Unfolding Design Spaces Interactively

by
Sambit Datta

Supervisor
Robert Francis Woodbury

A dissertation submitted in fulfillment
of the requirements for the Degree of Doctor of Philosophy
in the
School of Architecture, Landscape Architecture and Urban Design

at

The University of Adelaide

Adelaide, Australia
June 27, 2004

Declaration

This work contains no material which has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and belief,
contains no material previously published or written by another person, except where due reference

has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being avail-

able for loan and photocopying.

!
NE oY
Date /}:\ o —

Sambit Datta

Abstract

Design is an iterative process of specifying problems, finding plausible solutions, judging the va-
lidity of solutions relative to problems and reformulating problems and solutions. Computational
exploration requires formal mechanisms and human computer interaction models for supporting
designing. The theory of design space exploration posits a formal substrate for representing and
generating designs. To integrate the user in design space exploration, an interaction model that
combines the role of the the designer and the formalism is necessary.

This thesis addresses the problem of interaction between an exploration formalism and the
designer through the paradigm of mized-initiative. The thesis develops a mixed-initiative interaction
model for design space exploration in three layers, domain, task and dialogue. The domain layer
supports the coordination of the designer’s view of exploration in terms of problems, solutions,
choices and exploration history with the concepts of state, move and structure available in the formal
substrate. The dialogue layer supports communication between the designer and the formalism in
terms of a shared visual notation for representing and integrating input and output from both
modes of exploration. Through the dialogue layer the designer and the formalism can communicate
the intermediate results of exploration. The task layer supports interaction with the operators for
moving in a design space. Through the task layer the designer and the formalism can acquire,
transfer and relinquish control of the exploration process to generate, navigate and synchronise
exploration states. The interaction model is implemented as FOLDS, or the Foldability Of Large
Design Spaces. An example from the domain of architectural design, three-dimensional massing
configurations, demonstrates the components of FOLDS.

The mixed-initiative interaction model developed in the thesis presents a new approach for in-
tegrating the role of the designer and a description formalism in computational exploration. The
model enables the designer to maintain exploration freedom in terms of formulating and reformu-
lating problems, generating solutions, making choices and navigating the history of exploration.
It permits a fine granularity of interaction through incremental turn-taking, allowing the designer
and the formalism to communicate, coordinate and control each step in the process of computing

exploration.

ii

Acknowledgements

I am truly grateful to Professor Robert Woodbury, my thesis supervisor. He introduced me to the
problems underlying design exploration and helped nurture my nascent ideas within a stimulating
research environment in Adelaide.

Andrew Burrow and Teng-wen Chang, my colleagues in Adelaide for the many discussions
on the science behind computational exploration, feature structure theory and their implications
for design support. In particular, Andrew’s implementation of typed feature structures, KRYOS
provided a solid foundation for understanding the machinery of design space exploration. Teng-
wen, with whom I shared an office for four years, helped my understanding of Genesis, SEED and
SEED-Config.

The postgraduate community, staff and faculty in the School of Architecture, Landscape Archi-
tecture and Urban Design at Adelaide University, provided a generous and nurturing environment.
Peter Scriver, in his role as post-graduate co-coordinator, organised valuable postgraduate seminars.
Anthony Radford, Terry Williamson and Veronica Soebarto for their encouragement, support and
administrative assistance during the long period of candidature. The Overseas Postgraduate Re-
search Scholarship (OPRS) programme, Graduate Studies and International Programs of Adelaide
University for providing financial and administrative support. The support staff of IPD Systems
Pty. Ltd. for providing and maintaining my computing environment in Adelaide.

I would also like to acknowledge Jonah Tsai, Sheng-fen Chien (Nik), Mikako Harada, Rana
Sen, Ramesh Krishnamurti and Ulrich Flemming in Carnegie-Mellon University. The staff, faculty
and administration in Deakin University, who created a collegial, flexible and supportive working
environment. Tim Smithers provided valuable insights on improving many deficiencies in the thesis.

Finally, Biraj and Neli for their support and understanding. Sonal, Sagar and Srija, my dear

family, for being there every single day.

iii

Contents

List of Tables

List of Figures

I DESIGN SPACE EXPLORATION

1 Introduction

1.1 Design asexploration. L L i e e e e e e e e e e
1.1.1 Accounts of exploration v v i i vttt e e e e
1.1.2 Characteristics of Exploration o0 o v i s e
1.2 Accounts of interaction e e e e e
1.2.1 Interaction paradigms v i i i o h b e e e s e e
1.2.2 Characteristics of interaction oo o i
1.3 Mixed-initiative interaction e e e e e e
1.4 Research hypothesis4 esowmm vacneiusin e sssnaess
1.5 SUIMIMATY . v v v v v v e v o e v e e e e et e e e e e e e e e e e e
An exploration formalism
2.1 Entities of exploration v v v v et e e e e e e e e e e e e e
2.2 Representation of exploration stateso
2.2.1 Types and features w s @ o s w6 o s w o e o e oo w % e i e w e i
222 Descriptions L Lsas s et s s e e s s e s s s
2.2.3 TFeature structures o ¢ vt o i it e e e e e e e e e e
2.3 Ordering of exploration structure v v v v it e
2.4 Algorithms for exploration moves v v v v v v v v i e e e e
2.4.1 Incremental mresolution it e e e e
242 Indexingandreuse o i i i e e e e e e e e
2.4.3 Hysterical undo s e wom % e b owom s 8 @ % w8 R R 6 s BB e 6 e w8 8

iv

10
12
14
15
19
20

11

2.4.4 Design unification L e e e e e e
2.4.5 Design anti-unification oo o e e e

2.8 SUINIMATY . .« ¢ v v v o v o v 5w i mis s Ge G000 5 50 e v A S W G R %

Mixed-initiative Interaction

3.1 Interaction with a description formalism o
3.1.1 Unfolding design spaces o v v v it v e e e e e
3.1.2 Requirements i e e e e e e e e e e
3.1.3 The role of mixed-initiative e

3.2 TheDomain Layer i it e e e e
3.2.1 Attributesof domain L. L e e e e e e e e e
322 Extensions iysdwsisias isi e ssim i i@l nmayn
3.23 Roleofthedomain layer oo it

3.3 The Task Layer 0 o e e e e e e e e e
3.3.1 Attributes of task initiative Lol Lo
3.3.2 Extensions i i e e e e e e e e e e e e
3.3.3 Roleofthetasklayer i i i i it

3.4 The Dialogue Layer. o o o i i i v i i i e e e e e e e e e e e e
341 ASEEIDULES o e e e e e e e e e e e e e e e e e e
3.4.2 EXtensions & wumiww w om0 e @ w wea oA s e 6 M E % Ge 08 5w @ e W s
3.4.3 Roleof the dialogue layer o 0 i v v it et e

3.5 Summary o R EE MR e WG N W e W R A

MIXED-INITIATIVE AND DESIGN SPACE EXPLORATION

A mixed-initiative domain layer

4.1 Representation of the domain 0o
4.1.1 The designer’s view of exploration
4.1.2 Domain layer constructso e e e e e e
4.1.3 Mapping to description formalism 0oL

4.2 Problem State. L . L e e e e e e e e e e
4.2.1 Thedesigner’s view L. i i e e e e e
4.2.2 The symbol substrate e e e
4.2.3 The domain layer constructo L s

4.3 Solution state L e e e e e e e e
4.3.1 Thedesigner’s view i i i e e e e e e e e e e
4.3.2 The symbol substrate 00 Lo e

39
39
40
40
42
43
43
44
45
45
46
46
47
48
48
49
50
51

52

4.3.3 The domain layer construct Lo e 62

4.4 Feature Node L L e e e e e e e e e e e e e 64
4.41 The designer’s vieW i i i e i e e e e e e e e e e 64
4.4.2 The symbol substrate e e e e e e 64
4.4.3 The domain layer construct o v v v v i i s e e e 65

4.5 Safisfier Space L e e e e e e e e e e e e e 68
4.5.1 The designer’s view i i i it i e e e e e e 68
4.5.2 The symbol substrate Lo 69
4.5.3 The domain layer construct o0 e e e e e 69

4.6 SUMMArY v 66 s o o6 o0 08 G % 03 F 5 0@ 0 EE A EE R w0 FEE A w EE R m WS 71

Mixed-initiative Dialogue 72

5.1 The dialogue layer 72

5.2 Representation of dialogue L e 74
52.1 Avisualnotation oL e e e e e 76
B.2.2 ChOICES simm oo v om0 i g w0 E e R N A e s e E 77
5.2.3 Interaction with visual feature nodes 80

5.3 Integration of Dialogue Lo e 83
5.3.1 Supporting partiality e e e e e e e 83
5.3.2 Supporting structure sharing Lo 85
5.3.3 Supporting dialogue integration L0000 e 86
5.3.4 Supporting dialogue disambiguation 87
5.3.5 Supporting multiple modes L0 e 88

5.4 SUIMIMATY + v v v v v v v e v e vt e 90

A mixed-initiative task layer 91

6.1 The Task layer o v v v i i e e e e e e e e e e e e e e 91

6.2 The task of generation L L e e e e e e 93
6.2.1 The CONSTRUCT OpPeration « v v v v v v v v v v v et e e e e e s e 94
6.2.2 The EXTEND operation o i v i v i it it e e e e e 95

6.3 The task of Navigation 0 0 0 00 i e e e e e e e 96
6.3.1 The CHOOSE operation I D D . 96
6.3.2 The RETRACT OPEration v v vt v v v v it e e e e e e e e e e 98

6.4 The task of synchronisation e 99
6.4.1 The RECALL OPEration ¢ v v v v v v b v v v ot e v v e e e e e e e e 99
6.4.2 The ERASE Operation v v v v i v v i i e e e e e e e e e e e 101
6.4.3 The JOIN and MEET 0perations « v v v v v v v v v v e v e et e e a s 102

vi

6.5 SUMIMATY . . . v v v v v v v v v e e et e e e e e e e e e e e e e e e 104

IIT1 FOCLDS : FOLDABILTIY OF LARGE DESIGN SPACES 106
7 Enabling mixed-initiative exploration 108
T FOLDS . o o o e 108
7.2 Domain interaction v v v v v b e e e e e e e e e e e e e 110
7.2.1 PState and SState 56w s e a6 @ e e e w d e 6 e s e 6 s 110

7.2.2 FNodeand SatSpace i i e e e e e 113

7.3 Dialogue in exploration & w6 e s s b g ew xR R e B e R B 88 6 115
7.3.1 Unfolding visual feature nodes 115

7.3.2 Implementation G & 66 =% & @ oim § 6 6 e ¥ EE R EEE R G § BN 118

7.4 ‘Tasks of exploration & s 6 s eoe 5 @ 5 @d 6 0t w68 8 e e 6 % @ (0 ae 8w e 119
7.4.1 Extending featurenodeso e 120

7.4.2 Choice in exploration o v o v i i e e e e e e e e e 122

743 Retract o o i e e e e e e e e e e e e e e e e e e 126

7.4.4 Reuse of past exploration o i it e e e 128

745 Erasure o v i e e e e e e e e e e e e e e e e e 128

746 Joinsand Meets o . i i i i e e e e e e e e e e 131

7.5 DISCUSSION . . v v v v v v v v e L e e R S N R W W E W TR R W RS E e e E @0 132
TH SUMMATY o o v b e eaa e e g ms e s e s BE N s W Y SR 134

8 Conclusions 135
8.1 Mixed-initiative Exploration 0 i e e e e e 135
8.1.1 Assumptions sw;ie s s s a0e Fe S e bW e @R %8 G E R 8% . 135

8.1.2 Research hypothesis i e 136

8.2 Contributions of the thesis e 138
8.2.1 Feature node representation oo e e e 138

8.2.2 Visual notation for feature nodes Lol 139

8.2.3 Unfolding operations ¢« o it v ittt e e e e 140

8.3 Constraints on theresults L e e e e e e 141
8.4 Future directions o v v v i e e e e e e e e e e e e e e e e e e e 143

A Typed Feature Structures 145
A.1 Terminology and definitions v v v v v v v v v v v i e e e 145
A1l Type Hierarchy . v« s s o s s e 6 6 oo a6 8 o 0 0 0 caiio 0 e i 00 8w @ vous 145

A.1.2 Feature Structures v v v v v b e e e e e e e e e e e e e e e 146

vii

A13 Type System o vt i i e e e e e e e e e e e e e
Ald Descripbions . . . o v v v ottt v v v e u v e e e s e e e e e e e e

A.1.5 Type constraints s s w w5 i o 5w 5 o o 6 5 car & % % B R @ 8 W % E 8 & R B E 86

A.1.6 Incremental m-resolution v v v vt t e e e e e e e e e e e e e e

B UML Notation

B.1 Modelling concepts o i i i i e e e e e e e e e e e s
B.1.1 Symbols . . . i e il s % o 906 8% i §8 % suE FE R SS ¥ E S S B8 % w4 8 4
B.1.2 Relationships o o v i i e e e e e e e e e e
B.1.3 Diagrams i e e e e e e e e e e e e e

C Massing Configurations in FOLDS
C.1 An inheritance hierarchy of types ot e e e e

C.2 Appropriateness specifications00 o n e e e e e e e

C.3 Constraint declarations o o v v i i e e e e e e e e e e e e e e e e

C.4 Descriptions

D Design and Implementation Details

viii

153
154
154
1565
156

158
158
163
167
171

172

List of Tables

7.1 A collection of path equations in the form of a conjunctive description.
7.2 Path descriptions from the massing example presented as a collection of disjunctive

descriptions. L L e e e e e e e e e e e

ix

List of Figures

1.1

2.1

2.2
2.3

24
2.5

2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14

3.1
3.2

4.1
4.2
4.3

The Knowledge level concepts of SEED showing a simple representation of their

relationships. . s 4 s e v d i s s8R @ EE % 6 § 64 @E N E G @ e 8 8 e KR b oo b

The exploration entities, state, structure, move are mapped onto the description
formalismme i va & o & i 5w % e 0% & S E B R R o R A R B R % TR0 B R S Te B W U R B
Types features, descriptions and the relationships of subsumption and unification.

A representation of the entities in type hierarchy. The types stand for domain
Kknowledge . s v s e @ @ o s m o owe 6w m s s K BB 16 085 KW R B G e e e el 6B W e w @
Another example of an inheritance hierarchy of types (I'ype,C).
An example of types showing how features are introduced, marked with * and their
inheritance by subsumption. L oL
An example of a feature structure. v v 00 o i e e v e e e
An illustration of feature structure unification.,
A pair of simple feature structures in a subsumption relation.
Figure showing the computation paths in the scheme.
he generating procedure,m-resolution captures a relation from descriptions to the
satisfierss vo s 3 F% o G e o 8 8 Ne0E B D G Al R W E A B R E GG 8w WA B W N et E e A
Indexing and reuse are by-products of the underlying subsumption ordering.
Exploration through information removal. 00
Exploration by combining partial designs.00 oo

Exploration by design anti-unification. 0L

An interaction model integrates the user and the description formalism.
The components of a mixed-initiative formulation for interaction between the user

and a description formalism. oo e e

The designer’s view of exploration.o v i i i i v it e e
Mapping the designer’s view of exploration to constructs in the domain layer.
Mapping domain layer constructs to the underlying formal substrate of the design

space exploration formalism. L e e e e e

31

36
36

4.4
4.5
4.6

4.7
4.8

4.9

4.10
4.11
4.12

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

6.1
6.2
6.3
6.4

The problem state composes a collection of descriptions, Desc over a type system.. . 60
Types, Features, constraints and descriptions comprise the representation layer. . . . 61
Solution states compose partial designs with respect to an inheritance hierarchy of

types and a partial satisfier. . v o s o0 5w s m mir o wow w o e n s o e e s 63
Realisation of the design as a typed feature structure. 63
The feature node composes the relationship between the problem state and the par-

tial satisfier. e e e e e e e 65
Feature nodes compose operators, their arguments and the current resolution state. . 66
Representing the extrinsic attributes of the feature node, FNode. 67
The collection of feature nodes represent the satisfier space. 69
Independence of satisfier space and design space. 70
Mapping domain layer constructs to the dialogue layer through the visual feature

016 Yo L 73
The elements of the visual feature node map onto the domain layer constructs. . . . 74
Feature node in directed acyclic graph notation. 75
Feature structure in AVM notation. ¢ o v v v i v v v v s a s 76
A feature value pair and a feature value map. 77
A visual feature node with coreference notation. 0. 77
An example of a conjunct of disjunctive visual feature nodes. 78
The resultant visual feature node arising out of the resolution of disjunctive nodes

by user interaction. L L L L L e e e e e 78
Encoding a function as a feature-value map.o 79
Representation of a function as a visual feature node. 80
Unfolding a visual feature node representing a function. 80
An example of an imploded feature node. oo 0L 81
Another example of an imploded feature node. o000 81
An example of substitution of a feature-value map with a co-reference tag. 82
Visual feature node for underspecified entity of type massing. 84
Visual feature node for underspecified entity of type command. 84
Substructures can be shared in a visual feature node. oL 85
Feature node of type massing (top) with two options location and command for

disambiguation of feature LOCATION. « « & v v v v v v v v v v v v b e s e e e e e e e s 89
The exploration tasks are specified over a visual feature node. 92
The task of generation. L L e e 93
Interaction sequence of the CONSTRUCT operation. oo v oo 94
Interaction with the EXTEND operation. 0o i v v v e oo 96

X1

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
7.4

7.5
7.6
.0
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

7.17
7.18
7.19

Al

A2

B.1
B.2
B.3

The task of navigation. v v v v v v e e e e e e e e e 97

Interaction with the CHOOSE operation. 97
A RETRACT operation over the designspace. 98
The task of synchronisation. Lo oL e 100
The RECALL operation uses the underlying subsumption ordering over feature nodes. 100
Erasure in design space exploration. 102
Representation of a JOIN exploration operator. 103
Representation of a MEET operation. v v v v v v v v v v v v oo v e e e 104
An example of the inheritance hierarchy of types. 110
Representation of massing elements. o0 112
A problem statement in the description language of Kryos. 112

The figure shows a SState labelled by the type sfc_roomrow_two uncovered in the

exploration of the problem. oL s 114
The FNode with the label Satspace Element.« oo v v oo v v .. 114
Implementation of interactive unfolding. 0000 116
Implementation of a visual feature nodein FOLDS 117
Interactive node operations in FOLDS use the signal/slot mechanism. 118
Interactive node unfolding in FOLDS showing in the DesignSpace Module. 119
An example of a description query. L e 120
The initial query is extended introducing new features. 121
The exploration is advanced by user interaction. 121
An EXTEND operation in FOLDS o i i it e it e e e e e e e e e 123
The exploration of a disjunctive query description. 124
Interface to resolving disjunctions with the CHOICE operation in exploration. 126
Path retraction enables the designer to move backwards from the currently selected

SUDSETUCTUTE. & i n ti s s o o6 & s 5 vt i 8 % 50 5 % w0 @ 0 s & o foses §) @ & (6 isd 85 @ 8 eles 6 e i 127
Using the RECALL operation. o v v v i v v v i s e e e e e e e e e 129
The ERASE operation allows the designer to remove massing entities. 130
The MEET operation allows the designer to explore multiple paths of exploration. . . 131

The generating procedure, w-resolution captures a relation from descriptions to sat-

isflers. 4 wweaswmusgg mune e A @ Eif sl d MRS Fs b imusny 150
An antichain lattice, 2 comprises the down set of types. 151
Symbols in UML notation. . . & s s @ ie a sw o eai e s o o i 5 8% a0 & & 4 % @ v s i 154
Relationhips in UML notation. o v v v v v v v v v v it v e e e e e 155
Class diagram in UML notation 5 wii ¢ s s @ 58§ @ o s G i@ s s s A s 8 e % 5 & 8% 157

xii

B4

D.1
D.2
D3
D.4
D.5
D.6
D.7

Sequence diagram in UML notation. v v v v v v v v v v v e e e e e e e e e e 157

The implementation of the domain layer constructs. 174
The ScModule Class and its context o i it 175
The organisation of the ScConsoleModuleclass 176
The organisation of the ScEntryModuleclass 177
FOLDS interface to the Kryos Feature Structure System. 178
The organisation of the ScDesignSpaceModuleclass 178
The ScDesignSpaceModule in FOLDS v v v i i ii i e s e e n s 179

xiii

Part 1

DESIGN SPACE EXPLORATION

Part I: Design Space Exploration

“The natural sciences are concerned with how things are. Design on the other hand
is concerned with how things ought to be ...”

