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SUMMARY

The theory of time-averaged holography is extended to take
into account three-dimensional phasor vibrations of a single frequency.
The vibration is considered to be characterised by a spatially varying
Fourier expansion of superposed spatial modes and temporally dependent
coupled modes in three dimensions leading to the derivation of the
general characteristic equation. The method of Generalized Least
Squares is introduced to solve the non-linear general characteristic
equation including phase without the need to modulate the laser beam.

The new theory and method of analysis is applied to a number
of vibrating objects including a clamped circular plate, wine glass,
stainless-steel beaker and cylinders of various materials with shear-
diaphragm ends. For the first time the radial, tangential and
longitudinal vibration components are determined experimentally and
compared with theoretical predictions.

The theory of vibration of cylinders of varying wall thicknesses
is solved using the Rayleigh-Ritz method and the mode shapes experi-
mentally determined, for the case of a cylinder with non-concentric
inner bore and outer surface and a cylinder with a thin longitudinal
strip, using the new holographic theory.

A number of coupled modes in a near perfect cylinder are
analysed and the phase component determined for the first time without
modulating the laser beam. Results are compared with predictions for
one-dimensional phasor vibrations.

New experimental techniques such as the translating hologram
table, resonance urnit and data system are described which aid in
the generation and analysis of time-averaged holograms of complex vibrations.

Finally, the sound radiation efficiency of various cylinders is

measured in a reverberation room and compared with theory.
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CHAPTER 1

LITERATURE SURVEY

1.1 HOLOGRAPHIC INTERFEROMETRY

The discovery of holographic interferometry, notably by Powell
and Stetson [1] in 1965, has led to a remarkable development in the
field of vibration analysis. Here is a developmental tool with the
same impact on dynamics as quantum theory had on mechanics - a contact-
less probe into the miniscule vibratory motions of structures. Stetson
and Powell [2] in 1966 demonstrated the equivalence concept, which is
basic to the theory of holographic interferometry, that exposing the
holographic plate with the reference beam and object beam in sequence
gives the same result as simultaneous recording. This leads to the
concept of real-time holographic interferometry. Representing the
electromagnetic field of the laser radiation as an angular spectrum
of plane waves [3], Brown et al derive semi-rigorous equations for
time-averaged and real-time holographic interferometry of one dimen-
sional simple harmonic vibration [4]. Butusov [5] presents the theory
for time-averaged holography in a mathematically more rigorous form
and Hildebrand [6] generalizes the theory of holography.

The basic requirements for making a good hologram are coherent,
monochromatic light and freedom from extraneous vibrations. Lurie [7]
shows in theory, if the reference beam is a plane wave, the reconstr-
uction is sharp even though the light is only partially coherent. The
variation in coherence over the object surface is a greater factor in
the loss of clarity. If the object is moved linearly during the recording

the image intensity is modulated by a sinc-function which is responsible



for the perceived blurring [8)}. For sinusoidal disturbance, the degree
of blurring is proportional to the vibration amplitude [9].

The theory of time-averaged holography developed by Powell
and Stetson was verified for one dimensional simple harmonic vibration

by Lurie and Zambuto [10]. The authors recognize that the integral

T
% I exp[ikc(t)(cose1 + cosez)]dt,

o
is valid for any motion c(t) no matter how complex it may be. 1In the
equation 6, and 62 are the angles subtended by the surface normal and
the illumination and observation vectors respectively and k is the
radiation wavenumber. The errors [11l] involved in the determination
of a displacement are principally

1. inaccuracy in determining 61 and 62 (1° error results in
about 17 error in displacement amplitude) and

2. inaccuracy in determining the fringe order due to fringe
width which is inversely proportional to signal to noise ratio (0.5
fringe error results in roughly 57 error in displacement amplitude).
Nevertheless the analysis of simple harmonic motion by time-averaged
holography can be trivial with the formula derived by Borza [12].

One of the limitations of holographic interferometry of
vibrations is that only relatively small amplitudes (less than about
2um) can be analyzed since fringe intensity is inversely proportional
to fringe order which is determined by the argument of the characteristic
fringe function. For time-averaged holography the intensity of the
fringes varies as Jg where the characteristic fringe function Jo is the
zero order Bessel function. In this case the tenth bright fringe is
less than 27 the intensity of the zeroth order bright fringe. For real-
time holography the contrast is poorer since the intensity varies as

(1ﬂ-Jo) [4]. One method of improving the dynamic range is to artificially



increase the wavelength of the radiating light by a Moiré technique

used in the study of stress deformations in transparent objects [13].
Rowe [14] describes a method of projecting interference fringes onto an
object surface and recording a time-averaged hologram of a fixed rotation
of the object in the usual way. The fringes interfere to form a Moire
pattern analogous to the normal Bessel fringes except that quite large
displacements are analysed. Hung et al [15] have extended this method

to analyse vibrations of large amplitudes and Joyeux [16] describes an
on-line instrument which measures displacements directly using this

Moire technique.

The object under study is usually required to scatter light
diffusely. However, phase objects (usual in gas dynamics problems) have
been analysed using the principles of holographic interferometry.
Ovechkin et al [17] describe a double exposure method with the object
in the path of the object beam. Another technique [18] is to project
the phase-varying object beam onto a flat diffuse surface which then
functions as a normal diffuse object.

Holographic interferometry requires only one reference beam.
However, Dandliker et al [19] and Tsuruta et al [20] describe a method
of two reference beams as a means of adding flexibility to conventional
double exposure interferometry. This procedure enables information of
objects to be taken separately or with mutual interference. Tsuruta
et al use this principle, in lieu of the double exposure technique,
which has alignment problems, to investigate an object which has been
modified and replaced in the object beam.

The theory of holographic interferometry of simple vibrations
in one dimension has found widespread applications in other disciplines.
Bies [21] shows how the normal component of vibration, as determined
from holograms, can be used to predict radiation efficiencies of vibrating

surfaces - an important problem in acoustics. Frankort [22] predicts



the radiation behaviour of loudspeaker cones in this way. Vasil'yev

et al [23] analyse vibration components of blades and discs of comp-
ressors in aircraft engines. Zakharov et al [24] describe a potentially
portable laser microprobe to analyse vibrations in the field using the
principles of holographic interferometry. 1In the biomedical sciences
Greguss [25] and Hogmoen and Gundersen [26] describe the use of inter-
ferometry in the analysis of the vibration of the human tympanic
membrane, stresses in teeth (holodontometry), deformation of the femur
(orthopedics) and respiration contours of the human body. The poss—
ibility of colour interferograms has also been considered by Chernov
and Gorbatenko [27]. Fryer [28] and Rogent and Brown [29] have written
reviews on holographic vibration analysis covering almost every aspect
of holographic interferometry.

The extension of one~dimensional holographic interferometry
int& three dimensions was a natural progression. Haines and Hildebrand
(1966) [30], to whom the discovery of holographic interferometry is
also attributed, extended the theory to include static rotation and
translation of the object in three dimensions. The resulting formulae
are difficult to use in practice hence Sollid [31] developed two schemes -
the single hologram method utilizing parallax and fringe counting and
a multiple hologram method using interference order assignment. The
first scheme involves counting the number of fringes that shift past
an object point as the point of observation is moved from one position
on the hologram to another. Dhir and Sikora [32] improve this technique
by expressing the components of displacement as a set of linear equations
which are solved by the least squares method and they note that only
the sign of one component was necessary a priori to determine the others.
The second scheme utilized a set of holograms with several directions
of observation or illumihation and was improved by Sciammarella and

Gilbert [33] who determined the displacement components by the method



5.
of least squares. Although the first scheme has been automated for data
processing [34] its main disadvantage is that for small displacements
the field of the hologram may not be large enough to enable at least
a few fringe counts. For this reason in this thesis the author prefers
the second scheme which is also easier to adapt to data processing.

Stetson [35] and with Pryputniewicz [36] use the second
technique to separate rigid-body motion and homogeneous deformation with
the application of the least squares method to an overdetermined set of
linear equations. Hu et al [37)] describe a Moiré technique which comp-
ensates for rigid-body motion using two holographic interferograms, one
on each side of the object, and reconstructed together to produce Moire
isopachic fringes of the stress displacement only.

Ennos [38] makes use of the technique of multiple holograms
to measure the strain in one direction only in the plane of a surface
under tension. Sciammarella and Gilbert [39] extend this method with
the aid of a Moire technique to optically separate two components of
displacement of a surface under compression.

N

Using light scattered by the interior of a three dimensional
transparent object from a sheet of coherent light passing through the
body Barker and Fourney [40] describe how displacement information may
be recorded in sections to describe fully the deformation of the object.
This broad concept is used in this thesis to construct a fully three-
dimensional vibration map of any object surface in two-dimensional
sheets or slices, with the result that the mathematics is less complex
and hence more applicable to real analysis.

A rigorous theory of fringe formation and localization has
been derived by Stetson as an improvement of more complex and approx—
imate descriptions; for example that of Tsuruta et al [41]. 1In a series

of excellently planned papers Stetson [42-48] derives a rigorous form-—



ulation of the generalized fringe function, discusses in depth the
factors affecting the argument of the fringe function, predicts fringe
loci and localization for a combination of whole body rotations and
translations and supports the theory by a large number of experiments.
The results most applicable to this thesis are

1. that fringe spacing and localization are unaffected
by the curvature of an object surface and

2. the observer-projection theorem (fringes observed
localized in any plane may be projected on to the object plane)
justifies the use of a camera and photographic enlarger to produce
pictures of the holographic interferogram.

Walles [49] extends the concept of homologous rays to compute
and visualize fringe localization for arbitrary movements, including
strain and shear.

Abramson [50-55] introduces the holo-diagram which is a
pictorial representation of the formation of fringes in holographic
interferometry. The distance between the point of illumination and
the hologram determines the sensitivity. Hence the process makes
optimum use of the coherence length of the laser radiation and objects
up to 2m in length may be studied. Abramson also introduces the
sandwich hologram [56] to eliminate whole body movement in holographic
interferograms of deformed objects.

Matsumoto et al [57] analyse the measuring errors of three-
dimensional displacements by holographic interferometry. In particular,
for the case of the multiple hologram technique, the contributions of
optical errors and fringe-reading errors are least for orthogonal
systems of illumination or observation directions.

Holographic interferometry has been applied to the measure-
ment of steady velocity [58-59] where it is shown the characteristic

function is the sinc function. Gupta and Singh [60-63] analyse the



characteristic functions of time-averaged holography for non-linear
vibrations of the form of Jacobian elliptics. Such motion is typical

of vibrations in a shaft connected to a crank and piston or in prop-
ellers. However, no experimental application of the theory has yet
been reported. Janta and Miler [64] calculate the characteristic
function of time-averaged holography for sinusoidal damped oscillations
and from fringe data devise a scheme to determine the damping coeffic-
ient. Zambuto and Lurie [65] derive the characteristic function for
various complex motions - constant velocity (ramp) motion, superposition
of ramp motion and sinusoidal vibration and step motion - by considering
the effect of motion on coherence. On the other hand, Vikram [66-69]
and Vikram and Sirohi [70-72] analyse the same motion using the phase
variation equation [1] and suggest various schemes including Moire
techniques, amplitude modulation and spatial variation of the object
beam to separate the components of vibration.

In addition to the study of hologram interferometry of
complex motions, various workers have considered one dimensional vib-
rations of a number of modes of more than one frequency. Wilson and
Strope [73] show that the characteristic function of two rationally
related modes with non-zero phase difference is a linear combination
of the product of two Bessel functions of the first kind and of various
orders. Wilson [74] extends the concept to include irrationally
related modes and generates computer images of the fringe patterns of
a circular clamped plate vibrating in such modes. A special case of
this is discussed by Reddy [75]. Stetson [76] introduces the method
of stationary phase to predict fringe patterns of vibrations of modes
of different frequencies and phases. The method assumes that the main
contribution of the time-varying propagation argument, Q, to points

in the hologram which reconstruct the brightest, occurs at 23Q/3t = 0.
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The theory is shown to agree well with experimental observations of
two modes with rationally related frequencies and of various phase
and is physically more meaningful than that proposed by Wilson and
Strope.

Vikram [77] suggests a stroboscopic technique to separate
two modes of different frequencies. The method consists of pulsing
the laser light at times when the amplitude of one mode is invariant
and vice-versa for the other mode whereby the separation of the two
modes is accomplished by analysing the two holograms.

The more general case of an unlimited number of modes of
different frequencies and varying phase has been considered by Dallas
and Lohmann [78]. The deciphering concept uses a moving grating in
the Fourier plane to deconvolve the coefficients of vibration from
the optical Fourier coefficients in the hologram. By "synchronizing"
the grating velocity with the frequency of vibration, the mode of
vibration for that frequency is separated from the rest. Wilson [79]
derives the general characteristic function for any number of modes
with different frequencies and phase in terms of a linear combination
of a product of Bessel functions of the first kind and various orders.
Stetson [80-81] introduces the concept of analysis by density functions.
The general characteristic function is expressable as a finite sum of
Fourier transforms of the vibration modes. Finally, Vikram and Bose
[82] analyse damped oscillations with two frequencies by illuminating
the object from two different directions resulting in a Moire pattern
by which the amplitudes of vibration and the damping coefficients are
determined.

The material contained in this thesis applies to vibrations
of one frequency. The analysis of vibrations involves in part deter-
mining the geometry and phases of modes both of which contribute to

the resulting fringe pattern of a holographic interferogram. Firstly,



the geometry of the vibration may be separated by considering the motion
to consist of a number of linearly independent superposed modes, a
method which dates back to Rayleigh (1894). The analysis then involves
finding the amplitudes of the contributing modes. This concept was
introduced to holographic interferometry by Stetson and Taylor [83].

The pure mode shapes of a clamped rectangular plate were analysed by
hologram interferometry and these were used to predict the static
deflection resulting from the application of point forces to the plate.
In another paper, Stetson and Taylor [84] predict vibration patterns
that result from mode combinations in an asymmetrically loaded disk

by applying the holographically determined pure mode data of an unloaded
disk. Evensen [85] determines the amplitudes of the normal modes of

a fluttering panel by a strobing technique.

The phases of the contributing modes are usually determined
by beam modulation in contrast to the method presented in this thesis
which determines both amplitude and phase information from normal time-
averaged holograms. The combination of modes of different phase was
shown by Molin and Stetson [86] to result in the addition of their
corresponding fringe functions as if they were phasors. Shajenko and
Johnson [87] introduced stroboscopic holographic interferometry to
"freeze" the phasor motion at any portion of the cycle. Miler [88]
improves the theory by assuming the object moves linearly during the
exposure period rather than remaining stationary. Takai et al [89]
show that by sinusoidally modulating the amplitude of the reference
beam the characteristic fringe function is J,cosA where 4 is the phase
difference between the phasor vibration and sinusoidal modulation and
J1 is the first-order Bessel function. Hence phase information is
observable as a brightness variation of the fringes.

Aleksoff [90] introduces phase modulation of the reference
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beam in lieu of amplitude modulation and the fheory and technique are
analysed in detail by Neumann et al [91] and Aleksoff [92]. The
characteristic fringe function is essentially Jo(kA) where A includes
the phase difference between the phasor vibration and the beam mod-
ulation and k is the propagation constant for the laser light. Mottier
[93] shows that by phase modulating the reference beam with a triangular
function rather than a sinusoidal function, fringes near points vibrating
with the same phase reconstruct brighter than others.

Gupta and Aggarwal [94] report on a scheme for determining
the direction of motion of static deflections by a triple exposure
technique with a change of phase of w radians for one exposure. Stetson
[95] studies the effects of beam modulation on fringe loci and local-
ization in time-average hologram interferometry of phasor vibrations.
Lokberg and Hogmoen [96] extend the theory of vibration phase mapping
to electronic speckle pattern interferometry. Belogorodskii et al [97],
Butusov [98] and Yoneyama et al [99] use a small mirror on a point of
the vibrating surface to phase modulate the reference beam thereby
separating rigid-body motion from other vibration. Finally, Levitt
and Stetson [100] describe a phase-mapping procedure to generate
vibration-phase contour maps.

The theory of time-averaged holographic interferometry was
first applied to three-dimensional vibrations by Liem et al [101].
They reported a strange shift in the calculated geometrical vibration
over the surface of a cylinder when illuminated from various positions.
Tonin and Bies [102] explained the anomaly by pointing out that the
cylinder vibrated with components in three orthogonal directions and
hence the application of the normal one dimensional theory of Powell
and Stetson was erroneous. They subsequently extend the theory of

static holographic interferometry of surface strains in two dimensions
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[103] to simple harmonic motion in three dimensions and successfully
apply it to a vibrating beaker and wine glass with no strange geom-—
etrical shift. Tuschak and Allaire [104] determine the radial and
longitudinal components of an ultrasonic resonator using a simple
extension of three dimensional static holographic theory. Tonin and
Bies [105] improve the method of analysis by assuming the vibration
to consist of a series of orthogonal superposed modes and determine
the amplitudes by the method of least squares.

Tonin and Bies [106] extend this to include phasor vibrations
in three dimensions and show how the amplitudes and phases of super-
posed and coupled modes (phasor vibrations) are determined without
modulating the laser beam. The theory also obviates the need to
arbitrarily assign signs to fringes, a method reported by Vlasov and
Shtan'ko [107]. Finally, Archbold and Ennos [108] consider two-dimen-
sional vibrations of two frequencies.

The theory of holographic interferometry applied to general
three-dimensional surfaces requires that the angles subtended by the
illumination and observation vectors to the surface normal be known.
The author believes the best way to achieve this is by application of
contour holography. If the surface contour and the geometry of the
optics are known then the required angles may be determined. Hence
a complete vibration analysis would require a set of hologram pairs -
a contour hologram and a vibration hologram - which may be taken sequen-
tially. The list of references includes methods of hologram contouring
using single frequency lasers [109-120], dual frequency lasers [121-123]

and incoherent light [124].

1.2 VIBRATIONS OF CYLINDERS

Most of the three dimensional holographic theory in this thesis

will be applied to vibrations of cylinders as they provide simple curved



12.

surfaces and three dimensional motion which is analytically predictable.
The flexural vibrations of perfectly cylindrical shells is well docu-
mented by Leissa [125] who summarizes ten theories which generally

give results too similar to be experimentally distinguished. The
Arnold Warburton theory in the author's mind is perhaps the best
reported in the literature [126-130].

