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stIvu"lARY

This thesis is rnainly concerned with net.hods for solving

ToepLitz l"inear algebra problerns ¡n 0fuZ ) rnultiplications/divisions.

There are three main airns (i) to find new connexions between known

aLgorithns, and re-derive sone of these using clifferent approaches

(ii) to derive new results concerning the numerical stability of sone

algorithns, and to nodify these algorithns to inprove their numerical

performance (iii) to derive fast Toeplitz algoritfuns for new applica-

tions, such as the orthogonal deconposition and singular value decompo-

siti on.

In Chapter 2, fast Toeplitz faetorization algorithrns (FTFts)

are :re-derived frorn the Bareiss algorithm for solving Toeplitz systenìs

and also fron algr:rithms for performi-ng rank-1 updates of factors. In

Chapter 3, the Bareiss algorithm is related to the Trench Algorithrn for

Toeplitz invelsion.

Several new results regarding the propagation of rounding errors

in the Bareiss algorithn are derived in Chapter 4. A pivoting scheme is

proposed in Chapter 5 to improve the numerical performance of the

Bareiss algorithm.

In Chapter 6, erïor analyses are performed on FTFrs and some

pivoting is incorporated to improve their nunerical perfornance. The

results of Chapter 3 are used to adapt the Bareis-s pivoting procedure to

the Trench algorithm.

I
Li¡

t-



v1

Methsds are proposed in Chapter 7 to conpute the QR factoriza-

tion of a Toepritz natrix in 0fu2) oPerations' Thi5 ¿lgerithn uses the

shift-invariance property of the Toeplitz natrix and a known procedure

for updating the QR factors of a general natrix.. In Chapter B, methods

are described for speeding up the aLgorithns of the previous chapter, and

several extensions are proposed,

. In Chapter 9, two algorithns are proposed to conpute the

singular-va1ue decomposition (SVD) of a ToepLitz natrix in fewer operations

than for a general matrix. The first algorithm ¡s O(ns ) but depending on

the dimension of the problem requir:es up to 80% fewer operations than for

general SVD algorithns. The second possibly unstable nethod has complexity
.)

0(n' Log d. A modification of this method is proposed which nay enable

the singular values to be calculated stably.

I

l
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NOTATION

General. Matrix and Vector Notation

FY ¡or

A.
1,: J , K: L

Ai,i ';t 'u''
A"

K

oT rAT

-m
dLq,gla,ij 

1

det A

ll/ll; llall

Exp lanation

A vector with elements Qy oZ, . r. a^, whete m

is the order of a

The natrix with elements a¿¡t 'ç-Lf ,. . .,m;i=Lrn,

where m and n are the lrunber of rows and colunlns

respectively in ,4

Row i and column i of A

Elements i to k of gi, i elenents h to i of ?.j

Rows i to i of columns k to L of A

Rows i to j of A; columns k to L of A

The kth leading submatrix of ,4 (unless otherwise

indicated

The transpose of a, A

The inverse of .4

The reverse of a., i.e
P-\T

then a":(dmr.. . roL)

The reverse-transPose of ø

The -secondary transpose of ,4 (transpose about the

secondary diagonal) .AT2=EATE (see below for E)

A diagonal matrix with diagonal eLements a?aZ'...am

The detenninant of ¡1

A natrix-norm of ¡l; a corresponding subordinate

vector-ncrm of ø (if aPPl icable)

The p-norn of .4 and g

a,

A

-1A-
R

g

RT
a,

tl1 9
A-'

if a: (arr...ro^)T,

ll¿ll
P

t llallp
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4,¡to

9)'EÞo¡

Ak;i

,5

Expl.anation

The displaced leading subrnatrix of Á with order k

and displacenent 7'; fot i>0, Ak,j=OO;krt+¡:k+j;

f'ot j<o' Ak;¡=At+li l:k+l¡l,t:t<

oTr, otu Sane as Ak;l ; Ak;-l, (E: rrEastr?; 
^9: 

rrSoutht')

; Ast;ì.:l'",,:,t:'r)k;ì (At,k,1;k^i-' gl,k,i)

?eoö' oi llg¿.l , lla..ll 
1

The Toeplitz part of A

Tfflrn-t url

j ,- O : the ¿th diagonal above the nain diagonal

of the Toeplitz paït of A; i < 0 ¿ the liltn
diagonal below the main diagonal of the Toeplitz

part of .4.

The cyclic convolution of a and b

A*

a.
J

m

JT
æJ

Ã,4

A
1,

A^ A^-1 . ,. A', where {AU} are square natrices of

dma,*

a@b

6Á, ôa

reL'A, reL â,

eond A

T

{
A

4(¿. )' 4r. j l

the same order (not leading submatrices of A)

The computed value of A,a

The errors in .ãrã ; -A-A, a-ã respectively

ii I o" 
o ¡ | 4i | 

" ¿¡ | ; I aa/ a I

The conclition nunber of .4, defined as ll¿ll lln-lll

A Toeplitz natrix

A block-vector with blockt O(i)

A block-rnatrix with blockt A (¿j )

Block-row í and bLock-col.unn ¿ of A



x1

Pv.mÞpl

4e,¡,u ; A(h:i,i)

o(tiltt
Att l

ABT ,ABR,ABRT

Explanation

BLocks i to k of l,ø,2r. blocks h to i of l(,j)

ELenent k,L of block ù,j of, A

kth Leading block-submatrix of A

Block-,transpose, block.reverse, block-reverse-transpose

of{

Explanation First
Occurrence*Symbol

î".
A" rA"

ific S

lr
(ti)

D

1s Latin

G( þk

T

Cp

,4 after the application ot C(ôl,Gúi)
(T.1 ) l,z,r./ (T-1 ) y

Cyclic permutation matrix; (Cr) ij=l if
j=i+p(mod n), where n is the order of C^i

P

(C )..:0 elsewhere'p1,J

Cyclic permutation matrix for Bareiss

step (xi)

Diagonal matrix in LDR factorization

Diagonal scaling matrices fot W,i,l,l¡,fr

Sane as d¿¿, di¿, d¿¿

etc. b, etc, after the application of

7.2.r

3.2.I

5 .2.2

DD,

,1

tD nu

t1

a.

6.7

2.r

8.4.2

8.4.2di' -,'u

¡î-,iu;

), ) " etc.c{"d'7. 8.4.2

3.2.1

6.7

2.3

4 (T-1) z;n,1/(r-7 ) 11

Denominator of multiplier rudti !b

E Exchange matrix i an â=1 if i=n-j+L;

ê^';:A elsewhere
t,.J

E Matrix partition
*chapter/section/sul¡-section (if applicable)

4.2
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E

E
(td)

e..
^1,

L

fj' fj'

CI

nroul

J

KL'Kz

L

Expla¡ation

Backward error m4trix for Toeplitz

factorization

LocaL error in computing Bareiss

iterate êi)

¿tt, column of identity natrix

Backward error matrix for Bareiss

algorithn

Scaling factors for ø¡,ràJ.r etc.

Floating-point operation

Initialization procedure for rank-l update

Backward error natrix for rank-l update

Scaled versions of li .rUj ., etc. (e.g.

U ; .=f ;0 ; .)
-.J .J -¿

Backward error vector for Bareiss algorithm

Inverse transform with relation 0O

Backward error matrix for Bareiss algorithm

(Scalars) Bareiss pivoting parameters

Unit-lower-triangular matrix in LU factor-

ization

(scalar) Ratio tÍ^*'rc (see below)

Multiplier matrices for T(li), defined

by M(!Ðr=r(!¿)

same as ,(+(n^1) )

trlultipliers for Bareiss recursion

(mr,:nrn/d"O)

First row of Toeplitz part of *(ts)

xr]-

First
OccüIffi-ce

6.3.1

4.4

4.4

8.4.3

4.4

2.4 .r

6.3. 1

8.4.3

4.4

8.2

4.4

5.3.2

2.r

4.3

3.3.2

2.3

2.2

24

F

etc

fL

I ; .riJ ; .' etc.

F

G

*(ti)

M
(t)

m.,!L

T
m

)+g s.2.2
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First

0ccilFñ-cePr¡þe¡.

n

n. "!1,

nAt '"
0(Ð ' etc.

?

P1'P z

g,Q(n-l)

Explanation

Order of Toeplitz natrix .?

Numerator for multiPlier

Nurnber of A, d-cycles

Order of n, etc.

Initialization procedure for Toeplitz

factorization

Pernutation matrices

Orthogonal factor in QR deconposition

of. T, Tn-,

Auxiliary orthogonal natrices

Orthogonal block-matrix

Triangular factor in QR decomposition

of r, ,(n-1)

Certain upper-triangula.r + rank-1 natrices

ñ after the application of the ith plane

rotation

Upper-triangular factor in LDR factorization

Certain scalars in error analYses

Recursion relation for rank-1 update

Upper-triangul ar blo ck-matrices

tl1,tt-. ,a I

í. P.i/a¿l

A conplete or partial set of Gil1-Golub-

Murray-Saunclers rotations

A pernutation vector

A selection matrix (trq)ii=t, P<í<q;

(S )..=0 elsewhere' pq..LJ
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T
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CHAPTER 1

INTRODUCTION

1. TOEPLITZ MATRICES

Ã Toeplítz matz'iæ is one in which the elements along any

northwest-to-southeast díagonals are all equal. As an illustration

a 5x5 Toeplitz natrix has the forn

m_
f-

+
L

t
-¿ --I

t
+u

+

t

t2
L,1

to

J.
lt-

--L

+ +v

+v

+

0 3

2L
t
+
"1

+
"o

+
-¿

-3

4

3

2

+
"1

Lun
U

(1.1)

2

L
Ir v +v t
-4 -2

Each element of a Toeplitz matríx depends only on the Cifference

of its indices, so we may wri-te t¿i as tj_¿

Toeplitz matrices arise in a large nurnber of seemingly

unrelated applications of applied mathematics and engineering. Some of

these applications are given in the next section.

There are other t¡res of matrices which are related to

Toeplitz matrices, and to which Toeplitz theory can be adapted, rvith

suítable modifications and generalizations. Examples are HøtkeL matrices,

in which the elernents along a-ny soutVusest-to-ncrtheast diagonal are all

equal; eiz,euLøLú matrices, a subset of the Toeplitz class in which each

row is a right-rotation of the previous rol'ùs; bLoek-Toeplitz matrices,

where tlne bLoeks along any northrvest-to-southeast bLock diagonal are all

to

1
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equal; block-Hankel and block-circulant rnatrices; matrices with a

2-1evel special structure, e.g. a Toeplitz block-structure with

circulant blocks. A different generalization of the Toeplitz class

is the algebra of a-ToepLitz matrices, introduced by Friedlander et aL,

1,291 . This algebra is the set of matrices of tlle forn

where the {l^.} and {U-,} are upper and loler triangular Toeplitz-L 1'

matrices respectively. C1early, when s=2 and IJr=Lr:f ' To is a

Toeplitz matrix. All of the abovenentioned types of matrices have

important applications, some of which are given below. In this thesis,

we concentrate on fo"pfitz matrices, and rnention only briefly how the

:results rnay be extended to related forns, when this is pos.sible. l{e

do not consider special forms such âs band or triangular Toeplitz

rnatrices.

2. APPLICATIONS OF TOEPLITZ AND RELATED I\'IATRICES

Toeplitz matríces arise in many applícations of tine serles

analysis, irnage processing, probabilíty ancl statistics, control theory,

and in mathematical techniques such as polynomial, and rational and

exponential approximation, solution of elliptic and parabolic partial

differential equations and certain Fredholm integral equations. An early

reference to the application of Toeplitz forrns is that of Grenander and

Szegö 142). Cornyn's thesis l2ll gives a very comprehensive list of

Toeplitz applications and an extensive bil-.,liography (255 references) up

CT

m rF f trf - a U.U.c' ,,'1,'1,
1,:J.
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to Ig74. For conpleteness we will repeat most of the applications listed

by Cornyn, but only give some representative references, referring the

reader to Cornyn for a conplete list. A later survey of Toeplitz

matrices is given by Roebuck and Barnett [81], who include the important

Toeplitz-related work of Kailath, Morf and co-workers, which has

appeared since I974.

l^Ie now examine some ToepIítz appLications in detail. In the

field of time-series analysis, Toeplitz matrices occur in linear

filtering or prediction problems [59], 1671, [16], [60], [63], [1]' [52]

when the signal and noise statistics are stationary. At the end of this

section, we will illustrate one such application by showing how Toeplitz

systems arise in'the discrete l{iener filter [59]. Levinsonrs algorithn

for solving ihis system is the basis for the recently-developecl lattice

or ladder filter structure, pioneered by Morf, Lee and others [69],

[5S], t61] , Block-Toep\itz matrices arise ín nultichannel fíltering

[S8], [4], [65]. In other areas of time-series analysis, Toeplitz

matrices arise in maximum-entropy spectral analysis [85], antennas and

arrays 1821, adaptirre beamforming l77l ' estimates of shaping and

rnatching filters [88] and fast recursive estination [55].

Matrices with a 2-1evel sPecía1

circulant) occur in i-mage processing l2l,

processing [51].

structure (Toeplitz and/ot

and in general, 2-dinensional

In probabiJ ity and statistics Toeplitz ntatrices occur in

statistical comnunication and detection 1,76), sta.tionary auto-

regressive time-series, and the Ising model of statistical mechanics [45].

In control theory, Toeplitz or Hankel rna.trices occ-ur in the ninimal

reelizatíon problen fzal, [65], the minjmal design p::oblem [56], [57],
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and the adaptive estimation of control system pararneters by Bayesian

methods t5l.

In nathematical techniques, Toeplitz systems arise in Pad6

approximation [39], [38] , [10], [14], [15] , [13], spectral factorization

[79], Pronyrs nethod for expotrential fitting [46], convolution-type

Fredholn equations 1731, elliptic ancl parabolic partial differentj-al

equations 1621, olthogonal polynornials [49] , [55] , and canonical matrix

fractions 1,251.

The foregoing iltustrates the wide variety of applications

where Toeplitz matrices occur. l\le íllustrate one application by

deriving the equations for the Disclete l\liener Filter.

The Weiner Filter Equations l59l

We wish to determine the nature of a linear tappecl-delay-line

filter, which, with input bk, wj11 have output as close as possible

to a desired signal. ok That is we wi.sh to detennine the filter

weights {un}MO such that the error

(2.r)e
M
Ðub

n=o fr
a.

R k-n

is as smal1 as possible in the mean-squared sel1se. To do this, we

.2minimize <¿i.> with respect to the ü-^. Here-k

average; for a stationary time-series *l¿ .*k,

From (2.L), and us j-ng the fact that the operator

M
(a.b, >+<(Eub,KK-n ^nK-nr¿:u

k

1yt: ffi zv+l t!_r*t ++

.r?;, = .o?o,
.2)>

M
Ð 5r "r-Luu n
n=0
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Differentiating with respect to ,j and setting to zero,

(2.2)

j=or"'rM'

Since the processes ê-Te stationary the averages in the middle expression

of (2.2) are independent of k and depend only on the difference

between-the indices. In fact .okbk_r, = z'oO(n), the cross-correlation

a<¿? >

#: -Z<aobo-,
J

M
>+22ucb

n=o fl
".b- ):0K-J k'n

between ok

function of

Hence (L.2)

and bk,

bk. This

can be rvritten

and .bk_jbk_r, = obb(n-i ) , the autocorrelati-on

function is even so we also have <b . .b"K-J K-n
z,UU( i-n) .)=

M
E u t,.. (:í-n)
^nbD-n=u

roU(n), i=0,...,M (2.3)

Eq. (2,3) is a Toeplitz set of equations; they are the rvell-known

l{einer filter equations.

3. AIMS OF THE TI]ESIS

Note on Operation Counts

Throughout this thesis rve will only count the nurrber of

nultiplications and divisions as a nreasure of execution tinle, since these

operations nornally take considerably more tírne to execute than additions

and subtractions. Iloreover, the number of additions and subtracti.ons

is, in all the algorithms discussed, either less than or about the same

as the number of ntrltiplications. We therefore refer to an operation

as a multiplication or division.
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Most of the applications of section 2 require the solution

of a Toeplitz set of linear equations

Iy : b_ (3.1)

or the related plocesses of inverting or factorizing T. Sone of the appli-

cations require the solution of the fu11-rank Toeplitz least squares

problem, which is to find ! which minimizes llTæ-bll ,, where T

is mxn h í d. A few applications require the eigenvalues, the

singular values, or the conplete singular-value-deconposition (SVD)

of f.

In the published literature, much work has been

done on fast çOtnZ) operations or less) nethods of solving (3.1),

and the related problems of factorization and inversion; however, 1itt1e

work has been <lone hitherto on ways of reducíng rounding errors without

sacrificing too much execution speed.

On a different topic, few nethods exist that exploit the

Toeplitz property in techniques of numerical linear algebra such as the

QR decomposition, the calculation of the eigenvalues or SVD. We note

that many theoz,etieaL tesults for the Toeplitz eigen-problern have been

obtained [41], but tlne computational side of these problens has been

neglected. This thesis therefore aims

(1) To improve the accuracy of. solving (3.1), retaining

a complexity of 0fu2).

(la) To derive nehr connexions betrreen the solùtion of (3.1)

and tlie problems of factortzation and inversion, and

to use these resulr-s to improve the accuracy of

solving the latter two Problems.

Þ

I

l

I

i
i

i

I

i

t
À',
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(2) To develop fast methods (. O(t't3)) for linear problems

other than that of solving a set of linear ecluations.

In the next section, rve review the main advances in Toeplitz

numerical methods, and in the follorving section, we state the principal

results of ottr investigation of (1) and (2).

4. PREVIOUS I\IORK ON TOEPI,ITZ METHODS

In 1947, Levinson [59] rvas the first to solve a Toeplitz

set of equations in Oh2) operations. His algorithn solves a

syrnmetric positive-clefirrite system in 3n2 operatiotrs ancl is the

basis for nany subsequent Toeplitz solvers and inverters. 12 years

later Durbin 126l solved a more specialized system, the Yule-Walker

equations, in n2 operations. In 1969, Bareiss [6], solved an

indefinite, nottsingular system in sfurz operations ' His approach of

eliminating down the diagonals, is quite instructive, and we will

extend this approach in developing methods with improved accuracY. From l968

to I97I, Berlekamp and Massey [B], 164l and Rissanen [78] also developed

elinination-type approaches to reduce Toeplitz and Hankel systems

respectively to triangular form; these methoils also can hanclle cases

where a leading mínor ís zeto, in contrast to rnany exísting Toeplitz

methods. Two years 1ater, lViggins and Robinson [88] inproved the

operation-count in Levinsonrs algorithm (for a symmetric positive-

definite systemj to 2r2 operations, and Marltel and Gray [63] rederived

the lrliggins-Robinson algorithm using orthogonal polynonials. Tn I974,

Zoha'r t93] improvecl the operation-count for a general system to 3r2

operations. In 1979 , as a result of a co-oper:ative effort between the

t

Þ""

I

I

t

I

ü;

fl
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US and the USSR, a Toeplitz software package [87] after the style of

LINPACK was produced. Also in 1979, Jain [48] reduced the complexíty

of solving (S.f) fron 3n2 to 2n2+Bn Log n, and incorporated

iterative improvement, requiring Bn Log n operations per iteration'

1980 saw a najor advance in that Brent, Gustavson and Yun [13] and

Bitmead and Anderson t9] developed Toeplitz solvers with asynptotic

complexity gfu Log?n). However, Brent [12] has pointed out that n

needs tò be fairly large for the ner,v algorithm to be faster than 0fu2 )

methods, so there is stil1 a place for the latter. Bitnead and

Anderson also extended their nethod to o.-Toeplitz matrices, as dicl

Morf [66] independentlY.

CIos.ely related to the problem of solvíng linear equations

is the probletn of inverting the system matrix. In 1964, Trench [84]

wrote an algorithm which invertecl a. positive clefinite symmetric Toeplitz

^2matrix in Srf operations, and briefly indicated how to extend it to the

non-symnetric case. Zohat l92l re-derived Trench's algorithm in a lucíd

manner; his algorithm applied to all rstrongly nonsingularr Toeplitz

matrices, i.e. matrices with no zero leading min::'s. Justice [a9], [5C]

derived a Toeplitz inversion algorithm fron the recursion relations for

szegö polynomials. Tn 1977, Justice [51] used bivariate szegö

polynomials to derive an efficient inversion algorithm for 2-level

Toeplitz matrices.

Also related to the problem of solving linear equations is

the problern of factoring T into upper and lov¡er triangula:: matrices,

though these facto'rizaticns have other applicat.ions, ê.8. in Pad6

approximation [14] and spectral facto'rizatton [79]. Rissanen [79] was

the first to find an 0fu2) Toeplitz factorízer; Morf [65] independently

developed tlo factotízets, a roui-I{ise and a column-wise factorize't-

!;

t

[-^

!

I
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Both these factorize::s fail when T has a zero leading ninor. In L974,

Rissanen [80] developed a pivoting technique for a Flankel factorizer

rvhich could handle zero leading ninors. fn 1977, Gibson [31]

interpreted certain intermedíate quantities in Toeplitz factorizations

as reflectíon coefficíents. Kailath et al [54] derived a conprehensive

set of results for tire factarization of discrete and continuous

cr-Toeplítz opetators. In 1979 and 1980, Bultheel [14], [15], derived

several' significant connections between Toeplitz factorization and Padé

approximation.

There is a strong connexion between Padé approximations and

the solution of Toeplitz systems - i.e. the standard so-called coefficient

padé problem require the solution of a Toeplitz system. Other authors

besides Bultheel who have used this connexion include Gragg [38],

Graves-Morris I39] and Bose and Basu t10]. Some recent theoretical work on

Toeplitz matrices has been done by Delsarte, Genin and Kamp [95]-[97]'

concerning block Toeplitz matrices, Aikake t4] developed

the first ínversion algorithm for block-Toeplitz matrices in 1973.

Agrawal tl] ancl Agrawal and Jain [2] proposed algorithns to solve

Block-Toeplitz and block-circulant systens in 1976 and L977 for the

digital restoration of images and for designing constraiued least-

squares filters. We have already mentioned .)usticefs work [51] on

2-1eve1 Toeplitz natrices. In 1980, Bose and Basu [11] gave an

efficient recursion for the solution of 2-1eve1 Flankel matrices arising

from 2-D rnatrix Padé approximants.

There have been a few recent studies on the error analysis

of the solution of Toeplitz systems. Cybenko l22l has given a rounding

error analysís for Ðurbints algorithm, and has extended it 1,231 to

Levinsonrs and Trenchrs algorithnrs. Graves-Mo-rris [39] gave a
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conprehensive suïvey of the numerical calculation of Pad6 Approximants,

including Toeplitz nethods, stating that the latter are unreliable because

of the inabílity to pivot. De Jong [24) shorvs that existing 0fu2 )

recursive methods for solving the so-called tealization problem of systems

theoryore unstable. This problem involves the solution of a HætkeL

system of equations. He proposes a stable method using orthogonal transforns

which, horvever, require s 0 (n3 ) operations.

T\:rning now to Toeplitz problems other than the solution

of a linear set of equations, I{e find that since L974, Morf, Kailath

and co-workers [6s], [53], [58] , [28] have developed fast algorithms

for least-squares estimation and prediction with stationary or close-

to-stationary statistics. These problems essentially require the

solution of the Toeplitz (and cr-Toeplitz) least-squares problem; and

the new inethods solve it in 0(pt) operations, where p is the order

of the problem and t is the number of observations, compared to
I

Oþ"t) operations for the general Ieast-squales problems. In this

family of algorithrns there are fast Kalman and fast square root

estimators; some of the fast algorithms are implenented by the new

lattice or ladder filters.

Pye et al [75] discuss a fast method to find the pseudo-

inverse of a 2-Ievel circulant matrix, and Flartwig l44l discusses the

Dtazin inverse of a Toeplitz matrix. Kung and Kailath [56] propose a

fast algorithn to find the LQ decomposition of a special Toeplitz

natrix, cal1ed a generalized resultant matrix, for the ninimal design

problen. Morf [65] calculates indirectly the R-factor of the Toeplitz

QR deconposition by finding the Cholestgr decomposition of f f . Cline,
plemmons and Worm [94] discuss generalized inverses of Toeplitz matrices.

Recently, it has been required to compute the eigenvalues,

singular values, and SVD of Toeplitz or Hankel matrices in certain
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problems of control theory [57] and rational approxirnation [83].

lbwever, no rfastr algorithms (c.omplexity less than 0fu3)) have yet

been developed for these problems.

5. MAIN RESULTS

Most existing Toeplitz algorithms to solve (5.1) break

down when a leading subnatrix of T is singular. It would be expected

that if a leading submatrix of f is i11-conditioned, serious rounding

errors may occur in these algorithms. This has been shown by C¡'benko

l22l for Levinsonrs [59], Durbin [26] and Trench's [8a] algorithrns for

solving If: þ, and by de Jong L24l for Rissanenrs algorithm [78]

for Hankel reduction. We show that'the possíble rounding error at step

k is proportional to the condition number of the Tk, the kth

leading submatrix of T, for Bareiss's algorithrn [6] for solving (5.1)

and for Toeplitz factorízation. Backrvard error analyses are also given

for Bareissrs algorithm and for Toeplitz f.actorization algorithms. l¡le

then propose a pivoting scheme for Bareissts algorithm to help overcome

the problern of error growth when some leading submatrices of T are

i11-conditíoned. This pivoting scheme is then extended to Toeplitz

factorizers, and tc¡ the Trench-Zohar inversion algori-thm by using the

connexions between the latter two algorithms and Bareissts algorithn.

This pivoting scheme may be considered to be an extension of existing

pivoting schernes to handle singuLaz' leading subnatríces suc.h as those

of Bareiss, Berlekamp ancl Massey, and Ri-ssanen [80], and of methods to

handle rtnon-nornal'r Padé problems [18], which have Toeplitz systems with

singular leading submatrices. llle note that our pivoting scheme also
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handles singular leading subnatrices, but is not equivalent to Bareissrs

method, since the latter technique requires the triangularization of

a snall non-Toeplitz block, in contrast to the nethod proposed here.

The pivotíng scheme is the main result in respect of our

first ai¡n, i.e. to improve the accuracy in solving Ir: þ. For the

second aim, to develop fast methods for other Toeplitz problems, we

plopose algorithrns to find in OhZ) operations, the factors 'A and R

of.T, where a is orthogonal and R is upper-triangular. These

algorithms are also relevant to the first aim, since solving T2: þ

in this way enables singular and i11-conditioned leading submatrices

to be handled without significant loss of accuracy. To the authorts

knowledge, there are no algorithns which calculate A and R explicitly
o

in 0fu¿ ) operations for a general Toeplitz matrix, though Kùng and

Kailath's algorithnr [56] calculate A for a special Toeplitz system

called a generalized resultant matrix. The present algorithns âssume

no knowledge of control theory or polynomial natrix theory, as is

required by [56], but are formulated in terms of elementary natrix

operations.

Also for our seconcl aim, we examine nethods that exploit

the Toeplitz property in the calculation of the SVD and the eigenvalues.

l¡Je were unable to find a stable nethod of finding the Toeplitz SVD in
7?

< TfuÔ) operations, but we propose an 0(n") nethod which ís 2 to 5

tirnes as fast as general nethods in several important cases. We also
.)

propose an 0fu"Log n) method for the SVD rvhich may be unstable because

it is based on the Lanczos algorithm; however, Parlett and Reid l74l

have given a ntethod for computing ei.genvalues by running the Lanczos

algorithm on an iterative basis and using a special method for tracking

the eigenvalues. With their nethod conveïgence ltas been attained even



for i11-conditioned problems

adapting this device to the

the singular values only

be calculated stably in

in about 5n iterations

0fuzlog n) SVD routine,

13

We suggest

in the hope that

is symmetric) can(or the eigenvalues if I

0 fuz Log n) operations .

6. ORGANIZATION OF THE THESIS

In Chapter 2, some alternative derivations of the Fast

Toeplitz Factorizer (FTF) are given; the first derívative relates FTF

to the Bareiss algorithm; the second relates FTF to rank-I undate

algorithms for factors. These results will be used in performing the

error analysis on, and incorporating pivoting into FTF in Chapter 6.

fn Chapter 3, the Bareiss algorithm is related to the Trench-Zohar

inversíon algorithm. This relation will be used to incorporate

pivoting j-nto the Trench-Zohar algorithm in Chapter 6. In Chapter 4,

an error analysis is performed on the Bareiss algorithm, and in Chapter

5 the pivoting technique is described; the improved numerical performance

of the pivoted algorithn is shown. In Chapter 6, err'or analyses are

perforrned on Toeplitz factorization algorithms and pivoting incorporated

into these algorithms and Toeplitz inversion. In Chapter 7 algorithms

are described which computes the QR deconposition of a Toeplitz natrix
'I
in 0(n') operations. In Chapter B, Toeplitz QR algorithns are

presented which are faster than those in Chapt.er 6, though logically

more complex. Sorne extensions and appl.i-cations of the algorithms are

also given. Finally in Chapter 9, two algorithms are given which use

the Toeplitz property to accelerate the calculation of the SVD.
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Note on the Nunbering Schene, In any chapter, all theorensf lennlas,

atgori.thms, procedures, figures and equations are nunbered independently

in the forn A.B, where A is the section nur¡ber and B is the order of

occurrence of the theoren of lernma or algorithn or procedure or figure

or equation within the section. Itrithin the chapter of occurrence, the

theorem, etc. is referenced by A.B; otherwise, the theorem, etc. is

referenced by C.A.B., where C is the chapter of occurrence.
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CHAPTER 2

FAST TOEPLITZ FACTORIZAT ION ALGOR ITHMS . ALTERNATIVE DERIVATIONS

1. INTRODUCTION

In this chapter, ì^re consider the decomposition of the Toeplitz

¡natfix ? into triangular factors. IIe rnainly consider the forn

I=LU (1. 1)

where tr is unit-lower-triangular (ULT) and l.l is upper-triangular (UT) ' The

results caïTy easily over to other forms; in particular, we will briefly

consider the deconPosition

T:LDR (1.2)

where -[ is ULT, D is diagonal, and R is unit upper-triangular (UUT) at

the end of the chaPter.

The deconposition (1.1) can be used to solve the system

!æ : b (1.3)

This can be done bY solving

Ly (1 .4)

:u (1.s)

by forward and back-substitution respectively. Other applications of

Toeplitz factotization are spectral factorization [79], Pad6 approxima-

tion If+] and minimal design problern of systen theory [OS]'

Rissanen in 1973 [73], and Morf in 7974 [6.5] independently

developed Toeplitz factorization algo ithns requiring 2n2 + 0ht) operations.

b

Ugand
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In this chapter, we derive, in two l,\Iays, a¡ LU^factorization algorithm

which is related to Morfts column recursion for the.DDR factors. For

the first derivation, we shov¡ that Bareissrs Toeplitz elinination

algorithm [ 6 ], written in 1969, essentially computes the triangular

factors of T; we propose a sinple modification of Bareissrs algorithn

that calculates L and U. For the second derivation, we show that

Toeplitz factorizers nay be obtained very simply frorn algorithms which

update the t¡iangular factors of a general matrix by a rank-l matrix;

a Toeplitz LDR factorízeï nay thus be obtained frorn Bennettrs l,7l

algorithrn for updating LDR factors, and the Toeplitz LU f.actorízer,

derived above, nay be obtained from a suitably-nodified version of

Bennettts algorithm.

The purpose of this chapter is not to present new fast Toeplitz

factorizers, (FTFts) but to point out the connexions between FTFrs and

firstly elinination algorithms (e.g. Bareissrs algorithn), and secondly,

rank-1 factor update algorithns. These connexions nay be used to derive

the FTF's sinply, and will also be used in Chapter 6 in our erlor analysis

of Toeplitz factorizers.

In Section 2, we review the Bareiss algorithm in detail; it

will be needed in this Chapter to derive FTF algorithms, and also in

Chapters 3-6. In section 5, we show hol the Bareiss algorithm conputes

the triangular factors of T, and propose a modified algorithn, the

adaptecl Bareiss algorithn (ABA), to calculate L and U. In Section 4,

we show horv FTFfs may be derived from rank-l factor-updaters, and derive

a Toeplitz LDR. algorithn from Bennett's algorithm. We then modify

Bennettrs algorithm to update the Ll.i factors, and hence derive a Toeplitz

Lu factorizer, shorving it to be the same as the ABA.



2, TI{E BAREISS ALGORITHM

The Bareiss algorithrn sol.ves

by transforming (1.3) successively into

T
( -1) b

( -1)
t

(t

Tg= þ

U{l-d, r

t7

(1.3)

(2.2a), and

Toepl itz

r(1) ß = b(t) T(-2)æ = 6(-2) ,

1)), - ,(n'n-L

5

-n) (
m

,!

(-¿) (¿)
Exp1icitly, ? and T have the forns

t (0)
0

t (-1)
0

r(Ðæ = b(z) 
"

(2.r)

where the natri."t f(-i) have zero elenents along tine i sub-diagonals,

the ¡natri.", f(i) have zero elenents along tjne i super-diagonals. Thus,

,(L-d is upper-triangular, and ,(n-1) is lorver-triangular.

(-í+tL(-i+t)
0 'L

,(0)D.n-l

, (-i+1)
Tn-Lt

_(-¿) _t-

Toeplitz

(^¿) (-i)
L-

(-i)
n-i-1t0

t

t t
0.

t (-í)
-(i+1)

(-¿) þi)
-(i.+L)

, (-i),0
1--n

t



Toeplitz

T
(i)

t

(¿)
-L

t L
l,

+
U

(¿)
ô+t

, (í)t-
n^J_

1B

Toeplitz

(2.2b)

0

(í.)
-1

(t)
-n+¿+L

t

t

(í)
i+tt

0

t (i-l)
-n+¿

(0)
L-n

T(¿) , and prove (i) that this re

and GÐ T(-í'+1)^nd r(í) h^u. t

(i-l )
-t 0

t t

(0)

rsion requíres onlY

forns in (2.2), wit

4(n^í) operations,

h í ye-p,laced by

t --r---!----- t
-L 0

respectively, for i:7,2r...rfl-7. We have indicated in (2.2) that rows

i+L to n of r(-i,) , and rows 1 to n-i of r(í), are Toeplitz. Henceforth,

we will boundany Toeplitz block with cont-inuous 1ines, and any non-Toeplitz

block with dotted lines, as is done in (2.2). The notation in (2.2) also

needs sone explanation. The superscripts denote the iteration nunber and

the subscripts denote the distance from the main diagonal - positive i.f

above and rregative below. In (2.2b), tO :: trt.

The Bareiss Recursion

| -1,-J ) (i+t ) ( -í)
We now show how ? and T are obtained from 7 and

+
U

i+L, and an extra diagonal of zeros.

We fi rst define the shift matri-ces Z and Z
-'L

YOlr)

1+i
L

0

't

0
zt.

U
¡7 1

\

4
0

7 "otin-i

-L
>-" z I

\
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The effect of prernultiplying any natrix Á by Z^U is to dorvnshif,t A by i

places, and replace the first zl rows by zeros; Premultiplying A by Zn

upshifts A by i places, replacing the last í rows by zeros.

The Bareiss recursion is:

-'L-( L) (-i) (¿) (-i)
-'1- D-!T T -m -Z -T

^1'-J -L^1
, wheten-. ":t- u-t /t o Q.3a)

(í+t) (i) (-t-1) (2.3b)r -m

The follorving Theorern shows the validity of the Bareiss recursion. The

approach is different from that of Bareiss, who derives his algorithm,

rather than stating it in a theorem. and proving it; our proof is based

on manipulating natrix forms - patterns of zeros and Toeplitz blocks -

and it appears to be sirnpler than Bareissrs derivation. This approach

will be useful in later Chapters when we consider more complicated

variants of the Bareiss algorithm.

Theorem 2.r rf r(-i) 
^na 

r(i) are of the forms (2.2a) and (2.2b)

respectively, then (i) f(^¿'1) unl T(í+1) h"lr" the sarne respective form,

with í replaced by i+1, and an extra diagonal of zeros, (ii) the recursion

(2.3) requires a(n-i)-5 operations.

Proof : (i) lvriting out the RHS of (2.3a) explicitly, we have

T
(-i) z.-T

^L-I
+ (-í)
-L-J

- ^i*l zi*l T , where m¿+L : tlilrtt(o¿-l)

Uù

IH
I
I
I
!

Ito
0

( -ì.-1) (2.4)

1

T æ

n-i-1
lOlìIS

I

I rows
ít _--.Îr û

í zetosL ZeTOS



20

It is clear that {* is elirninated by tO in the operation

in Q.4). In addition, the Last n-i^I rows of the output

natrix of (2.4) are Toeplitz, and diagonals (*1),(^2),...,(-i)

aTe zelo.

These three results show that 7 Gi^l) has the form

T
( -ì.-1)

It can be similarly shown that L

í+l zeros

n-i-1
lOr{rS

T
(i+l ) æ

I
I
I
t
I
I
I
t.

0

0
æ

I

æ

i-L rows

has the forn
Z CTOS

(í,+1)

æ

I

æ

0
QED. (i).

(ii) Consider (2.4). There are 2(n-í-1) non-zero Toeplitz

diagonals in the last n-í-l rows Z-i-l T(i) , so there are

as many operations (including the computation of t(;i)ttOl

in comput ing 7('i-f) ,rritg (2.4). Similarly there are

zfu-i)-s operations in computing ,(í+t). QED. (ii)

The Bareiss Non tric AI rithn (BNA

Irle can use the recursion (2,3) to produc " ,(1-d and r(n-l) which

have n-l zero ðiagonals belorv and above the main diagonal respectively;

,(1-d 
^nd 

r(n-l) ^t" therefore upper and lower triangular respectively.

This algorithn is called the Bareiss nonsynmetric algorithrn because (2.3b)

cannot be obtained from (2.3a) by replacing -i and -í-1- by i and i+i respect-

ively. There is also a synmetric version where this can be done.
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Algor ithn 2.1 - The Bareiss Nonsynmetric Algorithm (BNA)

(0)1. Set ? +T

2. FoyL + 0 to n-Z do

( -í.-1) (-¿) (ô) _ .(-¿) ,/¿_- "-¿-7 / "o2.T T <-T ^m -Z -I
-'?,^J_ -'1,-l

with m
-1'-J

(i+1) (¿) ( -i^1 )2.2 T <-T ^ ^¿*lzi+lT
with m... : t

't +t
(i.)
i+L

( -¿-L)
0

(2.sa)

(2.3b)/t

Operation Count

n-2

The nunber of operations in algorithm 2.1 is

2 + o(d operations.
i:0

Exanp Ie 2.1*- Steps (-1), (1) and (-2) of the Bareiss algorithm

Step (-1) - ur" t(00) to elin ú
(0)

1

,(0) .t
"rort

(0) 
^(0)1_t

-1_ -3 -1-L -26 -2 L 0

-ó

L; LLm -26

-11

(0)
(0) DML-r

-f+u

0

1- 0-1- 3 2

0

1_

-(1)x)
A
\__- 2

3

J
-1

T

I 00
(0)t -L -3 -L1_ -26 -2 L 0

L

-J_

2

2

3

uot o
-a A

2-.)-1

-¿o

1

2l¿l

1)1

L

4

\
+v

(-1) 0-L 3 2 2 L

L

0

_(-1) \ .,

'z -7 r

a

L

-4

i

1

-L -s -L1 -26 -2 L 0

2 2B
( -1)
0

L5 -24 -3 L

-3

-24

L5

B

2

B

1_-4 1_ 0 L 02 + ( -1)
0

*In these exarnples, only the boun4?r:þå of Toeplitz blocks are shown.
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step (I) - use {^L) to elirn. tÍo',

r( o)

-3 -L1 -26 -2 1

T
( -1)

L

0 2815-24-3

L

Z

L

7

2

2

3

0

2-L

0

'Lm
(-1)
0

7

-3

-24

L5

B

0

L

-2

-26 -(-z)

-1_7

7

4

2 1

I

t +

B

0 1,L-4L 0 1-0

1. 0-1 s 2 2LL 0

T
(1.)

0 _2 _Z -j.BZ _1.4 _Zt(01)---2 t

step (-2) - ut" t(01)

L14

2

27,Ð'2

L

7,
-'2

a-z
L0

k

-,

-14

-1BZ

-7

-z

C

L3+ 2 lU1

-1_3 2 2 1

0

7

to elim. ú
(-1) 

,

-¿
( -1) (1)

T z^T
j¿

1- -1- -3 -1-L -26 -2 1- 0

0 2 2 B L5-24-3 1

(1.)

0

c

0

0( -1)
o

+t 0

( -1)
0

EL

-24

1s

-(1) x

2

¿

27,ù'2

1.

-'2

7-
"2

-L4

-i.BL¿

I

0-2

0 -2 -7 -184 -14

P1,Do

+

0

L

4

L

1_

C

4L0

B

2

¿L 0 382lU
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T
(-2)

^3 -L7 -261-L
02
0---0

1L_ !-2

-L

_7+

0

L4 o -74

-2 ^L

-24 -3

2e -%a

0 0

0

1

2L-¿2

-23u

29

264

o

4

calculate s T(-k)

28L5

4 o 26+

L -14

Note on steps and cycles: Bareiss step -k or k)

ço," r(Ð7. Bareiss cycle k calculates both ?

are two steps pel cycle.

k)
^nd 

r(k). Hence, there

3. COIIPUTING THE FACTORS OF ? USING THE BAREISS ALGORITI]M (BNA)

In general, it woul.d be expected that a triangular elinination

algorithm woul<i be related to the corrfesponding triangularizatiolr algorithn.

For Gaussian elinination, the upper-triangular matrix produced by the

reduction ís the same as the U-natrix in the .[U factotization. We will

see this is also true for the Bareiss algorit.hm. The situation is different

for the.t-matrix: for Gaussian elinination, the arra'l of multipliers (with

the signs inverted) is the.t-natrix. This is n-ot true for the Bareiss

algori.thn. However, the Bareiss aigorit-hm do.:s prorluce a lower-triangular

matrix, ,(n-7), which is relatecl to the desired 'D-matrix''

(
(

( J-n) (n-1) ( -)For conpactness, we denote I' alrcl ? byT and 7

respectively. Before we show the relationship bet*een ?lÉ) and the

triangular factors, rve need the following result:

(+)
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The upper-triangular natrix f(') is related to ? by

(5. 1)

,hu"u M(-) is unit lower-triangular; and the lower-

triangular matrrx T(*) is related to ? by

,(+) _ ,(+), (3.2)

,h"r" M(+) is upper-triangular.

Bareiss t O I shols that !:',) is a linear combination of

rows f to i of ?, with the co-efficient of Lt. being unity,

i.e. for some t¿¡, i:1'...'í-1 :

-) : ( V¿1r liy' . . . ' lir i- j.'7 )

(- vzl
u(-) r,SoZ

y(-) = a(-)r

LL1

I

t.
u

{.
--1,

= (v¿1'lizr' " rlti,i-j.,1' o,'' "o)T

L

)
I
I
I
I
I
I
I
Iu-'n-L ---Fu '/l5fL-J L

wlnet" M(-) is unit lower triangular. This proves (5'1)'

The proof of (3.2) follows similarly. QED

We now prove the main result of this section:

Theoren 3.1 Let ?=LU, where ¿ is unit lower-triangular and U is upper-

triangular, anð, Iet T(-) ^nd 
r(+) be the reduced matrices produced by the

Bareiss algorithm (BNA). Then



U-I (-)

^L G)rzand L=t ! J

25

(3 ,5a)

c3 .3b)

is UTr so,

(3.4)

0

where .T2 d"notes transposition about the secondary diagonal, or just

secondary transpose.

Proof: Fron Lernna 5.r , r(-) : ,(-),

i"e. ? ='¡*(^) ,'l
(-)

now fir¿f-l )-1 it uLT becau r" tl(') is, and, T(-

by the uniqueness of this factorization, (A(

and !( - ) 
=rl . This proves (3 .3a) .

For the second Etatt, we have

,(+) _ M(+) T"

T

-) )-7=r'

where M

(3.4) ,

(+) is upper-triangular by the above lernma. From

(Ð -1 (+) (3.s)I=M T

where ,rG) ,-1 is upper-triangula" b".^ur" M(4) is' rn

addition, by equation (2 .2b), it can be seen that by

putting ì,:rr'lry(Ð i, lower-triangular with tO's along the

diagonal 
I

Taking the secondary transpose of (5.5), and using the

fact that fz = ? because ? is ToePLilz,

r = ¡¡4ft)-1-T(-È) )T2 ;

but it can easily be shown that for any two natrices x and -Y

(xv)r2 : f2{2

(Use the fact that f 2 : @xø)I , where E is a natrix r¡ith

f.rs a10ng the secondary d:^agonal and zeros elsewhere; the

relation EE = f is also needed);

ri
'I
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hence T = r?)rz rrÃ)-l' )Tz

-L (+)r2 (+)^1 T2 (3.6)=f, ? t ( ttt
0 0

No* r(+)T2 i, 1o*"r-triangular with tots along the diagonal
(+) -L (Ðrz is unit lower-because 7 0

T

triangular. is upper-triangular because

Thus in (3.6)15.

I
Ê

Þ

has this form, so ú

As welr , (M(+)^L )Tz

¡

¡

{
t
',

i
i

!

I

I

r(+)-t is, hence to{ru(+)-1 )72

, _ *-1 *(+)r2u - 'o !
(3.7)

and U=t (M(+)-L )T2
0

The first equation in (3.7) is the same as (3.3b) . QED

Using the Bareiss algori thm to obtain L and U.

Theorem 3.1 inclicates that the ,[ amd U factors may be obtained

by executing the Bareiss algorithm and applying eqs' (7'3)'

As nentioned in the previous section in the remark on operation

counts , 2n2 + 0(n) operations are required to calcul ute f(-) unð' f(+) ;

since +rnz + ofu) operations are required in (s.sb) to multipty r(+)T2 ay

t;t, ]r2 + Ofn operations are required in all. This can be reduced to

Zn2 l- 0(d operations by adapting the Bareiss algorithrn to calculate

L and U directly.

Adapt the Bareiss algorithm to ca.lculate L and U directlY.

If we niodify Bareissrs algorj-thn to carcurate T(-) 
^na 

tolr(+)

instead of r(') ,nd r(+), then by (3.3), the modified atgorithn calcurates

.t and U directly. Theorem 3.2 short's that this can be done by a very sinple

modification of Bareissts algorithtn:

Let ta, y(+) 
^r-,d, 

T(-) be as produced by BNA (algorithn 2.r).

