'<j, then calculate Q?j Le 00 using (4.7) to substitute
for g?j and .3 and the resultant terms have factors of the type

y?p g}q, p<d, qp * g?j g,k=0.(4.12) may be similarly shown.

Thus (4.5),(4.11) and (4.12) show that W has orthogonal columns

and X is orthogonal; this last fact combined with (4.9) yields (4.1).
QED

Acceleration of GS Bidiagonalization when A is Toeplitz

The main work of Algorithm 4.1 is the computation of AX. 4, g?j—lA
and Ag}j in steps 4.la, 4.2a and 4.3a respectively. Each of these
calculations normally requires 77 operations. However, when 4 is Toeplitz
the complexity of these calculations can be reduced to 0(m log m) by
observing that the multiplication of an mxn Toeplitz matrix 4 by a

vector z can be embedded in a circular convolution which can be done
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by FET [20] (or by even faster recent methods [91]).

To see this, let a., .:=4a,.,
=g 1J
n--1
T ——
a = [aa(nfl)’a-(n~2)"'"a—l’aO’al""’am—l’o""’oj
(4.13)

7
and Ef . [21,32,...zn,0, ........... 0]. (4.14)

Now if ce=a® 2p the circular convolution of a and Zps
n
L= L2 -~ . =1,
then ) ] aJ+$_1 zn—g+l’ 1=1, ,m
= (Agjm 1i1? 1=1,c003M (4.16)

Thus to calculate Az in 0(n log n) operations, we simply select in
reverse order elements I tom of a @ Zps where a and Ef are as defined
above. To calculate g 8 Ef’ we FF? a and Ef’ giving the complex spectra
fla) andj]ng respectively, then inverse-FFT f{g}:=[fi(g)], where

Acceleration of Phase IT of GR

This can be accelerated (as was done by Chan) by re-arranging the
calculation of U. Recall that in GR, the S(i) were accumulated on P,
requiring okmn operations (see sec. 2) where o=2 for slow Givens transforms.
and a=1 for fast Givens transforms. In the present algbrithm, we accumulate
the S(i) on the nxn identity matrix I, yielding an nxn matrix S5, then
compute

U= WS (4.17)

where W is as produced by the (accelerated) GS bidiagonalization.

With this modification, the calculation of U requires akn2 + mn2

operations. Assuming that k=2n and a=I1, this modification halves the work
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in calculating U when m>>n, and is faster than GR when %-> 2

Thus if % < 2, GR is used.

The Algorithm

We now incorporate the accelerated GS Bidiagonalization and the

accelerated GR Phase II in our second Toeplitz SVD:

Algorithm 4.2 - Toeplitz SVD by Accelerated Gram-Schmidt Bidiagonalization

{Phase I - Bidiagonalization : =WBXT}
1. Set x., < [1,0,...,0] = g
—_—
n
n-1
——
2. Set g < [aln’ al,n—l cee Bgg a21 e Qs Oseaay0]
m=1
and §f<—[am1€ cees Uygs0i0s cres ¢1n’ O0y000,50
3. » 168 [T, 0y.es017),, i=l,....m
0 m_7:+1,1: L _-1, CIEIK ] 1/, o ey

4o by« Wb gls weg < 0 /byg

{Main Bidiagonalization Loop}

5. For J < 2 to n do: =2

! - = :
5.1 ¢c<«a'® [WT 1, l z' € e i1 bj-l,j—lxi,j—l’ 1=1,40430;

A T 7 AT
b. . < hx. M; x.. «x./b. .
dsd=1 e B "27/ Jdsd=1
m+n-2

ij L2 cm—i+1_bj—1,j wi,j—l" 'L‘L-l’-..,m;
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{Phase II ~ Diagonalization}

6. If < 2 then do

6A. Diagonalize B and calculate U and V using GR, Phase II

6B.1 Diagonalize B as in GR, Phase II, accumulating the {S(i)} on I,
to produce S, and accumulating the {T(i)} on X to produce V.