The theory of vibrations of distorted cylinders is reported
using exact methods, semi-empirical methods (e.g. Rayleigh-Ritz, Least
squares) or finite element methods. The methods consistent with the
holographic theory developed in this thesis are those which assume
solutions which are eigen function expansions. Such methods applied
to one-dimensional beam problems are listed in the references [131-135].
In particular, the Rayleigh-Ritz method is excellently described by
Hurty and Rubinstein [136, Chapt. 4].

Firth [137] predicts the generation of extra-ordinary modes
(or superposed modes) by describing irregularities in a shell. as a
Fourier series in the radius and hence solving the Helmholtz equation
by assuming solutions to be a combination of the modes for an undistorted
cylinder. 1In a similar way, Rosen and Singer [138,139] solve the
Karman-Donnell non-linear shell equations to study the effect on the
resonant frequency of the superposed modes. Yousri and Fahy [140] gen-
eralize the distortion to include anisotropies in the radius of the
cylinder, wall thickness and Young's Modulus. Combining all three
distortions into one term and solving the Reissner-Naghdi-Berry equations
they obtain an expression for the radial displacement. The Rayleigh-
Ritz method is used by Toda and Komatsu [141] and the finite difference
method by Brogan et al [142] to determine the resonance frequencies
and mode shapes of a cylinder with cut-outs. Tonin and Bies [143]

determine the resonance frequencies and mode shapes for a cylinder of
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variable wall thickness using the Rayleigh-Ritz method and verify the

theory using holographic interferometry.

1.3 SOUND RADIATION FROM VIBRATING CYLINDERS

Holographic interferometry has been applied to the study of
sound radiation from plates by Hansen and Bies [144] and pipes by Kuhn
and Morfey [145]. Measurement of acoustic power by holographic |
methods is possible if the radial component of vibrating modes is known
[146 Chapt. 6, 147]. The theory of sound radiation from a cylinder
of finite length is presented by Junger and Feit [148] but'no experi-
mental evidence is available in the literature [149-152] to support
this theory. However, experiments have been conducted by the author

and results are presented in Appendix VI.
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CHAPTER 2

TIME-AVERAGED HOLOGRAPHY

The theory of time-averaged holography for static displace-
ments 1s extended to include three-dimensional vibrations of the most
general kind at a single frequency. Additionally the Theory of
Generalized Least Squares is introduced to solve the characteristic
equation. The determination of component amplitudes and phase is shown
to be possible using this method. Also the experimental equipment

used in this research and method of analysis are described.

2.1 THEORY OF TIME-AVERAGED HOLOGRAPHY

2.1.1 The Argument of the Characteristic Function in Spherical

Co~-ordinates

A spherical co-ordinate system is used through the discussion
to follow® as it is well suited to describe the optical arrangement and
is amenable for use in describing the curved cylindrical surfaces of
principal concern in this work. Additionally the spherical co-ordinate
system, being curvilinear, is most convenient for describing the small
scale vibratory motion of concern here as it reduces locally to a
Cartesian system. Finally the optical process to be described requires
that a number of holograms of different orientations be taken and inter-
preted. This enables the Least Squares procedure to converge with
confidence and hence use is made of a double turntable arrangement -
one turntable rotaies the object about a horizontal axis and simult-
aneously rotates on another turntable with vertical axis, not unsimilar
to a turret. This arrangement is best described by a spherical co-

ordinate system.
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Consider any point on a surface at rest as the origin [see
Fig 2-1 (a)]. The co-ordinate system for the vibration is defined
such that the principal co-ordinate e, is the surface normal, a choice
dictated by the fact that in acoustics (an area in which the author is
concerned), the vibration component normal to the surface is responsible
for the generation of sound. If a time-varying force of constant
frequency is applied to the object, the point under consideration
executes three-dimensional harmonic motion with a locus most generally
described as an ellipse. In addition, the vibration is assumed to be
statistically stationary. The locus of vibration is then a spatially
oriented plane ellipse. The time-varying vector which describes the

motion of the point is

d(t) = c(t)e1 + b(t)e2

+ a(t)e3 (2.1)

where the orthogonal components of vibration c(t), b(t) and a(t) are

time dependent. The choice of letters c,b,a and their order is

borrowed from shell theory for cylinders where they correspond to the

radial, tangential and longitudinal components of vibration respectively.
Fig. 2-1 (b) shows the co-ordinate system for the optical

arrangement. K1 is the illumination vector, K2 the observation vector

~ ~

and as is usually the case in time-averaged holographic theory 6, and
62, the angles subtended by K1 and K2 in the plane ele2 are measured
from the surface normal e, and positive in the directions indicated.

The optical path difference is [33]

(K, -K,). d .
0.p.ds = ——«— = — (2.2)
X k

where k is the wavenumber (2m/A) of the laser radiation and © is the

argument of the characteristic function M(Q) [33,86]. From the geometry
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FIG. 2-1 (a) CO-ORDINATE SYSTEM FOR THE VIBRA-TION
COMPONENTS OF A POINT ON THE SURFACE OF THE OBJECT

16.
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FIG. 2-1 (v)  CO-ORDINATE SYSTEM OF THE OPTICS FOR A POINT
ON THE SURFACE OF THE OBJECT

Arrows show positive increasing direction.
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of Fig. 2-1 (b),

~
!

= —kcoselsinqplem1 - ksinelsintblem2 - kcos¢1e3 (2.3)

~
I

kc056231n¢2e1

~ -

—ksinezsinzng~2 + kco$¢2e (2.4)

~

Substituting equations (2.1), (2.3) and (2.4) into equation (2.2) gives

the general result
L. c(t)(cos6_sing. + cosb sing¢ )
k 1 1 2 2
+ b(t) (sin 61 sin¢>1 - sin 62 sin¢2)

+ a(t)(cos¢2 + cos¢1) (2.5)

2.1.2 Coupled and Superposed Modes of Vibration

In general,vibration is a function of spatial variables as
well as time dependent. In order to make the analysis practical, the
vibration is analysed on a series of surface contours which are defined
as the intersection of the object surface and the hyperplane ¢ = ¢o
(see Fig. 2-2). 1In the case of a cylinder, for example, the surface
contour is a principal circumference. Hence the location of any point
on the surface contour is virtually defined by a singular angular
co-ordinate £ and the total vibration determined "slice-wise" over the

entire surface of the object. The vector d describing the vibration

of points on a surface contour is

d(&,t) = c(g,the; + b(g,t)e, + a(g,t)e, (2.6)

and the components of vibration may be expressed as eigen functions

[84,85] of the form
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FIG, 2-2  CO-ORDINATE SYSTEM FOR THE OBJECT SURFACE

The surface contour is the intersection of the object surface and

the surface ¢ = ¢o.
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| .
c(g,t) = Z Cl(a)cos(wt+vl) (2.7)
i=1
I 3L
b(E,t) = ) b (E)cos(ut+B") (2.8)
i=1
I | .
a(g,t) = ] a (£)cos(wt +a’) (2.9)
i=1

Taking the c component as an example the i-th term in equation
(2.7) is a mode and the I terms are referred to as COUPLED TEMPORAIL MODES
since they are generated by the driving force of constant frequency and
couple together with a time-invariant phase rélationship, Yi. The
amplitudes of the coupled temporal modes - ci(g), bi(g) and ai(E) ~ vary
over the surface contour and may be expanded into a trigonometric series
[102] of order (N+ 1) thus

N

'@ = ] [sin@'e) + ylcosta'e)) (2.10)
n=o

i N ) ) . i
b(g) =) [w;sin(nlg) + z;cos(n £)] (2.11)
n=o

al(e) = ? [wlsinn'e) + vicos(n'g)] (2.12)
n=o
The form of this expansion is particularly relevant since the vibration
of any structure may be considered as a combination of normal modes
[83,84]. The (N+1) terms in each expansion are called SUPERPOSED
SPATIAL MODES since they do not exist independently in the physical

sense but describe mathematically a complex spatial function of period

2m.
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2.1.3 Theory of Time-Averaged Holography for One-Dimensional Vibration

The following rigorous derivation of the theory of time-
averaged holography for one~dimensional simple harmonic motion of a
constant frequency is due to Butusov [5]. The complex analytical

signal in the plane of the hologram H is [3]

A(H,t) = 1‘(—; f J A(S) TR (H,S,t) 0 (2.13)
S

where A(S) is the amplitude of the laser light in the plane of the
object surface S, Z is the separation between object and hologram and

2

273
R=[22+ (h -s)” + (h,-5))"] (2.14)

(refer to Fig. 2-3). If the vibration d(S) is normal to the surface

and executes simple harmonic motion of frequency w then

R = RO(H,S) + g(H,S)sinwt (2.15)

Hence equation (2.13) becomes

-4 ikR,(H,S) ikd(H,S)sinwt
A(H,t) =E J J A(S)e e ds (2.16)
S
where [4]
d(H,S) = d(S)[cosel(H,S) + cos62(H,S)] (2.17)

with 61 and 62 defined in section 2.1.1.

Substituting

e1231n§ . z Jq(Z)elJ§ (2.18)

J == =00

equation (2.16) becomes
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FIG. 2-3  SCHEMATIC OF HOLOGRAPHIC PROCESS
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_ ikR,(H,8) = . .
A(H,t) = k—; J J A(S)e © ) 3, (kd)e I“ty 4s
S

J:._co

e {4 - ikR_ (H,S
) Jj(kd)elwt éJJA(s)el o )dS (2.19)
j:—oo S

where the term in the square brackets is simply the original complex

wave amplitude denoted AO(H). Hence,

AHE) = T )A%() + ] g, (kd)eUEL0 m) _ (2.20)

j:-c:)
j#o
where Jn is the n-th order Bessel function of the first kind. For

time-averaged holography, this field is averaged over time t thus

rt
AgH) = % f A(H,t) dt (2.21)

(6}
Assuming t>>27/w then the second term of equation (2.20) is zero and

the average field X(H) becomes
A@) = J_(kd)A%(®) (2.22)

That is, the surface of the reconstructed object is modulated by the
Bessel function of zero order which is also called the characteristic
function for this vibration. 1In general the characteristic function is

defined as [86]

t
M(QR) = % J AL (2.23)
o
whereupon equation (2.22) is
ACH) = M(R) A°(B) (2.24)

The argument of the characteristic function denoted 9 is equal to kd,
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with d given by equation (2.17), for the vibration considered here.

2.1.4 Theory of Time-Averaged Holography for Three-Dimensional

Vibration and Application

In section 2.1.1 the argument of the fringe function Q was
derived for three-dimensional vibration. On substituting equations
(2.7), (2.8) and (2.9) into equations (2.5) and (2.23) and denoting

the geometrical factors in equation (2.5) as

Kq = cos6151n¢1 + cos@281n¢2
Sq = 51n6151n¢1 - 51n6281n¢2 } (2.25)
Qq = cos¢2 + cos¢1
then,
1 t ik[Qlcoswt - Qysinwt]
M=€Je dt (2.26)
o
where, \
1 . .
Q. = X [cicos(yl)K + bicos(Bi)S + aicos(ul)Q 1
1L q q q
b (2.27)
T4 4 i, i i, i
e, = Y [c'sin(y )K_ + b sin(B7)S + a’sin(u’)Q_]
421 q q q

which is of the same form as derived by Molin and Stetson [86] for
two one-dimensional vibrations in phase quadrature. The solution of

equation (2.26) as derived in the latter paper is

ME@) = I {k(a? + Qg)%} (2.28)

Hence for every point q on the surface contour,
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a2 S o 4§ 1 i 1 1 i .2
L [ X (c7cos(y)K_ + b cos(B)S + a cos(a)Q ]
2 el q q q

I
. , . . 2
+ [ ) (elsin(yDHr + visincal)s + alsin(al)q 1 (2.29)
i=1 q q q
which is the general solution for time-averaged holography of three-
dimensional vibrations of a single frequency where the spatially
varying amplitudes cl,bl and a’ are given by equations (2.10) to (2.12),.
The variables which are determined from time-averaged holograms are
2, K, S5, Q and £ . The other variables are the unknowns.
q q q q q
Equation (2.29) will now be applied to some cases of part-
icular interest. For simplicity, the surface contour is assumed to
lie on the XY plane (see Figs. 2-1 and 2-2) and hence ¢O = ¢ = ¢, = /2.

1

Equations (2.25) become

Kq = cose1 + cose2

Sq = 51n61 - sinf, } (2.30)
=0

Qq

SPECTAL CASE 1

The simplest kind of simple harmonic motion in one dimension
is single mode rectilinear vibration. An example of this is the vibration
of a cantilever or simply-supported beam. With I=1 and bl = 3! = 0,

equation (2.29) reduces to

=~

= c(cose1 + cosez) (2.31)

which is the classical result [4] (the subscript q is assumed).
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SPECIAL CASE 2

Consider a number of one-dimensional modes with non-zero phase

differences. For this case, b1 = a1 = 0. Equation (2.29) becomes
QZ
= = [(clecosy! + cZcosy? + ...)2
k
+ (clsiny! + c2siny? + ...)2](cos61 + cosez)2 (2.32)

the term in the square brackets is also the square of the phasor sum of
the individual vibration components. Here is proof of the implication
of the statement made by Stetson and Taylor [84] that 'the magnitude of
the phasor sum of the argument functions corresponding to each of the

component motions (is) the argument function for the combined motion".

SPECIAL CASE 3

The simplest kind of simple harmonic motion in three dimensions
is single mode rectilinear vibration. An example of this is the vibration

of a perfect cylinder. With I=1 and vy!=81, equation (2.29) becomes
%-= cl(cose1 + cosez) + bl(sine1 - sinez) * (2.33)

which is exactly the expression derived by Tonin and Bies [102] and applied
to a beaker vibrating in a Love mode of order n= 2. Fig. 2-4 (a) is a
pictorial representation of the way in which the variables of equation
(2.33) contribute to 2/k which determines the order of the fringes on

the hologram.

SPECIAL CASE 4

The motion having the next highest degree of complexity is
simple elliptic motion which may also be described as a single coupled
mode (I=1) with the ¢ and b components out of phase (yl# 8l). Hence

equation (2.29) becomes
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(c)

FIG, 2-4 (a) Single coupled mode.

(b) Single coupled mode with out-of-phase components.
Simplest kind of elliptic motion.

(c) Two coupled modes.
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92
4= (k)2 + (bls )? + 2cosA(clk ) (bls ) (2.34)

with A=yl - gl (2.35)

Fig. 2-4 (b) shows how cl, bl and A in particular influence the fringe
order, determined by Qq/k. It is assumed that the phase difference A
in equation (2.35) remains invariant over the vibrating surface. This
is represented by an angle subtended from a chord AB in a circle of
diameter 2b! (or equivalently 2c1) which is the maximum_value of
bl(sinel-—sinez). The order of the fringes on the object surface is
represented by the position of point P on the circumference of the circle.
This simple phasor-like picture clearly shows the role played by A. If
A is zero or a multiple of m then Fig. 2-4 (b) reduces to Fig. 2-4 (a)
and the variation of Qq/k with A is small and hence errors in the deter-
mination of A from Qq/k will be largest for these cases.

It is interesting to note that the characteristic equation
(2.34) for a single coupled mode with the ¢ and b components out of phase
is similar to that for two one-dimensional vibrations of the kind
considered in Special Case 2, Equation (2.32) becomes

92

4 = (1R )? + (2R )% + 2cosA(clK ) (2K ) (2.36)

K2 q q q q

with A= Yl - Y2 (2.37)

The vibrations corresponding to equations (2.34) and (2.36) are dist-
inguished by varying 61 and 62, the illumination and observation angles

and hence the determination of the motion is unambiguous.

SPECIAL CASE 5

The next order of complexity of three-dimensional vibration

is two coupled modes (I =2) for which the phases of components within
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a mode are identical but there exists a phase difference between the
modes i.e. yl=81, y2=32, vyl#+y2. The path trajectory is elliptic
as in Special Case 4 but the total motion is the phasor addition of
four components. An example of such motion is the simultaneous

excitation of two modes in a cylinder. Equation (2.29) becomes

2
Q
—4 = (clk_+b!5 )% + (cZK_+b2S )2
k2 q q q q
+ 2cosA(clK +blS )(c2K +b2s 2.38
( & q) q q) ( )

with A=yl -2 (2.39)

Again, the method of formation of the fringe orders is represented by
the phasor-like diagram in Fig. 2-4 (c) which is a combination of Fig.
2-4 (a) and 2-4 (b). As in Special Case 4, a one-dimensional phasor
vibration considered in Special Case 2 exists which is described in
a similar way to equations (2.38) and (2.39) but the two vibrations
are distinguished by the geometrical factors of equation (2.30).

For three-dimensional phasor vibration the statement of Stetson
and Taylor quoted previously may be generalized to:
The magnitude of the phasor sum of the argument functions corresponding

to each of the component motions of three-dimensional vibration is the

argument function for the combined motion.
Hence providing a number of holographic interferograms are taken of

the vibrating surface there is no ambiguity in resolving the motion.

2.1.5 The Theory of Generalized Least Squares

The theory of Generalized Least Squares presented here is due
to Spendley [153] and Powell [154]. Given a function ¢ (R,&) involving
parameter values R==R(x1, e s xn) and independent variables

£ = E(El, - T Ek) the deviation of an observed value yq from a
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predicted value ¢(R,£q) is of the form

fq(R) = [Yq - ¢(R,€q)] (2.40)

where f is called the Residue Function. It is required to find the

set of parameters R that will minimize

5

£ (R)]° (2.41)
=1 1

where T is the number of data points.

Now L1 v o
- =210 Ef®=%,3=1, ... ,n (2.42)

; N R

3 =il b

It is assumed that z is a quadratic function in the R.j and hence fq(R)
must be linear in Rj. Essentially the derivation assumes that the
function ¢ has been linearized about approximate values of the Rj'
However as the derivation shows this is not essential. It is worth

noting that monotonic convergence is by no means assured.

of (q)
Thus —4 = const = ¢ ¢ (2.43)
oR. J

J
say, and if § is a correction vector which is the difference between

vector R and R for which ¢ is minimum

i.e. §=R-R (2.44)

n
I s c{® (2.45)

then £f (R) = f (R) + i
a® = E® 4] 0,6

and substituting in equation (2.42),



31.