I
fl

Theorern 3. 2

1Then 7
(-)

ano u
0

v
(+)

may be produced by the following nodified procedure:
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(-o)<_? 
and i(+o) *tì1r {,.r(o*o) :Lj
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(3 . 8a, b)

(3.9a,b)

(3. 10a,b)

(3.1Ia,b)

(3 .l2a,b)

.l

I

È-
1 set ã

i(-1) *7(-0) _; 7{ o)
-L , where m-,z2

3

4

L

:(^0)
-t

:(+0);7(-1)
" i- /'o

I

t
lt,
lr

ït

i

ì

For í<-L to n-2 do

4.r i(-i-1) *7(-í)

4,2

Proof:

Compac t Version of ABA

Algorithm 3.2 - ABA (compact form)

I

2. (a)

:(+0)+l' ñ1 , whete mt

:(-1) :( -0) : ;(+O )
!àtrr',L*t-à,n,L - m-l L2:n-1,1

¡'(i) .-t(+0) :: T(-1)
!à-tî,i.*t-3,n,1, - m1 !3:n,7

Easy - show by induction that for E0'...,tr-l,

;(-i)- ^(--í) ;(i) - +-Lry,(i)! - I 1 L - w0 L

- ;(-1)o1 t¡{t)

¡(i+1)*7(ü - ñ¿*rr¿*ri( -Ì'-t), *h"'" ãí*t : Zl\)ñ[-"-t)

The whole of the ï(ti) do not have to be stored at each stage of

ABA, since by eqs . (2.ta), onW {;ir'ro*r,n ""aTi;"/,rl,f , 
ne¿¿ be calculated

to specif y i{-il, and ,"r, Z'ri)+l:n and 71",'"-o,r need be calculated to

specify 7{i). Hence Algorithm 5.1 can be written in the following compact

form using the fact that î!r-3!,0-r,r:Tl;'r',i+i-:n-L (bv Toeplicitv) in steps

2(a) and 4.1 (a) .

I
À
år

t}

T-r'.-o' * tr. t 4;or', 1 
* Lz :r., 7. t 4!or',r* h-, 2, n/t

':(+0 )!7,2,,

to) * L.r/to.7(
U_

-0)where
L

ffln:
^f

r!
(b)

3. (a)
)

D
(
1

( -1)
0

(b) ;(1) -7(+o) :;(-1)t-ì ti-1, I * ll :rt'-l, 1- - n 7 r-2 :n, 1

where 
^1

+0
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4. For rl +L to n^2 do:

4.L (a)

(b)

4.2 (a)

(b)

;(^i-L) .iG¿) r i(Ì,)
t ¿*z,i*2,"* ! ì+l', i+1. : n^7 ^ * 

-¿-l! l' í+2 : n

:(-i-1) : (-i)
!¿+s rn, i. 

* !í+s :n, 1 ^ ^ -í^i. Lz :n^i-l r 1

1(i+t ) :(i) :(-i-1)
!r.,i+3,n+ 21,i+3 : n -'¿+i- !i+2,í+3 : n

;(i+1) ^;(i) : i(-i-l)
!1:n-í.-L,L - !L:n-d-L,L - "'¿t-L !í+2:nrl,

where

ñ-o-, : 7'-;1-!t I
t'
I
,t

¡l
li

I

I

,,

i

I

where

ão*r:Tl|*)n5-o-',

Calculation of L and U using the Adapt ed Bareiss Alsorithm (ABA)

Theorens 3.1 and 3.2 enable us to calculate L and U as follows:

Algorithrn 3.3 - Calculation of L and U using ABA

t. catculate 7(-) unaÍ(n) using ABA.

2. rn.n tÅ(+)TZ 
^nð, 

uã(') .

eration Counts

It is easy to see that ABA requit", 2n2 + 0(n) operations to

ca:.ulatel(-) ^naõ(+), 
and hence L anð,'U. To solve a Toeplitz system

with k RHSrs, ABA therefore requires (2+Hn2 + 0(n) operations. By

contrast, Bareissrs algorithn requires f Z + fu)n2 + O(n) operations.

4. DFRIVATION OF FTF*ALGORITHMS FROM RANK.1 UPDATERS

In this section we show how to derive FTF algorithrns by relating

them simpl)'to rank-I update algorithrns. We first show how LU-FTF algorithms

can be derived from LU-upclaters, then show how LDR-FTF algorithms can be

derived form LDR updaters. I{e then apply these results by deriving an

LDR-FTF algorithm from Bennettts LDR updater, and an LU-FTF from a

I
I

.;

I
li!

È¡*

*Fast Toeplitz factorization
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nodified version of Bennettls algorithm.

4.1 Relation Between ,U qutl¡-1 Llpda ters and Toeplitz LU Facto-rizers

IThe rank-l update problen often has the form: suppose A=LU,

where L is unit lower-triangular anð. ll is upper-triangular. Find I unit

lower-triangular ana Tt upper-triangular such that

^i,ï=A+æuT:LtJ+æ¡.tT (4.1)
-L

o

Several algorithns requiring only 0(n') operatíons are available to find

L and 'u. Sone of these can be written in the forn

1. {*(1) ,L0 ) } *FtL,a} G.za)

. (4.2b)

r+here tt" {*(i) 
"A-(¿) 

} are auxiliary vectors, F is an initialization

procedure, and R is a set of :cecursion relations requiring 0(d opetations.

The following theoren shows how an FTF algorithm can be very

sirnply derived frorn a rank-l updater of the type (4 -2) .

Theorem 4.1 Let T be an nxn Toeplitz matrix, and Iet î, a unit lower-

triangular matrix, and Û, an uppel-triangular rnatrix, be such that

I=LIJ; (a.3)

let F and R specify a rank-I updater of the type (2,2) ' Thgn the following

atgorithn may be used to find i 
"n¿ 

û in o(n|) operations:

Algorithm 4. I

L.t*L.t/ttt ; al.*h.

2 For i-<- r ro n ao {/. i,4,.,L(i*'),r-(i*t 
) } , nt!. i,y¿. ,r(¿) ,u-(i) }

I

2

1

{*(1) ,r(t) } <-Fi.tr.n,r,

For í <- l to n^1- do

'tT"r,n /tttj

{Lr,n,¿+l' 4+1,2:n, *(i+1)r(i+l) ¡ +R{L,n-1,í'L1,1:n^1' L(Ð ' aG) }

@.aa)

(4.4b)

3

(a. ac)
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I

Let ?, .õ and U be the (n-l)th order leadlng sub¡natrices

of ?, L and {/ respectivell. Then,

(4.s)T

o

tt

LU

o

L
o

TLet and tl be the (n-l)th order trailing submatrices

of T,.tand U respectively, Iet t::tr1, lIþ,n,1 ^nd
T

u :þr2.n Because ? is Toeptltz, "ri, so (4.5) can be

written as follows in partitioned form:

m

0tt 1 tT
u

Tu

Tu

o

U

m-
!-

: LU (4.6)

L

[he trailing submatrices on both sides of (4.6) are

. OO 1 m

T=Lu+t-ttsut (4.7)

1
ut 0

(4.5) and (4.7) together Yield

i:u =;u - {1rrr

2. For i <_f to n_j. do

t!. o,ur.,*(i*') ,l¿*1)¡*n{r. ¿,1'g(i) ,a(i) } (4. eb)

From the definitions of L 
^na 

i,, (4.9b) can be rewritten

(4.8)

oo
(4.8) is a rank-l update problen, so by (4-2) L and U ate

determined fron L ,nd U Uy afru procedure

1. {æ
(1)

tU
(L)

\ *F{L,-ùt} (a. sa)

2. Fot í <- -7 to n-l do

tLr, n, i*t, 4.*t, r, n, L( 
i*' ) 

*( 
i+l ) ¡*nQa 

: n^7 ¡ ¿,ì¿, 1 : n- t' E( 
í ), 

t-( 
o ) t

(4. 1o)
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Now, eq.(4.I0) in fact constitutes a lecursion for calcu-

lating the colunns of î' 
^n¿ 

the rows of û in O(n2)

operations. ß(1) 
^nd 

y(1) .un be initialized by (4.9a),

ur,¿ 2. , anA i,t.,. can be initialized by (a.4a), the proof

of which is trivial. Hence , (4,4a) , (4.9a) and (4. 10)

constitute the desired algorithm for factotízing T. QED.

4.2 Relation Between .öDF Rank-l Updaters and Toeplitz LDR Factorizers

A result sinilar to Theorem 4.1 enables LDRToepIitz factoriza-

tion algorithms to be derived from a certain class of LDR rank-l updaters:

Theoren 4.2 Consider the rank-l update problern

7,íñ : LDR + oæyT (4.1r)

Suppose the rank-l updater for (4.If) has the form

(t) rnitiatiz " {*(1) ,r") ,o(1) } *Ptrtllta,L.yd'yy1.}

(2) Fot i+r to n do {/. ¿,ã¿,Li.,t(¿*'),y(i+1),o(i+l) ¡*R{!. i,di,\.'q-ø'lt-Ð'o(i) }

(4.12a-b)
then the FTF algorithm for ? has the form

(l) Initializ. L. ?df Ll.

(2) L* Lz,r-i-,1/t l1i y* LL, z:n-l/tll; o*'t 
1-1

(s) {r(') ,L(t),o(t)} *p{g,ato,L. ydl'\.}

(4) For i<- I to n-L do {Lz,n,í.+1,Li+1,2:n'd¿+l'L(i*l) 'L

*BtLl : n-1, i' \, 1 : n-1' d o' L( 
o

Proof: Analogous to that for Theoren 4.1'

(i+t ) (i+L )
,Õ ]

)
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4.3 Derivation of a ToepLitz LDR-Fac torizer Fron the Bennett Algorithn

Bennettts aLgorithrn calculates a rank'p update of the LDR

factors, i. e. it f ind t I ,T an¿ ñ such that

tuÈr 11

LDR = LDR + XCT

where C is pxp, and X and I are ftxP, !\le consider only the rank-l update

-find I', D and F such that

TiÃ : LDR + .fu.r. (4.14)

The algorithn in this case is [ 7 ] :

Algorithm 4.2 - Bennettrs Rank-l algorithrn (BRIA)

I ser e(1)* c, L(
(

a_

2. Set i<-l

{Main loop}

3. Repeat step 3.1 - 3.10, stopping at 3'3 when i=rt'

t^'| (i) (¿)
3.I p' " * 

"'"t 
*'¿"

s.2 ã¿¿ * d¿i * P(¿)a(¿)

3.3 StoP if i=n

3.4 q(¿) <- c(i)a(i)

and1)* * L)*a_ (4. 1Sa-c)

(4. I6a)

(4. 16b)

(4. 16c)

(4. r6d)

(a. 16e)

(4. 16f)

(a. 16e)

3.5

3.6 a-

3.7

(i+t )

(¿)

(i)<-L
(i)

u.
u

?.
-L

*(i+L) * * (ù) 
"- æ. L ,'1, ¿L

L)t*,(

-1d". .
1.1,

3.8 û
-L

(i) (í+t)pa_

(i+1.) (ì.)
5.9 c 1-c (i) (¿)qp

3.10 Increnent í, and go to 3.1.

(4. 16h)
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I
It can be checked that BRLA requires 2n t 4n-4 operations.

A Toeplitz LDR factorizer nay be derived from Algorithn 4.2

by applying Theorem 4.2. In this case, êQS. (4.15) constitute the

initialization procedure P, and eqs. (4.16) constitute the recursion

relatlon R.

Algorithrn 4,3 ^ Toeplitz LDR factorizer (TIDR)

1

2

L.t*L.t/to; tl.*Lt./to i d1*to

L*Lz:n-t,/to ; L+Ll"z,r/to ; c <- -to

4. Set i <- 1-

{Main toop}

5. Repeat stePs 5.1-5.10 stopping at 5.3 when íFn-L-
(i) ,(í.) û(.i)5.I p <- C L

3
(1)

a_ <-L(1.)
æ +æ j(1)

e <-c j

(
L

L

fdi+P5.2 d¿*

5.5 Stop if í:n-7.

(i) (i) (i)5.4 q <-e u¿

(i) 
u(.¿)

1)*5.s *(i+ ) (¿)

s.6 L
(i+t)

+-

L.
-J:n-tr'L

--L5 J !Il-J

.-1. (i
* di*l Q

(i)
a_

(ì.)
't

u

) (i+t )
5.7 Lz,n,í+l* Ll:n-1,i

5.8
.-7 (Ì.) (i+t)

\)+1,2:n *2,1:n-1 + a¿+l P u-

s.e "(i+1) 
* "(í) - d:¿1rn(o)p(¿)

5.10 Increment i, and go to 5.1.

It can be checked that TLDR requires 2n
ôz t6n-4operations.
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4,4 lr4odification of Bennettts Algorith¡n to Upd ate the LU. Rather than

the LDR Factorization
È

If we make the transfornations U:DR, L=L and z = êA, eq. (4. 14)

can be written
T (4.17)

which is the LU update problem. By observing that

u.. = d..
't 1, '1,L

(4 . 18)

+LULU =

u.. = d..
L'.l, L'.L

and making the transfornations

u. = d..rr.L1,-t

=c
(i) 

a_(í.)

Putting (4.22) in (4.15c) the latter becomes

(1.)â-þ

Putting (4.19), (4.18) and (4.16a) in (4.16b), the Latter becones

u.
-L

-ã.,,t ,t

(4.1e)

(4.20)

(4.2t)

(4.22)

(4.23)

(4.24)

(i.)

we can express all the quantities in algorithm (4.2) in forns "f U., A4.,

L.., L. , *(i) ^na 
y(¿), yielding an Ll)'update algorithn. lrle now do this.

-L" -L.' -

;..: u.. + c(i)æ(.¿)u(.¿)--'t 1, 't't 1, "'L

. (¿) (¿)
= U:: t l-. Z-. tL',t 't 't

using (4,22) .

Putting (4.19), (4.16c) and (4,22) in (4.16f), the latter becomes

u
(¿) (i+l)1.. = L.. +

-a-4
vu

L

1,1,
D

1,
(4.2s)
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Putting [4.16e) in (4,169), rnultipLying through by d¿¿ and

using (4 .2L), (4 . 1,69) becones

(i.)
- u.

"'L
ú

v
)

which, with (4.16b) becomes

. (i) (i): u. + æ. z4' 't

tfultiplying (4.16e) through by c

(4.16e) becomes

, using (4.20), (4.16a) and (4.11) .

(4.26)

and using (4.16h) , (4.16c) and (4.16a) ,

(1 - ã;:¿ n(.¿) z(i) t ra-(¿)^r!rü to.,

(i+t)

(ì.+t)
á

(í,)
-v

-.-1. (i) (i)
- 

l! - U.. &. þ.' 7,'r. 7. 1,
)h !.¿.) usine (a.22)(¿) (¿)

By (4.16b) the first bracketed tern is düfti¿, to

,(í+t ) : { u\!oæ(i) z(i) ) z(i) -410r[o' t . 5

t't'4. (using (4.26))

(i)-. u. (4.27)

Eqs. (a.lsa) , (4.23), (4.16d) , (4-26), (4.27) and (4'2s) forn the

basis of an .[U-updating algcrithn. Assembling these and replacing z by A '

we get

Algorithrn 4.4 - Moclified Bennett algorithn to solve (4.I) (MBA)

(L)
u

- U.. É
1,1,

(i)
ar

^(t

Set

) (4.28a,b)
1

2

3

4 *t

L+ -L

<-L

Repeat 3.1 - 3.10, stopping at 3.2 wlnen ¿:n

(i) (i)3.1 u¿¿* uii - *i'U¿
3.2 Stop if i : n

@.28c)
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ßF

-+æo)
(¿.)
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[4. 28d)

(4. 28e)

(4.28f)

(a.28e)

<_ æ

G)3.4 u. + 'l,l .' ¿|' ¿l/a

h)+t)3.s L +u
L

-^1 G) *
^U..U. U.

'?,'L "',|, -'?..

u
L

(i,)

È *_1 (i) (
L.¿*L.¿+"¿iui-'g' í+1, )3.6

3.7 Replace i by i+1 ; go to (4,28c) .

Operation Counts

. The nunber of operations required to execute algorithn (4.28) is

Zn2 + n - L compared to 2n2 * 4n - n for the Bennett algorithm as described

by equations (4.16); hence the present algorithm is slightly quicker

(by 3n-3 operaticns) than the Bennett al,gorithm for this updating problem.

4.5 Derivation óf Toeplitz LU Factorizer fron the Bennett Alsorithm

A Toeplitz LU-factorizet may be derived from algorithn 4.4 by

applying Theorem 4.1. I{ere, eqs. (4.28a,b) constitute the initialization

procedure P, and eqs. (4.28c - a.2Bg) constitute the recursion R.

Algorithm 4.5 - Toeplitz LU-factorizer
(4 . 29a. b)

,/t o
(4 "29c,d)

3

(í) (4.zse)
Ir

(4.2sf)

1. L.t*L./to ; Lt.*!_t.

2. L(1)* Lz,n,j. ; a(7) <-

3 '2 %)+L,z:n*'%.,1:n-L

4, 2

For i <- L to n-1- do:

1_) <, *(i)s. t *(i+ L.
-J. : n-L r'?.

. (i) (¿)
+ r. u

'?, L

3y (i+t)
<- u ' 'i+1-,i+l a¿ a4+1,2:n

1(i,) (¿)
3

3 Lz,n,¿+l*Ll:n-1,¿ * u¿11,0-0, 
'lu) 

g( 1.)'t+

Ø.2se)

(4.2eh)4
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Hence the ABA

By naking the transformationt %+1.* (t,\i\),¿*r,r),

!-' Ì*, * ( {, LÍ.1)^r, r", ì+t -(f :( -Ðr ,T
' Li+z:nrl) una y6+l1* rt,43.,

algorithn 4.5 can be transformed to algoritlún 3.2, the ABA.

and the Toeplitz LU-factorizet are equivalent,

(
,n)'

5. CONCLUSION

It is shown that Toeplitz factorization algorithrns have been

derived in two ways: fron Bareissrs elinination algorithn, and fron rank-l

update algorithnrs.. A Toeplitz LlI-factorizer derived fron a nodified version

of Bennett,s rank-l update algorithm is shown to be the same as that

derived fron Bareissrs algorithm.
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CHAPTER 3

THE RELATION BETWEEN TOEPLITZ ELIT,IINATION AND INVERSION ALGORITHMS

1. INTRODUCTION

In this chapter we derive a relationship between one of

Bareissrs Toeplitz elimination algorithns [ 6 ] and the well-knotrrn Toeplitz

inversign algorithm of Trench [84] and Zohar 1,921'

We describe Zoharts formulation in Section 2, noting a rnodifi-

cation by Jain t48] which accelerates the Trench-Zohar algorithm (TZA)

when the order of the Toeplitz matrix T is greater than 16. In Section 3,

we review Bareissrs symnetric algorithm (BSA) . (Note that the tern

ilsymmetric'r refers to the structure of the algoritfun, and does not mean

thatBsAcanonlybeappliedtos).'mmetricnatrices')Wethenderivearr

extended BSA (EBSA) which caiculates two upper-triangular ancl two lower-

triangular matrices, and show that if ,D and IJ are the triangular factors

of T, then the two upper-triangular matrices produced by EBSA are cJ.osely

related to (J and u-7, and the two lower-triangular matrices are closely

related to L and L-l. EBSA is similar to an algorithm by Rissanen [Zg],

but calcul.ates tr column-by-colunn anð tl row-by-row, whereas Rissanertrs

algorithm calculates .L row-by-rohI and U colunn-by-colurnn.

In Section 4, we nodify EBSA, gívingthe Alternative Bareiss

Syrrunetric Algorithrn (AB5A), which calcurate s L-l end U-l only (in fewer

operations than for EBSA). ÌJe then derive a rel.ationship betr'¡een ABSA

and TZA. In a iater c.hapter (chapter 5), a fom of pivoting rr'ill be

incorporated into ABSA to improve its nunerical performance. This rel-ation-

ship allows pivoting to be applied to TZA'
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sone related work ha-s been done by Bultheel [r+], [rs], in

which a duality between Toeplitz factorization and inversion algorithms

is shown; the approach is via a matrix interpretation of Pad6 approximation

algorithns. In the present work, the approach is to extend the Toeplitz

elinination algorithm of Bareiss in a straightforward manner: no mention

of Padé theory is nade.

2. THE TRENCFI-ZOHAR ALGORITTM

We state without proof the Trench-Zohar algori'lhn (TZA) for

Toeplitz inversion. Some changes of notation have been nade to confom

with the notation in the Bareiss algorithn (introcluced later) '

Let the input nxn ToepLitz T : ¡t¡-iï"l¡=o r" partitioned as follows,

L
m-.+J -. v

0

1ö::-
to\n-7

Tu

-L
0 n-L7)

,

Let B, the inverse of T, be partitioned as foliows'

Tc

t T

1

d M
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Now, defin" I¿*7 as the (ì.+I)th leading subnatrix of T, and let

å+l t: 
'|1-, 

(¿:7, "rr n'1) be partitioned as follows'B

B

1
T

1

t o\i
t (2. 1)

L+J
d.
"L

M(¿)

then B may be calculated as follows:

Algoritlin 2.1 (Trench-Zohar algorithm (TZA))

{ Initial ization}

1 \1*7 - uLü7

2. e" * (-u.)
-t J-

3. d. < (-ts").-lt

{Phase .I, main loop: in each pass'.calculatt 2)+1, 4,*l

4, Fol í<-f to n-2 do

4 .2 'r¿ -(, i*t

4 '3 %t+t*

R
d..
-?.+

and Ài+l ]

4.L \i* -(ui*, TRI .+ ¿.!ü) {urrrs-..' first i elenents of u,u}
-t-u -'l'- -L

* ,r. f.)-+ -L

\¿
xt%

4.4 +-
1 +

Rd.
u

4.5 \¿*7 * I¿ - ni \¿/\¿
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{Phase II - calculate the rest of B fron its first row and colunn}

5 b7i. * 1/toxn-l

6 Lr,r,n u 4to\n^l

7 Lz,r, i. * ilt o^n-l

8. For i<2 to n do {calculate aII b above the secondary diagonal]
1,J

8.1 for i <-2 to n-i+L do bO¡ubi-t,¡^l_ 4{ ß.r
u ì-l,i-1

1

'onn-l

9 ' b'Li *bn+L-¡,n+L-i

Operation Counts '

phases I and II of the Trench-Zohar algorithm reqtíre 2n

n2 + 0(n) operations respectively.

U i,j below the secondary diagonal.

R-c

+ 0(d and

0c

2

Jainr s lvlodif ication

To solve the system Tæ = b, one woufrl normally find T-7 by the

above algorithn, then evaluate f-lL. These steps require 4n2 + 0(n)

operations in all. Jaints nodification [48] enables TL: b to be solve<i

I
in 2nz + Bn Log n + 7fu) operations. In Jainrs rnethod, Phase I of the

Trench-Zohar algorithn is executed to find c, d and Ln-r. Then the following

formula by Gohberg and Semencul [ 53]

L

d

I

0
1c â

1 n-L

0 "1

0

d
0

n-

n-L 1
I

'l ø

I1 1
,1 0

ñ
n-J_

0d _-d.n-l J L

(2.2)
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may be used to evaluate æ : Bb, The rnain work is in evaluating four

natrix*vector products, where the natricès are triangular Toeplitz.

It may be shown t 3 ] that such a product may be embedded in a circular

convolution, which may be evaluated ín 0(n Log ù operations by FFT [20].

3. THE EXTENDED BAREISS SYMMETRIC ALGORITHM

We first describe the Bareiss symmetric algorithrn (BSA), which

reduces a Toeptitz matrix to upper and lotver triangles in 2n2 + 0(n)

operations. We then extend BSA to calculate two upper and two lower

triangles, which are closely relateci to U, U-7, L and L-1, where L and u

are the triangular factors of l.

5.1 Bareiss Svmmetric Algor ithm (BSA)

BSA [ 6] is very similar to Bareissts Nonsymmetric algorithm,

describecl in the last Chapter. BSA generates a sequence of n-7 pairs

of matrices, the i-th pair of whích has the form

T

Ll,

t

i zero
diags.

(-¿)

(0)-
o t.

(-i)
-'t -J

(-i)
1--n

(5.1a)

c

t L
( -i)
-L-L

¡ ^i.)
0

t



t (¿)
0

(¿)
i-n+7

T

and (Z

7

-L 
Z9TO

diags.

1 (L:k-¿)
0 elsewhere
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(3.lb)

(3 .3a)

(3 . 3b, c)

(Ì,) -( í)í+7- 'n^1-t

0 (¿)
i+1

L
l/

I'
(i)

where
-1,

(¿) (i-l)2,2 r +T

where m. = t
1, 't,

( 1-'i) , , (¿-1 )
-ì, /-E o {

L
Ir
I
I
I
I
I
It

(¿)
0'+U

<_
z

( 0)
L-n

(0)
0

the subscripts in the elements of (3.1a) and (3.lb) denote the distance

above (positive) or below (negative) the nain cliagonal, and blocks which

are bounded by continuous lines are Toeplitz,

The basic recursion in BSA may be written in the following

matrix forn:

Algorithn 3.1 (Bareiss Symmetric algorithm (BSA))

(0) (3.2)T .m
-_¿

2. For i<-1 to n-L do:

2.r r(-i) *r(t-i) (i-1 )

I

m.-f,, )_.ì. KL

( 1-i)

(i-l ) ( L-i)
0

(L:k+i)
elsewhere

(s .4a)

(3 . 4b, c)

^iZ¿ T

/t anð. (z¿) uL= fo

T.n (2.6a), the effect of Z-¿ is to downshift T(¿-L) O, í

rows and replace the first i 'rows by zeros. Sinilarly, Z¿ upshifts a

natrix by i rovrs and replaces the iast i rorvs by zeros. If T(l-i) and

T(i-1-) have the forms shown in (3.]a) and (3.fb) (rùi.th i-1, teplacing í';

it can be checked that T(-Ð und f(i) as producect by (5.5) and (3.4) have



44

i null sub- and super-diagonals respectively, So the (n-1) iterates in the

BsA, í1-') 
^nd 

,{n-ll are upper and lower triangular respectively, and it

wilt be seen later that they are sinply related to L and U. BSA is called

I'symmetricrt because the recursion for the negative-index iterate (step

2.I) is the same as that for the positive-index iterate (step 2.2), vtíth

al1 indices changed in sign. In Chapter 2, we described Bareissrs non-

symnetric algorithm which does not have this property, but is slightly nore

efficient.
3.2 The Extended Bareiss SYrune tric Algolithm

We wish to extend BSA to calculate L'l and U-7 ^t 
well as -t

We now introduce the multip lier matrices, defined band U. v

M(-ì.) r T
(-i)

M(-i)

(í.)

r

M(1"-¿)

M
(í-1)

M(¿-1 )

(3.s)

(3.7)

(3.8)

(5. s)

M(i) r T (3.6)

( -¿) (í)
? is assumed nonsingular, so M and M are unique. Substituting

(s.s) and (s.6) into (s.2)-(3.4), and postmultiplying uy T-1 yields a

recursion for the M
(+í)

M( 
o)

(i)
M - ^i zi M(1.-i)

Equations (3.7)- (3.9) , together with algoritlm 3.1, enable us to calculate

borh the ,(ti) and the ,(¡i) '

Algorithn 5.2 (Extencled BSA (EBSA) )

(0) (3. 10)T -m-tI

2. T¿
(0) _T_L (3.11)



3. For zl <-L to n-L do:

.(-i+1) ,,(¿-L)t-í /" o

(-í,) (-í+t) (i-l)
T -m.2.?-1' -L

3.3 M(-¿) = *(-d+1-) - m-i ,-u r'u'"

3.1

3.2 r

m
ÇL

s.6 M(i) - ,(i+1) - ^i z¿ r(-í+l)

45

(3.L2)

(3. r3)

(3. 14)

(3. 1s)

(3.18)

(5. 1e)

3.4 n¿ = t!i^') tt[-i+t)

3.5 I (i) ( í,-1) m. Z,,1, 'L
,( -Ì,+1) (3. 16)T

(3.L7)

I't may be shown by an induction, that M(^¿) 
^nd 

a(i) have the forn

(Toeplitz blocks are bounded by continuous lines)
1

m
( -1)
-L

I

M(-i)

M(

(-i)

L

'(-¿)

m

m
-'l'

0 (^i
-L 7

(i)
'1,

m

(¿) (i)
m7 

-m¿

i) (í.
L

m
I

I

t

0
t.'ff,)

-'n 
i-

1_
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whence it nay be shown that (3.14) and (3.17) require only i independent

operations each; recall that (3.15) and (5.16) required only Z(n-i)
n-r e

independent operations each, so EBSA requires .Larí.*z(n-í) 
: 7n"+O(n)

operations to execute.

In the theoren below, we show how the triangular factors of 7

and their inverses are related to the output of EBSA.

Theorem 3.1 Let I=LIJ, where ? is a nonsingular Toepli.tz mattix, L

is unit lower-triangular, and u is upper-triangurar. Let T(+) '-''(n-1) ,

T(-) .-r(l-d , M(+) .-r(n-l) 
^nd 

M(-) .-,r(l-n) be the reduced and nultiplier

matrices produced by applying EBSA to T,

I

Þ

l

If
l;

't

I

!

I

I

Then:

U-

Proof : By clef initio n, M( - ) T : I'

r(-)

ldiae{L/t(+) ,r(Ð rr2

M(-)

ldiasti./tG) ,r(+) trz

U

L

(3.2a)

(3.2r)

(3.22)

(3.23)

(3.24)

-1u

1

(-)

(-)-1T:M T
(-)

Now from (S.18), setting ò==n-7, il-) is unit lower-triangular, so

M(-)-1 ís also. T(-) is upper-triangular. So (3.24) is an L(J factoriza-

tion of 7, therefore

L : 
'(-) 

''t

a = T(-) '
because the LLI factorization is unique for L unit triangular' This proves

(3.20) and (3.22) .

By definition ,(+), : ,(+)

i.e. r : M(+)-1r(+) : ¡*(+-)-taiagtt[f,) ]) (diag{l/rti) w(Ð )

(s.2s)



Recall fron Chaptet 2 that for any matrices X and Y,

(xY)rz = {2 {2 .

Taking the secondary transpose of (3.25) and using the above identity,

f 2q:(¿i^ett/tll) ,r(+) )r2 (M(+) -1ai^srt[ï' t," (s -26)

No* rl+) is lower-triangular, so diag{z n[i"'(+) and hence (díae{L/tlT" "

* r(+) ,rz is also unit lower-triangular. Also from (3.19) ' setting

íF/ÞL, M(+) is upper-triangular, hençe so is the right-hand factor of

(5.26). So (5.26) is again the (unique) LU factotization of T, therefore

(diae{L/tlf,)wG) t

4t

T2 (3.27)

u = ,r(+)-laius|ttT'r," (s.28)

(3.27) is the same as (3.21), and (3.23) follows by inverting (3.28).

QED

THE ALTERNATIVE BAREISS SY}ß'IETR.IC ALGORITI{M (ABSA)

TOEPLITZ INVERSION

We have shown that EBSA calculate s L, [J, L-l and. r]'1 in hn?+O(tz)

operations. We now nodify EBSA to calculate L-l and U-1 in only 2n2+0(n)

operations. We then show how the resul,ting algorithm, the alternative

Bareiss symmetric algorithm (ABSA) is relateC to the Trench-Zohar

algorithm.

Fron equations (3.22) and (3.23), we ïequit. l'l(') , ,(*) and

d,iaettt;) Ì to generate L-1 atrd t¡-7. rf we onit steps s.2 and 3.5

fron EBSA (algorithm 3.2), we rvill have an algorithm to calculate the

I
t,

ñ-

I

I

I
t

i
i

)

I

i

L

*

tr

4



desi.red quantities if we can calcutut. t(;i+l)

without needing to calculate the rest of f(-í')

we prove the following theoren.

Theorem 4.1 r"t r(!i) , a(ti¡ be as in Algorithm 3.2.

as in equations (3.la,b), Then the following relations hold:

, (i^L)
, T0 ,

un¿ r(i)

(-i+2)
-i+1-

, (i-2)
- m , - E. -

-'t +l 't -J

48

{.¿-1) 
^na 

t[-¿+1)

To this end,

.:

¡
l',¡

Þ-

I

I
,t

{

'I

Ii
I

I

I

I

l'

t ( -i.+1)
-'t

( i.-1)
0

(i-l)
1,

( -i+1 )
0

(-i+1)
m.
-L+f .

t

( 'L-2 )
0

t - m. - t't -I

( í,-1 )
m-_J

LL'i+l

( -i+z)
0

(+i)
.J

Let t ,bê

(4.1)

(4.2)

(4. 3)

(4.4)

1

t

t

t t

t ( í.-1)
0

(4.s)

proof: (4.1) and (4.3) follow from the definitions of OO(+i) (eqs. (5.5)

and (g.6)), and (4.2) follows fron writing out tlne (i,i) element of (3.16)

and using (3.la,b). (4.4) follows from writing out the (1'1) element of

(3.13) and using (5.la,b). Alternatively, (4.2) and (4.4) follow

directly from Bareiss rs equations (3 . I b) . (4'5) is shown

by Bareiss.

QED.

t,

If we omir steps 3.2 and 3.5 in EBSA and insert (4.1) -(4.3),

(4.S)to calculate the elements of f(!i) needed for mr-¿, we have the

Alternative Bareiss Symmetric A1 orithn, which calcuiate, a(-) , M(+) and

(ti)
0

t , and , by (3.22) and (3.23) , L-l and' u-1



Algorithn 4.1 (Alternative Bareiss Synnetric Algorithn (ABSA) )

(0)
+f,,

0 0

(0)2.M <T

3.4 t ( i,-L )
L

(-i)3"7 t +f,
0

(0)
0

(0)
L1_

0
t <t

{eq. (a.1) }
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{eqs. (4.4), (4. s) }

1. t

3, For ä <-1 to n-7 do:

s.r {1-i') *tlli! t ,
3..2 ^,¿u/1-i) //¿-1)

3.s M(-¿) *r(t-i) - m
t7 M

(¿-1)
^'t,1,

(i-
<-m. L.¿*t {eq' (a'3) }1)

s . s 
^o* 

t(¿-1) ,t( t-l')

s.6 M(Ð *M(i'l) - mi z.M(1-¿)

, (i-1"i , (¿)
-¿Ei ; Do

(L-i)
0 -m - *( -¿)\ U0

Algorithrn 4.1 inay be written in a nìore compact form using (3.18)

and (3.19). We observe that the first i rotvs of M(-í) are the same as

those of M(L-i), and the last í rows of U(í) are the same as those of

M(i-L). He¡rce út;î'. ^tu 4? only nee,J be calculated to ryecifv M(-¿)

,na U(i) respectively. So, writing out row i+l and 7 of steps 3.3 and

5.6 respectively, and noting from (3.18) tn"t {l*ri'r,O*r: (0, tll;',)t'
we obtain:

Algorithm 4.1a (ABSA)

1

2. m

i

<-L



3, For zl <-7 to n^L do:.

(B¿*l .t
T¿nl

ø¿1r)l\'.
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(4.7)

(4. 8)

s.z ^-i*/1-Ð /{¿-1)

3.3 4;"t',L:í+L< 
(o' (1.

m.
u5 ;i'r, - ,-d(4:1:l,o)

s.i ^¿ 
*/i-1) /{1-i)

{ri'r,r*r*'{r:i

3.4 t

3.6

(¿-1)
L

1.) )
(L-¿),m, - .)'1, t:1,

(^Ð , (1-i)
o uoo

0

m.t
-1,

- m.(0.
't

(i-1)
't

3.7 t

4

The relation between ABSA ancl the Trench-Zohar Alsorithm

lr,)*t,r*, ' {r-,!l-1,i+1.' ffi,n^¡ ', 
= 4-),n-i:n' i=0''' "tr-l

The connection between ABSA (algorithn 4.1a and the Trench-Zohar

algorithn (algorithn 2.Ð) nay be found by using the following results [+g]:

(Bi*lt. = ruul*¡\*l g.6)

where

We now wish to get the quantities in the Trench-Zohar algorithn in terms

of the quantities in ABSA. Using (3"22) and (3.23) (applied to T¿*1) '

(4.6) and (4.7) becone

í+1- 1

¿)
,1-: i+L/' 0

*!
-]

(i.)
(n )

)
1

(ai+l
T (-ì,) ,,(-i) (-¿) ,-(i)Lt+1-,1:í+i./to = ^i+L,L:i+i-/vo

(4.e)
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The first conponent of (4.8) + (B¿+lu=:î, i.e', using (2'L),

"o

t 5
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(4. 1o)

(4. 11)

(4.t2)

(4.13)

(4.L4)

(i)
to ì,,¿ 0

t

Again using (2.L), (4.8) and (4.9) can be written (cornponents 2 to i+l)z

4, = a!"1r,æ,

Er (-i)
% = u4+7,7:i

Putting (4.11) in algorithm 2.1, step 4'1, we get

\i = -(ti+l/to - {t:'r,¿n 4,¿)

: {r:):í.+t !'i+t/t o =

. (í.)
-v¿+7

0

using algorithm 4.La, steP 5.4.

Stnl1-ar1y, it can be shown that

Y.. : -t'L

(-í)
-1,^J /to

Now, by (4.10)-(4.I4), algorithms 2.1 and /t.la calculate the same

quantitíes. Only the notatfon Ís different. Thus, 1f we make the

transformatÍons

t(oÐ * toxu

Ll,z,i+1 * %

,4;i',t,¿ * 4.

t -> -t o\¿ '

t (í.)
i+l
(-i)
-'l'- l"

* -t on¿

then algorithn 4.la should transform to phase 1 of algorithm 1.

This is easíly verified.

Trench-Zohar alsorithm.

Hence ABSA is equivalent to phase I of the
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Derivation of a variant of the Trench-Zohar Aleorithm using the Bareíss

In a manner simílar to thaË above, hte cân extend BNA t 6 ]

(whlch also reduces T. to upper and l-ower triangles, but "itn tff,) normalised

-7 rfl ; f rom the o:tended BNA, we can deríveto t 6) to calculate .t ,U rL - and

an alternative BNA (ABNA) which calculate" L-l 
^na 

tJ-l ín 2n2 + 0(n)

operations. By using the relations betw een rjl ,u],t ,(Bl L and (B¿) " 1,

ABNA can again be used to calc.ulate b., and L1., trerrce iÈ can be shown that

ABNA is equivalerrÈ to a variant of the Trench-Zohar algorithrn in which

ttre b.. are scaled by t0, rather ttran À'.'bO, ín phase 1'

etric orithm

5. CONCLUSION

An extencled form of the Bareíss symmetric algorithm (BSA) is

presented to calcul ate L and U, the triangular factors of a Toeplítz

matrix, t-ogether çith Z-1 anð' U^l , ín 1nZ l' 0(n) oPerations. From ÈhÍs,

an alÈerna¡ive BSA has been derived to calculaËe L-l a,nd U-l onLy ín
.) -1 -1

Znz + 0(d operations. Using relations corrnecÈing L - rU ' and the fl-rst

rows anrl columns of the submatrices {T¿} of. T, it was shown that the

alternaËive BSA and the Trench-Zohar algorithm were equivalent' An

alternat ive Bareiss non-syÍlmet::íc al gorithm may be símilarly derived,

which is equívalent to a vaïialìt of the Trench-Zohar algorithm'
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CHAPTER. 4

ERROR ANALYSIS OF BAREISSIS ALGORITHM

1. INTRODUCTION

lrle now present rounding-erroT analyses of Bareissrs algorithm

BNA. The main purpose of this chapter is to show that the rounding-error

can increase without linit if a leading subnatrix approaches singuLarity,

showing that BNA is unstable. In the next chapter, we propose a pivoting

scheme for BNA which gives satisfactory results when a leading subm.atrix

is singular or close to singular. To the authorrs knowledge, there is

no error analysis of BNA as yet available in the li-terature, though

Cybenko lZZl gives an error analysis of TZA (which, as ule saw could be

derived fron BSA), and DeJong 1241, shows that Rissanenrs algorithm [78]

for the triangularization of a ilankel matrix is unstable. Rissanenrs

algorithn, however is not equivalent to BNA; to see this, note that if 7

is converted to a Hankel matrix by prenultiplying by E, the excha.nge

matrix, Rissanents algorithn find the facto'tization

(1.1)

whereas BNA finds the factorization

T : LDU (L.2)

The factorizations (1. 1) ancl (I.2) are rlifferent because (a) EI' is a

different shape from tr and (b) U I L in general.

In Section 2, we derive several bounds on j-ntermediate quantities

produced by BNA. These bounds are functions of the condition numbers of

certain submatrices of ?. The condition number of a nonsingular matrix

is a measure of its closeness to singularity, ancl is defined by

- 
þ-m -- 

Nm
ET = LDL' + T = ELDL'
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cond. A ;: ll¿ll il¿-l¡¡. (1.3)

In Section 3, we give a forward error analysis of one stage of

BNA, and show that the eïroÌs in iterate (Ð may be .t times the errols in

the previous iterate, where .t is proportional to cond TU*r. In Section 4,

we give a backward error analysis of BNA, showing that if second-order

quantities aIe neglected the computed solution æo exactly solves a

perturbed systen (T + 6T)û" = þ + 6b, where 6? and ôb are computable itr

terms of quantities calculated during the execution of BNA.

2, BAREISS ALGORITHM - MISCELLANEOUS RESULTS

The results of this section will be used in Section 3, where a

forward error analysis of one step of BNA is performed. We first consider

what happens wh-en one or more leading subrnatrices of ? are singular.

Let A be any order k+f matrix (not necessarily Toeplitz).

Suppose AU and AU*, are singular. Define OL ,: Al,k,Z:k+i

ana nf; ,: Az,k+l-, j.:k Then eith er AEO or ,1fl is singular.

Lemma 2. I

Proof: Assume aet alO I o. Then,

zero, i-lr...rk such that

k
rf. a, / o, ¡¡en ?ltl:l<+ ìÈ

a determinental identitY,

OT

since det A
k

k= 0' 3a . not all
1.

Consider

= 0, settingseparately the 
;i;"t 

oL: 0 and u, I 0.

ok+j_ :0 gives n2-, "U ?i,l,k, : { -+ det

Ifc
1_

otu: o'

o
(ar/al ?¿,1,k = or , so, by
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k

?t,J.;k+z + '>, ho/ai.) ?4,t,k+t
det 14 = det

k+1

= det

2:k+1,L:k+LA

rtt

0- ß

j>o

(2.L)

QED

(2.2a)

(2.2b)

0,

Ask ?t tk+i-,k+1

k
where g ': dl,k+j. + Èz ("¿/"1 ort,l<+l I 0 because

aet alUl o. Hence by (2.t) det nfl: o.

For the next Lemrna, and for the discussion in the next chapter,

the following definition will be useful:

Definition For any matrix .4, the disp1acecl leading subrnatrix of order i

and displacement i, denoted bY A
us ¡J

, is defined by:

AL;J 1 :i,j+1: i+í

o+rj =olil+t:lil+i,1:i i<o

Eq. (2.2a) shows that for i > 0, oirr. rt the matrix contained in an i x i

box with its top border at the top of A and its left border displaced ¿

places frorn the left border of ^4. Eq. (2.2b) shows that for i < 0,

A. is the natrix contained in an i x i box with its left border at the
L;J

left of A anð its top borcler displaced lil places down from the top of A.

Lenma 2.2 Let T be a Toepl j.tz na-trix, and let det T7, I 0,

det ! -n"'-nø^ U t lr - vt.. . JI . Then det rn;¿ I 0,'L:l-r...,Y+1.
k+1-;i
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By induction on ?)' Fot i=1, suPPose det TO.r:= d'et fdo'

Then by Lenma 2;L, det T,,k*1.r2:k+i.:0 + det TU= 0 (by

Toeplicitl), rvhich is a contradiction, so det Tt;1 I O'

Suppose d.et TO.¿ I 0. Then, if we suppose that det Tk;i+1=0,

we can get a contradicti-on by the same argurnent as above,

so det rk;¿*l I o. QED'

In Theorem 2.L below, we show that if s + L leading subrnatrices

of I' ate singttlar, then s + 1- extra zero-diagonals adjacent to the elininated

diagonals wil1. appear. Bareiss notes this fact without proof' However'

Theorem 2.1 stales precisely when ancl in what fonn the zero diagonals will

occur. We believe that the proof is not trivial:

Theorern 2. I Suppose det TO*.:0(i:1,..',s*1-) and det T7rl0' Then for

sorne prq > o P * Q > s' t = Q. j:0,...rpj-k-7r...,Q.

By contradiction. SuPPose

t|-U'= O, i:0,. ..,p'i-k-1', ..,-k-4',

rvhere pt-rq'¡ < s and t[,]), t!r!!r,-1 I o.

which by (2.2) and (2.3) has the form

( *k)
.1
u

Proof:
(2.3)

Consider Tk+p,+q,+2,

-{

æ

J,
p

,t{

!

0
0

l

0

t

æ

-k)t+1--{p

'+1-
T

( -k)
k+p'+qt+2 ^k)

t+7

ot-r{

-k)
k-q t-1

1-
( -k)
-k-q'-1

(2.4)
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From (2.4)

d"t rl#),+qr+Z

Now [6] detT

1Pt'+t ft[,])tq'r7 d,nþ ,l*',*,:(t ¡^k)
^k^q'-l

(2.s)

h=)t., 
" eTl.^L; j=0"..,, rn-h (2.6)

. (-tk+ k+L = 0, so eq' (2'2'3b) will b::eak

!-h) = det r"h;J nìJ'

So by (2.6) and (2.4)

dnt , k*t, ¡ : det ,llÍ), ¡=0, i:0, . . . ,p t*l .

J. By Lemna 2.2,

det rl.ll*, = det rk;p,*j. I 0 +by (2.s) a"t r[;!),+qt¡2 I 0:

which contradicts

det T - Q (i:1"...rs+1), since pt+q'+Z < s+l.k+i

Suppose det TO*.:0(i=1,.,.,s+L), but det Tkl 0.

Then BNA breaks clown after stage (-Ð.

QED

Corollary':

Proof

Renark

By Theorem 2.I,

down.

k)
1 5

QED

to singular in the sense that the distance between Tk*¿ 
^nd 

a singular matrix

is smal1 cornpared to ilfO*.\|. A useful inclex of "closeness to singularity"

is the condition nunber, defined for any non-singular matrix 24. in (1.3).

It can be shown [19] that an equirralent definition is

Bareiss t 6 ] makes a staternent ecluivalent to this corollary

in his Corollary 2, so the above corollary is not new, but

is included here for completeness.

We next consicler what happens to I(-Ð when the {TW¿} are close

ll¿ll
ma.æ

co14.d. A ::
B singuLar lla-¿ll

(2.7)
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Hence (2,7) says that the conditton number is the inverse of

the '?relatiVe closeness to singul¿rityt'.. Thus if the {Tt*t} are close to

singularity, they have large condition nunbers. Theorem 2.L stated that

if the tfW¿L were singuLar, several extra diagonals of T(-Ð will be

zeno. By a continuity algunent, it would be expected that if the {rk*¿}

were close to singular (had large condition numbers) these extra diagonals

would be 'tsmallr' compared to the other elements of I(-U -

. It would be useful to find a generalized version of Theoren 2.1

that shows that íf cond {Tk*i}f, ""r" all greater than sorne M, then s of
(bl

the diagonals ú)-ol would be less than some bound 6. Such bounds for
¿

s < 2 are shown in Theorem 2.2, but for s 2 3, the bounds rapidly became

wilcly- pessimistic. The converse statement - that s of the diagonals {.-k)'J
are less than ô only if cond. {TO*O}] ar" greatel than M - is easy to show,

and this is done in Theorem 2.3.

