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SI.]MMARY

The theory of time-averaged holography is extended to take

ÍnÈo account three-dimensional phasor vibratíons of a síngle frequency.

The vibration ís considered to be characterísed by a spatially varying

I'ourier expansíon of superposed spaÈial modes and temporally dependent

coupled modes in three dimensions leadi-ng to the derivation of the

general characterístic equation. The method of GeneraLízed Least

Squares is ínEroduced to solve the non-linear general characteristic

equation including phase wíÈhout the need to modulate the laser beam.

The new t.heory and method of analysis ís applied Èo a number

of vibrating objects including a clamped circular plate, wine glass,

st.ainless-steel beaker and cylinders of various materi-als wíth shear-

diaphragm ends. tr'or the first time the radial, tangential and

longitudinal vibration componenËs are determined experimentally and

compared with theoretical predictions.

The theory of vibraÈion of cylinders of varying wal1 thicknesses

is solved using the Rayleigh-Ritz method and the mode shapes experí-

mentally determined, for the case of a cylinder rnrith non-concentric

inner bore and outer surface and a cylinder with a thin longitudinal

strip, using the new holographic Ëheory.

A number of coupled modes in a near perfect cylinder are

analysed and the phase component determíned for the first, time wíthout

modulating the laser beam. Results are compared wÍth predictions for

one-dimensional phasor víbrations.

New experimental techniques such as the translating hologram

table, resonance una't and data system are described whích aíd in

the generation and analysis of time-averaged holograms of conplex rribratÍons.

Fina1ly, the sound radíation efficiency of various cylinders is

measured in a reverberation room and compared wíth theory.
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CHAPTER 1

LITERATURE SIIRVEY

1.1 HOLOGRAPHIC INTEP.FEROMETRY

The díscovery of holographic inÈerferometry, notably by Powell

and Stetson tl] ín 1965, has Ied to a remarkable developmenÈ in the

field of vibration analysis. Here is a developmental tool with the

same impact on dynanr-ics as quantum theory had on mechanics - a contact-

less probe into the nlniscule víbratory motions of structures. Stetson

and PowelL l2l in L966 demonstrated the equívalence concept, whích is

basic to the theory of holographíc interferometry, that exposing t.he

holographic plate wíth the reference beam and object beam Ín sequence

gÍves the same result as simultaneous recording. Thís leads to the

concept of real-time holographíc ínterferomet.ry. Representíng the

electromagnetlc field of the laser radiation as an angular specËrum

of plane \¡raves [3], Brown et al derÍve semí-rigorous equations for

tÍme-averaged and real-time holographic ínterferometry of one dimen-

síonal símple harmonic vibration [4]. Butusov [5] presents the theory

for tíme-averaged holography in a maËhemaÈically more rigorous form

and Híldebrand t6l generalízes the theory of holography.

The basic requirements for rnaking a good hologram are coherent,

monochromatic light and freedom from extraneous vibrat,ions. Luríe 17l

shows in theory, íf Èhe reference beam is a plane vrave, the reconstr-

uction is sharp evon though the light is only parËially coherent. The

variation ín coherence over the object surface is a greater factor in

the loss of claríty. If the object ís moved linearly duríng the recording

the irnage inÈensíty is modulated by a sínc-function which ís responsible
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for the perceived blurring tB]. For sinusoidal di-sturbance, the degree

of blurring is proportional to the víbration arnplítude t9].

The theory of time-averaged holography developed by powell

and SÈetson hras verified for one dimensional sÍmple harmonic víbration

by LurÍe and Zambuto t10]. The authors recognize thaÈ the ínÉegral

expIikc(t) (cos0, t cos0r) ]dr,

is valid for any motion c(t) no matÈer how complex it may be. In the

equation 0, and A, axe the angles subtended by the surface normal and

the illurnínation and observation vectors respectively and k is the

radiaÈíon wavenumber. The errors [11] involved in the det.ermin¿¡1s¡

of a dísplacement are príncipally

f. inaccuracy in determiníng 0, and 0, (1o error results in

about 17" error in displacement amplitude) and

2. inaccuracy ín determining the fringe order due to frínge

wídÈh whích is inversely proportional to signal to noise ratío (0.S

fringe error results in roughly 5% error in displacement arnplitude).

Nevertheless the analysis of sl-mple harmonic motion by time-averaged

holography can be trivial with the formula derived by Borza l,fzl.

One of the liníËations of holographic ínterferometry of

vibratíons is that only relatively sma1l amplitudes (1ess than about

2urn) can be anaLyzed since frÍnge intensity is inversely proportional

to fringe order which is deÈermíned by the argument of Èhe characteristic

fringe function. For tíme-averaged holography the intensity of the

fringes varies as Jf where the characteristic frínge function Jo is the

zeto order Bessel function. In thís case the tenth bright frínge is

less than 27" the intensity of the zeroth order bright fringe. For real-

time holography the contrast ís poorer since the íntensity varíes as

(1+Jo) t4l. one method of irnproving the dynamic range is to artificíally
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increase the v¡avelength of the radiating light by a Moiré techníque

used in the study of stress deformations ín transparent objects t13].
Rowe [14] describes a method of projectíng ínterference fringes onto an

object surface and recording a time-averaged hologram of a fixed rotation
of the object in the usual way. The fringes ínterfere to form a Moiré

pattern analogous to the normal Bessel frínges except that quiÈe large

dísplacements are analysed. Hung et al [15] have extended. this method

to analyse vibrations of large anplítudes and Joyeux [16] descríbes an

on-line inst.rumenÈ which measures dísplacements directly usíng this
Moír6 technique.

The object under study ís usually required to scaÈter light
dlffusely. However, phase objects (usual ín gas dynamics problems) have

been analysed usíng the prínciples of holographic inËerferometry.

Ovechkin et al [17] descríbe a double exposure method wíth the object

in the path of rhe objecr beam. Another techni_que [18] ís ro project

the phase-varying object beam onto a flat diffuse surface which then

functÍons as a normal diffuse object.

Holographic ínterferometry requires only one reference beam.

However, Dähdliker et al [19] and Tsuruta er al [20] describe a method

of two reference beams as a means of adding flexibí1ity to convenËíonal

double exposure interferomeÈry. This procedure enables information of

objecÈs to be taken separately or with mutual interference. Tsuruta

et el use this principle, in lieu of the double exposure technique,

which has alignmenË problems, to ínvestígate an object whÍch has been

nodifÍed and replaced ín the object beam.

The theory of holographíc ínterfer,ometry of síurple vibrations
in one dimensíon has found widespread applications ín other dísciplínes.
Bies Í2Ll shows how the normal component of vibration, as determined

from holograms, can be used to predict radiation efficiencies of vibrating
surfaces - an iurportant problem in acoustícs. Frankort [22] predÍcts
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the radiation behaviour of loudspeaker cones in this way. Vasi-lryev

et al [23] arralyse víbration components of blades and discs of comp-

ressors ín aircraft engínes. Zakharov et al 1,241 describe a potentially

portable laser microprobe to analyse vibrations in the field using Ehe

principles of holographic interferometry. In the biomedícal scíences

Greguss [25] and Hogmoen and Gundersen [26] describe the use of inter-

ferometry ln the analysís of the vibration of the human tyrnpanic

menrbrane, stresses in teeth (holodontornetry), deformation of the femur

(orthopedics) and respíration contours of the human body. The poss-

ibilíty of colour interferograms has also been considered by Chernov

and Gorbatenko 1271. Fryer [28] and Rogent and Brown [29] have written

reviews on holographic vibration analysís covering almost every aspect

of holographic j-nterferometry.

The extension of one-dímensíonal hologr:aphic interferometry

into three dimensions \¡ras a natural progression. Haines and Hildebrand

(1966) [30], to whom the discovery of hol-ographic interferometry is

also attributed, extended the theory to include sËatic rotation and

Èranslatíän of the object ín three dimensíons. The result:'-ng formulae

are dífficult to use in practice hence Sollid [31] developed two schemes -

the single hologram method utilízing parallax and fringe countíng and

a multiple hologram method using interference orcler assignment. The

flrst scheme ínvolves eounting the number of frínges that shíft past

an object point as the point of observation is moved from one position

on the holograrn to anoÈher. Dhír and Síkora l32l improve this technique

by expressíng the componenÈs of displacement as a set of lj-near equations

whích are solved by the leasÈ squares method and they note that only

the sígn of one component r.ras necessar:I a. priori to determine the others.

The second sctreme utili zed a set of holograms with several direcËions

of observation or illumíhation and was improved by Sciarnmarella and

Gilbert [33] r^¡ho determi.ned the displacement components by the method
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of least squ¿Lres. Although the first scheme has been automatecl for data

processing 134] its maín dj-sadvantage is that for small displacements

the fíeld of the hologram may not be large enough to enable at least

a ferv fringe counts. For this reason in this thesís ttre author prefers

the second scheme which is also easier to adapt Ëo daËa proeessing.

Stetson t:S1 and with Pryputnier,rícz [36] use Èhe second

technique to separate rígid-body motion and homogeneous deformation with

the application of the least squares method to an overdeÈermíned set of

línear equations. Hu eË al [37] describe a Moirá Èechnique which comp-

ensates for rigid-body motion usíng two holographic interferoElrams, one

on each side of the object, and reconsÈructed together to produce Moiré

Ísopaehic fringes of the stress displacernent only.

Ennos [38] makes use of the technique of multiple holograms

.to measure the strain in one direction only in the plane of a surface

under tension. Scíammarella and Gílbert [39] extend this method with

the aíd of a Moíré technique to optically separate tr/o components of

di-splacenent of a surface under compressíon.

Using light scattered by Ëhe interíor of a three dímensional

transparent object from a sheet of coherent light passíng through the

body Barker and Fourney t4O1 describe how displacement Ínformation may

be recorded in sectÍons to describe fully the deformatíon of the object.

Thís broad concept is used in this Èhesis to construct a fu11y three-

dimensional vibration map of any objecÈ surface in two-dimensional

sheets or slices, with the result that the mathenatics ís less complex

and hence more applicable to real analysís.

A rígorous theory of frínge formation and localízation has

been derived by Stetson as an ímprovement of more complex and approx-

irnegs descríptions; for example that of Tsuruta eÈ a1 I4f]. In a seríes

of excellently planned papers SteËson 142-48] derives a rigorous form-
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ulation of the generalized frlnge function, discusses ín depth the

factors affectíng the argument of the fringe function, predícts frínge

locÍ- and localizatÍon for a combination of whole body rotations and

t.ranslatÍons and supports the theory by a large number of experiments.

The results most applicable to this thesis are

1. that fringe spacíng and IocaLizatíon are unaffected

by the curvature of an object surface and

2. the observer-projectíon theorem (fringes observed

localÍzed in any plane may be projected on to the objecÈ plane)

justÍfíes the use of a camera and photographic enlarger to produce

pícÈures of the holographic interferogram.

I^lalles [49] extends the concept of homologous rays to compute

and vísualize fringe localizatíon for arbítrary movements, Íncludi-ng

strain and shear.

Abramson [50-55] íntroduces the holo-diagram which is a

pictorial represenÈation of the formatíon of frínges Ín holographic

lnterferonetry. The distance bet¡¿een the point of ílluminatíon and

the hologram determínes the sensitivity. Hence the process makes

optimum use of the coherence length of the laser radiation and objecÈs

up to 2m in length may be studied. Abramson also Íntroduces the

sandwích hologram [56] to eliminate whole body movement ín holographic

interferograms of deformed objects.

Matsumoto et al [57] analyse the measuring errors of three-

dímensional displacements by holographic interferometry. In partícular,

for the case of the multiple hologram technÍque, the contrÍbutions of

optical errors and fringe-readÍng errors are least for orthogonal

systems of illu¡nination or observation directíons.

Holographic ínterferometry has been applíed to the measure-

ment of steady velocíty [58-59] where it 1s shor^m the characterístic

functlon 1s the sinc functÍon. Gupta and Singh [60-63] analyse the
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characteristíc functions of time-averaged hoJ-ography for non-linear

vlbraÈíons of the form of Jacobian elliptics. such motíon is typical

of vibrations in a shaft connected to a crank and piston or in prop-

ellers. However, no experimental application of the theory has yet

been reported. Janta and Míler [64] calculaÈe the characteristíc

function of time-averaged holography for sinusoídal damped oscillations

and from frínge data devise a scheme to determine the damping coeffic-

lent. Zambuto and Lurie [65] derive the characÈeristj.c function for

various complex motions - consÈant velocity (rarrp) motíon, superpositíon

of ramp motíon and sÍnusoídal vibration and sEep motion - by considering

the effecË of motion on coherence. on the other hand, vikram [66-69]

and vikram and sirohi l7o-72] analyse the same motion using the phase

variation equaËíon [1] and suggest various schemes incruding Moírá

techníques, amplítude modulatíon and spatíal variation of the object

beam to separate the comporients of vibration.

In additíon to the study of hologram interferometry of

complex motíons, various workers have considered one dimensíonal víb-

rations of a number of modes of more than one frequency. I^Illson and

SÈrope [73] show that the characteristíc function of two ratÍonally

related modes with non-zero phase difference is a linear combination

of the producÈ of two Bessel functions of the first kind and of varÍous

orders. lJilson 174l extends the concept to include irratíonally

related modes and generaËes computer inages of Èhe fringe patterns of

a circular clamped plate víbrating ín such modes. A special case of

thÍs is discussed by Reddy 1,751. Stetson [76] íntroduces the rnethod

of stationary phase to prediet fringe patËerns of vibrations of modes

of dífferent frequencies and phases. The meËhod assumes that the main

contributíon of the tíme-varying propagation argument, f,¿, to points

ín the hologram which reconstruct the brightestroccurs at ðQ/àt = 0.
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The theory ís shor'rn to agree well with experimental observations of

two modes with rationally relaËed frequencies and of various phase

and is physically more meaníngful than that proposed by hrílson and

Strope.

vikram [77] suggests a stroboscopic technique to separate

two modes of different frequencies. The method consists of pulsíng

the laser lighË at. tímes when the amplÍtude of one mode is invaríant

and vice-versa for Èhe other mode whereby the separation of the two

modes is accomplished by analysing the two holograms.

The more general case of an unlimíted number of modes of

different frequencíes and varying phase has been considered by Dallas

and Lohmann [78]. The decipheríng concept uses a moving grating in

the Fourier plane to deconvolve Èhe coefficients of vibration from

the optical Fourier coefficients in the hologram. By "synchronizíngtl

the grating velocity with the frequency of vibration, the mode of

vibration for that frequency is separated from the rest. lÍilson [79]

derives the general characterístic functíon for any number of modes

with differenË frequencies and phase in terms of a linear combinaÈion

of a product of Bessel functions of the first kind and varíous orders.

Stetson [80-81] introduces the concepÈ of analysis by density functions.

The general characteristic functíon is expressable as a finite sum of

Fourier transforms of the vibration modes. Finally, vikram and Bose

[82] analyse damped oscillatíons ¡trith two frequencies by íllunínatÍng

the object from Èwo dífferent directíons resulting in a Moiré pattern

by whì.ch Èhe anplitudes of víbration and the damping coefficients are

determined.

The materral contained in thís thesis applíes to víbrations

of one frequency. The analysis of vibratíons involves ín part deter-

míning the geometry and phases of modes both of which contribute to

the resulting frínge pattern of a holographic ínterferogram. Firstly,
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the geometry of Èhe vibration may be separated by considering the motíon

to consist of a number of línearly índependent superposed modes, a

method which dates back to Rayleigh (1894). The analysis then involves

finding the ampliÈudes of the contributíng modes. Thís concept vras

inÈroduced Èo holographíc ínËerferometry by Stetson and Taylor tB3].

The pure mode shapes of a clamped rectangular plate were analysed by

hologram ínterferometry and these ïrere used to predlcÈ the statíc

deflection resulting from the applicatíon of poínt forces to the plate.

In another paper, SteLson and Taylor [84] predict vibratíon patterns

that result from mode combinations in an asyrnmetrically loaded dísk

by applying the holographically determined pure mode data of an unloaded

disk. Evensen [85] determínes the amplitudes of the normal modes of

a flutteríng panel by a strobing technique.

The phases of the conÈributing modes are usually det.erur-ined

by beam modulation in contrast to the method presented in this thesís

which det.ermines both amplítude and phase informatíon from normal time-

averaged holograms. The combination of modes of different phase was

shown by Molín and Stetson [86] to result in the addítion of theír

corresponding fringe functÍons as if Ëhey weré phasors. Shajenko and

Johnson [87] introduced stroboscopíc holographíc interferometry to

"fteeze" the phasor moÈion at any portion of the cycle. Miler tB8]

ímproves the theory by assuming the object moves línearly during the

exposure period rather than remainíng statíonary. Takai eË a1 t89]

show thaÈ by sinusoidally modulaËing the amplitude of the reference

beam the characteristic fringe function is JrcosA where A is the phase

difference between the phasor vibration and sinusoidal rnodulation and

J, is the fírst-order Bessel function. Hence phase information ís

observable as a brightness varíatíon of the frínges.

Aleksoff [90] introduces phase modulatíon of the reference
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beam ín lieu of amplitude modulation and the theory and techníque are

analysed in detail by Neumann et al [91] and Aleksoff 1,921. The

characteristíc fringe function is essentíally Jo (kA) where A includes

the phase difference between the phasor vibratíon and the bean mod-

ulatíon and k ís Ëhe propagation coristant for Ëhe laser líght. Mottier

t9:1 shows that by phase modulating the reference beam wíth a tríangular

function rather than a sínusoídal functÍ-on, fri-nges near points vibrating

with Èhe sarne phase reconstruct brighter than others.

Gupta and Aggarwal [94] report on a scheme for deterrnining

Èhe direction of motion of statíc deflections by a triple exposure

technique wíth a change of phase of n radians for one exposure. Stetson

t95] sËudies the effects of beam modulation on fringe loci and local-

izatÍon in tíme-average hologram interferometry of phasor vibrations.

Lokberg and llogmoen t96] extend the theory of vibration phase rnappíng

to electronic speckle pattern inÈerferometry. Belogorodskii et al 1,971,

Butusov [98] and Yoneyama et a1 [99] use a small mirror on a point of

the vibrating surface to phase modulate Èhe reference beam thereby

separating rigid-body motion from oÈher vibration. Fínally, LevítË

and Stetson [100] describe a phase-mapping procedure to generate

vibration-phase conËour maps.

The theory of time-averaged holographíc interferometry hras

first applíed to three-dimensional vibrations by Líem et al [101].

They reported a sÈrange shift in the calculated geometrical vibration

over the surface of a cylinder when illuminated from various posítions.

Tonln and Bies [102] explaíned the anonaly by pointlng out that Ëhe

cylinder vibrated with components in three orthogonal dírections and

hence the application of the normal one dímensional theory of Powell

and Stetson r,{as erroneous. They subsequently extend the theory of

statíc holographíc interferometry of surface strains in two dÍmensions
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[103] to simple harmonic motion in three dimensions and successfully

apply it to a vi-brating beaker and wine glass r¿ith no strange geom-

etrícal shíft. Tuschak and Allaire [r04] determíne rhe radial and

longitudinal components of an ultrasonic resonator using a sí.mp1e

extension of three dimensional statie holographic theory. Tonín and

Bies [105] improve Èhe method of analysis by assuming the víbration

Èo consist of a seríes of orÈhogonal superposed modes and determine

the amplitudes by the urethod of least squares.

Tonin and Bies [106] extend this to include phasor víbrations

1n three dimensions and show hov¡ the amplitudes and phases of super-

posed and coupled modes (phasor vibrations) are determined rrrithout

modulating the laser beam. The theory also obviates the need Ëo

arbitrarily assign signs to frÍnges, a meÈhod reported by vlasov and

Shtanrko [107]. Finally, Archbold and Ennos t1O8l consíder two-dimen-

sional víbrations of two frequencÍes.

The theory of holographíc interferometry applíed to general

three-dimensional surfaces requíres that the angles subËended by the

ill-unination and observaËion vecËors to the surface normal be knor,¡n.