Herbert Simon [Simon 1969, p 58].

Part I identifies the research problem, the assumptions underlying the study and the require-

ments for addressing the research hypothesis. It is broken into three Chapters as follows:

- Chapter 1 reviews the cognitive and computational accounts of exploration. In particular,
it examines design space description formalisms and interaction environments developed for

supporting computational exploration.

- Chapter 2 describes a design space description formalism. In this formalism, exploration
is cast as a formal, computable process of movement in an ordered structure comprising
collections of partial solutions. Algorithms for generating, ordering and reasoning over partial
solutions are supported. It describes the formal concepts and features of the design space
description formalism and identifies the potential for extending this paradigm of exploration

with a model of interaction.

- Chapter 3 addresses the requirements for a mixed-initiative interaction model for design space
exploration. Mixed-initiative supports a creative integration of user manipulation and auto-
mated services, characterised by an effort to implement deeper, more natural collaborations

between users and computers.

Chapter 1

Introduction

Chapter 1 reviews the exploration model of designing and establishes the scope and meaning of the
terms, exploration, interaction and description formalism. It identifies the requirements necessary
for addressing the role of interaction in computational exploration. Based on these requirements, it
proposes a research hypothesis for combining interactive and generative approaches into a mixed-

initiative model of exploration.

1.1 Design as exploration

1.1.1 Accounts of exploration

The scope and meaning of the term “exploration” used in the design research literature is varied.
It depends upon the theories, models and techniques proposed for its support. For example, in cog-
nitive accounts of designing [Schon 1983, Schon 1988, Schon & Wiggins 1992] exploration is seen as
a form of human cognitive activity. They are primarily concerned with explaining and interpreting
the cognitive processes at play during real world designing. They contend that the relationships
between seeing and moving lie at the heart of designing and that exploration emerges out of the
interaction between designing (acting) and discovering (reflecting). In the context of computational
exploration, it is necessary to establish a more technical meaning of the term, exploration, through

a review of computational accounts of designing.

State space models

Exploration as a computational process has its provenance in the state-space search model of hu-
man problem solving. Simon [1969] proposes designing as a process of search within a state space
representation of a problem. The state space represents all possible solution states of a design

description. The state-space search [Newell & Simon 1972] model for human problem solving

1.1. DESIGN AS EXPLORATION 4

underpins the view of designing as a problem solving activity. The set of all possible problem defi-
nitions is referred to as the problem space. The set of all possible solutions to a particular problem
space is referred to as the solution space. Design is a problem-solving activity, comprising the act
of searching through the state space of possible solutions to a well-defined problem. It assumes
that a design problem is well-defined and amenable to search. However, a major characteristic of
design problems is their ill-definedness. To include ill-defined problems in state-space search, Simon
[1973] characterises ill-definedness as a label for movement in a hierarchy of problems. Adapting
this perspective, the design exploration process [Simon 1975] is envisioned as a series of problem
definition, solution generation and testing cycles.

Rittel & Webber [1984] argue that problem-solving in planning and design are “wicked”. Such
problems have no definite formulation and their formulation is synonymous with the weltanschaung
or world-view of the designer. In this class of problems, different formulations of the problem will
imply different solutions. The formulation can be continuously redefined, in formal terms, they have
no stopping rule. Instead, external factors like time or resources and the designers preconceptions
frame a solution. They have no criterion for correctness: a design solution may be interpreted
differently and under varying criteria. Their performance cannot be ascertained immediately by
evaluation. Finally, multiple solutions can be proposed to any formulation of a design problem.

Hybs & Gero [1992] propose a process model of design comprising two distinct search spaces,
behaviour space and structure space. The functional requirements of an artifact under design
define the expected behaviour space. The solution is found by searching the structure space for a
combination of structural elements that satisfy the expected behaviour. Further, a reformulation
process enables the designer to modify the behaviour space, depending on the behavioural properties
of the proposed solution.

Gero [1994b] presents work on several inter-related models built on the function, behaviour,
structure or FBS framework. In this formulation, the state space representation of designs has three
subspaces or abstractions, namely, the structure space, the behaviour space and the function space.
State space change is accomplished through two operators, addition and substitution. Exploration
is defined as an extension of state-space search through the incorporation of a modification or
reformulation process in the FBS framework. Exploration is conceived here as meta-search over
ill-structured problem formulations. The role of meta-search processes, or exploration, is to reduce
such problems to problems that can be addressed by search. This model of exploration is conceived

as follows,

“Exploration may be conceived of as meta-search in that in computational terms all
the state spaces which could possibly be produced by a set of exploration processes is

determined a priori by the initial state space and those processes.” [Gero 19944, p 318]

1.1. DESIGN AS EXPLORATION 5

Gero & Kazakov [1996] propose the concepts of emergence and evolution to compute the exploration
processes in an evolutionary model of designing. Poon & Maher [1996] extend the process model
of co-evolution described above [Hybs & Gero 1992]. In their model, two distinct movements are
introduced in the design space. A horizontal movement in behaviour and structure space and a
diagonal movement from behaviour to structure and vice versa. The former is classified as evolution
while the latter is termed search. They define these two distinct types of movement in design spaces

as a co-evolutionary model of design exploration.

Generative design

Generative design systems provide support for designing based on computational processes for
specifying, generating and evaluating collections of designs. They combine process models of de-
signing, information processing paradigms and grammars with the goal of supporting automated or
semi-automated generation. Designing is conceived as a staged, iterative process of understanding
problems, producing a statement of goals, finding plausible solutions and judging the validity of
solutions relative to the goals.

Shape Grammars [Stiny 1980, Stiny & March 1981] propose the recognition, substitution and
transformation of “indefinite sub shapes” composed of line segments and their spatial arrange-
ments as the basis for generating designs. The crucial advance made by grammarians in design
exploration research lies in two areas. First, their conception of shape composition as defined
by rules of a grammar. Second, the proposition that a grammar can be used to explore a space
of designs. Using the shape grammar formalism and its flavours, corpora of designs, [Stiny &
Mitchell 19785, Stiny & Mitchell 19784, Krishnamurti 1980, Flemming, Coyne, Glavin, Hsi &
Rychener 1989, Heisserman 1991) have been represented and generated. Krishnamurti et al pro-
pose an “arithmetic of shapes” for implementing shape rewriting systems [Krishnamurti 1980,
Krishnamurti 1992, Krishnamurti & Earl 1992, Krishnamurthy & Stoufls 1993, Stouffs 1994]. Gen-
erative design [Mitchell 1977, Mitchell 1990, Flemming, Coyne, Glavin & Rychener 1988, Shih
& Schmitt 1994] proposes computational formalisms for encoding design problems and mecha-
nisms for generating solution alternatives. Flemming’s work on the generation of floor layouts
using rectangular dissections [Flemming 1978, Flemming 1986, Flemming, Rychener, Coyne &
Glavin 1986, Flemming 19875, Flemming 1987a, Flemming et al. 1988] is based on a grammatical
view of design generation.

Embedded in the thinking on generative design systems (see for example, [Heisserman 1991]) is
the use of formal mechanisms for describing and generating states in a design space.

Computational formalisms (such as grammars) for describing design spaces are classified as
design space description formalisms in Carlson [1994]. In the generative design literature, the notion

of a description formalism is the fundamental construct for supporting computational exploration.

1.1. DESIGN AS EXPLORATION 6

Carlson’s [1994] overview identifies several key requirements of a description formalism. First, a
description formalism is a formal, executable and constructive mechanism. The ability to describe
it formally implies that its assertions are testable in logical terms. The ability to execute such a
formalism implies that it can be tested in terms of computational tractability and demonstrative
power. The constructive nature of formalism enables users to employ the formalism to construct
and compose larger systems from smaller fragments. Second, a description formalism is intended for
the description of design spaces rather than a single design. Its follows that a description formalism
is useful to describe collections of states of a design rather than a single state under transformation
(as in the case of CAD systems). Third, a description formalism deals primarily with the formal
attributes of collections of designs rather than their meaning or function. It follows from this,
that in a description formalism, syntactical change will tend to dominate discussion over semantics.
Fourth, a description formalism is differentiated from a design space in that a description formalism
bears a class-instance relationship to the space it is used to describe. Fifth, the authoring and use
of a description formalism as implemented in a computer program is an experimental process
comprising “proposing sets of statements, observing their effects and modifying the statements”
[Carlson 1994, p 123].

Exploration as a knowledge process

Exploration is distinguished from classical search theories of designing through the acceptance of
the ill-structured nature of design problems. Using the term “design-as-exploration”, Smithers
[1992] proposes that the view of designing as a knowledge process! provides a better understanding
of design exploration. Knowledge engineering theories of design process [Smithers 1992, Smithers,
Corne & Ross 1994, Smithers 1994, Smithers 1996, Smithers 1998] provide algorithms for computing
exploration. They allow for a better understanding of how technologies, particularly computational
technologies, can be effectively introduced into human design practice.

In more recent work, Smithers [2000] and Smithers [2002] characterise exploration through the
acceptance of imprecision, ambiguity, incompleteness and inconsistency in requirements descriptions
and emphasise the role of reformulation. Exploration is the construction of a complete, consistent,
precise and unambiguous requirements description from an incomplete, inconsistent, imprecise and
ambiguous requirements description. This final description is seen to be satisfied by a design
description. The design-as-exploration literature, while silent on the symbol level implications,

promote a new understanding of the role of knowledge processes in design exploration,

“... exploration involves the construction and incremental extension of (well struc-

tured) problem statements and associated solutions. Sometimes this takes the form of

IThe field of knowledge engineering has developed techniques for modelling of expertise based on Newell [1982]
Knowledge Level.

1.1. DESIGN AS EXPLORATION 7

simply constructing problems and solutions which satisfy a subset of the requirements,
but often it involves devising intermediate problems, at “tangents” to the main design
problem, in an attempt to discover more about possible ways in which the design prob-
lem might be well-formed, and the kinds of solutions which would then be available.”
[Smithers et al. 1994, p 303-304]

The SEED project [Flemming, Coyne & Woodbury 1993, Akin, Aygen, Chang, Chien, Choi,
Donia, Fenves, Flemming, Garrett, Gomez, Kiliccote, Rivard, Sen, Snyder, Tsai, Woodbury &
Zhang 1997] addresses the design and implementation of computational tools to support the early

phases of engineering design. The SEED knowledge level [Woodbury, Flemming, Coyne, Fenves &

Composes >
| Design Space I: P Configuration

generates

Technology

uses/creales

CoOmposes, Ccomposes

uses/creates

Context | | Function Unit (FU)

constituent

Figure 1.1: The Knowledge level concepts of SEED showing a simple representation of their rela-
tionships.

Garrett 1995] posits distinct functional units (FU) and design units (DU) as devices supporting
a conceptual separation of brief and design?. Here, a problem is specified within a context and
composed as a hierarchy of constituent function units. The Knowledge level concepts of SEED and
their relationships are shown in Figure 1.1. A function unit is associated with a design unit. In the
SEED Knowledge Level, the designer’s view of a solution is modelled as a DESIGN_UNIT [Flemming
& Woodbury 1995]. A technology can refine or elaborate a problem or a design and generate
configurations. These configurations compose a design space. The terminology and relationships of
the Knowledge Level are shared by all sub-modules of the SEED Project?, while differing in their
symbol level interpretation. The ability to refine and revise problems, to explore problem-solution
pairs and generate solutions through technologies are some of the outcomes of this project relevant

to supporting exploration.

2Details of the concepts introduced in this project are given in [Woodbury & Chang 1995b].

3See the special issue of the ASCE Journal of Architectural Engineering [Akin, Sen, Donia & Zhang 1995, Flemming
& Chien 1995, Snyder, Aygen, Flemming & Tsai 1995, Woodbury & Chang 19955, Flemming & Woodbury 1995]
for a description of the SEED modules.

1.1. DESIGN AS EXPLORATION 8

The account of design exploration as a logical process of constraint resolution [Burrow &
Woodbury 1999] is of central interest to the thesis that is developed in this study. The theory
of design space exploration [Woodbury, Burrow, Datta & Chang 1999], posits a formal substrate
for computing exploration. They contend that design space exploration with a description formal-
ism can be modelled as a form of movement in a structured space of designs. They argue that a
collection of designs in design space require a structuring mechanism underpinning the exploration
process [Burrow & Woodbury 2001]. In the case of grammars, this is the derivation process. In the
case of generative design systems the structure is provided by the particular generative process em-
bedded in the system (for example, the constraint engine embedded in SEED-Layout [Flemming,
Coyne, Woodbury, Bhavnani, Chien, Chiou, Choi, Kiliccote, Stouffs, Chang, Han, Jo, Shaw &
Suwa 1994]). Through this theory, they address the questions, Can a formal notion of information
ordering provide a structural relationship in design space? Further, can this notion be a useful
paradigm for supporting design exploration?

Burrow & Woodbury [1999] and Woodbury et al. [1999] develop a formal notion of exploration
based on the specification and representation of information ordering principles in design. Using
knowledge representation and constraint resolution theory, Burrow [2003] develops a formal design
space structuring mechanism based on the relation of subsumption. In it, two design states (and
recursively their subparts) are related if one subsumes the other, that is, if one contains strictly less
information than the other. This scheme replaces rule-based derivation with a set of composable
operators [Woodbury, Datta & Burrow 2000] for moving in design space. The distinction, between
functional units and design units, as in the SEED knowledge level, is not implied in this representa-
tion scheme. The work on design space exploration is ongoing. The major concepts are reported in
Woodbury et al. [1999]. This work introduces the notion of subsumption as an information ordering
relation over exploration states. This particular view of exploration with a description formalism

based on the subsumption relation among designs is described in greater detail in Chapter 2.

1.1.2 Characteristics of Exploration

Design as exploration is an attempt to devise schemes that are both cognitively plausible and
computationally feasible. These schemes lie on a point of continuum between classical search-based
techniques and open-ended metaphors of the design process. While they vary in their respective
emphasis on what designing is, several common themes can be identified. From the review of the
design exploration literature, the requirements for supporting exploration are captured through the
following entities, problems, solutions, choices and history. These entities and the relationships
between them characterise computational models of exploration. The entities of exploration, as

reviewed in the literature, are as follows:

1.1. DESIGN AS EXPLORATION 9

Problem formulation and reformulation.

The exploration model supports problem formulation and reformulation. Hybs & Gero [1992]
argue that problems and solutions co-evolve and thus support for reformulation is an inte-
gral part of the problem definition process. Smithers [2000] emphasises the reformulation
of requirements descriptions during exploration. Woodbury et al. [1999] show that problem
restructuring is intrinsic in design space exploration through the property of partialness in
the representation of an exploration state. In their formalism, every problem is partially
specified and every solution is a partial design. Partiality is captured in the machinery of the
design space formalism, hence reformulation is movement from one point in the design space

to another, more specific or less specific formulation or a new formulation.

Solution generation and reuse.

A generative process for developing solutions to problems is necessary to support computa-
tional exploration [Heisserman 1991]. The generation of partial solutions and navigation of
exploration paths must take into account the reuse of previous paths of exploration. Chien &
Flemming [1997] show that generated solutions provide a large space of alternatives. These
alternatives are part of a solution hierarchy, that is recorded in the design space and can be

reused.

Choice making.

Choices made by designers during exploration avoid endless revision and resolve conflicts.
Smithers [2000] identifies choice points at the intra and inter algorithm level as crucial for
making choices. Chien & Flemming [1997] show that interaction models reduce cognitive
overload and facilitate choice making. Schon & Wiggins [1992] consider designing as a reflec-
tive conversation that involves the recursive processes of seeing, moving and seeing. They
contend that choices emerge out of the interaction between designing (acting) and discovering

(reflecting).

Exploration history.

The rationale of designing, processes of coordination, communication and control are cru-
cial to computing exploration. The rationale of exploration is captured through record-
ing of the intermediate states of designing. These intermediate states comprising alterna-
tives [Woodbury & Chang 1995b|, revisions [Chien & Flemming 1997] and partial solutions
[Woodbury et al. 1999] support computational exploration.

Based on the entities: problems, solutions, choice, history; three abstract invariants in the field
of exploration are identified, namely state, move and structure. First, the representation of state

takes two forms, problem formulation states and the possible solutions to problems, design states.

1.2. ACCOUNTS OF INTERACTION 10

Second, initial, intermediate and final states find reification? in the exploration process through
the representation of moves. Moves enable problem formulation and reformulation, navigation of
solution states and the generation of new states. Together, state and move impose structure on the
exploration process. This structure is reified in the the grammar literature in the process of deriva-
tion. In the Al literature, history or rationale of exploration encodes the notion of structure in the
process of exploration. Thus, it follows from the requirements for supporting exploration that the
description of design spaces using formal mechanisms rests on the formulation of these abstract in-
variant concepts. These abstract invariants, state, move and structure reify the concept of a design
space, a structured space of exploration states. The design space is a multi-dimensional conceptual
space that models state transitions (state) through design change (moves) and records both design
moves and the resultant states (structure) [Flemming & Woodbury 1995]. In the context of this
study, the term design space is a structured space in which the problems, solution alternatives, the
evolution of partial designs and their intermediaries are captured during the process of designing.
Given such a notion of a design space (stated in terms of state, move and structure) the scope of

the term exploration as understood in this thesis is defined as follows:

Exploration is synonymous with movement in o structured space of partial alternatives, the de-

sign space, comprising state and structure.

Given the above, it is necessary to consider how designers interact with problems, solutions,
choices and history during exploration. To establish the nature and role of the designer, accounts

of interaction reported in the literature are reviewed in the next section.

1.2 Accounts of interaction

During designing, interaction in the form of communication, coordination and control between
the designer and the generative mechanism is necessary. Several paradigms for human-computer
interaction during designing have been proposed in the literature [Kochhar 1994]. An overview of

these paradigms and their applications are summarised as follows:

Manual Paradigms.

The user is responsible for all design decisions and the system is passive with respect to the
modelling process. Most CAD modelling systems fall in this category. Quadrel [1991] terms
the control policy of such systems as an open policy, where no explicit model of control is

used. These systems also support constraint-based design wherein most of the modelling is

4The term reification signifies the process of mapping terminology used in the design exploration literature, such
as state and move into their formal analogues as developed in the thesis. Thus general concepts in the literature
can be connected to specific constructs within the formalism.