5z 3 N COMN Y
() . =2]1f ® +] aiqu 1 ¢4 (2.46)
j R=R  q=1 ¢ i=1 J
=0 (for all j) (2.47)
since C(R;=ﬁ) = & is a minimum.
Rearranging, we have
n T T
L8, 1 ciq). ¢V -Vt (m).c@ (2.48)
151 1 go1 3 =1 ¢ 3
or in matrix notation
Is=F (2.49)
-k |
§=T"F (2.50)
v oD (@)
where r{i,j) = Z Gi .G, (2.51)
q=1 J

and the jth element of the column vector F is

5 (q)
F(j) = - ) fq<R).ch (2.52)
q=1

Thus, given F and T, the correction vector § is determined and the

optimum solution‘g attained in a series of iterationms.

2.1.6 Solution of the Characteristic Equation by Method of Least

Squares

As equation (2.29) is non-linear in the parameters, the con-
ventional theory of least squares is not directly applicable. Linear-
ization of the characteristic equation results in an extremely large
number of unknown coefficients which require an even greater number of

data points for a solution. By using the method of Generalized Least
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Squares, however, linearization is not required and the available data
is used to its fullest advantage.
The residue function, from equations (2.10), (2.11), (2.12),

(2.29) and (2.40) is

I N i : : . . )
fq > [izl{nzoxhsin(n Eq) + y_cos(n Eq)}cos(y )Kq+"'+"']
J ] . i i i 2
+ [izl{nzoxnsin(n Eq) +y cos(n Eq)}sin(y )Kq+...+...]
92
vy (2.53)
k2

Note there is no need to allocate a sign to Qq as in references [102]
and [107] since it appears as a square in equation (2.53). The columns
of matrix G are the derivatives of equation (2.53) with respect to each
unknown and the rows correspond to each datum, q. Firstly, for the x

components,

G(q) = Efﬂ = 2] § Cicos( i)K +...+ ]sin(nlg )cos(yg)K
j axz i=_1 Y q eseTaon q q
n
I 4 i g )
+ 2[ z c sin(Yl)K +...+...18in(n"E )sin(y )K (2.54)
151 q .°q q

for j=1, ... , I(N+1)

Next, the y components,
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(q) i T 3 i % 2
Gj+I(N+l) =— = 2[.2 ¢ cos(y )Kq+...+...]cos(n Eq)cos(y )Kq
3yn i=1
I 1 g g
+ 2] z Clsin(Y JK +...4+...Jecos(n"E Dsin(y DK (2.55)
= q q q

for j=1, ... , I(N+1)

And, for y the phase,

G(q) _ i — % ! ( i)K PR PR ( z)
42T (N+1) 7 ' cos (¥ il oo c q51n Y
Y i=1
5 i i 2 2
+ 2] z c sin(yl)K +...+...1e"K cos(y") (2.56)
i=1 d B

for j=1, ... , I

Similar equations for w,z,f and u,v,a complete matrix G.

If the number of data points in T, the number of superposed
modes (N+ 1) and the number of coupled modes I then, G is of order t
by 3I(2N+3), I is a 3I(2N+ 3) square matrix and F a column vector of

order 3I(2N+ 3). The vector R describing the parameters is

I
R = (xi,x;,...,yi,y;,...,Yl,yz,...,w%,w%,...,a ) (2.57)

2.2 EXPERIMENTAL EQUIPMENT AND DATA ANALYSIS

2.2.1 HOLOGRAPHY

A schematic of the optical system used to generate holograms
is shown in Fig. 2-5, this system being common to almost all experiments
reported in this thesis. Depending upon availability at the time of

o
the experiment any of the following Helium-Neon (6328A) lasers were
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used - Lasertron LE105 (15mW), LE205 (5mW) or Metrologic MV910A (1mW).
The optical powers were monitored with a Tektronix J16 digital photo-
meter. Each spatial filter is fitted with a 10p pin hole which was
measured by ray-tracing to be 35 *lmm behind the lens. Holograms are
recorded on Ilford He-Ne/l (50erg/cm?), Agfa 10E75 (50erg/cm?) or

Kodak 131-02 (5erg/cm?) plates nominally lmm thick and 120mm by 90mm

in size. Exposed plates are developed for 7 minutes in Ilford Microphen,
Agfa G5c or Kodak Microdol-X developer. Exposure times varied from

20 sec to 120 sec depending on laser power, plate and developer. The
best combination is Kodak plate with Agfa G5c developer. After devel-
oping, the plates are immersed in a 1% solution of Acetic Acid stop

bath for 5 seconds and fixed in a 1/1 solution of I1fofix Acid Hardening
Fixer for 10 minutes. The plates are washed in running water for 15
minutes, immersed in an 807 solution of industrial alcohol for 5 minutes
to remove the anti-halo coating and then dried.

During exposure, the beam splitter is set for a 4/1 ratio of
reference to object beam intensity. On reconstruction, all the laser
light is directed to the reference beam and the image photographed with
a Minolta SRT303 35mm camera loaded with Ilford HP4 (400ASA) or FP4
(125A8A) film. The aperture setting on the camera is important - too
low a setting will result in broad fringes due to variation of the
observation angle and conversely a high setting results in very long
exposure times. The f£5.6 stop results in less than .02rad observation
variation and maximum exposure time of 60 sec and was used throughout
the experiments.

The object under investigation is lightly spray-painted with
matt white primer which ensures an optically diftuse surface. In some
experiments retro-reflective paint was used but with a different optical
system. The object is placed on a low-profile turntable graduated

in degree increments. A translation table and hologram mask were
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constructed to enable six holograms to be recorded on one plate which
avoids the problem of cutting the plates. The translation table and
"windows" of the mask are so arranged that each hologram is taken from
the same position in space which enables the same geometry to be used
in the analysis. Fig. 2-6 is a photograph of the optics and Fig. 2-7
of the translation table and mask with a typical hologram in the fore-
ground. Unless otherwise stated, seven holograms are taken of each
mode of the vibrating object at 15° angular increments of the turntable,

a procedure which uses two plates.

2.2.2 Modal Driving System

To prevent distortion of the modes electromagnets were used to
excite the object without contact. These are bar magnets wound with a
coil of wire and positioned close to the surface of the object hence
providing a steady force which is then modulated. For the ferromagnetic
objects no problem was encountered, however, for the non-ferromagnetic
objects the steady biasing force could only be induced by fastening a
small piece of ferromagnetic material to the object at the point to be
driven. Thus although a metallic surface may be driven with an elect-
romagnet making use of the field of induced eddy currents [155] the
resulting forcing function will always be unidirectional, one of
attraction or repulsion depending upon whether the surface is para-
magnetic or diamagnetic and in consequence the wave form of the forcing
function will always be rich in harmonics which is not desired.

The spatial distribution of the excitation force is often an
important factor in determining the mode shape. Shirakawa and Mizoguchi
[156] determine the mode shapes of a cylinder excited by a periodic
point force. For a slightly imperfect cylinder for example the mode will
usually orient itself with the asymmetries no matter where the force is

applied. It is not necessary to excite the modes at the antinodes. By
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FIG. 2-6

Optics for the generation of holograms.



FIG., 2-7

The translation table (T), hologram stage (S), typical hologram (H)

and mask (M).

*8¢
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contrast, for a near-perfect cylinder a large degree of modal coupling
is evident for antinodal excitation and is only reduced by positioning
the drivers close to the shear-diaphragm ends thereby decreasing the
magnitude of the cross—correlation between the mode to be driven and
the spatial fourier components of the forcing function.

As the holographic exposure time could be as long as 60 sec
the mode under study must be stable for that period of time. For
modes of high Q use of a driving oscillator is impossible due to problems
of drift. Hence use is made of a technique employing a method of
positive feedback to create an electro-mechanical oscillator which is
self-excited and very stable [157]. A schematic of the system is shown

in Fig. 2-8. The heart of the feedback system is the resonance unit

designed by the author. This is essentially a voltage controlled
amplifier whose gain is determined by the level of the input signal.
If this increases then the gain of the unit decreases and vice-versa.

Hence the resonance unit provides the required level of output signal

which will maintain a constant input level. Additionally a 0-360 degree
phase shift circuit is incorporated into the unit to enable correct
phase matching.

A Bruel & Kjaer (B & K) miniature accelerometer type 8307
monitors the vibration level with a minimum of loading (the weight of
the accelerometer is only 0.4 grams). The signal is amplified by a
B & K spectrometer type 2112, fed to the resonance unit and then to a
power amplifier and the electromagnet. The gain of the power amplifier
is set such that the system gain is greater than unity hence ensuring
sustained oscillation. However, if the system gain is too high the
vibration will hunt. To select any mode, the spectrometer third-octave
band filter is set to include the frequency of that mode. The phase and

gain of the resonance unit and power amplifier are then adjusted for

optimum oscillatory stability. Finally, the level of vibration is set
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by adjusting the DC conditions at the gate of the voltage controlled

amplifier in the resonance unit. The system is so successful that a

mode may be kept stable for hours with no frequency or amplitude
variation (as limited by the accuracy of the instruments). A photo-

graph of the equipment is shown in Fig. 2-9.

2.2.3 Geometry for the Analysis of Cylinders

As the analysis of the reconstructed holograms is common to
all experiments excepting those in sections 3.1 and 3.2 it will be
described here. The basic geometry is due to Liem et al [101]. A
cross-section through the optical plane for a vertically standing

cylinder of outer radius a, is shown in Fig. 2-10 where the angles

2

61 and 92 are to be calculated for dark fringes on a photograph of the
hologram reconstruction. The perspective of the object is taken into
account by making use of the pin-hole camera concept. The process of
photographing the reconstruction and printing the photograph with an
enlarger is considered equivalent to photographing the reconstruction
with a pin-hole camera consisting of an aperture of diameter D and a
screen. If D 1s made small compared to the distance AA by suitable
choice of the camera f-stop and the size of the image formed on the
imaginary screen is made exactly equal to the size of the image in
the photograph by suitable choice of the distance ¥ then firstly
considering a plane photograph of the cylinder

a

tany* = 3¥-= (2.58)

ity

where a, is the radius of the cylinder in the photograph and the
asterisk indicates the maximum value of the angle y. Now, for any

other point on the surface of the cylinder
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The electronic equipment used to drive and monitor vibration modes.
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(2.59)

by equation (2.58). The angle © is calculated by application of the sine

rule for triangles hence,

AA 2,
= (2.60)
sinf[m - (1/2-0) - y] siny
or, 8 = cos_l(AAsiny/az) + v (2.61)

If P is the distance from the cylinder axis to the point of illumination

and o is the angle subtended by this line and AA then again by the sine

rule,
P a
2
= — (2.62)
sinb, SJ_n(e1 - [o-(n/2-08)])
or, -1 .
6, = tan {Pcos(a+—6)/[a2 - Psin(a+8)]} (2.63)
and 6, is given by
6, =1/2 - 98 + vy (2.64)

2

Hence using equations (2.59), (2.61), (2.63) and (2.64) the angles 6
[which is equivalent to £ in equation (2.29)], 61 and 62 are determined
for each fringe along the surface contour which is the intersection of the
cylinder and the optical plane. If the cylinder is rotated an amount
SD radians (SD is positive anticlockwise in Fig. 2-10) then the values of
61 and 62 determined from equations (2.63) and (2.64) pertain to the
point (6+-SD) radians from the origin.
For this arrangement the geometric term Qq is zero for all points

along the surface contour and reference to equation (2.29) shows the
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components a® cannot be determined. This is overcome by positioning the
cylinder on its side with its axis in the optical plane. The surface
contour is now a straight line parallel to the generator. Reference to

Fig. 2-11 shows

tany* = — = i (2.65)

where LV is the length of the cylinder in the photograph without rot-
ation (SD==0) and the asterisk again indicates the maximum value of

the angle y. Now, for any other point on the surface contour,

H H.L

tany = — = ————— (2.66)
X L .(AA-az)

v

which is true even if the geometric centre of the cylinder does not

intersect the axis of the turntable. From the sine rule,

YD AA

siny sin[(n/2 + Sy = @ - o) + (n/2 - vy - SD)]

(2.67)

and considering the right angled triange of which YD is the hypotenuse

YD e a2/cos(SD - 0o - ¢) (2.68)

Combining equations (2.67) and (2.68) and solving for ¢ gives

] a231n(a4-y) - AA31nY'cos(SD—a)

¢ = tan (2.69)
AAsinysin(SD—u) - a2cos(a+-y)

Also, L = a2/[tan(ﬂ/2+-SD-u4-¢)] (2.70)

and 6. =y + S (2.71)

where 2 is a length co-ordinate along the surface contour related to the
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angular co-ordinate £ of equation (2.29) by the transformation

£ = m2/L (2.72)

and the circular mode number n is replaced by the longitudinal mode

number m in equations (2.10) to (2.12). Also from the sine rule,

YD ) P
sin[m - (1r/2+61+1T/2+ sD—a-¢+¢)] sin(n/2+ SD-OL— ¢+1T/2+61)
(2.73)
which is solved for 61 to give
N a tan(ao+¢-S_ ) - Psin(a-S_.)
61 = tan 2 D 2 (2.74)
a, - Pcos(u-—SD)

Hence using equations (2.66), (2.69), (2.70), (2.71), (2.72) and (2.74)
the angles 61, 62 and co-ordinate £ are determined for each fringe
along the surface contour.

For the cylinder horizontal, a vertical pointing rod at the
centre of the turntable indicated the position of the origin in the
hologram reconstructions. In this case, P is the distance from the
origin to the point of illumination and o is the angle subtended by

this line and AA.

2.2.4 Data Analysis

The measurement of fringe positions on photographs is a
laborious process with only the aid of a straight-edge. Hence a data
system was assembled by the author to digitise fringe co-ordinates,
store and edit the information on cassette tape and transmit the data
to a central computer.” Fig. 2-12 is a photograph of the data system,

Fig. 2-13 a schematic of the system. In Appendix I a flow diagram of
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The Data System.
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the microprogram is given.

Data is taken from the photographs using a Summagraphics
HW-L-14-TT Data Tablet having two 11 bit binary outputs corresponding
to the X and Y co-ordinates of a cursor which is moved over the tablet
surface, the resolution being .01 inch. The outputs are connected
to the second Programmable Peripheral Interface (P.P.I #2) of an Intel
8080 Microprocessor fitted with 4K of E.P.R.0.M. (Erasable Programmable
Read Only Memory) and 1K of R.A.M. (Random Access Memory). Data is
recorded with a Digideck PI-70 cassette unit which is interfaced to
P.P.I. #1. A Video Display Terminal (V.D.T.) enables commands to be
fed to the system via U.S.A.R.T. #1 (Universal Synchronous / Asynchronous
Receiver / Transmitter) at 2400 Baud (bits/second). Additionally
U.S.A.R.T. #2 is connected to a CDC6400 computer via a 300 Baud Intercom
line.

The system has five modes of operation which are selected
sequentially with the ESCAPE key and the system responds by printing
the mode title on the right hand side of the VDT screen. These are as
follows:

1) ..INTERCOM.. A two-way link with the CDC6400 computer.
Files are created and programs run using keyboard commands.

2) ..SEND DATA.. Information recorded previously on cassette
is transmitted to the computer at a rate of 300 Badd.

3) ..RECORD.. Keyboard characters or co-ordinates from the
data tablet are recorded on tape and displayed on the screen at the
rate of 50 characters per second with seven co-ordinate pairs (corres-
ponding to X and Y) per line.

4) ..REPLAY.. Recorded information is reviewed on the screen
only.

5) ..EDIT.. Enhbles one character at a time to be reviewed

with the SPACE key or one line at a time with the CARRIAGE RETURN (C/R)
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key. To enter the EDIT mode from the REPLAY mode key E is depressed.
To alter a character the ESCAPE key is depressed which transfers the
system to the RECORD mode.

With this data system, the digitising of holographic inform-
ation is simplified enormously. In addition the data tablet has a
STREAM MODE selector by which the co-ordinates of the cursor are
transmitted at the system rate of 50 char./sec. Hence a fringe may
be digitised in a matter of seconds simply by tracing it with the

cursor on the data tablet.
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CHAPTER 3

PURE AND SUPERPOSED SPATIAL MODES

The theory of time-averaged holography for three-dimensional
vibrations outlined in Chapter 2 is applied to a vibrating clamped
circular plate, wine glass, stainless-steel beaker and four cylinders
with shear-diaphragm end conditions. In addition the analysis is
applied to a vibrating cylinder with a seam. The application of the
method of least squares will be shown to make optimal use of the data.
This chapter also will show step by step the ideology leading to the

formulation of the general analysis described in Chapter 2.

3.1 CLAMPED CIRCULAR PLATE

3.1.1 Holographic and Geometric Theory

The study of vibration of clamped circular plates by holography
is reported by Hansen and Bies [144]. The modes are characterized by
a single component of vibration normal to the plate with a complex
Bessel distribution over the surface. For this case equation (2.29)

becomes

~|D

= c(E).[cosel4-cosez] (3.1)

The mode shape c(£) as determined by time-averaged holography has been
shown [144] to agree well with the theory for 6, = 62 = 0 (retro-reflective
illumination). An experiment to be described will demonstrate the
validity of equation (3.1) for various illumination and observation angles.
Considering first a change of illumination direction, Fig. 3-1

shows the geometry in the optical plane. For fixed angles of illumin-

ation and observation, 6, and 62, the resulting surface contour is a
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a straight line and using again the concept of the pin-hole camera,

H %
tany =  _ AA (3.2)
If L is the plate diameter then
L /2 L/2
tany® = A4 = (3.3)

AA

where the asterisk denotes the maximum value of y and Lv is the plate
diameter in the photograph. Using simple geometry dnd combining equations

(3.2) and (3.3),

g = H.L/Lv (3.4)
0, = tan | (1/AA) (3.5)
and 61 & tan_l(tana - h/DP) (3.6)

Consider now a change of observation direction accomplished
by rotating the plate about a vertical axis through its centre.