The author believes the best way to achÍeve this ís by application of

contour holography. rf the surface conÈour and the geometry of the

optícs are known then the required angles may be determíned. Hence

a complete vibrat.ion analysis would requíre a set of hologram pairs -
a contour hologram and a vj-bratj-on hologram - which uray be taken sequen-

tíally. The list of references includes methods of hologram contouring

using single frequency lasers [109-]-201, dual frequency lasers ]L2L-L231

and Íncoherenr light IL24l.

r.2 VIBRATIONS OF CYLINDERS

Most of the three dimensíonal holographic theory in this thesis

wlll be applied to víbrations of cylinders as they provide símple curved
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surfaces and three dimensional motíon which i.s analytically predictable.

The flexural vibrations of perfectly cylindri-cal shells is rqell docu-

mented by Leissa If25] who sunmarízes ten theories which generally

give results too síurilar to be experímentally distinguished. The

Arnold l{arburton theory ín Èhe authorrs mind is perhaps the best

reported in the literature [126-130].

The theory of vibrations of distorted cylínders is reported

using exact methods, semi-empírícal methods (e.g. Rayleigh-Ritz, Least

squares) or finíte eleme-nt methods. The methods consistent r¿ith the

holographic theory developed in thís thesis are those which assume

soluÈions which are eígen functíon expansions. Such methods applíed

to one-dlmensional beam problems are lísted in the references [131-135].

In particular, the Rayleigh-Rítz method is excellently described by

Hurry and Rubinstein [136, chapt. 4].

Firth t137] predicts the generation of extra-ordínary modes

(or superposed modes) by descríbing irregularities ín a shell. as a

Fourier s,eries in the radius and hence solvíng the Helmholtz equation

by assumÍ.ng solutÍons to be a combínation of the mode.s for an undisËorted

cylínder. In a símilar way, Rosen and Singer [138'139] solve the

Kármán-Donnell non-linear shel1 equatíons to study the effect on Ëhe

resonant frequency of the superposed modes. Yousri and Fahy [140] gen-

exa!íze Èhe distortion to include anisotropies ín the radius of the

cylinder, wall thíckness and Youngrs Modulus. Courb:'-níng all three

dlstortions into one term and solvíng the Reissner-Naghdi-Berry equaËÍons

Ëhey obtal-n an expression for Èhe radial displacement. The Rayleígh-

Ritz meÈhod ís used by Toda and Komatsu [141] and the finite difference

method by Br:ogan et al Í1421 to determine the resonance frequencíes

and mode shapes of a cylinder with cut-outs. Tonin and Bies [143]

determine the resonance frequencíes and mode shapes for a cylinder of
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variable hrall thíckness usíng the Rayleigh-Rltz method. and verífy the

theory usíng holographíc interferometry.

1.3 SOI]ND RADIATION FROM VIBRATING CYLINDERS

Holographic ínterferometry has been applied to the study of

sound radiation from plates by Hansen and Bíes lL44l and pipes by Kuhn

and Morfey [145]. Measurement of acoustíc power by holographÍc

methods Ís possible íf Èhe radial component of vibratíng modes is known

[146 chapt. 6, L47]. The theory of sound radiation from a cylinder

of finÍte length ís presented by Junger and Feit tl48l but no experi-

mental evídence is available ín the literature LL4g-r52] to support

thís theory. However, experiments have been conducted by the author

and results are presented in Appendix VI.
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CHAPTER 2

TIME-AVERAGED HOLOGRAPIIY

The theory of time-averaged holography for staric displac.e-

nents ís extended Èo include three-dimensional vibrat.ions of the most

general kínd at a single frequency. Additíonal1y the Theory of

Generalízed Least Squares ís introduced to solve the characteristic

equatíon. The determination of component amplitudes and phase is shom

to be possible using thís method. Also the experimental equipment

used in thís research and method of analysis are described.

2.L THEORY OF TII'ÍE-AVERAGED HOLOGRAPHY

2,L.I The ArcumenL of the Characteristic Function ín Spherical

Co-ordi-nates

A spherical co-ordinate system ls used through the discussion

to follof as iÈ is r,rell suited to descríbe the optical arrangement and

is amenable for use ín descríbing the curved cylindrical surfaces of

principal concern in this work. Additionally the spherical co-ordinate

system, being curvilinear, is most convenient for describíng the small

scale víbratory motíon of concern here as ít reduces locally to a

Cartesian system. Finally the optícal process to be described requires

that a number of holograms of different orientations be taken and ínter-

preÈed. This enables the Least Squares procedure to converge with

confÍdence and hence use is made of a double turntable arrangement -

one turnt.able rotar-es the object about a horizontal axís and simult-

aneously rotates on anoLher turntable with vertical axis, not unsímilar

to a turret. This arrangement is besÈ descríbed by a spherical co-

ordinate system.
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consider any point on a surface at rest as the origin [see

Fig 2-1 (a) l. The co-ordínate system for the vibraríon Ís defined

such that the principal co-ordinate e, Ís the surface normal, a choice

díctated by the fact Èhat in acoustics (an area in v¡hich the author is
concerned), Ëhe vibraÈion component normal to the surface is responsible

for the generatíon of sound. rf a Èíme-varying force of constant

frequency ís applied to the object, the point under consideration

executes Ëhree-dimensíonal harmonic motion wíth a locus most generally

descríbed as an e11ipse. rn addiÈion, the vibration is assumed to be

statistically statíonary. The locus of víbration is then a spatially
oriented plane ellípse. The time-varyíng vector which descríbes the

motion of the point is

g (r) c t e (2.L))( + a(t)t(b+ ) "2
tJI

where the orthogonal components of vi-bration c(t), b(t) and a(t) are

time dependent. The choice of letters e,b,a and theír order is
borrowed from shell theory for cylinders where they correspond to the

radial, tangential and longitudínal components of vibration respecËively.

Fig. 2-]- (b) shor,¡s the co-ordinate system for the optical
arrangement. 

lr i" the illumínat.ion vector, K, the observatíon vector

and as ís usually the case ín time-averaged holographic theory 0, and

02, the angles subtended by !, ."a y t" the plane ere2 are measured

from the surface normal e, and positive in the directíons indicated.

The opÈical path difference ís t33l

o. p. d. (2.2)
k

where k Ls the wavenumber (2r/X) of the laser radiatíon and fl is Ehe

argument of the characterisÈic function M(o) [33,86]. From the geometry

Kr)(K2 I
CI

k
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of Fig. 2-I (b),

\ = -t cos0, "t.0r1, - ksínOrsinS, uz - k cos0, e, (2.3)

K2 = kcos0rsín{r..'t -ksinO, sínQre, * kcosôre, (2 .4)

Substituting equarions (2.T), (2.3) and (2.4) inro equation (2.2) gives

Ëhe general result

fl = .(t) (cos 0, sin 0, + cos 0, sínþr)

+ b (È) (sin 0, sín 0, - sín 0, sin g, )

+ a(t)(cosQ, * cosSr) (2.s)

2.I.2 Coupled and Superposed Modes of Víbration

rn general,vibration is a function of spatial varíables as

well as tíme dependent. rn order to make the analysis praetical, the

vibration is analysed on a seríes of surface contours whích are defíned

as the lntersection of the object surface and the hyperplane 0 = 0o

(see Fig. 2-2). rn the case of a cylínder, for example, the surface

contour Ís a principal circumference. Hence the location of any point
on the surface contour is vlrtually defíned by a síngular angular

co-ordinate f and the toËal vibration determi-ned "slice-wlse" over the

entire surface of the object. The vector d describing the vi-braËion

of points on a surface contour is

9(q,t) = c(E,t).J + b(6,t)e2+ a(t,r)es (2.6)

and the components of víbratíon may be expressed as eigen functions

[84,85] of the form



19.

z

I

ø\

I Surlace'contour

0

FIG, 2-2 CO-ORDINATE SYSTEH FOR THE OBJECT SURFACE

The surface contour is the intersection of the objecÈ surface and

the surface ô = 0o.

\
Y

x



c (8, t)
I

= I .t (6) cos (urt + yí¡
i=1

20.

(2.7)

(2.8)

(2.L0)

(2.LL)

I.
b(E,t) = I ¡i(E)cos(or+ßi)

í=1

(2.e)
i=1

Taking the c component as an example the i-th term in equation

(2.7) is a mode and the I Èerms are referred to as COIIpLED TEMPORAL MODES

since they are generated by the clrivÍng force of constant frequency and

couple together with a time-invariant phase relationshíp, yí. The

anplitudes of rhe coupled teuporal modes - "í(E), tí(E) and ai(E) - vary

over the surface contour and may be expanded into a trigonometric series

[102] of order (N+ 1) rhus

I
a(q,t) = I "í(l)cos(t¡r+aí)

.N

"t(E) = I t{sir,1níg) + yico"(r,íE) l
n=o

.N
tl(E) = I twlsin(r,Í6) + zicos(.,1g)l

n=o

ri(E) = I t";"rr,(r,ig) + icos (r,ig) l
n=o

(2.L2)

The form of this expansíon is particularly relevant sínce the vibration

of any structure may be consídered as a combination of normal modes

[83,84]. The (N+1) terms ín each expansíon are ca1led supERposED

SPATTAL MODES since they do nor exist independently in the physical

sense but describe mathernatically a complex spatíal function of period

2r.
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2,L.3 Theorv of Tíme-Aver aged Holosraphv for One-Dimensíonal Víbratíon

The following rígorous derívatj_on of the theory of time-

averaged holography for one-dimensíonal símple harmonic moÈion of a

constant frequency is due to Butusov t5]. The complex analyÈical

signal in the plane of the hologram H is t3l

dS

where A(S) is the anplitude of the laser light in the plane of rhe

object surface S, Z ís the separation between object and hologram and

(2.L4)

(refer to Fig, 2-3). If the vibration d(S) ís normal ro the surface

and executes sírnþle harmonic motion of frequency ul then

R Ro (II, s) + g (H, s) sÍnr¡r (2. ls)

Hence equaÈion Q.ß) becomes

-.i I
A(H,t) = * )

A(H,t) = å lJ ocr 
"

S

iZ sin 5

(2.13)

(2.L6)

(2.L7)

J 
octl eikR 

(H's 
' 
t)

S

ft = lz2 + (trr-sr)2 ,- "")'1"(h+

ikRo (H,S) Íkd(H,S)sint¡t
e ds

where t4l

with 0, and 0,

SubsÈituting

d(H,S) = d(S) [cos0l (H,S) t cosOr(H,S) ]

defined in section 2.L.L.

e

equation (2.16> becomes

íj5 (2. 18)
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(2.Le)

(2.20)

(2.23)

(2.24)

I J (kd) e

A(H,t) = Jo(kd)Ao(lt) * i",r, 
(ra¡"ij'tAo(H)

#o

æ
ij trlt -i

kz A(s) e
ikRo (H, S)

dS
j =-- j

where the Èerm in the square brackets ís sírnply the origínal complex

wave amplj-tude denoted eo(n). Hence,

S

j
j

where J-_ ís the n-th order Bessel function of the first kínd. Forn

time-averaged holography, Èhis fíeld is averaged over time t thus

1.

A(H) = i A(tt,t) dt (2.2L)

Assuming t>>2nfu then the second term of equation (2.20) is zero and

the average fíeld A(H) becomes

Ã1u¡ = Jo(kd)Ao(H) (2.22)

That is, the surface of the reconstructed object ís modulated by the

Bessel function of zero order which is also called the characteristic
functíon for this víbration. In general the characËerístic function ís
defined as ta01

M(o) = + e dr

I

f iCI

whereupon equation (2.22) is

Ã1u¡ = M(ç¿) Ao(H)

The argument of the characterístic function denoted fl is equal to kd,
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r^ríLh d given by equatíon (2.L7), for the vibrat-ion consjdered here.

2.1.1+ Theorv of Time-Averased Holoqraphv for Three-Dimensicnal

Vibratíon and Application

In section 2.L.1 the argumenË of the fringe functíon Q was

derived for three-dimensional vibration. 0n substituting equations

(2.7), (2.8) and (2.9) into equations (2.5) and (2.23) and denoting

the geometrícal faetors ín equatíon (2.5) as

KO = cos0rsinó, * cos0rsin0,

SO = sinOrsin{, - sinOrsinO,

Qn=cos0r*cosQ,

flrsín rrrt ]

(2.2s)

(2.26)

(2.27)

then,

where,

1 ft ík[Qrcos or -
" 

_ _ jo"

(Bi)sq + aisín(ot)Qol
I

n, = ,1' ["t"ir,(yt)Kq + bas
l-=I

dt

OS+ bicKr¿
qI

I
= I l.tcos(yt)
i=1

( ß1) sq + alcos(oi)Qol

t_n

whích is of the same form as deríved by Molin and Stetson [86] for

two one-dimensional vibrations in phase quadrature. The solutíon of

equation (2.26) as deríved in the latter paper is

M(CI) = Jo{k(a1 + a3)%}

Hence for every point q on the surface contour,

(2.28)
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Õ2

__9.

kz

+[

I

i--1

1

rT (.í"os (yi) r (ßa) sq

)sq

OS

q

K = cosO * cosOq I

S = sÍnO - sin0q I

=0

+ "i"o=(oi) Qo
2+ bic

q

f,.t"rr'(yt)r + bisín(ßi , i .íf a sl_n(c )Qql2
l=

which is the general solution for time-averaged holography of three-

dlmensi-onal vibrations of a single frequency where the spatially
varying amplitude".i,bi 

"rd ri are given by equations (2.10) to (2.r2),

The varíables whích are deÈermined from tíme-averaged holograilìs¡ are

nO' *q, Sq, Qn and 60. The other variables are the unknowns.

EquaËion (2.29) will now be applied to some cases of part-

icular interest. For simpliciÈy, the surface contour is assumed to

IÍe on the XY plane (see Figs. 2-L and 2-2) and hence óo = 0 t = þ2 = n/2.

Equations (2. 25) become

(2.2e)

(2. 30)

2

2

Qn

SPECIAL CASE 1

The sirnplest ki-nd of simple harmonic motion in one dimension

is sÍngle mode recÈilínear vibration. An example of this is the vibration

of a cantilever or simply-supported beam. I^Iíth r= 1 and. bl = al = 0,

equation (2.29) reduces to

c (cos0 * cos0
2k )I

which is the classícal resulr t4] (the subscrlpt q is assumed).

(2.3r)
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SPECIAL CASE 2

Consíder a number of one-dimensional modes with non-zero phase

dífferences. For this c.ase, bí = ri = 0. Equation (2.2g) becomes

ç2

yz [(clcosyl + czcosyz + ...)2

f (clsín11 + c2siny2 + .. )\(coso l. cosO 2 (2.32,>
2I )

Èhe term in the square brackets ís also the square of the phasor sum of

Ëhe índividual vibration components. Ilere is proof of the iurplication

of the statement made by Stetson and Taylor [84] that "the magniÈude of

the phasor sum of the argument functions corresponding to e.ach of the

component motions (is) the argument function for the combíned moÈíontt.

SPECIAL CASE 3

The simplest kind of sírnple harmonic motion ín three dimensíons

is single mode recÈilinear víbration. An example of this Ís the vibraÈion

of a perfect cylj-nder. I^Iíth I= 1 and yl= ß1, equation (2.2g) becomes

* = .t(coso, * cosor) + bl{sirre, ) (2.33)- sinO
2

which is exactly the expression derived by Tonín and Bies [102] and applied

to a beaker vibrating in a Love mode of order t= 2. Fig. Z-4 (a) is a

pictoríal represent.ation of the way 1n which the varíables of equatíon

(2.33) contribute Èo CI/k whích determínes Ëhe order of Ëhe fringes on

the hologram.

SPECIAL CASE 4

The motíon havíng the next highest degree of complexity is

simple elliptíc motion which may also be descrfbed as a single coupled

mode (I=1) with the c and b components out of phase (yI# gl). Hence

equation (2.29) becomes
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Single coupled mode.
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Simplest kind of elliptic motion.

Two coupled modes.(c)
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with a=yl-ßI 12. :S)

2-4 (b) shows how cl, bl and A in partícular ínfluence the frínge

determined bV OO/k. It is assumed that the phase difference A

ín equatíon (2.35) remains invariant over the vibratíng surface. This

is represenÈed by an angle subtended from a chord AB in a circle of

dÍameter 2bl (or equivalently 2cl) which is the maximum value of

br(sine, - sín0r). The order of the frínges on Èhe object surface is

represented by the position of poínt P on the clrcumference of the círcle.

This sirnple phasor-líke picture clearly shows the role played by A. If

A ís zero or a multiple of n then Fig. 2-4 (b) reduces to Fíg. 2-4 (a)

and the variation of An/k wíth A is small and hence errors in the deter-

mination of A from CIn/k will be largest for these cases.

It is interesting to note that the characterisÈic equation

(2.34) for a single coupled mode r¿ith Èhe c and b components out of phase

is sirnilar to that for two one-dimensional vibraÈions of the kínd

considered in Special Case 2. Equatíon (2.32) becomes

n2
__9. (crro) 2 + {c2xr¡2 + 2eosa (clKo) {c2ro) (2.36)

(2 .34)

Fig.

order

k

with L=yr-12 (2.37)

The vlbraÈions corresponding to equations (2.34) ar.ð, (2.36) are dist-

lnguished by varying 0, and 0rr the íllumínation and observation angles

and hence Èhe deÈermination of the motion is unambíguous.

SPECIAI CASE 5

ç2
__q-

k2

The next order of

is two coupled modes (I = 2)

(c ltco) 2 + (u t to, ' * 2cosa {c lro) (b l sq)

complexity of three-dimensional vibration

for which the phases of conponents wíthin

2
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a mode are identical but there exists a phase dÍfference between the

modes l-.e. yl= ßL, "(2 = ß2, \r +"(2. The path trajectoïy is elliptic

as in special case 4 but the total motion is the phasor additíon of

four components. An example of such motíon ís Èhe simultaneous

excitatíon of two modes in a cylinder. Equatíon (2.29) becomes

Q2
_9.
y2

("rr +bls )2 + ("2xqqq +u2s )2q

* 2cosa("tKq + blsq) ("'Kq + b2sq) (2. 3B)

with a=yr -.(2 (2.3e)

Again, the method of formation of the fringe orders is represented by

the phasor-líke diagrarn in Fíg. 2-4 (c) which is a combination of Fig.

2-4 (a) and 2-4 (b). As in Special Case 4, a one-dimensíonal phasor

vlbration considered ín Special Case 2 exists which ís described in

a simílar way Èo equations (2.38) and (2.39) but the two vibrations

are dÍstínguished by the geornetrical factors of equation (2.30).

For three-dÍmensj-onal phasor vibration the statement of Stetson

and Taylor quoted previously nay be generalízed to:

The magnitude of the phasor sum of the argument functions corresponding

to each of the component motíons of three-dimensional víbratíon ís the

argument functÍon for the combined motion.

Hence providíng a number of holographic interferograms are taken of

the vibrating surface there is no ambiguiÈy in resolving the motion.

2.L.5 The Theorv of Genera]-ized Least Squares

The theory of Generalízed Least Squares presented here ís due

to Spendley [153] and Powe11 [154]. Given a function O(R,Ç) invotving

parameter values R = R(x, , "rr) and independent variables

E = E(81, , Ek) the deviatíon of an observed value yo from a



predicted value 0(R,E ) is of the form
q

R) ly - 0(R,6 )l(f

30.

(2.40)

(2.4l-)

(2.42)

(2.43)

q q

where f is called the Residue Funetíon. rt is required to find the

set of parameters R that wíl1 minimize

q

T

ç = I tr
q=1

âf
(R) --s.

aR.
J

, i = 1,

(R) t'q

where t ís the number of data poínts.

T
Now

Thus

â6 =2Lf
âRj q=l q

af
q

,n

rt is assumed that E is a quadratic function ín the R. and hence fo

must be linear in Rr. EssenÈíally the derÍvation assumes that the

functíon þ has been línearízed about approximate values of the R.
J

However as the derivation shows this ís not, essential. rt is worth

notíng that monotonic convergence Ís by no means assured.