1.2. ACCOUNTS OF INTERACTION 11

done manually, except that the system attempts to satisfy a set of constraints [Borning 1977,

Borning 1981, Gross, Ervin, Anderson & Fleisher 1988] as a design evolves.

Automatic Paradigms.

The computer creates a design without human assistance [Mitchell, Steadman & Liggett 1976,
Galle 1981, Flemming 1986]. These generative design systems have a programmatic flavour
and make limited use of direct methods for exploration. The system identifies shortcomings
of an emerging design, and can automatically modify a completed design produced by the
human in order to improve it [Weitzman & Wittenburg 1993]. The system makes critical
design decisions and takes active participation in modifying the design. Design support takes
the form of graphic inferences on partial input during design interaction with the user. Given
the absence of tools for building interfaces, interaction with spatial grammar interpreters is
through a command line or shell interface modelled on rule-based expert systems. Hence
textual or command interfaces between the user and the system are developed with facilities

for displaying, modifying and transforming shapes.

Cooperative Paradigms.

The human designer makes design decisions while the system supports detailed design re-
finement, generates several design alternatives, and presents these to the human designer for
browsing [Friedell & Kochhar 1991, Kochhar 1994]. The system identifies shortcomings of
an emerging design and performs the role of a critic by ensuring that the designer receives
feedback on the requirements of the design. Argumentation based systems [G. Fischer &
Morch 1988], such as JANUS [McCall, Fischer & Morch 1990] that utilise design rationale are

examples of this paradigm of interaction.

Mixed-initiative Paradigms.

Mixed-initiative provides a sound basis for interleaving the complementarities of human and
machine capabilities. Mixed-initiative interaction permits an integration of these comple-
mentary roles in exploration. Theories of mixed-initiative have been applied in the areas of
tutoring [Carbonell 1970, Freedman 1999], AI planning [Ferguson, Allen & Miller 1996, Fer-
guson & Allen 1998], scheduling [Horvitz 1999] and spoken language domains [Novick &
Sutton 1994, Smith & Hipp 1994, Ishizaki, Crocker & Mellish 1999], the management and
coordination of software agents [Rich & Sidner 1998, Burstein, Mulvehill & Deutsch 1999],
building knowledge bases [Tecuci, Boicu, Wright & Lee 1999], collaborative problem-solving
[Eggleston 1999] and learning environments [Lester, Stone & Stelling 1999].

1.2. ACCOUNTS OF INTERACTION 12

1.2.1 Interaction paradigms

Design support systems employ one or more of the paradigms to facilitate communication, coor-
dination and control between the user and the system. The exception being the mixed-initiative
paradigm. A detailed exposition of this paradigm and its potential for design support await dis-
cussion in Section 1.3 and development in Chapter 3. Before a discussion of mixed-initiative, it is
necessary to examine and identify interaction requirements for formal exploration. The paradigms
underlying user interaction with formal systems as published in the literature are reviewed in the

next sections.

Interaction with shape grammars

User interaction models [Woodbury, Carlson & Heisserman 1988, Heisserman & Woodbury 1993]
for grammatical design are a combination of the automated and cooperative paradigms. User inter-
action with grammar interpreters [Carlson, McKelvey & Woodbury 1991, Chase 1989] offer varying
degrees of automation in the design process through mechanisms for augmenting state transfor-
mations. Heisserman develops a generative design system, GENESIS [Heisserman 1991, Heisserman
1994], that demonstrates interaction with a generative system based on boundary solid grammars.
Interaction with GENESIS involves the manipulation of data structures that represent a well formed
boundary solid representation augmented by labels and states. The exploration of the space of
designs is performed by a boundary grammar interpreter based on rule matching and shape re-
placement. Matches occur on labels and sub-graphs, while replacement is a sequence of operations
on the underlying boundary representation. GENESIS provides two layers of control over the deriva-
tion process through the application of rules. In the first case, the interaction with the design space
is automated, the interpreter applies the set of rules without user intervention using a depth-first
each strategy. In the second case, the user can choose to apply each rule and make decisions at
branching points.

The manipulation of infinite subparts in conceptual design has been proposed as an interaction
technique by Tapia [1996] and interaction with shape grammars is demonstrated in the GEdit [Tapia
1999] system. The ability of such systems to distinguish and recognise emergent shapes through
user interaction and interactive interfaces is addressed. Chase [1999] presents a comprehensive
analysis of interaction with grammatical systems. Chase describes a categorisation of interaction
techniques focusing on existing grammar system implementations. Furthering this analysis, Chase
[2002] develops a formal model of user interaction for developing grammars and for exploring spaces
of designs. This model is essentially modelled on the cooperative paradigm described above. Chase
[2002] studies the degrees of interactivity or generativity underlying grammar systems and proposes
a formal model of user interaction to bring together the knowledge of how specific grammar systems

organise human computer dialogue. The formal model addresses the problems of how designers

1.2. ACCOUNTS OF INTERACTION 13

interact with shape rewriting systems. The model is presented in terms of stages, entities and
control. The stages of interaction correspond to the classical grammar development process. He
proposes a distinction between three sets of actors, the grammar developer, the grammar user and
the system. The model describes the modes of user interaction and the degrees of control possible
with such systems. He identifies the interaction features of grammar implementations as modal,
selection of control mode, rule definition, rule selection, object selection, presentation of results and
backtracking.

The process of developing a grammar comprises two stages, grammar development and grammar
application. Each of these stages involves the manipulation of the grammar by three entities, the
developer, the user and the computer system. An appropriate control scenario for a given grammar
application is constructed by mapping entities to stages. Three interaction scenarios are described.

As in the case of Tapia [1999], this model is specific to ruled-based shape grammars systems.
However, the interleaving of control between the system and the user as proposed in this work
provides a basis for developing formal models of interaction with grammar-based design systems in

the cooperative paradigm.

Interaction in Generative design

Models of user interaction have been used to support generation in the SEED [Woodbury et al. 1995]
research project. SEED-Config, a sub-module of SEED [Woodbury et al. 1995] supports three
dimensional schematic design of building forms and technical systems. Such derivation systems are
extensions of command interpreters and provide added functionality incorporating interactive user
interfaces.

These systems support intermediate states, the derivation paths, visualisation of states and path
branching. They employ direct manipulation for supporting generation and lay an emphasis on the
collection of states that define the solution space, usability and the mental model of the designer.
Direct manipulation interfaces [Shneiderman 1982, Shneiderman 1983] emphasise continuous object
representations, physical actions and the use of rapid, incremental and reversible operations. Direct
manipulation techniques [Hudson & Yeatts 1991, Shneiderman 1997] from user interface design are
a natural interface for design exploration tasks. Users control and manipulate the objects of interest
by interactively grabbing and pulling them.

Direct manipulation is used for interacting with grammar systems such as Tartan Worlds
[Woodbury, Radford, Taplin & Coppins 1992], a generative symbol grammar system® and dis-
coverForm [Carlson & Woodbury 1994]. Harada, Witkin & Baraff [1995] and Harada [1997] employ
a direct manipulation technique for exploring “discrete/continuous models” based on the paradigm
of physically-based modelling [Witkin, Fleischer & Barr 1987, Witkin, Gleicher & Welch 1990].

5Tartan Worlds gave the ability to directly manipulate designs and rules, but also provided the usual grammar
control. Its worlds tended to get out of control as they proliferated. Woodbury, 2003. Personal Communication.

1.2. ACCOUNTS OF INTERACTION 14

This technique is applied to the task of exploring design constraints interactively by direct manip-
ulation. The discrete changes within a continuous event loop are modelled as shape transformation
rules while continuity is handled directly by the users pull, push and trigger actions.

Once an exploration space has been mapped out by the underlying generative system, human-
computer interaction is an integral part of navigation. Chien & Flemming [1996] addresses the
problem of exploring layouts in interactive contexts. The cognitive overload imposed on the users
of generative systems during exploration is analysed and navigational cues introduced in Chien &
Flemming [1997]. This work employs the navigation or way finding metaphor arising in physical
and information spaces to address the problem of exploring design spaces. A navigation framework
for generative design systems and a software prototype for design space navigation are proposed
in Chien [1998]. The design space navigation framework facilitates the growth and traversal of the
design apace along five dimensions and maintains objects as well as relationships between them in
the space. A key feature of the framework is the use of physical cognitive cues to develop nodes
and landmarks in the space, derived from Lynch’s [1960] study on imageability and way finding in
cities. The lessons from the work suggest that complex multi-dimensional spaces require effective
presentation and interaction through information navigation techniques. The emphasis on visuali-
sation of design space models and information navigation extend the research from purely formal
interaction to direct manipulation systems. These outcomes mirror the parallel developments in
user interface tools, the emphasis on usability and the advent of software engineering methodologies

for the design of human-computer interaction.

1.2.2 Characteristics of interaction

Human-computer interaction models form an essential component in developing computational
tools to support designing. Current models, theories and methods for exploration support manual,
automated and cooperative paradigms for integrating the user with the system. These models
adopt a “black-box” approach to user interaction, where communication, coordination and control
is based on the apriori division of labour between user and system. This division of labour separates
the tasks to be performed between the user and the system. Exploration is achieved either through
a formal generator or open-ended exploration driven by the user through some direct manipulation
interface. In these approaches, the integration of user actions is mediated by the appearance of
choice points in the generation, whose reference needs to be resolved. In the case of generative
design systems, exploration is primarily generator driven. When direct manipulation or designer
input is used, it is treated as a useful, but secondary support role. Further, interaction is stipulated
by a global control policy. For example, the user can choose one of a number of possible rules for
transforming the current state. The rules that apply in a current state remain under global control

of the formal mechanism.

1.3. MIXED-INITIATIVE INTERACTION 15

Strategies for the effective sharing of control and conflict resolution between the user and ma-
chine are necessary to support effective interaction. The mixed-initiative interaction paradigm can
model a more fine grained division of labour. For example, allocating and sharing responsibility
over the same task can be modelled by mixed-initiative. Further, mixed-initiative offers a more
flexible mechanism for control (acquire and relinquish initiative) between the designer and the for-
malism. To identify how the mixed-initiative paradigm addresses these issues of joint responsibility
over the same task, fine-grained control through initiative and strategies for conflict resolution,

research on mixed-initiative interaction is reviewed.

1.3 Mixed-initiative interaction

The field of mixed-initiative interaction research continues to develop rapidly as new tools and
techniques are established. In the next sections, the current state of the art in mixed-initiative
interaction is reviewed.

The work on the mixed-initiative interaction paradigm can loosely be grouped into four classes
[Cohen, Allaby, Cumbaa, Fitzgerald, Ho, Hui, Latulipe, Lu, Moussa, Pooley, Qian & Siddiqi 1998].
First, initiative is seen as the process of shifting control of conversational dialogue between the
user and system. Second, initiative is seen as the coordination of joint responsibility for completing
shared tasks. Third, initiative is seen as the process of directing problem-solving goals in a domain,
combining aspects of both dialogue control and task coordination. Finally, initiative is defined as a
collaborative process, involving turn-taking through dialogue, tasks and goals. The differences and
similarities in these definitions are analysed by comparing a range of mixed-initiative application
areas from task-oriented planners to tutorial dialogue systems. These theories of mixed-initiative
[Cohen et al. 1998] have a natural progression of thought, from the perception of initiative as
a control of the conversation, through task coordination to more complex arrangements, where
initiative combines both dialogue control and task coordination. Initiative can be distinguished
further, allowing for collaboration, different strengths of initiative and for multiple threads within
a dialogue to be tracked simultaneously.

Allen, Ferguson & Schubert [1996] characterises mixed-initiative as the ezchange of initiative in
a flexible, opportunistic manner, shifts in focus of attention to meet user needs and the provision
of mechanisms for maintaining shared implicit knowledge. Burstein & McDermott [1996] expand
these characteristics to include flexible visualisation, context registration and task management
support for managing shared tasks.

Haller, McRoy & Kobsa [1999] examine several mixed-initiative systems and individual efforts
in designing mixed-initiative systems. These studies establish how the differing characteristics of
the application areas make one or more of these definitions of initiative more useful than others in

a specific context. To establish a definition of what constitutes mized-initiative, researchers have

1.3. MIXED-INITIATIVE INTERACTION 16

identified initiative with the control of rational dialogue, the coordination of shared tasks and the
collaboration between multiple autonomous agents, both human and computational.

Mixed-initiative has been used extensively in the planning domain, where users interact with
software agents to produce plans. The objective is to capture and creatively reuse the derivation
rationale underlying joint human and machine-based decision-making processes. Mixed-initiative
is shown to [Chu-Carroll & Brown 1998] achieve better plans than either the human or machine
can create alone.

Veloso [1996] and Veloso, Mulvehill & Cox [1997] employ mixed-initiative in planning to engage
the user in automated planning processes. Veloso uses mixed-initiative planning as a framework in
which automated and human planners interact to jointly construct plans. ForMAT is a case-based
system that supports human planning through the accumulation of user-built plans, query-driven
browsing of past plans, and several primitives for analysing plan functionality. Prodigy/Analogy
is an automated AI planner that combines generative and case-based planning. Stored plans are
annotated with plan rationale and reuse involves adaptation driven by this rationale. They integrate
ForMAT and Prodigy/Analogy into a real time, message passing mixed-initiative planning system.
The mixed-initiative approach consists of allowing the user to specify and link objectives that enable
the system to capture and reuse plan rationale. They discuss the integration of two large systems
through mixed-initiative planning.

The application of mixed-initiative is reported in the domain of scheduling [Ferguson et al. 1996].
The scheduling process requires flexible human involvement but complexity and time stress also
demand substantial automated support. Scheduling tools [Cesta & D’Aloisi 1999, Kitano & Ess-
Dykema 1991] consider the implications of mixed-initiative in the design of scheduling algorithms.
Horvitz [1999] develops mixed-initiative user interfaces that enable users and intelligent agents to
collaborate efficiently. He demonstrates the role of mixed-initiative in the domain of scheduling
and meeting management.

Amant [1997a] present the overlapping areas of research between mixed-initiative and interac-
tion. They combine the dialogue view of mixed-initiative with direct manipulation techniques in
the domain of abstract force simulation and exploratory data analysis. They focus on the ability
of an interactive environment to constrain and guide both automated agent behaviour as well as
human effort. This dialogue-based framework unifies the different types of control and coordination
initiative supported by a multi-modal system. Building on this framework, they describe a naviga-
tional metaphor [Amant 1997b] for integrating direct manipulation with mixed-initiative planning.

In describing the domain of camera planning they state,

“... we want to support dynamic communication of task and domain information be-

tween the system and the user, with shared control of camera placement and orientation
and direction.” [Amant & Cohen 1997]

1.3. MIXED-INITIATIVE INTERACTION 17

Models of mixed-initiative dialogue in human-machine interaction are based on formal models
of human conversation [Grice 1975]. Mixed-initiative dialogue enhances the richness of interaction
by allowing more complex forms of exchange between the user and the formalism. Mixed-initiative
specifies how a participant in the dialogue, either user or system, can seize or relinquish initiative.
Mixed-initiative models the movement along a conversational thread through a series of topics as a
flow. This theory identifies five types of movement operations along a conversational thread. They
are going forward, changing direction, stopping or pausing, closing or repeating and interrupting
[Cohen et al. 1998]. Mixed-initiative models enable flow management, namely using the current
type of movement operation to acquire or relinquish control of a conversational thread. This model
of mixed-initiative is used in the developed of dialogue systems [Walker & Whittaker 1990, Tsai,
Reiher & Popek 1999].

Carbonell [1970] describes a mixed-initiative tutoring system, which can shift between the stu-
dent asking questions and the user asking questions. Novick [Novick 1988] considers a dialogue
participant to have the initiative if the participant controls the flow and structure of the interac-
tion. Whittaker & Stenton [1988] and Walker & Whittaker [1990] equate initiative with control.
They argue that as initiative passes back and forth between the discourse participants, initiative
is transferred from one participant to the other. They devise rules for allocating dialogue control
based on utterance types, which include assertions, commands, questions, and prompts. They anal-
yse patterns of control shifts by applying their rules to a set of expert-client dialogues on resolving
software problems. They note that the majority of control shifts are signalled by prompts, repeti-
tions, or summaries, while in the remainder of the cases, control shifts as a result of interruptions.
Two kinds of shifts are associated with the view of initiative as control over the flow of a conver-
sation. First, change of control among participants through shifts in dialogue in the case of flow in
the same direction. Second, shifts in dialogue signify a control shift when one of the participants
changes the topic of a conversation. Guinn’s [1993] computational model of dialogue and Smith’s
[1991] expectation driven model are two examples of formal mixed-initiative interaction models
used in dialogue-based expert systems.

Freedman [1999] develops a plan-based dialogue manager, ATLAS and applies it in the domain
of tutoring systems. ATLAS is based on a hierarchical task network (HTN) style reactive planner
to build tutoring systems. Mixed-initiative in ATLAS allows multi modal dialogue through the
integrating of natural language, text and graphics.

Ferguson & Allen [1994] investigate the coordination of tasks in the design of mixed-initiative
systems. The task-oriented coordination perspective of mixed-initiative has been robust, resulting
in a number of successful applications and systems, including TRAINS [Ferguson et al. 1996] and
TRIPS [Ferguson & Allen 1998] in the domain of planning. Burstein & McDermott [1996] and
Burstein, Ferguson & Allen [2000] address the role of participants, user and system, in the planning

domain. The goal of mixed-initiative is

1.3. MIXED-INITIATIVE INTERACTION 18

“..to explore productive syntheses of the complementary strengths of both hu-
mans and machines to build effective plans more quickly and with greater reliability.”
[Burstein & McDermott 1996]

Mixed-initiative also allows the possibility of eztended [Allen 1999] interaction, as a series of com-
mands, defining and discussing tasks and exploring ways to perform the task.

Ishizaki et al. [1999] examines the efficiency of mixed-initiative task coordination in a route
finding application. Tecuci et al. [1999] address the domain of knowledge engineering and reports the
application of mixed-initiative methods to the problem of knowledge acquisition. Their motivation
for mixed-initiative lies in the fact that manual solutions to the problem of building knowledge bases
is highly inefficient and automated systems for the same problem are impractical. They develop
mixed-initiative methods for knowledge base development in the DISCIPLE project and provides
experimental results on the feasibility of the approach. In DISCIPLE, mixed initiative is used to
coordinate the tasks of rule learning, rule refinement and exception handling during knowledge-
based development. Tecuci et al. [1999] establish an expert-apprentice relationship between the user
and the agent, with mixed-initiative driving the learning process to support the task of knowledge
acquisition. Through mixed-initiative, the agent is able to acquire multiple learning strategies,
during the development of the knowledge base. In using mixed-initiative for task coordination,

they observe that,

“There is the synergism between the different learning methods employed by the agent.
By integrating complementary learning methods (such as inductive learning from exam-
ples, explanation-based learning, learning by analogy, learning by experimentation) in
a dynamic way, the Disciple agent is able to learn from the human expert in situations

in which no single strategy learning method would be sufficient.” [Tecuci et al. 1999]

Mixed-initiative in DISCIPLE presents two interesting conclusions. The first is the support
for knowledge acquisition, particularly the handling of incomplete knowledge bases that may be
evolving dynamically through shared task coordination between human and agent. The second is
the ability of the agent to use multiple strategies, particularly the ability to select a learning strategy
dynamically. Lester et al. [1999] apply task-oriented mixed-initiative to develop constructionist
learning environments. They develop pedagogical agents that enter into conversational dialogue
with learners such that learners are able to actively participate in problem-solving exercises.