The following five Lernmas ((2.3)-(2.7)) are required before

Theorem 2.2.

LeL A be a (k+1.) x (k+1) matrix with au*r,k+l, oî1r,.k+l I 0.Lenuna 2.3

Proof:

Then

Partition

<BcondA (2.8a,b)
I (A-1 ) 1,k,t +lll / 1 f ,a'1 I k+l,k+tl

It (a-l ) k+1, L,t lt / | (t-1 ) k+l,k+tl

wlrere ß := llAO*rll/lleOll.

k

LAk

T

E L
A-L

d
t T

d h
(2 .e)
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then
At b

4
T

CI
!4

t
h

E

=l (2. 10)

(2.1r)

QED

" 
A¡f_ +

rF

nþ _^
-u

where

A

r-1+ * = -A.^bn K-

so rrfr = l (A'7 ) 1,k,t *tlt /l rn-l I k+t,k+tl

< ttaflrtttttrtt < llAlllllok*rtl = gllAîlililaoll = $ cond Ap

which is (2.8a). (2.8b) can be shown similarly'

Lemma 2.4 Let A be a (k+1)x(k+L) natrix. Then

na:f*rn < lra'l )k*7,t+tl(l + 3 eond. rl2 + ltnutl

QED

Proof:

g := llAk+rll/lltoll

Partition A,A'1 as in (2.g). Then, fron (2'10),

AUE+bgT:I

so u = nîl-Altpnl = oui .# { using (2'11)

-L

so +h lsr tl
OT

so llaf,*rll < llaull + loulr,a+tl(I + I eond' ru)z using

Lewna 2,3.

_1Ai+l =
J'
=h
L

0

0
i

I

I

I

I
I

I

I

I
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Proof:

þ!;Ð |

\'¿*rll

(1+ßeondI
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j > 0 (2.72)

ô > k+t (z.rs)

(2.14)

Define fu*tr¡ := (r1:k+1r7;þ:e llrk+lri)

ns f' , to*r,l ,t<+t)
'k+1.;í '- l- l'

l!¿'t ¡'k+t )

and

and

Then, after step (-k) of the Bareiss algorithn

g :: md,îÊ ltfo*r. .n,rrfo*rr¡rl:}/llroll

2(L+gcondTTr)

cond. Fu*r;k+l+j - g eond, ru

2
)k

eond rfur;í+l - F eond r'p

It is easy to show that for j > 0

tj-r't : u (Ft<+t 
rt *t*1i1.1,k1_7

Fron Lenma 2.4 and eq. (2.L4),

I(Ft*trk+t+¡):l1 < ltzul + (L + B eond, rlr)t/lt(.-t'1 
,

þ(.-t'l B rt * B eond. r¿2 /ttt (4*rrj*k*l-llt-ttzott Ì

from which (2.I2) follows. The proof of (2.13) is similar.

QED.

Lemma 2.6 Let F be any n x n rnatrix, fet C-frl and let g^.*"- --- vst

be the element of G with largest nagnitude. Then

n
ü. = lll "tft. * e, rvhere a"L :=

7 JJ.tft/

t* + lorl<t
"sE

and (2.ISa-c)
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Prqof: Expand g^", î,,¡ = .ôsr, divide through bY grt¡ and take ft,
to the Left"hand-side. This shows (2,15) for the ith

conponent. QED

Lerwm 2.7 Let M:=rnîn(cond Tp, eond TO*l t

g :: ma:t(llrknrll /llrOll,llTk+lll /llTsk.k+tll ,llrk*rl /nfk.k*lll )

where
o

'k;k+L
Then

oond Fu.u*, cond r|;wt = ulll 32(sk+t)1,

ir L:k "T 
:: t^. 1 .7, t 1i i=1,. . .,k+L (2.16a,b)

-'l¿ - Lz9 !. ñ-,- t

:: Tz:k+i.,i.,k 
^nd 

Furo*, = (7L:k,L:k-L'!l,k,k*r)

Proof:
tF

t'.
-L

Let ancl

:". 
(r-/*r) 

¡¿ be the element of rrl, witn largest magnitude.

Then, applying Lenna 2.6 lo ,k*j_, we get the following

relation between (k+L)-column vectors
k+l

!
t?-tlr- t

Llí.
E', lorl<t, Er ,: g!¡rrf*¡ ¡¿.

Tu.
-1'

Ta,.u-L-L + (2.r7)

mm,J- !u,.'8. + e
L-L

ñ k+l
t!slr. : -Zt_-L L:l

Ll1
_'1

Let (Tk- )

Removing the last column of (2.I7), and using (2.16) ' we

get the following relation between k-colunn vectoas

, rvhere e
T (2. 18)

1

qp be the element of f-U lvith largest magnitude.

Appl.ying Leruna 2.6 to 7¿i we have

lørl<t, g' = zNrrlrt)n " (z.rg)

If we replace the term ü t" (2.18) b)'the RHS of (2.1g),

(2.18) can be written

rn

t:2i-rk

m
J-!
a.

-p

rF
LLlr. -
-4

st !I* 9?,

k

t2t
Llp

k

t2t
Llp

"i yI * op*rllr*t ', ?r * o¡gr, ol ,: o¿*oplp*lo,¡l<2.

L
*ß is not reiated to the ß in the Lemna statement.

(2.20)
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rtt

Taking {r to the left ef (2,20), and substituting the

resulting expression for t! into (2,19) , we get

ryt'
-p

g.tT+a+
L-L

g1

q
B.

We consider separately the cases 4 < I anddi

r \ t.T .T T ^T!¿' Èz "t!i - "t*t!ir*t-e'-ay9')Llp e.zr)

k
nZn

7./p

{

ß
L

,1
> L.

B
L

Case 1. aj <L

(2.2L) shows tt't t fU.k+7 cai be nade singular by adding

B1

q (-e-u¡Ð to !p, so the distance between fk;k*l 
^ndô+

a singular matrix is <llell + llZOll. Hence, applying (2-7)

eond fu.k+j. > ,rfurt *rllli ll ell + llzoll ] (2.22)

> il ?;- p*ttt /{l rr-fut ¡'tl-1*zl oi' t *l-1 t

by the definition of e and ô.

Now l(ri11) jil , rtr¡lrtt/(t<+t) and lrrol trol > trlltt/k, so

this becones

eond rsu.k+i_ > ttr,rrp*tn/tffi * 4t

(k+t)llr

ll'"lrrt *lll

= ttrfl- n*lt/{
k+1 + )eond Tk+L

k+L -1

IT cond T
+

k+L

1 M
+

2kT =@

{ )
k+7

L
Ê

i{ k+1.
M

(2.23)
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Case2. i,7di

Then, frorn (2.17)

k

Èt
Ll1

Eq. (2.25) shows ,n^, fOrU*,

ou*, ft *, + 9I*t to ,sl , so

,,fu,,r*r,,

conå Fu.k+L >

y lI * ok*1 !l*t * 
='

6s

(2.2s)

nay be nade singular bY adding

(2.26)

Rearranging (2.2I) so that !k*l it on the left, we see

that fu.k+i. canbe nade singul'ar bv adding 
# 

f -1'"rV{ ll
to !k+l'
Then, as for (2,22)

eond rsu.k+L > loulrr r:;t*tll,z{llell + 2llôll , , w# , Q.24)

using (2.22) and (2.23).

Define yT ,: (!i,l:k-7, ti,k*l) and ê? :: (!Tr,7r-1' Ek*l'

rD.
-'t

lox*llt'Ylr*lll + ll ell

14e now consider rwo sub-cases: llok*, ?k*ll < 2ll6ll and

,lok*, lt *lll > 2ll6ll .

case 2(a). llok*, ln*ll < ellEll

(2.26) becones

"ond 
Fu.k+t > ,rfluru*rll / ( slt Ett ) .

By a development similar to that in which (2.23) was derived

from (2 ,22), this becones

oond Fu.o*, > M/lss(k+l)l (2.27)
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1_

E
4f

K

Case 2(b). llok*, ?t*lll>zllqll

Fron (2.26)

(2.28) and (2.24) give

.ond TI;k*t , at{l s2(3k+1)}conÅ.

k+ , llok*, uO*rll+llçll , Í- llok+l !k*l._Econd.'1'k;k+l

= ll"o*rlttrt +tn = $lok*lut fo,n*rtt

Æ
'k;k+L

(2.28)

(2.2e)

(2.32)

Eqs. (2.23) , (2.24) and (2.29) cover all possible cases.

It is clear that the bound in (2.29) is less than or equal

to the bounds in (2.23) and (2.24), so (2.29) is true in

dll.rt"r.
QED.

l1le can rlowbbund some of the diagonals ttl-Ð ] if the condition

number of Ik*7, Tk+Z u". bounded by M.

Theorem 2.2 Let M :: min(cond Tk+1, 
cond Tk*ì. Then

2t (1 +ßconCIO)
(i) (2.30)

Ir
k+1

ll cond T -BeondI kk+l

(-k) (i+gcondTTr) 2t
1(ii)

M
(2.3r)

llr
k+2

-ß eond Tk

( -k)
0

I cond,ïr*rrk+z 92 ( 3k+L )

(-k)
-K-t

2
+ (L+BcondI )k

or
llr

k+2

fl*rrk-rz F2(rk+J)

M -ß cond T
eond

J

T

where $ is as in Lenma 2'5.

k



proofl

Renarks

[2.3Q) follows directly fron Lenma 2 '.5 ;

fotlow from Lennas 2..5 and 2.7.
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(2.31) and (2,32)

QED.

rl

!

Theorem 2.2 shows tha't if TO*, is ilL-conditioned,

It[-HlltrO*rtt is snal1. tf Tk*Z is ilt-conditioned as we1l,

then M will be large, and Lenna 2.7 shows that eitheT or

both of fOnrrk+z and frnrrk+Z rill be il1-conditioned'

,, ft *rrk+z is i11-conditioned, but fU*trk+z is well-

conditioned, Theor em 2.2 shows that tl'k) /lro*rll is small.

tt Ft*rrt *,
.q

is well-conditioned and Tk*lrk -Z

conditionecl, then ú'-ullrrrrrk*rll is snal1. tt ft *rrk+z ^nd

is i11-

(2.13) anclfO*rrk+Z are both il1-conditiorted, then (2.12),

lemma 2.7 show that the Product

is snal1.
*

fl

We showed above that if cond TTorrl and cond Tk+Z *tt" bounded

by M, we. could put an upper bound on t[-Ð, and Lt'U * t!'ir!)' which

is inversely proportional. to M, ltre conjecture that this holds in general'

i.e. if. cond Tkni, M, í:Jr...,8, then 3 an upper bound for diagonals

+(-U +(:U,'L(^-k) /-u, rvhere p*q+L=s. 1a¡e have been unable,_k_l_qr..,t u_k_l'u0 : "'5 "p

to find realist.j-c bouncls, but- our linitecl experience suggests that
( ^k)

ifT T are ill-conditioned, s of the diagonals of 7 ad j oini.ng
k+1"'" k+s

and inclu aing t(0-Ð , are smal1 compared to the largest Toeplitz cliagonal

ofT ( -k)

It is eâs/r horr,eveT, to plove a slight generalization of the

converse of this conjecture. We can show that if s of the Ú
k)(

,J
are

snall, then Tk+1,-..,Tk+s are ill-conditioned; in fact' for a given



k + j. < i < k + ç, thete are s i1[.conditioned submatrices, including

the lea<ling submatrix. In theoretn 2.3, Tk+l;j, etc. are as defj-ned in eq-(2.2).

Theoren 2.5 Let lt(,'l'l l= r, i=-k-l-q,,;,r-kJ; 02..,¿p (2.33)

Then eond Tn+l;¡ , llTk*i; jll/[eQ+q+1)),

i, i eS := {í, i : 7<i<P+q+L,'q<i<P}

Proof (outline) By writing out T(-U explicitly using (2.2.2), it can

be seem that at least one row fr[;l).rlr., í,ieS, k+l<z'<k+i'

consists so1e1y of zeros and elements in the set ttl-U t ot

(2-. ss).Hence, by (2.3s) tt f r[;l). .l ,.n < e(p+q+l) . From

Bareiss [ 6 ], e[;f;). rt r. : (rk*¿;J) 
o
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. + linear combination

v is singular,

So, by (2.7)

t\ /le(p+q+l")1.

QED.

I

Þ-

I

I
I
¡1,

)¡
1

,I

1

i

I

I

or {(rr*o;lr.}i-1, hence r-eo

*t "'" 9!o = r o, . . . o,tt:Z:lii"o] ."

Æ
( -k)
kri; j

cond. ru*.; j , ttrk*ir¡ttl0[;?, lo.tt = ttrknir¡

3. BAREISS ALGORITHM - INCREASE IN ERROR BOUND

We now bound the increase in relative el:ror from step l-k)

to step (Ð of BNA, and show that this increase is bounded only by a

quantity proportional to cond To*r. conputed qtian+'ities, will be

denoted by bars, the error ã-a by 6a, and the relative errol l6a/al

by rel a (alC),

lrle then defi-ne the relative error of a conptrted matrix A,

denoted reI 4., ty

rer Ã '= î3lao¿il/iil"¿¡1, 
whe'*e 6a¿¡ := Aii ' a¿i'



l.te also denote ,Í;!¡',, una rli)^,,, the Toeplitz parts o, 
'(^i) 

u,,d rØ)

respeqtiyely, by f{-':l una r(¿) respectively, f'or i=0:.,.-5?x-1. Throughout

chapters 4-6, U rePresents the machine precision' The result of this section is

Let e t=lr|-O) l, and let .F' be such that*rel iÍ^Ð =r"
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(5. 1a-d)

(3.2)

(3.3a,b)

.l

I

Þ-

I

¡

I
ll

I
i

!

I

i

Theoren 3.1

and rel 7(k^t) s ufi-, and let ß be as in Lemma 2.5.

Thq* ont, 
'r{Ð < vLRs

( -k)
md,æ

where L :: t /e, with*

llzll conå TO*, - 3 eond TO
<L<condT X

2 k+Lllrk*rll cond T(1+3 eond TU) (n-k)

mf t lt,k+1,'ll /llr onrttx

and E, is given bY

.R .-Ð
23

2

Proof:

I

i
tr 

fiß'|cond.fy't'
1 - ß'"ord f¿r'

,= Rlrt + ftt

ma.æ ll!1,rc, jtl
, where $t .'Ë i u{o

ß' cond fl

{
fl

J

(3 .4a-d)

(5 .6)

R and .R := R(l +
L L

By writing out element rs of the Bareiss reculsion (2.2.3),

setting j=s-r', t(r') : t!'-) a'nd replacing exact quantities
JT8

by computed quantities, we get

,:o, : -t(.k-l, - 
^ot',_fr' 

,
:(k^1) ,,(-k) ?4tir^--' /tb-'"' (3.5a,b)where *k

By (5.1) l¿tlk-tt | = rrtÍ\*r), *r,"."

-(') - man r.(' ) ,L - 
(J{"ma..æ ltrt¿' -r ' uU

*L'R'Rf etc. are all scalar:s here'
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Usi..ng the assuÍlptíon rel G/Ð)< reLfi I neli, qe get' fron

[3. sb)

reL ît < ne'|, î (k-x)
kk

It can be easilY shown that

{k-1) : tfk-tt rfot¡l t1. k,

So (3.7) becomes teL ñO = ú j.L'

j+7

' tÍ:;" =B'ftLk^l) | "ona 
fo where ß | :: mf tttr,k,ill Atfol

llt- " .ll
md.æ -l: K.:l (3.9a,b)where -R

1 tfun

Now, using (5. lb) , (3 . 9a) ancl the assunption TeL(ry ) <neL:æ+reLf,'

1ar*nt(r-^f;) t I <

-- t ot{;*' lvlrr, where Rz i= a{t + ftt

.J

(3. 8a-c)

(3. 10a,b)

t

I

I
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Fro¡q C3.5a) r [3,6) , C3'I0a) , and the asSurnption

la.r+y)l< lo'l + loyl

lorSo' I = r, atffiI) *l^otÍ*' lnn / , which, ],ìth (3 . 8b) ,

= ur¡,tlk^l)s'"ond. fk* t^ot{r*'lnn¡' which, with

(3.sb), (5.3a)

< vL/lryu tflt l(nstcond F,/t' + Rr) (3.11)

Also, using (5.5a),

tÍH = l^ur{r*' l-ltÍh') | which, hrith (i.Bb),

(3.3a)

(3.r2)

(3.11) and (3.I2) yield o"f î{Ð= pLRg, where

,R, := Rr(L + ff "o"o 
F¿rzltrt-B'cond. F¿r't (3.13a,b) .

(3. 13a) , (3.8c) , (3.9b) , (3 . 10b) and (3. 15b) together give

the result (3.2).

The left-hand bound in (3.3a) may be found by applying

,(-k)
Theorem 2.2 to bound e above, and (2-7) to bound %r*'

bei.ow. The right-hand bound in (3'5a) nay be found by

using (2.7) to bound e below. QED'

I

I

I
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Theoren 3.1 shows th4t if Tk+.' approaches- siagulaXityr the

relative erlor bound ny flu, and henc.e the etenents of subsequent

iterates, mal increase without lirnit'

Compu ter Results deornonstrating Loss of Accuracy

Table 3..1 shows a 6 x 6 Toeplitz natrix, Á, selected such that

det A, is snall . (det Ar=0 if "rr:tþ. 
The right-hand side is such that

the exact solution is (1r1r. ,,,L). It is seen that the sizes of errors

in the solution elenents range frsm 0.007 to 0.069, and the ration

llôæll-/llæll- is 0,69, which is pathological considering the relative

machine precision v:L 70-16. This therefore bears out the above argunents.

elÉ, aF lu-cot{D l¡.ocf, Dt51 FRdr S¡BßULmIÎY
??,il-l

ItrFUl 7oAPL¡ÎZ iålRrx
.çst
.6€8

,coa
. g(t¿
.0611
.73?
.eec
.3ea

6.øøÐ
t . C¡OO

8. eGe
{. e$€
6,6e6
1.73?

a. oo3
6. eoù
r.@û
8.000
4. Sêql
6..(r3

I
6
4
Et
f

.733
,cet
,t&t
.ôt90

3
2
6
t
I
1

a
1
3
1
5
3

1
I
I
1
6
4
5

øoa
800
60e
åse
?33
60c

.00c

. to3

.0t9

. GOe

.080

.6ge

ÐrâC1 60t 0F Î¡x. I 15 (1,1,...,1!

lâf,E¡96 âL0 (¡l#l)¡

fßnoR Hofttc . t.69l0D-ll
EnnoR u€c1of,

c,¡clêD-ar {.3sl5D-ô! -o.slecD-cl -e.6696D-fi¡

Table 3. I

0. t6?{D-0t 0.eogtD-9t

Applicat.ion of BNA to natrix with an
i11-conditionecl leading submatrix of order 3.
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4 BAREISS ALGORTTHM . BACKltlARD ERROR ANALYSTS

Here. we show that the conPuted solution 2" ít the exact

solution of the Pertur:bed sYstem,

0+ar)æ=b+6b.

Neglecting second-order quantities, llOfll and ll0bll can be bounded in terms

of quantities conputed during BNA, Theorem 4.1 gives ô? and ðb in terms

of certain error matrices F and J, and error vectors I and k' Theorem'

4.2 gíves bounds for .t', J, g and k.

We first recal1 the Bareiss recursion

-(-¿) = r(t-i) - m .z J(í.-L) (o.t)1' ''t' -'L

(i) (Ì.-1) ( -i)T _m
-!

Gi)b =þ

b
(i)

(1-¿,)

*¿ zi

m.,L

T

þ

z. b(L^

L( 1'-

-i)1_

)

(4.2)

(4.3)

(4.4)'t-( )b - m.
1,

5

and defin e A(-¿), î(ü , î(-Ð 
^na 

i(Ð as the result of applying recur:sion

(4.1) -(4.4) h¡ithout rounding erïor, but with the {mU} replaced by {m*¿}"

Also, assume ? is nonsingular, and define the nultiplier matrices by

,(+i), _ ,(¡i) (4.s)

M
(+i) r = ì(!i) (4.6)

Putting (4.5) in (4.1) and (4.2) yields

M(-Ð = r(t-i) -m.Z .M
^1, -1,

(i-l)

M6) -MG-L) _mozua(-i)
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It can then be shown by induction, using (4.5) and (4,6) t.nat MGi) is

urr ana M(è) is ur. simi1arry ùGi) una fu(t) can be shown to be uLT and

UT respectivell,

We then have

Theorem 4 .1 Assune w.1.o.g.* that t0 I 0. Then the solutions

ft of the upper and lower-triangular systems

7(1-d; :6(1-n)
-u

;(n-1); - 7(n-1)
I ùa - L/.L

are the exact solutions respectively of the perturbed systems

v + (L + dL)Flæ- = þ + (L + 6L)g (4.s)

æ and
-u

(4.7)

(4.8)

Lr+tol:{u+6u)r2

,fo(n-1 ) )-1 _,r(n-l ),-1

L T2(u + 6u) k (4. 1o)

(L-n) 1. (1-n) L
where .[ is ULT and U is UT such that T = LU; 6L = (M ^(a

¡llL: 2 * to

) )

ôU 5

F::

Proof:

1.e

or**

(r

,fi(l-ù, + F)-æu = îo(1 -n)

rr + rfi(l-d,-L

**fo( 1-n)

þ

I'

a

7(L-n)

¡(1-n)
-r(rt-l)

-r(n-l)

fi(t-n)
-v

L)n-

(t )

(1*n) -1,

(4 . 11)

(4.12)

(4. 13)

(4.14)

(4. 16)

(

L i(n-t)

rt is clear from the definitio n ot î(!i) that fi( î (+i)
D-

(4.1s)

Using the definition of F and g ín (4 -7) ,

+ F)æ^.ru i(t-n) q

+'t, )

(1-n)

b

b + g (using (4'6) and (4'ls))

+

I g

*Otherwise BNA fail.s. cannot be singular since it is ULT.



In Chapte¡ 2 it tvas shorm that (Theorem 2.3.7)

. (M(l^r) )^1 = L,

so ,fi(l^d )'1 -= L + 6L,

where ðr: i= ,fo1^Ð )'1-(tt(1*) l-1 .

Putting (4.L7) in (4.16) yields (4.9).

(4.10) is sinilar.
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g.r7)

The proof of

QED.

(4. 18)

(4. 1e)

(4.20)

(4.2L)

(4.24)

(4.2s) ,

For the relations (4.9), (4.1,0) to be useful, we must find

bounds for ll¡lll , llgll, ll.lll anÅ, llkll. lt¡e first need the following Lemma:

Lenuna 4.1 n-L
P= >.

P:I
,r(l-d u(p) n rll-d u(-n) ,

n-1. ,4 ,

a ='nZ', ,r(L-n) k(') * ra-d a(-Pl

,rtu-1) r(p) * N!l=L) u(-e) ,
n-L

J= >-
p=J

where E(fr) and h(!p), the 1ocal eïroas committed in calcu-

tating nQPl anð. 
-b(P) , are given by

-r(-p) = 7(1-p)_ m ^z_nr(p-L) +. s(-p) G.2z)

rful = ¡(p-t) - ñrz, î(*) * ,(P) Ø.zs)

2(+¡ :5(1'P) * ñ+r.p2(P'1) + h(-P)

2(v1 : D-(

and the rt(n-l)
+D

) * ,(e)-pZE(p^mp
L)p-

are given by the following recursions:
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rl*'=Q;w$v)=r (4.26)

¡^p+Lr... rn-7
(4.27a,b)

(4.28)

i-pr. .. rft-Z

(4.29a,b)

(4. 3o)

N(-¿)p
Nu -i')p ñ^i z-ivlô'l)

NG)
p

N :fll (¿-1)
-p

(1-i)
^p

r'-l-" = o, r'l' : ,

- h'.2
1,

.N
1,

k) - ì(-k) = ,l=, ,r(-Hr@, * r,_ìo, s(-p)

- ,ft'= oL, 
,r(H uØ) * wry) s{vt

^ ñ-rz*rr(o) + E(-1)

( í.)
-p

N

N

(-1-í)
-p

(n-l)
-p -^1-lY

(n-2)
-p

Z.N
-L

(1-n)
^p

= r(-i) - -m . .z " .r1)-'-p -7-1, -J'1, 'P

m
-'t

(riote tlrat (4.30) is just (4.29) wíth i=n-l) '

Proof: l4le prove bY induction on k tt.at

k=lr... rTL-7,

(4.51 ,4.32)

and then, setting l<=n-L will yield (4'18) and (4'20)'

We first show (4.31) for 7ç1' Fron (4'22)

a(-1) - ,,,(0) (4.33)

(

(k)

r

T

5

and frorn the definition,

ì(-1) = r( o) ^ ñ-rz-rr(o) (4.34)
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Equations (4,33) and (4..34) + T
( -1.

E( 
1)

Eft) * rrìr,rr-L) _ E(^1-)

() E;(1.) -1. ) 35 )(4.

The RHS of (4.51), with k=f. is, using (4.26a) and (4.28b)

JIl

1,

+>
P=t

(^1 )
L

(4.36)

The restrlt follows from (4.35) and (4.36).

Now, consider (4.32) for lc1. The LHS of (4-32), using

(4.26b), (4.28a) and (a.29a) to evaluate the Nrs, is

rl'' (L) f 1,) (4.37)+ N(l)E(-1) =fl - ñtz

Fronr (4.23),
_r( 1) 0) (-1) (1)qt

1- +

(0) zlE
( -1) (L)

(4. 58)

(

(
ET

zl

- ñtz

-m-!

;( -1)ñ1 m1

,r(-Ð r(p) * r (-Ð u(-p) )ã-t _rr_t _rû.p -p

+E

using (4.55).

By definition î':' = T(o) - lnrzrî(-l)

Eqs. (4.37) and (4.59) prove (4.32) for k=L.

Assume now that (4.31) and (4,32) are tnre also for

L = 2r...rk.

Fron (4.22);
'r(-k-L ) -,(-Ð - fr-t 

^r.r -k-rÍ'o' + E(-k-1)

k) k

(4.5e)

T
( (k)

+

k+>
P=t

using (4.31) and (4.32).

So

-rGk^l);(-k) -m. -2" -T^K-l -K-t

,n[Ð í Ð -fi 
-k^rz -k-rr'-l' 

,' -n ) ¡ *u( -k-i )

(k)
+

w[^Ð -a-a^f ^u-f[H ,r(e) *

-r ra-[-k - ñ^t ^tr-k-f$) )ø(^p) )] + E(-k-l)
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Using UI.27a) and (4.29b), this beco¡nes

¡Gk^l) T -k)å^k-12 
^k^17

( (k)
+

(NGk-ll s@ *w!ik-l) t( =p) ) + s(-k-l), whi"h,
k

with (4,26a,b)

:(-Ð F

= f'. 4n*k^1 -k-
ry

1-
17 k)(

+

(4.40)

But, by defj.nition,

k- ^ ñ-lr-r'-t ^,
(4 .4r)

and, subtracting (4.4I) fron (4.40) yields (4'31) with k

íeplacecl by k+L. The proof fot (4.32) is similar. This

completes the proof of (4.1S) and (4-20). The proof of

(4.19) and (4.21) is'analogous, with refererrce t to t(tP)

being replaced everywhere by referelìces to l'(fl) ' QED

Upper Bounds on .F, J,g and k

We now use Lernma 4.I to get bounds on the elements of TrJrg enð'k

Theoren 4.2 Assume that the result of any of the floating-point

oPerations +, -t x or å satisfies

fL(æ op y) : (L + e)(æ oP U)' l"ltu U'42)

where p is the nachine precision. Let , ,:il lt¿¡l and n t=^T lA¿1.

rhen VO,, . lf ¿il<tln-t)uo'r, li íjl<4(n^1)vu,., lø¿1,+(n-1.)van lt<Ol<tf n¿)vin

where 0, .'= \Í (1 + lr',1)' ( 4'43a-e)
1--n v

n\t- (N(-k-l,) r(p) * r(-k--l,)u(-v) ,
P=J P -P

(
T T1) _ ì(-k)

(k)
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Proof¡ l{e first evaluate a bound for lf'rl, Consider the

t"r* /ü-!l'du(p) in [2,31).. From (4'23)
P

- o(-þ) ,
- lll D. ' ,).

P L+PtJe
(p
i,j

(p^1)
i.j

) î ^'(t
(p
1.J

(4 .44)

(4. s0)

Using (4"42),we can rvrite the floating-point version of

the Bareiss recursion (4 ' 2) as

ut|'= (1+e){711-1) -(1+e')ñprtfl),j}' l.l,l,'l < u (4.45a,b)

Putting (4.45a) in (4.44) and neglecting second order

quantities,

nQ.) = .7(p.^1)- (e+e')ñ^î!.:1), (4.46)-ii -- 1.J P L+P'J

F,ron BNA, eqs. (4.1) and (4.2), it nay be shown by

induction on p that, neglecting second-order quantities,

p-1

6{.1-t)1=,,I ^(1+lm7l) u.47)
' L' u-t-y

p-L

lzlrP)l=._Tf rufurl). (4.48), .î,J 
7__p

Putting (4.47) and (4.43) in (4.46), and using (4'45b)

we get p

l"t'| =zr,,[n(l+lmLl). Ø.4s)

,r(1-Ð u(p) t ¿i = W l"ß' t Í^, rurmrr) ,T., n+lmll)

It nay be similarly shovm by induction on p that

where for convenience we define mt:0 if lLl > n-L.
L

(4.49) and (4.50) together give

rnf,l-ù rtP) t ¿i . zrt T, ,t-ln7l) (4. s1)
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lìle can sirnilarly bound

m(l^n)ut'P) )ij < Pur il rrrlmrl) (4.s2)

Remarks

PuttÍng (4.51) and (4.52) in (4.18) yields the result

for lt,rl. rhe results for li¿Jl' ln¿l and lV¿l are

sinilar. QED.

If we ignore the second-order quantities ôtr'.t' and õI"g

in (4.9) we see that the *-norn of the equivalent

perturbation in ? is bounded by 4n(n-7)ptlltrll-cr. This

bound is pessimistic because of the approxirnations used

in Theorem 4.2. However, the factor o can be compared

with Wilkinsonrs ugtowth factorr' ø [gg] which, for partial

pivoting, can be bounded only by 2n-1. In fact, if the
( 2n-2)

nultipliers l^l < 7, then ct' 3 2 , the square of the

bound orl g.

The bounds (2.52) also show that BNA is unstable, because

as,say, T7aa1 apptoaches singularity, l^-o-rl and hence,

llFll, ll"rll, llgil and llkll increase without bound.
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5. CONCLUSION

After several preliminary results urele derived regarding the

size of elenents of Bareiss iterates as a function of the condition

number of certain submatrices of ?, forward and backward error analyses

were perforned on BNA. Both these analyses, though yielding only pessimistic

erro1' bounds, show that BNA is unstable, in the sense that the erlor

increases without bound as the condition number of any leading submatrix

approaches infinity.
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CHAPTER 5

T}IE PIVOTED BAREISS ALGCRITIIhÍ

1. INTRODUCTION

As we have seen in the previous chapter, the appearance of a

large rnuttiplier is a warning of a possible loss in accuracy. A large

nultiplier results rvhen a pivot element is snall. In BNA, a snall pivot

can only occur in calculating a positi'tre-index iterate, as the pivot for

a negative-index iterate (NII) ís aLways tO (see equation 2 '2'2b) ' In

Lernma 4.2.5r{e saw that the pivot for calculating ,(.k) , namely, {-U is

small when TO*r, is itl-conditionecl. In either case we must nroclify BNA

to select another pivot rvhich is not snall. The new algorithm is the

pivoted BNA (pBNA) . We wíll also briefly describe a pivoted BSA (PBSA).

As nentioned above, Bareiss [ 6] proposes a pivoting scheme to

cater for zero leading minors, but it requires the triangularization of

a non-Toeplitz submatrix. Our algorithm will avoid the need to do this'

In lecture notes, Morf states that the Berlekamp-Massey algorithm I S ]

can be nodified to handle zero T.eading ninors, but not i.ll a nirmerical.ly-

robust nanner. Rissanen t3g] describes a pivoting scherne to handle zero

leading ninors in Flankç.1 natrices. To the authorts knowledge, there are

no previous pivoting schemes rvhich treat non-zeÏ'o leading principal rninors

in Toeplitz rnatrices for the purpose of inproving ntrnerical performance.

In section 2, we describe the various pivoting proceclures t'rhich,

in section 3, ane coinbined in a number of strategies which attenpt to

improve the numerical perfol'nlance of the Baleiss algorithn. Also in

section 3, ít is pointecl out that the pivoting procedures are eqr-rivalent

to the calculation of el-ernents along certain paths in the padé table.
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In the padé liteïature, algorithms for some of these Paths, such as Îol,¡s

and diagonals are known. The pivoting viewpoint is new, and tnany of the

known padé algorithns fol1ow sinply from this approach.

lge showed in Chapter 4, that when a leading subnatrix is i11-

conditioned, serious error growth may occur if BNA is used. In section 4,

we analyze the simplest strategy, PBA-I, showing that when this is used,

no such error growth can occur, provided the pivots actually used are not

small. lrie conjecture that this resuit is also true for any pivoting

s trategy.

In sec.tion 5, rue indicate how to introduce pivoting into the

Bareiss Symmetric. Algorithrn (BSA) .

2. PIVOTING PROCEDURES FOR THE BAREISS AI,GORITHM

Here we explain, with the aid of t'shape" diagrams, holr'pivoting

may be incorporated in BNA. We will leave until later the discussion of

the pivoting stnatey, rvhich involves selection of the pivot elements to

get the best numerical per:formance.

Note on Shape Di agrams

A shape diagram indicates the areas of a natrix that are

Toeplitz, non-Toeplitz and nu1l. Elements of the matrix are at the

intersection of the grid tines. Toeplitz areas are bounded by solid

lines, non-Toeplitz areas are bounded by dotted lines, and all other

areas are null. Extra information is ptlt on the diagram as needed' So

in Fi gÞte 2.I, aïeas A and B are Toeplitz, aleas C and D are non-Toeplitz,

and areas E and F and nu1l.
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Fig. 2.I - Example of a shape diagram

2.I The Basic Pivotine Procedure

We henccforth denote the ToePIitz part of any Bareiss iterate

r(!Ð o, ,lti), an element in the first non-zero diagonal abovg the zero-

band of rtli) o, tÍto', and an elenent in the first non-zero dj-agonal

betow the zero-band by ,(ti). At step (-k), BNA ut", dk-Ð as pivot and

eliminate s t(L-U, as is shoi{n by the dashed arrot{ in Figure 2.2. It is,

however possible to use /Ak-Ð as pivot to elimin^tt tl1-Ð '

Fig. 2.2 - Forn of r(l-k)
, (k-L ) -(k-1)
'Bt'A

(k-1)
and T in BNA, with pivot choices,t

BNA ivot dashed arro\./

(
*T

k) (L-H,,(k-1.)
where o_k = ,.8 /tB

(i)

<- (2 .la,b)
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(ii) A1 ternative ivot dotted arroltr

fr:

-K^( 
1-k)t *2:n-k+l' - m-k 

''-1-'1"'-u.

.(L-Ð ,.(k-1)tA /vAwhere

(k)
and 7 , with pivot choices

(2.2a,b)

(2. 3a,b)

(2.4a,b)

At step (k), BNA uses tt-o' as pivot and eliminates {Ak'Ð, as is

shown by the dashed alrow in Figure 2.3. It is, horvever, possible to use

,,çO' as pirrot to elimirrur" t[k-Ð '

Fig, 2.3 - Form of T!-k)
.( -k) *( -k)
'A o "B

The two alternative operations in Figure 2.3 ate given by:

(i) BNA pivot dashed arrow)t

T&)* l-1-,1'-o. - ^u 
r(*-k) , where 

"'o = tlk-l) /4-k)

(ii) Alternative i-vot dotte d a.rrow

<-T

Reversed-order BNA

Normally in Bl.lA, we calculate T(-k) first, th.n r(k). Horvever,

we courd carcurate r(k) a"rore T(-k). This will be usefur in one of the

pivoting procedures to be described later (c-cycles). The diagrams and

equations correspondiDg to the reversed-order BNA are similar to those

above.

-(k)r*
(k- L)
* 1:n-k- L' *u ,(r-,f;)-7r", where 

^o = ,lk-Ð //-k)
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Basic Pivotine 0perations - Surc¡narY

At each cycle k, we have the cl'roice of whether to perfom step

(-H or step (k) first; and at eac.h step, we have the droice of whether

to elirninate above or below the zero-band. All pivoting procedures

discussed below are obtained from these basic pivoting operations.

Exanple 2 . l:

Basic Pivoting Procedur:e

Suppose after step (-1) of BNA we have

,(0
"i-

,1,

-LL

-ó

-¿o

-LL

,(-1)
"o

(0)
0

\
L

r(o )
)t

t
1i

.)

r(-1)

-3 - 1-L -26

2825
-2L0 -3 -1 -26 -2 1- 0

(-1)
-2

\
-24 -3

0

L

2

2

ó

L

0

L 0-L

+(o) 
------

"7

( -1)
0 -¡¡

L

-3

-24

75

B

2

2

to

1-

1

0

L

-4 -3

-L

1_

-3

-24

7

L L-4 L 0 1"

Step (1) of the normal BNA-use {-1)

+(o )-L í0)

-3 2 2 L L

EIin.

elim.

Ir

-(-2)x

1 -3 -LL -26 -2 L 0

L

-á

-¿o

-11_

0

L

0

1

+

J

1

0

z T
(-7)

L

2BL5-24-3

Pivot
7

2

2

3

-1.

0

L0

2
-rJ

L5

I
2

-L-322L2

L-4 L 0 L 0

0 00 0 0 0 0



85

r( 1)

L

L+

¿

tu

L

-+

2

1_

Elim.

z

-+

-L4
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2t87
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to elirn.Step (1) , alternative Pivot -utr- t(11)

(o) r,(o)0'

.(0)to

t t

-(-ilx

I
í

(-1)
2

0

L

4

zzr
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Pivot

-24
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I
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Remark: Note that the Toeplitz part of f(1) above consists of a

triansle and a trapezoid, whereas in BNA, the Toeplítz part always

consists of two triangles (see e.g. the fifth matrix in the above

exanple) - we call this latter form the Bareiss form. In general, the

Bareiss form will be lost whenever non-Bareiss pivots are used. We nay

wish to restore the Bareiss form to enable BNA to be resumed. This is

discussed later.

2.2 The Extended Pivotins Procedure: Backtrackins

)

I

)

ì

I

It sonetines happens that at step k of BNA, neither tÍ-O'nor

,,fo' (see Figurc 2.s) are satisfactorl' pi\¡ots. within certain

constraints, it, is possible to select a pivot different tro d-k)

4-Ð. Suppose we wish to use tl-O' (indicated in Figure 2.3) as pivot,

^na {-u is p ptaces above tÍ-o' . This cannot be done irnnediately,

because several of zero-diagonals ' n T(k-1) will be destroyed - tfO'

can, however, be made available for pivoting by backtracking in a way

that, in principle, rnove.s the zero-band of T(-Ð up p p1a'ces so that it
. ,(-k)adJolns rp The zero-band of f(k-l) *i11 also be moved up p places,

so that the new T(x-U 
^nd 

y(*k-l) look as follows:

Fig. 2.4 - As for [rig. 2.3, but with zero-band rnoved up

P Places (P=S) '

i'
Ði
xì

11

I

à
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+(-U can then be used as pivot, as is shown in Figure 2.4.,Pç

Note again that the Toeplitz blocks above are not in Bareiss form, i.e.

do not have two Toeplitz triangles each. After the new pivot is used,

it nay be desired to recover the Toeplitz triangles so that BNA nay be

resuned. This so-ca11ed restoration is discussed 1ateI.

Note that hre may wish to move the zero-band down instead of uP.

The nethods <liscussed in the following al1ow the zero-band to be moved

in either direction.

Suppose we wish to move the zero-band p places

dorm) . There are two cases to consicler, lpl > k and lpl

lpl > k, we must go back to the beginning, and modify BNA to eliminate

the desired diagonals. We call this operation Backtrack Prccedure A

(BPA). If lpl > k, we have a choice of two me-uhods, Backtrack Procedure B

(BPB) or Backtrack procedure C (BPC) . In BPB, we go back lp t cycles and

then use the basic pivoting procedure to elininate the de-sired diagonals.

In BPC, we repeat the follorviug procedure lpI times: go'oack one cycle

by running the norrnal BNA in reverse, then go forward one cycle, selecting

the pivots to move the zero-band one place in the desired direction"

Whetlier BPB or BPC is to be preferred depends on the pivoting sequence

and will be discussed in the section on strategy'

lÄ¡e explain the backtrack procedures in detail below.

2.2.L Backtrack Procedure A BPA

Let p be the desired displacenent of the zero-band (positive

for upshift, negative for clorvnshift). We proceed as in Bl'lA except that

r.Ie start by eliminating tp_.1 
^nd 

tp*L instead of t-, and tï respectively

I

Þ-

I

¡

I
It

t
!

!

I

I

(pro upz p.o:

< k. rf

î,ti

Íir
r,'
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when p>0 the filst two steps of Backtrack Procedure A can be shown as

follows:

Fig.2.s-Steps(-1)and(7)ofBacktrackProcedureA

We continue elininating below cliagonal p in the negative-index

iterates and above diagonal p in the positive-index iteÏates. After step

-k, the natrices will have the form of Figure 2.4' Backtrack' Procedure A

may be stated formally as follols, where p is the desired shift:

Procedure 2. 1 - Backtrack Procedure A {Lrr z row pointers; i: cycle counter}

1 r(o) * r ; L <- 2; z' + n'1; i <- 1 (3.5a-c)

nJ) n(
v

I

È-.

I
rt

')r

I
l

J'

î'
llr
I I

,(t-
Tp-LL2

(-i)
'L:n.

( 1-i)
L:n.T +T where m

í- 1) (3.6a, b)



3. Stop if

ryø) *- 7:r. ^i = t[T;Ð *r-¿'

89

(3 .7a,b)

2

"'..ìi,
-2u 0

4 where

5.'i.+i + 7; L+ L + 1; r*r - 7; go to2.

Note that the procedure is the sane as BI\I-I\, if p is set to zeto.

ExurpLe 2.2

(0)
Norinal Bareiss - Use Ú to elin. t (0)
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í0)
'-tr(o 

) (-1)
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-4L

2L0 3
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0\5\\
+ -3 t.

1"0

(?'..1

riir. i. - (-2) x -2

00 000

03

ivot 0

(0)
0

1_

3

6

t., I

tt (0)
1_

(0)
Backtrack Procedure A - use ú

L
to elin. ú

L L 3 .{)

L 7-2 2
\

-2 3 -3\0 5

t

t//
(0)
0

(0) (0)

desired pivot
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t (-1)
3

T
( -1)

72103
T

-2

-4 1_L

0

L

-(%)"-2
1

1

z T
1

0

Pivot

L-2

L2

-22 0

2

7-2

-4u u

L03

'r1È L -1+

0

3

0

L

0

0

0

L

Elin.
0

L7

L

+

2

¿

available for
pivoting

|:

t't
i,

I
1,
'I

I

l
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Note that {-L) in BpA is different fron t'r-" in BNA, as is shown by

the example above. The strategy described later aims to keep this

difference snall.

2.2.2 Backtrack Procedure B

In this case, we go back to iterates - ft - lpl) and (k'lpll '
and select pivots in such a manner as to move the zero-band in the

desired direction. To nove the zero-band gPr we perforn a series of

A-cyc les: to move the zero-band down, we perform a series of C-cycles.

A and C-cycles are described below-

A-cyc.1es.

1

tÍí ) /tt-i-l)

I

(i) step (-í - L). wîtn 4i) as pivot, eriminate tÍ-i) '

(ii) step (i +1). with {A-i-l) as pivot, eliminatt 4O'

Figure 2.6 shows a typical A-cycle. The inítial zero-band displacenent

(zBD) ir p, and the final ZBD is p +1. It can be checked froin Figure 2.6

that the operations in an A-cycle are:

Procedure 2.2 : A- c1e

Input, f(tí); h,j: indices of first and last rotvs of Toeplitz part of T('i)'

r,s : indices of first and last rows of roeplitz part of r(í) .

r(-i-L) * ,(-i) - *-i-lco-h-lsr,,"-r'(i), whete '-i-l:tÍ-o"t'í) :rz't)

(i+t)
'- ,(i) - *intch-fnrl, 'T(-í-L) , where m. . -,L+1

(2.e)2 T

3. h<h+1; T<-t'+7.

Note: C¡ is a cyclic permutation matrix, defined Uy (Cj)pq=6p-q-ifuod di
s¡7, is a selection matrix: (s¡7a)pn:0 excePt for i<p=q<k, when (s¡7a)rr=t'
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t

Fig. 2.6 - Steps (-¿-1-) and (i+1) of a typical A-cyc1e'
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Example 2.5 A cycle

The inputs are the Toeplitz parts of f(-2) 
^na 

f( 2) with a zero-ba¡rd

displacenent of 2. The example shows the working of an A-cycle.

_(-2)ts:8.

2 o:--0, 4 3 -5

^( 
2)t L:6,

3 -2 5 0;-0. 2 L L
7

3

-1.

4

6

3 64-L37 2

use

L

1

Ê

3

¿.

I

-8

L-88L3-25

L

2

\0

,0
I

'0

'.j
7

4

A-cycle, steP (-5) ,(2)
"A

t_2) .to elininate t'
Â

7 2 0.,---0.\\

ft2)

0

3 -2 5 0i-0., 1

4 3-5 7

-(-2)tstB, Z

0

7-53

1

4
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\ \

-L37 2
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1

72
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-72
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L22

1

'o
I
I

0
I
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A-cycle, steP (3) : use {o-t' to erimin ^"" dÐ ,

^( 
2)t i.:6.

3 -2 5 0;-0. 2 L 1'

s zor
(-3)
3: B.

0 0

1 -o

'v
I
I
I

0
I
I

'.¿

7

,0
I

1l\0

-3 L7
I]-m.

- (2) x -3

-L2

22

-8 oa--o---0,

Pivot
I

-8

L -8 I L 2 -2 5

3

7

74

L6

-43

2

L 22 -L2 -3 -3 LL -B

L

4

n( 3)
'i.:6.

-2 5 00 2 L L

-79 L4 5 o:--0---0.,-L3\\

-43 16 1-4 7 -L9 -L4 5

t.. tt 
o

¡l
\l

\l '.. A
t. ¡

\l
'0

C-cycles:

Recall that a C-cycle moves the zero-band down. Cyc1e (i+1) is:

(i) step h) +1) . 'witn tÍ-iJ "s 
pivot, elimin ^"" di) '

(ii) SteP (-í - 1) . With ¿ as pivot, eriminate t[-O'(i+t)
B

Figure 2.7 shcws a typical C-cycle. The initial zero-band displacement

(ZBD) is -q and the final ZBD is -q'L. It can be checked frorn Figure

2.7 tÏrat the operations in the C-cycle are:
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Procedure 2.3 - C- 1e

Inþut: As for Procedute 2.2.