Reference to Fig. 3-2 shows

tany .t (3.7)
X
and from the sine rule for triangles,
L/2 AA AA
el " = (3.8)
siny sin(ﬂ/Z-—[SD-+Y D cos(SD-Fy*)

Hence the angle of rotation of the plate as determined from the photo-

graphs is

SD = cos—l(ZAAsiny*/L) - ¥ (3.9)

where if SD==O and Lv is the plate diameter in the photograph then ¥
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is determined from

L/2 LV/Z
—— (3.10)
AA X
and hence
-1, H.L
Y tan (AA.L ) (3.11)

The other constants are determined as follows using the sine rule,

2 AA
= (3.12)
siny sin(m/2 - [SD'+Y])
or % = AA siny /cos(SD+Y) (3.13)
and 2 P
= (3.14)
sin([a-—SD] - 61) sin(m/2 + 61)

hence -7 P sin(o - SD) - 2
61 = tan (3.15)
P cos (o - SD)
and 92 = SD + v (3.16)

where vy is determined from equation (3.7)

3.1.2 Clamped Plate Experiment and Results

A steel plate of thickness 1.96mm and radius 175.5mm was
bolted to a steel structure using a circular ring clamp. Since the
edges of the plate were sometimes obscured by this ring,measurement
of the plate radius in the photograph, which is required in the analysis,
was replaced by measurement of a 200mm long Letraset arrow horizontally
orientated and mounted on the plate while another vertical arrow marked

the centre of the plate. The plate was driven at its lowest resonant
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(0,1) mode of frequency 150 Hz by an electromagnet and oscillator (the
resonance unit had not been developed at this stage) and the vibration
monitored with an accelerometer and B & K spectrometer 2112.

Six time-averaged holograms were taken with different illumin-
ation positions (three positions on the right of the holographic plate
and three on the left) with the angle a varying from +50.5° to -52.8°.
Reconstructions of holograms for these extreme cases are shown in
Fig. 3-3. The results of the analysis outlined in section 3.1.1 are
shown in Fig. 3-4 where the consistency of the experimental points
clearly demonstrates the validity of the holographic theory.

Seven time-averaged holograms were taken of the plate of
varying orientation but vibrating in the same mode. One hologram was

recorded with the angle SD==O, three with S positive and maximum

D
angle near +n/4 and three with SD negative and maximum angle near
-w/4. Two reconstructions of the holograms are shown in Fig. 3-5.
The results of the analysis outlined in section 3.1.1 are shown in
Fig. 3-6 where again there is favourable consistency except for one
photograph for which it is suspected the oscillator drifted slightly
in frequency resulting in a drop in vibration amplitude.

Hence the theory of one-dimensional vibration, being a special
case of the general theory, is supported by analysis of a clamped

circular plate. Equation (3.1) is demonstrated to be completely suff-

icient to describe this vibration.

3.2 WINE GLASS AND BEAKER

3.2.1 Holographic and Geometric Theory

Time-averaged holography was first applied to vibrating curved
surfaces by Liem et al [101] who analysed the vibrations of a circular
cylinder using the formula of equation (3.1) and reported a shift in

the amplitude plots when the illumination and observation vectors are
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FIG., 3-3

Reconstructions of holograms of a clamped circular plate vibrating in
the (0,1) mode and illumination angle a=+50.5° (top) and a=-52.8°

(bottom) .
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FIG. 3-5

Reconstructions of holograms of a clamped circular plate vibrating in

the (0,1) mode and different orientation angles.
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varied and attempted to explain this in terms of localization of
fringes and parallax. It was subsequently shown by Tonin and Bies
[102] that the shift was in fact due to a misinterpretation of the
motion of the cylinder which is three-dimensional rather than one-
dimensional .

The surface contour of a vertically mounted cylinder in the
optical plane is a circle and the co-ordinate & is equivalent to the
angular co-ordinate 6. Considering only this surface contour in the
analysis then the geometrical factors are given by equations (2.25).
Additionally if the radial and tangential components of vibration are

respectively of the form

C cosn (6 +€e)coswt

c(&,t)
> (3.17)
b(&,t) = Bsinn(6+ e)coswt

then the characteristic equation [equation (2.29)] is

Q . .
E-= c(e)(cos81+-cosez) + b(e)(slnel-—31n92) (3.18)

»

where c(9) Ccosn(8+¢)

4 (3.19)
and b(6)

B sinn(8+¢)

The experiments of Liem et al were repeated for the case of a wine glass
and stainless-steel beaker, which are manufactured easily with high
accuracy.

In the case of the wine glass, freedom from distortion is
readily demonstrated by rubbing a moist finger around the lip which

excites the glass in its lowest energy n=2 flexural mode. Additionally
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the mode rotates around the circumference if the finger is removed
which clearly shows the degeneracy of the mode. A scheme was devised
whereby the two holographic views could be recorded on the same hologram
using a plane mirror which was positioned such that the image of the
object was fully visible but the illuminating beam did not reflect onto
the object from the mirror.

Referring to Fig. 3-7, which shows the geometry in the optical
plane, the centre of the imaged cylinder in the photograph (or on the
imaginary screen defined in Chapter 2, see figure) is at an angle
with respect to the centre of the cylinder in the direct view. The
corresponding point Tm on the mirror is in practice marked with a small
piece of masking tape such that it coincides with the centre of the
imaged cylinder when viewed through the camera eyepiece. Also shown
in the figure is the relative illumination direction K, and the relative

~

centre line & for the image and the origins OD and 0I which are defined
for the direct and imaged views respectively. Fig. 3-8 shows the geo-
metry for the imaged view drawn inverted for comparison with Fig. 2-10.
In the case of the direct view the geometrical analysis is that
given in section 2.2.3, notably equations (2.59), (2.61), (2.63) and

(2.64). For the imaged view it is clear that the photograph is distorted

due to perspective. From the sine rule for triangles (see Figs. 3-7

and 3-8),
" x/cosV
: = (3.20)
siny sin[n/2+ (V-v)]
Solving for v,
=i H cos?vV
Y = tan (3.21)

X — H cosVsinV

where V is computed from the lengths AA,BB and CC and x is to be deter-

R . . .
mined. Denote a, as the radius from the image centre to the right edge
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of the cylinder in the photograph, ai as the radius to the left edge

and dv as the diameter of the cylinder in the photograph. Hence,

d = aR + al (3.22)
v v v
and from equation (3.20),
R xsiny*
a_ = (3.23)
cosV cos(V—'y*)
L xsiny*
and a, = (3.24)
cosV cos(V+ Y*)
where y* = tan_l(az/AA) (3.25)

and the asterisk denotes the maximum value of y. Combining equations

(3.22) to (3.24) gives

-1
d cosV 1 1
x = —~ + (3.26)
sinY* cos(V-—Y*) cos(V+—Y*)

The angle 61 is determined in a similar way to equation (2.61) with

the result that

GI S cos_l([BB4-CC]siny/a2) + v (3.27)

where, with respect to 0D the origin of the direct view,

0 =0, - (3.28)

Hence using equations (3.21) and (3.25) to (3.28) the angle 6 is
computed for fringes in the imaged view with respect to the origin of
the direct view., The observation angle 6, is given by equation (2.64)

and the illumination angle 61 by equation (2.63) but with the angle o
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replaced by (o -¢) thus

0, = tan—l{P cos (o — Y+ 6)/[a2—P sin(a -y +8)]} (3.29)

For n= 2 the radial component of vibration is determined from

equation (3.18) as

B . .
[ cosel+ c0362 o tan[n(6+ e)](sulel - 51n62)] (3.30)

=0

c(8) =

for the direct view; for the imaged view (e - ¢) is substituted for e.
The coefficients B/C and e, the latter which determines the orientation
of the mode around the circumference, must be estimated in order to use
equation (3.30). This technique is obviously not practical in general
and hence a refinement is added in the following analysis of a beaker.

For the case

61 = 62 # /2 (3.31)
equation (3.30) reduces to
c(9) = Q/(chosel) (3.32)

Thus, if the beaker is set on a turntable with its central axis corres-
ponding to the turntable axis which is also normal to the optical plane
then a number of points on the cylinder may be analysed for which
equation (3.31) is true and the radial component determined separately
using equation (3.30).

Reference to Fig. 2-10 and application of the sine rule to the

two triangles with sides AA and P gives

AA a2
= (3.33)

sin(n-—el) sin[el— (r/2-19)]
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P a,

and mes - = (3.34)
sin(m -6 ) sin[6, - (- [v/2~6])]

whereupon eliminating © by combining equations (3.33) and (3.34) the
result is

lcose +l—cos(a+ 8) - 1—sin(o:. +28) =0 (3.35)

P AA a,
which is easily solved for 6 by Newton's method [158, page 26]. The
corresponding point on the photograph is, from equation (2.59) and
(2.60),

AA.a .coso
v

H = (3.36)

(AA-aDsine)

and the illumination angle

AA cos®
6. = tan —_— (3.37)
AA sinb6- a

Hence a number of experimental points are obtained for the radial
component through which a sinusoidal curve of best fit is drawn and
hence the coefficients C and ¢ determined. The tangential points are

thus calculated from
b(8) = {Q/k - Cc0511(6+-e)[coseli-cosez]}/(sinel—-sinez) (3.38)

which follows from equations (3.18) and (3.19).

3.2.2 Wine Glass and Beaker Experiments and Results

A wine glass of outer radius 27.5mm at the lip sprayed matt
white, was fixed to a steel base and positioned with the rim in the
optical plane. A cluster of four bar electromagnets arranged in quad-

rature was suspended from above and lowered a short way into the glass
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without touching the sides. The electromagnets were connected such

that opposites were in phase but adjacents in antiphase which corresponds
to the circumferential mode n= 2. Four tiny pieces of iron were then
placed around the circumference of the glass and held in place by the
attraction of the electromagnets. 1In this way the electromagnets and
pieces of iron (which we will call the drivers) are pos;tioned for
optimum coupling with the mode being driven.

Fig. 3-9 is a picture of the wine glass and electromagnets. The
mode was excited at a frequency of 1.34kHz using an audio oscillator
and 30W amplifier. The level of vibration was monitored with a Bruel
and Kjaer (B & K) spectrometer type 2112 and a B & K half inch micro-
phone type 4133 placed near the glass at a radial antinode. A photo-
graph of a time-averaged hologram is shown in Fig. 3-10.

For the purpose of the analysis a plane back-silvered mirror
was placed in the field of view of the camera with a fair degree of
overlap of points on the circumference of the glass in the direct and
imaged views. A typical photograph of a hologram reconstruction is
shown in Fig. 3-11. With AA=502.5mm, P=432.5mm, o=0.474rad,

y=0.876rad, V = 0.224rad and BB+ CC

558.5mm the radial component

is firstly determined from equation (3.1) and is shown in Fig. 3-12

(a) as circles for the direct view and triangles for the imaged view
where the amplitude shift first reported by Liem et al [101] is quite
apparent. Next the analysis of orthogonal vibrations is used to cal-
culate the radial component using equation (3.30). The ratio B/C is
estimated as 1/n or 0.5 which is borrowed from the theory for cylinders
with shear-diaphragm ends [125, page 31] for which it is a good approx-
imation and the angle determining the orientation of the mode around
the circumference, €, is estimated as 0.36rad. The result is shown in

Fig. 3-12 (b) which, despite the crude approximations, is extremely



FIG. 3-9

Wine glass and modal driving system.
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FIG. 3-10

Time-averaged hologram reconstruction of the n=2

mode for the wine glass.



FIG. 3-11

Time-averaged hologram-of wineglass
vibrating in the n=2 mode and the

mirror image.
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favourable.

Next a stainless-steel beaker of radius a,= 44 . 2mm, wall thick-
ness h=1.23mm and length L =101.3mm was sprayed matt white and fastened
to a base plate by means of a bolt through its bottom. The modal driving
system was similar to that used in the wine glass experiment except that
three electromagnets were used arranged symmetrically and wired in-
phase and the drivers were slightly heavier tiny steel bolts. The
driving frequency was measured as 1011Hz for the n =3 mode.

The beaker and driving mechanism were placed on a turntable
with the beaker centreline coincident with the turntable axis. In all,
seven holograms were taken of the vibrating beaker at 15° rotation
intervals two views of which are shown in Fig. 3-13. With P =486.2mm,
AA =749, 2mm, a2==44.2mm and o= 0.5492rad the solution of equation (3.35)
is 0=1.2915rad at which point the sensitivity vector is normal to
the surface of the beaker. However, if the beaker is sprayed only
lightly with white paint, specular reflection of the illuminating
beam occurs at this value for 6 and this shows on the photographs of
Fig. 3-13 as a thin white line along the length of the beaker.

Solving for the radial component using equation (3.32) requires
that a dark fringe coincide with the point where the sensitivity vector
is normal to the surface. This is not usually the case, however, and
rather than interpolate a value for @, a method employed by Tushak and
Allaire [104], the two adjacent fringes are analysed. This procedure
is justified in view of the excellent agreement of the data points so
obtained onto a sine curve of best fit as shown in Fig. 3-14. From the

figure the radial vibration component is

c(0) = .74 cos[3(86~1.53)] (3.39)

From equations (3.38) and (3.39) the tangential component of vibration
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FIG., 3-13

Hologram reconstructions of two views of a beaker vibrating in a

love mode of order n= 3.
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b(8), is calculated for all dark fringes and the results are shown in
Fig. 3-14 as well. The sign of the fringe order, Q, is chosen as is
usually the case in time-averaged holography such that adjacent groups
have alternating signs and correspond to the sign of ¢(6) which is the
larger component in terms of absolute magnitude.

The theoretical curve for the tangential motion is determined
on the assumption that the cylinder vibrates in a Love mode (see
reference [125], page 125) which arises from inextensional theory. This
is confirmed by the equal spacing between fringes (see Fig. 3-13) along
the length of the reconstructed beaker indicating that the sides remain
straight. The bottom of the beaker acts effectively as a shear dia-
phragm satisfying the boundary conditions at the constrained end of the
beaker. The frequency of vibration ([125], page 125) of the mode
considered is

h2 n2(n2 - 1)2 li-ﬁ(l-—u)ag/nng

w? =

E
i (3.40)

12(1- vz)ag n?+ 1 1+ 3a§ln2(n2+1)L2

In this case, assuming E/p = 2.445 x 107 mzs-z, Poisson's ratio v=0.3
and n= 3 the result is f=1183Hz which is to be compared with the
experimental value of 1216 Hz.

In particular, the radial, tangential and longitudinal vibration

components are respectively of the forms

c(6,X,t) = nXC cos nb cos wt

b(8,X,t) XC sinnf cosuwt (3.41)

a(9,X,t) (a/n)C cos nb cos wt

1l

where X is the length co-ordinate from the shear diaphragm, 6 is the
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angular co-ordinate and C is an amplitude constant. ©Note that the
radial and tangential components vary linearly with X. Comparing

equations (3.17) and (3.41) gives
B/C = 1/n = 1/3 (3.42)

The theoretical curve for b(8) is thus determined and shown in Fig. 3-14.
The scatter of points requires comment. The denominator in
equation (3.38) becomes very small when the sensitivity vector approaches
the surface normal. Hence slight errors in the numerator are magnified
enormously. Thus extraordinary deviations from the theoretical curve
occur at points where the sensitivity vector is near normal to the surface
(and hence normal to the tangential component of vibration). Reference
to Fig. 3-14 shows that for the points marked o, for example, agreement
is poor at about 6=1.8 radian. 1In the lower photograph of Fig. 3-13
this corresponds to the region just right of the centre of the photo-
graph and this is where the sensitivity vector is normal to éhe surface.
Hence a conclusion is that if an accurate determination of the
tangential component is required, the range of 8 and the positioning
of the illumination and observation vectors should be such that the
sensitivity vector is never normal to the surface. When it is near

normal the curve of best fit would probably be the best one could do.

3.3 CYLINDERS

3.3.1 Holographic and Least Squares Theory

It would be useful to apply the method of the last section to
calculate the vibration components of the superposed modes of a distorted
surface. Two examples would be the vibration of a cylinder with a seam
and a cylinder with an attached lump mass for which typical hologram
reconstructions are shown in Fig. 3-15, In the figure the cylinder in

(a) is rolled from a thin sheet of brass, soldered at the seam and



FIG., 3-15

(a) Cylinder with a seam

(b) Cylinder with a lumped mass

79.
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supported in a steel structure which is visible in the figure and (b)
is a steel cylinder with a brass mass glued on to the surface.

The characteristic equation is equation (3.18) with the radial
and tangential vibration components given by equations (2.10) and (2.11).
Using these equations the following system of equations for T points

results

I

1 1
0 /k
c Kl + b s1 1/

c2K  + b2s Q /k
2 2 2

( (3.43)

¢c'K +b'Ss =0 /k
T T T

where the geometrical coefficients Kq and Sq are defined by equation (2.30)
for a surface contour in the optical plane. It must be emphasised that
the bounds of the summation in equations (2.10) and (2.11) are quite
arbitrary. 1In fact these are generalized by replacing the bounds 0 and
N by N! and N2 which are respectively the least and greatest orders
considered. For example if the fourth order of vibration is being invest-
igated but because of asymmetry in the forcing field the lower second
and third orders were present then N! would be set at 2 and N2 would be
set at 4. On the other hand if only one term is necessary for an adequate
description, N! and N2 would be identical. The series would contain
only the single terms as for the analysis in the last section.