Mixed-initiative is a promising and productive model for interaction with formal systems. Its
promise for design exploration lies in the understanding that human and machine can be leveraged
more effectively through an integration of their complementarity. Further, that dialogue is a more
effective technique for interaction than global policies for control (conflict resolution, error recovery).
Finally, that joint responsibility over shared tasks can lead to better outcomes (reliable, productive)

than pure division of labour.

1.4. RESEARCH HYPOTHESIS 19

At this stage, it is not clear how mixed-initiative can be a useful model for supporting interaction
with an exploration system. The use of mixed-initiative interaction in supporting computational
exploration has not been researched and thus its usefulness or otherwise has not been established. In
order to investigate the possibilities of mixed-initiative in supporting exploration, the next section
posits the research hypothesis. The remainder of this thesis deals with the investigation of this

hypothesis for the integration of human and machine capabilities in design space exploration.

1.4 Research hypothesis

The research hypothesis of this study is based on two assumptions, both arising out of the review
of the research literature on design exploration. The first assumption represents a statement of the
current state of research in developing design space description formalisms for supporting explo-
ration. The second assumption is a statement of the current state of research in understanding the
role of interaction in design exploration. Given the validity of these assumptions, the research hy-
pothesis is a statement of the new ground that is covered in this thesis. The assumption underlying

the research hypothesis are as follows:

1. The process of exploration can be formally encoded with a design space description formalism.
The description formalism specifies a set of initial states, a set of state transforming operators
or moves and a structure underlying the collection of states. Chapter 2 describes such a design
space description formalism. This formalism encapsulates an explicit theory of computational

agency vested in the system. Hereafter, this theory is termed design space exploration.

2. Integrating the role of the designer in computational exploration with a description formalism
requires an interaction model.
As shown in this Chapter, interaction models provide a mechanism for introducing human
design intent into the process of exploration. An interaction model provides a systematic
exposition of how communication, coordination and control strategies enable a designer to

interact with a formal system.
Given the above, the thesis that is investigated in this study is as follows:

That a mized-initiative model of interaction presents a promising new approach for integrating

the roles of the user and the description formalism in computational ezploration.

Mixed-initiative is a promising new paradigm for integrating the designer with a description
formalism. It is the intention of this study to demonstrate that mixed-initiative is an effective way

to integrate the role of the designer in computational exploration.

1.5. SUMMARY 20

Chapter 3 describes the requirements necessary for introducing mixed-initiative in the formal
process of exploration. Design space exploration requires sophisticated bi-directional modes of
communication, coordination and control between the designer and the description formalism.
Mixed-initiative can address these requirements.

Part II develops a new model of interaction based on mixed-initiative to support design space
exploration. This model addresses coordination, communication and control between the user and
the formalism. Chapter 7 develops an implementation of this model. The role of the designer,
the role of the formalism and the use of mixed-initiative in exploration are discussed through an
example from the domain of architectural design.

Summarising, exploration is understood as movement in a space of problems and solutions,
combining both formal search and human guidance. Following from the above, a model of human
computer interaction for design space exploration based on mixed-initiative is formulated to address
the role of both user and formalism for supporting exploration. This model is implemented in a
prototype system and demonstrated through an example taken from the domain of architectural

design.

1.5 Summary

The process of exploration can be formally encoded with design space description formalisms.
Design space exploration requires a model of interaction that integrates formal generation and the
actions of a human designer.

Formal systems require interaction models to enable human designers to work with exploration
algorithms. Mixed-initiative is a possible candidate for addressing the interaction of the user with
description formalisms during exploration. Three abstract invariants, namely state, move and struc-
ture are identified to characterise design space exploration. From the perspective of the designer,
representation of state takes two forms, problem formulation and the possible solution states. Ex-
ploration moves uncover initial, intermediate and final states, supporting problem formulation and
reformulation, navigation and the generation of states. State and move impose structure on the
exploration process, captured in the concept of a design space. Chapter 2 describes an exploration

formalism through a detailed formulation of these concepts for computational exploration.

Chapter 2

An exploration formalism

This chapter explains how the entities of exploration, namely, state, move, structure are reified in

a formalism for design space exploration based on typed feature structures.

2.1 Entities of exploration

Design space exploration with description formalisms can be modelled as a form of movement in a
structured space of designs. The theory of design space exploration [Woodbury et al. 1999], posits
a formal substrate for computing exploration. The formalism [Woodbury et al. 1999, Burrow &
Woodbury 1999, Woodbury et al. 2000] employs and develops extensions to, Carpenter’s [1992]
typed feature structures to account for intermediate states, exploration moves and an ordering over
explored states.

The representational device of feature structures [Knight 1989, Kasper & Rounds 1990] and
attribute value logic [Pollard & Moshier 1990, Franz & Jrg 1994] known from linguistic theories
of generation and from the constraint programming literature underpin the logic of typed feature
structures. The logic of typed feature structures brings together unification based approaches to for-
mal grammar in computational linguistics research. For readability, formal definitions, terminology
and syntax arising out of its application to design space exploration are given in Appendix A.

As a representation, typed feature structures are similar to frame-based [Minsky 1975] and ter-
minological knowledge [Borgida, Brachman, McGuinness & Resnick 1989] representation systems.
The analogy between feature structures and knowledge representation schemes comes from asso-
ciating a collection of features or attributes with each node or frame. Each feature represents a
slot label and the arcs themselves point to the fillers, creating a network of associations. Feature
structures comprise a set of nodes, each of which is labelled by type information.

The key concepts of the description formalism relevant to the aims of the thesis are explained
by mapping the entities of state, move and structure onto their symbol level representation in the
description formalism. This mapping enables a clear exposition of the symbol substrate in terms

21

2.2. REPRESENTATION OF EXPLORATION STATES 22

of the entities of exploration. The exposition of the description formalism is organised as follows:

Representation of exploration states.
The formalism supports the representation of an exploration state through the concepts of
types, features, descriptions and feature structures. In Section 2.2, the representation of

exploration states in the design space exploration formalism are described.

Ordering of exploration structure.

The structure of exploration is represented through the ordering relation of subsumption. The
concept of an ordered design space underpins the description formalism. In it, the collection
of exploration states are ordered by the relation of subsumption. In Section 2.3, the ordering

of exploration structure through subsumption is described.

Algorithms for computing exploration moves.

Exploration moves are cast in terms of moves in a design space upwards or downwards in
an information ordering. The formalism provides a set of operators for the generation of
new exploration states, modification of existing states and movement between states. In
Section 2.4, the representation of exploration moves in the design space exploration formalism

are described.

The exploration entities and their mapping onto the description formalism machinery is shown

in Figure 2.1.

Figure 2.1: The exploration entities, state, structure, move

malism.

Entitien of Exploration

Doscription Formalism

| State {:

‘.‘% Feature Structures I

| Move E:

“{ Infi argoriihrnul

| Structure I.:

2.2 Representation of exploration states

are mapped onto the description for-

The formalism represents exploration states through three elements from the feature structures

machinery. These elements are a type hierarchy, a set or sets of feature structures and a descrip-

tion language for specifying constraints on types and structures. Types comprising T stand for

domain knowledge of the allowable universe of discourse expressed in terse form. Structures from

2.2. REPRESENTATION OF EXPLORATION STATES 23

F represent exploration states, in this case, physical and conceptual attributes associated with the
design of buildings. Descriptions from D are constraint expressions in a formal attribute-value
description language. Descriptions are used for problem formulation, constraints on types and
generated structures. The relationships described here are shown in Figure 2.2. Descriptions are
constraint expressions that correspond to problem descriptions [Woodbury et al. 1999, p 293]. The
generation of structures from descriptions is handled by m-resolution, which awaits discussion in

Section 2.4.1. The following sections develop each of these concepts supporting the representation

()

types

N

Qslruclures /’_\\ descripliono

subsumption

of exploration states.

-resolution

Figure 2.2: Types features, descriptions and the relationships of subsumption and unification show-
ing the computation paths in the scheme. Types stand for domain knowledge. Structures represent
models of particular designs.

2.2.1 Types and features

Types order design information in natural classes, similar to the role of concepts in terminological
knowledge representation systems [Borgida et al. 1989, Patel-Schneider, McGuinness, Brachman,
Resnick & Borgida 1991]. The inheritance hierarchy is an ordered collection of types, organised by
an inheritance relation based on type inclusion. Types are organised into a multiple inheritance
hierarchy, in which information associated with a type is extended in inheriting types, i.e., an
informational ordering. Types are arranged hierarchically such that a subtype inherits all the
information from its super types. A type hierarchy is a bounded complete partial order, or BCPO.
Since type declarations are finite, this amounts to the restriction that every pair of types that
have a common subtype have a unique most general common subtype. The existence of consistent
joins and a most general type, ensure that the inheritance hierarchy of types is a BCPO. The
incorporation of fypes in a feature-based formalism enriches feature logic with the polymorphism
and multiple inheritance known from object oriented data models [Cardelli & Wegner 1985]. The
BCPO type hierarchy, (T'ype, C), provides a scheme of individuation for classifying knowledge based

2.2. REPRESENTATION OF EXPLORATION STATES 24

sfc_house wall_massing
house wall massing
| |
function technology geomelry
function_unit design_unit
building
L

Figure 2.3: A representation of the entities in type hierarchy. The types stand for domain knowledge

on atomic properties encoded in types. Types in the BCPO can range from the degenerate type
model, with one type [Carpenter 1992, p 52], to infinite order types [Chang 1999].

As an illustration, Figure 2.3 shows the knowledge level concepts of SEED (discussed in Sec-
tion 1.1.1 and shown in Figure 1.1), are mapped onto a type hierarchy. The example type hierarchy
comprises twelve types. The universal type is declared as the unique most general type and repre-
sented as L. The universal type is shown at the base of the type hierarchy and is called bottom.
The type building has subtypes function_unit and design.unit. The type technology is a subtype
of both these types. The relation of sub typing is transitive and the derived transitive sub typing
relationship is anti-symmetric. This means that there should not be two distinct types each of
which is a subtype of the other. Types are used to represent the concepts of DESIGN_UNIT and
FUNCTION_UNIT. The type function_unit is subtyped into three types, namely function, house

and sfc_house!

. The design_unit is subtyped into geometry and massing, while the technology is
subtyped into wall and wall_massing.

Further, maximal types and primitive data types can easily be incorporated in a type hierarchy.
This is shown in Figure 2.4. Since the ordering of types in this type hierarchy is a BCPO, the lattice
operations, JOIN and MEET are available over (T'ype, C). For every set of types with a common
subtype, there is most general common subtype or join. JOIN, (L) provides the most general

common specialisation of two types. MEET, (M) infers the most specific common generalisation of

The term “sfc” stands for “single-fronted cottage”, a common traditional building type in Australia. The single-
fronted cottage is used as an example to illustrate the mechanics of typed feature structures and design space
exploration [Woodbury et al. 1999].

2.2. REPRESENTATION OF EXPLORATION STATES 25

sfc_house

centre position

|point|

[eraen] [peigne]

unlversal

Figure 2.4: Another example of an inheritance hierarchy of types (T'ype, C).

any two types.

Types contain attributes called features drawn from a set of named attributes, Feat. The value
of a feature is functional rather than relational. This imposes a single-value restriction on features
[Carpenter 1992, p 34]. A partial feature value function, 4, enforces this unique value restriction
on features. Types and features are related through appropriateness specifications. An appropri-
ateness specification over the inheritance hierarchy (T'ype, C) and features Feat must meet the two
conditions of feature introduction and upward closure. The formal definition of these conditions is
given in Appendix A, Definition 1. Appropriateness conditions disallow inconsistent features by
declaring which attributes are appropriate for a given type and which types are appropriate for
a given attribute?. Intro(f) is the most general type for which the feature is defined. Upward
closure ensures that any type that is appropriate for a feature in a type A is at least as specific as
the types that are appropriate for the features of subtypes of A. An example of the introduction
of features to types and the resulting type hierarchy satisfying the appropriateness conditions is
shown in Figure 2.5.

Summarising, in the design domain, types denote knowledge about empirical objects under
refinement and elaboration operations. The hierarchy of types provides the fundamental ordering

relation in the encoding of types. Features represent the atomic or complex attributes of the objects

2A detailed discussion of appropriateness and typing, is provided in [Carpenter 1992, p 86].

2.2. REPRESENTATION OF EXPLORATION STATES

26

sfc_house

BATHROOM : massing)

BED:massing
DINING:massing
HALL:massing
HEIGHT :scalar

XITCHEN:massing

LIVING:massing
LOUNGE :massing
PORCH:massing
POS:position

ROOMNUM: scalar

ROOMROW : massing
*SFC_HOUSE:house

SIZE:size

WIDTH:integer

SKILLION:mﬂsBIngI

A

sfc

BED:masging

DINING:massing
*HALL:massing

HEIGHT:scalar

KITCHEN:massing

LIVING:massing
LOUNGE :massing
*PORCH:massing
POS:position
*ROOMNUM: scalar

*ROOMROW :massing

SIZE:size

*SKILLION:mass im

WIDTH:integer

EATHROOM:mansinJ

maseing

POS : poB

HEIGHT:scalar

SIZE:size
WIDTH: Integar

ition

A

rect
HY:height
OX:mealar
OY:scalar
WX:width

centre
OX:mcalar
OY:acalar

position
OX:acalar
OY:mcalar

[}

height

HEIGHT:scalar
WIDTH:integer

width
HEIGHT : {intager
WIDTH: integer

point
OX:gcalar
OY :ntdlar

house

*BATHROOM imasn ing
+BED:magsaing
*DINING:massing
*KITCHEN:massing
*LIVING:massing
*LOUNGE :massing

3

scalar
*HEIGHT: integer
*WIDTH:integer

vector
*OX:scalar
*0Y:scalar

]btypel Iintegerl

layout size
+p0S : position *HY:height |brief|
*SIZE:size *WX:width

universal

Figure 2.5: An example of types showing how features are introduced, marked with * and their

inheritance by subsumption.

2.2. REPRESENTATION OF EXPLORATION STATES 27

that constitute a partial design. The inheritance hierarchy over types models conceptual design

information about empirical design entities and the constraints between them.

2.2.2 Descriptions

Descriptions are constraint expressions specified in an attribute value equational language. The
description language [Carpenter 1992, p 52] is given over the collection Type of types and Feat of

features is the least set Desc such that:

every type is a description,

a path followed by a description is a description,

two paths equated form a description,

two paths disequated form a description,

descriptions can be combined with the logical operators and and or, forming conjunctive and

disjunctive descriptions respectively.

Descriptions provide a lower bound of specificity on the represented object. In the design
space description formalism [Woodbury et al. 1999], descriptions represent problem statements
and constraints on types. Like features, constraint expressions may be associated with types.
Expressions associated with types impose recursive and logical constraints on types in the type
hierarchy®. In addition to feature and type inheritance, constraints on more general types are
inherited by their more specific subtypes. Constraints on types are expressed in the description
language, in the form of an implication, 0 = ¢. Structures that carry the type o must satisfy the
constraint ¢, which is a description.

Description may be satisfied by no structure, a finite number of structures or an arbitrarily large
collection of feature structures. In designing, this is analogous to the statement that a requirement
may have no solutions, a finite number of solutions or an arbitrarily large collection of solutions.
Each structure that totally satisfies the description is called a satisfier of the description.

In the domain representation, it is sufficient to note that a constraint system is available for
providing additional restrictions and relations to types. The arrangement of types by subsumption
allows subtypes to inherit constraints from super types. A system of type constraints, stated
in the form of descriptions and a constraint system is a total function Cons : Type — Desc
[Carpenter 1992, p 228].

8See the use of recursive type constraints described in [Carpenter 1992, p 228].

2.2. REPRESENTATION OF EXPLORATION STATES 28

2.2.3 Feature structures

The ability to model partial information and intentional propositions is crucial in supporting de-
signing. Feature structures bring the key properties of intentionality, partialness, structure sharing,
and cyclicity to the representation of exploration states. A feature structure represents all that can
be known about a domain object at some particular stage of computation, an exploration state.
Thus a feature structure representation of an exploration state must be and is partial and inten-
tional. An exploration state, represented as a feature structure, can be made more or less specific
through inference operations. Through intentionality the existence of two states with the same
information does not imply that they are the same state. Further, two distinct feature structures
can represent exactly the same information.

A feature structure consists of two pieces of information and a relation between them. Firstly,
every feature structure has a type drawn from the inheritance hierarchy, (T'ype,C). Secondly, a
feature structure is a finite, possibly empty, collection of feature:value pairs. A feature value pair
consists of a feature and a value, where the value is either a type or a feature structure. All nodes
are connected by directed arcs denoting features. One node is designated as a root node. Figure 2.6
shows a feature structure graph for a feature structure of type entily with features, MASS_EL and

GEOM. These features have as their values two sub structures of type massing and type geometry.

-
~ GROPERTY Pl

@ massing @ rvalue
” S ”
L ~
e ~ P
e MASS B \s - RVALUE
S~ =3
. a -
--@ entity @ property
3 K
- \\
N\ GEOM & s R
~

-
.
~ _# ‘ATTRIBUTE S

Ssamn N
@ geometry @ il
Figure 2.6: An example of a feature structure.

A path-based notion of feature structures [Carpenter 1992, p37] enables the traversal of more
than one feature at a time. A path is a sequence of features. Let Path = Feat* be the collections of
paths, 7 be an element of Path, then d(7, ¢) is the node that is reached by following the features in
the path 7 from g. Figure 2.6 shows a feature structure in graph form. Nodes represent types and
arrows represent features. The node colour = d(m,q) where ¢ is the node entity and 7 is a path
comprising a sequence of features such that, m = MASS_EL: PROPERTIES: COLOUR.

In addition to partialness and intentionality, feature structures support the sharing of struc-
ture. In Figure 2.6, the node labelled property, is shared by two paths, m; = m;, where m; =

MASS_EL: PROPERTIES and m; = GEOM: ATTRIBUTES. Structure sharing in the representation of

2.2. REPRESENTATION OF EXPLORATION STATES 29

exploration states permits the elimination of redundant states. A formal description of the prop-

erties of feature structures is given in Appendix A.

Satisfaction

Feature structure collections and their descriptions are equivalent and are related through a satis-
faction relation. The satisfaction relation, =: F — Desc is defined with reference to descriptions
[Carpenter 1992, p 53]. Every feature structure is the most general satisfier or MGSat of a disjunc-
tion free description [Carpenter 1992, p 56]. A description is said to be satisfiable if it is satisfied
by at least one structure. A description ¢ entails a description v if every structure satisfying ¢
also satisfies 4. Two descriptions are logically equivalent if they entail each other, or equivalently,
if they are satisfied by exactly the same set of structures. A description is a reference to its most
general satisfiers and thus implies a possibly empty set of pairwise incomparable feature structures.

The satisfaction relationship between descriptions and feature structures can be stated formally
in terms of the functions MGSat and MGSats. Given the set of all feature structures F, for
disjunction free descriptions, NonDisjDesc there is a surjection MGSat : NonDisjDesc — F. If a
description is disjunction free, the named set will either be empty or contain only mutual alphabetic
variants. The inclusion of disjunction into descriptions implies that there may be multiple distinct
satisfiers. Formally, for the set Desc, of all descriptions MGSats : Desc — 27 identifies sets of
feature structures that are either pairwise incomparable or alphabetic variants. In other words, if a
feature structure satisfies a description, then every feature structure that it subsumes also satisfies

the same description [Carpenter 1992, p 55].