(R)

consË - ^(q)
JãR.

J

sâY, and if 6 is a correctíon vect.or whích is the dífference between

vector R and Ê. tor which Ç is minimum

1.e. ô = R R (2. 44)

then f. (R)-f (R)
qq *r!ro' t(n)

and substituting ín equarion (2.42),

(2.45)
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T n
+ I ô.c!q)1t_l-=Iq=zLtf (R)

R=R q=l

since ç(R=Â)

Rearranging, we have

= 0 (for all j)

Iô

)( âe
aR.

J

F(j)

^ 
(q)
J

R) . cj(q)

(2.46)

(2.47)

(2.48)

(2 .4e)

(2. s0)

(2. sl)

(2.52)

' 
trto'

=iísaminímum.

n T

I
T

-Irqlr q
9=1

Io .(s). .(a)r-J cn> . cr(e)
i=1 l_

or ín matrix notation

F

I
ô f F

where f(i,i)

and the jth element of the colunn vector F is

= T .Ío).
q=r

T

-olrto'

Thus, given F and f, the correction vector ô is determíned and the

optimum solution ff. att"itt"d in a seríes of iterations.

2.L.6 Solution of the CharacËerístic Equation by MeÈhod of Least

Squares

As equation (2.29) is non-linear in the parameters, the con-

ventíona1 theory of least squares ís not dlrectly applícable. Linear-

ization of the characteristíc equation results in an exÈremely large

number of unknor^m coefficients which require an even greater number of

data points for a solution. By using the method of GenetaLLzed Least
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Squares, however, li-nearízation ís not required and the available data

ls used to its fullest advantage.

The resídr.re function, from equarions (2.10) , (2.1.l-), (2.L2),

(2.29) and (2"40) is

INtI{I
i=l n=o

+[

âfr
c*(9) = 4= zl. IJ ,*o i=

n

Next, the y componenÈs,

for j=1, r(N+ 1)

f ,jsirr(rritn) + yicos (oign) Ìcos (yi¡rq+. . . +. . .12

+ yícos (rriEn) Ìsin(yí)rq+. . .+. . . l2

Q2
q

y2

íi-c cos(y )
1

*o*. . .+. . . lsin(nlEo)cos (1ø¡rn

"i"l-rr(yi)Kq+. 
. .+. . . lsin(n¿Eo) sin(vg)r,

q

IN
I t f xasín(na"nl-=I n=o

E)q

Note there is no need to allocate a sign to fJ as ín references"q
and [107] sínce it appears as a square in equatíon (2.53). The

of rnatrix G are the derivatives of equation (2.53) with respect

unknown and the ro\Áts correspond to each datum, q. Fírstly, for

componerrts,

(2.s3)

[102]

columrs

to each

the x

(2.54)
I

+21,L
i=1



af
c(q). _ q = 2["j+r(N+1) ,rl ,lr.t.o"(ví)Kq+. 

. .+. . . lcos(nrEo)"o"{y¿¡ro

"i"irr(yí)Kq*. . .+. . . lcos {n¿Eo)sin(y¿)xo
I

+2tl
í=1

33.

(2.ss)

for j=1, , r(N+1)

And, for y the phase,

(q)
j+2r (N+1)

âf
G

âY

o= --i,
í"o" (yi)rq+. . .+. . . l.[rn"i.r(y¿)

I__21)c
í=1

(2. s6)

for j=1, ,Ï

Síurílar equaËions for wrzr$ ar.d urvrq complete matrix G.

If the number of data points in t, the number of superposed

modes (N+ 1) and the number of coupled modes I then, G ís of order t

by 3I(2N+ 3), f is a 3I(2N+ 3) square matrix and F a colurnn vecÈor of

order 3I(2N+3). The vector R describíng the parameters is

R = ("1,"å,...,y| ,yr2,...,yÌ ,f2,...,r| ,rtr,...,or) (2.57)

2.2 EXPERTMENTAL EQUIP},IENT AND DATA ANALYSIS

2 2.I HOLOGRAPHY

A schematic of the optical system used Èo generate holograms

is shown ín Fíg. 2-5, this system being common to almost all experiments

reported in thís thesis. Depending upon availability at the tíme of

the experiment any of the following Helíum-Neon (63281) lasers were

I
+zt. l

i=1
císin(yí)Kq*. . .+. . . 1"lro"o" {"¡,[)
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used - Lasertron LE105 (15mw) , LE2O5 (5mhr) or Merrologic MV910A (lml^t).

The optical powers were monitored with a Tektroníx J16 dígital photo-

meter. Each spatial filter is fitted wíth a 1.0¡r pin hole which was

measured by ray-tracing to be 35 tlmrn behind the lens. Holograms are

recorded on Ilford He-Ne/1 (5Oerg/cm2), Agf^ 10E75 (50erg/cm2) or

Kodak L3L-02 (Serg/cm2) plates nomÍ-nally lmm thick and 120mm by gOmrn

in slze. Exposed plates are developed for 7 minutes in Ilford Microphen,

Agfa G5c or Kodak Microdol-x developer. Exposure times varíed from

20 sec to 120 sec depending on laser por¡rer, plate and developer. The

best combínaËion is Kodak plate with Agfa G5c developer. After devel-

oping, the plates are immersed in a L% soluËion of Acetic Acíd stop

bath for 5 seconds and fixed i¡ a l/L solution of llfofix Acid Hardening

Fixer for 10 minutes. The plaËes are r,rashed in running water for 15

minutes, ímmersed in an B0Z solution of industrial alcohol for 5 ninutes

to remove the antí-halo coating and then dríed.

Duri-ng exposure, the beam splítter ís set for a 4lL ratio of

reference to object beam intensity. On reconstruction, all the laser

light is direcÈed to the reference beam and the ímage photographed with

a Minolta sRT303 35um camera loaded wirh rlford Hp4 (400ASA) or Fp4

(125ASA) film. The aperture setting on the camera is important - too

low a setting wíl-l result in broad fringes due to varíation of the

observation angle and conversely a high seÈting resulÈs in very long

exPosure Èímes. The f5.6 sÈop results in less than .02rad observation

variation and maximum exposure tíme of 60 sec and was used throughout

the experiments.

The object under invesÈígation is lightly spray-painted wíth

natt white primer which ensures an optícally diftuse surface. In some

experíments retro-reflectíve paint was used but with a different optj-cal

system. The object Ís placed on a lovr-profíle turnÈable graduated

in degree increments. A translation table and hologram mask were
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constructed to enable six holograms to be recorded on one plate which

avoids the problem of cutting the plates. The Ëranslation table and

t'windows" of the mask are so arranged that each hologram is taken from

the same position ín space which enables the same geometry to be used

in Èhe analysis. Fig. 2-6 is a photograph of Lhe optics and Fig. 2-7

of the translatíon table and mask with a typical hologram Ín the fore-

ground. Unless othenrrise sÈated, seven holograms are taken of each

mode of the vibratíng object at 15" angular increments of the turntable,

a procedure which uses türo plates.

2.2.2 Modal Drivíng System

To prevent distortíon of the modes electromagnets r¿ere used to

excite the object withouË contact.. These are bar magnets wound with a

coil of wlre and positioned close to the surface of the object hence

provídíng a steady force which is then modulaÈed. For Ëhe ferromagneti-c

objects no problem hras encountered, however, for the non-ferromagnetic

objects the steady biasing force could only be índuced by fastening a

sroall piece of ferromagnetíc materíal to the object aÈ the point to be

driven. Thus although a metallíc surface may be driven with an elect-

romagnet making use of the fíeld of Índuced eddy currents [155] the

resulting forcíng function wíll alr"rays be unidírectÍonal, one of

attractÍon or repulsion dependíng upon whether the surface is para-

mâgnetic or diamagnetic and in consequence the r¿ave form of the forcing

functíon will always be rÍch ín harmonícs whích is not desired.

The spatíal dístríbuÈíon of the excitation force is often an

lmportant facÈor in determining the mode shape. Shírakawa and Mizoguchí

t1-56] determine the mode shapes of a cylinder excited by a periodíc

point force. For a slightly imperfect cylinder for example the node will

usually orient iÈself wlth Èhe asymmetries no maÈter where the force ís

applied. It is not necessary to excite the modes at the antl-nodes. By
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FIG, 2-6

Optics for the generatíon of holograms'
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The translation table (T), hologram stage (S), typical hologram (H)

and rnask (M).
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contrast, for a neai-perfect cylínder a large degree of modal coupling

is evident for antinodal excitatíon and is only reduced by posítioning

Lhe drivers close to the shear-diaphragm ends thereby decreasing the

magnitude of Èhe cross-correlaLion between the node to be driven and

the spatial fourier components of the forcing function.

As the holographic exposure time could be as long as 60 sec

the mode under study must be stable for that perÍ_od of tíme. For

modes of high Q use of a dríving oscillaËor is ímpossible due to problems

of drift. Ilence use is made of a technique employ,íng a nethod of

posítive feedback to create an electro-mechanical oscillator which is

self-exciÈed and very stable [157]. A schematic of the system is shoum

Ín FÍg. 2-8. The heart of the feedback system is the resonance unit

designed by the author. Thís is essentÍ-al1y a voltage controlled

arnplifier whose gaín is determined by the 1evel of the input signal.

If thís increases then the gain of the unít decreases and vice-versa.

Hence the resonance unit provides the required level of output signal

whích will rnaíntain a constant ínput level. Additionally a 0-360 degree

phase shifË circuit ís incorporated into the uníÈ to enable correct

phase matching.

A Bruel & Kjaer (B & K) miniature accelerometer type 8307

monitors the vibration 1evel wíth a minimurn of loadíng (the weíght of

the accelerometer is only 0.4 grams). The signal is anplified by a

B & K spectrometer type 2L12, fed to the resonance unit and then to a

power anplif ier and the elecËromagnet. The gain of the por¡rer arrplif ier

is set such that the system gain ís greater than unity hence ensuring

sustained oscillation. However, Íf Ëhe system gain is too hígh the

vibration wil-l- hunt. To select any mode, the spectrometer thírd-octave

band filter is set to include the frequency of that mode. The phase and

gaín of the resonance unit and povrel: amplífier are then adjusted for

optimum oscj-llatory stability. Finally, the leve1 of víbration ís set
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by adjustíng the DC conditíons at the gate of t,he voltage controlled

amp lifier ín the resonance uníÈ. The system ís so successful that a

mode may be kept stable for hours wiÈh no frequency or amplítude

varíation (as limíted by the accuracy of the instrumenÈs). A photo-

graph of the equípment is shovm ín Tíg , 2-9.

2.2.3 Geometrv f or the Analvsis of Cvlinders

As the analysis of the reconstructed holograms is cornrnon to

all experiments excepting those in sections 3.1 and 3.2 ít wÍll be

descríbed here. The basic geomeÈry is due Èo Líem et al [101]. A

cross-sectíon through the optical plane for a vertically standing

cylinder of outer radius a, ís shown in tr'ig. 2-10 where the angles

0, and 0, are to be calculated for dark frínges on a photograph of the

hoJ-ogram reconsÈructíon. The perspectíve of the object is taken into

account by nakíng use of the pin-hole camera concept. The process of

phoÈographing the reconstruction and printing the photograph with an

enlarger is considered equívalenË to phoËographing the reconstruction

with a pÍn-hole camera consisting of an aperture of diameter D and a

screen. If D is made smal1- compared to the distance AÀ by suit.able

choice of the camera f-sËop and the size of the image formed on the

Ímaginary screen ís rnade exactly equal to the size of Èhe image in

the photograph by suitable choice of the distance X then fírstly

considering a plane photograph of the cylinder

& =^u =^'XAA
(2. s8)tany

where a__ ís Èhe radius of the cylínder ín the photograph and thev

asÈerísk indicates the maxímum value of the angle y. Now, for any

other poínt on the surface of the cylinder
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H H'^,
tanY ='v

^ AA.av
(2.se)

by equati-on (2'58). The angle 0 is calculated by applicarj.on of the sine
rule for triangles hence,

AA
^2 (2.60)

ofr

IfPis

and o is

rule,

orr

sÍn[n - (tr/2 - 0) - V] síny

o = cos 1(aesiny/ar) *1 (2.6r)

the distance from the cylinder axis to the poínt of illuninaËion
the angle subtended by thÍs 1íne and AA then again by the sine

^2
sin0 I sÍn (0 Iu- (r/2 - o)l) (2.62)

P

I

or = tan t{r"o"(a+0) 
/laz - psín(o.+e)l} (2.63)

and 0, ís gíven by

0,=n/2-0+y (2.64)

Hence using equarions (2.59), (2.6r), (2.63) and (2.64) rhe angles g

lwhich is equivalent ro I in equation (2 .2g)], 0, and 0, are determined

for each fri-nge along the surface contour which is the íntersection of the
cylinder and the optical plane. rf the cylinder ís rotated an amount

so radian" (so ís positive antíclockwíse in Fig. 2-Lo) then the values of
0, and 0, determíned from equations (2.63) and (2,64) pertain to the
poínt (0+ SD) radians from the orígÍ_n.

For this arrangement the geometric tern QO is zero for all points
along Èhe surface contour and reference to equatío,- (2.29) shows Èhe



45.

component" "i ""rrrrot 
be deÈerrníned. This is overcome by positioning the

cylinder on its side wíÈh its axis in the optlcal plane. The surface

contour ís now a straíght line paralle1- to the generator. Reference to

Fig. 2-11 shows

L/2 L /2.*
EanY

v (2.6s)
AA- a

2 X

where L is the length of the cy1-inder in the photograph without rot-v

ation (Sl = 0) and the asterisk again indicates the maximum value of

the angle y. Now, for any other poínt on the surface contour,

H H.L
fanY=-=-' X L__. (AA - ^z)v

(2.66)

(2.67)

(2.70)

(2.7L)

which is true even íf the geometric centre of the cylinder does not

intersect the axis of the turntable. From Ëhe sine rule,

Y AA
D_=

siny

A1so,

and 0r=y-lSo

srnl(nlz * So - o - 0) + 0rl2 - Y - SD)l

and considering the ríght angled tríange of which YO ís the hypotenuse

Yo= ar/cos(So - 0 - 0) (2. 68)

Combining equatíons (2.67) and (2.68) and solving for þ gives

-tÖ=tan'
arsín(s+y) - AAsíny cos(SO-c)

(2.6e)
AAsinysin (So-cr) - a2cos(a+ y)

g, = arl ltan(rl2* So- d + 0) l

where 1, ís a length co-ordinate along the surface contour relaÈed to the



I
0

46.

tl
tl

a*tø
e

Çe

\oòe(

S¡

Y Cytinder
su rface

Poi nt
illumination

X

ì- t
>c f een

Hl+

GEOIVlETRY FOR INTERPRETATION OF HOLOGRAIT

PHOT0GRAPHS

AA

I

->l

FIG. 2-II

Cylinder llorízontal



angular co-ordinate E of equatíon (2.29) by the transformation

E = rt'/t

which ís solved for 0
1

to gíve

e = tan-t a2tan(a+ ó - tO) - Psin(o-sO)

47.

(2.72)

and the circular mode number n is replaced by the longítudinal mode

number m ín equatlons (2.10) Ëo (2,L2>. Also from the sine rule,

sin[n - Gr/2+ar+r/2*So-cx- 0+0)] sin(x/2n So- o- O+ n/2+o)

PY
D

(2.7 3)

(2.7 4)I
"z-Pcos(a-So)

Hence using equations (2.66), (2.69), (2.7O), (2.7I), (2,72) and (2.74)

the angles 0,, 0, and co-ordínaËe 6 are deÈermined for each frínge

along the surface contour.

For the cylinder horizontal, a vertícal poínting rod at the

centre of the turntable índicaËed the posítion of the origin j-n the

hologram reconstructions. In this case, P ís the distance from the

orígín to the point of illuminaÈion and o is the angle subtended by

this líne and AA.

2.2.4 Data Analysis

The measurenent of fringe posítíons on photographs is a

laborious process with only the aíd of a straight-edge. Hence a data

system was assembled by the author to digitise rringe co-ordínates,

store and edit the information on cassette tape and transmít the data

to a central computer.' .Fíg. 2-12 is a photograph of the data system,

Fig. 2-L3 a schematic of the system. In Appendix I a flow dÍagram of
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the microprogram is given.

Data is taken fr:om the photographs usíng a Summagraphícs

HI^I-L-l4-TT Data Tablet having two 11 bit bínary ouËputs corresponding

to the. X and Y c.o-ordínates of a cursor whích is moved over the tablet

surface, the resolution being .01 inch. The outputs are connected

to the second Programmable Perípheral fnterface (P.P.I ll2) of an Intel

8080 Microprocessor f itted with 4K of E.P.R.O.M. (Erasable Programrnable

Read Only }fernory) and lK of R.A.M. (Randon Access Memory) . Data ís

recorded with a Dígideck PI-70 cassette rrnit whích is Ínterfaced to

P.P.I. llL, A Video Display Terminal (V.D.T.) enables comnands to be

fed to Ëhe system via U.S.A.R.T. lfl (Universal Synchronous /Asynchronous

Receíver / Transmítter) at 2400 Baud (bits/second). Addítíonally

U.S.A.R.T. ll2 is connected to a CDC6400 courputer vía a 300 Baud Intercom

líne.

The sysËem has fíve modes of operation which are selected

sequentially with the ESCAPE key and the system responds by printing

Èhe mode title on the right hand side of the VDT screen. These are as

follorvs: '

1) ..INTBRCOM.. A two-way link with Èhe CDC6400 computer.

FÍles are created and programs run using keyboard c.ommands.

2) ..SEND DATA.. Informatíon recorded prevíously on cassette

ís Èransmitted to Ëhe computer at a rate of 300 Baud.

3) ..RECORD.. Keyboard characters or co-ordinates from the

data tablet are recorded on tape and dísplayed on Èhe screen aË the

rate of 50 characters per second with seven co-ordinate pairs (corres-

ponding to X and Y) per 1íne.

4) ..R-EPLAY.. Recorded information is revíewed on the screen

on1y.

5) ..EDIT.. Enables one character at a tíme to be reviewed

with the SPACE key or one line at a time with the CARRIAGE RETURN (C/R)
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key. To enÈer the EDrr mode from the REpLAy mode key E ís depressed.

To alter a character Ëhe ESCAPE key is depressed which transfers the

system to the RECORD mode.

!ü1th this data system, the digitising of holographic inform-

atlon is sirnplÍfied enormously. rn addition the data tablet has a

STREAM MODE selector by which the 'co-ordinates of the cursor are

transmítted at the system rate of 50 char./sec. Hence a fringe may

be digitiseci ín a matter of seconds sÍmply by tracing ít h7tÈh the

cursor on the data tablet.
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CI]APTER 3

PURE AND SUPERPOSED SPATIAL MODES

The theory of time-averaged holography for three-dinensional

vibrations outlined ín chapter 2 is applied to a vibrating clamped

circular plate, wine glass, stainless-steel beaker and four cylinders

with shear-diaphragm end condíÈlons. rn addition the analysis is

applied to a vÍbrating cylinder wíth a seam. The application of the

method of least squares will be shoum to make optimal use of the data.

This chapter also r¿í11 show step by step the ideology leading to the

formulation of the general analysis descríbed in Chapter 2.

3.1 CLAMPED CIRCULAR PLATE

3.1.1 Holosraphic and Geometric Theo ry

The study of vibration of clamped círcular plates by holography

is reported by Hansen and Bies lL44l. The nodes are charaeÈerized by

a sÍngle component of víbration normal to the plate with a complex

Bessel distribution over the surface. For ÈhÍs case equatíor. (2.29)

becomes

o

Ë = "(E). [cos0, * cosOr] (3.1)

The mode shape c([) as determined by time-averaged holography has been

shor,m tT44l to agree r,rell with Ëhe theory for 0, = 0, = 0 (retro-reflective

illumination). An experíment to be described will demonstrate the

validity of equatíon (3.f) for various illumínation and observation angles.

