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Abstract

Xenorhabdus spp. are entomopathogenic —bacteria grouped within the family
Enterobacteriaceae. These bacteria exhibit a colony pleiomorphism, termed phase variation in
which phase 1 and phase 2 forms differ in expression of a variety phenotypic characteristics.
The main aim of this thesis was to identify and characterise genes involved in the expression
of phase variant characteristics. A secondary aim was the construction of a RecA mutant of
X. bovienii to facilitate genetic complementation analysis and the introduction of foreign
DNA. This construct was also used to determine a possible role for recA in phase variation
and virulence.

The recA gene of Xenorhabdus bovienii was cloned and sequenced. Phylogenetic
analysis of recA sequence data confirmed the placement of Xenorhabdus within
Enterobacteriaceae. A recA insertion mutant of X. bovienii was constructed using allelic
exchange mutagenesis. The recA mutant displayed phase variation and did not show any
differences in expression of the phase dependent characteristics phospholipase C, lipase,
haemolysin, protease, antimicrobial activity or Congo Red binding. No differences in the
virulence of X. bovienii, or the recA mutant, for Galleria mellonella were observed. These
results suggest recA is unlikely to be involved in phase variation, or the expression of phase
dependent characteristics.

Transposon mutagenesis was used to identify regions of the X. bovienii chromosome
involved in expression of phase variant characteristics. Five transposon insertion mutants
showing a disruption in the expression of phospholipase C, Congo Red, haemolytic and
antimicrobial activity were further characterised. X. bovienii chromosomal DNA flanking
each transposon insertion was mapped, cloned and sequenced. Three transposon insertion
mutants; XB26(20), XB29(45) and XB34(45) inserted into a common 15,582 bp region of
DNA showing significant homology at the amino acid level to non-ribosomal peptide
synthetases (NRPSs). Two partial open reading frames (ORFs) (xpsD and xpsC) and two
complete ORFs (xpsA and xpsB) were identified. ORF xpsD is 653 bp and shows significant
homology at the amino acid level to ATP-binding cassette transporters required for the
secretion of NRPSs pyoverdine and syringomycin. 788 bp downstream of xpsD, ORF xpsA
has the potential to encode a protein of 1089 amino acids with a predicted Mr value of
122,980. 37 bp downstream of xpsA, ORF xpsB has the potential to encode a 3316 amino
acid protein with a predicted Mr value of 368,263. The stop codon (ATGA) of xpsB overlaps
the initiation codon (ATGA) of the 1177 bp ORF xpsC. ORFs xpsA, xpsB and xpsC are

predicted to have an operon arrangement. BLASTX analysis of the xpsABC region shows



homology at the amino acid level to NRPSs such as the plant toxin syringomycin
(Pseudomonas syringae pv. syringae) (Guenzi et al., 1998), tumor suppressing cryptophycins
(Nostoc sp. GSV224) (Subbaraju et al., 1997) and the peptide antibiotic tyrocidine (Mootz &
Marahiel, 1997b). The portion of X. bovienii NRPS identified to date is predicted to activate
the amino acids serine, 6-N-hydroxylysine and glutamine. On the basis of this analysis, this
NRPS is predicted to be a siderophore antibiotic.

To investigate regulation of the X. bovienii NRPS an xpsA-lacZ transcriptional fusion
was constructed and introduced into the X. bovienii chromosome by transposon mutagenesis.
Over a 96 hr incubation period the level of B-galactosidase activity increase 2 - 3 fold in
X bovienii broth cultures. This is in comparison to an E. coli based xpsA-lacZ construct,
where levels of B-galactosidase activity remained constant over the 96 hr incubation period.
These results suggest the expression of X. bovienii NRPS may be linked to a cell density
dependent mechanism. The levels of B-galactosidase expression in xpsA-lacZ transcriptional
fusion mutant cultures did not change when cultures were grown in 20% (v/v) conditioned
culture medium. This result suggests a quorum sensing mechanism similar to that observed in
Serratia liguefaciens (Lindum ef al., 1998) is not involved in expression of X. bovienii NRPS.
Attempts to detect XpsA expression in X. bovienii whole cell lysates using an XpsA antiserum
were unsuccessful, and this may reflect an extremely low level of XpsA expression.

To determine a function for X. bovienii NRPS, inframe deletion mutants in xpsA, xpsB
and xpsAB were constructed by allelic exchange mutagenesis. Culture supernatants were
tested for cytotoxic activity against cultured Schneider’s cells. Also, whole bacterial cells
were injected into Galleria mellonella to assess subsequent haemocyte damage by
transmission electron microscopy. No significant difference in cytotoxic activity was
observed between wild type and inframe deletion mutant strains.

The antimicrobial activity of phase 1 X. bovienii and in-frame deletion mutant
supernatants against the indicator organism M. luteus was tested using a microtitre tray
bioassay. Surprisingly, both the single and double in-frame deletion mutants showed a greater
level of antimicrobial activity than the wild type X. bovienii supernatant. This result may be
explained by the modular nature of NRPS. Deletion of one or more modules may result in
production of a modified antimicrobial peptide. However, this observation can only be
resolved by purification of the bioactive peptide and structural comparison of the wild type

and mutant derived compounds in the absence of other background bacterial compounds.
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