Unification

Underlying design space exploration is the sole generative mechanism of unification. During
exploration, unification extends a query description with respect to a type constraint system
[Woodbury et al. 1999, Woodbury et al. 2000]. Unification [Shieber, Uszkoreit, Pereira, Robin-
son & Tyson 1983, Shieber 1984, Shieber 1986] is an inference operation that computes the result
of combining two pieces of information. Feature structure unification produces the most general
feature structure that contains all of the information in its two arguments*. The wunification of
feature structures F' and F', written F LI F', is a conjunction that incorporates the collections of
feature paths in F' and I’ as well as their types. Informally, unification seeks the most general
feature structure that is more specific than either operand.

The result of design unification can be taken as a new, more complete object that is consistent

with the objects represented by the argument features. As an inference operation, unification

“In constraint logic programming [Smolka & Ait-Kaci 1989, Ait-Kaci, Podelski & Smolka 1992, Ait-Kaci & Cosmo
1993], unification is the central algorithm for the resolution of feature logics.

2.3. ORDERING OF EXPLORATION STRUCTURE 30

constructs the most general specialisation of two design states or fails if the structures represent
inconsistent information. The unification of two design states is represented by a feature structure
containing neither more nor less information than the information represented in the states being
unified. Given two states, A and B, unification, written ALl B, produces a third state C' subsumed

by both A and B if such a state exists, otherwise unification fails.

Figure 2.7: An illustration of feature structure unification: the bottom feature structure is the
unification of the left and right feature structures [Burrow & Woodbury 1999].

In the example shown in Figure 2.7, the feature structures represent the decomposition of a
building design: the nodes denote building entities and the edges denote functional roles in the
design. By characterising feature structures as representations of partial design information, it is
possible to consider both examples as partial representations of some final design. The unification
of two design states simultaneously decides whether some object may exist which is consistent with
the two functional decompositions. If so, unification provides an informationally minimal design
state combining the information in each state. Figure 2.7 depicts two simple states which are the
operands and resultant state of a unification operation. The resultant shows the new root node

and the inclusion of new feature path values from both operands.

2.3 Ordering of exploration structure

The informational ordering over types is extended to exploration states by the subsumption relation.
Subsumption as a formal inference operation is widely used for reasoning®. The subsumption
ordering relation can answer what superclass a given class has according to its set of attributes.
In the context of the exploration formalism, subsumption is a relation of implication which relates

more specific to more general states of exploration. Thus, like inheritance over types, subsumption

5For example, description logics [Lambrix 1996] provide a reasoning operation called subsumption. Subsumption
also provides a powerful tool for case-retrieval and standards processing [Hakim & Garrett 1993].

2.3. ORDERING OF EXPLORATION STRUCTURE 31

defines a partial ordering over exploration states (feature structures). This ordering of feature
structures is represented as a directed graph®. The hierarchical graph defined by subsumption
over feature structures is such that a child node may have more than one parent node. The
exploration formalism provides a structuring relation based on subsumption to order collections of
exploration states. This ordering relation provides an invariant structure to the design space. Here,
the subsumption relation may be seen as a generalisation relation. Thus, in a given design space
structured by subsumption, a subsumer state expresses a generalisation over the subsumed state.
In it, two design states (and recursively their subparts) are related if one subsumes the other, that
is, if one contains strictly less information than the other. This subsumption-based design space
structuring mechanism is reported in Burrow’s [2003] thesis. The key feature of this structuring
mechanism is that the subsumption relation captures a more generic relation than the derivation
relation that structures the spaces of designs generated by a grammar. A detailed view of this fact
is set out in [Woodbury et al. 1999].

Formally, an exploration state represented by a feature structure F' subsumes another F', written
F C F', if and only if: for every path 7 defined in F, 7 is defined in F” and the type at 7 in F’
subsumes the type at m in F'; and for every pair of paths m and 7’ defined in F, if = and =’
identify a single substructure in F then 7 and n’ identify a single substructure in F’. Thus, the
subsumption relation C is a pre-ordering on the collection F' of design states. The subsumption

relation is transitive and reflexive, but not anti-symmetric, since two states can mutually subsume

Bedrom 1| | Bedroom 2| | pimiig Rooitd | [Room1 || Budy [Hming Roen
t Slllesty

Silion
Haltway Haltway |

each other.

Porch

Kithea

Roomt | i Room?2 | oining ooy

Parch

Hallway

Figure 2.8: A pair of simple feature structures in a subsumption relation [Woodbury et al. 1999].

Figure 2.8 depicts a pair of simple feature structures in a subsumption relation. In the example,
the bottom state of a design subsumes the top two because every functional role in the first is present
in the second. Every object fulfilling multiple functional roles in the first fulfils a superset of these
roles in the second. Finally, for every functional role identified in the first the object fulfilling
this role in the second is of a matching or more specific type [Woodbury et al. 1999, p 296]. One

6See Appendix A.

2.4. ALGORITHMS FOR EXPLORATION MOVES 32

advantage of representing the structure of such an ordered collection of design states is decidable
subsumption. Deciding subsumption, that is, whether ' C F” can be accomplished in time linear
to the size of F' [Carpenter 1992, p42]. The formal machinery underpinning the design space
description formalism is summarised in Figure 2.9. w-resolution captures the satisfiability relation

from descriptions to the satisfiers and is discussed in Section 2.4.1.

inheritance

types

Desc

Cons

describability

structures /—\ descriptions
\\~/ A

-resolution

unification

subsumption
satisfiability

Figure 2.9: Types features, descriptions and the relationships of subsumption and unification show-
ing the computation paths in the scheme.

2.4 Algorithms for exploration moves

Over the three elements, types T, structures F' and descriptions D, are posed inference algorithms
fo generating, modifying and traversing exploration states. Based on these algorithms, a set of com-
posable operators, namely, incremental 7-resolution, indexing and path reuse, design unification,
design anti-unification and hysterical undo are proposed for computing exploration. Rule-based
derivation as known from grammar-based theories of generation are replaced with these compos-
able operators [Woodbury et al. 2000).

2.4.1 Incremental m-resolution

The process of generating partial structures from a description is formalised in the resolution

procedure, P, called w-resolution. This is illustrated in Figure 2.2. The generating procedure

2.4. ALGORITHMS FOR EXPLORATION MOVES 33

P captures a relation from descriptions to structures P : D — F. Incremental 7-resolution is
developed by Burrow [2003] as a special case of the general approach to m-resolution described in
Carpenter [1992, p 227-242]. See Appendix A for a formal definition of incremental m-resolution”.

In design space exploration, incremental m-resolution is the computation of exploration states
compatible with a given set of types and a given description. The procedure formalises the notion
of generation where (partial or complete) structures are resolved into more specific structures.
Woodbury et al. [1999] and Woodbury et al. [2000] develop this view of incremental m-resolution
for the generation of intermediate exploration states.

The mechanics of incremental 7-resolution represents each step of resolution [Burrow & Woodbury
1999]. The resolution procedure P acts incrementally by generating partially resolved structures,
called partial satisfiers, with respect to the initial input description, D. Given the query de-
scription D, incremental m-resolution is the search across a sequence, S of feature structures
PoyC PP C P,C ... C P, that, at least partially, satisfy the description. The resultant fea-
ture structure P in each sequence is the most general satisfier of the query description. The
process of generating partial satisfiers is expressed as a sequence of resolution steps. Each sequence

records the resolution of a type constraint explicitly.

F

Figure 2.10: The generating procedure, w-resolution captures a relation from descriptions to the
satisfiers and is the main generative mechanism in the system. The resultant feature structure in
each sequence is the most general satisfier of the query description [Burrow & Woodbury 1999).

Each element of S extends its predecessor by unification with a type constraint. Since most
general satisfiers may occur as collections and unification may fail, the search for resolved feature
structures involves a collection of sequences. The m-resolution algorithm maps descriptions into
sets of feature structures that satisfy them, taking into account a type hierarchy, including the
recursive type constraints defined within it.

The mechanism of incremental 7-resolution in the context of design space exploration is shown
in figure 2.10. The primary generating procedure, P begins with an initial query description D.

The argument 7 selects the substructure, and the argument ¢ selects the constraint to resolve.

"See Carpenter’s [1992, p 231] definition of m-resolution.

2.4. ALGORITHMS FOR EXPLORATION MOVES 34

The definition of a step includes restrictions that ensure resolution steps are goal directed and well
ordered against the type hierarchy. Namely, that ¢t be a super type of the type at m and that all
types more general than ¢ are already resolved at m. The execution of a step involves unification
at the substructure.

The satisfaction of the description generates a collection of sequences of partial satisfiers, S.
Each step of resolution now explores the consequences of extending members of the sequence S. To
support exploration, the incrementality of the generating procedure now requires user guidance at
two levels. First, support for the selection of a partial satisfier from the sequence, S and second,
the selection of the type constraint to resolve against. Interaction with the m-resolution operator

is described in Section 6.2.2.

2.4.2 Indexing and reuse

Indexing and reuse, incorporating the retrieval of previous paths of exploration, are supported in
the description formalism. The movement operations based on incremental m-resolution described
in Section 2.4.1 maintain information integrity and consistency in design space. Retrieval and
adaptation mechanisms suggested by the exploration formalism are structured by eflicient compu-
tations in the mechanism based on the properties of describability, satisfiability, unification and
subsumption. Hence, it is possible to recover the results of previous paths of exploration in a
systematic manner. Indexing operates on two levels. First, the recall of paths corresponding to
the type of the current node. In this case, the type of the node acts as an index to retrieve past
exploration paths. Second, this operation deals with tracing the exploration history associated
with the current exploration state in the design space. Indexing and reuse are by-products of the
underlying subsumption ordering. In the second case, reuse corresponds to exploring the evolution
and history of the current state stated in terms of the paths of exploration. This operation allows
the reuse of previous exploration paths through the function path(w). Through this operation,
feature structures denoted by any path in the exploration can be retrieved for reuse. For example,
as shown in Figure 2.11, the darker nodes represent earlier commitments into the design space.
When the feature nodes indicated by the lighter segments are explored, the previous commitments
are available for reuse based on the subsumption ordering.

In the description formalism, both cases and their indices are indistinguishable from a structure.
Thus, case retrieval is achieved through navigation and query over the subsumption ordering of
exploration states. Case adaptation is achieved through reuse of a path from one thread of explo-
ration in another. A detailed discussion of indexing and reuse of cases through the mechanics of

typed feature structures is set out in [Woodbury et al. 1999, Woodbury et al. 2000].

2.4. ALGORITHMS FOR EXPLORATION MOVES 35

Figure 2.11: Indexing and reuse are by-products of the underlying subsumption ordering. For
example, the darker nodes represent earlier commitments into the design space. When the feature
nodes indicated by the lighter segments are explored, the previous commitments are available for
reuse based on the subsumption ordering [Woodbury et al. 2000].

2.4.3 Hysterical undo

Conventional design support systems provide undo, delete mechanisms as means of information
removal. Undo is the reversal of the last operation performed. Delete applies to a selection and
removes objects from persistent memory. History is used as a rudimentary form of version control
over the recorded list of operations. In generative systems, erasure is provided by substitution or
transformation rules that replace or transform a more detailed symbol set with a more abstract one.
The notion of hysterical undo in subsumption based exploration addresses the need for dealing with
information removal in a monotonically structured design space [Woodbury et al. 1999, Woodbury
et al. 2000].

The hysterical undo operation is a novel backward navigation technique. In a subsumption-
based representation, removal corresponds to the uncovering of more general states in the implicit
design space. Thus, the state from which information is removed remains unchanged in the design
space while the designer’s perspective shifts to an altered, less specific state. A discussion of
the motivations for such a concept of erasure in a subsumption ordered design space is reported in
[Woodbury et al. 2000]. Briefly, the notion of information deletion during exploration corresponds to
a composite operation involving path retraction and type reduction. If a commitment is referenced
by a single path, it may be deleted by retracting that path. This has the effect of purging the object
and reversing the forward refinement operation performed by incremental 7-resolution. Since, the
reversal is performed on a currently selected context, this form of erasure can be performed across
the width of the design space. The interest in using erasure as a form of movement in design space

becomes apparent when removal results in multiple possible states (there may one or more than

2.4. ALGORITHMS FOR EXPLORATION MOVES 36

one state) to move to. Figure 2.12 shows the resulting space that might be uncovered by such an
erasure operation. If a current object is referenced by a multiple paths, only one of the paths may
be retracted, and the user presented with a set of features that may be retracted to a previous

state.

(a) (b)

Figure 2.12: Exploration through information removal. The sequence of nodes indicate a path of
exploration in (a). The application of the erasure operation on the current node yields a number
of possibilities, shown in (b) [Woodbury et al. 2000].

2.4.4 Design unification

(a) (b)

Figure 2.13: Exploration by combining partial designs. Unification extends the two derivation
paths, shown in (a). An explicit join of those paths, results in a new node that combines the
information of both these paths, shown in (b) [Woodbury et al. 2000].

The combination of two partial satisfiers representing designs is another form of movement
operation available in design space. This combination is performed through the operation of design
unification. Unification plays an internal role in w-resolution as the sole information combination
mechanism. At that scale of operation, over closely related feature structures, it is a highly efficient

operation. Since unification is defined with respect to the ordered collection of feature structures

2.4. ALGORITHMS FOR EXPLORATION MOVES 37

as a least upper bound, it is also possible to conceive unification as a formal means of combining
two partial satisfiers [Woodbury et al. 2000]. Figure 2.13 illustrates what is meant by design
unification. Given two derivation paths, the design unification of the two partial satisfiers is the
result of combining the derivation steps of each path into a single partial satisfier containing the
union of design commitments in the two operands. When a combination of paths is consistent with
the information expressed in the type system, then design unification extends the two derivation

paths to create an explicit join of those paths.

2.4.5 Design anti-unification

The recovery of the common features in two partial designs is another form of movement operation
available in design space. This operation is the inverse of design unification. Anti-unification is
defined with respect to design space as the most specific feature structure generalising the operands.
Thus, the result of an anti-unification operation over two partial satisfiers in design space is a
movement to a partial satisfier representing the greatest lower bound of the first two satisfiers. Since
there is a single greatest lower bound no backtracking or reordering is required. By definition,
exploration states in design space are guaranteed to define a greatest lower bound. The search
simply tests each derivation step for satisfaction by both operands. The result of this operator is
the conjunction of the shared derivation steps, which in the extreme case is simply the minimal
exploration state subsuming the operands. Figure 2.14 illustrates the workings of the design anti-

unification movement operation.

(a) (b)

Figure 2.14: Exploration by design anti-unification. The two distinct paths of exploration are
shown in (a). The most general specialisation of the two paths, computed through anti-unification
is shown in (b) [Woodbury et al. 2000].

2.5. SUMMARY 38

2.5 Summary

This chapter describes how the entities of state, move, structure identified in chapter 1 are formally
represented in a description formalism. Typed feature structures provide the formal substrate for a
design space exploration formalism. First, the formalism supports the representation of exploration
states. An exploration state retains the feature structure properties of intentionality and partial-
ness. Second, the collection of exploration states, the design space, retains an invariant structure
based on subsumption. Significantly, this ordering is decidable in linear time and supports several
movement operations over design space. Third, the description formalisn supports a set of com-
posable operators, namely, incremental 7-resolution, indexing and reuse, design unification, design
anti-unification and hysterical undo for generating, navigating and modifying exploration states.
Given this representation of state move and structure in a description formalism, the requirements

for user interaction with the design space exploration are addressed in the next chapter.

Chapter 3

Mixed-initiative Interaction

In this Chapter, the requirements for a model of interaction for computational exploration are
developed. These requirements are addressed through a mixed-initiative formulation, interleaving
human guidance with the design space description formalism. The mixed-initiative paradigm of
interaction, identified in Section 1.3, presents a promising approach for addressing user interaction
with the description formalism. The mixed-initiative interaction model is addressed through the
following layers, a representation of the domain, a communication layer for dialogue between the

user and the formalism and operations for performing the tasks associated with exploration.

3.1 Interaction with a description formalism

An interaction model addresses communication, coordination and control issues arising out of

interaction between a designer and the formal substrate of the description formalism.

l User I

Y

Interaction model

R —
—

States] I Structure | | Moves

Exploration Formalism

v
| Typed Feature Structures I

Figure 3.1: An interaction model integrates the user and the description formalism.

The description formalism described in Chapter 2, provides a rigorous formal substrate for
39

3.1. INTERACTION WITH A DESCRIPTION FORMALISM 40

supporting the entities of exploration, state, move and structure. To define how designers may
employ the entities of the substrate at the user level, a model of interaction, as shown in Figure 3.1
is necessary. In addition to these, the requirements for communication, coordination and control

of the exploration process are addressed through an interaction model.

3.1.1 Unfolding design spaces

Before identifying the requirements for an interaction model for exploration, an explanation of
the conceptual nature of interaction envisioned in this thesis is necessary. Recall that exploration
comprises interaction with the formal substrate: states, structure and move. The integration of
the human designer with a formalism requires a uniform treatment of the role of the user and the
formalism in exploration. To characterise this conceptual integration of user and formalism, the
term unfolding is introduced in the thesis. Unfolding is defined here as the interactive process
of exploring design spaces such that user actions and formal moves are seamlessly integrated.
Unfolding as a metaphor thus refers to the exploration of design spaces, without distinguishing
between users, human or formalism. Throughout the thesis, the term is used in a metaphorical
sense and thus not defined formally.

For example, exploration can proceed by formal moves as well as user moves. In the context of
exploration moves, unfolding can be further subdivided into generation, navigation and synchro-
nisation. A detailed description of the characterisation of unfolding in the context of exploration
moves is given in Section 6.1. A concrete discussion of the scope of the term, unfolding as used in
the thesis is covered in Section 8.2.3.

To foreshadow its use in the study, the term unfolding simply refers to the conceptual metaphor
of interaction that integrates (or does not distinguish between) a human designer with the machinery
of formal exploration. Henceforth, the use of the term unfolding refers to the conceptual binding
of machine and human capabilities for design space exploration. A specific realisation of unfolding,
a mixed-initative interaction model for design space exploration, is developed in this study. The

requirements of this model of interaction are described in the next section.

3.1.2 Requirements
An interaction model for design space exploration must address the following requirements:

- Connect the designer’s view of the exploration domain with the formal substrate.
The formalism supports the representation of an exploration state through the concepts of
types, features, descriptions and feature structures as explained in Section 2.2. The interaction

model must enable the designer to access these constructs in the substrate.

Currently, the major role of the user in the domain is in two areas. First, type hierarchy

specifications which encode domain knowledge into the description formalism. Second, in

3.1. INTERACTION WITH A DESCRIPTION FORMALISM 41

the authoring of descriptions that define problems to explore in the context of the former.
Further, a clear distinction emerges between the creation of the type system by the user,
the authoring of descriptions and the exploration of the implicature of descriptions by the
formalism. To address the above, the interaction model proposes to extend the role of the

user into the process of seeking goals during exploration.

The designer’s view of exploration sits above the formal machinery. The interaction model
must address how these are connected. At the substrate, both problems and solutions are
reduced to exploration in terms of state, move and structure. Therefore the interaction model
must provide support for the designer in problem formulation, solution generation, choices of

alternatives and interaction with exploration history.