1 Trc+x) * yft) ' ^i*i.ch*tzf lt+1, ¡r where 
^¿*, =tf,i) /4-í)(-i)

t

2. T
(-i-1)

Example 2.4

F

\\
f to--to

-2

4

L

1

5 6-2

* ,(-i-l) - ^-¿-i-co-hsr,,s-17(i+1), 
where ^-i-t-tÍ-ü /4i+1)

(2 .10)

(2.tt)

The inputs are the Toeplitz Parts of f('2) ,nð' f(2) with a zero-band

displacenent of -2. The exarnple shols the working of a C-cycle.
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Fig. 2.7 - Steps (i+l) and (-í^L) of a C-cyc1e
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ecial Note on the use C-c cles for B

we indicared before that when the desired pivot , t["" is

above the zero-band, we make it available for pivoting by executing p

A-cyclestomovethezero-bancluppplaces.Ifthedesiredpivotis

below the zero-band, say in position t!lY-r, as sholn below'

then we must move the zero-band clorun not q places, as rnight be supposed

fron the diagran, but q+1 places. This is a consequence of the foilorving

two facts:

(a) rn any c-cycle , T(¿) is calculated befot' r(-í) '

(b) It can be shown that for any c-cycle (and also for A and BNA cycles)

,(*L) i, y(*-i) with a scaling factor appliecl anC the zero-band shiftecl

up one piace by any backtrack procedure'

To see that q+L shifts are required, observe r:hat if the zero-band is

moved down only q places, we get, at srsp_k, ignoring the constatrt scaling

factor,



then, at step (-k) 
" r^¡e must ut" t(;.U^ as.pivot; however, this frustrates

-k-q

our intention to ,-. t!U!)-l at pivot; therefore, üie must nove the zero-

band down q+1, rather than q places. In short, we need an extla shift

when doing C-cycles because the desired pivot novl appears in the positive

inclex iterate T(H , rather than the tregative index iterate T(-U '
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(-k) (k)
lpl C-cycles, yielding ? and ? with ZBD = p.

BPB - Sunmary

Suppose at step k we wish to use a pivot which is q places above

or below the zero-band. We execute

Procedure 2. 4 - Backtrack Procedure B

1. If the pivot is above the zero-band, set p:q, otherwise set p :-q-1'

cet ,r(k-lpll , ,tk-lpl)â¿

s. rf p > 0, execute p A-cycles, yielding y(-ld 
^nd 

r'(k) with ZBD = P.

e lse execute

Suppose t:-Ð is made available for pivotirrg by the execution
P 

m the {--U Produced bYof BPB. In general, this will be different fro p

BNA. The strategy described later aims to keep this difference snal1'

2.2.3 Backtrack Procedure C rBPC)

This is an alternati-ve method to BPB for moving the zero-band

in a Toeplitz iterate. Here, BNA has to be run in leverse, and for this,

the Toeplitz partsof the r,rultiplier matrice=a(t"),defined ay il!")T:: T(!s),

are required. These can be calculated by a recursion sinilar to that in

steps 3.3 and 3.6 of ABSA. Irle now describe the reverse BNA (RBNA) '



The Rev erse BNA : R-cycles

Let.4* be the Toeplitz part of any natrix A' Suppose 
'l-t) '

al'sl , ,(*") 
^nð, 

M(r") are given, and we wish to calcul ^t" rll-") , "(*'-"),

-(m
s)I -(s'1)T=m -(-s) T

-'m ms-

99

(2.12a,b)

(2.rs)

(2.14)

(2.ls)

(2.t6)

(2.17)

(2.18)

(2.Ls)

-( s- L)
J*

s- 7)
and

Let

Then

Ml

*(*i-s) : *Lr,rl, und M(*s-l, = ,!u",;t.'

,(*-s) = rh"r',¡. : rLi;|. - ^-"rf,;!-).

Ml" ) = l,f,,r_ r. : il,f,;!". - ^ 
"rL*?r), 

¡.

Now the M(!¿) are completely specified by their first roiv,

denoted ;(ti)T. rt can be easiry shown fron (2-t3) and (2.L4) that

-( L-s) T.!:m L/
-(s-L)Tmm

L
-(-s ) T
m

Equations (2.15) and (2.16) nay be rearlanged to calculate

:(s-1) 
^nañ(1-") fro r(") ^nð^(-"). 

The last nonzero componentffist ffi-st L

of (2.t6) is
-(s)ms+l

-(-s)-m lns s+-¿
-(s) r(-s)

-ms+1/ms+L+m :
I

Equation (2.1.6) nay be re-arranged to give

-( s-1) T
m

*(s)T:m d (-s)r
+mms-

The first conponent of equation (2'15) is

-(-s)
^i.

-( s-1)=-m m-
-sl

r-( s-1)
/rn i-

m
-s

-(-s)m1
t

Equation (2.15) can be rearranged to give

r1-(
m

) *( s- 1-)+m m
-9- L

-8 r-(-s
ui

T \ (2.20)
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Equations (2.15) - (2.20) are the desired recursion for m -, fl- and the

Toeplitz parts o, ,(s.-1) uru 
'(l-s) '

. Note that (2.L2) * ,(rl-s) = {tj".' ana rts-l' = 
'',:;1'' 

and

tlnat (2.L3) and (2.14) inPlY

-(-s)t¡ -(-s) -r(l-s) -m *(s-7)
'h+L : ¡.- ' h+L : i . "'-s- u: u- 7'

(2.2L)

(2.2s)

(2.26)

(2.27) '

,(*") = ,':,', ,. : ,(.i,ul'r. - ^rrffi',¡.
(2.22)

respectively, so fron (2.21) and (2'22),

,';;!'r. = rlÏ,',- r. * *"1-fr), ¡.
(2.2s)

*(7-s) =r!-".) +m r(s-l)-
'h+7: j- - 'h+L:i. ' "'-s* u:p-l' (2.24)

,(1-s) is alsopart of ,11-s). ïre first n-L e\ements are, by Toeplicity

( 1-s)
h,7:n-1'

.(L-s)= 2h,ztnt t

and using the definition of the multipLier,

Sinilarly, the last row of rls-f i' gil'"" by

-(s-1) - *(s-1)
lU,2:n - 4-1,L:n-1-

,[: rr, = 1,L- 
t, 

!. ,

s) ^'(l-s)T- :m T.(1-t.nn

*( s-=L tÏ-" 1.1- , bY roePlicitY.1)r

(2.28)
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Equations (2.L7)

desired recursion for RBNA.

follorving procedure:

Procedure 2.5 : R-c cle

- (2.2A), (2.23) - (2.28) constitute

We call this an R-cycle, summarized i

-(s)r* -(s )J_-u:D- J' '
)Þ -(s)TmInput

Output: I

-(-s) - -(-s)r* -'h+7:¡. -(
U) 5

operarions: Execute in order equations (2.L7) - (2.20), (2.23) - (2.28).

(1-s)
,+

rl m-s-
L-s )
.;. r -( s- 1)r* u: '0"-( 1-s) Tm, T

Having described RBNA, we can now give BPC. Suppose rve have

carculate d r('u and wish to use ,(;,Ð., ^ as pivot. As for BPB, in the
-K- t'q

case we nust nove the zero-band down q*.1 places. The procedure is:

BPC - Description

Procedure 2.6a : BPC: zero-band clownshift

(a)

-( 1-k) I -(2-k) T

(i) Recover ,lr!;!' (this requires onLy zn storage locations).

(ii) For i. <- I to q doz

( 2-k) n(k-2)¿*an R-cycle of RBNA to get ? ,t and

(b) Run a cycle to give ?(1-k) ,rd rlk-1) with the zero-bands

¡noved dor^¡n one place. It may be readily checked that the

recursions for tn. ñ(ti)? ir, ah" c-cycle are:

-(2-ÐT Jm"-mU
K- l- t

m :m -(k'1-)T-m-"m1-t?



carcurate T(-Ð, r(Ð ay a further c-cycle (which results in

the zero-band being moved down the q+Ë9 place) '

Procedure 2.6b : BPC - Zero-band uPshift

(c)

L-k)
:n

"tt- t-2

+-1

_79

0

Lz

L-L

02

0--- 0

-3 -1-7

B

õ^ ô
-áO '¿)

L5 -24

262 29

Nornal
BNA pivot

L02

simirarry, if we wish to ur. ti-Ð Q >0) as pivot, we must move the zero-

band up p places; we do this as follows:

(i) Recover r[

(ii)Foti<.ftop-lrrrnRandA-cyclesalternately.

(iii) calculate r(-U ' r(k) by a further A-cycle'

Fig. 2.8 shows the working of one cycle of BPC'

Example 2.5

!(-2)

Example 2.1 of Chapter 2 shows the working of the norrnal BNA'

Consider íterate ('2) of that exarnple

2

4 I

-L

2

_23t

0

L

zL- ù-z

_232

29

262

a

4

Desired Pivot

Position r'-n''

o -7+ -1- -L8 .0---A

Suppose we urish to nake t'-;'' accessible by using BPC. We first recover

T(-Ð, ,(t) fron mernory (see exarrpre 2.1 of Chapter 2), ñ(-1)r

(working not sholn):

. -( L)I
and m
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L -7 -3 -LL -26 -2 L

0.. 2 2 I L5-24-s

L-4 L 0 L

0. _2 _7 _1S+ _L4 -4

L+\
2

tu

L

L

,-+ L

L 0-7

\

2 12 1

221
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+

-b

-1-4

-18!z

-7

\-2

L

r( 1)

0

1.

2

-24

L5

I

¿

2

L

L

L

1_

0

1

-4
'o3g

0

L

1
3

lt-,'r'r = (-1'1)
*(1)I
Ll,1t z

Now, by equation (2.17) Uj.: -(Ð/1 = -+

-(0) = (4) + (-Ð(-il = (1)by equation (2.18) 41,lt 1-

by equation (2.19) ^-j- = -L/L = -7

by eqnation (2.20) -(0)ult t = (L) + (-1)(0) = (7)

Applying (2.23)

= (4'b)

T

L0 -2 -7

we get

(1)
L:7'

-1S+ _L4 ,+

T
(_7)
2; $'

0228L5^24-3+

-+

^1_4

-18+ +(*z)

-7

-2
to

L

2

-24

L5

I
2

2

L

0

L

7-4 7 0 1

L+

2

3z

1 -4

-u

z-+ 1 3+ 2 1z 7 0
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T
(0)
1:7

L ^1 n3 --LL ^26 -2 L 0

L1

2

2 ^26

-LL

^3

-L

-3

^1

-.2

0^L-3 2 2 L 1

Applying (2.27), t-'r:'r,B: (0 -1. -3 2 2 1 1)

Applying (2.28), t'ror' : (1) x (1) : 1-

Hence the Toepl itz part of f(0) (in fact, the whole of f(0)) has been

reconstructed. The Toepl itz patt of T(-0) ettt(0)) can be sinilarly

reconstructed*. Next vle perform:

(0) (0)
BPC, Step (t) - use ú

L
to elin ú (C-cyc1e)

0

(0)

L

2

2

r( o)

-3 -L1 -26 -2 1

El in.

zlr
-L -3 -1L -26 -2 7

-¿

Pivot -¿ô

0

1_

-ó

-26

-L1_

-3

-1

L

-( 1)x

I

2

2

-3 -L

0

-3

0

-1.7

-3

^1_-L

0 L0*L-3 2 2

L 0-L 3 2 2 L

L

0

*The first iteration of step 2.1 of BPC (procedure 2.6a) requires the

¡-ecovery of r\(k-l)) ay an R-cycle. l^le could instead, at ¿ny cycle k,

store ,(+(k-1)) 
^n¿ 

r(!(k-z)). This requires only 4n rocatíons.
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! (.1)

-Z ^2 -8 -J5 24 3 -L0

-.L

0

-7

4

-1.

^7

L

-L 4-L 0

0-L 3 2 2L

3

^24

-L5

-8

n2

-2

L

q
7-

(1)

0 -2 -2 -8 -1"5 24 3

-Lto

By (2.rÐ Etllrr=' (1 0)-(1) (0 1)=(1 -7)

(1) to elin. t (0)
-LBPC, step (-7): use ú

1_

(0) tt,r

L -L -3 -1L -26 -2 1- 0

7

-2

-26

-LL

-3

-L

7

0

--L

4

-1

-1_

0

-1_

3

-21

-15

-8

-2

-2

2

2

-3

-1

0

L

-(-l)"

-1 4 10 0

-1-322L 0
0
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L ^3 -5 ^19 -47 22 4

0

\ \
Jr

TGl)

^7\ \

^2 t.,

-1.-2-7L2t0L

-7

4

22

-41

^79

t

-3

17 0-1 3 2 2 L

By (2.30), -( -1)r!7:z : (1 0)-(-1) (1 -1) (2 -1)

(*1)
-2BPC, step (2): use ú to elininate t

r (1) cls z"zT
(^1)

0 L -3 -5 -79 -4L 22 4

(1)
^7

0^2-2-B-15243

^1. 4-L 0

-L

3

-24

-15 ^(-u)*
-8

o

o

7

^2-7 1

Pivot

ooøa

-4L

-79

-5

0

-1

4

-7

-1_

1

L

Elin,
*L

ô,ó

^7
to L-3

to
0

0

0

00*7 3 2 21

.1,ì
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Recall frorn the special note on C-cycl es tnat flz) above is a

scaled version ot f(r-z) with a zero-band displacenent of (-2), t" t[:1)

(indicated above) is a scâIed version of t()Z) '
t_1 I

BPA and BPB, t';'/ will in general be different

strategy later aims to keep this difference small'

Cost of Backtrackins

It is clear that backtracking requires O(lpld operations, where p

is the zero-band shift, so )lf¿l ^,rrt not be nore than about 2n for a pivoting

procedure to be viable. In the strategy described later, which caters for

ill-conditioned leading subnatrices, we ain to keep Eln¿l'o'

I,J

t,
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I,l
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I
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I

+

Fig. 2.8 The ith cycle of BPC.
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2.3 Restoration of Bareiss Folm
!.r . r . ; ; . : : | ¡ -

llle have discussed aboYe two tlpes of Pivoting¡ the basic

pivoting procedure, which aI-lows a 2tway choice at each step, and

backtracking, which allows the zero.band to be noved to enable other

elements to be used as pivot.. lle noted above that both the basic pivoting

procedure and backtracking result in the Toeplitz part of the iterates

losing their Bareiss form. To il.lustrate, Fig. 2,9 shows Toeplitz blocks

in Bareiss forn and non-Bareiss form..

2.9 - Toepl.itz block wj-th (a) Bareiss form
(b) non-Bareiss form

I

à*

\

I
I

fr

I
i

I

I

1

hFig.

After a series of pjvoting operations, we wish to convert the

Toeplitz parts of the iterates back to Bareiss forn to enable the Bareiss

algorithm to be resumed. We call this operation restoration to Bareiss

forn (RBF). RBF can be performed by executing BPC to move the zero-band

back to the Bareiss position, but a more economical nethod, requiring only

half the number of operations per cycle, is to eliininate the diagonals in

such a manner as to reduce 'the Toeplitz tTa ezoids to ToePlitz triangles.

When the Toeplitz trapezoid is above the zero-band, as is shotvn in Fig'

2.9a, we can restore the Toeptitz block to Bareiss forrn by executitg q

A-cycles, where g is the modulus of the zero-band displacement (ZBD) '

ZBD = -2 in Fj.g. 2.gb. Each A-cycle r,aises the zero-band one place'
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sirrilarly, if the Toeplitz trapezoid is þ.elol,¿ the zero-band,

tve can restore the Toeplitz block to Bareiss forr¡ by executing Ç C-cycles'

In surnmary, we have

Procedure 2,7 ^ Restoration of Bareiss Form IRBF)

t
I

¡"'

.Input:

Operations:

0utput

r(li) , with zero-band displacernent P.

lt p"o, execute P c-cYcles

else execute lp I A-cyci.es.

,(+(i+lplll, wirh no zero-band disptacement.

Non-cornpl etion of RBF

It can be seen fron the above procedure that if n-i.lpl, RBF

will not run for lpl cycles, and the resulting matrices will not be in

Bareiss form, but will have non-Toeplitz trapezoids rrith base-lengths

lpl-n-í and lpl-n-ì,+1, which will require 0(lpl-n-i)3 operations to

reduce. One nethod of overcoming this problem is to run RBF as long as

possible (i.e. to cycLe n-1) and then do the following procedure:

(i) augment the Toeplitz matrix, i.e. increase its order to n+m and

add m extra diagonals (say of zeros) above and below the nain

diagonal (fig. 2.10 shows a typical augmented Toeplitz natrix).

(ii) fi.d the ToepJ itz pa'rt of the augmented ,(1-d und T(n-l) .rring

,(1-Ð ,nd a(n-l) .

(iii) use BPC to move the zero-band back to its Bareiss positi'on'

Note: There is no restriction on the displacement of the zero-band when

BPC is used; however, recall that BPC takes twice as many operatiotrs

per cycle as does RBF.



Solution of Reduced SY

tlI

Fig. 2.10 - a) Original ToePlitz lvtatrix
b) Augnented ToePlitz Matrix

stern of Equations

The pivoted BNA will not produce upper and lower triangles, as

BNA does; we can, however, get a column-permuted uppel triangle from the

output of BNA as follows:

Procedure 2.8

(i) For norrnal BNA-cycIes, C-cycles and BPC-cycles, save the first

row of T(-i') which has í zeros in it'

(ii) For A-cycles, save the first row of totn f(-i) 
"r,d 

f(i) *hi'h has

í zeros in it.

Toseehowtogetaperrnutedupper-triangle,itcanbechecked

that sequences of the four different pivoting procedures produce the

following shapes when steps (i) and (ii) are carried out:

rl lìi illlll
o tttt

t,lii

rl I

!rl

-l_1-[li illr 'r¡riltlliìì
lt ¡u, 

I

-r+tayI
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I

I
I

I

I

l\

Fig. 2.II Shapes produced by various pivoting procedures

The complete natrix is a combination of these shapes, such as in Fig. 2.I2:

çl,es

Ir
l\l A -.vc êc

I

\-CVCIe

e9
L

-f

Fig. 2.12 T¡pical rnatrix produced by Procedure 2 ' 8
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The z rows selected by taking rows labelled H to G, F to Er D to C and

B to d alîe a colunn permuted UT. This can be Seen by putting colurnns

labelled A to B, C to D, E to F and G to H in columns 1?, n-Lr...r1

respectively.

2.4 Pivoting 0Perations - SumnarY

We have described three pivoting operations: the basic pivoting

operation, backtracking and RBF; the last two operations, in fact are aLso

nade up from conbinations of the basic pivoting operations (viz. A, C and

R-cycles) executed according to a particular sequence. There is also a

close relation between particular sequences of the basic pivoting procedure

and algorithms for filiding Pad6 approximants on a parti.cular path through

the Pad6 table. This relation will be examined later'

üle not' wish to incorporate pivoting operations in a strategy

that gets the best possible numerical performance from the Bareiss

algorithm while keeping the backtracking overheads to 0fuz) operations.

Such a problem has connexionS rvith the problem of optinizing the path

through the padé table to the desired approximant, frorn a numerical point

of view, but this is an interesting and separate study, and we will not

got into it here. The strategy we will describe in the next subsec.tion

is not optimal, but is designed to handle cases where several leading

subnatrices are ill-conditioned; as we have seen above, BNA nay suffer

a serious loss of accuracy in these cases.
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3, PIVOTING STRATEGIES

lt¡e describe a simple strategy which caters for the case when

a single subnatrix is ilL-conditioned, and then some rnore general

strategies for the case in which when several nested subnatrices are

i11-conditioned.

3.1 Sinple Pivotjng Strateqy

Alsorithm 3.1 - Pivoted Bareiss Aleorithm, Strategy 1 rPBA- I )

According to theorem 4.2.3, the appearance of a small pivot

{0-u in BNA indicates that Tu*, is irl-conditioned, and by Theorem

4.5,I, the relative error of the elements of the computed matrices may

increase by a ractor of ltfj)n[-k)¡, *n"'" tÍ*' :: ntaÆlt:-o' l, itre basic

pivoting p"o""d.rt" allows the choice between t"o pivo/ts, {-U and

t'-*!), so if t(-ø is small co*pared ,. tÍ*) att t(¡k) is

not, selection of the latter u, pi.rot might be expected to give better

results than selection of the former, as done by BÌriA. After using tlOl)

as pivot in step (k) we should then elininate ,'o-u'in step (-k.-1). This

step should be quite acculate, ,t t[-Ð is small and therefore the

nultipliet 
^_k_1, 

would nornally be small. The above remarks suggest the

use of the following pivot strategy:

1. Execute BNA, until for some k, 1t[-Ð nf]i l.r, rvhere ô is some

2

predetermined srnal1 quantity, or until k=n-L, in which case, exit.

rf lt!î:lrl t lt'o'u'l , "" can do not better bv selecting t'^ull, so

continue with BNA; else do

z.r witn t!f,ll ', pivot,

2.2 f|rtn tLkT' as pivot,

eliminate ú
(k-1)
U

(-k)
0

elininate ú
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2,3 Restore Bareiss forn by using {-k-1) to elininut" t[k)

2,4 Go to I,
PBA--I is programmed on P.41.
Selection of ô

If there is a-priori knowledge of the c.ondition nurnber of

ô should be set such that pivoting occurs ift Tk+lis i11-conditioned,

e.g. srrppose it is known that eond Tkoj , trl and cord' T ' < m, í I k+1'

m << M. Then, limited experience has shown tnat t(O-k) i, of the order

s¡ (m/M)/'Ð is > - tÍ*'n. Hence, setting 6 : 1/fr, the geometric

rnean of these quantities, should maximize the chance that pivoting will

occur iff necessary. In a test example, conã. f U- 1'06 and the other {T¿}

had condi-tion nunber of L0 to 1-00, so ule set ô = 70-3 .

. If there is no a-priori knorvledge of condition number, 6 should

not be made too close to unity, otherwise the nultiplier arising fr:on

step 2.2 will no longer be snall; the best we can then do in step 2.2

is to select the larger of the two elements as pivot. This modified

procedure, however will cause the zero-band, to be shifted fron its

norrnal rBareisstposition;.and we observed above that if it is shifted

too far (i.e. if the number of shifts, q, is greater than n-k), RBF cannot

be completed, ancl the matrix must be augnented and BPC used. In thís case,

the strategy is much more involved, and the operation count is at least

S0eo greater (because of the need to accumulate the nmltipliers for BPC).

We could alternatively limit the zero-band displacernent to n-k, However,

at that stage, there will be no further choice of pivots, so if any of

these pivots are small, there may be a loss of accuracy. If we are vrilling

to accept this, or reduce a non-Toeplitz mattix, as will be the case when

e > n-k, r4/e can selec-' ô =- l, i.e. we select the larger pivot each t-ime'

k+L'

*If and only if.
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If there is no a-priori knowledge of condition nunber, but we

wish to 1init the increase in errot:-bound to a factor of .D per stepr vre

can pïoceed as folLows. We wilJ. see later that the increase in error at

(-¿)
piuotfollows: select ú to move the zero-band back to the Bareiss position

if

each step is bounded by - 1tffi) n[*rlt ' so vle should select the pivot

' '"') /r(|i) -l < .õ. rr nay happen that neither pivot satisfiessatisfyins l+;; . pLuo,
this condition, but this is a linitation of the sirnpLe pivoting stlategy.

Another way to proceed is to note that the total increase in

errÒr is bounded by - Strt{f}) tt[!¿il"r), so ir the desired accuracv is e

arrd rhe machine precision is u, we should select each pivot t[li!", 
^=

1t

T rt[|1t /{,Fr)t) = ('/a)i/n (3. 1)

j=7

otherwise, select the largerpivot. This strategy attenpts to keep

lftffi) tt[;i)r) > v/e whitst nininizing the ciisplacernent of the zero-band:

however, for n even of rnoderate síze, the condition (3.1) will seldom be

satisfied, and the strategy rvil1 select the larger pivot each tine, so that

there is a risk of RBF being unable to terminate. This is also a limitation

of the simple pivoting Procedure.

Effec tiveness of the SimPle Procedure

is snratt compared t. tÍ*), but t!f!) is not. Theorem 4.2.3 states that,

in this case, Tk*L it il1-conditioned, and that tf ,k*, is well-conditioned,

neither t'_;ll, no" t("-U will be srnall. Hence the sirnple procedure works

well when a single submatrix j-s il1*conditioned'

We renar:ked above that the sinple procedure works well if 4-k)
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The fesult on Page 4.7

¡n4trix, T, is b4dly-corrditioned

bear this out. In the 6x6 input
71.

(it would be singular if trr= /ts). When

BNA is run, the error in the solution ís 0,69¿ conpared to a machine

precision of i.0-16. lvhen pBA-,l is.run, the error is a noclest rnultiple

of the ¡nachine precision. When several of the {,-Ð about tt-U ,JU
as well ^, 

t[-U, are snall (e.g. this will occur when several leading

submatrices are iLL--conditioned), the sirnple procedure may not give good

results'. The nore general strategy described below caters for this case'

3,2 General Pivotin Strate

sequence.

3.2. r Submatrix charts

Before we describe our pivoting strategy, it is instructive to

illustrate the reduction sequences - the sequences of submatrices of 7

triangulartzed when BNA and the various pivoting procedures a1e executed'

These reduction sequences can be shown on a subnatrix chart, illustra+-ed

ByTheorem4.2,s,theappearanceofseveralsmalldiagonals

tl-u , j:0,...,pì -k-1,..-,-k-q indicates that { {'¿, j}!:-q}f:[Å "'"
all ill-conditiqned; Theorem 4.3.1 shows that ror i=0, the relative error

in the elements of the matrices arrived at by using {-Ð as pivot rnay
J'

increase by a factor of 1t[]) n!-kl t and we conj ecture that this is

also true for non- zeto i. Hence, to reduce the loss of accuracy, we must

choose pivots in such a manner as to avoid the small pivot's that arise

fron the reduction of i11-conditioned submatrices of ? in our reduction
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below;

(n-1)

d,íepLae 0

-(n-1)
L n

order

Fig. 5.1 Submatrix chart

A submatrix chart provides a framework for illustrating

the n2 unique contiguous subrnatrices that can be selected from a Toeplitz

matrix. Numbers on the æ-axis represents the order of the subnatrix, and

nurnbers on the y-axis, its displacenent fron the nain diagonal' Thus the

natrix in the (rrs) position ,t ror". The areas denoted rtxrr are not

feasible subrnarrices, since ldispLaeementl > (ovder of T) - 1 in the

aTeai such a matrix would include some elements outside the nxn Toeplítz

matrix.

i

I

I

I

I

I
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T7'

F.ig. 3.2 shows the reduçtion sequence for BNA'. In itr

I 
2t' 

. ,. . rTn .aîe successively reduced'

X

X

Fig. 3.2 Reduction sequence for BNA

Fig. 3.3 shows the possible paths for the basic pivotirtg

procedure. Selecting both pivots above the zero band results in path A;

path B results when there is one pivot above and one below; and path C

results when both pivots are below. In fact, A and c cycles produce paths A

and C respectively, and BNA cycles produce path B'

Fig. 3.3 Alternatives - basic pivoting procedure

x

x
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Fig. 5.4 shows a typical path for Backtrack Procedure A'

When the zero-band for TGIJ i, in cliagonal (-qA), subrnatr'* TZ;-q hu'

been reduced.

displ

pivots q
places down
from Bareiss
position

L order-------à n

Fig. 3,4 Reduction sequence for BPA

Fig. 3.5 shows a typical þath for BPB, To move the zero-band

down q places, we go back q steps, and take the down-path for q cycles'

-q

x.

t

k+1-q;0
0

k+ti-q
x

Fig. 5.5 Reduction sequence for BPB
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Fig. 3.6 shows a typical path for BPÇ. To move the zero-band

down q places, ure go back one step then follow the sawtooth path shown;

each iltooth,, consists of a back-step (resulting frorn a cycle of RBNA)

and a dorsnwarrl forward step (resulting fron a cycle where both pivots

are selected below the zero-band) '

(1,0)

Fig. 3.6 Reduction sequence for BPC

Fig. 3.7 sho¡s a path in the non-feasible region. This nornally

occurs if the zero-band is shifted too far in the pivoting. If the Toeplitz

matrix is augnented (say, by diagonals, there will be a new, larger

feasible region, which provides a wider choice in reaching (n'0) '

Feasible region of matrix
{ augmented bY ni rows and

Ì--
columns

t\
I
I
I

I

( 1,0 > (n+mr0)

I
¡
I

I
l¿

X

(k+1; o )

(k+L;-q)

X

\ \

Fig. 3.7 Path requiring augmented matrix
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Çpnnexisns with Padê A xirnants

Bultheet [f¿] shows that the essenti4l systen tA bÇ solved in

finding the l¿\il Pad6 approxinant ,t ,iriy: d?L' Therefore, the

reductÍon sequence in a sub¡natrix diagran is equivalent to a corresponding

path in the pad6 table. Therefore, there is a close relationship between

sorne of the reduction sequences derived above and algorithns in the liter-

ature on computing varlous paths in the Pad6 tabte" Bultheel [14] gives

an excellent survey of the algorithns available, and shows that (i) ro'rv-

paths compute the triangular factors of a Toeplitz natrix and (ii) diagonal

and antidiagonal paths compute the triangular factors of a Hankel rnatrix

Thus, the application of the BPP to calculate a row or diagonal path

yields algorithrns which are the same as BultheeLrs; however, the basic

pivoting procedure is an alternative h/ay of looking at Pad'e paths, and

essentially generalízes Bultheelts Toeplitz and Hankel algorithms - both

are special cases of particular sequences of the basic pivoting procedure'

l^¡e can apply this observation by noting that the path AB in Fig. 3.8

produces the factors of a Hankel rnatrix with principal subrnatrices

T 1;n-1,' T 2;n-2" " 'Tn;0 '

n;0

B

A
1;n-1

Fig. 3.8 Path to factorize a Hankel matrix

x

X

*Basic pivoting Procedure.
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l^¡e êlss believe that the ÇgncePt intloduced in BPÇ, i..e.,

Ieversing the Bareiss algorithn, is new.. There is one related leference

in the Toeplitz literature; Huang and Cline [a7] proposes an algorithm

to reverse the Trench algorithn, but' [47] rnakes no mention of the related

concept of going backrvard in the padé table, which is in fact what RBNA

does, as is shown in Fig. 3.9(a). Pivoting can also be introduced easily

into RBNA (by reversing the basic pivoting procedure) so that as well

as goi:rg left in the subnatrix (or Padé) table, ule can also go back aLong

the diagonals or anti-diagonals, a-s shown in Fig' 3'9(b) '

Fig. 3.9(a) Path of RBNA (b) Possible paths of Pivote<l
RBNA

3.2,2 Strate.qY Incorporating BPB, BNA and RBF

We now consider a strategy which aj.ns to avoid il1-conditioned

subnatrices in the reduction sequence. Fig. 5.10 illustrates what to do

in the case wher" t'-lllO,...,t!r-U' all small, (implying that alL sub-

matrices rvith orriet k+l to 7<+2+p'rq and displacenent -q to p are a]-l

X

<-

x

i11-conditioned) .
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L-n

Fig. 3.10 Reduction path around an i11-conditioned block

In terrns of the pivoting procedures, what happens is as follows.

We execute the normal BNA (path AB) until the ratio 1t[-Ð n[])l r_s

snaller than a preset value, ô (lrie leave discussion of the selection

of ô until later ). This indicates that cond. Tk*i, ' ll,k*rf /(6tÍ*) )'

We then look at the pivots on either sicle ot t(o-Ð. rf t'-l!lr'. . .'tfU'

are also less than ò, then all the matrices illustrated by æ's ale

il1-conditioned, and we must avoid using pivots frorn the bottons of the

lower-triangles derived from these rnatrices. In Fig. 5.10, we used BPB

(path BCD) to sl-ide the zero-band up p places to nake /*Ð availablep

for pivoting. If the block of æts were closer to the left boundaty, and

e < k, we woulcl use BpA in-stead to get to point D. we then ut" t!-Ð as
p

pivot (poi.nt E), and continue to do so for anotheT p + q cycles (path EF),

then restore to Bareiss form. This pivoting strategy can be sunnarized

0

as follows:
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Aleorithn 3,2 ^ Pivoted Bareiss'Algorithrn, Strategy 2 (PBA'2);

Using BPB for Backtracking and RBF

1. Execute BNA, until for some k, 1t[-Ð n[]) | < ô, or until k:rt-l.

T.f k-n^L, exit, eLse do:

2. Find p such that 
I |.o,t[1]),lt, (-k)
Ep

(-k)
.J

Find q such that lt '-¡2)-rl 'o't[])'lt

I '6, i=0,.-.rP-l

I . ô, i:-k-lr...,-k-q( -k)

3

4. Do p+q BNA-cycles

5. Execute RBF.

6. Go to 1.

PBA-2 is Programmed on P'A'8
Problens with PBA-2

pBA-2 works well if there is a block of ill-conditioned sub-

natrices and aII other subnatrices are well-conditioned. If there i-s a

wide range of condit-ion numbers, or if ther:e aÎe sevelal blocks* close

together, the situation is less clear-cut'

Problen 1 - Pivot drift

If p<q+L, move the zero-band up p places to rnake /-Ð availal¡le for
- ,(-k)

pivoting, else move the zero-band down q*1- places to make t-74-q-l

available for pivoting (see procedure 2'3, BPB) '

The appearance of severat small pivots t'-l!!r',. . 

"!o'o' 
indicate

that IO*r;^q,...rTk+l;p are all i11-conditioned' Howevet" the converse

does not necessarily hold: i,ê , íf t:'k), ,1'," chosen pivot is not small' '

p

,k*Lrp*l (at point "Err on Fig. 3.10) is not rlecessarily well-conditj'oned'

If it is ill-conditioned, this
- , ('k)

- the new t' '-' will bc snall
p

< ô.ú('U. This change in t!-ma,æ P

will be revealed after BPB is performed

and possibly unsuitable as a pivot i'e'

k) *. call pivot drift. There are several

*B10cks of i11-conditioned submatri-ces on the submatrix diagran.
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v{afs we can try to overcone this problen, One nethod is to search until

tlu is considerabll larger than all of the elenents between {-k) a¡d.p rà+v'¿ p

the zero-band. The following Lewna then shows that, in general, the

ratio {-H /{-U will not be changed rnuch after backtracking,p'mdfi

Lenma S. I t.t t(r'H be the output of step (-k) of BNA, and 1et 7(.-k)
1
U

be the output of any pivoting procedure which moves the

zero-band'to displacement p, so that

7(-H ;(-k):...a[-Í)=o' P>0, o' T!-Ð :(-Ð :(-k)
k-l:t-k-z-' "-r-k+p

p<0.

Let i haa) be such tnat t!-^!)
ma,æ

, , (-k)
=1" j (^o*) l. Then

(t -k)

( l+ej (ma,æ)

:0,

(3.2)

ll, p<0

(1-+e )4
¿

t

i(-k)U¡¡
J (ma,æ)

where for any í,

Bp "oúrkrp
ll(f,t

5^u' '. . .'t[--T' ) /tt-Ð tt ' p>oe
1,

ßn condro,p,, ã!k?p,l'-l?r*r,. . . , +
-k-L

ntm

,o' )'/t( -k) ( -k)

Proof:

and 6O ;= llTll /llrp.pll

We prove the Lenna only for the case p>0' The proof for

the case p<A ís sinilar. It was shorr'n by Bareiss, that

in BNA, tl,O' is a linear combination of !L-k.,'.',!L,,
and that the coefficient of lt in the linear conbination

is unity. Hence for sorne {a¿} and k+L < L 3 n,
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f'. 
ot!t,7+p.;k+p + !k+trt+p;k+p (3.3a,b)

Sinilarly, for any backtrack procedure 3 tõ¿] not alL zelo

such that for k+1 t L 3 n,

o¿!L-,-k+i= t 1k+t' 
- 

tfìl"rn^k+p -

L=k+l- -,ã¿!t_tp*¿. * ãu*t!t. 

=i-l;.t'r1+p:k+p 

=

k

,taJ

k

r!

'I

,T

tltGk)
lt

:(-k)Tq.
AL,

k

1,=l

k I

I

{
't

.,

t
I.
4

rl

*

I

I

kæ
=>..-1 t-ì,7+p:k*p * ãk*l!k*t'1+p:k+p' (3'4a'b)

r!

:(-Ð 
Ìtt

N"" ¿i.;i: hp:ktp: { and a7r¡1 f 0' because since

m .- q1 ular, the sunmation ternrk;p t= TL,k,1+p:k+p ls nonslng

in (3.4b) is non-zero. llence (3.4b) can be written

{ "i!¿, bp :k+p + !k+1, l+p : k+p'

a!
't

where ãoñu*, (5.5a,b)

(3.6)

Subtracting (3.5a) from (3.3b),
I

Ir ,(-k) k

{ t= !ì;+i',1+p:k+p = 
^.'-, 

(oi - "il!¿'kp:k+pL L-t

ryúrk;p' where (öa)O := a'-al

d = s.'rl1o

ô

u



--1Subtracting (3.3a) fron ciOit x eq..(3.4a), and taking the

4th conponent, we get
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(5.e)

Then (5.2)

QED.

¡

È-

I

I
'l
t,
li

'¡

i
I

I

I

;olrTl;u' - tl;o' - -is? (t'-k,^,...,tL^l,m), which

witlr (s.6) = -n^'rl1r, (tL-k,^,...,tL-7,ì G.7)

Replacing Tl;u' byî:-U, etc, where i=rn-L, (3-7) becornes

--L :(-Ð , (-ø -(-k)
"lr*l ti 

' - ti : tioi '

where .. = -g_Trllrprct-lr,m,...,tl-l,m)/t(.-u. (5.8a,b)

Taking norms ancl using the definition ot g'

(3.8) * l'¿l <

where ßp t= llrll/llrkr.t,

Let i (man) be such tnu, t[]) : ttf,ftl,l .

i,'
p

follows from (3.8a) .

Rernarks We see from the above Lemma that if ttl-U \f,-l ^'" smatl

conpared b /-Ð, then the ratio i[-ttl Tf*' will be'p
little changed tto^ t!-k'rtl*' unless ,kro 

" 
bacllv-

conditioned. In the absence of any knowledge of

"ordTk;p, 
a reasonable way to proceed is to find p such

that ¡(-kl ¿ xrtl^u , 'i=1,,. ",P-i (where K, is some large' P (-Ð. Alternatively, we couldnunber) as well as being , 6'tào*

simply search untí1 ¡(-kl l, Kz6'tÍ*', where 'K, is some

constant > 1.. Then, assuning arbitrary pivot drift with

a uniform probability clensity function, the probability

that the n"*1t[-H 1* e ,t[]) i, = L/Kz, in the absence of



r29

any knohrLeclge of 
"ond 

Tkip. If w.e use one of these strategies and the

new pivor is still . u,tÍ*', hle nust use BPC to nove the zero-band dorrn

untit 1¡('k11, t.t[]' ¡not" that IVe wish to use BPB whenever possibre
'p

since it is more efficient than BPC).

I

Þ*

I

I
{

Problen 2

RBF

Running into i11-conditioned blocks during backtracking and

Fig. 3.11(a) and (b) show these respective situations:

ææ

ææ

E

ææ

æ

æ
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æ

ææ

ææ

æ
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û

æ

æ

J
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û
\--\
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7

!--

ü
á1i

¡.r
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F

H

\

I

Fig. 3.11 - Runnjng into ill-conditioned blocks on (a) BPB (b) RBF

In fig. 3.11(a), AB is the Bareiss path and BC is the path* of

the attempted BPC. To avoid the block at c (evidenced by a small pivot)

we can use BPC instead of BPB, following the path DE. We could also use

a hybrid strategy, usi.ng BPB rvherever possible (because it is faster than

BPC) and using BPC to avoid any blocks encourìtered'

Fig.3.11(b)showsFG,theattenptedRBFpath.Toavoidthe

block at G, we could use BPC instead of RBF, following the path FH'

Alternatively, we coulcl use a hybrid strategy as before'

*Note that the previous iterates ,(ti) should be stored for use by BPB'

To store n-f iterates requires 2n2 Iocations '
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3 .2.3 Strate ].es 1 rat BPB BPC a.nd RBF

lrle now present some nodified strategies in View of the

discussion above'

Algorithm 3.3 - Pivoted Bareiss |,1.gorithm, strategy 3 (PBA-3):

Using BPC for Backtracking and RBF (Programmed on p'A'21)'

Execute BNA, until for some k, lt

If. k=n-L exit, otherwise do

Find p such that lt[-o I = o,tÍ*',rt:-u". 6, i=0,...,P-1

Find q such rhat V(-¡l:)-rl = ô'tt*',V:-u' l' o, i---k-l,"',-k-q

Tf p < q*1., move the zero-band up using BPC, until the available pi.vot,

{-Ð, satisf,ies lt[,o | = o.tÍ*' (Note tl'at pf nay be sreater than p),

else rnove the zero-band ggIlt_ using BPC until the available pivot,

,r'-i!!r-.,, satisries ftli:)-q,l t 6'4*) (Note tl'a.- q' 
'nav 

be 
' 

q)'

If p < q+7, set s:pt+q othetwise set s:p+qt' s is the new block-size'

Skirt the block by execut'ing s BNA-cycles'

5. Restore to Bareiss forn using BPC '

6. Go to 1.

Alsorithrn 3.4 - Pivoted Bareiss Algorithn, stlategy 4 (PBA-4):

Using a hybrid strategy for backtracking and RBF

1t[-u nf])l < ô, or until k=n-L'

Find p such that p(-kl I = 6 ',1*' and ¡(-kt I > Kr"o* tl":-n' lIPo-1;

Fin<l q such that trlullr-rl = o 'tÍ*' and ltll!)nl '- Kt mo'rtlt!o\l'1

to-H n[]) t < ô, or until k:n-L'

l

Þ*

I

I
li

\
I

:

!

I

I

I

2

J

l
4

I

2

Execute BNA, until for some k,

If k=n^7, exit, otherwise do
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3 ta) If p < q*1, move the zero-'band r-rp p places using BPB.. If any

block is encountered [as evidenced by a pivot t Ut'*) ), go

around it using BpC. At the end of the hybrid procedure, check

if lt[-u | , utÍ*'.. rf .not, slide the zero'band up further

using BPC, untiL a pf is found such that lt[;n | = o'tÍ:*''

rf this does not occur, select Pf' to naxinize lt!-,U rc!:l)t-' ' P' ma'æ

in this case' ? is ilL-conditioned.

(b) As for (a), but searching fot a qt below the zero-band such that

t+(-Ð |> 6.{'U.lt'-k-l-qrl- " -ma,æ -

If p < q+L, set s:ptt*q, otherrvise set s:p+qt. s is the new block-size.

Skirt the block by executing s BNA-cycles.

Execute RBF. , If arry block is encountered (as evidenced by a pivot

. otÍ*) in magnitude), go around it using BPC.

6. Go to 1.

Algorithn 3.4a - Pivoted Bareiss Algoritl"un, strategy 4a (PBA-4a):

nodified pivot selection st-Tategy

same as for PBA-4, except for step 2, which is replaced by:

4

5

1

2 Find p such thar 1¿t-kt I , Kz6'tÍ*'' l{-t'l I . xz6'tÍ*' , i:0,...'P-1

Find q such that tt(-illr-nl ,Kzutl*'' lt(.-t'll'Kzotf*', i:-k-1,""-k-p

Selection of ô

If there is a-priori knowledge of the condition nunbers of the

subnatrices of 7, ô should be set such that pivoting occuTs if an i11-

conditioned subrnatrix is encountered, e.g. suppose it is known that a feiv

submatrices have conclition number greater than M, and the rest have condition

numbers less than n, rvhere m<<M. Then, limited experience has shown that



during BNA, the ilI-conditioned blocks wi1l. be evidenced by pivots ,(-k)
J

of order t¿Í*t¡ ênd the wel.l-conditioned blocks l'{i11 be evidenced by

pivots > about tffr) n, Hence, setting

õ = 1/t/' M (3.10)

the geonetric mean of these quantities, should maximise the chance that

pivoting will occur iffnec.essaly. In 'a test example, some subnatrices

had.a condition number of 104^106 and the rest had condition numbers of

10 to i-00, so we set 6 : L0-3. gne case of interest where there is

a-priori knowledge is the non-normal Paclé problem, where some submatrices

r32

is theare numerically singular. In this case, M : 0(v

machine precision. A reasonable val'ue for 6 is u

L, -L,,, wnere u

b

If there is no knowledge of conclition number but we wish to

limit the increase in relative e1.Ï.or per step to some quantity 6, we

should, as for pBA-l, fin,J a pívot satisfvi-rrr tt[i)"/tÍ:Jl >

of specifying a fixed value for 6. (Recall our conjecture at the beginning

of subsection 3 .2 t:ha.' the increase in relative eÏroI. is bounded by a

factor or ltÍ:þt[ilr"rll. As for the simple pivoting stratesv, the total

increase in relative error is then boundecl by a factor of ITf t[fi) tt[:fi)t)

ltle should rherefore select each pivo t t[ilr", to satisfy

i
TT ''(ti ) n(ti ) t 2 (p/e)(i/'n) (3' 11)

'J-l 
t'Pi'lot/ 'mo^tr '

with this strategy and for n of even moderate size, the maximun allowable

varue of ¡r[fut[il"rl is about unity, ancl this will result in extensive

backtracking; in the worst case, the algorjthm will search nost of the

available pivots at every stage, resulting in an 0(¡t3) operation co'nt'

To keep the O(nZ) complexity, we could limit the nunber of pivots searched
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to sone (.sna11) integer L, but occasionally sone very smal1 pivots that

violate the coldition (5.11) will then be used, There is essentialLy a

tradeoff between accuïacy and conplexj,ty, but the exact nature of the

tradeoff depends on the particular probLem, and rnuch more wolk is needed

on this topic.

Selection of Kt

. This is required in step 2 of PBA-4a. Again, if rve have some

a-priori knowledge clf the condition numbers of the subnatrices' we can

use Lemrna 5.1 to select K, to ensure the pivot drift is less than a given

quantity a. usually, we have no such a*priori knowledge, so we must

assume T.,.. - ís well-conditioneci (say eonÅ. ru;q-k) and select K, accordingly
K;q

Selection of K,

This is required at step 2 of PBA-4b. In this case, we assume

that if p(-kl | , Kz6.tt*', the probabili'ty of it drifting to be less,p
than 6./-Ð it !. Flence Xo need only be a moderate integer ' say 10'-ma.æ - Ko ¿

for p(-kl I to ""iuin 
> ô,tÍ:*' after backtracking in most cases. Where

'p
this is not so, we then sirnply use BPC to find an appropriate pivot'

Resul ts
' Th" 13x13 Toeplitz rnatrix on p.A' 19 h'as Ar:4r1:4' A2:5,1:4'

A3r6rj-:4 and ALr4,2rs, all il1-conditioned, a change of only 2*10'3 being

required to nake the singular; thus An:...rA7 are also ill-conditioned'

Execution of BNA produces at step (-3) the form
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Theorem 4.1

û -------- ----!------------æ-

ût-
æ -- -- - --- -:--------- --- -- - - - - -û

e t4 æ
3
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be as in Theorern 4.3.7.