Consideríng fÍrst a change of 1llumínatíon directíon, Fig. 3-1

shows the geometry Ín the optical- plane. For fixed angles of il-luurin-

atíon and observatÍon, 0, and 0rr the resulÈíng surface contour is a
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a straight líne and usíng again the concept of the pin-hole camera,

H9"tanY=t=AA

s4.

(3.2)

(¡. ¡)

(3. s)

(3.6)

(3.7)

(3. s)

If L is the plate diameter then

L/2+VtanY^ = 

-
X

Ll2
AA

where the asterísk denotes the maximum value of y and L.,, is the plate

diameter 1n the phoËograph. Using símpIe geometry ánd combining equations

(3.2) and (3.3),

r. = H.LIL (3.4)
v

2
-t0

0

= tan (Ll AA)

(tana - h/Dp)and I

Consider novr a change of observation direct,ion accomplíshed

by rotatíng Èhe plate abouÈ a vertícal axis through lts centre.

Reference to Fig. 3=2 shows

-1= tan

HtanY = -

and from the sÍne rule for triangles,

Ll2 AA AA

siny* sÍ:r-(r/2- [St+yo])

Hence the angle of rotation of the plate as determíned from the photo-

graphs is
-lsD = .o"-'(2aasiny*/L) -.y* (:.s¡

cos (So + yo)

where if SD = 0 and L.,, ís the plate díameter in the photograph then ï
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is determined from

and hence

L/2

AA

¿ -t

L/v 2
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(3.10)

(3.11)

(s. rz)

(3.13)

(3.14)

(3.1s)

(3.16)

Y = tan

The other constants are determined as fo11or¿s using the sine rule,

L AA

siny sín(tr12 - [SO+y])

I = AA siny /cos (So + y)

and L P

sín( [o - to] - er ) sin(r/2 + e )I

hence P sin(a- SO) - L

0 = tan-t
I P cos (a - So)

and ty

or

o2 = so

where y ís determined from equation (3.7)

3.L.2 Clamped Plate Experiment and Results

A steel plate of thíckness 1.96rnm and radius 175.5mrn was

bolted to a steel structure using a circular rÍ-ng clamp. Since the

edges of the plate r¡rere sometimes obscured by thís ring,measurement

of the plate radius in the photograph,which is requíred ín the analysís,

was replaced by measurement of a 200rnm long Letraset arrow horizontally

oríentated and mounted on the plate whíIe another vertical arrohT marked

the centre of the plate. The plate was driven at íts lowest resonant
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(0'1) mode of frequency 150 Hz by an electrouagnet and oscillator (the

resonance unit had not been developed at this stage) and the vibratíon

monitored r¿ith an acceleromeËer and B & K spectrometer 2LI2.

Six time-averagecl holograms were taken r'¡ith different illumin-

atíon posítions (three positions on the righÈ of the holographic plate

and three on Èhe left) ¡,rríth the angle a varyíng from *50.5o to -52.8".

ReconsÈructions of holograms for these extreme cases are shown in

Fíg. 3-3. The results of the analysis ouÈlíned ín section 3.1.1 are

shown in Fig. 3-4 where the consístency of the experíment.al poinËs

clearly demonstraËes the valfdíty of the holographic theory.

Seven time-averaged holograms rnrere taken of the plate of

varying orientation but vibrating Ín the same mode. one hologram was

recorded with the angle sD = 0, three wíth so positive and maximum

angle near hf4 and three with SO negatíve and maxímum angle near

-T/4. Two reconstructions of the holograms are shown in Fíg. 3-5.

The results of the analysis outlined in sectíon 3.1.1 are shown in

Fíg. 3-6 where again there is favourable consisteney except for one

photograph for which it ís suspecÈed the oscillator drifÈed s1íghtly

1n frequency resulting in a drop in víbration anplítude.

Hence the theory of one-dimensional vibratíon, being a specíal

case of the general theory, is supported by analysís of a clamped

clrcular p1ate. Equation (S.f) ís demonstraËed to be completely suff-

icienÈ to describe this vibration.

3.2 I^IINE GLASS AND BEAKER

3.2.1 Holoeraohic and Geome tric Theory

Time-averaged holography was fírst applied to vibrating curved

surfaces by Liem et al [101] who analysed the vibrations of a circular

cylinder using the formula of equation (3.f) and reported a shift in

the aurplitude plots when the lllurnination and observaÈion vectors are
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FIG. 3-3

Reconstructions of holograms of a clamped círcular plate vlbrating in

the (0,1) mode and illumination angle a =* 50.5" (top) and q = - 52-8"

(bottom) .
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FIG. 3-5

Reconstructions of holograms of a clamped circular plate vibrating ín

the (0,1) mode and different orientation angles.
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varied and attempted to explain this in terms of localizatíon of

fringes and parallax. IË r"¡as subsequentJ-y shown by Tonín and Bies

[102] Èhat the shift was in fact due to a misinterpretation of the

rnotion of Èhe cylinder which is three-dimensional rather than one-

dimensional .

The surface contour of a vertícally mounted cylinder in the

optical plane ís a circle and the co-ordinate f ís equivalent to the

angular co-ordinate 0. Considering only this surface contour in the

analysis Ëhen the geometrícal factors are given by equatíons (2.25).

Addítionally if the radíal and tangential components of vibration are

respecÈively of Ëhe form

c(Ert) = C cosn(0 + e)cosrrlt

(3.17)

b(E,t) = Bsinn(0+ e)cost¡t

Èhen Ëhe characteristic equaríon Iequation (2.29)l ís

f = "(0) 
(cos0, + cos0r) + b(O) (sínO, - sínOr) (3.18)

where c(0) = Ccosn(e+e)
(3. le)

and b(O¡ = B sínn(e+e)

The experimenÈs of Liem et a1 were repeated for the case of a wine glass

and staj-nless-steel beaker, which are manufactured easÍly with high

accuracy.

rn the case of the wi-ne glass, freedom from distortíon ís
readily demonstrated by rubbing a moj-st finger around the líp which

excites the glass ín its lowest energy n= 2 flexural mode. Additionally
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the mode rotates around the círcumference if the fÍ-nger is removed

which clearly shov¡s the degeneracy of t.he mode. A scheme was devised

whereby the two holographic views could be recorded on the same hologram

using a plane mírror which was positioned such that the image of the

object was fully visible buÈ the Ílluminating beam díd not reflect onto

the object from the mirror.

Referríng Èo Fíg.3-7, whích shows the geometry in Èhe optical

plane, the centre of the imaged cylínder in the photograph (or on the

ímaginary screen defined ín Chapter 2, see f ígure) is at an angle ri.r

with respecË to the centre of the cylinder ín the direct view. The

corresponding poinÈ T, on the mirror is ín practice marked with a small

piece of masking tape such that ít coincides with the centre of the

ímaged cylinder when viewed Ëhrough the camera eyepíece. Also shor,¡n

fn the figure is the relative illumination direction K, and the relative

centre line È for Ëhe image and the orígins OO and O, which are defíned

for the dírect and inaged views respectíve1y. Fíg. 3-8 shows the geo-

metry for Èhe imaged view drarnrn inverted for comparison with Fig. z-LO.

In the case of the dírect view the geometrical analysis is Èhat

given in section 2.2.3, noËably equations (2.59), (2.6L), (2.63) and

(2.64). For the lmaged view it is clear that the photograph ís dístorted

due to perspective. From the sine rule for triangles (see Fj_gs. 3-7

and 3-8),

H X/cosV

- 
= 

- 

(3.20)sr-nY sinfn /2 + (v - v) ]

Solving for y,

-t H cos2V
Y=tan (3. zr¡

X - H cosVsinV

where V is compuÈed

mined. Denote "R ""v

from the lengths M,BB and CC and X is to be deter-

the radÍus from the image centre to the ríght edge
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of the cylinder in the photograph, r" "" 
the radius to the left edge

and d- as the diameEer of the cylinder in the photograph. Hence,v

L (3.22¡v

J

x srnY

cosV cos(v - y* )
(3.23)

L
¿

x s]-nY
and (3.24)

cosV cos(V+ y*)

where * I
/AA) (3.2s)Y = tan (a

2

and the asÈerisk denotes the maximum value of y. Combining equatíons

(3.22) ro (3.24) gives

a+adv
R

v

and from equation (3.20),

R
av

av

-1

X=
d cosVv_

&
sr-nY

I 1
+

cos(v - y*) cos(v+ vo)
(3.26)

The angle 0, ís determíned ín a siurilar way to equation (2.61) wíth

the resulÈ that

or = .o"-t ( tut + ccl síny /a") + y (3.2t¡

where, with respect to OO the origin of the dÍrect view,

0=0 -rþ (3.28)I

Hence using equatíons (3.21) and (3.25) to (3.28) the angle 0 is

computed for frínges in the ímaged view with respect to the origín of

the dlrect view. The observation angle 0, ís given by equation (2.64)

and the íllumination angle 0, by equatíon (2.63) bur with rhe angle o,
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replaced by (a - ú) thus

0r = Ëan-t{P.o" (a -ü + O)/[^z-psín(a- ú + O)]] (3.2e)

For n = 2 the radíal component of vibratíon is determined from

equation (3.18) as

oR-1
"(e) = * [ cosor* coso, -f.."[n(e+ e)](sÍno, - sinor)J (3.30)

for the direct víew; for the ímaged view (e - rl) is substiÈuted for e.

The coefficients B/C and e, the latter whích determínes the orientation

of the mode around the circumference, must be estimated in order to use

equatÍ-on (3.30). This technique is obvíously not practical in general

and hence a refinement is added in the following analysis of a beaker.

For the case

or 0 i r/2 (3. 31)2

equation (3.30) reduces to

c(O¡ = ç¿/ (zkcos 0r) (3.22¡

Thus, íf the beaker is set on a turntable with its central axj-s corres-

ponding to the turntable axis which is also normal to the opÈical plane

then a number of poínts on the cylinder may be analysed for whÍch

equation (3.31) ís true and the radial component determined separately

using equation (3.30).

Reference to Fig. 2-L0 and application of the sine rule to the

two trÍangles wíth sídes AA and P gives

AA a
2

sin(n - 0r) sin[0 r- (r/Z - e)]
(3.33)
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P
^2and (3. 34)

sin(n - 0r) sín[0t - (o - lr12 - 0]) l

whereupon elirnínating 0 by combining equations (3.33) and (3.34) rhe

result is
1 I 

-f"ir,(o+2e)=0 (3.35)¡ cos0 +fr cos(a+ 0) 
a2

which ís easily solved for 0 by Newtonrs method [158, page 26]. The

corresponding point on the photograph is, from equation (2.59) and

(2.60),

AA.a .cosOv (3.:o¡
(AA - a'sín0)

and the íllumínation angle

-1
AA cos 0

0 = tan (3.37)I A.A,sin0- a
2

Hence a number of experimenËal points are obtaíned for the radial

componenÈ through whích a sinusoidal curve of best fít ís drar,¡n and

hence the coefficients C and e determined. The tangential points are

thus calculated from

b(e) = {n/t - c cos n(e + e) [coso * cosO I ]/ (síno - sin0
2

(3.38)
2

ll=

I )

whích follows from equatíons (3.fa¡ and (3.19).

3 .2.2 l^líne Glass and Beaker Experiments and Results

A wíne glass of outer radíus 27.5nm at the rip sprayed matt

white, $ras fixed to a steel base and positíoned wíth the rím in the

optical plane. A cluster of four bar electromagnets arranged in quad-

rature I¡las suspended from above and lowered a short r4ray into the glass
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\ùithout touching the sides. The electrornagnets r{ere connected such

that opposÍtes \4rere in phase but adjacenEs in antiphase which corresponds

to the circumferential mode n= 2. Four tiny píeces of iron vrere then

placed around the circumference of the glass and held in place by the

attraction of Èhe electronragnets. In Èhis way the electromagnets and

pieces of iron (v¡hich we r¿i11 call the drivers) ".. Oo"ìaioned for

opt.irnum coupling with the mode being driven.

Fig. 3-9 is a picture of the wine glass and electromagnets. The

mode was excited at a frequency of 1.34kli.z using an audio' oscíllator

and 30!I amplifier. The level of víbration was monitored wíth a Bruel

and Kjaer (¡ t f) spectrometer type 2LL2 and a B & K half inch micro-

phone type 4133 placed near the glass at a radial antínode. A photo-

graph of a time-averaged hologram is shor,rn in Fig. 3-10.

For the purpose of the analysís a plane back-silvered mirror

was placed in the fíeld of view of the camera ü/íth a fair degree of

overlap of points on the circumference of the glass in the direct and

imaged views. A typical photograph of a hologram reconstruction is

shor"m ín Fíg. 3-11. Wíth AA=502.5nrn, P=432.5mrn, q=0.474rad,

rl = 0.876xad, V = 0.224rad and BB+ CC = 558.5uun the radial component

is fírstly determined from equation (3.1) and is shor¿n in Fig. 3-I2

(a) as circles for the direct víew and triangles for the imaged vÍew

where Ëhe amplitude shift first reported by Liem et al [101] Í-s quite

apparent. Next the analysis of orthogonal vibrations is used to cal-

culate the radial component using equatíon (3.30). The ratio B/C is

estirnated as \/n or 0.5 which is borrowed from Èhe theory for cylínders

wíth shear-diaphragm ends ÍL25, page 311 for which ít is a good approx-

i.mation and the angle determining the orientatíon of the mode around

the circumference, e, is estimated as 0.36rad. The result ís shown in

Fig. 3-I2 (b) which, a""iit. the crude approximations, ís extremely
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FIG. 3-9

l,Iine glass and modal driving system.
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FIG. 3-TO

Time-averaged hologram reconstruction of the n = 2

mode for the wine glass.



FIG;3-II

Time-averaged hologran-of wineglass

vibrating in the n=2 mode and the

mirror image.
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favourable.

Next a staínless-steel beaker of radíus ar.= 44.2mm, wall thick-

ness h=l.23mm and length L=101.3mm \¡/as sprayed matt whi-te and fastene<l

Èo a base plate by means of a bolt through its bottom. The modal driving

system was similar Èo that used in the wine glass experiment except that

three electromagnets were used arranged symmetrícally and wíred ín-

phase and the drivers were slightly heavier tiny steel bolts. The

driving frequency üras measured as 1011H2 for the n = 3 mode.

The beaker and driving mechanism were placed on a. turntable

with the beaker centreline coíncident \,üith the Ëurntable axís. In all,

seven holograms were taken of the vibrating beaker at 15o rotation

intervals Èwo views of which are shovm in Fig. 3-13. I^Iith p =486.2mm,

AA= 749.2rnm, ar= 44.2rnm and o, = 0.5492rad the solution of equation (3.35)

ís 0 = L.29L5'rad at which poínt the sensitivity vector is normal to

the surface of the beaker. However, if the beaker ís sprayed only

líghtly with white paint, specular reflection of the i1lumínating

beam occurs at thís value for 0 and this shows on the photographs of

Fíg. 3-13 as a thin white line along the length of the beaker.

Solving for the radÍal component using equation (3.32) requires

that a dark fringe coíncide wíth the poínt where the sensitivíty vector

ís normal to the surface. Thís is not usually the case, however, and

raÈher than interpolate a value for O, a method employed by Tushak and

Allaire t1O4], the two adjacent fringes are analysed. This procedure

1s justified in view of Ëhe excellent agreement of the data points so

obtained onto a sine curve of best fit as shown in Fig. 3-L4. From the

figure the radial vibration component is

c(0) .74 eos[3(0 - 1.s3)] (3.3e)

From equations (3.38) and (3.39) the tangential component of vibration
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FI G . 3-T3

Hologram reconstructíons of two views of a beaker vibrating in a

love mode of order n= 3.
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b(0) ' is calculated for all dark fringes and the results are shor¡n in

!'ig. 3-14 as well. The sign of the fringe order, o, ís chosen as is

usually the case in time-averaged holography such Èhat adjacent groups

have alternatíng signs and correspond to the sign of c(0) wtrich is the

larger component in terms of absoluÈe magnitude.

The theoretical curve for the tangential motion is determined

on the assumption that the cylinder vibrates in a Love mode (see

reference [125], page 125) whích arises from ínextensional theory. Thís

ís confirmed by the equal spacíng between fringes (see Fig. 3-13) along

the length of the reconstructed beaker indicating that the sides remain

straight. The bottom of the beaker acÈs effectivery as a shear dia-

phragm satisfyíng the boundary conditions at the consÈrained end of the

beaker. The frequency of vÍbration (Í1251, page 125) of rhe mode

considered is

¡2
$2

E

p
(3.40)

(3.41)

L2(L- r,)"å

In this case, assuming E/p = 2.445 x 107 ^2"-2, Poissonts ratio v=0.3

and n = 3 the resulÈ is f = LL83Hz which is to be compared wíth the

experimental value of l2L6Hz.

In Particular, the radial, tangential and longitudinal vibraÈíon

components are respectively of the forms

c(0rXrt)

b (e,x, t)

a(0 rX, t)

= nXC cos n0 cos ¿ot

= XC sín n0 cos r¡t

= (a/n)C cos n0 cos ot

where X ís the lengËh co-ordinate from the shear diaphragm, 0 is Èhe
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angular co-ordinate and C is an amplit.ude constant. Note that the

radial and tangential components vary linearly wiÈh X. Comparing

equatíons (3.17) and (3.41) gives

B/c=L/n=l/J (3.42)

The theoreti-cal curve for b(0) 1s thus determined and shornm in Fig.3-L4.

The scatter of points requires coûunent. The denominator in

equation (3.38) becomes very smal1 when the sensitivíty vector approaches

Ëhe surface normal. Hence slight errors ín the numerator are magnífied

enormously. Thus extraordinary deviations from the theoretical curve

occur at points where Èhe sensitivity vector is near normal to the surface

(and hence normal to the tangenÈial component of vibration). Reference

to Fí9. 3-14 shows that for the points rnarked o, for example, agreemenÈ

is poor at about 0=1.8 radian. In the lower photograph of Fíg.3-13

this corresponds to the region jusE right of the centre of the photo-

graph and this ís where the sensítivity vector is normal to the surface.

Hence a conclusion ís that íf an accurate determination of the

tangential component is required, the range of 0 and the positioning

of the illumination and observation vectors should be such that the

sensitivíty vecÈor ís never normal to the surface. I,Ihen it is near

normal the curve of best fit would probably be the best one coul-d do.

3.3 CYLINDERS

3.3.1 Holographic and Least Squares Theory

IE would be useful to apply the nethod of the last section to

calculate the vibration componerits of the superposerl modes of a distorted

surface. Two examples would be the vibration of a cylinder rvíth a seam

and a cylinder with an attached lump nass for which typical hologram

reconstructions are shov¿n in Fig. 3--15. In the figure the cylínder in

(a) is rolled from a thin sheet of brass, soldered at Ehe seam ancl
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FIG. 3-I5

(a) Cylinder with a seam

(b) Cylinder with a lumped mass
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supported in a steel structure which j-s visible in the fígure and (b)

ís a steel cylinder with a brass mass g1ued on to the surface.

The characterísÈic equation is equation (3.18) with the radía1

and tangential vibratj-on components given by equations (2.10) and (2.1j.).

using these equations the following system of equations for .r points

results

"tK + bls
tI I

a

n

/t<

/t<"2K + b2s
2 2

(3.43)

.tK + brs =Çl/k
T T T

where the geometrical coefficients KO and Sn are defíned by equatíon (2.30)

for a surface contour in Èhe optical plane. It must be emphasised that

the bounds of the sumration in equations (2.L0) and (2.11) are quite

arbitrary. In fact these are generalized by replacing the bounds O and

N by Nl and N2 which are ïespectively Ëhe least and greatest orders

considered. For example if the fourth order of vibratíon is being invest-

ígated but because of as)rmmet.ry in the forcing field the lower second.

and third orders r¡rere present then Nl would be set aE 2 anð, N2 woutd be

set at 4. On the other hand if only one term is necessary for an adequate

description, NI and N2 would be identical. The seríes would. conÈain

only the single Èerms as for the analysis in the last section.