- Support the designer in the tasks of computing exploration.
The inference algorithms of unification and constraint resolution provide entry points for
developing interactive exploration operations. In particular, the incremental nature of the in-
ference algorithms enables the designer to generate, navigate and modify intermediate states.
The interaction model must enable the user to access the formal operations for computing
exploration described in Chapter 2. A set of interaction level concepts that define and frame
the exploration moves through mixed-initiative combining the designer’s view with the formal

movement operators is necessary.

- Facilitate communication and coordination between the designer and the descrip-
tion formalism.
The user and the formalism must be able to communicate during exploration. Commu-
nication is enabled through information sharing and exchange. These must be supported
through input and output mechanisms in the interaction model. During exploration, input
and output may take multiple modalities. For example, spoken input, typed commands or
the direct manipulation of graphical symbols. All modalities of input can be interpreted in
a common symbolic representation. The same applies to different modes of output, whether
generated speech, natural language explanations or graphical visualisations. Mixed-initiative
must support the requirements of compensation during dialogue, for example, allowing the

formal generator to compensate for errors in user input or vice versa.

The interaction model must address how coordination between the user and the formalism is
handled during exploration. Both user and formalism must have the flexibility to acquire or
relinquish control of exploration tasks during exploration. A control strategy for coordinating

the tasks of exploration must be supported in the interaction model.

3.1. INTERACTION WITH A DESCRIPTION FORMALISM 42

3.1.3 The role of mixed-initiative

The role of mized initiative for addressing the requirements for interaction are addressed. In the

context of the discussion in Section 3.1, mixed-initiative presents a paradigm,

for combining a human designer and a description formalism through the specifica-

tion of communication, coordination and control of the exploration process.

Through mixed-initiative, designers can acquire initiative to provide context-dependent or
situation-specific domain information that may be difficult to encode apriori in real-time problems
for exploration. The description formalism is able to take or relinquish initiative during interaction
to perform automated processes and repetitive tasks. The formalism can structure, provide access
to and elicit formal knowledge from human designers. The formalism can archive the results of
exploration, access records of past explorations, generate design rationale and documentation. To-
gether, the designer and the formalism can share responsibility over tasks, recover gracefully from

errors, reformulate problems and prune unproductive paths of exploration.

Mixed-initiative interaction model

I o l. . K
m gl Dialogue I Exploration Formalism

Figure 3.2: The components of a mixed-initiative formulation for interaction between the user and
a description formalism.

To address the above, a three-layered model is developed for interactive exploration. The layers
of the interaction model are shown in Figure 3.2. Each layer plays a distinct role for addressing

the requirements for mixed-initiative exploration.

Domain Layer.

The designer’s view of exploration and its connection to the formal substrate in the interaction
model require the development of a domain layer. The role of mixed-initiative in the domain
layer, the extensions necessary to implement mixed-initiative and the role of the domain layer

in the interaction model are described in Section 3.2.

Task Layer.
The task layer aims to implement a specification for the tasks of exploration by integrating

user interaction with the design space exploration formalism. 'I'he role of mixed-initiative in

3.2. THE DOMAIN LAYER 43

the task layer, the extensions necessary to implement mixed-initiative and the role of the task

layer in the interaction model are described in Section 3.3.

Dialogue Layer.

The dialogue layer aims to implement a common basis for extended interaction between the
designer and the formalism. The role of mixed-initiative in the dialogue layer, the extensions
necessary to implement mixed-initiative and the role of the dialogue layer in the interaction

model are described in Section 3.4.

3.2 The Domain Layer

The domain layer implements the glue that connects designer level constructs (collectively identified
as the entities of exploration) with parts of the description formalism that realise these constructs
in the formal substrate. The domain layer contains the primitive entities about the application
domain such as concepts, attributes, roles and relationships as seen from the designer’s view of
exploration. This view is less concerned with the formal specification of internals and more with
the existence of objects and the external hooks necessary to support interactive exploration. In the
following sections, the attributes of domain initiative, the extensions necessary for implementing

domain initiative in design space exploration and the role of the domain layer are described.

3.2.1 Attributes of domain

The literature on mixed-initiative reviewed in Section 1.3. Mixed-initiative is an effective paradigm
for addressing the process of directing problem-solving goals [Cohen et al. 1998] in a domain of
discourse. Through mixed-initiative, the user and the formalism can share responsibility over
domain goals. For example, Rich & Sidner [1997] and Rich & Sidner [1998] demonstrate a domain
level collaboration through an interface agent that works on a plan with its user. Veloso [1996]
and Veloso et al. [1997] employ a shared representation in the planning domain. Both automated
and human planners are able to interact and construct plans jointly. Smith & Hipp [1994] propose
a common meaning representation to achieve goals in natural language dialogue through mixed-
initiative. Guinn [1996] considers initiative over mutually shared goals and how goals are solved by
the participants (agent and human) in spoken dialogue systems.

Mixed-initiative over a domain goal requires both humans and automated software to share a
representation of the domain of discourse. Such a common meaning representation over the domain
enables users and computational agents to share domain knowledge and therefore collaborate on
achieving goals jointly through interaction. In the description formalism, this implies an interaction
layer that can connect the designer’s view of the domain with the symbol level constructs available

for computing exploration. In the next section, the extensions necessary for achieving a common

3.2. THE DOMAIN LAYER 44

meaning representation of the domain of discourse are discussed.

3.2.2 Extensions

Thus, the domain layer puts in place a set of interaction level concepts that define the designer’s
view of the domain of discourse. Recall the designer’s view of exploration, identified in Section 1.1.2.
This view comprises an account of problem formulation and solution generation. The description
formalism does not distinguish problem from solution. Formal exploration abandons the prob-
lem/solution division, replacing it simply with states of exploration that may be either problems or
their solutions. At the knowledge level, the distinction remains very meaningful. The interaction
model must be able to bridge the gap between the knowledge level formulation of the designer’s
view of the exploration domain and the symbol level substrate of the description formalism. User
exploration requires an explicit representation of the design requirements to be satisfied. The solu-
tions that satisfly some or all of the requirements are then generated from the initial definitions of
the problem. Therefore the designer must be able to decompose the problem into subproblems, re-
vise the initial problem, formulate a new problem or reformulate the existing problem. In addition
to working with problems, the designer must be able to revise and reformulate problems interac-
tively and dynamically during exploration. The system must be able to assist the designer in the
generation of solutions that satisfy the requirements and present these solutions to the designer in
a structured manner. Thus user exploration encompasses the formulation of requirements and the
generation of solutions based on these requirements. The structure of exploration is represented
through the ordering relation of subsumption. The concept of an ordered design space underpins
the description formalism. In it, the collection of exploration states are ordered by the relation
of subsumption. In Section 2.3, the ordering of exploration structure through subsumption is de-
scribed. The subsumption ordering over the collection of partial satisfiers provides an entry point
for navigating the design space of partial satisfiers. Choices, their connections and the developing
history of explicitly discovered design alternatives must be accessible to the designer through inter-
action with the structure of exploration. The interaction model must provide the designer with a
view of design space structure. From the designer’s perspective such a model must capture at least
the elements of the history of design exploration. As Burrow & Woodbury [2001] argue, history
is necessarily the primary device for supporting exploration. In their account, a trajectory records
the co-option of design features and their assignment to roles. The designer must be able to exploit
this history through navigation and recombination of the paths of exploration. In the description
formalism, subsumption preserves information specificity relations in design space. The interaction
model must provide an account of the intentional choices made by the designer during problem
formulation and solution generation. Thus support for navigating the history of exploration is

necessary.

3.3. THE TASK LAYER 45

The domain layer provides a sound representation of problem states, partial designs, choice-
making and exploration space. These constructs encapsulate the entities of exploration from the
designer’s perspective and connect the designer to the formal substrate. Following the discussion
of interaction requirements and the extensions necessary to address these requirements above, the
role of the mixed-initiative domain layer in the interaction model for design space exploration is

discussed.

3.2.3 Role of the domain layer

The role of the domain layer in the mixed-initiative model of exploration is as follows:

Designer’s view of the domain.

Explicit support for the user by supporting the designer view of exploration in the form
of problems, solutions, choices and history. The domain layer provides concepts for the
representation of problems, their reformulation and the generation of alternative solutions
from the user’s perspective. This shared representation acts as a layer of mediation between
the user and the formalism. The common representation of the domain layer mediates between
the designer’s view of exploration comprising problems, solutions, choices and history; and a

design space representation aimed at efficient generation, indexing and recall.

Joint responsibility over goals.

Joint responsibility over domain goals is a major requirement of the mixed-initiative paradigm.
'The domain layer enables both the designer and the formalism to maintain context and share
responsibility over goals in the domain of exploration. The description formalism supports a
generic view of exploration. The domain layer allows the designer to tailor this machinery to

specific goals in a domain of discourse.

The detailed development of the domain layer of the mixed-initiative interaction model address-

ing the above is developed in Chapter 4.

3.3 The Task Layer

The task layer addresses user access to the formal operations for computing exploration as described
in Chapter 2. The task layer puts in place a set of interaction level concepts that define and
frame the exploration tasks through mixed-initiative combining the designer’s view with the formal
movement operators. In the following sections, the attributes of mixed-initiative in the task layer,
the extensions necessary for implementing task initiative in design space exploration and the role

of the task layer in interactive exploration are described.

3.3. THE Task LAYER 46

3.3.1 Attributes of task initiative

The coordination of tasks based on mixed-initiative interaction reviewed in Section 1.3 is reported
in a number of applications. In the domain of planning, the TRAINS [Ferguson et al. 1996] and
TRIPS [Ferguson & Allen 1998] implementations demonstrate how mixed-initiative coordinates tasks
between the user and system using joint responsibility over a shared task. Mixed-initiative task
formulation enables domain goals to be achieved more quickly and with greater reliability [Burstein
& McDermott 1996]. Tecuci et al. [1999] report the application of mixed-initiative to the task of
knowledge acquisition in knowledge engineering. They note that manual solutions to the problem of
building knowledge bases remain highly inefficient while purely automated systems for the task are
impractical. Mixed-initiative provides a feasible alternative combining the advantages of manual
and automated methods. Novick & Sutton [1997] develop a multi-factor model of initiative where
choice of task determines what the conversation is about and choice of outcome allocates the
decision or action necessary to achieve the task. Task initiative provides a number of benefits in
realising interaction with formal systems.

First, it enables a productive syntheses of the complementary strengths of both humans and
machines. The mixed-initiative formulation enables a combination of human and machine compe-
tencies over a shared task. Joint responsibility over a shared task is more productive than a pure
division of labour between user and machine. Through mixed-initiative, brute force portions of a
single task can be allocated to the machine, and soft tasks such as conflict resolution, error recovery
and compensation are allocated to the human. Second, mixed-initiative enables a more robust and
efficient framework for achieving goals than that possible through a purely automated or purely
manual approach. Third, the goals to be achieved in a domain may have incomplete specifications,
change dynamically, and evolve simultaneously with the execution of the task. In such situations,
mixed-initiative in the task layer permits the human or the system to allocate or cede control of a
task or initiate a new task based on changing goals.

In the description formalism, this implies an interaction layer that can distribute an exploration
task over two components, the designer’s level and the symbol level operators. In the next section,
the extensions necessary for achieving a common meaning representation of the domain of discourse

are discussed.

3.3.2 Extensions

As outlined above, a set of formal operators for computing exploration tasks is supported in the
formalism. To employ them in exploration, the movement algorithms need to be stated in terms
of the designer’s domain of discourse. The extensions necessary to implement mixed-initiative

in the task layer are divided into three principal constructs, namely, generation, navigation and

3.3. THE TasK LAYER 47

synchronisation. The generation task corresponds to the process of constructing problems, reformu-
lating problems and generating partial solutions from these problem statements. The description
formalism provides the machinery necessary for representing the generative process through the
incremental 7-resolution algorithm. Incrementality of this process provides an entry point for
incorporating the designer into the process of m-resolution. The construction of problems, their
reformulation and the generation of partial solutions are addressed in the task layer.

The navigation task corresponds to retracting attributes of a partial design and making choices
on possible alternatives. The description formalism provides the machinery for representing al-
ternatives through disjunctive descriptions. These alternatives introduce non-determinism into a
purely formal exploration process. The formulation of navigation in the task layer permits the use
of mixed-initiative in resolving exploration non-determinism. Through mixed-initiative, the user is
able to select one of a number of possible alternatives that arise from formal resolution.

The ability to exploit the structure and history of designing is an important task in supporting
exploration. The synchronisation task covers the process of indexing and reuse of exploration
results. Through mixed-initiative the designer is able to access the formal movement operations of
recall, hysterical undo and the unification or anti-unification of two partial solutions.

Mixed-initiative in the task layer must permit the user to access the formal exploration opera-
tors, integrate system-driven and user-driven moves and enable the user and the formalism to share
joint responsibility. During exploration, system-driven moves represent the formal operations for
moving in design space. Designer-driven moves represent operations that access and compose the
moves available in the symbol substrate.

The task layer provides a sound representation for sharing the tasks of generation, navigation
and synchronisation over problem states, partial designs, choice-making and exploration space.
Each of these constructs encapsulate a task of exploration from the designer’s perspective and
connect the designer to the formal moves available in the formalism. Following the discussion of
interaction requirements and the extensions necessary to address these requirements above, the role

of the mixed-initiative task layer in the interaction model for design space exploration is discussed.

3.3.3 Role of the task layer

Mixed-initiative provides a formulation of the the role of the user, the role of the formalism in
generating, navigating and synchronising the results of exploration. The conjunction of the tasks
of exploration at the level of design intention with formal moves of exploration is developed in the
task layer of the mixed-initiative model. This layer allows the designer to exchange, compose and
coordinate a range of exploration tasks in association with the formal movement algorithms. The

role of the task layer in the mixed-initiative model of exploration is as follows:

3.4. THE DIALOGUE LAYER 48

Support construction and reformulation of problems.

The task layer incorporates the user in the construction of problems, and the generation of
partial solutions. The domain layer provides concepts for the representation of problems, their
reformulation and the generation of alternative solutions from the user’s perspective. In the
task of generation, interaction comprises the specification of problems and the incremental

generation of partial solutions.

Support navigation of problems and solutions.
The user must be able to navigate both problem states and partial satisfiers. Navigation
corresponds to interaction with the operations for movement along paths of exploration. The

task layer supports the ability of the designer to make choices at branch points in exploration.

Support synchronisation of exploration results.

The designer and the formalism must be able to synchronise previous exploration paths. The
task layer supports the synchronisation of exploration results between the designer’s actions
comprising problems, solutions, choices and history; and the description formalism tasks of

indexing and reuse, undo, unification and anti-unification based on the history of exploration.

The mixed-initiative task layer for supporting exploration is developed in Chapter 6.

3.4 The Dialogue Layer

The dialogue layer provides support for communication, coordination and control of an exploration
process between the formalism and the designer.

In the following sections, the attributes of mixed-initiative in the dialogue layer, the extensions
necessary for implementing dialogue initiative in design space exploration and the role of mixed-

initiative dialogue in interactive exploration are described.

3.4.1 Attributes

The key notion underpinning dialogue representation in mixed-initiative interaction is conversa-
tional structure. Communication and coordination between the user and the system is established
through a shared representation of discourse. A common representation of dialogue enables the
participants in the dialogue to negotiate reference and confirm mutual understanding. A conver-
sational model of dialogue enables the possibility of extended interaction [Allen 1999] between the
user and the system. Grice’s [1975] maxims of rational conversation is one such formulation. The
literature on conversational structure is large and its review is beyond the present scope. It suffices
here to have a model suitable for organising mixed-initiative interaction with a computer. For this,

rational conversation is a good model and Grice an exemplar.

3.4. THE DIALOGUE LAYER 49

Grice [1989] observes that human dialogue is characterised by rationality, cooperation, common

purpose and direction. He states,

“Our talk exchanges do not normally consist of a succession of disconnected remarks,
and would not be rational if they did. They are characteristically, to some degree at
least, cooperative efforts; and each participant recognises in them to some extent, a
common purpose or set of purposes, or at least a mutually accepted direction.” [Grice
1989]

Based on this observation of human conversation, he formulates a set of conversational maxims.
The first is quality, implying truthful and accurate information. The second is quantity, neither
more nor less information than is required for the dialogue. The third is relation, only information
appropriate to the task is considered. Finally, manner, clear and unambiguous information is
necessary for conversation. Grice’s model of rational conversation forms the basis for addressing
communication, coordination and control issues in the interaction model.

The concept of turn-taking is based on shifting, tracking and allocating a thread of control
among dialogue participants, machine and human. Novick & Sutton [1994] propose a computational
model of dialogue that utilises meta-locutionary acts, such as give-turn, clarify, and confirm-mutual.
Rich & Sidner [1998] use mixed-initiative to acquire and transfer control during dialogue between
a collaborative interface agent and its user. Chu-Carroll & Brown [1997b] and Chu-Carroll &
Brown [1997q] present a model for tracking initiative in dialogue between participants. Hartrum
& Del.oach [1999] propose two types of turn-taking in mixed-initiative dialogue, transactional and
incremental. The transaction-based model corresponds to a single query request and the response
to the query. The incremental model corresponds to several agents, sharing and writing data to a
common resource. The computational agent displays the information on the screen and dynamically

updates it as other agents (human and computational) submit incremental changes.

3.4.2 Extensions

This section sketches how the attributes of mixed-initiative dialogue are addressed in the dialogue
layer of the interaction model. The dialogue layer must support communication and coordination
between the designer and the formalism. Representing the input and output modalities of dialogue
between the user and the formalism is a key requirement of mixed-initiative in the dialogue layer.
The user or the formalism must be able to communicate and coordinate the input and output
modalities during dialogue. The input and output modalities of the description formalism are
clearly defined in the terms of the formal substrate. Descriptions and partial satisfiers, the base
representation of input and output from the formalism are, ipso facto, given in terms of feature
structures. The dialogue layer must provide an account of the input and output modalities of the

designer. A common representation that can unify both modalities of exploration is necessary.

3.4. THE DIALOGUE LAYER 50

A transparent exposition of the modalities of the formalism in a visual manner is one way
of expressing and integrating the input and output modalities of both user and formalism. This
approach is similar to the work of Piela [1989] in the ASCEND modelling system [Piela, McKelvey
& Westerberg 1993]. ASCEND provides a visual and direct manipulation interface for developing
and testing incremental constraint programs in the domain of process engineering. In the ICE
project [Zeller & Snelting 1995, Zeller 1997] an interactive front end enables the user to construct
configuration threads through the addition and modification of configuration constraints. The Oz
Explorer [Schulte 1997] is another visual constraint programming tool for supporting the user driven
development of constraint programs. A tree visualisation of the constraint problem is the central
metaphor for exploration of any constraint node in the tree. The user can tailor and program user
guided search engines over this tree for the development of constraint programs. FEGRAMED [Kiefer
& Fettig 1995] employs a fully interactive front end that presents the user with a customised view
of feature structures. This feature structure editor can be used for developing and maintaining
feature structures in constraint based systems. The dialogue layer realises mixed-initiative through
a shared visual representation of input and output modalities that is accessible to both user and
formalism. This mutually shared context enables the negotiation of reference and provides the glue
that binds user actions with the formal substrate.