Then if PBA-I is

e_,
2

ÇT

û. t3tz
"1

t4

where le,l. lO- tm'. The nachine precision is 10-16, and the results

on p.4.19 shows'that the relative ernor in the solution of Tæ:b is 0.026,

Using pBA-2 and PBA-S, the relative errors in the solution of Iæ=b are

-7¿_ -744xj.0'r* and j-2x1-0-to respectively, stil1 moderate nultiples of the nachine

precision"

4. INCREASE IN ERROR BOUND - SIMPLE PIVOTING STRATEGY

l,tle show in the next theorem that if ,k*, is badly-conditioned,

but Iu., and ,kr_, are well-conditioned, the increase in error bound will

not be large if pBA-l is used, whereas Theorem 4"3.I shows that when BNA

is used, the error bound increases by a factor proportional to eortd Tk*1.

Let e, R, Rl, ü¡ 3', 'rl-tcl 
' 

-r{*t<-ll

Also, ler v .': 1t!¡!!rttffi) I and assume *t:nat vf\.

executed, and at cycle k, t!;!lt is selected as pivot,

*OtÏrerwise PBA-1 fails
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(i)

2
where R4 i: R(L + 6), RS'= l4(1 + y R/R4)

(it) ¡nt ¡(-k-L) = vPg\ cond
P

Tk'1

Proof:

vR4 \= U + * yz 
"onÅ. 

r¿/(1--g "¡ conÅ T/,y<r/U condru
- *r7

n¡tL
p?tïucond. fl/r', y > / u eord. ru J

where Rg ,: Rz/t(l-g'r-l"ordfo(l-+ y-l)j, Rz ,: R6(1 + v/cond, f¿,

R6 i: ß'Rr(1 + y), Rs ,= Rr(l + o¿ ìlU /(vRf ))

By following the errorsthrough as in Theorem 4.3.I, we get,

in analogy to the equation after (4.3.10).

lot.o'I < vßtffil) + l^ot[]) lrntrl, where R4: R(7 + t)
(4. 1)

It is easily shown, in analogy to eq' (4.3.8), that

tÍk" < sltol eonå. ru g.2)

Continuing the analogy to Theorem 4.3.1, and using (4.2),

we get (cf. (4.3. 15) )

onl, -rlu < t)y'1 R2 ,

where RZ = Rn(L +T ,' condTl/(L - B ^1 eond.O), (4.3)

This bound cannot be used it y,'/g eondTO. An alternative

bound can be derived by using

tÍk''< ß'lt[r<-ttþondfu (4.i.8)

and ltol < B'ltfu-tl | "onL 4 (a special case of 4.3.8) (4.4)

**Defined as in Theorem 4.3.I.
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in [a.1) , w.here

lor'Ju' | = uúRßt'l {k^1)þorú 4r. n onr'ltt-') l/"o"af¿r' (0.')

But lr[:ll , ltÍru | -- Itlo''') l, so (4.6)

unt ìlH 3 ts|"cond. 'tlurn + nn/tz ) = uÊ r eondúv ag/tz

where ,R, .-D
4

(1 +
2

Y n) QED (i)
R¿

Eqs. (4.5). and (4.6) prove the first part of the theoren.

We now tTace the errorsthrough step (-k^1). 0bserve that

in PBA-I

_k_j. = tfu nlo': t|-o' ttfr<-tt G.7)

is the inverse of m -Trused 
in BNA, so its relative error

is the same. Thus from (4.3.9a)

rcL fi-7r-1 = új. L, where .t .'-- tffi) rc (4.8)

Now,

ßra-o-rt!?u-r,l = l^-k-fÍllr-rlro", ñ^t -, + reL tSlL-t,

(4.e)

which with (4.8) and (4,7) is

= ,rrr{rl*t V[fut[!)t, where n5 ,'-- Rr(l+,eLflu /ært)J (4.10)

Now fron PBA-I

tÍH = tl\;" " l^or'u' l = t#;' ) *,'1 lt ol'

since mO: ty't ( -k)
-K-J
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so la(fi-k-tþ'¡lLrr, | = ro rtÍÅ',tÍ;|;t 
) * r^' lt ol) /ltlo''' r,

which, with (4.3.8)

< }l,? Y .oná Fu rÍ*' , R6=ßtRS(1 +\)-1-

lstlk-t) 1 = ßr|-u' l +lom-o- f::i!¡ < vRrt 
l"o"afotf]),

6

So from PBA-I

where ,R -D- 1I (1 +
6

so nel I (-k-1)

(4. 11)

(4.12)

QED.

Y R )
7 cond Æ

-1 .
R

Ro

So $]'tt , 'Í:Å, 
-t^-t _rt'l:l

_ *(-Ð r e r rt[fiu *r-l ltolt- ,mdÆ t{Hl

tÍå'(l-BtL-1cona Fu{t * ,-1))

-1"onÅ F¿r,= úgr

1 t;, -LÍ'u{t+ y )}where RB: RZ/{(1'ßtL- cond

A slightly tighter bound than that given by Theorem 4.1 can be

obtained by observing that in (4.11) we majorized it[]) n[t<-t) 1 av

-1 -trB,(1+{t)eond lPU . If this is not done, h/e get the following result:

Theoren 4.2 Let ¡-t , R, R 5 and ß be as in Theoren 4. 1 . Then

,nr -r!-k-l) < pRsr VÍHlrlH l" ,, ,': Ã5 (1+^()/t1-Ø'L-leond' futur-l tI

Proof: Elementary.
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Discuss ion

Fo:e typicat values of y(l 0^1 to lO-2) and for TU and' fOweLI-

conditioned, it can be seen that BU i OU:,,, å B' Hence Theorem 4'1(i)

and Theorem 4.2 show that the eïror bound increase is approxinately

l{fr) rc[!¿i)rl at each step. Hence the simple pivoting strategv will tvork

provicling y is not too small.

. This analysis can be extended to a more gerteral pivoting strategy'

but the working is tedious. We conjecture that the same conclusion will

resutt, i.ê. the error bound increase will be approxinately ¡tffi) rc[ii)tl

at each steP.

5 INTRODUCTION OF PIVOTING INTO THE

BAREISS SYNMETRIC ALGORITHM (BSA)

IÀie can get a pivoted BSA by replacing all BNA-steps by BsA-steps,

but leaving the pivoting steps unchanged. So, the pivoted BSA (singte

strategy) could lun as follows:

Alsorithrn 5.1 (PBSA-1)

I Execute BSA, until for some k,

11 k=n-l, exit, else do

2. Perforn step 2 of PBA-I, and go to 1'

1t[-Ð nffl] < ô, or until k:n-L.
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6. CONCLUSION

Methods have been proposed to introduce piyoting into the

Bareiss algorithn, and a sinpLe error analysis and some examples suggest

that an inproved numerical performance results.
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CFIAPTER 6

NI.MERICAL ASPECTS OF TOE PL ITZ FACTORIZATION & INVERSICN

1. INTRODUCT]ON

Intheprevioustwochapters,rvediscussed(i)the'

propagation of rounding errórs ând (ii) pivoting in the Bareiss

algorithn for Toeplitz elinination. In this chapter, we discuss these

topics in two related Toeplitz problems - Toeplitz factorization by the

adapted Bareiss atgorithm (ABA), and Toeplitz inversion by the

Trench-Zohar algorithm (TZA). In Section 2, we use the forward eTror

analysis of the Bareiss non-syrnnetric algorithm (derived in chapter 4)

to shol that ABA'is unstable, that is, we sholv that after step k the

eTTorboundsincreasebyafactorproportionaltoconclTk*l.As

nentioned in chapter 4, De Jong l24l has shown that Rissanenrs

algorithm for triangutarizing a Hankez natrix is unstable; we observed

that Rissanenrs algorithm was not equivalent to ABA'

InSection3,weperfornabackwarderroranalysisofABA

and other Toeplitz f,actotízers by relating the backward errors of the

latter to the backward erl'ors of rank-l update algorithms for factors '

In section 4, we derive a factori zatíon interpretation of the pivoted

Bareiss algorithm(PBA), enabling pivoting to be incorporated into

Toeplitz fzctorizstion. In section 5, we use the forlard error analysis

of PBA (derived in chapter 5) to show that the possible large increase

ín the erroÏ. bou¡rcl of ABA is avoided in the pivoted factorizer'

Cybenko's122]eTlo]lanalysisofTZA,showsthattheerÏol

bound at step k increases rvithout limit as cond Tk*7 * *- In
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section '6, hre give a.sinple exanple that demonst'rates this' we then use

the connexion between BSA and TZA, derived in Chapter 3, to introduce

pivotinginTZA.Bymodifyingourerroranalysis'ofthepivoted

Bareiss atgorittun, we can show that the instability which occurs when

cond Tknj. * * is now avoided'

2.TOEPLITZFACToRIZATIoN-INCREASEINERRORBoUND

Recall fron chapter 2 that the adapted Bareiss algorithn

(ABA) could be used to find the Ll|-factorization of T. ABA is the

same as BNA except for the initial matrices. In BNA the initial ¡natrix

for botlr tlre PI ','¿ l¡i 
iterates was T, but in ABA, the initial

matrices for the pI and Nr iterates, denoted q'(-0) and ,(+0) ,

were T and tO', respectively'

At the conclusion of ABA, we had

U=T ( 1-n) (2.t)

L=T (n-L)72 (2.2)

where L is ULT, was UT, and LU : T '

we now consider the propagation of rounding erIoIS in ABA

from step (-u to step (u. The operations in step (H are exactly

the same as for BNA, and the erroI, analysis is the same, so Theorem 4'3'L

nay be applied directly. Recall the Cefinitions:

for any scalar quantity a, õa::ã-a, where ã is the conputed value of Q.,

for any matrix A, z'eL Ã ,: 
T.llu"url/iilo¿il'

A* i: ToePlitz Part of á.

and
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Then we have

Theorem 2. I

where the

Proof:

) ¿jl, x, = tfof;) /,,
. rhen (i) reL -rlk)

Let t (!i)
rJ

be the exaci quantities produced by ABA,

ler ,, :l t[-ul , tr*) ' : iilrrt*-rt
U, ßrr? and RU be as in Theorem 4'3'1

(ii) lou.t,k+f |< rurt&)
eond TO*, - ß cond lO

cond T(1-+3 eond T ¿ (n-k) < ). < eond T" . - maæ(K+l i -llrk+lll

and let

( pÀÃr,

(2.3a,b)

ll lt, u*t, ill
)k

Li,k*l of (2.5b) is an element of the natrix L in (2'2)'

Parts (i) and (iii): as in Theoren 4.3.I. Part (ii):

Eq(2.3b) follows from (2.3a), the definition of

onf -rlu , and eq. (2.2). Theoren 2'1 shows that ABA

is unstable, i.e. as cond' TU+ *, À + * * 
'nt' 

Ílk)

unbounded.ExampleS.l,givenlater,showsthatthe

error in ABA nay be arbitrarily large'

1S

3.ToEPLIT.ZFACT0RIZATION-BACKWARDERRORANALYSIS

In this section, we derive bounds on the perturbation

natrix, E, defined bY

f'Ú :t T + E.

Recall from chapter 2 that FTF's could be derived fron

rank 1 factor updaters (RIFU's). We will show that the perturbation

¡natrices for FTF's are simply related to the pertur:bation matrices for

the associated RIFU's, so previous erTor analyses of RlFUrs can be used

in the analysis of FTFrs.

This section is organized as follows: In subsection 5.1,

a sinple relation (T'heor:em 3.1) is proved between the perturbation



L43

natrices of MBA, the nodified Bennett algorithrn(N'IBA) and the adapted

BareissAlgorithm(ABA).Insubsections3.2andS,3,Fletcherand

Powellts error analysis is rnodified to calculate the perturbation

¡natrices for MBA in the general and syrnmetric positive-definite cases '

In subsection 3.4, Theoren 3.1 and the results for MBA j's used to analyze

ABA - a-posteriori bounds for E are derived for the general case, and

a-priori bounds are derived for the positive-definite case' In subsectj'on

5.5, a variant of Theoren 3.1 is used to analyze a Toeplitz LDR factorizer'

3.L Relation Between the Backward Enors for MBA and ABA

The relationship is contained in the follorving theoren:

Theoren 3.1 Let I and u be the factors of I computed by ABA.

E, the baclatat'd err'or matriæ for ABA, be such t'hat

-LA=T+E; (3.1)

Let

let Lt and Ut be the

L and U resPectivelY,

fu-1)th leading principal subinatrices of

let æ be the computed value of lZ,r,l/ti.l,
-* - tl --q1let -L" and U be fa-ctors of L'tJt + æy--

(3.2)

m
- .,Llet ,_ t= -!L,z:n-i_'

computed using MBA.

and

Let G, the backward error for MBA, be such that

be the machine Precision.

an: = 0t i=lt...rfliJ.l

=l¿¿l | . u, i=2,.. .,n such that níl : tiltil

ni+1,i+1 : ui¡ + ø¿¡' í:2"'''Yti i=2" ' ' 'n
(i) From (5.1) , (T+E) U = îllillj = t'-u¡ : tli

and let U

Then (i)

(ii)

(iii)

Proof:

(3. 3)

(3.4)

(3.s)

using (2.4 .29þ) ' e lj =

For floating-Point calculations,

(3.6)

(ii)

that

we may assume [s9]
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fL(æ"y) = (7+d (æ"y) ,. It I I 1r, (3.7)

where fL clenotes the result of a floating-point

conputation and o is +, -' X, or /.

For i=2, . . , ,n, (3 . 1) gives

(T+E) ü = TílùLj. = îi1tL1, which using

= (l+e,l ftit/t;ü)tfi'

(2.4.29a) ,

r(i+1)

.il = | (3.8)

QED (ii) .

(iii) consider algorithm 2.4.4 with the substitutions

L*i,, u *ut, æ ->-n, U *-U-r 7'uL*, Ü -'ur, and compare

it with argorititi ,.ì., *iti tt" substitutions r * i

and U * Û. We show inductivelY that

I (3.e)L 2:nr2:n'

To do this, denote the {ûG) } and 96l } computed

by atgorithrn 2 .4 .4 as t¡xT) ] and {Y.r(i) }, and those

computed by algori tln'(t 2.4.5 as fu(í') Ì and ttØ I ' It is

clear from (2 .4.28c,d) and (2.4.29c,d) that ã'(1) - ì(1)

ancl 'A-*(1) =¡(t). Suppos" f*(Ð -æ(1) and

A-*ø) - A-G). Recall from the theorem statement that

we defined \!+t= 
-Ll,n-l,o anð yi.t= 4i,l,n-l' Hence

the inputs to step 2, iteration i of algorithn 2'4'4

are the sane as those to step 3, algorithm 2'4'5' Since

the operations are the same, the outputs will be the

same in roulrded calculations. Hence Lr;, : 
-&z,rtri+l,

'!i. = -!i+j,z,r' ¡*(i+t) : ¡(í+l) and ,ft+t)

tt u* = uzrrrz,n

u

This conpletes the inCuctive proof of (3'9)'
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The 6,i ) element of (3.2) Yields

.u.
1'" Jî.:

-1,
î"t
-1'

-ut.+-æ
.-.J

tr

iu + a..
"LJ

æ5

-Li*r, 
z :nLz,n, j +l : \i.a. ¡' Ti*r, tút, i +l + g ii

Using (5.9), the defiiitions 'of lr

and (2.4.29a,b) ,

-U I
5 and -y

i.e L¿*r.!.¡*t = -L¿.!.¡ * si,i ' (3. 1o)

The (i,i) elenent of (3.1) Yields

n.u,=t;,*ê^.. (3'fl)
:.1. :. J LJ .t ;

Siinilarry
'&í*r,2. 

¡*t = ti+L,¡ *1 + ei+7, 
¡+1

= t¿j + ui+L,¡*L (T Toeplitz) (5'12)

Putting (3.L2) and (5.13) in (3.10) yields

ni+1-,i+1 = n¡.j * 9¿j' QED(iii) '

Let ErG,T"eO, and U be as defined above' Then'

the elenents of E are given explicitly by

't-I
s

l<=1
9i-k,i-k

5

Corollarv 2.1

e

i<j

L

ti-¡+1-" ttí-j+t
R=l-

Øi-k,i-t¿

l.u_r*r,rl 1il, ì,>i (3.15)

J'l'J

Proof: Trivial.
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Thus,tofindboundsforE,wefindboundsforGby

adapting the error analysis of Fletcher and PowelI l27l for rank-one

updates, then aPPIY (5.13)'

3.2 Bounds for the Backivard Errors of MBA

The approach follolvs that of 1271, but some details are

different, Since a different rank-1 updater, the conposite-É method,

is considered. A1so, 127) considers only the positive-definite case,

whereas we consider the indefinite case, and then in the next sub-

section, specialize the analysis to the symnetric positive-definite

case. It wil1 be found that in the indefinite case, stability cannot

be guaranteed (in the sense that 3 cases where the error is

unbounded - see example 3.1), and only a-posteriori bounds can be

deri.ved. The synunetric positive-definite case is stable, and a-priori

bounds can be derived.

Throughout this sub-section, we refer to lvlBA, given in

algorithm 2.4.4. The inputs to the algorithm, L,U,!'U' and the

outputs from t¡e algorithn, i and Û are related by

m

LII:L'U+æA'

It can be shown by induction that the first ¿-1" elements

of 9,.¿ and !¿, are null, (i:Ir-..,n). It is also easily checked

that the quantities involved in the ith basic step satisfy

"t) (t)r (3.r4)u

þ

7.ui¿.* yft*')r(í+t)r = &.¿!¿. +*(

Consider the errors incurred in the íth basic step'

norarion, we rerv-rit e !'. ¿,y¿r7(í) "r-(i),7.i,tr;,'Y'ont'
grrf ,y,a-'Lr'!*T oEr and Ur respectively' Eq' (3 ' 14)

For ease of
. (i+t )ancl a

."n lrr"r, t"

,1

,{

h

t

I
{

,i

I

,,

I

i

AS



rewritten

so bounds on

Note that A

m
*tl,*u*r + æ*a L1/ +

ß=æi

ûä = ,t*nq) (u.-(L+err)ßa r)
ãä = ,trns¡) at-(l+enr)Br'¡)

T
üa

j>i

i>í+t

i>i+t
j Þ i+L,
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(3. 1s)

(3. 16)

Computed quantities will be denoted by bars. We wish to boundthe error

G(ü in carrying out (5.15), defined by

î.*-urT +-qr-a_rT =W*f.r +c(í')

The quantities on the left of (3.16) are the exact data for the next

basic step.. It therefore follows that the complete computed

factotízation is an exact factotization of a perturbation of the

original problern given bY

*¡11 rF

A:L[J'+æA- +G

where
G)G::2G t

G nny be obtained from bounds on the G

is now a eomPuted matrix.

(i)

(3 .L7 a)

(5. 17b)

(3. 18a)

(3.18b)

(3.18c)

(3. 18d)

(3. 18e)

(3. 18f)

Following wilkinson [s9], we find that the following

calculations are made when the ith step of MBA is executed with

rounding errols:

5

Y

T*
J

ù+"J

= (1+e 
t)A ¿/ "1.

= ( 1+e rr) 
( 9'r- (l+e 

rr)7æ

: ( L+e rr) Q r-( I+e rr)7ît

x.)
4

t)
1

5

5

5

where nL and e1¡te2¡:... each represent separate errors bounded by

.1
¡

í
tt*

|,

i

I
1,

{
rt

l
I
I

,'

1

jl
'I



ì1, the relative machine pï:ecision. Following the method of lzll we

can nanipulate eqs. (3.18), eventually obtaining

(i.)
n'iii := Tluft + aiuft - Liuk - *iuk

= îjlir.( e 
,+e ,o+e sj+e s j+e o j-n li-n zi+o fuz ) )

+ 9,ruX( e r.+e z.-e fe s.-e 4J-e 6¡+0 ftz ) )

- 9, .u 
o( - 

e 
+ ¡ 

I +i 
;u ¡r 

n li*n zk+n s j- e t- n tk- n 
z d n 

sk+ 
o ftz ) )

+ æ ju o( 
e ri+e pí-e fn 1k-n zk-n ,n+o fuz ) ) (3 ' 19)

we now fínd first-order bounds on G, as is done in lzll. Neglecting

the o fuz ) terms, we have frorn (3 ' 19)

I n joo' | = u { z la ju rtl + o | æ 
iu 7rl 

+z lî" iu ftl 
+ o I t" ru Xl 

+l t" 
ru ul }

From (3.17b) and (3.20) and writing --*
J
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(3.20)

,Tä AS , etc. ,

(1)r
(z)r

I

Þ

I

t
,t

t

!
i

i

i

AS
G+t )

.J

.lr

*',

{$1,
L
J

(i+L) (i+l)
=uk

lø¡nl gls ø)
jk

1,= l-

=, ^.3_,{z 
1*!¿*1 

) u,f*" 1+ o 
1 
*!í'+1 ) 

l a( 
i ) 

ftz $' ¡ ¿tt;¿r<l
F!

+ ale"¡¿Iiioul+lf'"riluul! , (5'21)

where all the quantities on the RHS of (3.2I) ar.e eotTrputed quantities'

and
.l

= Q.

(1,) (2) (n)

u

uDefine X := [æ t,..tæ landY
(Ðr

u

Then (3 .2I) nay be written completely in natrix notation:



lcl s v{zlnvl -z¡*(1)nu(l)r þoftlzlvl

+ z littÛ l+olnnÙ 1+l ¿tt u I Ì
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(3.22)

where for anY matrix A, l¿l = ¡laorfi,

o

and Z is the shift rnatrix

0

z
o

0

Now from (3.22)

I c I < v{zl ¡r v I +o lx I z lt | +z llttl I +z I tttl \ *l nn u | +lítt u | }

= |r lxlrzuoztltl+utlil*l nlt rzlîrl+lult $.23)

Eq. (3.23) provides first-order a-posteriori bounds on the elements

of G. Unfortunately, (3.23) requires 0fuî) operations to evaluate

conpared to 0fu2) operations for MBA itself. A cruder bound which

requires only 0fu2) operations to evaluate may be obtained by

observing that for any two vectors q and Þ,

lg'þl < ltalt 
zttbtt z < llall lbtt 1-- rÐlaolt r>iøol)

Let of, t= lla,.ll f : anð' oI t: lla.Oll , G '24)

Then from (3.23)

lcl .¡o!(?r+62)yer*v(T**')(zîfr+uer) (s.2s)

This bound is of the type derived by Wilkinson [eg], which relates the

backward error to the largest element encountered duríng the

algorithrn.

f:

I
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Remark on the Bound

only a-posteriori bounds for G can be derived in the

indefinite case, and stability cannc¡t be guaranteed, since we can

find examples where *.he errors are unbounded, such as:

Exanple 3.1

Take

-L-2¿
7_
L_

1

-L

I
L

o1

I

,-1--2¿,*lrnr.)+(1+Ð(';)={Í
\

, U: t.

L

tl
_1J

m

æ' = U = l(L+Ð"0f5

where lrl. Un, where U is the machine precision'

1 0^-t-aÒ

7+2e

0

and

Here

I
I

I
I
I

1

0

2re
7,,:,q+*uJ'=l

L1-+2e

L

A=LU= I
L

2
( 2+4e) and

0

rulelz thave spectral condition numbers bounded by

respectively, so both are welt-conaitioned' Executing II{BA, we get

(1)
<-

I * 7+'e

L

L+e

0

I

\ ), a-(1)*-('.0')

2
e

L+2e

0
L+2€.

exact

conputed

\
)

v

Since the computed value of 'ùr, is zero, the algorithm v¡il1 fail at step

7 (eq. (2.4.2Sf)), i.e. the error will be unbounded. (In exact

arithnetic, Y - - $lc

3.3 Bounds for the backrvard errors of ltlBA:Po sitive -definite-

symmetric case

continuing oul development in analogy with [27f, we observe

that wl-ren the nat::ices a1e symmetric the terms involved in the ith



step are related bY

so that (3.20) can be written

It can be shorvn [27] that

Define

the equation
1,- J

Ã = >"í"
P=L-

ú-* : -oryr, where õ* .'= úi*tÆï.*,

A- : a!, where o := Y '/æ¿

-ux = A*n*, where -d* := -uf,+

u dL, where d, :: u;¿,

I n|'o' I = u{ z lø-æ;æftI + o loæ;æol * r lA*î'1;T.il * ald* *rï"¡l + ldntunl}

o ,: la*/d("

15r

(3.26)

(3.27)

(3.28)

(3.2e)

(3.30)

(5.51)

(3.32a-e)

A*o
a = --or

oJ ,: lA*l'"Wä|, oj ,= lal"ll¡l, uj :: lo*l'"I*Jl'

,i ,= lolv"l*rl and

Then (3.30) can be written, using (3.31)

ln'r"o'l = u{ zu}ufi + 6ruþn + 7a}af + 6ra 'afi + arao} (3.33)

Following [27], we can use the Cauchy-Schwartz inequality on the last

three terms in (5.33) to obtain

lnjïO' I < u{r,r; ( 7uft+6raO) +l7a}2 +( ot'+t I $)v" l( 
6z'+7 ) oXz tozUl*}' (s'34)

In tlre symmetric c.ase, the cornputed rnatrix Ã in $.L7a) satisfies

n
st

p:í
--¡F

p;ioL., +
! ^rptaa,t.ron-!T + oæft)æ(Ðr +

p:i



where 6i ,= ,|il nlil and is analogous to the definition in (3.27)'

In the positive-definite case, all the ãn and OO are positive' The

diagonal elements of this matrix equation therr give the inequality

loul* l*!i) I = tãrr+hrlk

where

so with (3.35)

h.
J

< v{(z+oìt¡ a | (aoo+h*) +
k
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(3. 5s)

î'+L ) a, 
¡J Í 

( 6 î'+z ) aOk+a kkl]
(3.s7)

where H :: ÐlG

Now tlre definition of H, expression (3.34), definitions (3.32a-e), the

Cauchy-Schwartz inequality and expression (3.35) give the bounds (reca11

(í)

tnut ã*ã0, d=rdí etc. ) :

hlrj : h¡7r"= uLrinl"o'l 
ri . u

= u{ .3. þ¿*rl*p|í*t¡ lfzlo¿+tl"l*'l*t'| + 6ìloo(l,f ) n +

L:l

* tr,i,lãoT¡'ol + (6þ+i., j:,toou'¡olt%uoø+2, 
lrlãuî?uol+la/f;ol+ çs.56a,b).L:7 '1,=r

î := manlãorcol.
7.

17a..+(6I a4

BY letting j : k, Ít fol'lows that

h.. < (oþ+7)ula,,r+a"
JJ .J.J Ll')

l/(t-(7+6þ)iÐ.

We consider separately the cases o > 0 and

defined as in (3.27). For the case a > 0,

ö :: (7+6î)nu < I

we get, when

6 1 0, where o is

(2ojj .) (
4
¿

nkro))lø¡7rl < u(z+6þ)i 2akk
(zã...+

JJ
(6?+L)a,¡) ( (6î+7)aUU
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Also d.,. > a,..
JJ JJ

when o>0, so

ö<+i (3. 38)

when 6 > +, we must use (3-23) oi (3'25) '

When 6 < 0, we get a very satisfactory result, since

l*t<1+î<t so hii={13v+0(vzl}rarrår), andthe 
'ii 

term

1,

in (5.37) is of second orcler, and nay be neglected in a first-order

analysis, as is done by Fletcher and Powel1. Eq. (3.37) then becones,

using ?<t and ãjj."ji

lø¡nl < L4(1t'+1.) d. . ,d",
JJ RK

6<0 (3. 3e)

Noticethat(3.39)isentirelya-priori,sofor6<0'stabilityis

guaranteed. For o ) 0, the update algorittrn canbe rnodified in a

nanneï similar to that indicated in.1271, which will gi-ve a-priori

bounds. we do not pursue this point here, for in the case of interest

which arises from Toeplitz matrices, o < 0'

3.4 Bounds for the backrvard errors in the adapt ed Bareiss algorithm

lø¡7,1 < v(zi+L) (oì+a)ãm'

for Toepi ítz factorization

be the backward erroï matrix as defined in (3'1)'Let E

Then from (3.15)

ln+¡l < vÇ¿-jltonj-rl +
mín(í-1,i-1)

k=1-
lø¿-7r,¡-7rl (3.40)

-1'-J

0, i<j

L, i> j
I
I

where from Theorem 3.1, G is the backrvard erÏ.or in conputing

Lxúx =Í,-Ll, +yA-T f \r t (5 . 41)



1s4

hrhere -¡r and -gr ale the leading submatlices of the cornputed

upper and lower triangles, E is the computed value of -lZrnrl/t

and A î: tt Ð.
- --5u./L

we now evaluate E for the general. case. Applying (3.25) for the

problem (3.4I) ,

11

lcl . vEro (zt*62)f;xcT + v(&*r+Lrr ¡ ¡7-uxcTa¡ter ¡ (3.42)

where the operators 'T and 'c are as in (3 .24), and -yx and !*

are the matrices of auxi liaty vectors produced by MBA' We showed in

Theorem S.1 that rt* and -yx were the same as -X and Í , the natrix

of auxiliary vectors produced by ABA, and also that Ír :7,,nr2rn

and úr = ÚZrnr2rn where -L and U are the computed Toeplitz

factors. Also Uy definition Í' : Ín-, and t' : Ún-r, so the (p'q)

elenents of (3.42) can be written

løorl . w[rzA[+6ai) + r&i+ü+l (zucq+u9q+l)

Putting (3.43) in (3.40) Yields

G = 
j)

(í = i)
G, j)

(3.43)

e
1,J

vÇ¿-jlto*j-t
ninft-1, j-1)

l*u Ð

l<:l-
Gi-ur za! 

-p*6ul -.r*t) *

+ rti_o+$_k+l ftnJ _u+u.!r_k+t) G.44)

The bound s (3.44) requíre 0fu2 ) operators to evaluate.

when I is symmetric positive-definite (PDS) , (3.41) becones

Íx-Ux : l,rú, - -æ*(sãx)T, where d > 0, so we can use (3.39) and (3.40)

to give
't -I

]J

k:L

= zrlti*1_¡,rli{++t)

| = ult¿+t-j,rl+ln¿¡l

ln¿¡l < u 74(k+1 ) lt+*t_j,l

and e
1,J

l.
I (3.4s)
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This is an a-priori bound and indicates that the FTF algorithm is stable

in the PDS case.

3.5 Other FTF algoritlims

As we saw in chapter 2, ot]net Toeplit.z LU algorithms,

and Toeplitz LDR algorithms, may be derived fron different rank-l

updaters by using theorems 2,4.L and 2.4.2. The error analysis of

the LU updaters nay be obtained using (3.13). For LDR factotízeTs,

the analysis of (3.13) is the slightly modified forn

4- I

+ Ðg le I = u. (3.46)í-k,j-k' i-j +1,1
k=1-

we illustrate by analyzing algorithm 2.4.5 , the Toeplitz

LDR factorízer based on Bennettts algorithn. Fletcher and Powel1 give

an error analysis of the latter, so using these bounds (their eq. (5'30))

ancl (5.46) we obtain

lnul <vlt¿+j-1,11(s-212 .ffi - 26). (3.47)

This cornpletes the discussion on the backward error analysis

of FTF algorithms.

RELATION BETI\IEEN THE PIVOTED BAREISS ALGORITHM

AND TOEPLITZ FACTOR]ZATION.

It can be seen from eqs. (2.1) and (2.2) that the triangles

produced by the Bareiss algorithn are sinply related to the Toeplitz

factors. It would be expected that the reduced matr:ices produced by

the Pivoted Bareiss algorithm (PBA) are related to some factorization

of the Toeplitz matrix. In this section, strch a relationship is proved

4
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for any PBA where BPA and/or BPB are used, i.e. only A, C and BNA-cycles

are executed. Further work is required to find a factorization

representation where BPC is used.

Note: We will henceforth refer to BNA-cycles as simply B-cycles'

This is convenient because A,B and C cycles are variant of the Bareiss

recursion that move the zero-band up 1r0 and -1 plaees respectively'

The fotlowing algorithm calculates two natrices, one ULT and

the other W, f.rom the output of the PBA. It wilt be shown presently

that the product of these matrices is a row and column-permuted

version of T.

Algorithn 4.1 (Programmed on p'A'31)

Let {'I(!¿) } oe the output of any PBA containing only

A,C and B-cycles defined by procedures 5,2.2 , 5.2.3 and eq. (2.2.3).

respectively. Let ,A anci nc be the number of A and c-cycles

respectively. Then, carry out the following steps:

1. Form the two permutation vectors s ancl ! as follows:

1.1 s7 + nA + 1-; Ul<- nC + L

1.2 For k <- 1- to n-7 do 1.24, 1.2B or I.zC if cycle k is

an A,B or C-cYcle resPectivelY:

r.2^ 
"knL 

*- mfn{sl}!-l, ,k*l * 
^o*{u '}l+l

L-28 
'k+i- 

* 
"'a*t"ul!+1, 

uk*i. * man{uo}!+l

L'2c 'k*7 
* oø*{"í}!-t; uk*7 * mntuo}!+t

2. Let Pl be the permutation matriæ which on prenultiplication moves

Tows "1'"2',.. r8? to rows L12r " ' rn respectively' Let PZ be the

permutati on matyiæ which on premultiplication moves Tol^/s ü yD2: ' ' ' 'þn

to rows 1r2r.. . rn lespectively.

Note: If PA is a certain re-ordering of the rows of A, then the



same re-ordering of the columns of A is elT )T ,

also that any permutation matrix P is orthogonal '

3. Set g*nA,h*nC

L!t *'rú'-nrt
For k<-L to

C-cycle resPectivelY:

sA. Llp*t t er2[1!),T, L.wt * L!u*t/L/<+t,k+ti lt +t.* tl1k', .$ñ(7r]) t

g * g-1, where ),(i) and p(í) are the rows with i

elements to the left and right of the zero-band respectively'

sB' Llp*t * 'rr-(rffiI.' L.wt * &!u*t /uír*,'k+t; !k+t' - tllk) '4'4;1'
sc. Liw, * ,rt[k/fi'., L.wt * &!wr/Ll+t,k+t; !n*t. - "-(^|^,frt;[l)t

h <- h-'1.

We nol show that L and U are the desired triangular factors:

L and U be as producecl by algorithn 4'1' Thenl
Theorem 4.1 Let P,P 2,

(i) L and

(ii) LU : P

Proof:

U are ULT and UT resPectivelY'

(i) Let Ø7, and hp be the value of g and h

respectively after cycle k of algorithn 4'1 and let

nO(Ð and nr(k) be the number of A and C cycles

respectively after cycle k of the PBA' It is easily

seen from looPs I.2 and 5 that

ø7, = no-nok) and s^*&+l) := min{si}\*t : no+l-no(k) (4.1)

^*(k+1) 
:= min{ri}\*t

157

qt

AP'

L
<- 9,, Lit; !t. * !l*rt.Pà

n-L do 54, 58 or 5C if cycle k is an A,B, or

OT Note

fL +L-n (u 9.2)
C t̂

4

5

L

h"
K

:n-n(k) anduee

It is also clear from looP 1.2 that

{sU\! = perTnx{s^in(Ð,...r (s^On(H)+k-1}, which with (4'1)

: perrn{g7r-j*1'. . . ,97r-fk} (4'3)

*perrnutat ion
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are aIL zet'o

12

* {'![7r':î, 
'}n"l 

t.Ï, are ar r zeto * {@f(-(l'u-r''' 
"' ,

" K-J

are aLI ze'ro + L is upper-triangular. With steps

sA(ii), 58(ii) and 5C(iii), we have L is ULT' The

proof that U ís UT is sirnilar to the proof that L

is Lr. aED(i)

(ii) Let dn be the displacement of the zero-band from

its Bareíss-position at step k (*: above; -: below)'

Recall from Chapter 5, fig. (2.9) that the Toeplitz

parts of T(-U and T(Ð have the forms (for ctU< 0):

(-k)
Fiowever, by definition {.¿o(so_l,i

It can be shown bY induction on

!'rl'. are linear cornbinations of

k that !
Í+ ,í+kLt/^ J.
- v,. 1,

l;!' and

This fact,

together rr'ith the shaPes of

that

and ,lU implies

_(-k)
!x(h,.

h-'"k-L
hlr-l-

+1-t-k

+L= L.e.* {t, }
- U.

d"
K

d-l. (4.4a,b)

arrcl {ry| , : L.c.{t^. }ht'-t-dP*t't¡u !x(hk-l. - '' "' '!+"hk-r-dk

Since Ck increments with A-cyc'les and dp

with C-cycles, we rnust have

d-u = do+no(k) -nr(Ð = ni-nA+nA(Ð -nr(k) '

decrenenEs

*linear conbination



So if cycle k was an A or B-cYcle'

hO_r-dO+l : hk-dk+l = nA(k) -no(Ð +1

So by (4.4a),

o

: L.c.{t.}
-'L. S

(using 4.2)

(using 4.1) .

"k+7

!n+t D
Lõ

¿
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(4 .s)

(4.6)

,(-k)
lx{nu-,

Eq

(k+1)+k

(k+1))
M1,TL

m1,n

= L.c.{t, }
-l/.

"1-

With sreps 5A(ií) and SB(ii), ancl rhe definition ot ñ(tk) .

. s1,

(4.s) = !k*1.P2: n.L.c.*{tO.;":. +

k+L
= n.L.c.{(P T

.L 1
]) 4

Coro 1 lary

, = !x+t. = n.L...tterrcrr)o! t*t - !k*t is row k

k of the unique U-factor of ,ro|. The proof when cycle k

is a C-cyc1e is similar. We can similarly show that

L.t +l is column k of the unique .t-factor of 
'r4'

QED.

Algorithm 4.1 can be used to conpute the following

permuted faetorization of T:

r: eþur,

PIVOTED TOEPLITZ FACTORIZATION - AVOIDANCE OF

INCREASE IN ERROR BOI-IND

we noted in the last chapter that in the pivoted Bar:eiss

algorithm PBA, the errorboundincrease Lor step (-k) to step (-k-1') is

proportíonal to ¡tf"!t[;!) l, where t[;lr' is the pivot element'

Algorithrn 4.1 is nerely a reerrangement of the outputs from PBA,so the erIot|

5

* normalized 1.c.: normalized such that the last coefficient is 1'
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propagation i-s the same' Hence the possible large increase in error

bound which occuls in the norrnal Toeplitz factorizer can be avoided by

a judicious Pivoting strategY'

6. TOEPLITZ INVERSION - INCREASE IN ERROR BOUND

InthisChapter,wehavesofardiscussedthenumerical

aspects of Toeplitz factotization we next consider effior propagation

in the Trench-Zohar algorithm (TZA) for Toeplitz inversion - 1ater,

we wilI propose a pivoting schene to inprove its numerical perfornance'

Cybenko l22l has performed an error analysis on TZA' and

we clo not repeat it here. He has found that for an indefinite Toeplitz

matrix, TZA is unstable, i.e. the increase in errorboundat any cycle k

is unbounded. The following simple example illustrates this point'

l{e work through TZA (Algorithn 3.2.1) in both exact arithmetic

(unbarred quantities) and rounded arithmetic (barred quantities) ' Note

that the rnatrix I being inverted is well-conditioned (cond-I = 9*0(e) '

¿ < le¿).

Exarnple 6.1

1 l-e
1

L 7-e

t

0

m_J-- L+e
1

c1-ez:

l.rl2.
0u, ere, = 3v, lgl < 1.

7, lrrl2 . l, Y -- machine Precision2

0 1-+e, L

-:> t 1
0

yT : l1-ey 0I,!T = lt+er, 0J

*.j..2 : (a+ß)It; Í, = er-ez = &1, since lgl

l.[1].
¡-t-e r) .

<7.
Step 1.

Step 2.

Step 3.

\i- = tl

= e- :
-1

c
¿

-J_

'L1
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Step 4. l,

St-ep 4.2,

Step 4.3, t1/xl : (1-¿l

(t-el2 (1,+er)

i=7. n, = (7-er)

i=L. \t: (l+er)
1 = (1-2el '

1 = (1+2¿l '

/(a+Ðv; fT, = (1-2e l/uv
( L-2¿ ) (t+e

¿

9

t

)

n

T

o¿
1,=l_

1- 2
tL-1 - _1 _1-

tu+Ðv c[u

n:"o
¿ ( 1-2e ) /av( 1-er) /(a+Ðv 1

Step 4.4, i=L. \lhl = (l+er) 2/ tu+Ðv; fn = ( 7+2¿/ /av

(l+e 
12 ¡ tu+Ðv (1+2e/ /av

D
dz

c'2

ß
dn
-á

J

(l+e
2

(er-1)

(a+Ðv

Step 4.5, í=L. \Z = (a+ÐV -

So, ignoring second-order terms,

(1+2e/ (er-1)
-L-¿ +

2 (u+Ðu

(t-el2 (t+e/z (L-2el (1.+2er)
-À :0U_

fu+Q11
I

o¿u

7 (6. 1)

¿
)

-1-e, +

v,eL X

\r-\,
=lgloli 

reL(T-7 ) 11' since (r = 7/X)
2 LL 2

-> oo t i.e. the error at

2

Eq. (6.1) shows that as a, -> 0, z'eL(fl)

cycle 1 of steP 4 is unbounded.

LL

7. PIVOTED EXTENDED BAREISS SYMMETRIC ALGORITHM

Recall from chapter 3, section 3 that the EBSA (algoritltn

3.3.2)rvas derived from BSA (algorithn 3.3.1) by appending the calculation

of rhe mttLtipLiez, matTice" ,(ti), defiued in eq. (3.3.5,6).'' Similarly,

a píooted EBSA. (PEBSA) nay be derived from PBSA (atgorithm 5'5'1) by
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appending the calculation of the nultiplier matrices (if BPC is used,

the multiplier rnatrices are calcltlated anyway). All steps in PBSA (in

fact, in any PBA) except reverse BNA steps have the forn

li) (!(í-L) )
-m. .C+4

(t¿) ( L¿) (+ (í-Ð ) (7.1)
<- ? ¡> T(

T J

where t(tí) is a cyclic pernutation matrix, S
(tí)

,(!¿) 4

is a selection

t ,J - J1t"':tJ2matrix, i.e. a. díagonal natrix of the form

and "|iu' = o elsewhere' ancl 9' = o or

in (7.f) and postmttltiplying by T-1, we get

.J .l

L. Using I
(li)

M T
(li)

(ti) (t(í-1) ) (li) (li) F (i-Ð ) (7 .2)
M <- ltt e M

SotoconvertPBSAtoPEBSA,wesinplyað'dastepofthe

form (7.2) after every step of the form (7'I)'

THE PIVOI'ED ALTERNATIVE BAREISS SYMMETRIC ALGORITHM

AND PIVOTED TRENCH-ZOI]AR ALGORITHM

In Chapter 3, we derived the alternative Bareiss Symmetric

algorithrn (ABSA, algorithm 3.4.I) which calculates the mtí and not

the ?(!i), from EBSA as follows:

(a) Drop alr steps with ,(xü on the 1ef-"-hand-side, i.ê. steps of

-m. .C+4

B

type (7.1) .

(b) Let nti and dtí,

respectivelY.

CaIculate tr*o.

be -"he numerator and denominator of mtL

and d , as follorvs:
!1,

is available from the previous step(i) Check if ntí or dxi
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u using the Bareiss recursio4, if possible.
!'t(ii )

(iii)

n.. or
+'l¿

use the identity
(!í

m
-p.

, (!i)
1)pq

(li)
B

Cal culate

Otherwi s e,
),D,=-.q

We can use the same technlque +"o get a pivoted ABSA (PABSA)

from PEBSA. Step (b) neecls further explanation, as different operators

are required for different ty¡res of pivoting steps '

Calculation of n!í, dti

Let t(ti) +,(!i) be elenents írr the fírst non-zero diagonal.A 
"B

respectively above and below the zero-band of Tlti), the ToepLitz pa-rt'

of T(!i). Then, the following can easily be checked from the diagrams

ín Chapter 5:

BSA PBA-1 (steps 2.I & 2.2) A-cycles B-cycles C-cycles*

(L-i)
B

. (1.-i)
tA

. (í,-L )tA

. ê-1)tB

, ( 1.-i)
A

. (i-1)
"A
. (í.-1)
"A
, (-i)
"A

J-u
(L-i)
B

-L
L

(L-í)
DD

t (i-l)
B
(i-1 )

. (i-1.)
tB

. (i-L)
"A
, (-i)tA

, (i)tB

, 6-L)
"B
, (L-í)
tB, (1--i)

t
Â

t (-i)
B

Ta.ble 8.1 Numerators and Denominators of Multipliers

for Various Pivoting OPerations.

n.
't

d;
u

n.
1,

d.
1.

(8.1)

cân be calculated

in Chapter 5):

Table 8.2 shows how t and t

(the relation can be checked from the recursions

(ti)
A

*For C-cycles, step (i) precedes step (-í) '



BSA
PBA-1

(steps 1.1 q 1.2) A-cycles B-c¡rc1es

Calcularion of ,I#, ,na t[!i) for various pivoting operations.

C-cycles R-cycles

, (-¿)
tA

,(-¿)uB

. (i)tA

, (¿)

"B

Table 8.2:

P
o\è

use (8.1)

use (8 . t)use (e.f)

use (8.1)

use (8.11

use (8.1)

)1,- t
4

use

use (s.1) ^-O-rtlL'

,[u-') -^o/1'ü use (8'] )
. ft^l)
TB

,[r-U, -^^.t(¿-1) {1-ü 4n_.t(i'T) use (8.1)

(8.1)

,Ío't' -^ut(L-¿) ^¿.*rrÍ-i-I)

, (ì.+1)
TB

, (¿-1)
,A

,Ít-u,-ut(i-l)
, (-1-,í,) ,(¿)tA m-7-¿'A{1-i) *_urÍu-r) tÍl^i)

I
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and dTablesS.landB.2canbeusedtocalculatethenti

at each steP.

+.

Derivation of PABSA CirectlY from FBSA

It is clear that we can combine the two derivations

(PBSA + PEBSA and IEBSA + PABSA) as follows:

(a) RepLace all steps of type (7.1) with steps of type (7'2)'

(b) Câlculate fl+,', dti. using Tables 8.1 and B'2; mli: ntíidri

PABSA - Compact Form

(ti)
M being changed make uPNote that in (7.2) the rows of

a ToepLitz block of the form

so the first rorv completely specifies the block. Thus (7.2) can be

written in terns of ;(ti)T, the first row of the Toeplitz pa'rt of

M(!¿) rf c(!í) : c" and s(!i) = sab, where c, and sob are

as defined in chapter 5, êQ. 6.2.8c,d), it can be checked that (7.2)

can be written as follows:

-(t(i-1.) )rJ:y to -G (í-Ð )r^r
-m. .m u-a+s '!'t; T*-4

-(t'L)r
5 (8.2)m

+

where !* is the index of the first rolv of the Toeplitz part- of 14

The procedure for converting PBSA to the compact PABSA is now as

follows:

Procedure 8.1

(li)

(a)

(b)

Replace all steps of type (7.1) with steps of type (8'2)'

Calculate nxi, d*i using Tables (8.1) and (8'2) i m!¿=n*¿/dt¿'



r66

2-choice Pivoted ABSA

we now apply procedure 8.1 to get a PABSA which corresponds

to PBSA-I (algorithn 5.5.1). PABSA-I allows a choice of two pivots at

each step (Ð. We postpone discussion of the pivot selection strategy

until section 10.