Hence, substituËing equations (2.r0) and (2.11) into equatíon

(3.43) gives for each point q corresponding to a dark fringe

2



B1

N2
f x sÍn(n 6

,,!N I t
N2

*r,l*r. Yn co"(t Eq) KqK)q q

N2
*r,lr'tt"tn(n E

N2
+ I z cos(nEI ,rl¡1 n

) )sqqS alk
q

(3.44)

(3. 4s)

(3.46)

q

where the E , K ., S_ and fl_ are deÈermined from the tirne-averaged holo-'q,' q' q q

grams. These form a set of t linear equations in 4(N2-NI+1) parameters

or unknovms X', Ír,, r' and zn which are determined by the normal method

of least squares as follows. Assume that the left hand side of equat,ion

(3.44) is exacrly equal to CIå/k but slíghtly dífferenr ro Aq/k, Èhe

value determined by Ëhe data. The square of the residual ís

N2 N2 N2

lol"r*r"tn(n En) *o *rrl*, Yrrcos(nEo)ro ."1",

N2
+T

n=Nr
f tCIå/k - aq/kl2

r.¡n sin(n EO) tn

z cos(nã )S - An -q-q q /t<

t...ry r'Inl r...r\^7 ,Z ,...r2 )
N2 Nr N2 Nr N2

DenoÈíng

f(x ,...rx
NI N2

tY
N I

T

--l
q=1

(o;/k - ç¿q/k)2

then by the usual method ft = 0 ís required where the prime indícates

dífferentíation with respect to each variable in turn.

The NORMAL EQUATIONS are no\¡r derived using the matrj.x method

of Buckingham [f59]. Firstly set up the matríx A of order T by

4(¡z - Ul + t) (see Appendix II for partial expansion)



A(q,4 (n - nr + 1) - 3) = K'sÍtt(r tn)

A(q,4(n - ul + 1) - 2) = Kncos(n tn)

A(q,4(n - Nr + 1) - 1) = Snsin(n EO)

A(q,4 (n - NI + 1) ) = Sncos (o EO)

forq=ltoT andn=NltoN2

and let R and fl be the colu¡nn vectors

82

(3.47)

x
N I

v.
Nr

!T
N

z
Nl

x
N2

I

o t

fl,

R o

a
T

v
N̂¿

s7

N2

z^
Nz

Then equation (3.44) is simply expressed as

(3.48)
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The NORì4AL EQUATIONS are 11591

(3 .4e)

where AT A í" a 4(N2 -tll+t) square matríx. The solution of R in

equation (3.49) is found by the Gauss el-imínation method [158, page 398].

As is usually the case in time-averaged holography the sígns of the QO

arguments are arbítrarily chosen for each group of fringes and for the

modes of vibration considered here, adjacent groups take alternatíng

sígns. In this way, the magnitudes and slgns of the parameters x, y, \^7,

z are automatically computed to gíve the best fit.

The sÈandard deviaÈion of each parameter of vector R is

){n'/k-n/k)z
,2

aTan=Jatnt<-

defíne ¿,Tn(f) = 1 and eTn(Z) E ...

for parameter x , ,t ;sual way.
¡1

P!r - 4(¡z-Nl+1)l

= Arn[4(N2 - Nl+ 1) ] 0 and solve

s.d
T

where p, í" Èhe weíght of the coeffícient and is calculated in the

following way by the method of Bartlett [160]. In the normal equations

gíving the weight po,

The weight of this coefficient is

The

p-- = l/x .. Simílarly for the weíght of x , define ATQ(Z) = 0 and'w Nl " Nl+l
¿rn{r) = dn(r) = ¿T&t4(¡z-ul+t) - 0 and solve tor **r*r_

= L/x , and so on for the other parameters.
Nl+1

Èotal standard deviation s.d." for the vibration component c(f) is then

N2

ls.d.c(E) l' = T.
(sin(nE)s.d. )2 + (cos(nE)s.d.xn Y¡

)' (3. s0)

n=N1

where s.d. and s.d. are the standard deviations of parameters x- andxnYnn
v with símilar equations for the other components.,n
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3.3.2 Theorv of Thin Círcular Cvlíndrical Shells

Consider a thin circular cylindrical shell of length L, mean

radius a^ and wall thickness h (see Fig. 3-16).o

The cyllnder is supported by thin círcular end caps or shear-

diaphragrns at whích the boundary condítions are

b=c=M__=N__=O at X=O,L (3.51)xx

r¿here M-- ís the bending moment and N the longítudinal membrane forceX-X

ín the she11. If d = (arbrc) is the displacement vector for the víbration

with longitudínal, t,angentíal and radial components respectively of the

form
a(X,0) = A cos(Às) cos(n0) cos(urt)

b(X,e) = Bsin(Às) sin(n0) cos(urt) (3. s2)

c (x, O) = C sin ( trs) cos (n0) cos (or)

mfia
where ¡ = --o and s = x then the equaÈÍ.ons of motion may be r^rrítten

L

in matrix form as

-$vd=o (3. s3)

where $" is the matrix dífferentíal operaÈor deríved from the Donnell-

Mushtarí Èheory whích takes the form 1L25, Chapt. 2l

a
o
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'¿2 'ò2, (1-v)
-l.

2

1* v ð2 d

òs2 à02 2 âsã0
uâ"

(L - .,2\ a2 'ò2
o

-p E at2

(rt v) à2
2 ðsà0

aua"

â

ð0

fiu - (3. s4)

E

â

a0

àt2

1r r.v4 + p (r - v2) "3 ,'
E atz

In the equation the non-dímensional thickness parameter K =h2/L2a2

and
vq - ( 4 * ð'= )'

âsz àg¿

The theoríes of Love - Tj-nioshenko, Goldenveízer - Novozhilov

(also Arnold - Warburton) , Houghton - Johns, Flügge - Byrne - Lur I ye

(also Bíezeno - Grammel), Reissner -Naghdi - Berry, Sander:s, Vlasov,

Epstein - Kennard and a sirnplífied theory due to Kennard are all

modelled on the Donnel - Mushtari theory and in fact may be represented

by the addítion of a modifyíng matríx 
åUOO "" follows

KIMoD (3. ss)

all of r'¡hich are l-isted by Leíssa 1L25, page 33]. llence the eighth

order system of equations represented by equatíon (3.53) becornes

l=lor*

Td=0 (3. s6)
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which has a non-Ërívial soluÈion if and only if

detT:0 (3.s7)

This results in a third order polynomial of the form

¡6 (r<r+r Arr) nq + (KI+rcArr) À2 - (*o*rcArco ) ='o (3.s8)

where the rco, rc, and Kz are Donnell Mushtarí constarits and Ârco, A"l

and Ar, are the modifying constants for the other theories and are

tabulated by Leíssa 1J'25, page 45). The roots of equation (3.58) are

the eigen-values Â2 where

h2 = p(l- v2) 
^2 

,2/E (3. se)

v¡hich determine the resonant frequency o.

Equatl"on (3.56) cannoË be solved for the component amplítudes

A, B and C by Crarnerrs method [158, page 382] due to the constraÍnt

imposed by equatÍon (3.57). However, inspecÈion of maÈrix T reveals

it has rank ordex 2 ar.d hence one ror^r is superfluous [158, 5 7.6].

Equation (3.56) becomes

T
11

T t3
=Q (3. 60)

T2I 22
T

23

orr díviding by C,

T T
^/c

-T t311
(3.61)

B/c

1r,

T

A

B

C

t 2

T T2I 22 23-l

whích ís solved for component ratios A/C and B/C by Cramerrs method.



For example, the form of equaEíon (3.61) for the Donnell-Mushtari

theory ís

_x2^ (1- v)
2

n?- + L2

).n

(1+v)
2 -vÀ

BB.

(3 .62)

Àn A/c

¡2-n2¡¡2 Blc
(1- v

2
n

For each mode there corresponds t.hree eígen-values Â2 which

are solutions of equation (3.58) of which Ehe two largest eigen-values

result in ratios A/C or B/C greater than unity and frequencies ín the

untrasonic range for ordínary cylinders. In Èhe case of the smallest

eígen-values the ratios A/c and B/c are less than unity (the radial

comPonenÈ is greatest in magnitude hence the modes are termed flexural)

and frequencies fall in the audio range for at least the lower order

modes which are of prímary interest.

Differences between theoríes amount to less than 2"Á ín resonant

frequencies and ratios B/C ar.d A,/C, determined for a number of cylinders

of typícal dímensíons used in the experiments to be described. As Èhe

accuracy of the experiments is at best of this order, it ís not possíble

to distinguish between Èheories aË present. However, the ratíos B/C

and A/C of flexural modes of a vÍbraËing cylínder are experimenÈally

neasured for the first tlme and reported by Tonin and Bies [105].

3.3,3 Cylinder Experiments and Results

The least squares analysis described in section 3.3.1 ís applied

to the data of the staínless-steel beaker of sectíon 3.2.2. Fig. 3-I7

(a) shows the radial and tangential components o-l vÍbratíon using a

síng1e mode in the expansíon i.e. Nl = N2 = 3. The solid línes are ì

the radial and tangential curves of best fl-t. For each point corres-

pondl-ng to a dark fringe the círcles o are values of b computed from
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equation (3.38) using the least squares fit curve for c ancl the

experimental values of 0, 0, and 0r. Similarly the triangles A

are values of c computed from Èhe least squares fit curve for b using

equatíon (3.38). These component points are termed "experÍ.mentally

determined" since they cannot be measured singularly wiÈhout further

experimental effort and are in fact a best estimate of what one would

measure by ensuring Èhe sensitivíty vector to be in turn raclial and

tangential aË Èhose points.

Comparíng Fig. 3-L7 (a) to Fig. 3-14 shows Èhe irnprovement

of the least squares procedure over the previous method. The improved

consistency of the data points is due to a more accurate determination

of the radíal component. In Fig. 3-I7 (b) Ít ís assumed Ëhat a small

contríbution of the n = 2 mode is present and the consístency of the

experímenÈally determíned points is further ímproved. However, the

sÈandard devíation for both components, shown by the broken curve, ís

greater since the number of unknovrn parameters has doubled. Fig. 3-18

shows the results of the least squares proeedure applied to the brass

cylínder wíth a seam shown in Fíg. 3-15 (a) for r.rhich the analysis

íncludes four modes (Nt = 2, N2 = 5).

HavJ-ng thus proven the superíority of the least squares procedure,

it is applied to four cylinders of various diameters, wa11 thicknesses

and materi-als. The ends of each cylinder were machined flat rnríth a

líp on the inside edge to hold an end piece of thickness similar to

Ëhat of the cylinder. The end pieces \^rere cut so that only one edge

touched the cylinder lip around Ëhe circumference. An electromagnet

was used to excite the cylínder and both electromagnet and cylinder

wet:e supportecl by a steel structure whích held the latter by two probes

each neatly fitting into a small hole at the centre of each end plate

as shown in Fig. 3-19
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wall
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st ructure

FIG. 3.I9 DETAILS OF END tvlOUNT AND SUPPORT
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Table 3-1 lísts the physical properlies of the cylínders and

Tables 3-2 (a) to 3-2 (d) list the theoretical resonant fr:equencies

and the ratios B/C ancl A/C basecl on these propertíes and calculated

by the method described in sectíon 3.3.2 using the Reissner --Naghdi -

Berry theory. The experimental equi-pment and experimental method ís

descríbed in sectíon 2.2 along with Ëhe method of analysis.

Fígs. 3-2O (a), (b) and (c) show the tangentÍal and radial

componenËs of three mocles in graphical form for the case where the

cylinder ís verËícal. Fígure 3-21 shows two views of time-averaged

hologram reconstructions of a sma11 sÈeel cylinder vibrating in the

n=4, n=3 mode. Figs.3-22 (a), (b) and (c) show the longitudinal

and radial components of three modes in graphícal form for the case

r¿here the cylinder is horízontal. Figure 3-23 shows trnro viervs of

time-averaged hologran reconstructions of a sma1l steel cylinder

vibratíng ín the n=2, n= 2 mode. In Fig. 3-22 note that the abcissa

labelled "Normalized LengÈh" refers to the distance from the centre

of the turntable to any point along the centre axis of Èhe cylínder

normalized with respect to the length of the cylinder. There is no

need to align the midpoint of the cyli.nder with the axís of the turn-

Èable. The least squares procedure auÈomatícally fits the data no

matter where the mídpoint of the cylinder ís.

The solution vector, R, is calculated for a number of modes

of each pipe wíth Nl = N2 (í.e. only a single order leasÈ squares

approximation) and hence the ratíos B/C and A./C are determíned. Results

are shown ín parenthesis in Tables 3-2 (a) to 3-2 (d) which are Ëo

be compared wíth the theoretical predíctions. The more important

source-s of error are probably anísoEropies in the cylinder, variations

in thickness ín the cylinder walls, variations in Youngrs modulus and

inaccuracíes in the end Or"a." which all conËribute to dístort the
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FIG, 3-2I
Time-averaged hologram reconstructions of a small steel cylinder vibrating

in the m= 4, n = 3 mode.

The cylinder was rotated 15" between holograms. The white line shows the

surface contour along which data points are taken (line of varying E).
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FIG, 3-23

Time-averaged hologram reconstructions of a small steel cylinder

vibrating in the fr= 2, n = 2 mode.

The cylinder was rotated 30o between holograms. The whíte line shows

the surface contour along which data points are taken (line of varying 6) '
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mode shape. Other factors include the point. source excitation which

generates coupled spatial modes and spurious effects from the cylinder

support. Al1 these factors cont::ibute to modal coupling aÈ a single

resonant frequency. Reference to Fig. 3-24 shows how these are

accounted for by expanding the least squares procedure into ot.her orders.

Fíg. 3-24 (a) shows Èhe initial analysis with Nl = N2 = 4 and Fig. 3-24

(b) shows the improved result with Nl = 2 and N2 = 4 Í.e. orders 2, 3

and 4 are present in the second analysis.

AnoÈher source of error could be due to internal damping whích

it is thought causes elliptic moËion and needs to be analysed by the

more complex procedure described in sectíon 2.L.

Lastly some errors are aÈÈributed t,o the fact that not all

surface contours are on the optical plane, especially for the cases

where the cylinders are upríght. For longitudínal mode numbers m=2 and

4, for example, the surface contours are analysed slíghtly above or

belor¿ the optical plane t.o coincíde wíth the radial anÈínodes. Hence

Ëhe geometrical facËor Q of equation (2.30) is non-zero.

Reference to Tables 3-2 (a) to 3-2 (d) show that frequencies

have been predicted wíth an accuracy better than 10%. Values of

component ratios are not as precise, however, probably due to the

reasons ouÈlined above. Nevertheless, the least squares procedure is

an invaluable tool for time-averaged holographic analysis of coupled

spatial modes and pure modes.
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TABLE 3-1

PHYSICAL PROPERTIES OF TEST CYLINDERS

NOTE: Values of v, E and p are due to Ïaires [161].

Property Sma1l
Steel

Large
Steel Aluminíum Copper

Length (nm)

External
diameter
(rnm)

Ìüa11
thfckness
(nrn)

Poisson
Const. v

E x 10-13
p
(*t21"e"2)

400

75.L

L.2

0.27

2.633

398. s

115. 1

4.4

o,27

2.633

403. s

91. 3

1.8

0. 33

2.702

402.5

101. 6

L.7

0. 33

L.222
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TABLE 3-2 (a)

THEORETICAL AND EXPERI}ÍENTAL RESULTS

(EXPERIMENTAL RESULTS IN PARBNTHESIS)

SI.IA]-L STEEL CYLINDER

m = axial order, [ = circumferential order,

A = longitudínal eomponent, B = tangentíal component,

C = radial component.

m=1 m=2 m=3

LlC

rt=2 B /C

FREQ (HZ)

^/c
n=3 B/C

FREQ (HZ)

^/c
tt=4 B/C

FREQ (Hz)

.0693 (.12s0)

.5028 (.485r)

7L7.4 (7L4.4)

.0317 (.0919)

.3346

1660. O (L617.3)

.0181 (.0s39)

.zsLO (.L707)

3L49.7 (3rs7 .9)

.L2r3 (.1931)

.5076 (.4549)

L64e.4 (1s87.3)

.0s96 (.09s3)

.336s (.26e5)

1856.s (1Bs7.s)

.0349 (.ls21)

.2sL9 (.1861)

3228.0 (3234.7)

.1489

.5086

3L94.4

.0809

.338s (.2877)

2406.L (2378.4)

.0494 (.ls8r)

.2s3L (.1933)

342r.6 (342s.9)
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rABLE 3-2 (b)

THEORETICAL AND EXPERIMENTAI RESULTS

(BxpenTMENTAL RESIILTS IN PARENTHESIS)

LARGE STEEL CYLINDER

m = axíal order, n = circumferential order,

A = longítudinal component, B = tangenÈíal

component, C = radial- component.

m=1

tt=2

a./c

Blc

FREQ (Hz)

.0990

.5065

1159.5

(.5161)

(.47 65)

(1073. s)



109.

TABLE 3-2 (c)

TIIEORETICAL AND EXPBRIMENTAL RESULTS

(EXPERI}4ENTAL RESULTS IN PARENTHESIS)

ALUMINIUM CYLINDER

n = axíal order, n = circumferentíal order,

A = longitudinal component B = tangential component

C = radial component.

m=1 m= 2

Alc

n=2 B/C

FREQ(nz)

^lc
n=3 BIC

FREQ (Hz)

Alc

n= 4 B/C

FREQ (Hz)

.081s (.l1s8)

.s047 (.4717)

79s.4 (7s8.9)

.0378 (.0364)

.33s4 (.2s85)

L764.4 (1682.3)

.0217 (.028s)

.2sL6 (.ls73)

3336.2 (3L73.r)

.L346 (.r46e)

. s118 (.4:sS)

L902.r (1811.2)

.0690 (.09s2>

.3387 (.2777)

2029 .0 (1932.0)

.o4L2 (.1406)

.2532 (.L799)

344e. B (3286.7)



TABLE 3-2 (d)

THEORETICAL AND EXPERIMENTAL RESULTS (UXPSNT}ÆNTAL RESI]LTS IN PARENTHESIS) COPPER CYLINDER

m=5

.L032

.4455

5013.1

.09s8

.3313

3386.3

.07 49

.2s54 (.183s)

2949 . s (3013.3)

.05.70

.2056

3462.3

m= 4

(.2715)

(2s63.7)

( .13s3)

(2467 .8)

.1331

.4835

382r.8

.1001

.3393

25A8.7

.0708

.2564

2413.2

.05il

.2050

3t47 .9

m= 3

.1513

.5069

2553.9

.0942 (.7260)

.34rs (.26s3)

L72L.6 (r772 .9)

.0610 (.093s)

.25s4 (.24s7)

2020.3 (207s.4)

.a420

.2038

2932.8

m= 2

.L4L7

.sLzs (.3173)

L349.4 (136s.0)

.0748 (.0696)

.3392 (.3116)

LLs2.8 (1190.2)

.04s1 (.03e0)

.2s34 (.2s77)

L7es.r Q842.2)

.0300 (.0916)

.2024 (. 1793)

2806.0 (2864.8)

m=1

.0896 (.L422)

.s0ss (.488e)

486.s (s08.3)

.0419 (.0s12)

.33ss (.3191)

gLL.7 (933. e)

.024r (.1343)

.25rs (.2226)

170s.7 (L749.8>

.0ls6 (.2890)

.2013 (.322s)

274s.0 (2803.4)

^/c
n=/. B/c

FREQ (Hz)

Ã/c

n=3 B/C

FREQ (Hz)

Alc

n= 4 E/C

FREQ (Hz)

Ã/c

n=5 B/C

FREQ (Hz)
H
F
P

m=axialorder¡ D= circumferenËialorder, A= longitudinalcomp.onenÈ, B= tangentíal component, C= ¡¿día1 component.
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CHAPTER 4

CIRCULAR CYLINDERS I^IITH VARYING I^IALL THICKNESS

The least squares procedure has been shor"m to be a powerful

Èool for the analysis of vibratíons and, i-n particular, the amplítudes

of the superposed spatíal modes of any vibrating surface may now be

determined. The result thaË vibration may be expressed as a combination

of normal modes has exciting possibilities for the study of vÍbratíng

objects wíth perturbatíons in some quantity, for example, in the

geometry, force or elast.icíty properties. The Fouríer components of

the perturbation may be thought of loosely as exciÈing the corresponding

vibration components in the structure although Èhere is no dírect

relatíonship between their relaËive magnitudes. In Lhis chapter the

problem posed is the Èheory for the flexural vÍbrations of a fínite

length circular cylinder wíth shear-diaphragm ends, s)nnmetric thíckness

variations about the cenËral plane and const.ant axial thíckness. The

solutíon is arrived aÈ using the Rayleigh - Rítz method and the mode

shapes so obtaíned are compared with experiment using the leasÈ squares

procedure.