Given a sound representation of communication and coordination, it is necessary to address the
sharing of control over the thread of exploration. An incremental model of turn-taking between the
user and the formalism enables both participants in dialogue to acquire, shift and allocate control
of the exploration process. The dialogue layer must support a robust structure of turn-taking
between the user and the formalism. Admitting Grice’s conversational maxims, a tight coupling of
user actions with the formal substrate is one way of implementing a control model based on turn-
taking. Incrementality and turn-taking enable the best joint interpretation of input and output

modalities between the designer and the formalism during exploration.

3.4.3 Role of the dialogue layer

Mixed-initiative in the dialogue layer provides support for communication, coordination and con-
trol of exploration between the user and the formalism. Communication and coordination during
exploration are addressed through the representation of dialogue. Control of the exploration pro-
cess is addressed through a model of turn-taking based on rational conversation. The role of the

dialogue layer in the mixed-initiative model of exploration is as follows:

Support the representation of dialogue.
A representation of the communication and coordination of input and output between the
designer and the formalism. A transparent exposition of the input and output modalities of

the formalism is one way of representing dialogue.

3.5. SUMMARY 51

Support the integration of dialogue.

A model of turn-taking integrates dialogue between the designer and the description formal-
ism. Through turn-taking, control of a thread of exploration can shift between the user and
the formalism. The role of the incremental model of turn-taking is to enable both the user

and the formalism to acquire, relinquish, shift and allocate control of the exploration process.

The mixed-initiative dialogue layer for supporting exploration is developed in Chapter 5.

3.5 Summary

This chapter identifies the requirements necessary for developing a model of interaction for compu-
tational exploration. To address these requirements, the mixed-initiative paradigm of interaction
is proposed for supporting design space exploration. A three-layered mixed-initiative interaction
model for integrating user interaction with the design space exploration formalism is developed. In
this model, the role of the user is explicitly realised and connected to the formal substrate through
the three layers, domain, task and dialogue. Fach layer occupies a distinct role in implementing
mixed-initiative and addresses the requirements for the mixed-initiative interaction model. The
domain layer provides the glue that connects designer level constructs (collectively identified as
the entities of exploration) with parts of the description formalism that realise these constructs in
the formal substrate. The task layer weaves the user with the exploration operations of the de-
scription formalism. The dialogue layer provides a common basis for extended interaction between
the designer and the formalism. In Part IT of this thesis, each of the layers of the mixed-initiative

interaction model for design space exploration is developed.

Part 11

MIXED-INITIATIVE AND DESIGN
SPACE EXPLORATION

52

53

Part II: Mixed-initiative design space exploration

“Our larger interest in mixed-initiative planning systems grows out of some observa-
tions of the strengths and weaknesses of both human and automated planning systems
as they have been used.... Humans are ... better at formulating the planning tasks....
Machines are better at systematic searches of the spaces of possible plans...”
Ferguson and Allen [Ferguson & Allen 1994, p 44].

Part I develops a mixed initiative model of interaction based on the requirements of mixed-

initiative for supporting design space exploration. It posits the developments of interface level

constructs in each layer of the model. The notation of the unified modelling language, UML is used

to describe each construct, its connection to the concepts in the formal substrate and its role in

mixed-initiative exploration. The exposition is broken into three Chapters as follows:

- Chapter 4 describes the domain layer of the mixed-initiative interaction model. Four do-
main constructs corresponding to problems, solutions, choices and exploration history are

developed. The connection of these constructs to the description formalism are described.

Chapter 5 develops the dialogue layer of the mixed-initiative interaction model. A single
construct, the visual feature node is described. This construct encapsulates communication,
coordination and control between the designer and the description formalism. The interaction
logic necessary for the dialogue layer of mixed-initiative interaction is addressed through a
visual notation for representing feature nodes graphically. Interactions with design states

through the direct manipulation of visual feature nodes is described.

Chapter 6 presents the task layer of the mixed-initiative interaction model. The task layer
comprises a collection of interface level constructs for facilitating exploration in terms of the
tasks of construction, navigation and synchronisation of exploration states. The integration

of exploration tasks with the movement operators in the description formalism is described.

Chapter 4
A mixed-initiative domain layer

This chapter describes the domain layer of the mixed-initiative interaction model. As proposed in
Section 3.2, the domain layer captures the designer’s view of exploration and ties this view to the

formal substrate of the description formalism.

4.1 Representation of the domain

From the designer’s perspective, the representation of the domain must account for and connect
onto the concepts with which the design space formalism are conceived. A difficulty of explanation
arise in this task. The elements of the domain layer collapse into and find explanation in the sparse
symbol-level machinery below. One formal device in the substrate serves several concepts in the
domain layer. To address these difficulty, it is necessary to maintain three levels in the exposition
of the domain layer: the designer’s view of the components of exploration, the formal substrate
underpinning these views and finally, domain layer concepts that map the user level concepts onto

the formal components of the design space formalism.

4.1.1 The designer’s view of exploration

The designer’s view of exploration, identified in Section 1.1.2, comprises an account of problems,
solutions, choices, their connections and the developing space of explicitly discovered design alter-
natives. The designer’s model of exploration comprises problems, solutions, choices and history
(their connections and the resulting explicit design space). The problem formulation and reformu-
lation cycle, the solution generation and reuse cycle, the intentional choices of the designer and the
rationale of exploration in the form of a history are captured in this view. The representation of
the designer’s view is shown in Figure 4.1.

Looking up to the designer’s model, the domain layer accounts for the major entities of explo-

ration as understood in designing, namely, problems, solutions, choices and history. Looking down

54

4.1. REPRESENTATION OF THE DOMAIN 55

Choices

problong golutionn

4 rationale

| Solutions I

solucion history

| Problems l

roblem history

Exploration History

Figure 4.1: The designer’s view of exploration can be captured through a representation of the
following entities, problems, solutions, choices and history. The problem formulation and reformu-
lation cycle, the solution generation and reuse cycle, the intentional choices of the designer and the
rationale of exploration in the form of a history are captured in this view.

to the formal substrate, the domain layer calls on the formal machinery to compute the tasks of
exploration asked of it by the designer’s model. In this fashion, the domain layer captures both the
intentionality of the designer and is fundamentally tied to the rigours of the description formalism.
The constructs in the domain layer corresponding to the designer’s view of exploration and their

relations are explained in the next section.

4.1.2 Domain layer constructs

Designer's view of Exp i Bomaln Layer Constructs

Figure 4.2: Mapping the designer’s view of exploration to constructs in the domain layer.

The first task is to map each of the exploration entities into a corresponding construct in the
domain layer. As shown in Figure 4.2, this mapping, which corresponds to the domain layer,
captures the designer’s view of exploration in a knowledge-level representation. The representation
acts as an intermediary between the exploration entities and the underlying formal machinery
of typed feature structures. This mapping into an intermediary representation comprises four
components, namely, problem state, solution state, feature node and satisfier space.

The domain constructs in the mapping are defined as follows:

4.1. REPRESENTATION OF THE DOMAIN 56

Problem state.

A problem state corresponds to the designer’s view of problem formulation. The problem state
connects to the formal substrate and supports reformulation. This construct is explained in
Section 4.2.

Solution state.

A solution state corresponds to the initial, intermediate and final designs satisfying a problem.
The solution state connects the designer’s view of a solution to its representation in the
formal substrate. The solution state supports generation and reuse and these are explained

in Section 4.3.

Feature Node.

The connections between a problem and its possible solutions (partial or complete) are en-
capsulated in a feature node. A feature node composes a problem state and the uncovered
(possible) solutions to the problem state. Through this composition, the feature node repre-
sents the intentional choices made by the designer. The feature node connects to the formal
substrate and supports choice-making, reformulation, generation and navigation during the

exploration process. These are explained in Section 4.4.

Satisfier space.

The intentionality or rationale of exploration expressed by the designer’s movement during
exploration are captured by the satisfier space. The satisfier space is composed as the collec-
tion of feature nodes. The satisfier space connects to the formal substrate concept of a design
space. Since, satisfier spaces contain ancestor and progeny feature nodes, a feature node is
referred to as a Satspace Element, in the context of satisfier space. The satisfier space records

exploration history and the choices made by the designer. These are explained in Section 4.5.

These constructs capture a designer model of exploration without imposing the algorithmic
and symbol level implications of the formal substrate. Problems become problem states. Solutions
become a relation between problem states and partial satisfiers. Choices become feature nodes.
Exploration history is captured in a satisfier space. However, it is necessary to explain these at
a second level, that answers to both the designer’s model and to the formal substrate below. In
the next section, the mapping from the domain layer constructs to the symbol structures of the

underlying machinery is made explicit.

4.1.3 Mapping to description formalism

To enable mixed-initiative, it is necessary to build intermediary relations between the components of
exploration and the symbol structures that represent them. The formal concepts of types, features,

constraints and descriptions, explained in Chapter 2, provide the basis for realising the domain layer

4.1. REPRESENTATION OF THE DOMAIN 57

constructs of the interaction model. Mapping the designer’s view onto the typed feature structure
machinery is the basis for the manipulation of types, features, structures and descriptions.

This mapping between the designer’s view of the entities of exploration and the formal concepts
that enable its computation is crucial to supporting mixed-initiative in the domain layer as described
in Section 3.2.3. This layer enables the shifting, allocation and tracking of domain initiative in the
interaction model through the intermediary concepts outlined above.

The designer’s view of exploration are linked into substrate concepts using domain layer concepts
described above. 1o clarify these linkages between domain layer concepts and the underlying
feature structure machinery, a path notation is used. This notation provides a concise handle to
illustrate how domain concepts reach onto the typed feature structure machinery. The intention of
the notation is two-fold. First, to achieve a uniform description of all aspects of the domain layer.
Second, to use domain layer constructs as a filter through which only the relevant parts of the typed

feature structure machinery can be seen. The path notation comprises the following elements,

Domain layer construct.

This element captures the four domain layer constructs. A Problem State is signified by the
element, PState. A Partial Satisfier is represented as PSat. A Satspace Element is a Fnode.
A Satisfier Space is a SatSpace.

Path connector.

A connection between domain layer constructs is indicated by the path connector, represented
by “e”. The connections to the substrate are indicated by the path symbol, “”. Through
the path connectors, access to the relevant parts of the typed feature structure machinery,

through the domain layer constructs is clearly shown.

Substrate concept.
This element captures the constructs in the underlying description formalism onto which the
domain layer constructs are mapped. They are represented by TFSConstruct, the prefix “TFS”

indicating that they belong to the description formalism.

Through the above notation, the mapping between the domain layer constructs and the under-
lying formal machinery of typed feature structures is clearly established. Given the preponderance
of technical terms in the formalism, the path notation is used to clarify the distinctions between
layers whenever necessary. At all other times, symbol level concepts are taken to imply an expo-
sition at the formal substrate level, while domain layer terms are taken to imply an exposition at
the level of the designer.

The mapping from the domain layer to the description formalism is visually stated through the

UML notation! in Figure 4.3. The domain layer mediates between a designer model of exploration

'The uML, (Unified Modelling Language) notation is used throughout the thesis to express concepts and their

4.2. PROBLEM STATE 58

Domain Layer |
4
A patiafier space
[
Satisfief Space Feature Node
\
problems solutiong
Proble State | Solution State
——————————— e ————
qudry » 4 patiofier
Formal Substrate i
Descriptlnn patisfaction » Satisfier
4 depcriptions

Figure 4.3: Mapping domain layer constructs to the underlying formal substrate of the design space
exploration formalism.

comprising problems, solutions, choices and history; and a design space representation aimed at
efficient generation, indexing and recall. In the domain layer, Problem State represents a design
problem. More specifically, the notion of a problem is cast in terms of the machinery of design
space exploration, namely, constraint collections written in the form of descriptions. Solution State
corresponds to partial design solutions. More specifically, the notion of partial, intermediate and
final solutions to a problem is cast as the collections of partial satisfiers of a description. Further,
Feature Node models the connection between problems and the solutions uncovered by designer
choices during exploration. This construct introduces the intentionality of the designer into the
domain and is crucial for mixed-initiative in the domain layer. Finally, Satisfier Space models the
history of design exploration as recorded in the collections of feature nodes.

These constructs are developed in greater detail, following a three level exposition, the designer’s
view, the symbol substrate, and the mapping of the two based on the domain layer. The intention
of the exposition is to make transparent the granularity of mixed-initiative in the interaction model

at the domain layer.

4.2 Problem State

4.2.1 The designer’s view

To a designer, problems comprise both design requirements and desired properties of an artifact.
Problems may be hierarchical, that is in addition to requirements and properties they may comprise

sub-problems, which themselves may be similarly recursive. Designers revise problems as aspects

relationships in a visual format. To facilitate the reader, a consise summary of the UML notation is given in
Appendix B.

4.2. PROBLEM STATE 59

of a design situation reveal themselves through exploration, the conception of the actual problem
being solved may change. In a designer’s problem space, work is done by a combination of problem
formulation (specifying (adding) requirements, attributes and sub-problems) and problem revision

(removing or modifying the same).

4.2.2 The symbol substrate

At the substrate, no distinction is made between a problem and a solution. This bears explanation.
Unlike knowledge level designs such as that of SEED [Flemming & Woodbury 1995] described in
Section 1.1.1 such distinctions neither exist, nor are meaningful in the formal substrate once the
particular mapping to typed feature structures is made. For example, from the perspective of
problem specification, a requirement for daylighting might be stated in different revisions of the
problem as the requirement itself, the specification of a certain area of transparency in a part of the
building envelope, or as a window design itself. In terms of future exploration for a solution, each
of these would act in exactly the same way, that is, as a constraint on the explorations that the
system can enact. At the model level (the designer’s level) this blurring of the underlying formal
bounds is addressed through constructs that distinguish between problem and solution.

At the symbol substrate, problems are specified through two main constructs of the typed
feature structure mechanism: a type hierarchy and a description. First, the design requirements,
specifications and properties of an artifact to be designed can be specified by the elements of the
InheritanceHierarchy?. The specification of a problem amounts to the construction of an inheritance
hierarchy of types, a collection of feature declarations introducing and appropriate for those types
and constraints on types. Thus, the specification of the type hierarchy implicitly constitutes a set
of problem formulations that a designer can visit during the course of a given exploration.

Second, a problem to be solved can also be expressed using descriptions drawn from Desc
with respect to a type hierarchy, (T'ype, C). An idiom of problem spaces is immediately apparent:
problem specification can be distributed between the description and the type hierarchy. This
happens because, in the substrate, a type can be a member of a description (or a description in
and of itself)®. A type being used in the description of a problem amounts to a declaration that
the designer will be satisfied with solutions that arise from this type. In the designer’s terms,
this is declaring that past experience will suffice here, for example, a standard bathroom layout
might be all that is sought. Present here is the representation of problems through type hierarchy
construction and the authoring of descriptions. A description of how the typed feature structure

algorithms apply to these structures awaits the description of solution states and feature nodes.

2The elements of the type hierarchy are described in Section 2.2.1. A formal definition of these elements is given
in Definition 4.

3See Section 2.2.2 for a discussion of the relationship between types and descriptions.

4.2. PROBLEM STATE 60

4.2.3 The domain layer construct

In the domain layer, problems find reification as problem state objects, written as PState. A
PState represents problems and relations among subproblems. Thus, the problem state construct
specifically adds intentionality concerning problems. As shown in Figure 4.4, the domain layer

construct A PState maps to the type hierarchy and to descriptions. From the perspective of an

Problem State

N B

Type System Description

Figure 4.4: The problem state composes a collection of descriptions, Desc over a type system.

exploration process, a design problem can be expressed as a type inheritance hierarchy. Typically
these would be such forms that have been ossified by past experience in design space. In this case,
the problem would be available as a problem state, spéciﬁed by its trivial description as a type in
the type hierarchy. Following the path notation, the mapping of a problem state to the type system

can be explained as follows:
PState = ePState : InheritanceHierarchy : Type (4.1)

A problem can also be specified as a description specifying certain forms of spatial relations or
constraints on types based on the description language (descriptions are described in Section 2.2.2).
The connection between a PState and the formal substrate of descriptions drawn from Desc is given

as follows:
PState = oPState : Desc : Description (4.2)

In this case, the exploration of the initial description would amount to designer interaction with
the the domain layer construct, a PState. Through interaction with a PState, the designer can
define design requirements either within the type system or through a collection of descriptions.
Acting through a PState, a designer iterates through problem formulation/reformulation cycles by
reformulating descriptions, adding new descriptions or monotonic changes to the type system itself.
Figure 4.5 extends Figure 4.4 by expanding a problem state to reveal its connections with typed
feature structures. It follows that underlying the problem state is the full machinery of typed
feature structures. It is within this machinery that problem exploration occurs. Summarising, the

problem state is defined as a type or a description over a type hierarchy of types. Thus problems

4.3. SOLUTION STATE 61

Problem State

[

Type System |

InheritanceHierarchy

l Description
Feature Type
subtypes » 4 descriptions ?
4 features

ConstraintSystem

Figure 4.5: Types, Features, constraints and descriptions comprise the representation layer for
defining, decomposing and revising problems in the domain layer.

and requirements are constructed over the InheritanceHierarchy. The interaction level construct
that encapsulates this problem formulation and reformulation process is the PState. This process

is further elaborated in the explanation of feature nodes in Section 4.4.

4.3 Solution state

4.3.1 The designer’s view

In the domain of design, problems and requirements have multiple solutions. This is analogous to
the statement that a requirement may have no solutions, a finite number of solutions or an arbitrar-
ily large collection of solutions. In the exploration model, the solution generation and reuse cycle
comprises an iterative process of interaction between the designer and the formalism. As Chien &
Flemming [1997] demonstrate, in a designer’s solution space, work is done by a combination of gen-
eration from problem specifications, navigation of partial solutions and solution revision (removing
or modifying the same). Design units, as described in Section 1.1.1, represent a physical model as
it is elaborated and records the relation amongst functional requirements and characteristics of a
physical structure that satisfy these requirements. To a designer, a solution is a component in the
spatial or physical structure of a building and has an identifiable spatial boundary. Thus solutions
describe physical and geometric characteristics of structures satisfying the problem description.
Further, generated solutions engender a large space of alternatives. These alternatives form a solu-
tion hierarchy and as designers revise solutions, a revision history of solutions is recorded. Support
for the actions of the designer in making choices about solution alternatives and solution revision

is necessary.

4.3. SOLUTION STATE 62

4.3.2 The symbol substrate

In the description formalism, the view a “solution” to a problem is the given by the notion of
satisfaction. Satisfaction, described in Section 2.2.3, implies the existence of one or more possible
resolutions of a problem as typed feature structures. In the formal substrate, a design solution
is realised as a typed feature structure, FeatureStructure. Descriptions may be satisfied by no
structure, a finite number of structures or an arbitrarily large collection of feature structures.

The steps in the problem/design satisfaction relation are realised as incremental 7-resolution
states, is termed a partial satisfier* represented as TFSPartialSatisfier. These component of the
substrate represent initial, intermediate (partial) and fully resolved solutions of a given descrip-
tion. Notably, the designer’s concept of an alternative partial design is represented in the symbol
substrate by a partial satisfier. A TFSPartialSatisfiers composes descriptions and feature structures

through the satisfaction relation, Satisfaction, |=: Desc — FeatureStructure as follows:
TFSPartialSatisfier = Desc : FeatureStructure (4.3)

The label PSat is used as a shorthand term for representing the relationship between satisfiers and

descriptions in the substrate. A PSat composes a collection of TFSPartialSatisfiers
PSat = TFSPartialSatisfier (4.4)

Further, descriptions may themselves be statements of a solution. A feature structure that
totally satisfies the given description is termed a satisfier of the description and implies a fully

resolved feature structure, TFSSatisfier with respect to the InheritanceHierarchy.
TFSSatisfier = Desc : InheritanceHierarchy (4.5)

The notion of solutions in the formal machinery of design space exploration is given either as a
collection of intermediate partial satisfiers with respect to a problem description or a fully resolved

feature structure with respect to an inheritance hierarchy of types, InheritanceHierarchy.