6B.2 U = WS

Operation Counts

In Phase I, the main work is in performing the convolutions in
steps 5.1 and 5.2. If this is done by FFT, these will require
(dm+2n-4)log (2min-2) and (dn+2m-4) log (&n+m-2) operations respectively.
(Note that g_and’gf only have to be FFT'd once). Hence Phase I requires

on{ (omin-2) log( 2min-2)+(2n+m~2)log (2m+n-2)} operations.

In phase II, assuming fast Givens Transforms were used and k=2n,
we can show that mn2+4ﬁ3 operations are required to calculate Uand ¥
and (as before) 0(n2) operations are required to calculate Y. We summarize
the results in Table 4.1 (note that (2m#n-2) and (2n+m-2) have been replaced
by 2m+n and 2n#m respectively, since the correction terms are an order of

magnitude lower):

Calc. of U
nd V Explicit Calc. No Explicit Calc.
Algorithm
, : ; 3
GR smnZ+2n° 2(m°-% )
GRC 3mn2+5%—ﬁ3 mn2+n3
on{( om+n) Log ( &min) on{(2m+n) log (2m+n)
AGSE +(m+2n) Llog (m+2an) } +(m+2n) log (m+2n) }
+-mn2+4n3

Table 4.1 - SVD of a Toeplitz matrix: Comparison of Operation Counts
for GR, GRC and AGSB where Fast Givens Transforms are
used and k=2n.
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Discussion

For m>>n>>1, it can be seen that AGSB is 3 times as fast as GRC
and 5 times as fast as GR when U and V are required explicitly; when
U and V are not required, AGSB is an order of magnitude faster than GR
and GRC, because there is no ng term. These comparisons are similar

to those of MGRC (Table 3.1).

For m=n>>1, AGSB is slightly faster (%—to %-times) than both GR
and GRC when U and V are both required - note that this is better than
the result for MGRC, which was slightly slower than GR; when U and V
are not required, AGSB is an order of magnitude faster than GR and GRC,

because AGSB has complexity 0(n?log n) rather than O(ns). This is better

than MGRC (Tablé 3.1), where the 'speed-up" is a factor of 3.

If m and n are not both large, AGSB could be slower than any of
GR, GRC and MGRC, because the n(2m+n)log(2m+n) terms could be greater than
the mn2 and nS terms. Thus, AGSB is preferable when m and n are both

large.

Possible numerical instability of AGSB

It has been shown by Golub [35] that Gram-Schmidt bidiagonalization
is related to the Lanczos tridiagonalization of a symmetric matrix. The
Lanczos procedure is known to be unstable [89] without re-orthogonalization,
hence the same problem may arise in AGSB, though the excellent numerical
properties of the FFT mean that errors will accumulate more slowly in
this particular Gram-Schmidt procedure. It is therefore possible that
AGSB is of only theoretical interest in many cases. Further work is

needed to pursue this point.
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Calculation of the Singular Values by the Iterative Lanczos Algorithm

Even though the Lanczos algorithm may give inaccurate results
at step n, Paige and others [72], [86], have shown that continuing
the Lanczos algorithm on an iterative basis, produces a set of tridiagonal
matrices Tj (each the leading submatrix of its successor) whose sets of
eigenvalues contain improving approximations to more and more of the
eigenvalues of 4. parlett and Reid [74] propose a method of tracking
the convergence of these eigenvalues for A symmetric. For a very difficult
case (their POIS 992), the complete spectrum is obtained in about on

jterations. More typically 2n iterations are required.

The main work in the Lanczos algorithm (as for GSB) is the
calculation of the matrix-vector product Agj. As for GSB, this can be
accelerated using fast convolution. Hence, the Parlett-Reid algorithm
may determine the singular values (i.e. eigenvalues) of a symmetric
Toeplitz matrix more stably. This observation is summarized in the
next algorithm: We do not give details of Parlett and Reid's tracking
procedure here, except to say that it estimates the eigenvalues of Tj
by approximating the zeros and poles of a rational function &(x) that
depends on the entries of T. This approximation procedure requires o(g)

J

operations.

Algorithm 4.3 - Accelerated Lanczos Algorithm for Singular Values

of a Symmetric Toeplitz Matrix

1.- Initialize Lanczos algorithm, and set j=I.
2. Repeat
2.1 Do step j of the Lanczos algorithm [74] using fast convolution
for matrix-vector product Agj. This generates a tridiagonal

matrix T..