Algorithm 8. I PABSA-1 (Programmed on p.A'4f)
(!0)T (0) t'ro' * tr' t''!r'mI *gft

0 0t
<- f,,

to n-1 do

(L-Ð,-(k-1)
t, /un

-r\- u
2.L

2.2 ry

2.3 t

<-t

-( 1-k) r
m

1

( -k)
-k-L

( B. sa-d)

(s.01

(8.7)

(8.8)

{Normal ABSA loop, with pivot selection test}

2. For k<-7

m. <-t
-K
( UT

<-
-(k-L)r

--m "m-1 -K-

2.4

2.5

2.6

a1

(-k)
n

P2

P5.

* ,(t-Ð -^-otLo-'' íf k I n-1, t (
m

o' t-r!.,<-,

, (k-l) ,, ( 7-k),k* "k /"0

select t(-Ð .' t!l!!, as pivot.

pivoting procedure P,

-(Ð T -(k-1)T -.(1-k)T ^m''"' ' <- m' - ' - -tth,fl L' 1-t(k) 
* ;(k-1) .,, u t r-t-, t[l)

(B.s)

For the latter, do

(8. 10)

(8. r 1)

P - corresponds to steP 2 of PBA-f)

(8.12)

-Lt
+(k)v1

-f
1:. 1'

j

{Simpf e pivoting Procedure

Pr. 
^o 

* t[k-" n!l!)

k+2
)Tt(k

a+-

-(Ðr^<-m ut)k--(Ðr
m

(k)

<-
ry

,(
"k

(

L)k-

r -(-ur ^-m"m u
K-

t <- (8'13a-c)

(s' t+¡

t t'-l!'r-^-u-rt'-!' t
(8' 15a-c)

P4

k

m- -<-
-K,.J

-(-k-1.)r
m

(Ðr.
5

( -k-1 )
-k-1

_(-u ,-(k)
'o /'k

-(ÐT<- m- -fl ,. ,fr
- -K-r-

-(-k-1)r,* ry !.n+z

+

. (-k-L)
-J

{nsp}

Ps. 
^k+L 

* /Ð /t(-k-l) (s. I6)



-(k+1)rm<-
(k+t)
--L
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(8.17a-c)

(8. I8a-d)

-(r
(

o'''-r-^u*rõ'-o-'' 
'

k+L)T,
!.1<+s

( -k-L) ,(k+1-)¿rt

(k)
.i

I

'l
à

I

¡

I
f
I

,1

It

t
i

!

I

I

t <-t tP6

P7

P8

-1

, (k+t)
tk+7

{Move

m<-

T ¿ and to the bottom and toP

respectively. Ì

,!l!;t, * ,(_u!;t, ; ¿(-k-t) + {-k-1.), t|o*" * /U*1);

. (k+1) -(k+L)tk+z = 'k+L

Set k <- k+2, and return to steP 2'1'

Multi -choice Pivoted ABSA

More general pivoting schemes, involving BPA, BPB and possibly

BPC, nay be incorporated by using procedures 7 'I to adapt the

corresponding PBSA. We do not go into detail here'

Pivoted Trench-Zohar A1 thm (PTZA (Programned on P.A.a1)

AsrenarkedinChapterS,ABSAisjustTZAwithdifferent

notation. Hence PABSA is a pivoted version of TZA. PABSA can be

formulated as a pivoted TZA, by using the notational transformations

in chapter 3 (eqs. 5.4.15), with suitable modifications in the

pivoting procedure. We will not elaborate t'his here '

Results

TableS.3showtheresultsofapplyÍ.ng(i)TZAand(ii)the

2-choice PTZA on a Toeplitz natrix with TS close to singular (adding -5x

*7013 to tr, would make Ts singular). TZA gives very inaccurate

results, whereas the error in the 2-choi.ce TZA js a moderate rnultiple

of the machine Precision.

{

ìt'

p
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SIZE OF ILL.COND BLOCT, DI51 FROIT SINGULARITY
?
3,5d- I 3

INPUÎ ÎOEPL
8. 00e
1.ø04

-31.Oøø
5.0øo
3.000
r .oeo

INUERSE OF
ø.ø1?
o.0tt
0,øøe
0.03,1

-0.131
0, ?l.l

ERROR NATRIX
-0 .3¿0D-øl
-0.605D-01
-0.935D-0 I
-0.179D+00

0 .1 I 6D-01
0. le6D+0e

€RROR ñAlRIX
-0. e?8D- r6
0.e910-15
0.4.11D-ls

-0.r5'¿D-15
-o.3clD-11
0. l?8D-t4

. II1. INUERSE
-0.3 r6D-01
-0. 1 600-0e
ø.?¿1D-øt
o.9560-0¿

_0.1090+0O
-0. t lBD+ÔO

6.O09
I .0øo
4.000
8,000
{.000

-31 .000

I DENT I TV
, t35D-øt -o.116D-01
. t10D-01 -0.9?90-0?
.u3sD-ø¿ o.39?D-03
.?54þ-øl 0.at5D-ø1
.60e0-01 0.8?10-01
.9egD-0 I -0.83¿0-0 t

-ø.6?90-0e
-0.5?5D-øA
-o.3?10-03

o,1?8D-Û1
0. r85D-61
6. ?39D-0 I

-t. 3300-0e
-0. 1 2¿D-01
-0. r e3D-01
-ö.15?D-01

0. ¿soD-0 r
0. ?50D-01

0. e?8D-l 6
0.9? r D- t6
0.9?rD-16

-o.6680-16
-0. a?8D- r5

0. 6660- 1 5

IlZ l1ôlRlx 1
1.øøø 1.000
8.000 1,000,t.000 8.606

-3.1 .000 'l .000
5.000 -3.:ø6ø
3.000 s.000

e.øøø
6.000
I .600
¡t.0ø8
8. øßO
1,øOø

o00
000
000
6øø
øøo
000

J
?
6
t
1
I

rüT RESULT9 FOR TREITCH-ZOHAR ALG.TTI

T
-0,ølø
0.018
e.030

-9.øtl
e. t?3

-0 . 131

-ø.øe¿
-o,øø¿,
0.005
0.0r0

-0. o01
0.031

-9. oø{
-et.øoe
-0.0e5
-ø.øø¿
o. o18
0.011

-ø
-o

0
0
ø
0

001
ø25

ø.øø4
-6.00.1
-0 .001
-ø.0¿¿
-0,0 10
ø.ø42

øøe,
005
030
aø¿

INFINITY-Ì1OR¡I OF ERROR NATRIX . O.sAøD+OO

rIt RESULTS FOR PIVOTED TRENCH-ZOHAR ALG., SIRATEGV 1 I¡I

INUERSE OF T
ø,øø1

-ø.Ðø1
ø,øøø

-o,o¿t
-0. o08
0.0¿ll

. TtI,INUERSE
0. e¿eD-1s

-0 . .l?¿D- l5
-0,208D-15
-0.5550-15

e .5ss0- t5
-6. 19?D- l{

I DENT T TV
.o
.1110-15
,2,?¿D-t5
. r41 D-15
. 860D- 1 5
.8880-15

.011

.068

.006

-0.098
0.0 t8
e. 0¿8

-0 . s03
0.t?o

-0. re0

-ø.ø?L
0,øøø
ø.øø3
rà. øo9

-0.003
0 .039

0.000
-0.045

ø.øø4
0. ø03
0.0e8
0.006

-ø.øø1
-0.06r
-o.0e5
o,øø0
0.018
0. oø8

-ø
-ø

ø
6

-ø
-ø

;
o
o
o
0

-ø

J'

Àt,'

p

0
0
0
ø
0
e

c39
re0
er3

0.16eD-ls
-o. e?60- I 6
o. l65D-16
0.9
0. t9rD-15
0. t reD-r 4

0.55r D- l5
0. t¿80-r5

-o. t?3D-16
0. ¿s5D- I 6
t..r.r{D-15
0.694D-r6

tHFtllITY-lt0Rtl 0F ERROR ftâTRlx '
READY

Table 8.3

0 . 6490- t,l

Inversíc¡n of a Toeplitz natrix with il1-
conditionecl leading submatrix of order 3

using TZA and 2-choice PTZ^.

,{

Þ*

,l
t
I

t

I
I
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9. AVOIDANCE OF ERROR GROI\ITH IN PABSA FOR PTZA.

Ìrte perform an analysis similar to that for PBNA (Theorem 5.4.1)

to show that the possi-ble serious erroÏ grohlth in TZA, as evidenced

by example 6.1, is avoided in PTZA (or PABSA). The result is:

Theorem 9.1 Let ont, ñ(-H , reL ;(k-t) out t[k-l) 
^nd' 

o* t[k-l) u"

:
I
,l

È-

I

I
t

,I

i.

)

ì

I

r Ìß, , =lrt-u't, cr -- ft:l!)11, ø = ñ[])ttm . (e'la-g)

Then: (t) ruL ã(Ð < ttlrl/u, rvhere RB ,: (uøþond. rU(u/o)'l/f r-ycond' rOu/o)

where Rl := R(1-+2a/0) and 3 :-- ll lll4lTll

(ii) r'eL;{-k-l) s yBtR6 cond' tUe/o' where

R6 ,: R5/(1 # .ond FV{$ eond" rO + 0/a))'

:='R4(1 . +. i
R4 t= Rr(1 + SeondT

ß' :-- llrklltl4ull, a,

(iii) reL {'k-1) <vgzgtR, cond' fot9tl'cond' Tucond Tu*,

rr,here R? t: Rs/(l'- ßßr tond fU cond 17, e/a)

Proof: We proceed by follorving the errors through in the same

way as for PBNA (Theorem 5

k+7
(i) Fron (7.8b) 6c¿ <

g ,= ^(-Hrnl ^nTtma.æ

Sinilarly ôe < UFO

R
5

i
b;

{+:: R(l + e/g)

.4. 1) .

arñ(.-Ðt .) < uÃ0,1, 1'
-(-k)
rn

mdÆ

,-(-k),:= maæl^i'"'| (9.2a-c)
.1,

where

(s. 2d)

ìiote that 0 is an upper-bound for rf*' '

Apptying a forward error analysis to (8'13a),and using

(9.lb), (8.L2), (9.lc), (9.Id) and (9'Ia), we get

lñ:o'l =rrñ{**') + l^ãl*'laro/ú (e'3)

where Rj. t: R(1+2a/0).



It is easily shown that f.r-f I ,
-(k-1)T ,, (k-1)

= r, /T0

ffiit <¿(k-t) bond rkAtrilt

Also, using (9.2b) and (s.rz¡

t70

,so

(s.4)

j
ùr-

lo|o-') u 
I

|:
t'

{'t
I,

L

I.
),

hfrr*'l (e.s)
qll f1l

Putting (9.4) and (9.5) in (9.3), we get

loi,|o' I = lßr ( o/ú l^,Í{r*' I r usrn/n r) cond' rktu/o)z ) '

where g. := ll nlAl?kll (9.6a, b)

Also fron (8.13a)

' ÅlH >

Putting (9.4) and (9.5) in (9.7) yietds

åm,- fufrkÍ'l(1-ßcondrk(d/o)) (e'8)

Result (i) follows from (9.6) and (9'8) ' QED(i)

(ii) üle continue following the errors through srep (-k-1)

¡xi)
as we did in Theorem 5.4'l,replacing the

{to' , t by a/¿ and ô bY a/a'

ar^ o-.rñ!H t <

' ='l^-k-7ñ#IlneL 
-mo-r(L+reL -(H ¡rel ñ-t -r) (e'e)

Eqs. (8 14) , (9.2d) and (9.1d) give

neL ñ_O-, < tÍ?rï/e, Rz : R(l+e/e) (9'10)

+u by
J

Putting (9.10) and (g.f+) in (9.9), and using the fact



(eq. s.4.4)
llrLll

o, .- ^P '- F t
lll/-kll

where R
5

Also from (B .15a) '

^m=p&-tt,(+#
\
)

that l tlÍt | 
:l rlo- t' l rl tSk-x t7ø' o*rafu'

tr^-n-fi(rk)t = üeß 'rWì.*d.ft,

:= Rn(.7 +
=

c[

6
Ll

3'eondflu

L7T

(9 . 1la, b)

(e . 12)

(e. 13)

(s. i4)

(e. 1s)

I

5

-(k)where R- := R^(l+e reLóz r /vnr0l.

Using (9 .4) , (B . 13a) and (B ' 12) lt¡e get

-(-.k)m. ma'r

l"l

where .R

So fro¡n (a .15a) and (9.13) '

Putting this in (9.11a) and using (9'2b) we then get

t,r^-u-rñ!Ð t = ßf' cond foñ{,*'a/a ,

4 t= R3(1+Ø conã. rUa/O)

lñl-t'-tt | . r.wsß ' eond F,fffi' (o/ú 
"

R
R4

ffi-tt ,-kÍ' - l^-k-lñÍHl

Using the definition of ^-k-L 
and najori'zing -(k)

md,æ

using (g.L2), and using (5.44) and (9'2b), I^¡e get

;,ftrf;-tt ,;,1*) {uffeona rfltø eond' ru + o/ù)

Eqs. (9.14) and (9.ls) give result (ii) ' QED (ii)



(iii) Using (8.15c), sr-À4U

irþ"+2

which, using (9.14),

= Ésß' cond. fuñl*Í'(e/a)llfll , which, bv lemma (4.2'3 )

< ìfi'ßßt cond flU 
"ond 

T7, (0/ûllrll (9'16)

It carr be seen frorn (4.2.7) that

6/-k-1) =,*,*lañ?t'-t 
I

J

-1 ,"ond rk+z/ ñ[;l-'' urk*rr)

(k-1. ) { -k) 
t t r *r[k-L ),;( -k)

It
(-k-1)
-L
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(s. 17)

(e.18)

QED (iii)

By rvorking through a1gorithm 8.l, we have

-( -k-1)
^k+L

:L+(t

ny r,"*r" 4.2.3, ñfU' | . g conÅ r,o' so

eqs. (9.16) , (9.17), (9.rS) and (5.4'4 ¡ together give

net t( rk-l 
) 
= rg' g' n 

rcond.FucondT oconar o*rêol'

where Rr ,= ns/(1 - #'"o'd focond To)

Discussion

As an example consider the case v¿here T7o is well-conditioned
F

but Tk*l is ill-ccnditioned, with cond TU - 10' cond f7, = 1-0'

"ond 
fO*, = L05, o/e = # and ¿/0 = 70-5 ' Suppose also that ß and

g, are about unity. This will be true for well-balanced matrices'

Thus Ra= R27... 
= 

Rl= R (in general Rg will be a modest nultiple

of ,q), so the ineTease in relative e1'ro1. bound from step (-k) to

step (Ð is abo,"rt 0/a L 20, ancl frorn step (-k) to step (-k-1) is
F onn E^- 'nzÀ - relative error bound would bey/a' ' cond fO: 200' For TZA' the rncrease :-n

expected to be abcut Q/e = 705.
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IO. PIVOT SELECTION STRATEGY

Recall frorn chapter 5 we selected a pivo t /-u satisfying

1t!-u nfj) | > 6. uowever, thl' ': l: longer available in PABSA'

0 (defined in 9.1e) is a bound for ti*,, but ir may nor be very

tíght. If, vre use eit?pn the 2-choice scheme o3 a multi-choice scheme

with BPC for backtracking, we can use the muLtipLíers in our pivot

strategy.FronthebackwarclerroTanalysisofBNA,weknowthatthe

growth in the perturbation natrix at each step (!i) is bounded by

{l+lm*Ol). This result suggests that the following heuristic will

work for the case in which a few {fO} are very ill-conditioned' and

the rest are well-conditioned.

Procedure 10.1

Let g be the target upper-bound on the growth in the

perturbation natrix at each steP'

Execute ABSA, untit at step (k)' f ulmUl) ' g, where

, (k-1) ,_(-k)
^k: "k /lo
For a 2-choice pivoting strategy, do 54, else do 38

l-1¿l (-k)
3A. Select tr-*' .t tll:i to ninimize the nultiplier

38. For the more general pivoting procedure, execute

the following looP

38.1 Set P:0' q:0'
3F-.2 RePeat

3B-2.I P< P+1; q<-q+1

38.2.2 If p:f, move zero-bands up one place

using BPC. lf P > f, move zero-bands

- of outputs of previous execution of

38.2.2 uP one Place using BPC'

1

2

3
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38.2.3 Tf p=1, move zero-bands of oríginal

T(-H,I(k-l) down a place using BPC'

ff P > f, nove zero-bands of outPuts

of previous execution of 3B'2'3 down a

Place using BPC.

untiL lt[-n' ,tflol, s-l or tt!;!¡{u l, s-1

. or p = n-k (10.1a-c)

38.5 rf (10.1a) is true' use t[-t'|, as pivot; if

(10.1b) is true, "t" t5!) as Pivot;

otherwise use the pivot that nininizes the

rnultiPlier.

I1. CONCLUSION

Error analyses have been performed on Toeplitz factotization

algorithns showing that they are unstable; a simple example is

given to show that Toeplitz inversíon is also unstable. Pivoting has

been incorporated into these algorithms, and error analyses and

results show that the pivoted algorithms have a better ttunerical

performance than the unpivoted algorithms'
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CHAPTER 7

FAST TOEP LITZ ORTFIOGONALI ZAT TON

1. INTRODUCTION

l{¡ê have so far considered ways of irnproving the numerical

pe:rformance of 0fu2) methods to solve the Toeplitz set of equations

Tæ (1.1)

We now Pursue a different approach, which' however' has

application to the accurate solution of (1'1)' In Chapter 2' we

solved (1.1) by first conputing the Lu-decomposition of 7. Because

of the structure of T, it nnight be êxpected that other conmon natrix

decompositions could be calculated in 0fuZ) operations' In this

chapter, we consider the orthogonal decomposition

T=QÅ (r.2)

where @ is orthogonal, i.e. {A:88T = r, and J? is upper-triangular;

we develop algorithns to calculate Q and n tn 0(n2l operations' The

Q8-decornposition of a Toeplitz natrix has received little attention

in the literature, though some related work has been done [69] which

solves the reast-squares Toeplitz problern in o(n2 ) operations using

lattice or ladder recursions. For the mininal design problen of

control theory, Kung and Kailath t56] consider the case where 7 has

b



tþe special form

m-

¿
t..K+v4

F_¿

0

L
Ir
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(1.3)

0

'r, +u Ìo k

where the ú,.ts are vectors, and effectively compute the.tÇ deconposition
-,1,

(.ú lower-triangular), though -D does not appear to be calculated explicitly,

but via the relation

t=r{

The matrix in (1.5) is part of arrvector circulant matrix".

The present algorithms can be extended to block-Toeplitz natrices (Chapter

S) and we conjecture that they can be extended to vector-Toeplitz (and

circulant) natrices as well. The present algorithn is described in terms

only of elementary ïnatrix operations, assumes no knowledge of control

theory or polynomial matrix theory, which is required by [56] . Morf [65],

in considering ninimal realizations, calculates rR (but not 4) for a

general (block) Toeplitz natrix by performing a rrfastr? Cholesky factotiza-

úon of ff . To see this, fet F be the upper-triangular Cholesky factor

of T, 'so that

ry -ry-TT : FR (1 .4)
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But fron (r.2) TTr = fa'a, = {a (1.5)

so that from (1.4), (1.5) and the uniqueness of the Cholesky factorization,

R=R. The algorithm described below calculates .RlG 8) without forming /f.

The present algorithms can of course be used to solve (1.1) and tests have

shorrn that it is more stable than nethods not involving orthogonal

transformations. Other applications include the least-squares solution

of Toeplitz systems which arise in the Covariance Method of linear

prediction IOO], leil, and in Pronyrs rnethod for functional approximation

[46].

In this chapter, Section 2 describes an algorithm by Gill, Golub,

Murray and Saunders, which is used to develop the orthogonalization

algoritfuns. In Section 3, the first orthogonalization algorithm, FT01

(FTO: fast Toeplitz orthogonalization) is presented. FT01 calculates

only.R explicitly; a method will then be given to solve (1.1) using -B

only. This nethod is a païticular case of a technique for general matrices

which Paige tZf] has shown to be numerically stable. The second

orthogonalization technique , FTO?, which calculates Q and 'R explicitly,

is presented in Section 4. (1.1) can easily be solved when Í is factorized

in this manner.

The next chapter will describe orthogonalization algorithns

that are about one-third faster than FT01 and FT02, but are logically

rnore cornplex. It will atso be shown how to halve the operation count in

all algorithms by using fast plane rotations [50] instead of the normal

plane rotations which are the basis of the FTo algorithms.
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2. THE GILL.GC)LUB-MURRAY-SAUNDERS ALGORTTHM (GGlvlS)

This algorithm l32l is needed for the derivation of the

orthogonalization algorithns in sections 3 and 4. The GGMS algorithnt

reduces a matrix which is the sufn of an upper-triangular to a rank-l

natrix (ur+al) to upper-triangular (LlT) forn. we first describe the

algorithn, then give some properties of the algorithn, which will be

needed later.

2.1 DescriPtion of the GGMS Algorithn

The GGMS algorithm reduces a tlT+RL natrix to uT forn i-n two

phases: first ftom uT*Rl to upper-Hessenberg (uH), then fron uH t'o uT'

The process may be illustrated as follows:

GGMS A1 eeri!!r: Phase I: UT+R1- ->UH

The rows below the subdiagonal are eliminated from the last to the third

using plane rotations. A typicál stage of the reduction for a 7x7

matrix is

0

Here, *ts denote the elements of a rank-l block. If we choose a rotation

inthe(4,5)planetonullthe(5,1)elenent,clearlythe(5,2)and(5,3)

elernents wilL also be nulled by the same plane rotation since t'hey are

part of a rank-l block. Thus after this plane rotation, we have

+

+

+

û

0

û

+

0

0

æ

+

+

0

0

+

+

+

0

00
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ææææææ
+ætæûæ
++æûææ
+++æûæ
000æfiû
0000tæ
00000æ

Thus ror^rs 7,6r...,3 may be eliminated belohr the subdiagonal by suitably-

chosen plane rotations in the (6,7),(5,6),...,(2,3) planes respectively'

GGMS A1gorithn, Phase II: UH ->UT

The subdiagonal elements are eliminated from the top-left to the

botton-right, using plane rotations. A typical stage of the reduction

for a 7x7 natrix is

The (4,3) element can be eliminated by a suitable rotation in the (3 
'4)

plane. Thus, elements (2,1),(3,2),"',(7,6) nay be elinrinated by

appropriate rotations in the (I,2),(2,3) ' " ' '(6,7) planes respectively'

The general GGMS algorithm is stated in Algorithm 2'1'

tle-slil4 -?'-r- - --Tþ: -99Y! -llsel 1!lT

Notation - We deno te C6l as the plane rotation matrix applied in the

(iri+7) plane in phase I, ana c('l¡l as the corresponding plane

rotation matrix in phase rr. we denot " Aî 
^nð, 

Að as t¡,e

transformed matrices after the application of c($o) and G(6¿)

. respectively. This terminology is similar to Wilkin'on't A(i)

in Gaussian elimination, [gs] which is the transformed natrix

after the ¿th column has been elirninated'

æ

0

0

æ

fi

æ
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Input T.he nxn matrix ¡1 of the fotm UT*RL'

Procedure {Phase 'l' - UT+R7 ->uH}

1. Set Añ *A'

2,Foti<-n-Tdownto2do{elimrowi+l.belowsubdiagonalusing

Plane rotation G(þi)t

2.L

4.L

^ iit, î .-¿ît
cos ôo <- aii'/r; sin 6¿*aä),t/r

1f*roi,!*!r,rtz
where T <- (a

1,J

2,2

{Phase ÍI - 'uH'>UT}

tt^\

3. Set Ao + A2

4. Fot i+7 to n-1- do {elininate (i+lrí) elenent using plane

rotation cñ¿)]

tî * crgutni+l

Y. .V.

l,L * ct"q,) nL-t

.v-

"o, õ, *"tu;l/"; sin-fi¿ <-ct..- .
L+J,1'/r
L-I

t

where ? +
L

1 2 L 2+(a) )

Remark

i+1,i

4,2

It nay be seen that the GGMS algorithm requires (2n-3) plane

rotations in all. These rotations require ¿n2 + Oh) operations

to execute.

2.2 Miscellaneous resul.ts - GGMS algorithn

later ¡

The following properties of the GGMS algorithm will be required
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Lenna 2.1 The product of the plane rotations that triangularizes Á in

the GGl"lS algorithn is

0

where the products indicated by II are defined by

m
J
¡> i)

n-7
TT c("þ;)
1FJ

2

IT G(
j=n-1

A AkAk-l "' A7
1,

Proof Trivial

Definition Define the partial products

k
TI
1Fl

{ ro¡ ..E .)
J

The following maY then be shown:

Letrna 2.7
'La I a.

-L:n, t

1,

ilc(
i:n'1

0

{ r"oot := i, G(þi) { rort

{fOOl ana {60) may be considered to be the product of all the plane

rotations up to and incluð,ing G(î¿)^and G("þí) respectively.

ctearly { t-øn-rl = {, { røolo =- oî ana { ft¿) = *'

(2. 1) *
Ll_

Proof The prane rotations G(6n-l , G(6n-z), "' , G(õl nodify only

rows Z to n, so the norm of these rows is invariant' i'e'
.a

o 4.,n,7 | : ll %),n,1 
n Q'2)

*¡ù."u:JtK denotes elements i to i of the kth colunn af X'



Also in GGMS, Gôn^l'..., G(6i) respectively eliminate

elernents rle,.. 'i+7 of the first column (see comment on

Algorithn 2.1, step 1) , so

î,a''o' = g'' k4+7" " 'n

o Lt,n,, tt = ai,

t82

(positiue) (2.s)

and (2.2) and (2.3) + (2.1).

"os ôu = o¿l/llLi,n,Lll =ll %*l, n, Lll 
/ll 9¿,,, lll

QED

Leruna 2.3

Lewta 2.4

Proof

sin óO

Proof In step 2.I of the,GGMS algorithm, iteratio! i,

¿lta.-Ll - U.¿
1'J

(2.4)

because G(6n-l G(õi+l do not nodifv row í'

from Lenna 2.2,

¿ìtai+7,1 i+1:n,

5 1'>J

Also,

(2.s)

"%.,r,r',
(2.6)

rll ,= lla

and

The plane rotations G6n-1, ' ' ', G6l only nodify rows

7 2 ,,, 
rr, *llLi*r,n,7ll2 2

4..'l,l +(a) í+

using (2.4) and (2.5). Putting (2'4)-(2'6) into step 1

of algorithm 2.1 yields the result' QED'

1,4..
LJ

4..
1'J

a.-Lt
a.rL:n, I

i to n, so the norm of these rows is invariant' i'ê'

1

\L,n,ill = l%,n,¡x

4..
1,J

a.-
LJ-

lla. -ll-1:n, J-
t (2.7)
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because the elernents of ¡4 below the diagonal are part of

a rank-l natrix. Also in GGMS G6n-l,G(6n-ì"'''G6¿)

successively eliniinateelements n'n'l,"''i+L in the ith

column (i>i ) (see conment in step l) ' so

*kj = k:i+l'...'n

oú,,n,in = oî¡ 5

Lenna 2.5

Proof

so

Also

and

d.-
L..l 5.)g

0

(2.8)

(2 .e)

(2. r0)

and the result follows ftom (2'7) and (2'8) ' QED'

2

IT
¿-j

{o., =-¿
cf"o 

¿)

i
JT
't =-l

a-
-L
(l

.4 4.¿ tu

"\it.J

G( þi) 5

where c[ = "%*,,r,r-t

{r+¡*

7,a..-
J+!rJ

)a.
L j

=Q

0

because (i) the plane rotations that nake up {f ø¡*1)

do not modify rows I to i (ii) " = 4Ï1r,, bl Lemna 2'4

(iii) the plane rotations in { {Q¡+r) respectively eliro'ínate

elements n'n'Lr - ..'i+2'

because in step 4.1 of algorithn ^''"Oi is selected to

elirninate the i+1'j element,

4(),. ^a+z':n
_i- fi+Z:n

because the plane rotatiors G(6j-1"",G('Q¡-l do not



nodify rows i+L to n

= 0 using (2.9) (2.11)

so because of (2.10) and (2.11)'
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(2.r2){g, J = { r"on-1)L. j d., =, { r"orlø,

J
TT
íFz

G("þ j+1) c(6¿,)
2

TT
t_:

ry^g (ö L, Ju
u

c('þi) , using (2.9)

QED

3. FAST TOEPLITZ ORTHOG0NALIZATIoN, VERSIoN 1 (FTo 1)

Recall that we wish to find 4 orthogonal and .R upper-triangular

such that

l:QÅ (3. 1)

In the algorithn to be described in this section, only P is

calculated explicitly. It will then be shown how.aæ : b may be solved

using E only. In the next section it will be shown how to generate @

ô
in 0(n") operatS.ons, if this is desired'

5.1 Out line of the Algorithn

WegiveabriefoutlineofFTOl,pointingouthow.Rnaybe

calculated in 0(n2J operations. llle present only the mailr idea in this

subsection, leaving the mathenatical details to the following subsections'

Let T have order n, and denote the leading principal subrnatrix

of ? as Tn_1, Let rn_r= n(n-7)r(n-7), where n(n-l) is orthogonal and

,(n'7) is upper-triangular. Then, the following will be shown later:
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(a) If ? is Toeplitz, a certain matrix of the form

æ æ

R
(n-1)

æ

nay be converted to the upper-triangular matrix R by the application

of'the GGMS algorithm, which uses (2n'3) plane rotations.

(b).R+C,whereCisacertainrank.lmatrix,fr|Ybeconvertedto

a natrix of the fornt

R
(n-1)

æ

by another application of the GGMS algorithrn'

The operations in (a) and (b) may be written conpactly as

*(n-1) û

û
m

0'

(n-1)
GGMS

plane
R

Totations

add

(-> R+C

(rank-1)

GGMS

plane

rotations
(3.2)

n

Now the transformations in (3.2) require 0fuZ) operations,

or ¡fu) operations per column. The essential property is that because ?

is Toeplitz, a natrix witn n(n-i) as the trailing subnatrix can be

converted to another with ,h-1) as the leading submatrj-x ¡n o(nz)

operations. This property enables us to calcul ^te 
R(n-7) ",,d 

(as a

by product) ,R in O(nZ) operations: writing out only the kth column*

*n.. denotes the kth column of a matrix X'_K
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of (3.2),

GGMS

plane
L.

rotations

1. Initialize L. I
2. k< 2

{t"tain loop}

4

add
GGMS

plane

rotations

(n-1)
?.._K

0
t (3. 3)

(n-1)
o-'lr-l

k

we see that (g.s) suggests a recursion for calculatin, tlTt) ftoIn L!i-l)

The plane rotations in (3.3) require only 0(Ð operations, so all of

,(n-1) , and as a by-product, -R, rnay be calculated in o(n2) operations.

The complete procedure is sumrnarized below:

^na 
y-!!-1) ¡easity done)

(æ_ ì
3. Convert l;9-t) I .o ¿-U bv plane rotations

L L't<-t ) ''

Stop íf k=rt.

Add q. k to L.7, Q ís a rank-l natrix)

k
k

5

6. convert (R+c).k to 
l:

Ln-
k

)

7

8

by plane rotat j-ons.

k<k+L

Go to step 3.

Several details, such as the calculation of the rotation matrices,

the færs in step 3 and c.O ín step 5 have not been discussed

here. This will be done in the following subsections, rvhen the

algorithn is derived in detail. It will be seen that the

conputation of these quantities is only a minor part of the

total work of the algorithn.

Renark
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3.2 Prelininary Results

ThefollowingresultsarebasictoFTO.Here,thematrices

and transfornations in (3.2) are derived'

Define â n-1

and let ? be Partitioned

t
m-.

1)

t
because 7 is ToePlitz

I

OT

a

1

0'

ru

Tn-L

Tu

Then t

u n-1

.'Tt of R = R

Tu

(3.4)

(3.s)

(5 .6)

. îtt{r R

R
(n-1)

B is the matrix on the left of (3.2). Since R has the form uT+Rl' the

GGMS algorithr¡ can be used to transform it to 'R, an llT matrix'using 2n-3

plane rotations. Let ,f t" the product of these plane rotations' Then

)T,n-1(
a

The GGMS algorithn was described in the last section' !{e now assert

thatRistheupper-triangularmatrixrequiredin(3.1),becausefrom

(3.s)

T = âß'= täÈtn ,

an orthogonal deconposition of T. The transformation (3'6) is the

first oPeration in (3.2)'
i

¿i



a
(n-1)

Next define
1

Because ? is Toeplitz, it nay be partitioned

rn-1

T

t

reversed.

Then

0

(n-1)
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t

a

Ru

where u, .t) and t are as in (2.4) ana Ã denotes / with its elenents

(n-1) oh-t)þR

q''r =
RY

u t

E + g¡r{,0), where \":= l,o'...,0'1f
aL-

m
0'

R o{n-t)þ
and R

so E = ã'r- +r(u",o) = f (r - ã4rr{r 'ol I

:le - q"æ,0)) =f ræ - q¡{,ott

=darn - {u,{'o)) =lar' - nl!{'ott

: ffq(ntc), wnere t t= -L.f{,ol (3'7)

Thus, (3.7) states tnat R+C, where c ts a rank-one matrix, nay be transformed

to ^R by an orthogonal transformation, since ã and I are both orthogonal'

The GGMS algorithm can be used again to transform R+C to R using 2n-3 pLane

rotations. rf fl i, the product of these plane rotations,

,t
i
t

tl

I
I

{
'{

''ri

i
1,

!
rt

I

I'I

I

I

ti
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ættur
f R = R

The rank-l natrix c is that added in the second operation in (2 '2), and

the transformation (3.7) is the third operation in (3'2) ' Rewriting

(3.2) using (5.5) and (3.7), we get

where R::R*C=R- or (rRT.o)

c=-4.rfr,ot
R

(3. 8)

(n-1)
n(n-t) rf

t

R

(3.e)

.1

I

Þ*

uTt

Ru

GGMS

plane
rotations\

GGMS

plane
rotations

-\
Jãt

Ã'

add

þl
)(n-7 T (n-1)

R

.T
¡>

m

0'
a

The operations in (3.9) forn the basis of FTO'

3.3 FT01 - The Main Recurslon

In subsection 3.1, we showed that üÉiting out the kth colurnn of (3 ' 2)

yielded a recursion for the colunns of ,(n'1). (3.9) is a detailed version

of (3.2), so writing out the kth column of (5'9)' we have

Å,

p

'k-i-
T.n + e._K

t1

4
kT.

4

add

T 4% k:-%r. Ðn-k

k
k
(3.10)

The transfornations in (5.10) constitute a recursion by which

each column of ,(n-7) and -R can be calculated it ,fu) operations' Howevet'

(3.10) cannot be used in its pre.sent form for Toeplitz orthogonalization'

because the GGMS plane rotations and the elements of %r. cannot all be

calculated with the available information. However, by using Lenma 2'5'

(3.10) can be transformed to a form which uses a subset of the GGùIS plane

rotations and elernents of ç.iJrlat can be easily calculated fron known

quantities.

L.
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Doing this, we ter tøUtzr_r, tlO.,t!-l be the plane rotations

that nake,rp,f. Applying Lemma 2.5' the first transfornation in (3'10)

can be written

k2
TT c('þr) lT
i:l " ¿:k

c( þ¿) (n-
L'7a

t'x-l

T_, <. L)

=, { Go"øul

2

TI
¿=k

c(b ¿)

(n-1) t

T k

-llQn,t,ill'

(3. 1la)

(3.lrb)

where { fõU,"OUl denotes the product of alL the plane lotations fron

e6k) to c(þk).

Now, tet {60}2n^r, {"e¿}ï-1 be the plane rotations that nake

up{. Again applying Lemma 2.5, thé last transformation in (3.10) can

be written
L'7a

(n-l)
T."_K k

TT G(6

ok t= -un_kll g*,k+L:nll = 'un-

(n-1)
'k

T
:krk - un-k gtt'Ltk

<. ) ,
1, *k

0
0

where

As in (3.11a), $Ie rewrite this transformation as

L'7a

{ têo,"ou)

!-Lrk,k - on-k

ok

0

Tqnrltk

+

0

where {{6O,"OO) denotes the product of all the plane lotations fronC(6p)

to G'('o1r).

'lj
ùþ

If.

ll

fr't

''

r
1,

I
rl

I

I
I

I

I

i

t,
i

I

I

I



Thetransfornations(3.11)canbewrittencontpactlyas
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T
:k,k-on-k %r,1 ,k

¡
ri,

Þ*

I

,t

{

I
i

!

I
I,

kr.

n^7
k"!

ruk
plane

rotations

sT rõu,"ou)

add o.
K

0["'u J (-un-k 4,r,ooo't )

_>
)

_K

(n-1)r.._K

0lr'bt )
(o

plane
rotations (3.t2)

ry
s-

The transformations in (3.12) again constitute a Iecursion for

the colunns of ,(n'1) and -R, but only {Qrí.,60'hO'60'"o',}Urkare

required, rather than all of the GGMS plane rotations as needed by (3'10)'

This subset of the {Qn¿, 6¿, \¿, 6i,'oO} is easily calculated from knov¡n

quantities. This is most convenientiy done by presenting FT01' and proving

the relevant foilnulae.

3.4 FTO1 - The Algorithm

The algorithn in outline is, as rÁIe have seen:

1. rnitializ e L. l, t!7't' , "Ö1,'Örand ør¿' (Note - there is no ô, ana ôr)

2. For k+2 to n do

Calculate fr*, õ¿, 6O, ðU and QnTrfrom known quantities'

Catcutate L7, anð, 

"(i-t' 
using the recursion (3.12) {end of outline}'

I

2.L

2.2



r92

The algorithm in detail is presented and proved in Theorem 3 ' 1 '

Theoren 3.1 Let I be an nxn Toeplitz matrix, and let Q orthogonal and

.R upper triangular such that T:QR' Then R nay be calculated

¡n O(n2) operationsby the following algorithrn, where all

intermediate quantities (except o O:4l1t,n,rll, õU:41 LL,r,lll )

are as defined in the foregoing:

A1gorithm 3.1 - FTOI (Prograruned on p.A'a8)

{ Initial ization}

r. "Í1-'' 
* ttLt,r-t,ttl

I
I'

n- z
2 <-

1_L LL

3' þ17*tll

4. &1 * o17

2

6. cos

{n is as in eq. (3.5) }

{
1,

:: ll\.n,rllìr

{õ¿ := llqi,n,lll}

r +tnl

o

5

7

I

oz <- i.i.-ri-i-

ði * i"rr/&, ; sin "o r* & ,/it,

QnL*tnl/oll

6z*q;
9 ' v11-*o 11 QnL tnl

Y10. cos 0 * Trr/r(rï-t't sin "0, ttld 2/oL

(n-1)
71_

{Main loop - calculate L. ¡ ana {.ry-tl frorn rn' j-i ^nd t!}-l) t

<-

11. i*Z

{Phase I - calcuLater'. using eq. (3.11a) Ì
J

lt'¡r¡T- , .<'I
-t:J,J | (n

lLt,
t

I

L2.l



L2.2 íf ifu do {calculate and apPlv G(6i)}

iir* ( u i-r'i, "'t;1-) 
io*r,rt n!!rl)-,

a

JJ
f,..-JJ
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where

12.2.3

L2.2.4

12.3 íf jlz do, {rest of GGMS uPsweeP}

:= ll!¡+1_:n, ril]

cos ô, *b¡r/&¡; sin 6¡ = &¡+t/ô¡

rtt
^.-øt' +2'- 'n^l 32:nrL

for i* j-7 downto 2 do ì'- i+G6¿)L J

{GGMS downsweeP, excludine e(Ol}

t2.2.L

L2.3.L

L2.4

L. j*c(þlL' J

for i+L to j-L do L, r*cf"ø,

tif i/n, calculate and aPPIY G6l\

12.54 if i:rt then n. :+t,: j stop
-¿

j)

sin 4-. +
¿l,i i "ot 

"Ô¡ *12.58 else 12.58.1 oii *
al aJ

-Lû

JJ+

?1:j-7,i

12.58.2 ?.:+
-.J JJ

0

5,
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{Phase rI - calcuration ot y-(}^1)

{calculate Ê apply G(61}

J-J
Qai* (tnj - Ìr'no "¿j)/"jq

using eq. (3.11b) ]

tz"s "or ô, + qnj/d;,' sin 6¡ *õ¡¡tßi

?-
-l:J rJ

tùi 4,r,j

L2.6

L2.7

Lz.s 7! <-
:i

t2.L0 j

{Rest of GGMS uPsweeP}

Lz.Lr if ilz do

L2.LL.L

7! . * G(ê;)
-al .l

7!

,¿ 2+ ?'.
.J

øl
-!:J--trJ

(n-7)
-JJ

-t .õ. -nJ J+J

,l .J +1ri

0

for i* j-7 downto 2 do T i*G(olT j

{GGInls downsweep, excludine ef"o | }

I2,L2 fot i<-Í to i-1 doti*cñU)T,

tCalculate and apply G('ol j

rz.rs "|lt' * ,. cos 'or*ïj¡/r!l-t' , sin'0, *iJ*r,¡t"[i-t't

T2.L4 o(1-1)
.l

+-

0
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12.Is ¡ <- i+1

L2.16 Go to 12.1

{gnd of nain looP}

The proof for each step of algorithm 3.1 is indicated in the table below'

Step Proof

I o(r7-t ) :uL!1-1 ) t = ¡ n(n-l 
)L,n-t,tll : ll L1,n-L,tll .

Sinilar to 1.

Defined in eq. (3.5)

Definition - See comnent on steP 4'

Use the definition òO := ll!4,n,lll.

Fron Lemna 2.I.

Equate (n,1) element on either sicle of ?=4Ã

Use õO := llg.n,rll (see comment)

Defined in eq. (3.8).

If GGMS is applied to ã, we get by step 3, algorithn 2'l:

ã'o : ;2 (3.13a)
'1L - '11

I ao not nodifY row 1.

(3.13b)

= llVz,n,1 õZtil using Lernma 2.2 and the

definiti.on for õ¿ .

Thenstepl0followsif(5.13a)and(3.13b)aresubstituted

in step 4. 1, Algorithn 2. I .

j is the row counter.

2

3

4.

5

6

7

I

9

10

= 71-L because G(6n-l '. . ',G6

i,,ígAlso

11



Step

L2.L

12.2.L

L2.2 "2

t2.2.3

L2.2.4, L2.3,

L2.5A, 12 . 58. I
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Proof

Defined in eq. (3.5)

By eq,. (3.5) , !-Z:n,l ,(n-L)'Lr.n,7 r' but Tn-l = n(n-l)ftfu-1),

so4

substituting in B
(n-1)T ;,:2.-2:n,L -

Use the definition & j*, :: ll\+1rn,J.ll.

Fron Lemna 2.

These steps constitute the prenultiplication of |",_J
k 2

by G(þTI
¿-j

), hence by eq. (3.11a) the

= p(n-l)'T 
", to l,nmay be obtained by back-

G( þ¿)]T
r--l

t ís r.t
AJ

outpu

l2. sB. I

12.6

12.7

12.8

12.9, 12.r0,
t2.rL, 12.12,

and 12.I4

. ¿\t
The output of step L2-4 ís 4,;'. Substituting this in

step 4.1, algorithn 2.L yields 12-58.1.

Equate (n,i ) element on either side of T : QÅ'

Definition õ ,.*, t= ll gn, j*, ,nll

Follows fron Lenna 2.2 and the definitiot of I I (et.5.9)

These steps constitute the prenultiplication of the

vector on the right of eq. (3.11b) by

I

TT
r¿

G(si)c{ueo)
J

TT
L=l

hence by (3.11b) the outPut is



Step

T2.L3

Proof

By eq. (2.9), the RHS of steP 12.9 is

of step 13.12 is

-1J-
.J

r97

, so the output1

4- I

TI c(o
¿

TI
r¿

G(oi) -1+
tl

1
7J.-.1
-4 .l

)
1,

IFl

Substituting this in step 4.1, algorithn 2'I yíeIds 12'13'

QED.

3.5 Solution of the System fryL using R onlY.

I can be deconPosed in the forn

T=LW
)

where .t is lower-triangular and il is orthogonal. Then

(3. 14)

(5.1s)

(3. 16)

+

so

TL: b

LWs=b

ry-1
æ : I,/"L -b

It has been shown by Paige [71] that the system (3.15) can be

solved stably+us íng L only by substitut ing l,t : L'lT (obtainable from

3.L4) in (3.ls) , Yielding
ryt -rnæ = TL'L þ

It is easily shown t¡at LT = E, where .R is the output when

FTOI is perforrned on f .

*If the accuracy of -ú is conparable to that obtained using
norrnal orthogonalization techniques, then reLæ:0(VcondT),

rather than 0(veond2r) .
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4. CALCULATION OF BOTH O AND R EXPLICITLY : FTO 2

In this section, we extend FTO I to calculate I explicitly,

as well as R. Some prelirninary results are given in subsection 4'1'

A column recursion fot QT is given in subsection 4.2, and a row

recursion fot qT is given in subsection 4.3. In subsection 4'4, the

row recursion for { it combined l,r¡ith FTg I to give FTo 2, which

calculates the colunns of .R and rows of { G.u. colunns of 4) together'

4.r Prelirninary Results

The notation is as in section 2.2, and the results are

analogous to eqs . (3.6) , (3 . B) and (3 ' 10) '

. ttt

Rewriting (3.5) , ÇT = R

{e'r={h=n using (3.6)

y: þ3n* Q = àÈ ot { = {{

{rr-qrr{,o)) = R - fi.(f"o) =: ã

ÃÍn WF 4-
#al tr - e^^(u"-,0)) = fR = R- aL-

using (3.8)

so

therefore

We also have

so

But
J Drlr

d tr - e-^(o"- ,o) ) : R

or

(4.1)

(4.2)

(4.5)

(4.4)

(4.s)

r - e (uRT.o)
-aI -

AD
Wrt t

and (4.2) and (4.5) * ã = Ñ ot f = {{

o1

For convenience denote

y ,= {, ,(n-1)- nh-l)T

.tV.Í = S-I
JTI = {!

5 i = qr ^nai =ff

then (4.1) and (4.4) become

(4.6a,b)
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Note that these results are analogous to (3.6) and (3.8).