Hence, substituting equations (2.10) and (2.11) into equation

(3.43) gives for each point q corresponding to a dark fringe
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N2 N2

x gin(n K + cos(ni ) K
nlen (nE DKy + )y ¥, cos(nE) Ky

N2 N2
+ w sin(n S +
zln (ne)s, Z

S =0 /k 3.44
L i zncos(ngq) q q/ ( )

Nl

where the gq’ Kq’ Sq and Qq are determined from the time-averaged holo-
grams. These form a set of T linear equations in 4(N?- N!+1) parameters
or unknowns X s yn, W and z, which are determined by the normal method

of least squares as follows. Assume that the left hand side of equation

(3.44) is exactly equal to Qé/k but slightly different to Qq/k, the

value determined by the data. The square of the residual is

N2 N2 N2
x sin(n¢ ) K + cos(ng )K + w_sin(n )S
[nZNl n ¢ 9 nZlen 44 nZN1 o 4
N2
2 [ 2
+ z cos(n& )S - Q /k1” = [ /k - Q /k 3.45
nZNln (ng)s, - 2 /K" = (o ¥ (3.45)
Denoting
F(X 5e0esX 3Y  seeesY sW  seeesW 32  3eeesZ )
N1 N2 NI N2 Nl N2 Nl N2
T n ;
=Y (@'/k - @ /Kk) (3.46)
q=1 q q
then by the usual method £' =0 is required where the prime indicates

differentiation with respect to each variable in turn.
The NORMAL EQUATIONS are now derived using the matrix method
of Buckingham [159]. Firstly set up the matrix A of order T by

4(N2 - N1+ 1) (see Appendix II for partial expansion)



A(q,4(n -N1+1) - 3) quin(n Eq)

]

A(q,4(n-N1+1) -2) chos(n Eq)

A(g,4(n-N1+1)-1)

quin(n Eq)

A(q,4(n-N1+1)) = chos(n Eq)

forq=1toT and n = N! to N2

and let R and §fi be the column vectors

Then equation (3.44) is simply expressed as

AR=

==

&

82.

(3.47)

(3.48)
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The NORMAL EQUATIONS are [159]

T

ATAR=7A @ (3.49)

==

where éT A is a 4(N2 -N!+1) square matrix. The solution of R in
equation (3.49) is found by the Gauss elimination method [158, page 398].
As is usually the case in time-averaged holography the signs of the Q
arguments are arbitrarily chosen for each group of fringes and for the
modes of vibration considered here, adjacent groups take alternating
signs. In this way, the magnitudes and signs of the parameters x, y, w,
z are automatically computed to give the best fit.

The standard deviation of each parameter of vector R is

1

J@'/k - a/k)?
s.d.

]

p,lt - 4(N2-N1+1)]

where P, is the weight of the coefficient and is calculated in the
following way by the method of Bartlett [160]. In the normal equations

define A?Q(l) = 1 and é?QKZ) = ... = ?Q[4(N2-N1+-l)] = 0 and solve

for parameter XN1 in the usual way. The weight of this coefficient is

p. = 1/x + Similarly for the weight of x define A?QKZ) = 0 and

W N Nl+1

T _.T _ _,T 2 1 _

AQ() = AQ@3) = ... =AQ[4(N“-N"+1) = 0 and solve for XN1+1

giving the weight P, = 1/x 141 and so on for the other parameters. The
N*+

total standard deviation s.d.c for the vibration component c(&) is then

N2
[s.d. (g)]z = z (sin(ng)s.d. )2 + (cos(ng)s.d. )2 (3.50)
c Xn Yn
n=N1

where s.d}.(n and s.d9 are the standard deviations of parameters X and
n

78 with similar equations for the other components.
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3.3.2 Theory of Thin Circular Cylindrical Shells

Consider a thin circular cylindrical shell of length L, mean
radius a, and wall thickness h (see Fig. 3-16).
The cylinder is supported by thin circular end caps or shear-

diaphragms at which the boundary conditions are

b=c=Mx=Nx=0 at X=0,L ‘ (3.51)

where Mx is the bending moment and Nx the longitudinal membrane force
in the shell. 1If g = (a,b,c) is the displacement vector for the vibration

with longitudinal, tangential and radial components respectively of the

~

form
a(X,08) = Acos()s) cos(nb) cos(wt)
b(X,0) = Bsin(As) sin(nd) cos(wt) [ (3.52)
c(X,8) = Csin( As)cos(nb) cos(wt)
' J
nra X
where A = and s = P then the equations of motion may be written
L o

in matrix form as

Ty 4 =0 (3.53)

where IDM is the matrix differential operator derived from the Donnell-

Mushtari theory which takes the form [125, Chapt. 2]
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22 . (-w ° 1+v 232 v 2
352 2 ng2 2 ds900 ds
(1-v%)a?2 32
-p
E at2
(L+v) 92 (L-v) 32 32 3
2 0sdb | 2 382 302 6
Tpm =
—v2) a2 n2
(1L-v9) a’ 3
—-p S —
E ot2
9s 0 1+ +p o
30 E at2

and 2 2 5
e (s 2
382 82

The theories of Love - Timoshenko, Goldenveizer - Novozhilov
(also Arnold - Warburton), Houghton - Johns, Flﬁgge-—Byrne-—Lur'ye
(also Biezeno - Grammel), Reissner —Naghdi - Berry, Sanders, Vlasov,

Epstein - Kennard and a simplified theory due to Kennard are all

(3.54)

modelled on the Donnel —Mushtari theory and in fact may be represented

by the addition of a modifying matrix IMOD as follows

T=Th * <Iyop

all of which are listed by Leissa [125, page 33]. Hence the eighth

order system of equations represented by equation (3.53) becomes

Td=0

(3.

55)

(3.56)
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FIG. 3-16  CO-ORDINATE SYSTEM FOR A THIN CYLINDRICAL
CLOSED CIRCULAR SHELL



87.

which has a non-trivial solution if and only if
det T =0 (3.57)

This results in a third order polynomial of the form
6 _ 4 2 _ ==
A (k, +x bk, ) A -+(K1+-KAK1)A (KO4-KAKO) 0 (3.58)

where the Kgs K and k, are Donnell Mushtari constants and AKO, Ak

1 1

and AK2 are the modifying constants for the other theories and are
tabulated by Leissa [125, page 45]. The roots of equation (3.58) are

the eigen-values A% where

A2 = p(l-—vz)agu@/E (3.59)

which determine the resonant frequency w.

Equation (3.56) cannot be solved for the component amplitudes
A, B and C by Cramer's method [158, page 382] due to the constraint
imposed by equation (3.57). However, inspection of matrix T reveals
it has rank order 2 and hence one row is superfluous [158, § 7.6].

Equation (3.56) becomes

T T T13 N
B =0 (3.60)
Tor Top  Tag C
or, dividing by C,
T T a/c - Ty
= (3.61)
T T B/C - T

21 22 23

which is solved for component ratios A/C and B/C by Cramer's method.
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For example, the form of equation (3.61) for the Donnell-Mushtari

theory is
o2 (1-;v) n2 + 52 il%;ﬁl.xn A/C - VA
= (3.62)
(142rv) . _&213_ A2 =n24 A2 B/C n

For each mode there corresponds three eigen-values A2 which
are solutions of equation (3.58) of which the two largest eigen-values
result in ratios A/C or B/C greater than unity and frequencies in the
untrasonic range for ordinary cylinders. In the case of the smallest
eigen-values the ratios A/C and B/C are iess than unity (the radial
component is greatest in magnitude hence the modes are termed flexural)
and frequencies fall in the audio range for at least the lower order
modes which are of primary interest.

Differences between theories amount to less than 27 in resonant
frequencies and ratios B/C and A/C, determined for a number of cylinders
of typical dimensions used in the experiments to be described. As the
accuracy of the experiments is at best of this order, it is not possible
to distinguish between theories at present. However, the ratios B/C
and A/C of flexural modes of a vibrating cylinder are experimentally

measured for the first time and reported by Tonin and Bies [105].

3.3.3 Cylinder Experiments and Results

The least squares analysis described in section 3.3,1 is applied
to the data of the stainless-steel beaker of section 3.2.2, Fig. 3-17
(a) shows the radial and tangential components ol vibration using a
single mode in the expansion i.e. N! = N2 = 3. The solid lines are
the radial and tangential curves of best fit, For each point corres-

ponding to a dark fringe the circles o are values of b computed from
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equation (3.38) using the least squares fit curve for c and the

experimental values of 6, 6. and 62. Similarly the triangles A

1
are values of c computed from the least squares fit curve for b using
equation (3.38). These component points are termed '"experimentally
determined" since they cannot be measured singularly without further
experimental effort and are in fact a best estimate of what one would
measure by ensuring the sensitivity vector to be in turn radial and
tangential at those points.

Comparing Fig. 3-17 (a) to Fig. 3-14 shows the improvement
of the least squares procedure over the previous method. The improved
consistency of the data points is due to a more accurate determination
of the radial component. In Fig. 3-17 (b) it is assumed that a small
contribution of the n=2 mode is present and the consistency of the
experimentally determined points is further improved. However, the
standard deviation for both components, shown by the broken curve, is
greater since the number of unknown parameters has doubled. Fig. 3-18
shows the results of the least squares procedure applied to the brass
cylinder with a seam shown in Fig. 3-15 (a) for which the analysis
includes four modes (N!=2, N2=5),

Having thus proven the superiority of the least squares procedure,
it is applied to four cylinders of various diameters, wall thicknesses
and materials. The ends of each cylinder were machined flat with a
lip on the inside edge to hold an end piece of thickness similar to
that of the cylinder. The end pieces were cut so that only one edge
touched the cylinder lip around the circumference. An electromagnet
was used to excite the cylinder and both electromagnet and cylinder
were supported by a steel structure which held the latter by two probes
each neatly fitting into a small hole at thé centre of each end plate

as shown in Fig. 3-19.
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Table 3~1 lists the physical properties of the cylinders and
Tables 3-2 (a) to 3-2 (d) list the theoretical resonant frequencies
and the ratios B/C and A/C based on these properties and calculated
by the method described in section 3.3.2 using the Reissner - Naghdi -
Berry theory. The experimental equipment and experimental method is
described in section 2.2 along with the method of analysis.

Figs. 3-20 (a), (b) and (c¢) show the tangential and radial
components of three modes in graphical form for the case where the
cylinder is vertical. Figure 3-21 shows two views of time-averaged
hologram reconstructions of a small steel cylinder vibrating in the
m=4, n=3 mode. Tigs. 3-22 (a), (b) and (c) show the longitudinal
and radial components of three modes in graphical form for the case
where the cylinder is horizontal. Figure 3-23 shows two views of
time-averaged hologram reconstructions of a small steel cylinder
vibrating in the m=2, n=2 mode. In Fig. 3-22 note that the abcissa
labelled "Normalized Length" refers to the distance from the centre
of the turntable to any point along the centre axis of the cylinder
normalized with respect to the length of the cylinder. There is no
need to align the midpoint of the cylinder with the axis of the turn-
table. The least squares procedure automatically fits the data no
matter where the midpoint of the cylinder is.

The solution vector, R, is calculated for a number of modes
of each pipe with N! = N2 (i.e. only a single order least squares
approximation) and hence the ratios B/C and A/C are determined. Results
are shown in parenthesis in Tables 3-2 (a) to 3-2 (d) which are to
be compared with the theoretical predictions. The more important
sources of error are probably anisotropies in the cylinder, variations
in thickness in the cylinder walls, variations in Young's modulus and

inaccuracies in the end plates which all contribute to distort the
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FIG, 3-21

Time-averaged hologram reconstructions of a small steel cylinder vibrating

in the m=4, n =3 mode.
The cylinder was rotated 15° between holograms. The white line shows the

surface contour along which data points are taken (line of varying £).
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FIG. 3-23

Time-averaged hologram reconstructions of a small steel cylinder
vibrating in the m=2, n=2 mode.
The cylinder was rotated 30° between holograms. The white line shows

the surface contour along which data points are taken (line of varying £).
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mode shape. Other factors include the point source excitation which
generates coupled spatial modes and spurious effects from the cylinder
support. All these factors contribute to modal coupling at a single
resonant frequency. Reference to Fig. 3-24 shows how these are

accounted for by expanding the least squares procedure into other orders.

Fig. 3-24 (a) shows the initial analysis with N! = N2 = 4 and Fig. 3-24

(b) shows the improved result with N! = 2 and N2 = 4 i.e. orders 2, 3
and 4 are present in the second analysis.

Another source of error could be due to internal damping which
it is thought causes elliptic motion and needs to be analysed by the
more complex procedure described in section 2.1.

Lastly some errors are attributed to the fact that not all
surface contours are on the optical plane, especially for the cases
where the cylinders are upright. For longitudinal mode numbers m=2 and
4, for example, the surface contours are analysed slightly above or
below the optical plane to coincide with the radial antinodes. Hence
the geometrical factor Q of equation (2.30) is non-zero.

Reference to Tables 3-2 (a) to 3-2 (d) show that frequencies
have been predicted with an accuracy better than 107%. Values of
component ratios are not as precise, however, probably due to the
reasons outlined above., Nevertheless, the least squares procedure is

an invaluable tool for time-averaged holographic analysis of coupled

spatial modes and pure modes.
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TABLE 3-1

PHYSICAL PROPERTIES OF TEST CYLINDERS

Property Small Large .

Steel Steel Aluminium Copper
Length (mm) 400 398.5 403.5 402.5
External .
diameter 75.1 115.1 91.3 101.6
(mm)
Wall
thickness 1.2 4.4 1.8 1.7
(mm)
Poisson
Const. v 0.27 0.27 0.33 0.33
% x 10713
(mm2/sec?) 2.633| . 2.633 2.702 1.222

NOTE: Values of v, E and p are due to Faires [161].



TABLE 3-2 (a)

THEORETICAL AND EXPERIMENTAL RESULTS

(EXPERIMENTAL RESULTS IN PARENTHESIS)

SMALL STEEL CYLINDER

107.

m=1 m= 2 m=3
A/C .0693 (.1250) .1213 (.1931) .1489
=2 B/C .5028 (.4851) .5076 (.4549) .5086
FREQ(Hz) 717.4 (714.4) 1649.4 (1587.3) 3194.4
A/C .0317 (.0919) .0596 (.0953) .0809
=3 B/C .3346 .3365 (.2695) .3385 (.2877)
FREQ(Hz) 1660.0 (1677.3) 1856.5 (1857.5) 2406.1 (2378.4)
A/C .0181 (.0539) .0349 (.1521) .0494 (.1581)
n=4 B/C .2510 (.1707) .2519 (.1861) .2531 (.1933)
FREQ(Hz) 3149.7 (3157.9) 3228.0 (3234.7) 3421.6 (3425.9)

m = axial order,
A=
C=

n = circumferential order,

radial component.

longitudinal component, B = tangential component,
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TABLE 3-2 (b)

THEORETICAL AND EXPERIMENTAL RESULTS

(EXPERIMENTAL RESULTS IN PARENTHESIS)

LARGE STEEL CYLINDER

m=1
A/C .0990 (.5161)
n= 2 B/C .5065 (.4765)

FREQ(Hz) 1159.5 (1073.5)

B
n

axial order, n = circumferential order,

g
]

longitudinal component, B = tangential

component, C = radial component.



TABLE 3-2 (c)

THEORETICAL AND EXPERIMENTAL RESULTS

(EXPERIMENTAL RESULTS IN PARENTHESIS)

ALUMINIUM CYLINDER

m=1 m = 2

A/C .0815 (.1158) .1346 (.1469)

n =2 B/C .5047 (.4717) .5118 (.4385)
FREQ(Hz) 795.4 (758.9) 1902.1 (1811.2)
A/C .0378 (.0364) .0690 (.0952)

n=3 B/C .3354 (.2585) .3387 (.2777)
FREQ(Hz) 1764.4 (1682.3) 2029.0 (1932.0)
A/C .0217 (.0285) .0412 (.1406)

n=14 B/C .2516 (.1573) .2532 (.1799)
FREQ(Hz) 3336.2 (3173.1) 3449.8 (3286.7)

m = axial order, n = circumferential order,
A = longitudinal component B = tangential component

C = radial component.
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THEORETICAL AND EXPERIMENTAL RESULTS (EXPERIMENTAL RESULTS

TABLE 3-2 (d)

IN PARENTHESIS)

COPPER CYLINDER

I
m=1 m =2 m=3 m =4 | m=5
A/C | .0896 (.1422) .1417 .1513 .1331 .1032
=2 B/C | .5055 (.4889) .5125 (.3173) .5069 L4835 L4455
FREQ(Hz) | 486.5 (508.3) 1349.4 (1365.0) | 2553.9 3821.8 5013.1
A/C | .0419 (.0512) .0748 (.0696) L0942 (.1260) .1001 .0958
=3 B/C | .3355 (.3191) .3392 (.3116) .3415 (.2653) .3393 (.2715) .3313
FREQ(Hz) | 911.7 (933.9) 1152.8 (1190.2) | 1721.6 (1772.9) | 2508.7 (2563.7) | 3386.3
A/C | .0241 (.1343) L0451 (.0390) .0610 (.0935) .0708 L0749
=4 B/C | .2515 (.2226) .2534 (.2577) .2554 (.2457) .2564 (.1353) .2554 (.1835)
FREQ(Hz) | 1705.7 (1749.8) 1795.1 (1842.2) | 2020.3 (2075.4) | 2413.2 (2467.8) | 2949.5 (3013.3)
A/C | .0156 (.2890) .0300 (.0916) L0420 L0511 L0570
=5 B/C | .2013 (.3225) .2024 (.1793) .2038 .2050 .2056
FREQ(Hz) | 2745.0 (2803.4) 2806.0 (2864.8) | 2932.8 3147.9 3462.3 |

axial order,

n=

circumferential order, A =

longitudinal component, B =

tangential component, C = radial component.

OTT



111.

CHAPTER 4

CIRCULAR CYLINDERS WITH VARYING WALL THICKNESS

The least squares procedure has been shown to be a powerful
tool for the analysis of vibrations and, in particular, the amplitudes
of the superposed spatial modes of any vibrating surface may now be
determined. The result that vibration may be expressed as a combination
of normal modes has exciting possibilities for the study of vibrating
objects with perturbations in some quantity, for example, in the
geometry, force or elasticity properties. The Fourier components of
the perturbation may be thought of loosely as exciting the corresponding
vibration components in the structure although there is no direct
relationship between their relative magnitudes. 1In this chapter the
problem posed is the theory for the flexural vibrations of a finite
length circular cylinder with shear-diaphragm ends, symmetric thickness
variations about the central plane and constant axial thickness. The
solution is arrived at using the Rayleigh -Ritz method and the mode
shapes so obtained are compared with experiment using the least squares

procedure.