J
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2.2 Estimate the eigenvalues of Tj by approximating the poles and
zeros of §(x),
2,3 g+l

until Parlett and Reid's termination condition is satisfied.

Singular Values of a Non-symmetric Toeplitz Matrix

One way to proceed is to find the eigenvalues of ATA using
the Parlett-Reid algorithm, using two fast convolutions for the matrix-
vector products ATAgj. Alternatively, it can be shown, that AGSB, if
continued on an iterative basis, calculates bidiagonal matrices Bj such

that

where the Tj are the tridiagonal matrices produced by running the Lanczos
algorithm on ATA. Hence we can track the square-roots of the eigenvalues
of the Tj (which converge to the singular values of A) by approximating

the zeros and poles of 6(x2) by Parlett and Reid's method. This suggests

the following algorithm:

Algorithm 4.4 - Iterative AGSB for the Singular Values of a Toeplitz Matrix

1. 1Initialize AGSB and set j=I1.
2. Repeat
2.1 Do step § of AGSB, using fast convolution for the matrix-vector
products. This generates a bidiagonal matrix Bj‘
2.2 Evaluate Tj = Bg Bj
2.3 Estimate the square-roots of.the eigenvalues of Tj by approximating
the poles and zeros of 6(x2)
2.4 J<g+l

until Parlett and Reid's termination condition is satisfied.
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Remark These two algorithms have not yet been tested, and further

work is required in this regard. There is reason for
optimism, however, since there seems to be no reason to
suppose in general that the Lanczos algorithm converges
less quickly  for non-sparse matrices than for sparse

matrices.

5. CONCLUSION

Two algorithms have been presented which take advantage of the
structure of a T;eplitz matrix in calculating its SVD. Both can be an
order of magnitude faster than general SVD routines, depending on the
values of m and »n, and whether U and V are required explicitly. In most
cases of interes;, one or other of the routines is several times as fast
as general SVD routines. The one exception is when n and m are '"small"
(<30 say) and U and V are both required - in this case there does not
seem to be much advantage in using either of the Toeplitz SVD routines.
It is pointed out that the second algorithm may be unstable in some cases
of interest, and more work is required to investigate this problem.
However, by modifying it to make it iterative and using a recently-

developed tracking procedure, it may be possible to calculate at least

the singular values stably.

A

P

me - v

B
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CHAPTER 10

The solution of Toeplitz linear systems, and the related

- TTE—— v

operations of Toeplitz inversion and factorization, have many applications
in engineering and applied mathematics. We have derived several connexions
between known 0(n2) algorithms in the field, relating then to Bareiss's
Toeplitz elimination algorithm and to rank-1 update procedures. We have
presented new results on the numerical performance of some of these
algorithms, and propose a pivoting scheme which should improve the perform-
ance of Toeplitz solvers, factorizers and inverters in all indefinite cases,
but especially when some leading submatrices of the system ma;rix are 111-

conditioned.

More recently, it has been found useful to perform other operations
on Toeplitz matrices such as the QR decomposition and the singular value
decomposition (SVD). We have proposed several algorithms to compute the
QR decomposition in 0(n2) operations. The fastest method of calculating R
by orthogonal transforms requires slightly more than twice the number of
operations required to find the triangular factors of T. We have extended
the techniques to rectangular and block-Toeplitz matrices. We have proposed
methods of accelerating the SVD when the system matrix is Toeplitz,
including an 0(n2 log n) algorithm which may, however, be unstable, and have
suggested a modification which may calculate the singular values stabiy in
0(n2 log n) operations, but further work is required to test the proposal.

It may also be possible to reduce the SVD complexity to 0(n2).
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Further work can be done on extending these results to matrices
which are related to Toeplitz, such as a-Toeplitz matrices and multi~level
matrices. In another direction, it may be possible to develop 0(n Zog? n)
methods such as in [13] for Toeplitz QR and SVD problems. As was remarked
in the Introduction, the 0(n2) methods will still be useful for small to

moderate Toeplitz problems.
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