4.T THEORY OF VIBRATION OF CYLINDERS I^IITH VARYING I^TALL THICKNESS

The theory to be described considers only thickness variations

in the wall of a círcular cylj-nder as ín practíce these would be the

principal sources of anisoÈropy. The procedure is a three-dimensional

extension of the analysis outlíned by Hurty and îubinstein ( [136] ,

sectíon 4.5) and uses the Rayleígh-Rítz method to solve the elasticíty

equatíons of Arnold and l^Iarburton [126].

Consider a cylíndrical shel1 of length L supported at the
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ends by shear-diaphragms (see ltig. 4-1). Assume there exists an

unstraíned circular middle surface of radius ao and thal- the- thíckness

of the shell is symmetrical about the angular co-ordinate 0:0 and

constant along the generator X but rvhose outer and inner surfaces are

independently variable. The outer surface ls descrlbed by Èhe function

ar(O) and the inner surface by at (0) with the unstrained middle surface

as the origin and hence the rroutert' thíckness and ttinner" thickness are

respectively

(0)
"h*

a, (0) - ao
o

(4. 1)

aoh-(0) = a, (0) -a o

These conditions ímposed upon Èhe Èhickness variable serve only to

síroplify Èhe mathematics as ín principle one could solve the elasticity

equatíons for the most general form of Ëhickness variable.

Expressing the thíckness variation in Èerms of a one-dimen-

sional Fourier series gives

a
h'(e) h+ cos(p0)

P

(4.2)

cos (p 0)

Clear1y, if the unstrained middle surface is to remain circular then

¿
h-(0) = h-(0) í.e. the distortion is syrrnetríc about the rníddle surface.

Hence for non-symmetric disËortíons this analysis will only be valíd Íf

the dístorfion is small whereas for s¡rmmetric distortions the only

lírnitatíons on the Ëheory are those of the Arnold-tlarburton theory for

the perfect cylinder (i.e. thin walls).

I
p

h-(e) = I h;
p
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The symmetric solutions of the longitudinal, tangential and

radíal components of vibration are assumecl to be the sum of t.he normal

modes of a perfecÈ cylinder with no pert.urbations and are respectively

a(x, e, t) I ÀXcos -- cos n0 cos uJt
a

o
a

AnnI
o m n

b (x, 0, r)

c(xro,t)

o mrn

m n

1
a ln .Àxsi-n- sin n0 cos t¡tmna

o

(4.:)

(4.5)

(4.6)

l:'l: l-.tc#,'*ril,'*

aij
I
d

1 . ).xs1n- cos n0 cos (l)t
a

o
d

c
mn

o

where, (rn,n) is

the mode of víbratíon. The asymmetric solutions are obtained by sub-

stíÈuting sínn0 for cos n0 and více-versa ín equaÈions (4.S). The

total kínetic energy ís IL26l

À = mnao/L ís the non-dimensional axial wavelength and

oa5
T= o

'2 ,*1,'] do dxdz (4.4)

where p is the densíty of the cylinder material. It will be useful to

note Ëhe following

t-
(o)

(0)
dZ=

.J

i (h; - ho)cos p0
p

and to Íntroduce the following notation

r2r

'ii::: = 
J
o

cos iX cos jX . . . sin kX sín .Q,X dX,

4..
r_J

=1 u
a

o

1
c

oo
and U ij COS trtt, V íj cos ot, I^líj ij cos oË (4.7)
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Substitutíng equatíons (4.S) inËo equation (4.4), makíng use of equations

(4.S), (4.6) and (4.7) then considering the first kinetic energy term

of equation (4.4)

rri
pa

[,

(0)

o)

5 IT

oo

o âa
)2 d0 dx dz( (4"8)

(4. e)

(4. 10)

(4.11)

(4.L2)

2 ar

where I
mn

ÀXcos _- cos nu
a

o
Inn

and the superscrípt s índicates s)rmmetríc solutions. Hence,

pa (0)
2

d0 dx dz
mfl

Ua

L'f"
o

r
o

5
o

2
ri

(0)

* 
1""
o

tIú "o"4 cos no ]
omn

and Èhe general Ëerm in ff is

oa5'o .2r1..L

.J" 
Ui¡Ukl.o" n. 0 cos nu 0 cos pe (h' - hp) de

tix rtx
COS.: COS--å . dXâo ao

2

L

Noting thaÈ

0 i#k
T.X À. Xr- l(

COS-......- COS..- dX =aaoo
t, /2ao í= k

due to the orthogonality of the cosine funcËions, then the general term

in Ts becomesI

l"

L
ao

I
U. . U." (fr' - h1-'l Lx, p

L

2ão

o"5'o
2

cos n. 0 cos nUO cos p0 d0 (4.13)



Using the notation of equation (4,6)

116.

(4.L4)

(4.ls)

(4. ro)

T U ij h+
p

j-cp-h-)rp'

where the following notation has been used.

The second kínetlc energy term of equation (4.4) Ís

urn (

where

IIIIi j e, P

I=ij sp

L

,: = S l'" f' fn*tu' r*þr, do dxdz2 2 Jo io ,h- (o)

b=l
Inn

V
.Àxsan 

- 
si_n n0

a (4.L7)

sÍn no l2 ¿e dxdz (4.18)

(4.le)

0 i+k

mn
o

Lh+ (0)
âo

ü sín
mn

Àx
d

o

The general term in t! is

Hence

pa 5
o

x

and usÍng the Ídentity

t I
h (0) mn

2 t5vk.r,"ít n.0 sín nuo cos p e (h; - n;) de

L
. Àix Àtx

sin- sin.- . dXâo to

L

I % ÀiX À.x
I sl-n--- - sin--5- ¿¡ =Jo "o "o

Ll2a
o

f=k

(4.20)



due to the orthogonaliÈy of the sine fulrctions, then

pa4L

T; o )r p

4 jL

The equatíon in W is solved in a símilar way. Hence the total

expression for the kinetic energy for the symmetric solutions is

,.5fni':ü'u(nl 
- n;

ililll * ùr¡ùroniuo) (nn - n;)

(ùr:ùrunTu * ür¡ùrunjrn * irjùrunTul cn* - n;)

LL7.

(4.2L)

(4.22)

(4.23)

+

oa4L
-soI=- + ü..ü

r_J
I rù..û. ^njøPijip r-J L)L4

and for Ëhe asymmetric solutions,

pa4L

TA
o

4

lL26l

=- I
ij lp

The total sÈraÍn energy with the cylinder in vibration is

L

Ea3
St= o

2(t- v2)

6+

t"' riå r ,, #.#. ,,(#->'2

h-

. (*F,' - r"* + c2 - 2z(# - ")(#i * # ) + z2cffi>, *

+ 222 p*+ z2cj$)' * 2u[,* - r#) (åå -c - r# -'ji,]

. s;ù [,* )'* z# jå * ,#,' - 4z(# + #) (#,ï * Sr *

+

+ 422((#fu )2 + z## # * ,#,',] de dx dz (4.24)



r^rhere E ís Youngrs I'fodulus and v is Poissonts ral-io. Agaín naking

use of equatíons (4.:), (4.5), (4.6), (4.7) and (4.fS¡ Lhe inregral

ís evaluated and equation (4.24) reduces to

and o"4L'o
=

2
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(4.2s)

(4.2ø¡

(4.27)

(4.28)

(4.2e)

(4.30)

(4.:r)

Ea2L
c* - 

O
JL - (r-v2) j

31

L St j
-1

The thirty one terms in the summaEion are given in Appendíx III for the

symmetric SÈs and asymmetric Sta modes of vibratíon.

Applicatíon of Lagranges equation to thå independent

varíables U, V and lal gives

AT AT asrd
dr

( )
AU AUnn

nn

h-¡ ¡nj I
p

mïl

and two símilar equations tr U*r, and hI Using equatíon (4.22)

s o"4L'oâT

å 
ù,",tnl

âU
mn

2

+I ü .(h'- h-)rrnJP
i; rnJ p p-

From equation (4.7)

hence

ü = -u2uMJ MJ

I u .(t+ -iimr p

-+) v .(h' - h )
i; mJ p p-

h --njp
It)

P

-p"4Lur2
lP.
nJ

Similarly

2



and
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(4.s2)

(4.3s)

9= t â,T">
oE aI^Inrt

I,I .(t+ - t-) ntjPmJpp
-p a4Lrr.'2

o

2 jpI

Correspondíng equations for Èhe asymmetric solutions are easily written.

NoÈing that
aT=âT.âT

au av = rri-= o (4'33)
mn mn nn

completes the left hand side of equaËÍon (4.26). The righÈ hand side

is evaluated in a simílar way where for the first strain energy term

shown in Appendix III

ast!

ôur'
(4. 34)

s s
âSÈ AS t
AV âI^I

mn nn

and for the second

AS
S

t

= ,al x2v.(h+ - rr;) n"je
J;MMJ P

hp¡3 u . (t+rr+
MJ Pq

0

2

àuo-
,4

j
I
pq

w ' (tr+ tt+ - h- h- ) nniPqmJ pq pq

h ) nniPq

¡3
m

âs
s
2

âv
rnn

AS
s
2

âI^l
mn

-kl
jpq

0

m q

and so on for the oËher terms.

Defíning the frequency parameter /\ by

L2 = p ^ïrr(L- 
.v2) lE (4.36)



then the three Lagrange equatíons of the form of equation (4,26)

become

nR=rt2gn

L20.

(4.2t)

where D and Q are the generali-zed stiffness and mass mati:j-ces respect-

ively and R ís the vector of coefficients of order 3M(N + J ) , where M

arrd N are the límiting orders Ëo which the analysis is taken, and is

defined as

R[3(k- 1) (N+ 1) + i + 1] = Akí

R[3(k-1)(N+1) + i + N + 2] = 8..
ka

(4.38)

R[3(k-1)(N+1) + i + 2N * 3l = cu.

where k=1r..., M and i=0r..., N.

The uratrices D and Q are 3M(N+ 1) square matríces with non-

zero coeffícients about the leading diagonal and zero coeÍficíents

elsewhere. Lísted i-n Appendix IV are Ehe coefficients of these matrices

for both the symmetric and as)rmmeËric solutions and Appendíx V lists

the solutions of Èhe II functions of the form shov¡n in equBtion (4.6).

Equati-on (4.37) is simply an eígen-value problen and may

be sol-ved by expressing D ín upper Hessenberg form and Q in upper

triangular form lL62l. To each of the 3M(N + 1) eigen-values there

corresponds an eígen-vector which defínes the component amplítudes of

the contríbuting modes. The corresponding resonant frequency is cal-

culated from the eigen-value using equation (4.36).

As in the classical solutíon for the vibration of a non-

dÍstorted cylínder there corresponds three solutions or eigen-vectors

for each mode. In two cases the longitudinal components and tangential

components contríbute mostly to the vibratíon and the frequencies are
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usually very hígh (well out of the audio range). In the third case

the radial component is Èhe largest and the frequencies for the

lowest modes a::e well withín the audÍo range. Although the present

analysis solves for al1 the modes, the only ones of interest to this

study are the M(N+ 1) modes ¡.rith the lowest frequency parameters. Also,

sínce a number of modes contribute to the vibration, reference to a

single mode hereafÈer is taken to mean the principal mode unless oÈher-

wise qualífíed.

However equation (4.37) cannot be solved in iÈs existing

form. For the symmetric case N = 0 the cylinder ís vibrating ín a

breaËhing mode and hence the tangential component b is zero. I{ence

there are M columns in matrices D and Q which are zero corresponding

to the zero coefficients Vr.', Vr'r..., V"O which must be removed else

the solution to equatíon (4.37) is trivial. The corresponding rows

created by differentiation with respect to Èhese coefficíents

(a/â Vl o, ð/ â vr', . .. , à/ â V"o) must also be removed. Hence matrices

D and Q and vect.or R are reduced to order M(3N + 2). For the asymmeÈric

case N = 0 the cylinder vibrates in a purely twistíng mode and Èhe

longitudinal and radj-al components a and c are zero. The 2M columns

in matrices D and Q correspondíng to Ur', U2O,...,UMO and W10, W20,

..., WMO and the corresponding rows which are created by differentiation

with respect to Èhese coefficienËs are removed resulting in the maÈrices

and vector R having order M(3N+1).

4.2 CYLINDER WITH NON-CONCENTRIC BORE

A circular cylínder with a non-concentric bore is one of

Èhe simplest syÍìneÈric clistortions and can be readily manufactured.

The Fourier coefficients of the distortion are calculated as follows.

Reference to Fig. 4-2 shows that if the radius of the ínner bore is

4!, the radlus of the outer surface arr the radius of the unstrained
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míddle surfac.e ao and the displacenent of the centres e then

,1= "" + a2(t+h-)2 + zeao(1*h-) coso

^î. = ", + al(r+n+)2 - 2 eao(1+h+) cose

Hence,

aoh-(O) = -êcoso * (eZcos2e - e2 + ^!¡', - ^,t' o

"ot+10) = ecoso + (e2cos20-e2+a|)'-.

I23.

(4.3e)

(4.40)

-a o

The Fouríer coefficients are thus

h I
-17

1
2no

n:=hf'
_1I

h (o) de

(4.+r¡
f

h'(o) de

forp=g

and

h-(e)cos pg d0

(4. +z)

h+ (0) cos p0 d0

forp>0

which are evaluated numerically as'Èhe lntegrals are difficult to solve

explicitly.

A steel cylinder was fabrícated wíth dimensions ao = 39.29rnm,

ar= 37.83mm, ar= 40.75mm, e = 0.5mm and L = 398.Bunn. The ends of the

r.
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cylinder were machíned flat with a lip on the inside edge r¿hich coin-

cides with the unstrained middle surface. Two 1.6mm sheet steel end

caps' with the círcumference machined to a thin edge, fit into the 1ip

one on each end of the cylinder (see Fig. 3-19) rvhích satisfies the

requirements of shear-díaphragm end conditions. Two electromagnets

were positioned at 0 = n or the thinnest part of the cylínder and near

the ends of the cylinder and the techniques of sectlon 2.2 applied to

excite and analyse the modes of vibration.

The frequencíes of the symmetric modes \^/ere experimentally

measured using a frequency counter and these are shown in Table 4-1

together with the theoretically calculaÈed frequencies for the syrmnetric

modes. Also shornm for comparíson are the theoretical resonant freq-

uencies for the same modes buË r¿ith no distortion. This data is shornm

in graphícal form in Fig. 4-3 from which it is clear that j-ncreasing

distortion lowers the frequencíes of the modes but only for this type

of distortíon. rn general the dístortion may lower or raise the

resonant frequencies of the modes [139].

The modes were idenÈified with the aid of a flexible plastie

tube functioning as a stethoseope. The antinodes and nodes could

be easíly detected from the loudness of the tone as the tube is moved

over the surface of t.he cy1índer. Table 4-1 shov¡s the experímental

error in the frequencies to be less than 2% due príncipally to

inaccuracÍes in machining, other modes could noÈ be excited due to

lj-mitatíons of the electromagnetic drivers.

The frequencies of the as¡rmmetric soluÈions are shovm in

graphical form in FÍg. 4-4. These are little different to, except

for large distortions, the frequencies of the symmetric modes and t.he

difference is greatest for the lowest axial and círcumferentíal orders.

Table 4-2 shows the theoretical superposed symmeÈríc modes
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of víbratiorr for four modes of the distorted cylinder. The asyünetric

solutions are nearly identícal in magnitude and so are not tabulatecl.

Clearly the greater the number of c:l-rcumferentíal modes included in

the analysis (i.e. the larger the value of N) the more exact r¿ill be

the theoretical- solutíon. It is found that N= 6 is sufficient to ensure

excellent agreemenË with experiment and favourable ín computing time.

The solution of the eigen equations is well behaved. If the distortíon

is seË to zeÍo, for example, then the modes decouple completely leaving

only the principal mode.

To determine the tangential and radj-al symmetric components

the cylinder was set upright on Èhe turntable and for the longitudínal

components it was posit.íoned on its side and holograms taken using the

techniques described in section 2.2. Table 4-3 shows the theoretically

calculated and experimenËally determined vibratíon compone-nts for Èhe

distorted cylínder. Due to the mechanícal arrangement it is not

possíb1e to analyse the circumferenËíally varying longitudinal modes.

The double Ëurntable scheme descríbed ín section 2.L is required.

Hence only the ratío of longitudinal to radial vibration is considered

which is

A
m r (l ^âì lqlcfu) r

nn
(4.43)

and varies sinusoidally along the length of the cylínder as given by

equaÈion (4.3). The theoreti.cal and experimental amplitudes for Èhe

B and C components are scaled by the factor which makes Èhe C component

of the príncipal mode unity. rn additíon sínce the modes are not

excj-ted exactly symmetrically due Èo influence of the magnets then

some asynmetric components are present in the experimenËal analysis.

Hence only the rnagnitudes of the components are shovm ín Table 4-3.

Figs. 4-5(a) to 4-5(f) show the mode shapes calculated from

7,1

/c^ =
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the theory and those derj-ved experimentally. Evident from the exper-

imental curves ís the small contribution of the asymmetric modes

discussed above. Nevertheless the agreement is excellent for all

modes except the lowesË (1r2) node due to the absence of a significant

contribution of the n=1 mode (see Table 4-3). NoËe that the origin

of the holographic analysis, being different to that of the theory

of sectÍon 4.1, is Èransposed for dírect comparíson.

4.3 CYLINDER I^]ITH A THIN LONGITIJDINAL STRIP

A steel cylinder was manufactured with length L = 398. Brnm,

mean radius a = 39.29rnm and wall thickness h = 2.05mm. A nominalo

Vg" sq.t"re-section length of steel rod was attached t.o the cylinder

along a generaÈor with an extremely thin layer of LS-12 adhesive.

Assuming that the distorting strip is sufficíently small to neglect

errors of curvature, the Fouríer components of the distortion are

calculated with the aj-d of Fig. 4-6. Using equations (4.4I),

þ = _h/ 2a
o o

(4.44)
I

h' = h/2a
o

* DU/na
oo

and from equatíons (4.42),

h =0p
(4.4s)

h+
p

forp>0

where D = 3.21rnur and p = 0.03876 rad.

Fig. 4-7 shows reconstructions of tíme-averaged holograms

2D
=-Sl-nDU

1IDA'o
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FIG.4-7

Two views of a cylínder wíth attached strip

vibrating in (2,2) mode'
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of the cylínder víbrating in the fr=2, n= 2 mode. Table 4-4 shorus the

resul-ts of measured and ËheoreÈícal frequencies with Èhe disËortíon

and without it. For the undistorted cylinder agïeement is excell.ent

but with the distortion the predictions are totally ínaccurate. The

strip \^ras re-attached usíng a number of fine bolts but wiÈh the same

results, índicating the adhesíve is not an j-nfluencíng facÈor. RaÈher

iÈ ís thought Èhat the sudden discontinuity of the aÈÈached strip

dictates the use of functions which satísfy the strict boundary

condit.íons at the stríp which Èhe compariËi-vely slowly-varying sínu-

soidal functions do not. Put another way, the Rayleigh-Ritz method

ttspreads" the díscontinuiÈy over the surface of the cylinder and does

not necessarily account for sharp díscontinuitíes.
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TABLE 4-1

RESONANT FREQUENCIES FOR SOME MODES OF

DISTORTED CYLINDER

(non-concentric bore)

PrÍncípal
Mode

(mrn)

Theoretical Freq. Exp.