4.1 THEORY OF VIBRATION OF CYLINDERS WITH VARYING WALL THICKNESS

The theory to be described considers only thickness variations
in the wall of a circular cylinder as in practice these would be the
principal sources of anisotropy. The procedure is a three-dimensional
extension of the analysis outlined by Hurty and Dubinstein ([136],
section 4.5) and uses the Rayleigh-Ritz method to solve the elasticity
equations of Arnold and Warburton [126].

Consider a cylindrical shell of length L supported at the
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ends by shear—-diaphragms (see Fig. 4-1). Assume there exists an
unstrained circular middle surface of radius ag and that the thickness
of the shell is symmetrical about the angular co-ordinate 6=0 and
constant along the generator X but whose outer and inner surfaces are
independently variable. The outer surface is described by the function
az(e) and the inner surface by al(e) with the unstrained middle surface
as the origin and hence the "outer'" thickness and "inner" thickness are

respectively

aoh+(6) a2(6) - a

! (4.1)

aoh_(e) al(e) - a

These conditions imposed upon the thickness variable serve only to
simplify the mathematics as in principle one could solve the elasticity
equations for the most general form of thickness variable.

Expressing the thickness variation in terms of a one-dimen-

sional Fourier series gives

h+(e) = z h*'cos(pe)
P P
! (4.2)
h (8) =) h_cos(p#)
P p

Clearly, if the unstrained middle surface is to remain circular then

| h+(6) = h (0) i.e. the distortion is symmetric about the middle surface.
Hence for non-symmetric distortions this analysis will only be valid if
the distortion is small whereas for symmetric distortions the only
limitations on the theory are those of the Arnold-Warburton theory for

the perfect cylinder (i.e. thin walls).
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Unstrained middle surface

FIG., 4-1:  CIRCULAR CYLINDER WITH VARYING ANGULAR
WALL THICKNESS.
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The symmetric solutions of the longitudinal, tangential and
radial components of vibration are assumed to be the sum of the normal

modes of a perfect cylinder with no perturbations and are respectively

"

a(X,6,t) = = ) A cos AX_ 08 né cos wt
a mn a
o m,n
1 . AX ,
b(X,0,t) = o z an31n Y sin nb cos wt { (4.3)
o m,n
c(X,0,t) = Lo z C _sin 24 cos nb cos wt
a mn a
o m,n

where, A = mﬂao/L is the non-dimensional axial wavelength and (m,n) is
the mode of vibration. The asymmetric solutions are obtained by sub-
stituting sinn6 for cos n6 and vice-versa in equations (4.3). The

total kinetic energy is [126]

ERRGRas:

2
. = =9 J 40 dXdz  (4.4)

where p is the density of the cylinder material. It will be useful to

note the following

G .
J dz = ) (h - b )cos pe (4.5)
h=(8) P :

and to introduce the following notation

- VA
ij...
nki = f cos iX cos jX ... sin kX sin 2X dX, (4.6)
o
and U, , =l A,, coswt, V., = l—-B,, cos wt, W . C.. cosuwt 4.7
ij a, 13 ij a, 1ij O a, ij :
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Substituting equations (4.3) into equation (4.4), making use of equations
(4.5), (4.6) and (4.7) then considering the first kinetic energy term

of equation (4.4)

5 27 ht(e
s P, g ©) da (2
T1 =‘—-2——‘ (_B'E ) do dX dz (4.8)
0 o h (8)
where a = z U cos—AE cosnd (4.9)
mn N

and the superscript s indicates symmetric solutions. Hence,

pas 27T a h+(e) . AX 2
T =—-—9J J [ J U cos®= cosnf] dodxdz (4.10)
1 2 : o a,

o o h= (o) ™

and the general term in T? is

pad (2m
2 I UijUkSLCOS nje cosn

+ f—
8 cospb(h - h ) de6
L PP P

2

<l
g )\iX )\kX
X J cOos — cos . dX (4.11)
80 4o
o
Noting that
ag ALX )\kX
f cos —— cos dX = (4.12)
a a
o o o
L/2a, i=k

due to the orthogonality of the cosine functions, then the general term

i s
in T1 becomes

v N 2m
. — .U..U, (h —hp)f cosnjecosn

2 230 ij ig P 0 cos pede (4.13)

L
o]



Using the notation of equation (4.6)

L
pa L . .
s = 0 ) Ui-Uig(h-'- _
4 ijop J 1)

where the following notation has been used.
L =1L 11
i j 2 op

The second kinetic energy term of equation (4.4) is

= 4+
o0 PRy
T =— (—) do dxX dz
2 2 9t

S N C)
where b = 2 \Y siniLg— sin nb
mn a
mn o

5 2 _L h+(6)

s _ P% ) . AX 2

Hence T, = —> J [) Vnsin= sinno % do dx dz
2 o o h™(8) mn (o)

The general term in Tg is

pad (2m
OJ V,.V. sinn,6sinn ecospe(h; - h;) do

2 ij k& j | L

L
a5 A X A X
X I sin = sin LS dX
a a
(o] o o)
and using the identity
r0 i4k
- A A
a . X X
f ® sin— sin—— dX = {
a
o o o

\L/2a i=k
o]
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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due to the orthogonality of the sine functions, then

S pagL z : g + - P
T, = V,,V, (h. - h ) I} (4.21)
2
4 14%p ij i p P jl
The equation in W is solved in a similar way. Hence the total
expression for the kinetic energy for the symmetric solutions is
L
pa’L .
. . . 2 pu
- — 7,0 1Py Y Gy g Pyt (4.22)
4 ijep ij ij J J 1 p p
and for the asymmetric solutions,
L
pa”L . .
a _ 0 = = jip y P + .-
T R 13014 Jz VLV wijwiznjz) (hp ho) (4.23)
ijtp
The total strain energy with the cylinder in vibration is
{126]
+
Ea3 J2'ITJ ag Jh
o da |2 da 3¢ 32¢ 2
fr= —L—— (5x ) = 22 55 5ez + 22 (o57)
2(1=v2) Jo Jg - 9X X 93X X
b (2 9b 5 ab 32¢ _ b 5, 82c 2
+(—39 - 2e—g +ec zz(ae c)(——2—+ e) e Al G 2)
2
2 9“c ab 2 c _,9%% _, 3b
+ 222 5 =+ 2%( +2l:( x2)( c z62 z2=g) |+
(l—v) ab 24 o 3b 23a da.2 3 , 2a,, 3%c _ 9b
_ —_— - —_— —_ —_— —_ +
( 9X 98 ( ) 4Z(BX +.36)(3X86 * BX)
3%c_ 3b ab %
2
+ 47 ((axae) + 2 5X36 9% )] do dx dz (4.24)
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where E is Young's Modulus and v is Poisson's ratio. Again making
use of equations (4.3), (4.5), (4.6), (4.7) and (4.15) the integral
is evaluated and equation (4.24) reduces to
Ea?l 31
0 u
St = ———— ) Sty (4.25)
(L-v2) =1
The thirty one terms in the summation are given in Appendix ITI for the
symmetric st® and asymmetric st? modes of vibration.
Application of Lagranges equation to the independent

variables U, V and W gives

d T 0T 9St
dt (3[3 e T T (4.26)
mn mn mn
and two similar equations in an and wmn' Using equation (4.22)
L
s pa’L . B .
8l - ° Vi, -nHmP (4.27)
U 2 ip mj p P
mn
and I
s pa’L . _ .
‘:T;( ity - 2° ) Us (h:; - h)yn™P (4.28)
Wi ip P

From equation (4.7)

L= -wlU . (4.29)
mj mj
hence
- L*L 2
d ,9r° > + j
4 (X -2 ] Ups (h - h) g P (4.30)
abmn 2 jp
Similarly
—patTw?
d oT® pas-w + -, P
- ) ) = v .(h -nh -, 4.31
dt " 3y 2 ) mj " p p) nj ( )
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and
d ,9aTS —pa Lw?
= ( .

) = —2 YW (
dt L m
men Jp ]

h+

- h;) mIP (4.32)

Corresponding equations for the asymmetric solutions are easily written.

Noting that

9T _ 3T _ 3T _
3U 9V oW 0 (4.33)
mn mn mn

completes the left hand side of equation (4.26). The right hand side
is evaluated in a similar way where for the first strain energy term

shown in Appendix III

S
st )
1 -
=% Aiumj(h“L - h) 3P
LLU. ip P
! (4.34)
ast® 55>
A W
v oW
mn mn
J
and for the second
5 s°
) x;wm,(h;h: - h;h;)ﬂanq
U jpq @ 1
s
05y .
Y - } (4.35)
as®
ﬁ-z— = -%7 A;Umj (h;h: - hjh) nJPd
mn ipq 4
J

and so on for the other terms.

Defining the frequency parameter A by

A2 = p ag w2(1l-v2)/E (4.36)
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then the three Lagrange equations of the form of equation (4.26)
become

DR=A2QR (4.37)

where D and Q are the generalized stiffness and mass matrices respect-
ively and R is the vector of coefficients of order 3M(N+ 1), where M
and N are the limiting orders to which the analysis is taken, and is

defined as

R[3(k-1)(N+1) + 1 + 1] = Aki

R[3(k-1)(N+1) + i + N+ 2] = B

v

ki (4.38)

R[3(k-1)(N+1) + i+ 2N + 3] = cki

where k=1, ,.., M and i=0,..., N.

The matrices D and Q are 3M(N+ 1) square matrices with non-
zero coefficients about the leading diagonal and zero coefficients
elsewhere. Listed in Appendix IV are the coefficients of these matrices
for both the symmetric and asymmetric solutions and Appendix V lists
the solutions of the II functions of the form shown in equation (4.6).

Equation (4.37) is simply an eigen-value problem and may
be solved by expressing D in upper Hessenberg form and Q in upper
triangular form [162]. To each of the 3M(N+ 1) eigen-values there
corresponds an eigen-vector which defines the component amplitudes of
the contributing modes. The corresponding resonant frequency is cal-
culated from the eigen-value using equation (4.36).

As in the classical solution for the wvibration of a non-
distorted cylinder there corresponds three solutions or eigen-vectors
for each mode. 1In two cases the longitudinal components and tangential

components contribute mostly to the vibration and the frequencies are
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usually very high (well out of the audioc range). In the third case
the radial component is the largest and the frequencies for the
lowest modes are well within the audio range. Although the present
analysis solves for all the modes, the only ones of interest to this
study are the M(N+ 1) modes with the lowest frequency parameters. Also,
since a number of modes contribute to the vibration, reference to a
single mode hereafter is taken to mean the principal mode unless other-
wise qualified.

However equation (4.37) cannot be solved in its existing
form. For the symmetric case N=0 the cylinder is vibrating in a
breathing mode and hence the tangential component b is zero. Hence
there are M columns in matrices D and Q which are zero corresponding

v which must be removed else

Vogses Yo

to the zero coefficients Vlo’

the solution to equation (4.37) is trivial. The corresponding rows
created by differentiation with respect to these coefficients

(3/5V

1O,B/BVZO,...,B/BVMO) must also be removed. Hence matrices

D and Q and vector R are reduced to order M(3N+2). For the asymmetric
case N=0 the cylinder vibrates in a purely twisting mode and the
longitudinal and radial components a and c¢ are zero. The 2M columns

..,U and W. , W

in matrices D and Q corresponding to Ulo’ U MO 10°

20°° 20°

ey wMO and the corresponding rows which are created by differentiation
with respect to these coefficients are removed resulting in the matrices

and vector R having order M(3N+1).

4.2 CYLINDER WITH NON-CONCENTRIC BORE

A circular cylinder with a non-concentric bore is one of
the simplest symmetric distortions and can be readily manufactured.
The Fourier coefficients of the distortion are calculated as follows.
Reference to Fig. 4-2 shows that if the radius of the inner bore is

ap, the radius of the outer surface a the radius of the unstrained

2’
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Unstrained
middle surface

FIG. 4-2:  GEOMETRY FOR CALCULATING THE FCURIER
COEFFICIENTS OF THE DISTORTION.
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middle surface a, and the displacement of the centres e then

a? = e + ag(l+h—)2 + 2ea_(1+h") cosb
; (4.39)
a2 = e2 ¢ a2(l+h+)2 - 2ea (l+h+) cosH
2 (o} 0
J
Hence, .
aoh_(e) = -ecosh + (ecos?8 - e2 + a?)l/2 - a,
! (4.40)
1
a h+(9) = e cos® + (eZcos29-e2+4a2)2 - 3
(] 2 o)
4
The Fourier coefficients are thus
b e ! h™ () de
o 27
-7
- (4.41)
+ 1 [ +
ho = E;-f h (8) deo
-
for p=0 J
and \
1 i
hp = ;-f h (8)cosp8 de
-
r (4.42)
+_ 1 (" +
h =—*j h (8) cos po d6
P m -
for p > 0
J

which are evaluated numerically as the integrals are difficult to solve
explicitly.
A steel cylinder was fabricated with dimensions a = 39.29%mm,

a, = 37.83mm, a, = 40.75mm, e = 0.5mm and L = 398.8mm. The ends of the

2
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cylinder were machined flat with a lip on the inside edge which coin-
cides with the unstrained middle surface. Two 1.6mm sheet steel end
caps, with the circumference machined to a thin edge, fit into the lip
one on each end of the cylinder (see Fig. 3-19) which satisfies the
requirements of shear-diaphragm end conditions. Two electfomagnets
were positioned at 6 = m or the thinnest part of the cylinder and near
the ends of the cylinder and the techniques of section 2.2 applied to
excite and analyse the modes of vibration.

The frequencies of the symmetric modes were experimentally
measured using a frequency counter and these are shown in Table 4-1
together with the theoretically calculated frequencies for the symmetric
modes. Also shown for comparison are the theoretical resonant freq-
uencies for the same modes but with no distortion. This data is shown
in graphical form in Fig. 4-3 from which it is clear that increasing
distortion lowers the frequencies of the modes but only for this type
of distortion. In general the distortion may lower or raise the
resonant frequencies of the modes [139].

The modes were identified with the aid of a flexible plastic
tube functioning as a stethoscope. The antinodes and nodes could
be easily detected from the loudness of the tone as the tube is moved
over the surface of the cylinder. Table 4-1 shows the experimental
error in the frequencies to be less than 27 due principally to
inaccuracies in machining. Other modes could not be excited due to
limitations of the electromagnetic drivers.

The frequencies of the asymmetric solutions are shown in
graphical form in Fig. 4-4. These are little different to, except
for large distortions, the frequencies of the symmetric modes and the
difference is greatest for the lowest axial and circumferential orders.

Table 4-2 shows the theoretical superposed symmetric modes
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of vibration for four modes of the distorted cylinder. The asymmetric
solutions are nearly identical in magnitude and so are not tabulated.
Clearly the greater the number of circumferential modes included in

the analysis (i.e. the larger the value of N) the more exact will be

the theoretical solution. It is found that N=6 is sufficient to ensure
excellent agreement with experiment and favourable in computing time.
The solution of the eigen equations is well behaved. If the distortion
is set to zero, for example, then the modes decouple completely leaving
only the principal mode.

To determine the tangential and radial symmetric components
the cylinder was set upright on the turntable and for the longitudinal
components it was positioned on its side and holograms taken using the
techniques described in section 2.2. Table 4-3 shows the theoretically
calculated and experimentally determined vibration components for the
distorted cylinder. Due to the mechanical arrangement it is not
possible to analyse the circumferentially varying longitudinal modes.
The double turntable scheme described in section 2.1 is required.

Hence only the ratio of longitudinal to radial vibration is considered
which is

a/c =1 (Iil A2 ) /(rzlcgm) ] (4.43)

and varies sinusoidally along the length of the cylinder as given by
equation (4.3). The theoretical and experimental amplitudes for the

B and C components are scaled by the factor which makes the C component
of the principal mode unity. In addition since the modes are not
excited exactly symmetrically due to influence of the magnets then

some asymmetric components are present in the experimental analysis.
Hence only the magnitudes of the components are shown in Table 4-3.

Figs. 4-5(a) to 4-5(f) show the mode shapes calculated from
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the theory and those derived experimentally. Evident from the exper-
imental curves is the small contribution of the asymmetric modes
discussed above. Nevertheless the agreement is excellent for all
modes except the lowest (1,2) mode due to the absence of a significant
contribution of the n=1 mode (see Table 4-3). Note that the origin
of the holographic analysis, being different to that of the theory

of section 4.1, is transposed for direct comparison.

4.3 CYLINDER WITH A THIN LONGITUDINAL STRIP

A steel cylinder was manufactured with length L = 398.8mm,
mean radius a, = 39.29mm and wall thickness h = 2.05mm. A nominal
%@" square-section length of steel rod was attached to the cylinder
along a generator with an extremely thin layer of 1LS-12 adhesive.
Assuming that the distorting strip is sufficiently small to neglect
errors of curvature, the Fourier components of the distortion are

calculated with the aid of Fig. 4-6. Using equations (4.41),

A

h_ = -h/2a
o o
(4.44)
t = n/2a + Du/ [
ho = a0 u/ma
and from equations (4.42),
h_ =0
P
] (4.45)
+— .
hP = Tpa_ sinpu
for p > 0

where D = 3.21lmm and p = 0.03876 rad.

Fig. 4-7 shows reconstructions of time-averaged holograms
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Unstrained
middle surface

FIG, 4-6  GEOMETRY FOR CALCULATING THE FOURIER COEFFICIENTS
OF THE DISTORTION,
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FIG. 4-7

Two views of a cylinder with attached strip

vibrating in (2,2) mode.
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of the cylinder vibrating in the m=2, n=2 mode. Table 4-4 shows the
results of measured and theoretical frequencies with the distortion
and without it. For the undistorted cylinder agreement is excellent
but with the distortion the predictions are totally inaccurate. The
strip was re-attached using a number of fine bolts but with the same
results, indicating the adhesive is not an influencing factor. Rather
it is thought that the sudden discontinuity of the attached strip
dictates the use of functions which satisfy the strict boundary
conditions at the strip which the comparitively slowly-varying sinu-
soidal functions do not. Put another way, the Rayleigh-Ritz method
"spreads" the discontinuity over the surface of the cylinder and does

not necessarily account for sharp discontinuities.