Writing i and ? in (a.6a) and (4.6b) expLicitlYr wê have the transformations

(n-1)
1

GGMS

rotations\
ñ,Jò

GGMS

rotations\
Ã
sf

(4.7)

(4.8)

T.

t
v(n-l) 1v

vv

This is another transformation of the type in (3.2) or (3.10), in which

a matrix wit¡ y(n-l) in the trailing subnatrix is transformed to one

*:,th y(n'l) in the leading subrnatrix ¡n O(nZ) operations. This property

can be used as before to calcul at" y(n^7) çund, as a by-product, Y) in

0fu2) operations. l{e present a column recursíon which can be used only

when all the GGMS rotations have been previously calculated (say by FTO 1),

and a rohr recursion in which onry $. þ., ô . an¿ 'o - ^"" required to

ca:cuLatey¡. ""04:-t). 
The row recursion is required if FTo I is to

be extended to calculate @ explicitly, since not all the GGMS rotations

are available during the execution of FTO 1 '

4.2 The column recursion for Y

Writing out the ith colunn of (4.7) we have

(n-1)u. .
.)0

u. ,OJ
(n-1)

% j-t 0

\--J

-ì-J !L'¡

which is the desired recursion for the columns of y('-1) 
^nd 

y' As

noted before , aLI the GGMS lotations are required, so IrT0 I nust be

run before the recursion (4.8) can be executed. The algorithn is

l.j
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rlt

%I

2

Algorithm 4.1 - Coluntn recursion for Y

T

Define cr o¡i
k=n-7

!1-'i-*

j *z

ol

{Main loop - one pass for each column of Y and i calculated}
.rys. u-. j * s'tL. j

4. StoP if i=rt.

!5. t/-' j *',L j
(n-1)u..OJ * 1!-1:n-1,i

j <- j+L

9. Go to 3.

Proof step I is clear from the L.H. matrix of (4.7), and the nain

loop is sirnply an implenentation of the recursion (4'8)'

QED

4.3 The row recursion for I

The calculations are essentially the sarne as in the column

recursion, but they are re-arranged to calculate -Y and 
'(n-1) 

row-by-row,

and only 6j" \j, ô7 and "0, ut" required to calculate the ith row of these

natrices. Before presenting th lohr-recursion, we need some prelininary

definitions and results-

Preliminaries

consider the plane rotations that convert y to Y in (4.7) .

^.4Y
J
]T

11,0,''',

6

7

8

vf ïr
k:1

Tf G6
2

(4.e)

c(+rt )v
.Jk:rt-L

,!v.

F ,na f .rn be considered to be I after the application of G(þj)

(4. 10)



and G("Q r) resPectivelY.

definitions for ¿î 
^n¿ 

lI

1Y.

The defínition nr f and f are analogous to

. (3)u.
.a
uu.iLn

.J

-r

20r

(4. 11a-c)

(4.r2)

(4. 13)

in the GGN{S algorithn.

Next, define
.(1)
u. 4 ' ù::' ': ifl

1_ and

The significance of the definitions (4.11) is as follor^Is. Consider what

happens to the jth row as the GGMS rotations are applied to i on the

L.H.S. of (4.7). Row j will only be changed ty c(6r)' G(þj-l' c(Ö¡-l

ana G(QI. so ¡11', ¡51' "u t? are the results of the first, seconcl

and thircl changes to row j. The result of the fourth change ,t %.

If we now consider the plane rotations that convert I to I

' define ti , þ , Ltl) , u-t') una f3) in a manner analogous
"J. ' oJ '11 .

to definitions (4.9), (4.10), (4.11a), (4.1lb) and (a.11c) respec'rively'

Define the conpressed rotation rnatrix for ansle ú by

t (tþ) .':

Then the following results nay be easily shown

Lemna 4.1 (i) .(1) u.
.J

: l(þr)
el

cos rþ

-sin {

s in {.,

cos tf

(ii)

.(2)
%+t.

u.

.(3)
%*t.

. (1)
%+t.

= rlb

.(3)
u.

.J.

.(2)
%+t.

J



Lemma 4.2 (i)

(ii)

The recursion

= t(oj) (1)
%*t

(3)
u.

= r(bj) (2)
%+t.

(1)
u.

(2)
%*t.

u.

202

(4. 14)

(4. 1s)

(4. 16)

(4.L7)

(4. 18)

(4. 1e)

(4.20)

(4.21)

(4.22)

u.
L'

(3)
%+t

By re-arranging eqs. (4.12)-(4.15), we obtain a recursion for

,(1) '(2) . ..(3) ".(1) .(2) :. ^-'.'(3)!i;:t.' !-j;i., %., ai;i.' %i't.' !4+t.' ui. ana !4+7 '

Writing the first equation in (4.12) with ,:t-) on the L'H'S',

,::.) = ,ù:t'- %."o' 6r)/''" ôj

Writing the second equation in (4.I2) and both equations in (4'13)

explicitlv: 
,.Ji.l, = -írr. sin ô¿ . ù::.Lcos ô,

41*1r ""\¡
.(3)

A; =U
.J'

cos "o +
a

aJ

ù:t.!, = -rJ:' sin "07 . ù::.). cos b,

Writing the first equation in (4.14) ,fth 4:-). on the L'H'S',

4t.) : Qt? - 
'o- 

cos 6r)/sin ô,

Wriring the second equation in (4.14) and both equations in (4.15)

explicitly:

,:1) : %. sin ê ' . ,:t.). cos ô,

,i = ,:t' "o' ä, - 
':'.!t 

sin'e,

,:t.l = ',::' sin "0, . 
':'.). 

cos "0, (4.23)



Using the definition of Y and i,

4*r. = (o' Ti,l,n-l)
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(4.24)

The set of equations (4.17) ^ (4.24) is fully recursive, thus we have

our desired recursion for the rows of Y and T using 6i, bj, ô, and ð,

on1y. Sone initial.izatlon is required, but we postpone this to the

next subsection in which the row-recursion for I is combined with FTO I

to produce an algorithm which calculates recursively the rolvs of I and

/
the colunns of R.

4.4 Calculation of F and Y in o(nZ ) operations - FTO 2

We sinply present the algorithn and prove the steps involving

the calculation of Y. We do not lepeat the steps which are the same as

in FTo 1, but refer tothen by step number in algoritlÍÎ 2.

Theoren 4.1 A To eplitz natrix I may.be factored in the forrn T:QR, where 4

is orthogonar and.R is upper-triangular, in o(n2) operatíons

by the following algorithn. All notation is as in the

foregoing.

Algor ithn 4.2 - FTO 2 (Prograruned on P.4.54)

{Initiati zation}

I - 10. rnitializ" ,!!-1), orr, ìrr' &r' oi.7, &z' "þr Qn(:uu)'ãz'

V, and'e, as in stePs 1-10 of FTO 1'

1r. {r:-t' * L\,n-t,rlr(r1-t) ; i/-z.*,l'rlT 
1) ) ; i1. +,"Í:-'l 0) ;

.T+U. a

h <--; h:
'11_

{r1' * ,W. - 
"r. 

.os"+r)/'',' iz , /ru.'* -ù-r.sin\, * /rl,)to''0,

Te-
--L

12.

t3. {rl,)* ,lr. - tL1. cos'ol/sin b, ;
(3)

1/-2. * -!/-j. sin "u, * {rl.).o, 'e,



{r,lain toop - calculate z, ¡, t(!^1) , 4¡ and

j *2

{Phase I : ca1c. a.y using eq. (3.11a) , and E. using eqs' (4'16)

- (4. ls) )

(n^1)u.
U-n
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(t
cos 0

]

14.

15.1-15.5 Sarne as steps I2.l-L2.5 of FTO 1, but replacing step l2'2'l

of FTO I by
(n-7)

15.8

{Calculation of

15.19

u."J.

oj7* Q-t,
L

Lz;nr1

.(3)u.u

.(2)
Ai+t.

(s)
u.

(2)
Hi+t,

{Calculation of y. ¡}

rs.6 L *(o,a:';l))'a-J.

1s.7 ù::-).- ,i,'r:'^ ,0, cos îr)/s',' 0j t ù:'.).* ^ai.sin ô, .L::.lr."o' ô¡

u.

.(3)
%*t.

<_ r {"+r)

(3)
15.9 If j=n., set u :ury|. *n. and stop

{Phase II - calc. t-!T-tl using eq.(5.11b) ""u ú:-t) ,rring eqs. (4 .20)-(4.23)\

{catculation of ,!".-1) ¡
.l

15.10 -
15.18

Sarne as steps I2.6-L2.14 of FTO 1, but replacing step 12.6 of

FTO 1 by

Qr¡ <- a ¡n

(n-7)
'tl . Ì

,Jt-) *,r::.'- %. ..os ôr)/sin ô, t 4Í.): -r-i. sin 0 +
%+

)
L.j ¿

(3)
l!-¡+1.

* t("oj)15.20
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L5.27
(n-1)u. <-u.44 ,1:n-1"

J

Proof

Step.

1- 10

11 (i)

11(ii.),(iii),(v)

11 (iv)

12 (i)

12(ír)

Ls.22 i * i+l

15.23 Go to 15.1 {gnd of nain looP}

Proof

Proved in FTO I

Equate column 1 on either side of Tn-r: Y
(n-1)T 

^(n-1)
Definitions - eq. (4.5)

Equate column I on either sid.e of f = f n

consider the effect of the GGMS rotations on row I
in the first operation of (a.7) . Row 1 is only
changed Vy C("01, so

?!- t.= h. ios lr * {rt)sit ôr + step 12(i)

Because there is no G(þ1) ¡r!-L?=-!l-t. sin ä, +

.(1) ,

iirl.' cos 'e' bY Lemma 4'r'

L3 Proof is analogous to that for step 12 '

Row and column counter.

iiSi"tn å"ulî?" I i' "i' ? ;: ti: !l\ " i'41'l'' z'''-' ro 1 I orvs

Definition (eq. (a.5))

This is the recursion expressed by eqs. (4.16)-(4.23).

Definition (eq. (4.5)) .

I4

r5.1-15.5

L5. 6

L5.7-r5.20

t5.21
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4.5 Solution of Tæ = b using Q and R

If

then

5. CONCLUSION

Algorithns have been presented which calculate (i) F only

(ii) both Q and.R, where the orthogonal decomposition of a Toeplitz

natrixTisT:SR.ThemethodsarebasedonanalgorithmbyGill'Golub'

Murray andsaunders, which triangularizes a matrix of the form (upper-

triangular+rank-1) using plane rotations, and the shift-invariance

property of ? is used to generate an algorithm requitingOfuZ) op4'tations'

The actual operations counts are for an order-n natrix: (19!n2+0(n)

operations to calculate .R only (ii) ZSn2+0(n) operations to calculate

R and 8. In the next chapter, anothel algorithn is presented which

requires onty 7tn2+0fu) and 1-9n2 operations in cases (i) and (ii)

respectively, but is logically more complex. It will also be shot*n

how to use rnodified or tfastt plane rotations to approxinately halve

all of those oPeration counts.

ùt FroZ can be usÊd to so/ve TT=L in Aþ) stsce, by ûnding
fhe QR deconposition o{ l.T (Le decomposiåion ,f T),

aßL

Rg

L

þ_

t6

a'u

which is easilY solved.
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CHAPTER B

FAST TOEPL ITZ ORTHOGONALIZATION II

1 INTRODUCTTON

in Ofu

In the last chaptel, we described aLgorithms to calculate,
I
") operations, the orthogonal deconposition

T:QR (1.1)

of a Toeplitz natrix.R, where Q was orthogonal and -R was upper-triangular.

Algorithm FTOI calculated R i¡ 9bn2 operations* and algorithm FTO2

calculated both Q and R in 25n.2 operations. In this chapter, we describe

Several extensions to these results. In section 2, we describe an

algorithrn, FTOj, which is related to FT01, but requires only 7sn2

operations to calculate .R. In section 5, we describe an algorithm

FTO4, which is related to FTO2, but requires only 1-9nZ operations to

calculate Q anð. R. In section 4, we indicate how fast Givens transfornts

can be used to reduce the operation counts in FT05 and FTO4 by almost half.

0n1y one of the accelerated algorithms, FTO5 (corresponding to FT05) is

given in detail, but the other, is easily generated by adding suitable

initialization and housekeeping to the fast recursions.

The accelerated routines ar:e logically nore conplex than the

original routines because of the need to keep track of scaling factors.

In section 5, we describe some extensions to the work on

orthogonalization of rectangular Toeplitz matrices, solution of the

Toeplitz least-squares problem and orthogonalization of block Toeplitz

natrices.

*As in previous chapters, we count only nultiplications and divisions.
The lower-order terms are omitted in the operation counts.
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The algorithns described in the following onty apply w-hen 7

is nonsùngu1.ar. The algorithns have been exter-rded to cater for sone

singular cases, but this work is not yet conplete and lvill not be presented

here

2 FAST TOEPLITZ ORTHOGONALIZATION VERSToN 3 (FT03)

In this section we describe an algorithrn which calculates Ã

in 7ân2 operations, conpared to g2n2 operations for FTOI. The new

algorithm FT05, is Iogically nore complex than FT01, but the derivation

is analogous.

2.I Outline of the Algorithn

Recall from section 5.1 of the last chapter, eca.(3.2)' that

for T Toeplitz rve could perform the following transofrnat'ions

I

ù-

I

I
{

I
i
I'

i

I

( 2n-3 )
GGMS (n-l)

R

R
(n-7) z,otations c notati,ons

(2.r)

,n(n-l)

orthogonal), C ís a rank-I matrix and the GGMS rotations are the rotations

used in the Gil1-Golub-Murray-SauncleIs olthogonal-factor update algorithn

[32). The GGMS algorithrn was described in detail in the last chapter'

æ t---æ ( 2n-3 )
GGMS adåæ

æ

û

where *h-L) is the upper-triangular factor in Tn-1- = q(n-l) 
^(n-1)
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There is a ¡nore efficient alternative ta (2,1) which can be

æ l

repLaee R1:n-L,
(n-1)

Intserse

I

¡

{
lt,
li

It
I

!

I

I

(n-L)

^(n-1)
R

Last z,ou t tz,ansforrns

Inuerse

RT
v5 æ

æ

(2.3)

ú->-&

(2.2)

where 'inverse tran-sforms are related to Givens rotations and have the

sane operation counts. They will be defined in the next sub-section.

Eq. (2.2) requires 3n + 0(L) transforms (GGMS orinverse) compared to

4n + 0(1) transforms for 2.I, so the former procedure requires 25% fewet

operations than the latter. Here, as for FT01, we can get a recursion

for the columns'or r(n-l) 
"nd 

(as a by-product) .R by writing out the kth

column of (2.2)

ü

-(n-1)'-.k-L

GGMS
!1:n-L,k

1)n^k
! k transforrnsrotations

The recursion suggested by (2.3) is:

I . Initial ize r¿.
1

. (n-1)
arl.C1 T. --_I

2. k <- 2

{Main loop}

3. Convert

4

5

(*l
lry^1, i 

t" 
='u 

bY GGMS rotations

l^ K-t )

Stop if k<a

Replace rnU(=0) with ur_O.

6

.t
I
I
rt

È*



7, k<k1,7

8. Go to 3.

Renarks:

., ", Prelininary Results

In this subsection,. we derive a nethod for converting

2L0

step 3 is- performed exactLy as in FT01" The detaj.ls of

step 5 will be given in the next subsection. The recursion

(2.s) calculates .R and o(n-l) w1't;,- zso,o fewer transforms

than are needed bY FT01-

.l

,{

F.

I
t'

t't
I

I
t,

I

I

i

,1

R1:n-L'
to a matrix with ,fu-l) as its leading subrnatrix, as required

HI
1) t,

in the second oþeration in (2.2). We proceed by first describing a nethod

to convert the natrix ft .'= to -R by plane rotations.

{le then re-arrange this nethod so that given R and !n.=({r rt) , we can

I

calculate the rest of .R.

Cal'culation of .R fron -R.

Define, as in the last chaPter,

a
h-l)

õ

0

7OT

(2.4)
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Because ? is Toeplitz, it may be partitioned in the following two ways:

T/t- I
Ru

T
v

m-. (2.s)

t

vt Tn-l

I

Then

RT
't)

R
(n-1)

O(n-L)rr!

t

0--ñññrF

\
-)æF-Ën\G/1 \

{r = R

-- ro$, ? ;

(2.6)

ñ n"t the form , and nay be converted to upper-triangular

form by applying n-L plane rotations which successively elimirlalte n-l

elenents of the bottom row from left to right. To see this, suppose

after the ({JJth plane rotation, we have the natTixã(i-J) which has

the forn

*l
.l
t

ß<)
fiG^1)

\.\0-^^0æ---'ff
I

(irÐ element

then the (irn) elenent can be elininated by applying a suitable lotation

in the (í,d plane. The comPlete Plocess ].s:

Algorithn 2.1

For rl <- f to n-7 do'.

¡(o)*¡I

2

2.I pi +r ;lî-t' 
^ 

¿ì eino . *;[i-1) to o+ ,L1,
7 ; coeÙ.+

(2.7a-c)
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2,2
tlt)n?.

;(¿-.1.)
'?:12 \

-(¿^1)?'-Tl.+

cosTi sônï¿

-s¿no cos0i '1.

c2. 8)

;(¿)
-/1.

5. n * F(n^t)

Denote G(0 ) as the ith rotation natrix. Then, by algorithn
't

2.I o

rnN qt ni!
n = {R, where # j-- f creul ,

L

q

where 1T ¿,-. denotes ^4- A- n ... A- for any set of natrices -40.
.t | --,t, q q_l pry

this notation in Chapter 7.

(2.9a-c)

We used

The following results, which can be easily shown fron Algorithn

2.I, wiII be required later:

(p)
Ti,.'=V¿., 1-<i<n-1,0<p.i (2.10a)

!ß':f0.,L<¿3n-1,i<P<n-7 (2'1ob)

Calculation of .R l:n-1.
æ

from ,? and :r-n.

weproceedby re-arranging the operations in Algorithn 2.1.

We use an inducrive argunent. Suppose IO. ""dVt:-l) ,t" known. Then,

we can calculate 7+.,ll¿.1 and 0¿ as follotvs. It is clear that in (2.7a),

p¿-¿i, and by (2.10a) and (2.10b) ;Íi^t'ãoo rnai[f,)="0u, so (2.7) can

be re-arranged to give

; seeo; = o¿¿/o¿.1; tano i = "{"i-'' ñoo (2.1ra-c)'t.-
T

1,1,,L'1,

Also from (2.Loa) and (2.10b) , Vl:t' :7U. 
^"uVt? = !¿., so (2.8) can

be rearranged to give



.1

I
ü

h

)
i

t't
''I

I
1,

t
rt

I
l-l

ì1

I

*The orthogonal decomposition of an arbitrary matrix using pLane

rotations and/or reflections is stable even for singular matrices'

The present algorithn nay be unstable because the functions 8ee0,

and tanT are unbounded. However, it can be shown t1rrat eee1¿,

and tan|O are bounded by ÄTll4lln-ll) condln-r' The algorithn

can be run on an augmented matrix, so that seel,, and tanlU ate

bounded by lll Tn*lll0lrll) condT. In other words, seeï. and tan1u

are large only if ? is ill-conditioned'
r.ì

tú
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!.
F'Lr

çec1¿ ^tln1i
¡

Þ*

c2,L2)
Í(í.)

nr -tøn8 secS
v 4 I

{
f
,i

!

I
i

I

I

I

Eqs.

and

(2.IL) and (2.L2) are the desired relation for calculating gi' !í,.

Vt:' fron !¿. ""u\t:"') r'd fron the basis or a recursion for

calculatins .R-'Lb "1:n^1' from.R and rn.. We call the transformation an

*
inverse transform, since it effectively revelses the effect of (2.8).

The complete recursion is:

Algorithn 2. 2 - Conversion of .R to F by Inverse Transforms

See facing
Poge

I 7(0) *
-n. lyr',tl (2.r3)

/r (2.I|a-c)

(2. 1s)

2. For í <-l to ,n^L daz

2.1 T..
1'1,

2
1,1, n1,

¿
5

1_ seeo. = oí¿ñi¿; tano, =;ti'''
1,'.1,

+'

2.2

,
Ä,

# I

RJ.:n-J.'

'ì

t,)

Denote H(ei) as the zlth inverse transform matrix. Then, by

algorithm 2.2, and noting tnat ïh'1) = !n.

L:n-1-.R

T-n

n
where 7: H(en^l)H(on^ì...H(ol =; ff H(o¿)

r!

(2.16)

S RT'Ð, t

Now, recall from the previous Chapter that the natrix on the left of (2.2)

1S

t Tu
I

R

Rq
(n^1)T

u
(n-L)

(2.r7)



and that
!7!
,T'¡1 = flr

where ,5t =

a R

214

ô
G(q

ll
J is the pxoduct of Givens

n-.1

IT
lr:-1

,2
G&".) T? ¿ãn-j.

(2. 1Ba,b)rotations. '

Rewriting (2,2) using (2.17), (2.18) and (2.L6) we get'

t GGMS

rotations
R7:n-1-

_>

Tu

(n-l)1)r
R

S' --ffr-^l-
ü 5D

(n-1)
n(n-L)rua

First k

ínuerse tnansf.
c

h-
u

R

R

(2.rs)
T

YLyL

The operations in (2.19) are basic to FT03.

2.3 FTOS - The Main Recursion

In section 2.L, we saw that writing out the kth colunn of (2.2)

yielded a recursion for the colunns of ,(n-1). (2.19) is a detailed

version of (2.2), so writing out the kth colunn of (2.19), we have

forl-<k<n

( 1_)n-
k

0

uk-7

-(n-7 )
-'K-L

GGMS

votati,ons
_--_>

{

!

-.K

k

?

't)

1 :n^7,

fl=k'

!.t< (2.20)

Notice in [2.20) we use only th" fitst k inverse transforms

k TT¡>

rl
H(e ¿)

(2.2L)
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since i.t is clear that the Ia.st n - J - k transforns have no further

effect on column k. Fotlowing chapter 7, (eq. 3 .I2), we can rewrite the

first transformation in (2.20), yielding

uk-1

(n-1)
!.k-1

pLane
rotatíons

{ r+o,"ool

!7:n-L,k

T.
-.K

n-1
7¿! )

Ð n-k

(Note - there is no $r).

fírst k
,1.k<n (2.22)

Lnuevse
transf. 0

,Sk
where { f +7r,"ø71 is defined as in eq' (7'3'11b) '

The transformations (2.22) constitute a TecuTsion for the colunns of

o(n^l) and Ã, and only {b¿, +i., ui}i=k are required at step k' and these

can easily be calculated from known quantities. This is most conveniently

donebypresentingFTOS,andprovingtherelevantformulae.

2.4 FTOS - The Algorithm

The algorith:n (in outline) is:
(n-L) ",1. Initialize!.7' !:L 'qj.

2. Initializ" 01.

3. For k<-2 to n do

3.1 Calculate ô¿ ana "O¿ ftoln known quantities'

3.2 Calculate I.i. using the first part of (2'22)'

3.3 Calculate f(,f,'l)"ting the rest of (2'22)

3.4 Calculate 0O frorn known quantities'

The algorithn in detail is presented and proved in Theorem 2 'I ' Note

that the Steps corresponding to steps 1, 3.1 and 3.2 of the outline a1'e

exactly the same as in FTO1, and in fact are FTO1 steps 1-6 and I2'L-12'4
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Note also that we use i instead of k as the colurnn point"t.

Theorem 2. L Let T be an nxn Toeplitz natrix and let Q orthogonal

and fi upper-triangular such that T=QR.. Then.R may be calculated, in O(nZ)

operations by the following algorithn;

Algor ithn 2.5 - FTO3 (Programmed on p'A"72)

{Initialization - steps 1-6 are the same as in FT01}

(n^1)
L1

+' ll!t,n-l,lll 
z1. ?

2
(n-1) 2
LL

+t 2
T nL

T <- t
LL LL

o1- * o1L

6. cos 1/öt i sin Þ, <. ör/Û,

Í1-t" tano, * un-r/o[!-l)

{Main loop - calculate n., and r-'J fromr , n ãTtd?
-. 

a- I

8' j*z
{Phase I - calculate !., using first transformation of (2.22). Steps

are same as for: FT01, Phase I]

n'1L

9.1 ú
-t.¡ls¡l

9.2

J:J-JrJ-1

<-

3

4

&r* LL- 7L5

\t*þt

7. sec1, <- rt /ï,
(n^1)
¿

(n-l)
.j-L ]

<-

L

'lj
(n-1)

if i/n do {calculate and apply G(ii)}
al

þ;t * (r;-, ^'1'r"'r:;'-) þi*r,rtt"[!ì1,)^,
JJ J-I í;

9.2.7

where ?
.-,9 +'- 'n^i- !z:n,l
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9.2,3

9.2.4 7.
.J

+ G(þ
'lu

T
4
.J

.3 if ilz do {rest of GGMS uPsweeP}

9.3.1 for i<-i - f dot^t-q 2 do r.

9.6

<-

I .2.2

{Calculate and aPPIY H(ek)}

"o"$..- 
þj/Ü . ; sinO, * ijnr/öi

iin, u

)

9

{cctnts d'ownsrveep, excludine G( Q r) }

g.4 for i<-f to i-l do 'z'-., * G(Þ

{it ¡7n, calculate ancl apply G("þj)}

9.54 if i:n, lhen !. j * l.¡ t stoP

9.5B else 9. 58. t oii * þt¡¡ * þ3*r,, ; "o, 
"ør*

r¡ì . Y. o¡llri_.
fi; sín S¡*uo., ''jj " -Jl

T.
-J:J-JrJ

lt.¡

9. s8.2

(n-7)
.J

{Phase II - calculation of r using rest of (2.22)\

;( 0)
'nj

r .<-
-. '1u ?..

JJ

L

{First J':-f inverse transf . H(a | ' . 
. . ,H(e j-l }

(n-l)
n
'l'l

9.7 for i<-l to i-1 I
see0 -tan0

1, 1,J

;(í.-L)'ni

1,

9.8
(n-L)

?..
JJ

<. o2. . _ V( i.-1) 2

JJW

-(ì.),,J ^tana. sec0.

(i _1)

nj
. (n-L)

/r...44
.) .l

{End of Main Loop}

; seco .*o../o(.1^1); tano-.< i
J JJ JJ
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Proof ¡ Steps 1.,6 and 9,1-9,5 ale the sanìe a9 in FT01 and were

proved there. Step 7 foLlows by putting (2,L2) and the

definition of ñ into (2.1.3b,c). Step 9.6 folLows fron

(2.L2), steps 9"7, 9..8a carry out the application of

{iJ re to l:n^frJ so are true by the last Part
1,

n-J

of (2.2L). Steps 9.8b,c follow fron (2.13b,c) and the

defintion of .R.

3. CALCULATION 0F BOTH Ç AND R EXPLICITLY: FT04

In this section, we extend FToS to calculate @ explicitly, as

well as R. Sorne prelininary results are given in subsection 3.1. Acolumnre-

cursion for{ is given insubsect ion 3.2, and a roüI recursion for Ç?is

given in subsection 3.4 In subsection 5.5, the row recursion for 8T i,

conbined with FTOS to give FT04, which calculates the columns of l? and

tF

rows of d (i.e. colunns of Q) together. It will be seen that the

recursions have two phases, one involving GGMS rotations and the other

involving inverse rotations, introduced in the last section. The phase

involving GGMS rotations is exactly the sarre as for FT02.

3.1 Preliminary Results

As in Chapter 6, define

y t={ (n^1) (n-1)I

,jtL

QED

v
{

a

1

0

5 v ._n.- q t
(n^1)T



q

and

$le showed in ChaPter 7 that

g .2. 18) .

Now we rewrite (1.1)

and from (2.6)

(n-1)T

= 8",

a T

T=Qß

r =ãñ, which with (2.9) Yields

0

1_

i

2r9

(3. 1)

(3.2)

(5.5)

(3.4)

I=S v

where ,fl i, the product of GGMS rotations used in FTOI, and defined in

y=QSR

If ? is nonsingular and o¿i , 0 (as was the case in FTO1-FTo3),

the deconposition I=QR is unique, so

eqs.(3.3) and (3.4) +Q=QS + !=
¡ft-lv (3.s)

are uniquewhen ? has rank p < n, then Rp+lrn.:0 ,od Rlrp. and 8.1:p

if .R has the following forn,where i (i) is the index of the first non-zero

element of !i. :

ri,¡ ti) ' ot 1 <i <P

J(Ð > i(¿-1), 2<ísP

(This forn is related to the row echelon forn in which case the first

equation above is replaced by oiri (¿) = 7) '

The procedure described below has been nodifie<l to cater for

some cases of singular T. üle conjecture that it can be generalized to

cater for anY ?.

Recall fron section 2 that 'R = ffi Q'Ð''



Eq. (2.9) could be rearranged to yield

R.
J i7?.-J\

R j ¡r-.L

T

where ^9, the product of inverse transforms, is as ín (2.16).

Sinilarly, (3.5) nay be re-arranged to yield

T7:n-L' v-J:N-J.

vL:n-1.

le

Eqs. (3.2) and (5.6) may be written together as

7
GGMS

rotations
L:n^1,' v

I,

-n
+
-n

ur-TI.

T
e-nu

220

(5.6)

uzn.

.9

ry
0-

v0

(n-L )v

T
e-n

LnDe?8e
transf.

I
(n-L ) .->

.ry
S- U-nr7:n-L aftn

(3.7)

This is another transfornation of the type (2.L9), in which a matrix

,itt y(n-l) as the trailing submatrix is transforned to one witn y(n-l)

as the leading subnatrix in 0(n2) operations. This property can be used

to calcul ate y(n-l'/ ç"r,a, as a by-product, y) in o(n2) operations. We

present a colunn recursion which can be used only when all of the GGMS

rotations and inverse rotations have previously been calculated and saved

(say, by FTO3), and a row-recursion in which onty $. , "ö, 
^nð 

0 . are required

s
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to ca1cu1 ate y., una ylnã) , The IoW recursion is ¡equi.red if FT03 is
Fd' FV'

to be extended to calcul ate Q explicitLy, Si.nce not alJ. of the GGMS

rotations are availabLe during the execution of FT03.

3.2 The Colunn Recursion for I

lrrriting out the ;ith colunn of (3.7), we have

0 GGW
rotat'Lons

u g Jfu:l)
. j^L

(n-1)

'j
u

(5.8)u
u
" nnj

\-/'J

J

The colunn recursion for T can be written dovm imnediately from (3.8).

Note that FT03 must have been previously run to supply the GGMS and

invetse transfo:rns.

Alsorithn 3.1 - Colunn Recursion for T

2- j*l
(n^L) calculated]

ll:n-1,i

v

U t+9tI

{Main loop - one Pass for each column of.T and Y

.rtt.s. !.j * *u.i

4. StoP if i:n
1.)

s<-5
0

6 u.¡+l *

7. j <- i + 1

(n-l)
.;i

8. Go to 3.
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3..3 The Row Recursion for Í :

L

Þ. Eq, (3.7) shows that there are two nain phases in the Y

recursions in the GGMS rotations and the inverse transforns. Phase I

of the row recursion is the same as phase I of the row recursion of

Chapter 7 - eqs. (7.4.16) ^(7 ^4.19), We rewrite these equations here,

and note tl'a' ù5:) ^na 
yl7.) nust be initialized as in Chapter 7.

,:1-). = tu|? - y-¡ . oo"îr) /"tnî, (3'el

I

I
{

,l

l.

I'

I

i

í (2)
u:j+1.

u.

. (3)
U_¡+1.

(3)

-!.¡. sin6, .'r-::.1. cos6, (3. 1o)

(3. 11)

(3.r2)

(3. 14)

(3 . 1s)

- (2)
a-j*t.u. cosþ + sínþj j

. (3)
-u."-J.

sínþj . ù-:'.)."o"i,

phase II of the row recursion may be written down directly fron

the inverse transforns without any re-arrangement:

-(0) m

u - -=0' (5.13)
!n, J:n-f

(n-1)u: see0 -tanj.
Jj

-(i )
U-uL:n-1 -tanj,J sec0 n

e.l

and from the definition ,-¡*r. = (0, V¡

Eqs.

for I

a-j , J.: n-J-

:.( j-1)
a-n'L:n^1

(n-1)
)

(3.9) ^ (3,12), (5.14) and (3.15) constitute the desired row recursion

.îY.. using õj, \j and 0. only, Soure initia¡ization is required, but this is
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postponed to the next subsection in which ttre row-Iecursion for I is

conbined v\,,ith FTO3 to give an algorithn which calculates recursively the

rows of ,y and columns of I with 75eo of the transforms required in FT02.

I

I

Þ--

I

,t

{

)

I

)

I

I

3,4 Calculati on of .R and I in 1.9n o erat ions FTO4

FTO4 is plesented in Theorem 3,1. All the steps involving Ã

have been proved in FTOS, all the steps involving Phase I of the

calculationofYhavebeenprovedj.nFTo2'andthestepsinvolvingPhasell

of the calculation of Y follow directly from (3.15) and (3'14), hence

no proof is necessary. For brevity, the steps involving .R which are

the same as in FTO3 have not been repeated, but referenced by their FT03

step nunbers.

Theorem 5.1 A nonsingular* Toeplitz matrix T may be factored in the

fotm T:QR, whele Ç is orthogonal and .R is upper-triangular, in 19n

operations by the following algorithm:

2

orithnr 3.2 - FTO4 (Prograruned on p.4.78)

+r

âl;

Íú;1,' ,

Alg

{lnitiatizatíon} .

r - 7. rnitiatir" o(r!-1), oL7, ii.i-' Ûlr

of FT03.

{same as FT02, steP 11}

and 0, as in steps 1'-76 2, ø1

I y.t:-')* !'r,n-r,r/otl-'), ur.* (g,ut:-') ); a.t.* lr.t/otf !t.:n-r

9

10.

ù-t:' * ( 
u t . -u- t . e o s"Q, ) / s inlþ t ; ULL 

) * -U, . " 
t'.rio 

r+v^(r1 
) 

" 
o r'r ,

step 12)

i-l!'r,,-, -- {t nl,l)'"-t : -u-1,i.:n-1 tan 0,

{sane as FTO2,

{eqs. (5.13, 5.14) }

(n-L ) U: and y tu-l)
{Main loop - calculatet !,j' !

11. i <-2

, ]

*FTO4 has been nodified to cater for some singular cases' We conjecture
that it can be nodified to handle any T.
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{Phase I ,. Çalculate r,, usi.n8 eq.(? \22a)., ând Y.7.. usitg eqs..C3.9).C3,12)}

{CatcuLation of :r.y}

12,¡-12,5 Same as steps 9.1 to 9,5 of FT05r but replacing stePs 9.2.I

of Fros ay b¡t*y.(Å;:) !2,r,, anð. adding "a-n.* ír(f;)" o"tore the

ttstoP!r ilr 9'54-

{Calcirlatian of A,¡}

12,6 ù, * (0, y\";1) I
-t/r -ú-t'

tz.7 ,5:.r.*e5! - u¡.oo"îr)/,i"Art y;|.):-u¡. sin6, . ùt:.lt.eos6¡

r2.s uj.i!:3.) "os"+, 
+ ù-:t-).sín\¡; ù-:t.) * -y!3.)utnþ j * ù^j:-).eosb,

{Phase rr - Calculate t:i-" using (3.22c) 
^na ajn-U using (3'14)}

{Calculation of 'T:T-t) 
}

L2.9-I2,LL Same as steps 9.6-9.8 of FT03.

{Calculation of Ì

L2.T2

L2.L3 i * i+l

L2.14 Go to 12.1 {End of Main LooP}

(nll)u,

,-5T''' * u-¡, 1 : n-1s "',-iÍ,il) -rt*'e ¡ ;

i-ll,'r ,r-, : -ui ,7 ,n-lton| j - l{i,;1)-r"u"', { eq ' (5 ' 14) }

J

,,{

Èi-

It:

t'

{'{
''

II
ï
I

I
I
I

:l

I

I
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4.. THE USE OF FAST GIVENS TRANSFOR}4S

IN TOEPLITZ ORTHOGONALIZATION

In this section, rve review fast Givens transforms (FGTrs).

ïle then incorporate FGTts into FTOSr and describe an algorithm, FT05,

which is alrnost twice as fast as FT05. We indicate how to incorporate

FGTts into FTo4-as rvell, but do not state the resulting algorithm in

detail, as it is quite long, and can be easily generated by adding

suitable initialization and housekeeping steps to the fast recursions'

4.I Rev ierv of Fast Givens Transforms

FGTrs were first introduced by Gentlenan [SO], but Harunarling

t¿s]givesaclearexposition.AsequenceofFGTlscanbeapplied

without square-ïoots until the last step, at which point' n squale-roots

are required to r,ecover. the correctly-scaled result' In addition, each

FGT requires 2n operations, compared to 4n operations and a squale

root fol a norrnal Givens transform. In incorporating FGTrs into

Toeplitz orthogonalization, we aTe unable to avoid the square-root

cotrrputation at each FGT, but we can retain t:ne 2n operation count per

transform

The basic idea of the FGT is as follows. suppose the operand

'o*, rlj urd æ\ ^te, represented in scaled form, i.e. ^t apf, ^na 
d2U-f;

-l '¿

respectively. Applying the rotation 0, lve have [90]

cosï sínj d1

(4. 1)

I

I

rF

-f
qt

æ'-
-2

rT
U-7

T'!zd2-sin1 eosj
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aiui'

d1 cosS d, ain1
T

1tü1
F.¿

-d, stng d, eosl T
U,)

d1 cos0

d eosO ^tan12

L tano td z/arl

ét¡ar) t

di:dfo"', dt=dreosØ

tano {d z/d.r)

,:,

T
!z

where

r
U.t

¡ sây. (4.2a-e)
T

U,)

T
!tL

dþ_r:

¿ons ¡dt¡d r)

G

1
T

Uc

Eq. (4.2) states that to calculate the scaled rows after the lotation 0,

we prernultiPlY the scaled rows bY

( t (tano)/p)
| | , where P := d1/d2 '
l-o 

tano t 
)

then nultiply the scaling factors by eoeT. clearly (4.2) requires only

2n + 0(ù oPerations"

Lf tan\, eosl and the scaling factors are not required explici'tly,

then jn andln may be calculated without sQuare-roots as follows' The

analysis follows Wilkinson t90]. suppose we wish to annihilate

* 2t = d * " 
*',""Iî 

oorir 
r'r' 

'*',""on"I,"0 

2a zt = 0 (4 .s) I

i

I



227

By nanipulating [4.3) and (4.2brc) the folLorving 4ay be shptm;

ãn ,= tønotdz¡'dr) = 43 a2r/rdlarr)

in := -tanet%/a¡ = ^a2¡/uy

dI' - atrtralal¡ t ro?rrt, + a?razrrtt

d;' = o?rr ta?ruzrrt t t otr'r, + a?ruzrrt l

-(n-1)
-. K-l

un-k

[4.4a-d)

Notice only the squaTes of the scaling factors are used in

eqs. (4.4). Eqs. (4.4a-d) constitute the nornal FGT. Thus the

FGT requires no square-roots during the reduction process, but if correct

scaling of the reduced matrix is required n square roots are needed at the end-

In our atgorit¡m , tan¡, eos| and the scaling factors are required explicitly,

so v¡e must use the norrnal Givens method for calculating eosï and sinï,

tlren apply (4.la-e).

4.2 Incorporation of FGTIS into FTOs - Algorithn FT05

The basic recursion of FT05 is eq. (2.22)z

uk-i. !L:n-l,k
rotnt s +

øl
-,K

first k
?

inue?se transf. 0
ê
"k

(n-1)
,k

(4.s)

k?
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[[e ,will develop tlqo pracedures by which the plane rotations atrd inverse

transforms in(4.5) can be done in two instead of the normal four opera-

tions that are normally required. Thes-e procedures will be the basis

fsr FT05.

Consider the first transforrnation in (4,5). Suppose å.t it

represented as

i*2k
uk1

DtP.t, (4,6)

(4.8)

k

äuu

and !,U is rePresented as

dt*

!.k = Dt!.1, (4.7)

Then by (4.2), the plane rotations { f OU'/íOI may be carried 
"out 

by FGTIs

as in procedure 4.L. The superscript notation used in Fk, tl" etc'^is the

same as that used in Chapter 7 (Notational renark, algorithm 2'1 - f"/ it

the result of applying all the transforms up to rotation õOto W.

Procedure 4.1

)(n-1
kv

n:
-.K

"dkk

I

2

3

.î,
'kk
'-k
dkk

<- ükk

<- d7r7, eos Qu
(4.e)

(4. 1o).k
ok+l,k 6ka'un-þou<.



4 For ¿ <k..1 9ownt9, 2 do

L

4,L 0k

^
¿)*ol7,/ä¿u
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(4. I 1)

(4.L2)

(4. 13a,b)

(4.I4a-d)

(4. 1s)

(4. 16)

(4.L7a,b)

ftønq
(ïul *

.i+7

L

'.2
dzk

1

eosþ

^(tan6u)ãr/diÏ1,u

4,2

3

6,2

< i. ; ,oro * Airu , ilru

- *í+7rk

lr)z\b:
.tlåt
okk

¿k
ì
ü..L

ü..
'î.K

k

+

<-

(+u)ak

..0

k*üi.ki dlk

ùik

î
. ,1,

'i+1,

i
¿+L"k

üi+L,k

'; ,iitdi+L,k * ai+J.,k
:'1,

¿ ; d¿t *dit, cos.q¿cosþ4

.0
\i-I

<-
5

6. For i+l to k-L do

L

6.1

rt"ìqoùi*rtàuit
o. lô.) *R "I,

-rtoì+utai't /tou

.L-J-
úík

io

(ø.)
þap

\¿,

.1,

'i+1,k

Y

- -L-,t6.3 d¿k* d¿k cos
.1,d++1,k

* of;r' ,frk' , okk* lå'hl )2
.î,

+(ok+7,7

"oJot 
*oftt /oot<; d*<*olîrt eos$o; 't k*ot y'd*, (4' 18a-e)

It will be shown later (Theorern 4.1) that the scaling factots d¿?rt etc'

are the same in all colurnns, so the ootool and ap('Þ¿l, which depend

only on the ôr, "Q¿ ana the scaling factors, are also the same in all



230

(4.1s)

(4.2o)

(4.2r)

çglunns. Hençe ¡e nê/ \^Irite Þk6i)

The ste.ps'4*1, 4.3r 6.1 ¿nd 6'5, in

calculated, nay therefore be onitted except when í=kn1t i'e' when

a(õò), 4,*, etc. are first calculated for that value of i'

Procedure 4,L nay be replaced by the fo1lowing nore efficient

procedure.

Þrocedure 4.2

I

2

3

4

.î<

'kk*'kk

Ai *d'k 
"o"6k

.i . .Â,'i*l,k*-vkk sinÞU

(tan6o^,r)àf/ào-,

010 )+k-L tanOu-rlãk^/df,
)

L

k
.k:l
'k^7 5 'k-l

.k
ükk

,k
oTrtt *äi 

"o"67r-r, 
afr:'¡*ào-, eos6u-r; * øtôo-r)

'k21ü..
KK

(4.23a-d)

¿ü..
1,K

5. Fot i<-k-Z downto 2 do
7,

+ ø(û¿)
üî+L,

20..
'tK

üi,k

1,^1ù..
Ll2r

1.

't +J ,kü

i+1ui+l,k
(4.24)

6. For i<L to k-2 do
L

ür:+7,

* o(,d.o) (4.25)



,'"k-.2/4"I Kn/
(tqr;+ KJ

.K-J
akI

.li^z
'k^1,k

)

23r

(4.26a-d)

(4.27a,b)

(4.28a,b)

(4.29a,b)

(4.30a,b)

7 ø(tu_r) *

-(tarilu^r)àf:l/àf-l

'k-J.,k

1

'.li-l '.k:d'k * ok

þk*eos

1 eosþk-1'
<- oló

k-1_

k"-i.
kk

)
k"-1

'kk

cos 'QO; ,kk * 
"l¿/4U

.ti-t
d."

K

,k-1-

'kk

8
-t{-t ,ti--okk * ok

dk*

l.ti-l
'kk i okk

..k-1 .2 ..k ,2(z,kk ) *rok*7,¡, ;<-

-k_
okk1 /otk; tan "k ,'

þk * ok+l,\y'o

L = dj/eoso ;

It i.s easy to see that procedure 4.2 requires only 4k+0(L/ operations,

conpared to B&) + 0(1) operations to compute { f øU'"OUli.¿ using Givens

transforms.

Consider the last transformation in (a.5). We first need a fast

inverse transform (F.I.T.) procedure, This can be derived from the fast

Givens procedure (eqs. 4.2b,c,d) by observing that in a F.I .t. dr, U!'

d) and U_[T ,t" required ancl everything else is known. Rearranging (-4 ' 2b-d)

yields

d då = dZ cos1 ;
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(4,31)

lT - ^!I tuno(drld'il * ,1,

Eqs. (4.51) constitute a F.I.T. Applying (4.30) for the first

k-L inverse transforms in (4.5), calculating and appl'ying the last inverse

transform as in FTOS, step 9.7 and assuning that the scaling factors are

the sane in all coLunns (proved in Theorem 4.1), we get Procedure 4'3,

which transforrn= llKto !.U ín 2k+0(1) operations compaled to 4k + 0(L)

operations using inverse transforms

procedure:

Procedure 4.3

mmm

ai : ai - ar, tano (dz/dt)
-l 

F/ 1u

Note that ZtF' : oto'yt:' in this

1 ã|,f;' : u,-u (4.32)

(4.33)

(4.34)

(4 .35a,b)

(4 .36a,b)

(4 .37 a,b)

{First k-l fast inverse transforms}

2. For i <.1- to k-L .do

{CpC2: FIT coefficients, defined in 4.38}

2.1 úik: ,ik - Crf r|nf,ft)

z.z ;ti' : -cz(e¿)uiu *;tir-t)

{Calculate and apply last inverse transforn}

3. ;1f;-tt *fi(k-t) ãø,; îtt,

eos 0:,, <' o 
* ;:f,-') fot t

ãlu' * ã(k-t ) cos 07r; ãu* du/eoseo; -uoo. FkotAk

c/ok) * ãÍo ) /àt)tanlo; cz(ak) * (A,frto-l) )tonoo

2 - (k-1) 27.. - T .KK NK

ity'"urt tan a

(4.38a,b)
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¡.1¡e now.prove that the scaling factors produced when recursion [4.5) is

lnplenented uith FGTts¡ êTe the sarne in all' col-urnns..

1 and d¿k be the scaling factorsTheoren 4.1

of row i when the first transforrnation in (4.2) is irnpLemented by

7

rct ão* ãii, t
ì .-

¿L r.'l'-J
o¿k' o¿k

procedure 4.L, and rúAtf;) ""dãÍl) be the scaling factors of rows i and n

and n when the last recursion in (4.2) is inplemented as in FT03, but. with

fast inverse transforms. Then these scaling factors are the same in

all columns, and are given by the recursion

ärt, o- ! s
-(0) a(0)d..=a-nK n

.- 1 (4 .39a,b)
L

d -fl :: COSþ
1

(4.40)
Lk 7

d1 t: di. cos0 (4 .41)

d

ä¿t : ã¿ d.
1,- J

k: àt

q¿eos
't,

.'t
cI ..

1,K

;1
d,.