Freq.

Distorted

ol

Error in
Exp. Freq.Undistorted Dístorted

1 t 2

1'3

L14

212

213

2 4

312

313

314

1340

3553

677 4

2r05

37 40

6905

3598

4204

7]-59

1316

3375

646s

2042

3562

6594

3524

4045

6847

1330

3442

6495

2063

3627

66L7

3463

4085

6861

1.1

2.O

0.5

1.0

1.8

0.3

r.7

1.0

o.2
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TABLE 4-2

THEORETICAL SI]PERPOSED SY}tr{ETRIC I"IODES }'OR A CYLINDER I^IITH NON_

CONCENTRIC INNER BORE

MODE AMPLITUDES II =

These coefficients are preset to zero before the eigen equations

are solved.

FREQ

Hz

PRINC -
IPAL

MODE

(mrn)

COEFF.

0 1 2 3 4 5 6

1315. 6

337 s .4

204r.5

(r,2)

(1, 3)

(2,2)

In

In

C n

In

nI

C
nI

A
2n

B2î

A
2n

c
2n

A

B

A

B

crn

B
2n

-.027

.002

.003

0*

O*

0

0

0*

0

0

0

0*

.]-54

.606

.s96

.001

.001

-. 015

-.o28

-.026

.001

.003

.003

0

-o ,72

-. 504

-1.000

-. 002

-.010

-.019

.r27

.509

1.000

.005

.o22

.042

.006

.064

.190

-.034

-.336

-1.000

-.013

-.o76

-.225

.064

. 339

1.000

-. 007

-.028

.006

.081

.32L

.001

.009

.038

-.or2

-.084

0

331

.001

.004

-.001

-. 014

_.o72

-.001

-. 006

.002

.015

.075

0

0

-.013

.oa2

.or2

.001

0

0

002

0

0

0

0

0

*



140.

TABLE 4-3

TI{I{O]IETICAL AND EXPEIII}IENTAL SY}ß{ETRIC MODE AMPLITUDES OF DISTORTED

CYLINDER (NOR}ÍALISED MAGNITUDES)

PR].NCIPAL

MODE (rn, n)
ït

RADIAL COMPONENT

cnn

TANGENTTAL COMPONENT

B
mn

LONGITUDTNAI

RATIO

Alcmm

Theory Expt. Theory Expt. Theory Expt.

Lr2

1r3

2 , 2

213

3 t 2

a)JrJ

1

2

3

3

4

5

2

3

3

4

5

2

3

4

2

3

4

.596

1.000

.190

1.000

.32t

.072

1.000

.225

1.000

.331

.075

1.000

.4t5

.101

.238

1.000

.362

.108

1.000

.163

1.000

.268

.034

1.000

.191

1.000

.386

.083

1.000

.318

.090

,L39

1.000

.282

.606

.504

.064

.336

.081

.014

.509

.076

. 339

.084

.015

.509

.140

.o25

.L22

.34L

.092

.178

.496

.110

.228

.079

.054

.346

.044

.2L6

.100

.034

.2L7

.2r7

.r28

.064

.29L

.r47

.L46

.033

,L26

.062

.L44

.087

.091

c40

.186

.105

.186

.L69
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TABLE 4.4

RESONANT FREQUENCIES FOR SOME }ÍODES OF DISTORTED CYLINDER.

(Longitudinal SLrip)

PRINCIPAL

MODE

(m,n)

I]NDISTORTED CYLINDER DISTORTED CYLINDER

THEORY EXPERIMENT Z ERROR TIIEORY EXPERIMENT

1 t 2

1'3

2 t 2

213

312

3'3

413

990

2500

1871

2689

343L

3195

40sB

1007

2552

r852

2735

3328

3225

4056

L.7

2.L

I

1

3

1

0

0

7

0

0

0

TL2B

3647

1939

37l-7

3336

4r93

4636

999

25]-7

1859

2705

3343

32L3

4067
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C]ìAPTER 5

COUPL]]D TEMPORAL MODES

Ii- was shor¡n in Chapter 4 that the effect of any dístortions

in the wall thickness (r,¡hich may be genetaLízed Èo include anisotropies

in radius or Youngr s modulus for example) is to couple modes but at

Èhe same frequency; such modes are called superposed spatial modes.

Alternatívely, for a non-distorËed cylinder, the applied time-varying

point force induces modal coupling with phase-shíft between the modes

which was demonstrated for the two-dimensional case by Stetson and

Taylor tB4]. Such modes are termed Coupled Temporal Modes. In this

light it ís Ëhought that the analysis of Shirakawa and Mizoguchi [156]

could be extended to predict coupled temporal mode response for

cy1-inders exciËed by poínt forces.

In thís chapter the theory of Generalízed LeasÈ Squares

is applied to solve the characterj-sËic equations for the case of

cylinders vibratíng in two coupled modes, one essentially pure mode

and two superposed modes at a single frequency. The temporal phase

difference is determined without the need for modulating the laser

beam.

5.1 HOLOGRAPHTC THEORY FOR TI,IO COI]PLED MODES

The characÈeristic equation for two coupled modes with

phase difference A was determined in sectíon 2.L.4 (special case 5).

The argument function for Èhe combined motÍon \^/as shown to be the

phasor sum of the argument functions of each component. Assuming that

each coupled mode is a singular superposed mode (i.e. pure mode) then

all terms in equations (2.10) to (2.I2) are zeto except for one - order
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Nl for one mode and N2 for the other. Hence equation (2.53) becomes

to = t(>d, sinlll Eo * ricosNlEo)*o + (risinNrqo * ,rTcosNlEq)sql2

+ t (4 sin N2Eo + yfr cos n2qo)Kq + (rft sin N2Eo + zfr cos u2tn) snJ 
2

* 2coslt ({ sin *tEe vfr cos tllEo)Kq + (r* sinNrEo + zfr cos NIEo)soJ

. t({ sinN26n + yfr cosu26n)Kq + (rft sínN2Eo + zfr cosN2Eq)sql

-ç2 /xz
q

(s.1)

The equations of the form of equatíons (2.54) to (2.56) are

aÍo) = 

ffi 
= 2(c]ro + llso) sín(t'llEo)*n * 2cosa(.tKq+ b2sq)sin(tllEn)

.lo)- # = 2?2xr+ b2sq)sin(tl2Eo)Ko * 2cosa cIKn+tIso)sin(t'l2Eo)ro
N

a(o)-*+ = 2(clro+ blsq)cos(NlEn)*o * 2cosa(.rKq+ b2sq)cos(NtEo)*o
" âyt

. (a) - a fg = z ( czxr+ b2sq) cos (tt2En)Ko * 2cosÂ (" lKq + b lsq) cos (Nt 6n)*nt ,"1

aÍo)=# = -2(clro +blsq) ("2Kq+ b2sq) sin^

K
q

(s.2)



InIlìer e

L44.

(s .4)

{ sinNlE + vfr "o" 
t'tl6

", = * sin N2Ç + yrt cos N2E

(s.3)

b1 wfr sinNIt + zfr costllE

b2 wfr síntl2E + zfr cosll2E

Hence matríces f and F are calculated usíng equations (2.5L)

and (2.52) and the correctíon vecËor ô from equation (2.50). The

ínverse rnatrix I-l is calcul-ated by the Gauss-Jordan method with

elÍmination by partial pivoÈing [163]. The vector describing the

parameters

c

vi,{*R ( v ,
2
N

rrT, rfr, "i, 2rt, 
^)

is arbitrarily set for the ínitial iteratíon but as shown in the next

section, local hígh-order mínima could terminate the procedure pre-

maturely. In practice a number of starting points are selected to

guard against this possíbility.

5.2 EXPERIMENTAL PROCEDURE AND RESULTS

To test the convergence of the method of Generalízed Least

Squares, five modes of two cyli-nders r¡rere considered. The first cylinder

of length 398.Brnn, mean radius 39.29mt and thickness 2.050 t .005nrn

was carefully rnachined to make it as near perfect as possible. The

second cylinder is the one considered in Chapter 4 wíth the centre of

the inner bore dísplaced from the centre of the outer circular surface

by lnm for which the Ëheory of víbration predicts a number of super-

posed modes.
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To generate coupled modes in the perfect cylinder two elect-

romagnetíc drivers were positioned at. the radial antinod.es of vibration.

Each point force is a disturbance with spatial Fc¡urier components r,rhich

excite oÈher ntodes in the cylinder and these couple in some phase rela-

ti-onship resulting in phasor vibratíon. The clegree of couplíng of the

spatial Fourier components of the force to the cylinder modes depends

on the position of the force relative to the modes. Hence movíng the

point excítation towards the radial nodes (at the cylinder ends)

reduces the degree of coupling wíth the result that only a single mode

is induced in the cylinder. This behaviour was confírmed in the

experíment.

Fig. 5-1 shows Ëwo views of the perfect cylínder víbratíng

in two coupled modes (3,2) and (3,3). The predominant mode ís (3,2>.

The contríbution of the (3,3) mode ís seen as a coupling of the fringe

groups. This is to be conpared with Fig. 3-21 whích shows two views

of the cylinder vibrating j-n an essentially pure (4r3) mode. The

decoupling of the fringe groups is clear in this instance.

In the analysis of FÍg. 3-2I it is normal Ëo allocate a

sign to fringe groups, adjacent groups taking alternating signs. Thís

procedure j-s clearly irrelevant in t.he analysis of Fíg. 5-1 for since

the frínge order appears squared Í.n equaÈion (2.29) Èhen only the order

of the frÍnge is recorded.

Fig. 5-2 shows Èhe components of t¡^¡o coupled modes for the

perfect cylinder. stetson and Taylor [84] predict that if the reson-

ances are reasonably sharp then the response of a mode at its resonant

frequency is close to r/2 in phase to any other mode that may be

excited in combination. The temporal phase difference A was determined

as 1.96 racl a; the resonant frequency 7B52Hz for the coupled modes

(2,2) and (2,3) shov¡n in Fíg. 5-2. Fig. 5-3 is rhe result of reposír-
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FIG.5-1
Two views of a cylínder vibrating in two coupled modes '
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íoning the electromagnets near the ends of the cylinder, the frequency

remaining unchanged. The relative level of the coupled ruode (2,3) is
substantial-ly lorver in the case of the radj-al component but uncertain

ín the tangential component. The principal mode (212) however is well

behaved. The raÈio of the tangentíal to radial amplitude (B/c) is
0.436 which is ro be compared wj.th 0.503 predicÈed by the Arnold-

I{arburton theory for cylinders [126) for a pure mode. To be noted

also is the radj-al component which is in phase quadraËure spatía1ly

with respect to the tangential component, also predicted from the

pure mode theory.

Fig. 5-4 shows the components of two ot,her coupled modes

for the perfect cylinder at a frequency of 3332H2. For this case,

A was determined as 1.53 rad compared with the predicted vaLue n/2

t84:1. Again the principal mode i.s well behaved r^rith B/c = 0.397

compared with the theoretical value of 0.509 and again the rad.ial and

tangentÍal components are in spatial phase quadrature. The amplitudes

of the components of the coupled mode seem to be uncertain due to

their low rnagnitudes, a sítuatíon whích again could be improved if
more data poinËs were available.

The analysis was also applíed to the dÍstorted cylinder

described ín chapter 4 for the prÍ.ncipal modes (2,2) and (2,3). Table

5-1 shows the anrplitudes of the coefficienEs determined by the

Generalized Least squares Èheory to be nearly identical to those

determined by the normal leasÈ squares procedure of chapter 3. More

Ínteresting i-s the value determined for A which, theoretÍcally, should

be zero or a multiple of n. As explained in section 2.L.4 (special

case 4) however the determination of A for these cases is bound to be

somewhat unctrrt-ain.

Tables 5-2(a), (b) and (c) show rhe effecr of ínírial
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conditions on the final solution for three cases. The starting

magnitudes ôf the amplitude païameters are equal but are varied with

respect to the phase parameter. Hence the notation [1r.1] in Tables

5-2 is Èaken to mean [1,1r1r1r1r1r1r1r.1] which is the starting vector.

All other starting condítions trled but not shovrn in Tables 5-2

resulted in exactly similar solutions. In the case of iable 5-2 (a)

the optimum solution, oscillated beËween that of the second and third

col-umns. For Tables 5-2(b) and (c) Ít is clear that the hígher order

solution (represented by Ëhe larger residual I (fq)2) is incorrect

in the phase Â. Hence the opÈimum solution is that \rith the least

residual.
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TA3LE 5-1

COMPARISON OF GENERALIZED AND NORMAL LEAST SQUARES PROCEDURES IN THE

DETERMINATTON OF COMPONENTS 0F pRrNCrpAL IÍODES (2,2) AND (2,3) FOR

A DISTORTED CYLINDER

PARAMETER

PRINCIPAL MODE (2,2)

NI=2 N2=3
PRINCIPAL MODE (2,3)

Nl=3 N2=4

GENERALIZED NORMAL GENERALIZED NORMAL

I
\

2
\

v

v

I
N

2
N

"'i
,fr

"nl

zK

^

[ {rr) 2

-.07 4

.236

.77L

.023

183

-.o22

.008

.o52

2.4LL

.o82

-.062

.1s0

.784

.002

.272

-. 031

.008

-. 015

?T

.467

.633

-.032

-. 131

-.202

-.o28

081

-.r77

.002

2.702

.101

.683

-. 083

-.L67

-.258

-.002

-.070

-.L52

-.010

'lt

064
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T^BLE 5-2 (a)

EFFECT OF rNrTrAL CONDITIONS ON SOLUTTON PRTNCTPAL MODE (2,2) OF

UNDISTORTED CYLINDER Nl = 2, N2 = 3

PARAMETER

TNTTIAL CONDITTONS IRr -RB, *ul

[ 1,1] [.1,1] [1,10-s]

I
\

5i

vi

vfr

-"i

''l
,i

"K

A

[ {ra) 2

-.163

.025

1.037

.004

460

.003

.07s

-. 086

T.26L

.300

-.163 -. 165

-.084 026

1.037 1. 038

.o34 .022

.463 .4s4

-.oo2 .016

.070 .o75

.L70 .t26

4.693 4.s66

.283 .294

L Solution _1
OscillaÈed
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TABLE 5-2(b)

EFFECT 0F rN-rTrAL CONDTTTONS ON SOLUTTON PRTNCTPAL MODE (2,2) OF

DISTORTED CYLINDBR Nl = 2, N2 = 3

PARAMETER

TNTTIAL CONDTTIONS [Rr - R8, Rs]

[1,1][1,10-s][.5,1]

[.1,1] [1,.1]

-tr[ .5 ,10 ']

[.1, .1]

4
xfr

vi

v

\t

2
N

I
N

''fr

,i

"fr

^

| {rc) 2

-.o29

-.o27

.622

.236

.2r8

.r25

.038

-. 113

L.434

.254

-.07 4

.236

.77r

.023

.183

-.022

.008

.052

2.4LI

.082
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TABLE 5-2(c)

EFFECT OF TNTTIAL CONDTTIONS 0N SOLUTTON PRTNCIPAL MODE (2,3) OF

DISTORTBD CYLINDER Nl = 3, N2 = 4

PARAMETER

INITTAL CONDTTIONS [Rr-R8, R9]

[.5,10-s] [ .5,1] [.5, .5]

[5,10-s] [1,r]

LL,2l [ 1,3 ]

[1,]-0 "l

4
u2,II

I
vN

vi
ItN

''ft

zi

"2N

A

[ {ra) 2

.466

.L67

-.097

.038

-. 038

.032

-.203

-. 178

4.86L or I.424

.593

.633

-.032

-. 131

-.202

-.028

081

-.r77

.002

2.7O2 or 3.581

.101
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APPENDIX I

FLOT,] DIAGIìAM OF MICROPROGRA}1 FOR DATA SYSTEM

NO

YES

s

STARI
INITIALIZE PPI I,2

PRINT
REPLAY

sr0P cÂssElf E

PR¡NI ..INIERCOM

vDl)

CHAR ¡N
USART I

CHECK FOR CHAR
lN usARl r (v0T)CHECK FOR CHAR

lN usaRl 2 lcDc)GEI I BYTE

FROM CÀSSEfIE

sEN0 fo vtJTECH0 l0 vDl
PRINI
EDII. PRINT

SENO OATA
SENO CHAR VIA

USART 2 TO CDC
GEI CHÀR

FROM VOI

YES

SENO L/F
IO VDI

6ET I BYIE
FROM CASSETfEGET 1 BYIE

FROM CASSEIf E

EC80 t0 vDl ECH0 l0 v0T

WAII TILL
L/F ECHO
BY COC

GEI I EYTE
FR0M CÀSSEtt

SENO CHAR VIA
usaRl 2 l0 c0c

ts cH
A C/R

ECHO tO VDI

SEND L/F
f0 vDl A C/R

IS CH

GEI CH
FROM VOICAP E

GET CHAR
FROM VDI

SENO L/F
t0 vDt

SEND L/F
l0 vDt

PRINI
RECORD

IS CHAR
A C/R

sEl cassEllE f0
INC. REC. MOOE

E'I REGISTER
B= 6SET REGISIER

s=7

PRINI CHAR
DECREMENI

REG B

NODATA AVÀILÀ8LE
FROM IABLEÌ

CHECK FOR CHAR
IN USARI I (VDT)

CONVERI XTY
TO OECIMAL

PRfNf
IXXX,YYYY

SENO C/R I L/F
I0 v0t

YES

NO

YES
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APPENDIX II

MATRIX FOR THE NORMAL EQUATIONS

Krsin(N1€r), Krcos(NItr), Srsin(N1Er), Srcos(NlEt) s- - - -,. Krsin(N2Er), Krcos(tt2tl), Srsín(N2Er), Srcos(tt2Er)

Krsin(Nl62), Krcos(Nlg2), srsin(NtEr), srcos(Nrt2) -,Krsin(Nzlr), Krcos(tt26z), srsin(Nz€r), srcos(N2E2)

Krsin(N18"), K.co"(u16t), srsin(NlEr), s.cos(NlEr)r - - - -, Krsio(li2Et), Krcos(N2Er), Srsín(N2Er), s"cos(N2Er)

I

H
t.¡l
!
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APPEND]X ]TI

THE STRAIN ENERGY INTEGRAL

Evaluati-on of the strain energy integral, equation (4,24)

ín the main texÈ. There are 31 terms in the s¡rmmetric solut.ions

(denoted Stl, tt|, etc). The noËatÍon ís defined ín Èhe main text.