TABLE 4-1

RESONANT FREQUENCIES FOR SOME MODES OF

DISTORTED CYLINDER

(non-concentric bore)
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Principal Theoretical Freq. Exp. Z
Mode Freq. Error in
(m,n) Undistorted Distorted Distorted Exp. Freq.
1,2 1340 1316 1330 1.1
1,3 3553 3375 3442 2.0
1,4 6774 6465 6495 0.5
2,2 2105 2042 2063 1.0
2,3 3740 3562 3627 1.8
2,4 6905 6594 6617 0.3
3,2 3598 3524 3463 1.7
3,3 4204 4045 4085 1.0
3,4 7159 6847 6861 0.2
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THEORETICAL SUPERPOSED SYMMETRIC MODES FOR A CYLINDER WITH NON-

CONCENTRIC INNER BORE

FREQ. | PRINC - MODE AMPLITUDES n =
Hz IPAL | coEFF.
MODE
(m,m) 0 1 2 3 4 5 6
A1n -.027 .154 | -0,72 .006 .0 .0 .0
1315.6 (1,2) Bln .0% .606 | -.504 .064 | -.007 .001 .0
C1n .002 .596 | -1.000 .190 | -.028 .004 .0
A1n .0 .0 -.002 | -.034 .006 | -.001 .0
3375.4 (1,3 B1n 0% .001| -.010 | -.336 .081 —.Q14 .002
Cln .0 .001 | -.019 |-1.000 .321 | -.072 .012
A2n .003 .015 127 | -.013 .001 .0 .0
2041.5 (2,2) an .0% .028 .509 | -.076 .009 | -.001 .0
C2n .0 .026 | 1.000 | -.225 .038 | -.006 .001
- .0 .001 .005 .064 | -.012 .002 .0
B2n 0% .003 .022 .339 | -.084 .015| -,002
C2n .0 .003 .042 | 1.000 | -.331 .075 | -.013
g These coefficients are preset to zero before the eigen equations

are solved.
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THEORETICAL AND EXPERIMENTAL SYMMETRIC MODE AMPLITUDES OF DISTORTED

CYLINDER (NORMALISED MAGNITUDES)

RADTAL COMPONENT | TANGENTIAL COMPONENT | LONGITUDINAL
PRINCIPAL C B RATIO
mn mn
MODE (m, n) A /C
m m

Theory Expt, Theory Expt. Theory | Expt.
.596 .108 .606 .178

1,2 1.000 1.000 .504 .496 .146 091
.190 .163 .064 .110
1.000 1.000 .336 .228

1,3 .321 .268 .081 .079 .033 .040
.072 .034 .014 .054

1.000 1.000 . 509 . 346 .126 .186
2,2 .225 .191 .076 .044
1.000 1.000 .339 .216

2,3 .331 .386 .084 .100 .062 .105
.075 .083 .015 .034
1.000 1.000 .509 .217

3,2 .415 .318 .140 .217 144 .186
.101 .090 .025 .128
.238 .139 .122 .064

3,3 1.000 1.000 <341 .291 .087 .169
.362 - .282 .092 147
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RESONANT FREQUENCIES FOR SOME MODES OF DISTORTED CYLINDER.

(Longitudinal Strip)

PRINCIPAL UNDISTORTED CYLINDER DISTORTED CYLINDER
MODE
THEORY { EXPERIMENT { % ERROR || THEORY | EXPERIMENT
(m,n)
1,2 990 1007 1.7 1128 999
1,3 2500 2552 2.1 3647 2517
2.2 1871 1852 1.0 1939 1859
2,3 2689 2735 1.7 3717 2705
3,2 3431 3328 3.0 3336 3343
3,3 3195 3225 1.0 4193 3213
4,3 4058 4056 0.0 4636 4067
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CHAPTER 5

COUPLED TEMPORAL MODES

It was shown in Chapter 4 that the effect of any distortions
in the wall thickness (which may be generalized to include anisotropies
in radius or Young's modulus for example) is to couple modes but at
the same frequency; such modes are called superposed spatial modes.
Alternatively, for a non-~distorted cylinder, the applied time-varying
point force induces modal coupling with phase-shift between the modes
which was demonstrated for the two-dimensional case by Stetson and
Taylor [84]. Such modes are termed Coupled Temporal Modes. In this
light it is thought that the analysis of Shirakawa and Mizoguchi [156]
could be extended to predict coupled tempcral mode response for
cylinders excited by point forces.

In this chapter the theory of Generalized Least Squares
is applied to solve the characteristic equations for the case of
cylinders vibrating in two coupled modes, one essentially pure mode
and two superposed modes at a single frequency. The temporal phase
difference is determined without the need for modulating the laser

beam.

5.1 HOLOGRAPHIC THEORY FOR TWO COUPLED MODES

The characteristic equation for two coupled modes with
phase difference A was determined in section 2.1.4 (special case 5).
The argument function for the combined motion was shown to be the
phasor sum of the argument functions of each component. Assuming that
each coupled mode is a singular superposed mode (i.e. pure mode) then

all terms in equations (2.10) to (2.12) are zero except for one - order
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N! for one mode and N2 for the other. Hence equation (2.53) becomes

2
f = x} sinN! £E + y1 cos Nl(‘,' XK+ (Wl sinN'z + zl cos ng S
q [C q N q q N q N q) q]

2
+ 2 5in N2 + y2 cos N2 K + (w2 sinN? + z2 cos N2¢ )S
[GF sinN2E + y2 cos N2 K+ (of sinN2E + 2l cosN2E )5 ]
+ 2cosA[(x! sinNlg + ylcosNE )K + (wlsinNlt + zl!cosNle )s ]
*N q  °N q’q N q N q’"q
2 in N2 2 2 + (w2 sin N2 2 2
.[(xN sinN Eq + N cos N F,'q)Kq (wN sin N Eq + z5 cos N ;q)Sq]
- 02 /Kk? (5.1)
q
The equations of the form of equations (2.54) to (2.56) are

(q) _ 3fq I 1 gl 2 2 el
G = =2 K +b'S )sin(N K + 2cosA(c“K +b4S )sin(N K
1" g T OIS Yot R (e?K_+b28 ) sin(N1E K

Géq)=3—f;_‘1 = 2(c2Kq+bzsq)sin(N25q)Kq+2cosA(c1Kq+blsq)sin(N2gq)Kq

{D_3Ld _ 50 1x 1pls Yeos(NIE )R +2cosh(c2K +b2S )cos(NLE )K
q q a’"q q q a’"q
N Y (5.2)

(q)_ 3fq % 2 2 1 1 1
G = =2 K +b4S )cos(N K +2cosA(c*'K +b'S )cos(N K
8 ‘azfI (e q q) s gq) q ( q q) ( Eq) q

(q)_ ofq 1 1 2 2 ;
G = = -2(c*K +b'S c4K +b4S ) sinA
9 3A ( q q)( q q)
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where 5

i

xésinN1£4-yécosN1£

c? = xﬁsinNZE + yécosNzg

; (5.3)
pl = wﬁsiang + zécoleg
b2 = WI%I sinsz-; + ZI%I cos NZE

Hence matrices I and F are calculated using equations (2.51)
and (2.52) and the correction vector § from equation (2.50). The
inverse matrix I—l is calculated by the Gauss-Jordan method with
elimination by partial pivoting [163]. The vector describing the

parameters

R = (x-és xﬁs yI]\i’ yl%’ WI}]’ WI%T’ ZI}I’ ZI%’ A) (5.4
is arbitrarily set for the initial iteration but as shown in the next
section, local high-order minima could terminate the procedure pre-
maturely. 1In practice a number of starting points are selected to

guard against this possibility.

5.2 EXPERIMENTAL PROCEDURE AND RESULTS

To test the convergence of the method of Generalized Least
Squares, five modes of two cylinders were considered. The first cylinder
of length 398.8mm, mean radius 39.29mm and thickness 2.050 % .005mm
was carefully machined to make it as near perfect as possible. The
second cylinder is the one considered in Chapter 4 with the centre of
the inner bore displaced from the centre of the outer circular surface
by 1lmm for which the theory of vibration predicts a number of super-

posed modes.
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To generate coupled modes in the perfect cylinder two elect-
romagnetic drivers were positioned at the radial antinodes of vibration.
Each point force is a disturbance with spatial Fourier components which
excite other modes in the cylinder and these couple in some phase rela-
tionship resulting in phasor vibration. The degree of coupling of the
spatial Fourier components of the force to the cylinder modes depends
on the position of the force relative to the modes. Hence moving the
point excitation towards the radial nodes (at the cylinder ends)
reduces the degree of coupling with the result that only a single mode
is induced in the cylinder. This behaviour was confirmed in the
experiment.

Fig. 5-1 shows two views of the perfect cylinder vibrating
in two coupled modes (3,2) and (3,3). The predominant mode is (3,2).
The contribution of the (3,3) mode is seen as a coupling of the fringe
groups. This is to be compared with Fig. 3-21 which shows two views
of the cylinder vibrating in an essentially pure (4,3) mode. The
decoupling of the fringe groups is clear in this instance.

In the analysis of Fig. 3-21 it is normal to allocate a
sign to fringe groups, adjacent groups taking alternating signs. This
proceduré is clearly irrelevant in the analysis of Fig. 5-1 for since
the fringe order appears squared in equation (2.29) then only the order
of the fringe is recorded.

Fig. 5-2 shows the components of two coupled modes for the
perfect cylinder. Stetson and Taylor [84] predict that if the reson~
ances are reasonably sharp then the response of a mode at its resonant
frequency is close to m/2 in phase to any other mode that may be
excited in combination. The temporal phase difference A was determined
as 1.96 rad at the resonant frequency 1852Hz for the coupled modes

(2,2) and (2,3) shown in Fig. 5-2. Fig. 5-3 is the result of reposit~
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FIG. 5-1

Two views of a cylinder vibrating in two coupled modes.
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ioning the electromagnets near the ends of the cylinder, the frequency
remaining unchanged. The relative level of the coupled mode (2,3) is
substantially lower in the case of the radial component but uncertain
in the tangential component. The principal mode (2,2) however is well
behaved. The ratio of the tangential to radial amplitude (B/C) is
0.436 which is to be compared with 0.503 predicted by the Arnold-
Warburton theory for cylinders [126] for a pure mode. To be noted
also is the radial component which is in phase quadrature spatially
with respect to the tangential component, also predicted from the

pure mode theory.

Fig. 5-4 shows the components of two other coupled modes
for the perfect cylinder at a frequency of 3332Hz. For this case,

A was determined as 1.53 rad compared with the predicted value m/2
[84]. Again the principal mode is well behaved with B/C = 0.397
compared with the theoretical value of 0.509 and again the radial and
tangential components are in spatial phase quadrature. The amplitudes
of the components of the coupled mode seem to be uncertain due to
their low magnitudes, a situation which again could be improved if
more data points were available.

The analysis was also applied to the distorted cylinder
described in Chapter 4 for the principal modes (2,2) and (2,3). Table
5-1 shows the amplitudes of the coefficients determined by the
Generalized Least Squares theory to be nearly identical to those
determined by the normal least squares procedure of Chapter 3. More
interesting is the value determined for A which, theoretically, should
be zero or a multiple of w. As explained in section 2.1.4 (special
case 4) however the determination of A for these cases is bound to be
somewhat uncertain.

Tables 5-2(a), (b) and (c¢) show the effect of initial
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conditions on the final solution for three cases. The starting
magnitudes of the amplitude parameters are equal but are varied with
respect to the phase parameter. Hence the notation [1l,.1] in Tables
5-2 is taken to mean {1,1,1,1,1,1,1,1,.1] which is the starting vector.
All other starting conditions tried but not shown in Tables 5-2
resulted in exactly similar solutions. In the case of %able 5-2 (a)
the optimum solution oscillated between that of the second and third
columns. For Tables 5-2(b) and (c¢) it is clear that the higher order
solution (represented by the larger residual Z (fq)z) is incorrect

in the phase A. Hence the optimum solution is that with the least

residual.
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COMPARISON OF GENERALIZED AND NORMAL LEAST SQUARES PROCEDURES IN THE

DETERMINATION OF COMPONENTS OF PRINCIPAL MODES (2,2) AND (2,3) FOR

A DISTORTED CYLINDER

PRINCIPAL MODE (2,2)

PRINCIPAL MODE (2,3)

PARAMETER Nl=2 N2=3 Nl=3 N2=4
GENERALIZED NORMAL GENERALIZED NORMAL

xé -.074 ~.062 .633 .683
x§ .236 .150 -.032 -.083
yé .771 . 784 -.131 -.167
y§ .023 .002 -.202 -.258
wé .183 .272 -.028 -.002
w§ -.022 -.031 -.081 -.070
zé .008 .008 -.177 -.152
z§ .052 -.015 .002 -.010
A 2.411 m 2.702 T

) (£q)2 .082 467 .101 .064
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TABLE 5-2 (a)
EFFECT OF INITIAL CONDITIONS ON SOLUTION PRINCIPAL MODE (2,2) OF

UNDISTORTED CYLINDER N! = 2, N2 = 3

INITTAL CONDITIONS [R -R, R]
PARAMETER s

[1,1] [.1,11[1,1077]
xé -.163 ~.163 ~.165
xé .025 -.084 -.026
yé 1.037 1.037 1.038
yZ .004 .034 .022
iy . 460 .463 454
wﬁ .003 -.002 .016
zé .075 .070 .075
z§ -.086 .170 .126
A 1.261 4.693 4.566
1 (£q)? .300 .283 .294
T;_ Solution __;T

Oscillated
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TABLE 5-2(b)
EFFECT OF INITIAL CONDITIONS ON SOLUTION PRINCIPAL MODE (2,2) OF

DISTORTED CYLINDER N!=2, N2=3

INITIAL CONDITIONS [R, -Rg, R]
PARAMETER _ s
[1,1][1,10 °][.5,1] [.5,107°]
[.1,1][1,.1] [.1,.1]
x[}] ~.029 -.074
x{i -.027 .236
1
o .622 .771
2 236 023
yN - .
wé .218 .183
w2 .125 -.022
N
1
zy .038 .008
zI% -.113 .052
A 1.434 2.411
Y (£q) 2 254 .082
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EFFECT OF INITIAL CONDITIONS ON SOLUTION PRINCIPAL MODE (2,3) OF

DISTORTED CYLINDER

Nl=3, N?=4

INITIAL CONDITIONS [R, -R, R/]
PARAMETER
[.5,107°1[.5,1][.5,.5] [1,2]711,3]
[5,107°][1,1] [1,107°]
xﬁ 466 .633
x§ .167 -.032
1
Yy .097 131
y2 .038 -.202
N
wl%] -.038 -.028
w2 .032 -.081
N
1 - -
2} .203 .177
z§ -.178 .002
A 4.861 or 1.424 2.702 or 3.581
). (£q)? .593 .101
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CHAR
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START
INITIALIZE PPL 1,2

~
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CHECK FOR CHAR
IN USART 2 (CDC)

\

SEND T0 VDT

SEND L/F
10 vDT

GET CHAR
FROM VDT

GET 1 BYTE
FROM CASSETTE

SEND L/F

T0 VDT

CHECK FOR CHAR
IN USART

SEND CHAR VIA
USART 2 T0 CDC

1.(vDT)

PRINT
LSEND DATA ..

ESCAPED?

PRINT
«+RECORD-.

GET 1 BYTE
FROM CASSETTE

ECHO TD vOT

WAIT TILL

L/F ECHO
8y coC

SEND CHAR V(A
USART 2 T0 cCODC

SEND L/F
To VD1

MO ~15 cHar

SEYT CASSETTIE 70
INC. REC. MODE

SET REGISTER
B=7

DECREMENT
REG B

DATA AVAILABLE
FROM TABLET

CHECK FOR CHAR

A IN USART 1 (VDT)

i \

CONVERT X&Y

T0 DECIMAL

PRINT
XXXX,YYYY
SEND C/R & L/F
1o voOr

- A

A C/R

SET REGISTER
B=6

PRINT CHAR




APPENDIX IT

MATRIX FOR THE NORMAL EQUATIONS

K sin(N'£)), Kycos(N'E,), S;sin(N'E,), S cos(NPE)),- - - -, Rysin(¥?E)), K,cos(N%E,), S sin(N?g), S,cos(N%E,)
K,sin(N1E,), K,cos(N1E,), §,sin(NlE,), S,cos(NlE,),—-~ -, K,sin(N?E,), Kycos(N?E,), S,sin(N%E,), S,cos(N?E,)

I 1

I I

I |

! |

: i

I 1

| I

I 1

I !