'L

(4.42)

(4.43)

(4.44)

(4.4s)

= d..
L

:: tl

'?,- J_

í.k
rL

d
¿í-L zi î

= d¿ t= d¿ oo"Qí,^l

eos$-7.^-Id..
1, L-I



?rf
d¿k = d¡ ì= d.

v

"-(i)a"
NK

,= ã.ti-l) 
"oeao
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[4 ,,46)

(4.47)

(4.48)

"o"6
using (4.43).

't ^l

oçsf {

= ã. ,: do/eose .Ã*4k

ã(1:)n

Proof: By (4.3), d1k: dL = 1 which proves (a'39a) '

The proof of (4.39b) is sinilar.
"^

By (4 .L7a), with i=L' d¿V=diOeos\1 = eos"Ö, using (4'14b) '

This proves (4.40). Fron (4.2), -

lrk = olit ' 'o 
-d'ru : dil = dit, 

"o""e, 
using (4 ' rb)

= di.k 
"oie , 

using (4 '28)

: dl eos"o7 ' using (4'40) ' This proves (4'41) '

We now show. (4.37)^(4.45) by induction on í, with the result

for all colunns k being proved in parallel. Assume now

that A¿-1,k = Ai-J., k=7,. . . 'n.

From (4.5) i¿A= Fí-7,k-l áo d¿k= d,-r,k-7 = d'-, whict.

proves (4.42).
î

From (4.13b) , àIO : ãí,k "o"î¿ = d¿ eosi, using (4.42),

This proves (4.43).

Frorn (4.13a) , àiL' : àoo 
"o"ô

This proves (4.44) .

Fron (4 .r7b), ão;ot : ã.iìt "oiþ¿-t = |tt cosh¿^l using (4.44).

This proves (4.45).

I
_,1

. - - LL.1,-l 1,
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Fron f4.17¿) t

This proves [4,46).

The proof of (4.47),(4.48) is sinilar-

Outline of FT05

Procedures 4.2 and 4.5 fron the basis of a recursion by which

.R and ,(n-1) may be calculated in approxinately half the number of opera-

ti.ons requirecl by FT03. The algorithn is, in outline

1 Initialize "þf ü11, dj_, o i.' 'i-1

For k<-2 to n-l ðo 2,I-2.4, then for k=n do 2.I and 2'2t

2.I Calculate ô¿us in FTO3.

. .i._.1 ,. ,,í"_J y,

diO = dif,- cosqi = dl'* "ooÞ¿usins 
(4,4s).

QED

.7
L,tand

-.acatculate o(6U-1, u,O, dk, ,úrr-r) and 0p "t in procedute 4'2'

Calculate F.I.T. for 0¿r !.t' 
-aU 

^aãf,Ð as in procedure 4'3'

1

2

2.2

2.3 Calculate 0U as in FT03.

2.4

FTO5 - The Algorithn

All of the steps have been previously proved (in FT05) or aÏ.e

trivial to show, except for step 9.2. Step 9.2 is proved

below.

Alsorithm 4.I - Fast To eplitz Ortho gonal ization, Version 5 fFT05)

oz *1

3. r11 * fø1, + tzl+ {recall .;,,at t := t1r}

(Programmed on p.A.Ba)

{ lnit iat ization }

ll!z,n,tll

2. ìr, +ll!j.,n-1,111
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tã+ru ,zlt ; dtu"ouia¡t/rn à, = U àl

5. ü1L * onldl

/on; tanor*rr-7ÆLL

7'. d71* dr/eoso t

8. ûr.7 = itt/dtt

{tntain loop}

g. For k +2 to'n-L do

uk-1

9. r gL,k,k * , är, * dk^l

9l:k-r,k-l

-1-f4

6. cos 0n * i.
J-I

9.2 if k*n do {calcuLate 0¡,}

k-2
dk^7 * ("k-, ^ 

Ìrûí'k^, "ì,)f'k't'k't , where Z ,: 4-1, !z:n,ji

okl * so_r/-d1r-
L

9.3 ök*L* rrl^i\r)t

s,4 anõo* &k*t/þw ; eosöo * bOr/&l,

CaLculate Þ6kJ, a(þk^j), 9.k, dU and '0¿ using procedure 4'2'9.5
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9.6

Proof of step 9 .Z

(n- !orR
-Z! 71,-J

carcurate !.7r, âu'ãlu'and "01 using procedure 4'3'

l{e showed in ChaPter 7, FTO2, that

(n-1).
!z:n,J : tt 

-fg, *hu" e Z := f lzrnrl

7 )

(4 .4s)

(4. so)

(4. s1)

!t

so

o1

JHn-l!z:n-l z, which by (4..7 ) becomes

õn-tîn-t)r!z,n-t = &

-4-l p = 3, where g := õn-i!z,r-l

(4.5r) rnay be solved by back-substitution which is step 9 .2.

Operation Count

The operation count for FTOIA ís 4bn2 + 7fu), conpared to

rtnZ + 0h) for FTo3.

4.3 Incorporation of FGTts into FT04

Recarl that FT04 calculates 4 @nd 8(n-')) ^t
well as I (and rh-7)r. FT03 is essentially FT04 plus a recursion which

calcul.ates.Y r-- { ana r(n'l) ,= q(n'7)f ror"-by-ro*. If we incorporate FGTrs



and FITts into the y, ,(n'1) t""rr"oior,, ancl append the new Ïecursion to

FTOS, lrte ha,ve an algorithm which calculates Ç and.R in approximately

half the number of operations of FT04.

Incorporat íon of FGTts into the first Part of Y-recursion

The ,I-recursion is given in eqs. (5.19)-(3.I2), (3.i4), (5'15) '

Eqs. (5.9) and (3.10) nay be rearranged to giv
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(4.s2)
u!:.1

.(2)
V¡+t.

L)

u.
u

.(u.

-eotþ coseeþ
.l

-cosee6 cotþ
1

-cot6 "o"n.6,.JJ

-.osn"6 cot6

,J

1

We now clerive a rfastr forrn for (4 .52) , in analogy to the vray the FGT

was derived in (4.2). suppos.l¡ Ì¡ q¡.""u ùJ:': ?!'' ?lrt''where

fj and
'f(,1) are scaling factors. Then (4.52) can be written
Jâ

.J

.(1)
!j+t.

. (2)
U_¡+1

1.J1
u

0

0

.^(1)
rj

a.
-.J

.(
a. 1.)

.1
¿

f .co-J tþ¿

a.
¿.J

.(1)
a.

-f .eo
"J

tþ i(.11 "o"u"6,J

-f¡oo"n"ô, |jt)""rî',

1 tsec$r)f(¡t' ,?n

0 i(.1).otg¡ -(see+r)frr'r:'' 1 à(.1)



', ù#lr.*^ y:1).can be represented as ffrlt A:i"
i(2) l (2)
I¡+l g¿+1., wnere

'^u)
r¡+1 =

and

eotþ
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(4.53)

(4. s4)

(4. s6)

fi . q ,^(2) '.(1)eotQjil¡¡t=I¡ j

, (i)
%rt.

, (2)
9jo1.

-1 t"""OrSlfj'' rf, d.
YJ

.(a.
and

-(aee6 )f .rf:''

-rør,:ørtfjÐ /f:'z.] 1

1
1)

. (2)
?¡+t.

Eqs. (4.53) and (4.54) are the desired rfastt forn for (4.52), requiring

2n + 0(1) operations, cornpared to (4.52).

I'Je next write out the fast forn of (3.11) and (3.I2).

rct y!3.) = ,!u't'r1), rnu'. glsj is a scaling factor. Eqs. (3'11) and

(3.12) constitute a Givens transform, so we can write down the

corresponding FGT using @.2)z

t:t.lt = t!'*)""""0¡ (4. ss)

7 r tanlo 
r) f!'.lrrr!t '

. (3)a.

f, = ?5u'ooio¡ ;

d.uJ

'(3)
9-¡+1.

To accelerate (3.14) , we note that they constitute an i'nverse transform with

angle 0. We nay write clown the corlesponding fast inverse transfonn directly

using (4.3\. This, combined with (4.53-4.56), constitute a recursion by

which t}ie fj. and, gr. and therefore the U-¡.(:frø-r.) can be calculated in

approxirnately half the number of operations as in FT04' Combining FTos with

this recursion therefore gives an algorithn that calculates 4 and 'R in

approxir,.rately half the number of operations as FTO4. We do not give the

detailed al.gorithrn here.
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5 TOEPLITZ QRTHQGONALIZATION . SOME EXTENSIONS

hte now describe three extensions to the FTO algorithns, rvhich

hitherto have been used to orthogonalize a square Toeplitz rnatrix. lVe

consider (i) the oïthogonalization of a rectangular Toeplitz natrix,

(ii) the related Toepl-itz least-squares problem., and (iii) orthogonaliza-

tion of block Toeplitz matrices.

5, I Recta.ngu1ar Toeplitz Matrices

The orthogonalízation of a rectangular Toeplitz natrix is

described by the next tv¡o theorems

Theoren 5.1 Let T be a fu1l-rank mxn Toeplítz matrix, m > n- Let

I=QR (s. 1)

where Q l.as n otthogonal columns (of length n) and .R is an nxn vpPet

triangle. Then:

(i) R nay be calculated by applying n cycles of FT01 or FT03

to T*, where ?* is any mxm Toeplitz extension of T,

(ii) Q and -R may be calculated by applyingn cycles of FT02 or FT04

to Ix.

Proof: Let f* = ?x?x. (5.2)

Applying the first n cycles of FT01 or FT03 to T* yields

R!t,t Fron (s.2), Tï:p. = 'I = ?rR!l,k: Q!t:kRÏ:k,t:k

which is a factorization of the forn (5.1), so -R = RÏ:krl,k,

This proves (f). The proof of (ii) is similar. QED.

The nethod can be nodifi-ed to handle some cases where rank

T < n . We conjecture that it can be extended to handle any T.

Remark:
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Theoren 5 2 Let T be an mxn ToepLitz natrix,, Let T ='Ah,
t

¡¡hele Q

,x.rrt) an¿ n ls an''.mxn matrix wíth ìO¡=0, i>j ' þ;

Ci) å alone may be catculated by applying FT01 or FT03 to Tx, a

Toeplitz natrix with ? as its first n col'urnns, and

(ii) þ and A *"y be calcul ateð. by applying FTO2 or FT04 to I'x.

Proof: Let ?* = q*Rx + T : ,*,rrk: 8*R*.7;¿ which has the fonn

I:QÅ',,, so applying FT01 or FTOS to ?* yields the desired

natrix R, and applying FTO2 or FT04 to T* yields Q and R'

QED.

s.2 Solution of the ToeP litz Least Squares Problem

Let T,be an mxn Tectangular Toeplitz matrix with m > n.

The least-squares problen seeks that æ which ninimizes

e=ll¿g-þll ,, (s.4)

where æ has length n and b lnas length nz. one example is the covariance

method of linear pre,Sictive coding. lvlorf et al 167l' has proposed the

efficient solution of the normal equation

fr* : fø (s.s)

by making use of the rclose-to-Toeplitzt structurc of fr. Lee et al'

proposed nethods to ninirnize llell , by vaxious ladder (or lattice)

recursions [58]. The Toeplitz least-squares problem'fnay also be solved

by naking use of .R, or both.R and € as calculated by FTO.

Findine € using F only

Let T = @R where 4 is mxn and R is nxn. Then (5'5) becones

{a'qrr = f ø

+ * = a-ln-Tfb (s.6)
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which enables ø to be calcu,lated in 0(mtt) ÇPerationg' Si.nce (5.6) is

based on the nornal equations [5.5): the condition nurnber of the problem
q

is condoT, whicfi nay cause di'fficulties when cortÅ.T is large. A better

approachr first proposed by Go1.ub [34] for general matrlces j.s described

next.

Finding € using Q and R

Golub l34l shorvs *uhat æ is the solution of

m
¡¡æ = {b

The error teïn may be found by direct calculation, or alternatively,

if I (an orthogonal matrix with 4 as its first n columns) is c-alculated

as in Theorem 5,2, then llell ,= lltn*r,^þll , . (5.8)

(s. 7)

(s.e)

5.3 Block Toeplitz Matrices

The development of the recursion for block Toeplitz natrices

ia analogous to that for scalar Toeplitz rnatrices. Let p be the block-size.

The basic block-operation is performed by applying a sequence of p

Flouseholder transforns, instead of the Givens transform used in the scalar

case. In analogy to eq. (7.3.9) we can show that*

T BLock
GGMS ops

Í
*,
T$

p

(n-1)T
V RC)

m
llt

(n-1)

F^Jfls'

R+R-
s'

(n-1)
ntu^1)RfR

T

ñ

R

BLock
GGIIS ops

R

i
*Block matrices are denoted by script letters, block vectors by underlined
capitals. BR and BRT are block-revèrse and block-revers.e-transpose respect-
ivêry. 9f n.l is the zth block-row of Q.

,i

È

I
t,
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U¡here T, the block.Toeplítz natrix with block'order n and block'si.ze p

is partitioned

T T

T:=
T

?isthee,7)blockofTrQfu,)isthenthblock^rowofQandB'Rdenote

block-reversal. At a typical stage in phase I the block GGMS reduction

of R, we have the form*

T

( 21)

R (kl)

(n^1)
m

tÍ

IJT

can be reduced to upper-triangular fonn by p

UT

V r(n^1)

ik;7

.a

\
0

0

0
hi.;.Lr1)

The matrix
R(tt)

hlt*r.r,

householder transforms, Yielding

D
'.' ( 21)

Rf=
R (k-l,l)
\

T

hlo,
0

0

0
)

*A
6Jt is th.e irj th block-element of A.

.1
i
,t

h*

I

ll
I.
ti
r¿

't

r
1'

!,

I

I

I

I

ri
.ii,
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The basic ccMS blo c.k- exation is pe¡fotmed by applying t-hi.s sequence

of p househoLder transfo4ls.. In Phase II of the bi'ock GGMS algorithn,

a blockupper-Hessenbergnatrix is r-educed to an upper-triangle. This can

be done, in analogy to the scalar case, by n-L GGMS block-operations

starting at the top of the block-diagonal and working to the bottom'

Fronr (3.9), the basic recursion can be developed, in analogy

to (7 .3.I2)*

I
I

È¡'

I

¡

,t

f
't;

I
À

I

I

I

I

u (lr-t )

i,(n-l)
2r.u)

pskoLoeh 4 (t,k,k) - v (n-k){tu,1 :k)
R ->

srrrîr,kt
k)

bLock ops

( A k)

L

k)

{

ìl',

{ü

(n-1)
(.k)

a

(

I
(k+L )
(.k)R -k+E(.

r
(s. 10)

{rri,rrt

R (.k)

where slrt,tl ana sf,(k,Ð are the products of the block operations from

the kth upsweep operation to the kth downslveep opelation. The recursion

(5.10) requires 4k block-operations to execute, so the whole algorithnt

requires 2k block-oPerations.

Here, we will only indicate how the block-operations in the

upsweeps of the block FTO, are calculated. All other steps are straight-

forlvard and analogous to FTO1 '

*4(.k) is the kth btock-column of A; 4(1,k,7,,¡ consists of the first k

bLock-elenents of .4 (.k)
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CalcuJ.a.tion of ShIE Block era tions B0qs

It is sufficient to show how to calculate the UBO in the first

GGlvlS transformation in (5,g).- The LIBOTs in the second GGMS are calculat.ed

:

,t

Þ-

Itle rvish to calculate

by which

.R (kl)

so

Let

¡k+1.
" (k+1., L )

and the set of p to Househol-der transforrns

¿k
" (k1)

is transforrned to

tzlS

(s.11)

(kl)

lI

¡

I'

t
,]

I
rf,

I

;k+L" (k+1-,7)

It is sufficient to show rvhat to do for the first Householder transforms

.u)t
and first row of hiiír,r, - the ottrer desired quantities are calculated

sinilarly.

By norm-invariance, we have*

,îr. r, r xZ ,^r^kîlo(kt)7i- = Lll:,orl.rll2 + e{k*1'1)L7

ili!.r,1)i1 = rìhrt11)2 - "lrurt-tttzl?

0

I

,R

A

-k+7
!(k*i,t ) t,

Recali. that the blocks are of order p'

gp+l. is unknown, except fot op*1r, : i'ilrlr,1)i-L.

In the Householder method a is eliminated bY forming
2:p'tL,1

*a
øi )kL is the kZth elenent of the i'i block of A.
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Aa) = (r - ar!/ztil¿, where T: Iqu !. ût Øztr,,.ap4,1)T,

where s ¡= lla 't

0) u"T
= A -::;, where

2K"

T
e

so A

muu'A
nrrázt\

T
uTA. (s.12)

(s. 13)

(s. 14)

(s. 1s)

(1)
theletore al . = 9j_.

u1

;F ,

and rron (s.12) ,lîr1r,r,r. = ?p+1. - (9 år ru g¿.)/,p+t

(7), 2K2%.,:Ç )
1.

which can be calculated fron known quantities'

Fron (S .I2) , therefore gt'.' , í=2,. . .,p can be calculated from known

quantities:
T

' (r.) u¿t-
an = e-. , i:2r-..rP
-!. _t. 

2K.

Eqs. (5.11), (5.15), (5.14) and (5.15), enable^us to calculate the first

Householder transform and the first row of hlirlr,r, The other House-

holder rransfonns and the rest .t hllr1r.,r, can be calculated in the sane

Ìrray.

Block FTO - Concluding Renarks

A block FTO analogous to FTOI can be rvritten from the recurslon

in (5.10). The block-operations in the upsrveePs ale calculated by the

nethod outlined above. The total operation count for the block FTO

2q
is stpónz. gther block FTO algorithns analogous to FTO1 to FT04 can

be cleveloped.
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61 CONCLUSI0N

WehavedescribedtwowaystoaccelerateFTOalgoritfuns

devel.oped in chapter 7, By using a l,ogicalLy nore conpl ex recursion,

r^'e can reduce the computing load by about 25%. By incorporating Fast

Givens Transforrns, I{e can reduce the computing load by a further 50%

(approxinately) . lrle have also described some sundry extensions to the

FTO algorithms - orthogonalization of rectangular Toeplitz natrices,

solution of the Toeplitz least-squares problem, and orthogonalization

of block-Toeplitz natrices.
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CHAPTER 9

THE SINGULAR.VALUE DE COMPOSIT ION OF TOEPI,ITZ MATRI'CES

1 INTRODUCTION

Let A be a real mxn matríx' m>n. It is well-known [37] that l

urx and I¡ with dimensions mxn, frxfl and nxn respectively such that

A = uzf (1.1)

where r,fu = f'¡ : ,rf = rn and t' = díag(oy"',or)' The matrix u

consists of the n orthonormalized eigenvectols associated with the n

largest eigenvalu es of AAT , and the matrix I/ consists of the ortho-

norrnalized eigenvectors of ttTA. The diagonal elements of I are the

non-negative squ4re roots of the eigettvalues of ATA; thty are called the

singu Iar values. We shall assune tlrat

o7r-o,t 2on>0.

The dec.omposition (1. 1) is called the singul ar r¡alue decomposition (SVD) -

There are alternative representations [57] to that given by (1.1);

however (1.1) is the nost useful for cornputational purposes, so we only

consider this form here.

several

(i)

(i i)

The SVD provides a very convenient and stable method of solving

common problens of linear algebra. Some of these ¿¡s [35]:

solving a set of linear equations with a nonsingular matrix,

particularly when the systen is il1-conditioned;

more genetalLy, analyzing the system Aæ=b where A is a general

mxn mattixz the svD can be used to determine whe-uher the

system is consistent, whether t,he solution is unique, and what

the general form of the solution is;

solving the least-squares problem: find æ such that

llag-þ-ll2 ana llq ll z al^e minimized, where '4 is the genetal nxn

natrix wít}:. m>n;

(iii)
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(iv)

(v)

findirrg pseudo-inverses [s5] ; and

approximating natrices by matrices of Lower rank'

Recently it has been found desirable to calculate the

SïO of Toeplitz or Hankel rnatrices ' Two such aPPlj cations are

rationalChebyshevapproximationontheunitdisk[83]andinHankel-

norm recluctions'of system theory [57]'

Insuchapplications,anSVDalgorithmwhichtakesadvantageof

the Toeplitz structuÏe to reduce the nunbel of arithnetic operations woulci

be useful. To the authorrs knorvledge such an algorithn is not at

presentavailable.InSection2,wereviewtheSVtlalgorithmof

Golub-Reinsch [37] and a nodification thereof by chan [17] ' In sections

5 and 4 we present two algoritluns which are further moclifications of

the Golub-Reínsch algorithm and take advantage of the Toeplitz structure

toreducetheconputingloadby50-80%oTmore,dependingonthe

païameters of the Problen'.

. 2. . THE GOLUB.REINSCH ALGORITHM

TheGolub-Reinschalgorithn(GR)[37]isaverystablemethod

forfindingtheSVD.GRhastwophases-ad.irectphaseinrvhichÁis

reduced to a bidiagonal matrix J(0) , and an iterative phase in

,¡icn /0) is reduced to the diagonal natrix r' lloth the techniques

described in this report use the Toeplitz property to rtspeed-up"

the first phase of the Golub-Reinsch algori'thm' The second phase is
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unchalìged,exceptforre.orderingsinthesequenceofcomputationof

certain natrix products. we describe GR be1ow, and later a modification

by Chan [17] which is faster when m>2n'

Alsorithn 2.1 - The Golub-Reinsch Algorithn (GR)

Phase I fdirect ì - reduction to bidiaeonal forn:

.4 is traltsformed by two sequences of Householder Transforns [89]

,"'u't, ond {8(ÐÜ-', such that

(1)(n) (1.) (n-2) (0)
P D A8 ---a 1_U (2.r)

(2.2)

5

0

(1)
an upper-bidiagonal natrix. If we let Á =A and define

o(k+$¡ = p(U A(k)

o(k+l) : n(k+41 n¡O,

tn,,n p(Ð is determined such tn^t olf;+z)=o' (i:k+l"";m)

(k+2)
ki

(k=l,2r. ..n)

(k=1r25 " . - rn-Z)

and A is determined suçh that a :0, (j=k+Zr...rn)

. It can be checked that no previously*nulled elernents are filled

at any stage.

The singular values of J(0) are the same as those of A' Thus

if the SVD of

(k)

then

so that U=PG,

¡(o) = ct't{.

A = PGTHTf

tl=Qtl wítn P,=P(l) ...P(d ' Q:=8
(1) (n-2)

a
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Phase II ( iterative) - reduction to diagonal form:

J(0) ís iteratively diagonalized by a variant of the QÌì rnethod

so that
(0) _(L)-> .J (2.4)J

Reduction from .4. to ¡(o)

Accunulation of P=P(1) ..

Accumula'"ion of 8:8(i) ..

+---+I

rvhere ,(i+t) - s(i)TJ(í)T(i)

*h"r" S(í) 
^na 

r(i) are products of plane rotations and are therefore

orthogonar. The {T(i)} are chosen.so that the sequentt M(i)=J(¿)TJ(i)

converges to a diagonal natrix while the matri "", S(i) are chosen so that

*t .r(í) are of bicliagonal forn. The p::oducts of the T(i) 's a'cl S(i) 's

are the natrices f und 6fl t"rp".tively in (2.2). Details are given

in operation counts, e.g. srrm\ + 0(nù + o(nz) will be written

2

in [57].

tion Counts

In discussing operation counts, h'e count only the nunber of

multiplications and divisions, as on most conputers, the addition/subtraction

tine is much less than the multiplication or division time' lvloreover, it

can be checked that the number of additions/subtractions is about the

same as the nunber of rnultiplications/divisions in all the algorithms

discussed herein. Thus the number of multiplications and divisions is

a reasonable neasure of computing tine. Ìrle also ignore all lower-order

terms

as ímn

In GR, Chan [17] gives the following operation counts for the

various parts of the algorithn:

I. Bidiagonalizatiort

(n)

(n-2)
P

o2
Z1rmo-nu /3)

2 3,-
nm -n /,5

zní /s

operations

operations

operationsa
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II. Diaeonali zation oÞeratj.ons Per iteration

Accunulation of 5

Accumulation of I'

Zmn operations

2n2 operations

0 (n) opetationsReduction from ,/

(¿)

(i)

(0)

onP

on4

to2

It is reported in 137)that t1-re aveÏage number of iterations, k,

reqrrired for II is usually less than 2n. Chan has run the Golub-

Reinsch.algorithm with k:Zn and has found it quite acculate.

The Golub-Reinsch Algolithn (GR) can be speeded up by using

ilfastil Givens transforms [30] in Phase II. In this case, all the

operation counts in this phase are halved'

Table 2.,1 shows the total operation count for GR, assurnrng

tlnat k=Zn, with and without accumulatj.on of u and 7, using slow and

fast Givens transforms in Phase II:'

Explicit Calc. of
UE.V

No explicit Calc.
ofU&V

Slow Givens
Transforms

zmn7 + 4n3 2(nm
2

Fast Givens
Transforms

5rm
2 2n3

+ 2krm
2

3nl
3'

Table 2.I - operation counts for Golub-Reinsch Algorithm
assuming ttrat k:Zn'

Chanrs lvfodification of GR GRC

chan plroposes a modification of GR which is more efficient

than GR when m/n is greater than about 2, and is about tlice as

efficient when m/n is about f0' His procedure is:

Alsorithm 2.2 - The Golub-Reinsch-chan Algorithn (GRc)

Convert A to upper-triangular forrn R using Householder Transforns'
1

so that qTA:R



2

¿53

where Ç is the (orthogonal) product of the Householder Transforns

(4 is not calculated expLicitly).

Fi-nd the S\¡D of fi using GR such that

n:W>{
Then the SVD of .4 is

ry
4 : IJZI. ,

where U:Q

V: I.

3

^
0

n
l),

and

GRC has an extra phase at the beginning, ví2. triangularization

of A, which requires ^r2 -Ç op"tutions. However, many more operations

than these aTe saved in step 2 when L ls latge, because the algorithm then

operates on an upper-tri-angular matrix witn!fu+L) non-zero elemerlts

instead of a full mxn matrix.

GRC, assuming that 1ç2n:

Table 2.2 shows the operation counts for

Explicit Calc ' of
u &v

No Explicit Calc.
ofUEV

Slow Givens Transforms

Fast Givens Transforms

3mn
2 + 9\n3

+ 5!n33mn
I

ïm
23+n

îm
23+n

Table 2.2 - Operation counts for Golub-Reinsch Algorithn
as modified by Chan, assurning that k:Zn'

S.ToEPLITZSVDBYFASTTOEPLITZoRTHOGONALIZATÏ0N

TocalculatetheSVDofaToeplitzmatrixA,GRCnaybe

accelerated by using Fast ToepLitz Orthogonalization (FTO), together with

two other modifications, as described below:
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(t) In step (1) of GRC, convert A to R and calculate q. l:nusing*
Fast Toeplitz Orthogonalization (FTO) rather than Flouseholcler

Transforns. This will require 0(md operations rather than

t"
nm'-nu/$ operations in GRC.

(2) If U and v are not required explicitly, replace phase I of

step 2 (bidiagonaLizatíon of F) by the following procedure:

use fast Givens transforms to ze1.0 out the elements of -R above

the superdiagonal {ooj}j:on, either row-by-row or column-by-column,

starting wi,th Trn To illustrate, suppose r^re are elininating

the {r"-.-.} row-by-row and we wish to eliminate r we perforn
"¿j' -vtt vt pq

two fast Givens transforms as follows:

column q
I

tst råtationææ
toúù

æû

----> t æ

æ

zeTo ouIT

.t
pq

Trí pq
row
p

00
ææææ

ææææ

ûæææ
ûææææ

7l
/øa

/ 
q@

lst rotation æ
introduces
non- zero
element at
position (q,q-l)

2nd rotation to zero out
the (q,q-lJ elenent introduced
by the lst rotation.

\-
¿

Figure 3.1 - Elimination ot opq

*8.7rn denotes columns I to n of 8.
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This procedure requires ?;n3 op"t^tions, comparecl to the !n3 op"'utions

requiredbyGRinbidiagonalizing.Rwithouttakirrgadvantageofits

stl.ucture. This proceduie, using slow Givens trallsforns \^las suggested

byCiran,butrejectedbecausetherewasnocomputationaladvantage

over GR. The sinrple nodification of using fast Givens transforms

saves tne tn7 oPerat'ions here'

(5) rf u is requirecr expricitly, calculàte the produ.. t[ ; ] 
clirectlv

instead of using Householder transforms, as in GRC. This is possible

since Q. Lrnis available from step 1' l'his proceclure tequi""' 
"mz

operations, rather than the 2r*2-r3 operations required by GRC.

l\re present the modified procedure:

Algor ithm 3. I - l,lodif ied Golub-Reinsch-chan Algorithn (NfGRc)

1. Perforn the decomposition ¡=8. 1-rr-R 
using Fast Toeplitz orthogonalization'

z. rf u and v are not both required expricitly do step 2A; otherwise do

steP 2B:

2L. Use fast Givens transforms to zero out the elements of R above

the superdiagonal row-by-row or c-olumn-by-colutnn, starting with r'tn'

The elinination ís perforrned as in Fig'3'1'

2ID. Transfonr, P to upper-bidiagonal forn using Householcler transforms'

as in Gfi. Accunulate the ror,r-tlansforms on f , and the column

transforns on Y7.

3. Diagonalize the bidiagonal matrix as in GR'

4. If U is required explicitly, compute U:Q'L,nX' Note tha't I/=Y'

0peration Counts

IVecompareoperationcountsforGR,GRCandMGRCinTableS.l.

Fast Givens transfolrns are usecl throughout in the bidiagonalization phase:
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Algorithm

Explicit Calculation
ofUandV

No Expf ic.it Calcrrlation
o'1 U and V

GR
2+zn

5r¡m
o ,)

2(nm
n

)2

GRC 3nm
o
¿' + îIn

2
nn23+n

MGRC
2 l-6n

2
a)

ftm

+ 0 (rm)
+. ohn)

Ca Ic. of
UtrV

Table S.1 - SVD of a Toeplitz matrix: Comparison of Operation Counts for
GR, GRC and i¡cRc, where Fast Givens Transforms are used

and k:Zn.

Discussion

For m>>n, a very colnmon situation, MGRC requires one-third of

the work of GRC and one-fifth of the work of GR when u ancl I/ are both

required explicitly; when u and v are not required explicitly, ì4GRC is

as order of nagnitude fast.er than both GR and GRC because there is no

,*2 ,.r .

For m:n, MGRC is slightly faster than GRC a.nd slightly slower

tlran GR when U and V are both required (however lvlGRC is faster than GR

as welt when T, lrt this ís the one case where MGRC is slightly worse

than GR, (though better than GRC) and arises because accumulation of X

follorved by multipLication by Q. j-,n it not optimal here; it rvould be

better to accurnurate X on O. 1,, (i.e. premultiply QT r,n by the Householder

and Givens transforns yielded by steps 28 and 3). However, the asymptotic

operati.on count t,rould still only be equal to that of GR'

Fotm=nandwhentjandvaTenotrequi.redexplicitly,MGRCrequj.res

one-thircl 0f the work of GRC and one-half of the work of GRC.



Insummary,therefore,ifAisToeplitz,MGRCis2.5times

as fast as GR or GRC except in the following cases:

*m:rls tJ,v both required (worst case) - MGRC, with a slight

moclification requires about the same work as GR and GRc.

*m)2rls 'u,v no.- required (best case) - NÍGRC is an order of

rnagnitude faster than both GR and GRC'

TOEPLITZSVDBYGRAM-SCHMIDTBIDIAGONALIZATION4

Lt) lb1L
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(4. 1)

(4.Za-c)

(4.3a-c)

The second Toeplitz technique involves replacing phase I of GR

by a Grarn-schmidt-type (GS) bidiagonalization technique, and using the

Toeplitz fonn of A to accelerate the slowest part of the GS bidiagonaliza-

tion. Phase II of GR is accelerated (as was done by Chan) by

re-arranging the accumulation of U'

l4¡e first state and outline the proof of Algorithn4'1, the GS

bidiagonalization technique. The nethod was first proposed by Golub [35]'

Algor ithn 4.1 = GS Bidiagonalization

Input Mat.rix !(7nxn; m>n)

Output Matrices þl(mxn)' B(nxn) anð X(nxn) such that

A = r.¡Bf

Whasorthogonalcolurn'ns,Bisupper-bidiagonal'andX

is orthogonal.

Procedure 1: Setæ "*11,0'."'TfT

2

3

ù.t*AL.i. i bti.* t llû r lt 5 71
Lt)

For j<-2 to n do

3'1 t ¡*{.¡-tA-bj-t"¡t {.¡-t;

bj,j -r+t ttâ?jll t {. ¡ 
* {, ¡/b¡,¡-t

ù. j*oL. j-b j-t,i 9"i-t; bii*tllr).¿ll ;1!'¡*L'¡/b¡¡3.2

*-
J

denotes the ¿th column of X.

\4.4a-c)
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Proof (Outline') It is clear frorn (4 '2b,c) ' (4 '3b'c) and (4 '4b'c) that

llæ*ll -- llqljll - 1, i = 1, " "n'-.1 .J

In a<lclition, (4 .2) - (4 .4) respective ly yie Id

(4.s)

1n.btt 1
Aæ

(4. 6)

(4.7)

(4.8)

(4 .e)

(4. 1o)

(4.11)

I

ryTTbj,j-, ú'¡ = g1j-1 o-bi-r,i-1 L'i-l

b¡¡ L. j : AL. i - bj-t,i L' i-t
And it is easy t.o show that (4'5) -(4'7) irnply that

AX=WB

and rnfa:n{

are satisfied bY l'/,X and B '

It can be Proved bY incluction that

0 k<jT

-4 ,l

"T.-J

5

i:2r...'n (4.12)

Accel eration of GS Bidi ization when A is T Lîtzonal

The nain work of Algorithrn 4 ' 1 is the conputation ç¡ Aæ' y

anð.Aæ.rinsteps4.la,4'2aanô'4'3a'tespectively'Eachofthese
-¿

calculations normally requiTes 71m operations' However, when A is Toeplitz

the conplexity of these calculations c.an be reduceð to 7hn Log m) by

observing that the multiplication of an mxn Toeplitz natrix A by a

vector z can be embedded in a circulat convolution which can be done

- n.
K

(4.11)and(4.12)areeasilyshownrvit.hj:2.Fo.tj>2,assttmethat(4.11)

and (4.L2) hold for i,.i, then calcurare {¡ tO' using Ø.7) to substitute

nr æT and æ. r.; and the resultant terrns have factors of the type
-J -'try T milarly shown.t o 
y. n, P<i , Q<P + ú ¡ L'k=0 ' (4 'L2) nav be si

Thus(4.5),(4.11)and(4.|2)showthatllh'asorthogonalcoluinns

and X is orthogonal; this last fact combinecl with (4'9) yields (4'1)'
QED

T?1.: tA
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by Fr-T [20] (or by even faster recent methods [91])'

To see this, Ie1c d.i-j¡: aii 
:A_

{ : þ-fn=1),a-(n-2), ;''sQ-7to0'o1"'''Qm-l'0"'''0)
(4. 13)

m+n-2
and ,!":tzyz2:.,,z,,î;:--q. (4'14)

-T

Now if e : d @ z, the circular convolution of a and zç,
J

n
then "¿: j}:l o j+r)-l Bn-j+l' ô=1" " 'm

: (AÐ m-i+l' 1)=7' ' ' ' 'n 
(4 ' 16)

Thus to calculate Az in 0(n Log d operations, we si'mply select in

reverse order elements 1 to nt of a @ afl where a and zf are as defined

above. To calculate gL@ Lf, we þ'FT. a and z¡, giving the complex spectla

f(g) anð,L(Zl respectively, then inverse-FFT L(dt:lf¿(Ðl' where

f +(gl : f ¿(4i¡.¡zl'

Acceleration of Phase II of GR

This can be accelerated (as was done by chan) by re-arranging the

carculation of U. Recall that in GR, the S(i) r^Iere accunulated on P,

requi.ring uTorm opetations (see sec. 2) where a:2 for slow Givens transforns"

and a:f for fast Givens transforms. trn the present algorithn, we accumulat'e

tl,e S(i) on the nxn identity matrix In, yielding an nxn matrix S, then

compute

'tJ = WS (4 'I7)

where il is as produced by the (accelerated) GS tridiagonalization'

2
lvíth this nodification, the calculation of I/ requites a'l<n + nn

2

operations. Assuming t:nat k:Zn and cr=f, this modification halves the work
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in calculating U when T¡>2yLt and is faster than GR ,inenff, Z.

Thus if # = ,, GR is used.

The Al ithn

We now incorporate the accelerated GS Bidiagonalization and the

accelerated GR Phase II in our second Toeplitz svD:

A1 ttrn 4.2 Toeplitz sVD by Accelerated Gran-schlnidt Bidiagonalization

{Phase I - Bidiagonalization : pWAf}

1. Set æ. "-t
* l1r0r. . .,01 :: Te-

-t
n

a a öand at * lo*j.r, 1_1_' 2t 1nt

n-7

2

3

Set ø * lolnr olrn-l ... uL7, ö2L'.'6mj., 0r""01

m-L______^_-0'...r01
5 1

4. b77 * llû.tll ; L. t * ù. r/ør,

{Main Bidiagonalization LooP}

5. Forj+2tondo: m+n-Z

5.1

s.2

e <- a,t @ Ít j-rî::,4lr; æíj * en-,¡+i.-b j-r,i^r*i,i-1' Þ1" " sfti

bj,j-, * ttæT ¡tt sT ¡ * t/ui,i-,

b jj * llô. jtl ; L. j * ù'¡þ j¡

m+n-2

a, . . . , o
T; 

')ij 
* cm-i+L-b j-r,j'i,J-]' í=1"":ffij
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{Phase II - Diagonatization}

6. TfL< 2 then do
7T

6A.DiagonalizeBandcalculateUandVusingGR,PhaseII

else do

accumulating the {5 lonln(i)
68.1 Diagonalize B as in GR, Phase II,

to produce 5, and accumulating the

68.2 U : WS

U(í) ] on x to produce 7.

0peration Counts

In Phase I, the main work is in performing the convolutions in

steps 5'1 and 5.2. If this is done by FFT, these will require

( 4m+2n-4 )Log ( 2m+n-2) and ( 4n+2m-4) Log ( 2n+m-2) operations respectively'

(Note that a arld'at only have to be FFTtd once). Hence Phase I requires

2n{ ( Zn+n- 2 ) Lo g ( Zrn+n- 2 ) + ( 2n+m- 2 ) Lo g ( 2m+n- 2 ) } op erat ions'

In phase II, assuning fast Giverrs Tra-nsforms lvere used and k:Zn,

we can show that ,*2+4n3 operations are required to calcul ate U and V

and (as before) ohz) operations are required to calculate )' we summarize

the results in Table 4.1 (note that (2m+n-2) and (2n+m-2) have been replaced

by hn+n and Zn+m respectively, since the correction teÏms a1'e all order of

rnagnitude lower) :

Cal c. of U

V

Aleorithn
Explicit Calc. No Explicit Calc.

GR

GRC

AGSB

snm\+2n3

e,*z+fi ,3

2n{ ( Zm+d Log ( Zm+n)

+(m+Zn) Log (m+Zd \

+r*2+4n3

2 (nm2 n
)-7

2+n
3

ftnx

2n{( Zrn+ùLog (4rn+n)

+(m+2n) Log (m+Zd \

svD of a Toeptitz rnatrix: comparj-son of operation counts
for GR, GRC änd AGSB where Fast Givens Transforms are
used and k=2n.

Tab[e 4.1
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Discussion

Fotm>>n>>l,itcanbeseenttratAGsBisStimesasfastasGRC

and 5 times as fast as GR tn¡hen u and v are required explicitly; when

'u and v are not required, AGSB is an orcler of magnitude faster than GR

and GRc, because there is no ,n2 ,.t^. These cornparisons are sinilar

to those of MGRC (Table 3'1)'

5
Far m=n>>l: AGSB is slightlY faster 3

tine.s) than both GR

and GRC when u and v are both required - note that this is better than

the result for MGRC, which wa.s slightly slower than GR; when u and v

a1.e not required, AGSB is an order cf magnitude faster than GR and GRC'

because AGSB has complexity g(nTLog n) rather g¡an 0(n3)' This is better

than MGRC (Tablé 3.1) , where the "speed-up" is a factor of 3 '

Ifmandnalenotbothlarge,AGSBcouldbeslowerthananyof

GR, GRC and MGRC, because the n(2m+n)Log(2m+Ð terms could be greater than

t1.e nm? and n3 terms. Thus, AGSB is preferal¡le when m and n are 1oot¡.

large.

Possible numerical instabilitY of AGSB

It has bee¡r shown by Golub [35] that Grarn-Schmidt bidiagonalization

is related to the Lanczos tridiagonalization of a symnetric matrix' The

Lanczos procedure is known to be unstable [8S] without le-orthogonalizatt'on'

hence the sane problem nay arise in AGSB, though the excellent numerical

properties of the FFT mean that errors will accumulate nore s1owly in

this particular Gran-Schmidt procedure. It is therefore possible that

AGSB is of only theoretical interest in lnany cases. Further work is

needed to Pursue this Point'

toêJ
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Calculation of the S ingular Value-s by the Iteratir.¡e LanczoS Al-gorithltt

Even though the Lanczos algorithm may give inaccurate results

at ste¡t n, paige and others 1721, [86], have shown that continuing

the Lanczos algorithm on an iteratiVe basis, produces a set of tridiagonal

natrices ?-. (each the l-eading submatrix of its successor) whose sets of
..J

eigenvalues contain inproving apploxinations to more and more of the

eigenvalues of ,4. Parlett and Reid L74l plopose a nethod of tracking

the convergence of these eigenvalues for z1 symnetric' For a very difficult

case (their POIS 992), the complete spectrum is obtained in about 5n

iterations. More typically 2n itetations are reqrrired.

The main work in the Lanczo-s algorithn (as for GSB) is the

calculation of the natrix-vector p'tod,tct A2,. As for GSB, this can be

accelerated using fast convolution. Hence, the Parlett-Reid algorithn

may determine the singular values (i.e. eigenvalues) of a syrunetric

Toeplitz matrix nore stably. This observation is surnmarized in the

next algorithm: l^le do not give details of Parlett and Reidts tracking

procedure here, except to say that it estimates the eigenvalues of' T,

by approximating the zeros and poles of a rational function 6læ) that

depends on the entries of Tr. This approxirnation procedure requíres 0(i)

operations.

Algori thn 4.3 - Accelerated Lanczos Algorithn for sirlgular Values

of a Symnetric ToePlitz Nfatrix

1. Initíalize Lanczos algorithm, and set i=1'

Repeat

2.L Do step 7 of the Lanczos algori.thm [74] using fast convolution

fo:: matrix-vector proðuct. Au.. This genel:ates a tridiagonal

natrix 7t.

I

,1,

È

À

fl

2
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2,2 Estinate the eigenvalues of, Ta by approxina,ting the poles ancl

zeres of ô (æ) ,

2,3 j * i+l
until Parlett and Reidts termination condition is satisfied.

Singul ar Values of a Non-.sYtrun etric. ToepLitz I'latrix

One way to proceed is to find the eigenvalues of ATA using

the Parlett-Reid algorithm, using two fast c.onvolutions for the matrix-

vecton products ATAUT. Alternatively, it can be shown, that AGSB, if
.J

continued on an iterative basi-s, calculates bídiagonal- matrices B- such

that
_m

J

¡

Þ-

I

{

ti

I

I

I

ryB" B.
.J .J

t

where the

algorithn

of the 7.
J

the zeros

T, a-re the tridiagonal matrices produced by running the Lanczos
<J

qt

on AaA. Hence we can track the square-Ioots of the eigenvalues

(which converge to the singular values of á) by approxinating
o

and poles of 6(æ¿) by Parlett and- Reid's ne'Lhod. This suggests

*,
p

I

2

the following algorithn:

Aleorithn 4.4 - Iterative AGSB for the singular Values of a Toeplitz Matrix

Initialize AGSB and set i--1.

Repeat

Z.I Do step i of AGSB, using fast convolution for the matrix-vector

products. This generates a bidiagonal natri* Bj'

2.2 Evaluate ?,

Estinate the

= BT. B.JJ
2.3 selrârêrloots of the eigenv'alues of Tt by approximating

zeros of a(æ2 )the poles and

2,4 ¡ <-i+1

until Parlett and Reiclrs termination condition is satisfied'
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þ!3,tl' 'lhese two algorithns have.not yet been tested, and fulther:

work is required in this regard, There is reason for

optimisn, horvever, since there seems to be no leason to

suppose in general that the La:rczos algorithm converges

less quickly for non-sparse matrices than for sparse

matrices.

5. CONCLUSION

Two algorithms have been presented which take advantage of the

structure oe a foepiritz matrix in calculating its SVD. Both can be an

order of rnagnitude fastel than general SVD routines, depending on the

values of m and n, and whether U anð V ale requirecl explicitly. In most

cases of interest, one oï other of the routines is several tines as fast

as general SVD routines. The one exception is when n anð m are rrsmallrr

(<30 say) and tl and V are both required - in this case there does not

seem to be much advantage in using either of the Toeplitz SVD routines.

It is pointed out that the second algorithrn rnay be unstable in some cases

of j.ntelest, and rnore work is required to investigate this problem.

However, by modifying it to nake it iterative a.nd using a recently-

developed tracking procedure, it nay be possible to calculate at least

the singular values stably.

I

È--

,l
I

t

ï
)
I

I

i

þ
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CHAPT'ER ].0

CONCLUSION

The solution of Toeplitz linear systens, and the related

operat-r-'ons of Toeplitz inversj-on and factorization, have rnany applications

in engineering and applied nathematics. We have derived several connexions

between known 0fu2) al.gorithms in the field, relating then to Bareissrs

Toeplitz elimination algorithm and to rank-1 update procedures. l^¡e have

presented new results on the numerical performance of some of these

algorithrns, and propose a pivoting scheme v¡hich should implove the perforn-

ance of Toeplitz solvers, factorizers and inverters in aLl indefinite cases,

but especially when some leading submatrices of the system matrix are il1-

conditioned.

More recently, it has been found useful to perform other operations

on Toeplitz natrices such as the QR decomposition and the singular value

decomposition (SVD). We have proposed several algorithms to conpute the

QR decomposition in O(n2) operations. The fastest nethod of calculating E

by orthogonal transforms requires slightly more than twice the number of

operations required to find the triangular factors of T' We have extencled

the techniques to rectangular and block-Toeplitz matrices. l4/e have proposed

nethods of accelerating the SVD when the systen matrix is Toeplitz,

inclucling an 0(n2 Log Ð algorithrn which may, however, be unstable, and hal'e

suggested a nodification which may calculate the singular values stabiy in

O(nz Log d operations, but further work is required to test the proposal'

It nay also be po.ssible to reduce the SVD complexity to O(n2)-

l-

Þ

I
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Furthel work c¿n be done on extending these fesults to natfices

which. are related to Toeplitzr Such ¿5 s^Toeplitz natrices and nulti-Ievel

nìatrices. ID another direction, it nay be possibLe to develop 0fu LogZ n)

nethods such as in [13] for Toeplitz QR and SVD problems. As was rernarked

in the Introduction, the 0fu2 ) methods wilL stilL be usefuL for snall to

noderate Toeplitz Problens.
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