(denote these Stf, ta;, etc) and 31 terms in the asymmetric solutíons

n-., n 
j ln

p'h+
p

x?u..u."(a aJ r_J¿ 
'

for srl, replace njrnor uy nflt

-l-

.n^ (h' -JJC P

',[ít"V

Iij op

for srl, replace nisP uv n!¿

srf = -'-u I l? u. _,w, , ( rr]r,] - n_ n- ¡ nj ølc
, ijipq t r-J 1r¿' p q P q'

for sr!, replace njrnc ry nlfi

stl=t

+ [ w
ij.e,pqr

ê
stã = i:wilÀl(r'f n

k, I
íiLp

+ hqr
+ ) nj lPqr

pqr-h h h

ê
S.; V..V. ^nl-J Lv,

r.; =

h
p ) njrP

for srf,, replace njsP ur nfs

-11 !r
1j lp rJ

(h+
p P

h ) nj¿P

for st!, replace nj uP uv -nfu

tt; = k.l"-"ri"ru(nl - h;) IIjøe
aJ J¿p

for stf, reptace njsP ur n!¿
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vi¡wir,'3'fr (st"
7

-L, f

ij rpq

st! = -'" I
íj ¿pq

h+
p ¡ ¡j rn+

p

hh ) nirPqpq

hh ¡ ¡j snc

¡ ¡j rnl

hh j opqr)nqr

)r j lpqr
p qr

h
+
q

hh
p

for st|, replace nj'ona u" -n!T

I w . .w. ^n?n?(r,+rr+ n+ - n-
ijipqrrJaJ¿JilPqr P

s.T,

(n+ r,+ r,+'p q r -h h h
L

nvr.L

Ir.n*(tri -

fa
V. .V. ^n-n^ (h' h'

r_J aJ¿ J J¿' p q

wijwin'ît4ti -

If
..V. ^n^ (h' h'LlLv,)Lpq

ê
stio

for srfr, replace njf'lc ty nll

s.; = -r4 I
ij !.pq

=Lu I w
Íj Î.pq

for stf, replace njl'lc o, n
pq
je.

pp

hhPq

f or sr]o , reptace nj llc ry -n!sq

t
\2

for stl' replace njllcr ur nfoot

I
6 I r-J i9. ?n

J
I^f

ij.{,pqr

a j lpqrfor St replace II bvn13t

v I U

ijLp ij í9.

for stl, , replace nj llcr tr -n![t

stTg = + ,,I^^*ur:urr'j'r,t; d nl - n; n; n; ) nj rpqr
r-J J¿pqI

pqr
je"

stTu V h
2

for stlu, replace njlP uv -n!¿

p ) ni¿P
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ST

ST
s
t7

v
4

s
I8

SI I9

I5 2

,.¡ 
luoou':"'u

ui¡wiuÀi(n; - h-; ¡jrn

for stlu, replace nj llc by nll

-t- -t-u..v.^À.n-(h'h' - h
r_J r-J¿ l_ J¿- p q

r?n^ (rr+ n+r-J¿ P q -hhv
4

r? (n+ rr+r- pq

ttlo = å rrlno," r.i* ru^?"î,t; d nl - n

f.or star, replace nf u uv ni lP

s v t
íj.0p

for stlu, reptace nj sP ur nfs

ttTu = T ¡,.r,? (rr+ n* - n- n- ¡ nj llca J¿'P q p q-

for stlr, replaee nj'cnc uy -n![

ST I iSuin

i
1j-cpq

ij ¿pq

h ¡ nj sna
pq

) nj sPq
I^l pq

for srf* replace nj lne ty -n![

-v
4

I w..w. ^

ij ipq tJ LY'

j lpq- h h )rrqP

for stl' replace nj llc by n|¿q

h ) nj ¿Pqr
pq hr

for stlo , replace nj'one r or nllt

t'l' = - å i:lno,"r:u, o^?nu,{tini - n; n;n; ¡ njrner

for stl' replace ¡jlncr ut -nflt

S

22
(t - v)

B ,]unu':u'ullcr'f 
- r' )p

nf
J

St
9,
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St
s
23

uisÀi'¿(ni - r'-)n!ø

ui3ui.l,'3'ocnf - r'o > n?
J

stäu =

ur:"ru^l"u (nj

Ionur:urur? 
cr'ir'f - r'- tro > n

replace nlf ur nj Î'nl

ui¡wi.tt5^r"u(4 d

II
u. .v. ^n.).. (h-h- - tr-t- )nf1r-J aJc J r. P q p q J)L

n![ ur -njrro

l,I. .w. ^x? n.n ^ ( h+ h* r,* - n
r_J r-J{, r_ J y, p q r

n![' uv nj'cncr

. .v. ^r? n. (r,+h*h* - hr_Jr_J¿r-JPqr

ij spq

for Sta
26'

I

Iv
ij .0p

ij

for stlr, reprace nlo tr -niuP

for stlu, replace nlu tr nilP

(i - v)
=-+ I h+

q

ô

S

'ï;
ST hh

qp )25 4

s
ST

for stlr, reptace n![ rv -nj 
llc

(t - v)
l+ ,.

aJ

pq
je.26

SÈ - _ (t-v)s
27

"'ii
-h h

p4 ij.tpq

ror st|r, replace n![ uv njrnc

s _ (l-v)
2B I

s _ (1-v)
I

4 ij r.pq

afor St replace28'

SI

sr hh )il
pqr
ip.29 6 pqr

hhp qr
Þ (t-v)

J

ij 9pqr

for stlr, replace

Iro
ij l,pqr

pqr
je")ST

30

for srlo, replace nfuqt tv -njlosr

l
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pq
pqr
j1,r I)v..v. ^r? (t+h*h*

1Jr_Jtr_Pqr
S

sÉgt

for stlr, replac. n!;t by -njrPqr.

hhh_ (t - v) I
6 ij l,pqr
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APPENDIX IV

COEFFICIENTS OF THE GENERALIZED STIF}'NESS AND MASS MATR]CES

Coefficients of matrix D. Denote Ds

and Da for aslnnmetric soluÈions.

k=lrM i=OrN j=grN

for symmetric solutions

P=OrP

The matríx is a 3M(N+ 1) square matríx. Put g = 3(k- 1) (n+ 1).

The non-zero coeffici-ents of matrix D are:

Ds[g+í+1, g+j+1]

= | {rflniir . a* i: ilPi: I rtf - nn I
P

o"[g+í+1, g+ j +N+2]

(-v Àr. j n

t"[g+ í+ 1, g+ j + 2N+ 3]

+'l.1 (v Ànj nijpq + (1- v) Àuí nll I cnini - r;";, ]q

)p
h=lt ijp (1- v)

2
Àki nÏj ) (hl

h
P

=l {"PI
¡,. nliP(n+t(p )

->.I [*¿.vÀujz¡¡íirc - (1-v)Àuirrï,l](r;4 - r;r;, 
i
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o"[g+i+N+2, g+j+1]

=I
P

)h
-l-(h'
p

r I [",trnijpq + (1-v) rf.nn]><nln+ - r'-no I

(-vI i niin l=U rn: npr, >
I
t

k p

+%l (vruinijp( + (t-v)\irïl> <r,f ni - nnr;, 
Ì

S
D [e+í+N+2, B*j +N+2]

t

o"[g+i+N+2,Eij+2N+3]

=l
p

t
t

(i iníjP . G;+ ç nl, > cr,l

*Iå(r5¡ijrcr + 2(L- v) À3 nllt l (r,+ n+ h* - h- h- h- ) IK r-J P q r P q r-J

)h
p

I
)

P
h=l

P t-t ntio <ni )

+[
q

,, t(iiz +t+vrfli¡¡ijre + (r-v)rfr j nil r <nid- nnr,nl

- I + t(ij2 + vrflr¡nijnor + ze-v)rfr: n!rq'tcr'f
r

t* h*qr htq-h h )
I

p
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u"[g+i+2N+3, g+j+1]

)
P

h=l
P

v Àk rrÍjP (h+

I
q

(-{+ v Ào i2) niiPq -

o"[g+i+2N+3, g+ j +N+2]

- j nijp,nJ - nn ,

q
hh-

p
,2+

>,1çi2+i +vrfl j )niipa + (r-v)ifrtnTl r (4r'+ - r,nnol

)t-h h h
q

(r - v) r,ni: nll} ,rtr, )

=I
p

+l
p

- I + t(r2j +v rfri)nijpqr + 2(L- v)rfli nprf'rrr'ir'{ni

- h-h- )
P 9.'

p

¡"[g+i+2N+3, g+j + 2N +3]

=l
p

nriP(r,* - h )'p P'

+[
q

*tå
T

(
,.GJz- i2 -v rfr ) nijPqcnjr'i

(ril + l2j2 + v rfr tr2 + jzl) ntjPq't

l ;,Ì-h h h
qp

h*h*qr+ 2(L- v) rfr ij nl; I
(h'

P
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The asymnetric solutions Da are obtainecl by firstly changing the

i,j notatíon in the II funct.ions from subscript to superscript and

vÍce versa and changing the signs of the following groups of

coeffícíents

n"[g+i+1, c+j+N+2]

t"[g+i+N+2, g+j +1]

t"[g+Í+N+2, g+j+2N+3]

Dslg+i+2N+3, g+j+N+21

Sírnilarly, the coeffícients of matríces Qs and Qa which are also

3M(N+1) square matrices are as follows

Q"Ig+i+1, h+
P

- n- ) nijP
p

Q"[e+i+N+2, s+j+N+2] = I Cnl - rr^l n!.
PppaJ

s+j+r1 = [(
P

Q"[g+ i +2N+3, g+j +2N+ 3]

For the asyuunetríc coefficients, simply change the irj notation in

the II functions from subscrÍpt to superscript and vice-versa.

= I (t+ -h- ¡ niil
;P p
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Solution of the iI functions of the form shor^rn in equation

167.

(45.1)

(As. 2)

(4.0) of the text.

TíJ cos íX cos jX cos pX dX
p t"o

=f +I +I +I
I

which are all zero unless

i+j*p=0

í-j-P=o

i+j-p=0

i-j*p=0

2n

32 4

fr= n12

T2= nf2

r, = t12

T, = r/2

,

,

t

,

il

whfch are all zero unless

Í+JtP=0

1-j-P=o

í+j-p=0

í-jfp=0

p cos pX sin iX sin jX dXij
o

+ +I 3
II=f +I

2 4

1, = -1/2

T, = *rl2

T, = -n/2

I, = *r/2



-ijpq -TI

which are all zero unless

cos iX cos jX cos pX cos qX dX

2 + +I I

=Q

=0

=0

=0

=Q

=0

-0

=Q

It /2

Tr /2

r/2

r/2

r/2

rl2

Tr /2

rl2

r
+II t

1t
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(As. 3)

(As.4)

í+
í+
i+
í+
t--

1-

i-

l--

Í+
i+
f+
l+
i-

i-

1-

1-

j

j

j

J

j

j

J

j

+

+

+

+

P

p

p

p

p

p

p

p

+

+

+

+

q

q

q

q

q

q

q

q

,

,

t

t

,

t

Tz=

rt

rs

f=
4

sin iX sín jX cos pX cos qX
fi

I t

I
5

ro

I

I
7

I

'i;

+

which are all zero unless

+I
2

=0

=0

=0

=Q

=0

=Q

=Q

=Q

dx

= -T/2

= -Tr 12

= -n/2

= -Tt /2

= +n/2

= *¡/2

-_ +r/2

= tr/2

+I I

j

j

j

j

j

j

j

j

+

+

+

+

P

P

P

p

p

P

p

p

+

+

+

+

q

q

q

q

q

q

q

q

I

2

3

4

I

I

I

ï

,

,

ru

6
I

I

I
7

I
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iX cos jX cos pX cos qX cos rX dXt
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(A5. s)+

zero unless

j+p*q*

j-p-q-

j+p-q-

j-p*q*

j+p*q-

j-p-q*

j+p-q*

j-p-lq-

j-p+q*

j+p-q-

j-p-q-

J+p*q*
j-p+q-

j+p-q*

j-p-q*

j+p*q-

I I I+
2

+I
t6

which are all

1+

Í-

i+

i-

i+

i-

i+
i-

i+
1-

i+
i-

i+
i-

i+
f-

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

r=0

I

I

I

I,
4

T2

3

I

r/2

r/2

r¡ /2

r/2

r/2

t/2

r/2

Tr /2

r/2

rl2

rl2

Tt /2

rl2

rl2

¡/2

nl2

,

ru

r7

r8

r9

rro

ru
T,,

f=
13

I

I

I

t4

15

16

II Pqr
ij l'"sín iX sin jX cos pX cos qX cos rX dX

o

I
1 2

+ I + ... + I

which are all zero unless

I6
(As.6)
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í+
1-

l+

i-

Í+
a-

i+

Í-

í+
i-

í+
i-

t+
1-
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j

j

j

J

j

j

j

j

j

j

j

j

j

j

j

j

+

+

+

+

+

+

+

+

P

P

P

p

p

P

p

p

P

P

p

p

p

p

p

p

+

+

+

+

+

+

+

+

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

+

+

+

+

+

+

+

+

r

t

t

t

r

T

r

T

r

r

r

t

t

r

x

r

=0

-0

=0

=0

=0

=0

=0

=0

=0

=0

=0

=0

=0

=0

=0

=0

= -Tr /2

= *n/2

= -Tr/2

= *r/2

= -r/2

= *r/2

= -r/2

= *r/2

= -r/2

= *r/2

= -rl2

= *n/2

= -r/z

= *n/2

= -r/2

= *n/2

I
I

I

rs

2

4
I

I

I

,

t

,

5

6

I I

9

rro

12

r7

I

rn

I

rrs

t4

t5

t6

I

I
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APPENDIX VI

SOI]ND MDIATION FROM CYLINDERS

The theory of tine-averaged holography has been developed ín

this thesis to such a sÈage that the víbraÈion components of an excite<l

arbitrary surface at a single frequency may be determined r¿ithout

difficulty. In particular the component normal to the surface ís of

ínËerest to the study of sound radiation from vibrating surfaces. In

this Appendix the radiatíon efficj-ency of three steel cylinders is

measured and compared with the theoretícal predictíons of Junger and

Feit [148] assuming normal mode shapes.

A6.1 THEORY OF SOIJND RADIATION FROM V]BRATING CIRCULAR CYLINDERS

The theory of sound radíation from círcular cylinders presented

here ís taken from Junger and Feit [148]. Consider a cylinder of length

L and mean radius ao wíth shear-diaphragm ends. The acceleratíon of

the vibration component normal to the surface may be expressed as a

combination of the normal modes

ii (x, e) I IÀI cos k X cos n0 (A6.1)
mn mItrrI

M1lrrhere k* = ï , 0 is the círcumferential co-ordinate and X the co-ord-

inate along the generator measured from the body centre of the cylinder

as shown in Fig. A6-1.

The pressure field may be expressed in Èhe same form as Ehe

seríes

p I P R (r)cosk Xcosn0lnnmnmt
(rrxr o)

ErD
(tø.2¡
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where P are coeffí-cienEs to be determined from the boundary condítionnn

(e0.:)
f=âo

The radial harmonic n*r(r) ís found first by notíng that for steady

st.ate conditions Ít satísfies the three-dimensional HelrnholÈz equation

which reduces to

þ ,',x,0) = -p i; (x,o)

ð2 1a
[_+àr2 r âr

n2

-+ 
(k

,2 '-uî>ìnr,(r)=o (A6.4)

(A6.6)

cosk X cosnO

This Ís Besselrs differential equaÈion r¿hose solutions are

l-inear combinations of Bessel functions of the fírst and second kind

and for outgoing vraves

n o(r) = Jrr[(k2 - ú^f.¿ + iyn t(k2 - uz^)'-"r]

= H- [ (k2 - x?)4t]n-' m'
(A6. s)

r¿here H is Ëhe Hankel function of the fírst kind.n

Hence cornbining equations (46.5) and (A6.2) and substiÈuting

the general solution into the boundary condition, equation (A,6.3),

and solvíng for P,,, gir""

Hence Ëhe pressure field is

i,i--H-t(k2- u?i4'lnn n' m'Pr(r,x, o) = -p I
m, n (k2 - k2)L'H' [ (k2 - U2^)% 

^oJ
m

(ao. z¡
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Considering now a fínite number of stan<ling \raves cos knX confined to

the region lXl < L/2 and applyíng the stationary-phase approximarion

to the far field gives

pr (R, e,0)
zp.ik\-(-1)'-tr î?l (kLcos þ /2) jm sl_n

=
n k RsinQ (t<fr - t<2cos2q)

n-l
I^I (-1) cosn0n

(A6. B)
H'(k a sinQ)

n o

where cosine is used if rn is odd and sine ís used íf m is even.

The total sound po\¡rer II is obtained by integrating the radial

componenL of the sound intensity vector over a large sphere of radius

R and hence

xl
n

t
{:::;(kL coso / z)lst-n-

sino I Hl(kaosinO) I 

2 
tr - k2cgs2$,

k2
m

ocoso. w2 SI

.2n lr

t t P (R, e, o) 
2sinq 

do do (A6. e)

(A6.10)

and on substiÈuting equat.ion (46.8) ínto equation (46.9) gives

d0

I

f.or a single mode. Using the defínitíon for radiation efficíency lJ46l,

II
o= (ao. n¡

where . t¡2 t-- is the mean square velocity normal to the surface averaged
ST

over space and Èime and SO is the radiation area very nearly equal Èo



2raoL, and noting that

L7 5.

(A6. 12)

d0 (A6.13)

(%)

u2
B.I^I2t

1ìS f

which resulÈs from averaging over two anguJ-ar co-ordínates and Lime,

then substituting equatíon (46.10) into equation (46.11) gives the

fína1 result also derived by Rennison t164]

16L

mn b,1T'm-a

, :î:: (K. L cosþ /2ao) l
a

K LcosQ
o a

aomïr

where K is the non-dimensional frequency parameter given by Ka
0âo

d co

Ã6.2 E)GERIMENTAL ANALYSIS AND RESULTS

Three steel cylínders of length L = 39B.Bmm, mean radius

ao = 39.29nm and wal1 thÍcknesses 2.050rnm, 2.845mm and 4.597mm were

machined as in Fig. A6-2. Two stock cylínders of lengÈh 600mm and

thíckness 6umr acted as baffles and were machined aË one end to form

a thin ridge v¡hich fíts perfectly into the líp at the edge of each

cylinder thereby ensuring shear-díaphragm end conditíons. Four 6rnm

diameter supporting rods held the structure in place with a 1ittle

tensíon from springs mounted on one end as shown in Fíg. L6-2. Pieces

of mineral fibre were stuffed into the ends of the baffles to ensure

an anechoic termination and eliminate- the possibílity of standing r^raves

in the medíum insido the strucËure. AlÈhough the theory outlined in

the last section requires infjnitely long baffles (see Fig. A6-2) the

structure is at leasÈ five wavelengths in dimension at the lowest

frequency considered and hence the error is assumed neglígible. A

sinþ lH' (K"sinþ) I 
2 tr - { \2
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photograph of the apparatus is shown in Fig. A6-3.

The cylínder and supportíng structure were placed in a

reverberation room of volume VR = 181.5m3 and surface area \ = L95m2.

The cylinrler was excited usíng the modal driving system described

in Sectíon 2.2.2 and the acceleration monitored usÍ-ng a second B & K

spectromel-er and acceleroneËer.

The sound level in the reverberation room was measured

usíng a B & K %t' mícrophone type 4133 and, 2IO7 spectronìeter connected

to a daËa acquisitíon system [165]. The microphone scans the rever-

l¡eration room using a traverse system and the sound field ís furÈher

diffused by a rotaÈing vane assembly (see Fig. A6-4). The data

acquisiËion sysÈem samples and sÈores the ouÈpuÈ of the 2107 spectro-

meter at íntervals of 1 second and at, the end of one traverse of the

room calculates the mean and sÈandard devíation.

The reverberatíon time TuO of the room \,ùas measured ín the

normal way in Èhírd-ocËave bands and hence Èhe Power Level calculated

from [166]

t, = tO * 101ogVR - 101oBTuO f ^A- 
c

10 log (1+ J-9¡ - 13.s (A6.14)
SfvR

where L_ in Éhe sound level averaged over space and tíme determined
p

usÍng the data acquisitíon system. Hence, usi-ng equation (46.11) the

experimental radiatíon efficiency Ís

f2 10
(h- rzo)/ro

c = 7.545 (A6.ls)
!t

where tr{ is the peak acceleration of the cylinder surface at a radial

2

antinode.



I

FIG. A6-3

Cylinder and supporting structure.

H
!
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FIG. A6-4

The reverberation room, rotating vane

and mierophone traverse.
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Figs. A6-5(a) - (e) show the experimental results together

with the ÈheoreÈical curves calculate.d from equation (46.13) using

numerical integratíon. In general the experímental data are 5-10d8

down from the theoretical curves which canrìot be explaíned. To eliminate

the possíbility that the baffles are too sma1l they were completely

removed and new data taken. As expected, sound radíation from Èhe

lower order modes was dramatícally reduced but for the higher order

modes Èhe results r^rere identical . The error is noÈ ín the frequency

parameter K" as measured frequencies are less than 57" in error from

theoretically determined frequencíes.

However, assuming that Ëhe problem ís resolved then the

radiatíon efficiency of the distorted pipe may be calculated using

the solution presented ín Chapter 4 and compared with measured values.
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