I I

| I

! i

I 1

1 I

! I

! |

: i
Kzsin(ngT), KTcos(ngT), STsin(ngT), STcos(ngT), - == - KTsiq(NZET), KTcos(NZET), STsin(NZET), STcos(NZET)

*LST
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APPENDIX ITI

THE STRAIN ENERGY INTEGRAL

Evaluation of the strain energy integral, equation (4.24)

in the main text. There are 31 terms in the symmetric solutions

(denote these St?, Sti, ... etc) and 31 terms in the asymmetric solutions
(denoted St?, St:, ... etc). The notation is defined in the main text.
s 9 + - jLp
U, - h
St =% ) A2 FU Uy - b

1J£p

for St?, replace HJgp by H?l

st> = % ] Adu W, (h" hq - Woh y 9 4Pd

for Stg, replace szpq by H?E

St3 =1z, L Wy WA elnl - nohon) nd e
- ijipar . P A
for Stz, replace Hjﬁpqr by H?%r

s + =y P
st =% ) V..V, n,n (h -h )T
L 132p ij i 3 2 p P

a jip P
for Stq, replace 1 by sz

Sty = % ] W,

nl(h - h) Hjlp
ijep P

ij 12

P

for Sts, replace HJ p by HJ2

stg =% | Wi'wiz(h+ - n7) WP
ifep 1 P P

a
for StG’ replace szp by H?Q



159.

se® =% ¥ Vijwunjnﬁ (h;h:l- - h;h;)nﬂpq
ijipq

~ 0

for St?, replace Hjlpq by —H?E

st = 3 ) Vijvizn,nz(h;h: - hoho) 3 *Pd
ij4pq J

for Stg, replace Hleq by H?%

for Stg, replace H:”LPq by H?E

s _1 o+ _ o ypdira
sty, =% ) wi,vilnz(hph(1 B b )T

ijfpq
a iipq Pq
for St,, , replace I by —ng
8 il 2 0t + + o = =0 jipqr
st ) wijwﬂnjnl(hphqhr hpthlhr) I

ijlpqr

for St?l’ replace Hszqr by H?gr

sel, =-¢ [ W,V nZn (W THT - bononD) mi PO
ijipqr W 32T g P q
o ¢par by -1P9%

a
for Stlz’ replace iz

st3y =— ] V.V nn 0 wiR" - n”n7nD) nitPeT
iipqr W AT 2P e r T piar

pdtPar o par

a
for St13, replace 30

s __»
St,, ®&5 Yy U,V

14 i ilkinﬂ(h+ - n) W'

a jip P
for Stlu’ replace I by sz



L U
134p 13 1£ itp

for St?s, replace HJQP by HP

st® = Y U,
16 .
ijepq

£l

2t -
ij 12A1n2(hphq

for St1

h h_
P q

, replace HJ *pq by I

h7) HJRP
P

iL

Pq
jL

s v = .= yrdpPq
st.,=-— ) U, (h n - nRT)T
17
L 1§%pq ij 12 i 2 q P q
for St17, replace HJ pq by Hpq

5 _ v _ jipq
Stie ™% L LAY, z(h h.q tl h ) I
ijipq
jlpq Pq
for st? 18° replace I by IIJ2
Ste =y L W 13" 1( - By hy) e
ijapq .
a | jipq Pq
for Stlg’ replace II by Hjl

st =2 ] W W . \n 2(h+ Tt - h tl h_) pd ¢par
20 13ipqr
a jipqr pqr
for Stzo’ replace I by HJ%
s v =147y nddpqr
St, = -— ) .V, A%n (h h' h ~h_ h h )1
6
21 1j%pqr ij 12 iR q P qQr
a jipqr pqr
for St,qs replace II by HJZ
s (1-v) 2 =y P
st = Y V,.V, A2 (h -h )
22 8 i12p ij 1 P jL
jip

a
for St,,, replace H?l by I
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s p
= - S v h - h m
st : ~ Y LY ( )

ijap

! 1% _niép
for bt23, replace ng by -~II

s (1-v) v + =~y P
St> = L. § U,.U, an.n,(h ~-h )I
- 2
24 8 ifgp I i3 p p° i%
a L
for Stzq, replace H?l by md *P
(1-v 2 +.+ ==y P4
std =" ¥ Y o An (h_h' - h h )T
25 Ly - ij 42 i 2 2
1iipq P q p a J
a Pq _nd%pq
for St25, replace sz by -1
s (1-v) 2 .+ + - Pq
St,,. = - =~ Y V,.,v, A2(h_ h - h h )T
26 o yipq 13 iti " pgq P q° J2
a Pq jtpq
for St26, replace sz by I
s (1-v) + . + — 17y P4
St,,=--——>= )} U W nin (h h =-h h )}
27 by .. ij ie i p P %
‘ 1j1pq J J q q
a Pq jipq
for St27, replace ng by I
s (1-v) 7 yPad
St " ) U, 15710 1( h h ) it

ijipq
a Pq _nd¥pq
for St, g, replace nj!?, by -1
A2 nn, (h h }1 - h_h_ h_) nPd*
P a4 r’ jk
a pPqr jipqr
fo; St29, replace sz by I

] 1=V C 2 + . +,+ e = pqr
Sty = - - ) W,V A (h h h -~ h h h_)I
%
30 ijlpqr,}J iv q pqr’j

a pqr _mJpar
for St30, replace Hjﬂ, by -1
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Sts =_£1__\))_ z V.. V.

> . 12>\%(h+h+h_: - hon b)) PdF
6 yyfpqr W 1 P4 p g

jL

i L
for Stil, replace H?Er by -1’ pqr-
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COEFFICIENTS OF THE GENERALIZED STIFFNESS AND MASS MATRICES

Coefficients of matrix D. Denote D® for symmetric solutions
and D? for asymmetric solutions.

k = 1,M i = 0,N j = 0,N p=0,P

The matrix is a 3M(N+1) square matrix. Put g = 3(k-1)(n+1).

The non-zero coefficients of matrix D are:

D°[g+i+1, g+3+1]
= g(xinijp + ———(l; V). Hij)(h-; - h)
D°[g+i+1, g+3j+N+2]
k

coijp (1-v) . P + =
= —v A, il -=2==22 5 inY )(h - h
lZ)I:(ka s 113)(p p)

+3 Y (v 519P9 4 (1 -y 1 1P h+h+—h_h_:|

Do[g+i+1, g+ j+ 2N+ 3)
=7 fva Pt - n)
) P P

1 i3 3 2ypiiPa _ o4 L .« P4 .+ -
2(21 [()\k+\))\kj I (1 \)))xklj]'[ij:'(hphq hphq)f
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Do[g+i+N+2, g+j+1]

- N coddp o (A=-v) , LoP + _ =
R ICAPVER! A T RACER

. iipq : P4 Tt "
+ %) (v il + (L-v)A, jO.; h h -h h
2§< K (L-VA I (b - B )

D [g+i+N+2, g+ +N+2]

copidp L (A-V) S0 0P + -
= 1 + == 2c00,.)(h -h
RAGE! o M Ty (- )

3P 4 vy 2Py wtet - nnT
+(21|j23 (1=v) 22 1)kt - woh )

1 . w1jpqr 2 oPQry ,+. .+ .+ =
+ Y145 + 21 -WA21T ) h h -
23( i (L-vP T )(p JLMER N

Do [g+i+N+2,g+j+2N+ 3]
=74 1P @ - )
; P P

+ I A2 +ev 2 DT a2 3P @ e - nTh)
= L & P4 PQq

]

SV L g2 2 4y giipar 2 P 1t et e o
23 [(13% + vAZ1) T + 2(1=~v)AZ] nij ](hphth hphth)J\
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D°[g+i+2N+3, g+3+1]

=5 4 PG -y
- k P P

+% (-23+va i2)1PY 1oy 141 et —n R

D°[g+i+2N+3, g+3j+N+2]
=) 4-3mP @t onT)
: P P

¢

+§1

ij .+ - -
1 . 22 . 2 s Jjpq _ 2 . P4 _
/2[(31. + 3 +\))\kJ)H + (1 v)xklﬂij](hphq hphq)

1 2. 2 syplipqr 2 5 oPQr, +.+ + SR=. =
- YL [@E23+va2pn 4+ 2(1-VA2iT" 7 J¢thhh -—h h h
E3I(J 2 1) (1-wa2 13](pqr b))

D°[g+i+2N+3, g+3j+2N+3]

=¥ 4L rtP@t -y
: p p

13pq  + + =
+ 1 _'2_._'2,_\)>\2 HJth h -h h
<21 1/2(3 . P (b, by =R b )

+ 13| O+ 1252 + va2 [12+32)) niipar
r

: L
+21-WVA24i51°Y | " h h - h h h
( )leJ (pqr pqr)
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The asymmetric solutions D? are obtained by firstly changing the
i,j notation in the II functions from subscript to superscript and
vice versa and changing the signs of the following groups of

coefficients
D°[g+i+1l, g+j+N+2]
Dolg+i+N+2, g+3j+1]
Dolg+i+N+2, g+j+2N+3]
D°[g+i+2N+3, g+j+N+2]

Similarly, the coefficients of matrices QS and Qa which are also

3M(N+1) square matrices are as follows

Q®lg+i+1, g+j+1]1 = ] (h" - n_)ndP
p P P

Qs[g+'i+N+2, g+j+N+2] = Z(h"'— h')n‘_’,
P P P 1]

Q°lg+i+2N+3, g+j+2N+3] = Z(h;-h;)nlJP
P

For the asymmetric coefficients, simply change the i,j notation in

the I functions from subscript to superscript and vice-versa.
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(4.6) of the text.

which are

which are

all

all

nijp

Zero

j+rp
I

-
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of the T functions of the form shown in equation

i

2n

I cos iX cos jX cospX dX

(¢]

I +I +1I +1
1 2 3 L

unless

I1 = n/2
12 = n/2
I, = n/2
Iq = 7/2

sin iX sin jX dX

L
Il = jn/2
I, = +w/2
I3 = -1/2
I = +47/2

(A5.1)

(A5.2)
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2w
HlJpq = J cos iX cos jX cos pX cos gX dX
o

1 2 = wd 8 (A5.3)

which are all zero unless

i+j+p+q=0 s I, = m/2
i+j-p-q=20 s I2 = /2
i+j+p-q=0 . 13 = 7/2
i+j-p+q=0 s I, = /2
i-j+p+q=0 > I5 = /2
i-j-p-q=20 s IG = m/2
i-j+p-q=0 y I, = /2
i-j-p+q=0 A 18 = 7/2

2w
nij = J sin iX sin jX cos pX cos gX dX

(o]

=I +I + ...+1I (A5.4)
1 2

which are all zero unless

i+j+p+q=0 ) I1 = -1/2
i+j-p-q=0 s I, = -n/2
i+j+p-q=0 , I, = -n/2
i+j-p+q=0 " I, = -n/2
i-j+p+q=0 5 I, = +m/2
i-j-p-q=0 , I6 = +5/2
i-j+p-q=0 , I, =+n/2
i-j-p+q=0 y I = +u/2



giirar _

1l

which are all zero

]

which are all zero

2T

cos iX cos jX cos pX cos gX cos rX dX

@)

I. +1I_ + ...
1 2

unless

pt+aq+r
P~-—q-T

P-q-t

27

J sin iX sin jX cos pX cos gX cos rX dX

(o}

I +I + ..
1 2

unless

+

+ I

1
16

16

/2
m/2
w/2
w/2
/2
/2
/2
/2

w2

= 7/2
= 1/2

= 7/2

/2

= 7/2

m/2

w/2
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(A5.5)

(A5.6)



~-m/2
+mn/2
~m/2
+m/2
-m/2
+m/2
~-m/2
+n/2

-w/2

= +q/2

= —5/2

+1/2
-n/2

+1w/2

= —1/2

+1/2

170.
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APPENDIX VI

SOUND RADIJATION FROM CYLINDERS

The theory of time-averaged holography has been developed in
this thesis to such a stage that the vibration components of an excited
arbitrary surface at a single frequency may be determined without
difficulty. In particular the component normal to the surface is of
interest to the study of sound radiation from vibrating surfaces. In
this Appendix the radiation efficiency of three steel cylinders is
measured and compared with the theoretical predictions of Junger and

Feit [148] assuming normal mode shapes.

A6.1 THEORY OF SOUND RADIATION FROM VIBRATING CIRCULAR CYLINDERS

The theory of sound radiation from circular cylinders presented
here is taken from Junger and Feit [148]. Consider a cylinder of length
L and mean radius a, with shear~diaphragm ends. The acceleration of
the vibration component normal to the surface may be expressed as a

combination of the normal modes

w (X,8) = 2 Wmn cos ka cos nb (A6.1)
m,n
where km = %? , 6 1s the circumferential co-ordinate and X the co-ord-

inate along the generator measured from the body centre of the cylinder
as shown in Fig. A6-1.

The pressure field may be expressed in the same form as the
series

pr(r,X,e) o z Pmn‘Rmn(r)cos]ﬁnX cos nb (A6.2)

m,



FIG, Ab-1

CO-ORDINATE SYSTEM FOR A VIBRATING CYLINDER OF FINITE
LENGTH WITH CYLINDRICAL BAFFLE,

LT
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where Pmn are coefficients to be determined from the boundary condition

apr

3t (r,X,e) = -p‘;f(X,e) (A6-3)

The radial harmonic Rmn(r) is found first by noting that for steady
state conditions it satisfies the three-dimensional Helmholtz equation

which reduces to

32 1 3 n?
[—+-— - —+ &2-Kk)IR_(r) = 0 (46.4)
r? r or r

This is Bessel's differential equation whose solutions are
linear combinations of Bessel functions of the first and second kind
and for outgoing waves

Rmn(r)

: 2 _ 12ys . 2 _ 123
Jn[(k km) r] + lYn.[(k km) r]

H [(k? - k2)%r] (46.5)

where Hn is the Hankel function of the first kind.
Hence combining equations (A6.5) and (A6.2) and substituting
the general solution into the boundary condition, equation (A6.3),
and solving for Pmn gives
oW

P = A (A6.6)

mn 2 _ 12V prp(e? - 12\
(k ko) ® H[(k ki) Za ]

Hence the pressure field is

¥ 2 _1.2vy%
Wman[(k km) r]

Pr(r,X,e) = -p z

1 B cosk X cosnB (A6.7)
m,n (kZ2-%k2)2 H'[(k2-k2)Za ] i
m n m o]
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Considering now a finite number of standing waves cos ka confined to
the region IXI < L/2 and applying the stationary-phase approximation

to the far field gives

2 peikR'km(—l)m_l{ :]orsl (kLcos¢/2)}

pr(R, 8,9) =
Tk Rsin¢ (kti— k2cos?¢)

W (—l)nalcosne
n
X z (A6.8)
n Hxll(kao sing)

where cosine is used if m is odd and sine is used if m is even.

The total sound power II is obtained by integrating the radial
component of the sound intemnsity vector over a large sphere of radius
R and hence

2w

T = RZJJ|(R6)]2' dé de (46.9)
o, ) | | p@0.0 sty :

and on substituting equation (A6.8) into equation (A6.9) gives

. ™ 2
2pL2W§ {;?j’lz (kL cos¢ / 2)}
Il = s—— " . d¢ (A6.10)
" L ° sinq)]H'(ka simb)l [l—k——gg—s—q)-]
n o K2
m

for a single mode. Using the definition for radiation efficiency [146],

I
o= (A6.11)

2
pcOSA<W >S

t

where <I;J2>St is the mean square velocity normal to the surface averaged

over space and time and SA is the radiation area very nearly equal to
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2ﬂaoL, and noting that
"2
= 8<W > (A6.12)
which results from averaging over two angular co-ordinates and time,

then substituting equation (A6.10) into equation (A6.11) gives the

final result also derived by Rennison [164]

Ly 2
16L = {35 (R Leos¢/2a ) )
g 8 == d¢ (A6.13)
o m*m?a 5 KaIJcos¢
© sing|H' (K_sin¢)]°[L~ (——-1}"]
noa a mm

wao

where Ka is the non-dimensional frequency parameter given by Ka =

Co

A6.2 EXPERIMENTAL ANALYSIS AND RESULTS

Three steel cylinders of length L = 398.8mm, mean radius
a = 39.29mm and wall thicknesses 2.050mm, 2.845mm and 4.597mm were
machined as in Fig. A6-2. Two stock cylinders of length 600mm and
thickness 6mm acted as baffles and were machined at one end to form
a thin ridge which fits perfectly into the lip at the edge of each
cylinder thereby ensuring shear-diaphragm end conditions. Four 6mm
diameter supporting rods held the structure in place with a little
tension from springs mounted on one end as shown in Fig. A6-2., Pieces
of mineral fibre were stuffed into the ends of the baffles to ensure
an anechoic termination and eliminate the possibility of standing waves
in the medium inside the structure. Although the theory outlined in
the last section requires infinitely long baffles (see Fig. A6-2) the
structure is at least five wavelengths in dimension at the lowest

frequency considered and hence the error is assumed negligible. A



Cylinder Supporting rod
\ /Spring
\\ _mﬁl
e X ) = ==
— 1 | | | 1 1 .=
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FIG. A6-2  SCHEMATIC CROSS-SECTION

OF CYLINDER AND BAFFLES.
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photograph of the apparatus is shown in Fig. A6-3.

The cylinder and supporting structure were placed in a
reverberation room of volume VR = 181.5m® and surface area AR = 195m?.
The cylinder was excited using the modal driving system described
in Section 2.2.2 and the acceleration monitored using a second B & K
spectrometer and accelerometer.

The sound level in the reverberation room was measured
using a B & K 3" microphone type 4133 and 2107 spectrometer connected
to a data acquisition system [165]). The microphone scans the rever-
beration room using a traverse system and the sound field is further
diffused by a rotating vane assembly (see Fig. A6-4). The data
acquisition system samples and stores the output of the 2107 spectro-
meter at intervals of 1 second and at the end of one traverse of the
room calculates the mean and standard deviation.

The reverberation time %m of the room was measured in the
normal way in third-octave bands and hence the Power Level calculated
from [166]

8%

8£V.

LW = Lp + 10 logVR - 101log T60 + 10 log (1+ ) - 13.5 (A6.14)

R

where Lp in the sound level averaged over space and time determined
using the data acquisition system. Hence, using equation (A6.11) the

experimental radiation efficiency is

(L, - 120) /10
£210
o = 7.545 (A6.15)

002
W

where W 1is the peak acceleration of the cylinder surface at a radial

antinode.



Cylinder

FIG. Ab-3

and supporting structure.

‘8LT



FIG. Ab-4

The reverberation room, rotating vane

and microphone traverse.

‘6LT
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Figs. A6-5(a) - (e) show the experimental results together
with the theoretical curves calculated from equation (A6.13) using
nunerical integration. In general the experimental data are 5-10dB
down from the theoretical curves which cannot be explained. To eliminate
the possibility that the baffles are too small they were completely
removed and new data taken. As expected, sound radiation from the
lower order modes was dramatically reduced but for the higher order
modes the results were identical. The error is not in the frequency
parameter Ka as measured frequencies are less than 5% in error from
theoretically determined frequencies.

However, assuming that the problem is resolved then the
radiation efficiency of the distorted pipe may be calculated using

the solution presented in Chapter 4 and compared with measured values.
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10"

FIG, A6-5 (a) RADIATION EFFICIENCY OF STEEL CYLINDERS,

—— Theoretical curves. o, O, A Experimental points for n=2, 3

and 4 respectively.
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10

FIG. A6-5 (»)  RADIATION EFFICIENCY OF STEEL CYLINDERS,

—— Theoretical curves. o, 0O,

and 4 respectively.

A Experimental points for n=2, 3
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m=3

T .,
e T Ty R v

FIG. A6-5 (c)  RADIATION EFFICIENCY OF STEEL CYLINDERS.

—— Theoretical curves. 1, A Experimental points for n=3 and

4 respectively.
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10"

m =4
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