4.3.3 The domain layer construct

In the domain layer, the view of a solution is encapsulated in solution state objects, written as
SState. As an object, a solution state composes both resolved designs and partial or intermediate
satisfiers. The constituents of a solution state are shown in Figure 4.6.

To a designer, a solution state provides a view on a developing design. The realisation of the
design as a typed feature structure and the satisfaction relation between problems and solutions

as an incremental 7-resolution state is shown in Figure 4.7. Within it, one can see first, a single

“See Section 2.4.1 for a discussion of partial satisfiers. .

4.3. SOLUTION STATE 63

Solution State

0

InheritanceHierarchy Partial Satisfier

Figure 4.6: Solution states compose partial designs with respect to an inheritance hierarchy of
types and a partial satisfier.

Solution State

N B

Description Satisfaction » TFSPartialSatisfier

[]

I i

Incremental Pi-Resolution State

v
Typed Feature Structure

+type =
+features =

Figure 4.7: Realisation of the design as a typed feature structure and the satisfaction relation
between descriptions and solutions as an incremental 7-resolution state.

possible response to a problem; and second, a trace of how the problem is satisfied in the form
of partial designs through incremental stepwise refinement. In the first instance, the realisation of
a fully resolved design as a SState is its conversion from a description to a fully resolved feature
structure with respect to an inheritance hierarchy, InheritanceHierarchy, of types. In the second
instance, a SState represents a partial solution. The solution state construct specifically adds
intentionality concerning solutions to a problem specification.

The connection of the solution state, SState to the formal substrate is given as follows:

SState = oSState @ PState : Desc : TFSPartialSatisfier : FeatureStructure (4.6)

As shown in the path notation above, a solution state models typed feature structures. Ingrained
in the notion of a solution state are problem states, the space of their solutions defined by the

satisfaction relation and the incremental 7-resolution states defined by the formal resolution process.

4.4. FEATURE NODE 64

Summarising, the domain layer construct SState represents the notion of a design solution. In it,
are embedded the symbol substrate concepts of description, the satisfaction of a description as

satisfiers and the trace of intermediate solutions as partial satisfiers.

4.4 Feature Node

4.4.1 The designer’s view

In the domain layer, a problem is represented as a PState. A partial or complete solution to a
problem is represented as a SState. These constructs capture the distinction between problems and
solutions. However, there exist strong dependencies between the problem formulation process (type
specifications, description authoring) and solution generation process of exploration (satisfaction,
resolution). The designer’s view of exploration encompasses both these processes.

For example, in SEED [Flemming & Woodbury 1995], the relationship between problems and
solutions is captured as a design state. The design state comprises a set of function units and
the collection of design units that allocate them. The design state captures both the process of
generating designs from problem specifications as well as the creation of new problems. Thus, in
a design state, designs and problems, are elaborated dynamically. A design state also records the
relation amongst functional requirements and characteristics of a physical structure that satisfy
these requirements. A domain layer construct to address the relationships arising out of problem
formulation/reformulation process and solution generation/reuse process is necessary.

Supporting choice-making is of particular importance in exploration. Through the feature node
construct, the actions of the designer in making choices on which threads of exploration to work

on can be addressed.

4.4.2 The symbol substrate

In the symbol substrate, the actions of the designer are supported through the notions of exploration
non-determinism, incrementality in the resolution process, the explicit recording of resolution steps
and access to the design space movement operators. Exploration non-determinism arises when
descriptions contain disjunctions in them. Disjuncts in a problem description are handled in the
formal substrate through the concept of a conjunct of disjuncts [Burrow 1999]. The generation
process presents the user with all possible alternative combinations of satisfiers arising out of
disjunctive descriptions. The symbol level construct that implements this concept is the DescNode.
In it, all descriptions are collected in a node representation. The formal substrate provides a
conversion from alternate problem formulations in the form of disjuncts to a conjunct of disjuncts,
represented as a DescNode.

The resolution of descriptions comprises an incremental process of w-resolution as described

4.4. FEATURE NODE 65

in Section 2.4.1. 'The resolution procedure acts incrementally by generating partially resolved
structures. The process of generating partial satisfiers is expressed as a sequence of resolution steps,
where each step records the resolution of a type constraint explicitly. The symbol level concept
that implements the elements of a sequence of 7-resolution states is the SatNode. In it are captured
the partial satisfier that represents a partial solution (the SState in the domain layer) as well as
the type constraints that remain to be resolved. In addition to the construction of descriptions and
the generation of partial satisfiers by m-resolution, several operators are available in the substrate
for supporting movement in design space. Section 2.4 covers these design space operations, namely,
indexing and reuse, hysterical undo, design unification and design anti-unification. They operate
on partial satisfiers in a SatNode to generate new SatNodes. At the user level, it is necessary to

enable the designer to access these substrate operators.

4.4.3 The domain layer construct

Problems and solutions are explicitly captured in PState and SState. A feature node, FNode, en-
capsulates the designer’s interaction with the formalism by coupling user actions with the elements
of the underlying symbol level. The FNode records what choices a designer might make and how a
designer would make such choices, that is, design intention. User choices with respect to problem
alternatives, incremental generation and the design space navigation are addressed in the feature
node. The feature node, FNode captures the relationship between a problem state, PState and
an alternative design that is a partial solution to the problem, SState. The composition of the

relationship between a problem state and its partial satisfiers are shown in Figure 4.8. Through

Feature Node
- 3
I Problem State | Satinfaction m» I Partial Satisfier I

—— |

Figure 4.8: The feature node composes the relationship between the problem state and the partial
satisfier.

a FNode, the user accesses the typed feature structure machinery and its contained structures:
problem states and their partial satisfiers.

User choices and actions on problem formulations are defined through a DescNode. A DescNode
composes typed feature structure descriptions. The connection between a FNode and a DescNode

in path form is as follows:

FNode = eFNode e PState : DescNode : Desc (4.7

4.4. FEATURE NODE 66

Feature Node
+Intringic attributes =

{

< _gperator state »

Operations Partial Satisfier
+Pi-resolution +Description =
+Unification +Type =
+Anti-unification +Features =
+Hysterical Undo

Figure 4.9: Feature nodes compose operators, their arguments and the current resolution state.
The design space operators, Operations, are accessible to the user through the intrinsic attributes
of a feature node. The state of the current resolution state is represented by a partial satisfier.

Through the FNode, the user and the formalism participate in a mixed-initiative problem formula-
tion and reformulation process. Problem specifications are specified by the user through interaction
with a PState. These in turn compose disjunctive and non-disjunctive statements in the descrip-
tion language of typed feature feature structures. Through the FNode, the user and the formalism
participate in a process of incremental generation of partial solutions of a problem statement. User
choices and actions on partial solutions are defined through a SatNode. A SatNode composes typed
feature structures in the underlying formalism. User guidance in the generative process is sup-
ported at two levels. First, in the selection of a SatNode from the a collection of possible solutions.
Second, in the specification of the next step of resolution. The connection between a FNode and a

SatNode is given in the path form as follows:
FNode = eFNode e SState : SatNode : PSat : FeatureStructure (4.8)

TheFNode captures a mixed-initiative formulation of choice-making between the designer and
the formalism. The FNode enables the user to make choices at a particular point in the problem
formulation and solution generation process. Further, the choices made by the designer and the
results of choice making are recorded as feature nodes.

This mode of interaction is consolidated further by conjoining designer actions and formal moves
together as the Operations of exploration. These operations enable the designer and the formalism
to share joint responsibility for design space navigation. The movement algorithms of the formalism
support feature node navigation. In the FNode, formal moves are cast as intrinsic attributes of a
feature node. They are intrinsic because they mirror the moves described in Section 2.4. Therefore,
Intrinsics are Operations providing direct access to the underlying the arguments and operators of
the design space exploration machinery.

An example of this interaction is shown in Figure 4.9. The designer can access a partial satisfier

and apply an operator from Operations to extend the partial satisfier, PSat.

4.4. FEATURE NODE 67

With reference to a Fnode and the formal operators in the substrate, Operations can be written

as equivalent to the following path,
Operations = eFNode e Intrinsics : PSat : FeatureStructure (4.9)

Through this formulation, FNode e Intrinsics capture design moves that mirror the operators, ar-
guments and states already available in the formal substrate. This connection to the underlying
exploration machinery makes no claims about supporting the contingent intentionality of designer
actions. To be truly mixed-initiative, feature nodes need to support operations that enable the
designer to manipulate the entities of a feature node.

Supporting contingent user interaction, actions with no analogue in the substrate of the design
space exploration, are crucial for mixed-initiative exploration. The interactive manipulation of a
feature node by the designer require an additional set of operations. These operations are cast
as extrinsic attributes of a FNode. Extrinsics capture the class of Operations that permit the user
flexible and extensible interaction with the elements of a FNode. An example of an extrinsic
operation is the ability to navigate the contents of a feature node by direct manipulation. A
detailed elaboration of extrinsics awaits discussion in Chapter 5. With reference to a FNode and
the interaction operators external to the formal substrate, Extrinsics can be written as equivalent

to the following path,
Operations = eFNode o Extrinsics : FNode (4.10)

In this manner, FNode e Extrinsics are defined recursively over feature nodes. The mapping of

extrinsic attributes of a feature node is explained in Figure 4.4.3.

< Feature Node
+Extrinsic Attributes

[]

attributes » state »

Partial Satisfier
+Description =
+Type =
+Features =

Figure 4.10: The extrinsic attributes of the feature node, FNode, represent the behavioural aspects
of the feature node contingent upon user interaction but with no analogue in the formal substrate.

Summarising, FNode e Intrinsics enable the user to access formal moves available in the symbol
substrate. FNodeeExtrinsics provide a hook to account for the contingent aspects of user interaction.
The representation of a FNode makes it possible to access initial requirements, PState, inter-
mediate and final solutions, SState and the operators of exploration, Operations. Operators are

further classed into Intrinsics and Extrinsics, both being attributes of a FNode. Given a feature

4.5. SATISFIER SPACE 68

node, Intrinsics allow the designer to access the formal (intrinsic) operators in the formal substrate.
Extrinsics permit the manipulation of feature nodes with no analogue in the formal substrate. These
are cast as behavioural (extrinsic) attributes of a FNode. The node-attribute formulation enables
the interleaving of system-driven and user-driven moves for mixed-initiative interaction.
Summarising, the FNode construct proposes a principled formulation for supporting the process
of exploring problems, solutions in conjunction. Throughout this domain layer construct, the

operations and states of exploration are brought under a common conceptual frame.

4.5 Satisfier Space

4.5.1 The designer’s view

A model of the designer’s view of design space completes the domain layer for supporting mixed-
initiative exploration. The clearest exposition of the designer’s actions in design space is described
in Chien & Flemming’s [1996] model of navigation. This model is discussed in Section 1.2.1. They
construct a notion of navigation based on nodes and edges where nodes represent design states and
edges map their relationships in a design space. User navigation of design spaces is through the
traversal of paths and landmarks defined over the navigation structure. This structure enables the
designer to orient and maintain context during exploration, make choices and visually browse the
history of exploration (alternatives, revisions) recorded in design space [Chien & Flemming 1997).

Burrow & Woodbury [2001] treat the history of exploration as the primary device for teleological
explanations of designs. The symbol substrate provides the relation of subsumption amongst designs
and this relation is available to a designer through the concept of a satisfier space. This construct
provides a unified model for representing the set of problems, subproblems, problem revisions and
associated designs that a designer actually considers. Problems need not be fixed. Designs can be
partial or complete with respect to the initial problem formulation. A designer may make varied
choices that imply different kinds of design space operations. All are captured in the satisfier space.
The satisfier space floats above design space structure to tell the story of what a designer actually
did in design space. From the designer’s perspective such a model must capture at least the history
of design exploration. The history of choices made and intentions expressed by the designer during
exploration are captured by the satisfier space.

A Satisfier Space composes a set of ancestor and progeny nodes, Fnode, recording the history
of exploration, as uncovered by the designer’s actions. Symbolically, the satisfier space is simply a
tree of visited design possibilities. Each node in the satisfier space is a feature node which connects

to the underlying design space machine.

4.5. SATISFIER SPACE 69

4.5.2 The symbol substrate

The exploration formalism provides a structuring relation based on subsumption to order collec-
tions of exploration states. Looking down to the typed feature structure machinery, the satisfier
space connects, via feature nodes, to points in the underlying subsumption-ordered design space.
The ordering of exploration structure in the symbol substrate is described in Section 2.3. In the
substrate, subsumption defines a partial ordering over exploration states (feature structures) and
this ordering of feature structures is represented as a hierarchical graph.

The design space representation records change in formal terms aimed at efficient design cre-
ation, indexing and retrieval. In it, the subsumption relation provides a global, principled way for

keeping track of additions, deletions and other forms of change as the exploration progresses.

4.5.3 The domain layer construct

In the domain layer, the subsumption-ordered design space is explored through interaction with
feature nodes. Choice and history are recorded as a collection of feature nodes. The recording of
this interaction process is captured in the domain layer construct, SatSpace. Thus, in contrast to
the design space below, the satisfier space is not ordered by subsumption, but by user choice and
intentional history. While subsumption accounts for information specificity, the satisfier space, as
a collection of feature nodes developed through exploration moves, accounts for choices and the
history of exploration.

The relationship between a satisfier space and its constituent feature nodes is shown in Fig-

ure 4.11. A FNode is an element of the SatSpace. The label SatSpaceEl can be used interchangeably

Satisfier Space

? .

Eatisfier space

=-| Feature Node

attributes » J ?
J/ problems solutions
Problert State Solution State

Figure 4.11: The collection of feature nodes, developed through exploration moves, represent the
satisfier space. User choices and exploration history are recorded in the satisfier space.

to represent feature nodes in SatSpace. Each SatSpaceEl captures the mapping between problem
state, PState, their solutions as SState objects and the record of their connection to the underlying

design space as uncovered by user choice. The formulation of a satisfier space, SatSpace as a domain

4.5. SATISFIER SPACE 70

layer construct provides two key benefits. First, the designer can defer formal movement opera-
tions to the design space below. This deferral preserves the key invariant structure in design space,

subsumption. For example, the incremental 7-resolution preserves information monotonicity.

Figure 4.12: Independence of satisfier space and design space. The design space represents the
space of all possible exploration states, structured by subsumption. The satisfier space represents
the set of exploration states traced by exploration.

Second, the satisfier space, SatSpace is independent of the design space. Design moves have
multiple implications in the underlying design space. For example, the application of a w-resolution
operation may affect more than one state in the design space. In the satisfier space, the user only
sees the branching (through choice and history) course of intentional exploration. The application
of a m-resolution operation results in the creation of a new feature node extending the current
thread of exploration. The independence of satisfier space and design space structure is informally
shown in Figure 4.12. The satisfier space captures intentional moves at the user level floating above
the subsumption-ordered design space.

Summarising, the domain layer construct SatSpace, provides a principled representation of user
actions in exploration. It allows access to the structure of the subsumption relation in design space
for exploration operations. At the same time, it allows the intentional moves by the user, in the

form of choices and history, to be recorded in a principled manner.

4.6. SUMMARY 71

4.6 Summary

This chapter develops the domain layer of the mixed-initiative interaction model for design ex-
ploration. This layer constructs a designer’s view of exploration comprising problems, solutions,
choices and history over the symbol level representation of design space exploration. The domain
layer constructs are Problem state, Solution state, Feature node and Satisfier space. In each of these
constructs, the case for mixed-initiative is made through a three level exposition, the designer’s
view, the symbol system view and the mapping of the two through the domain layer constructs,
PState, SState, FNode and SatSpace. Problem states represent design problems. Solution states
represent partial design solutions. Feature Nodes compose problem formulation and solution gen-
eration processes and support the exploration operations. Satisfier space records designer choices
and encapsulate the history of exploration. Chapter 5 goes on to describe the components of the

dialogue layer of the mixed-initiative interaction model for design space exploration.

Chapter 5
Mixed-initiative Dialogue

This chapter develops the dialogue layer of the mixed-initiative interaction model for design space
exploration. Following the requirements identified in Section 3.4, the dialogue layer provides a com-

munication and control interface for conversational dialogue between the user and the formalism.

5.1 The dialogue layer

The requirements of a dialogue layer based on Grice’s [1989] axioms of rational conversation are
proposed in Section 3.4. Control and communication between the user and the generative formalism

are addressed from the standpoint of dialogue representation and dialogue integration as follows,

- Dialogue representation.
A common symbolic representation is proposed for supporting the modalities of input and
output during mixed-initiative exploration. Exploration dialogue between the user and the
formalism is represented through a visual notation based on the domain layer entity, FNode
identified in Section 4.4. The visual notation expresses the input and output modalities from
both the user and the formalism. The visual representation of feature nodes is developed in
Section 5.2.

- Dialogue integration.
A model of turn-taking is proposed for integrating the different modalities of action available
to both the user and the formalism during exploration. Dialogue integration is expressed
through the specification of interaction behaviour for turn-taking. Through interaction with
the intrinsic and extrinsic attributes of a FNode, the user and the formalism are able to
acquire, relinquish, shift and allocate control of the exploration process. The integration of

dialogue through mixed-initiative is developed in Section 5.3.

The domain layer concepts (see Section 4.1), provide access to the machinery of typed feature
structures and, ipso facto, represent the results of exploration and generated partial designs. The
72

5.1. THE DIALOGUE LAYER 73

Dialogua Layey |

4 voode

1..0
LY Visual Feature Node |

4 _fnode

[bomain Layer I

4 satupaceslem

| satisfier Space |

i
Feature Node

patate » 4 _paat

ProbleniState satistaction® I Partial Satisfier |

s |

Figure 5.1: Mapping domain layer constructs to the dialogue layer through the visual feature node.

dialogue layer extends the representation of domain layer concepts built upon typed feature struc-
tures to represent dialogue. Typed feature structures provide clearly defined common semantics for
representing dialogue for both the designer’s model of exploration and the formal substrate. The
domain layer builds a set of useful concepts on top of the formal substrate. Thus, the representa-
tion of dialogue can be formulated in terms of the domain layer concepts. The components of the
domain layer, problems, solutions, choices and history are recorded in the FNode construct. The
FNode construct (see Section 4.4) encapsulates a principled formulation of the designer’s view onto
the description formalism.

The domain layer constructs are made transparently visible to the user by introducing the
concept of a visual feature node, VNode, in the dialogue layer. A visual feature node represents
dialogue between the user and the formalism. Through the construct of the visual feature node,
a principled formulation of mixed-initiative conversational structure is established between user
and formalism. This formulation supports a number of key properties, identified abstractly in
Section 3.4 and are based on Grice’s model of rational conversation. The relationship between the
domain layer constructs and the visual feature node is shown in Figure 5.1.

The concept of a visual feature node enables a principled formulation of dialogue representation.
As shown in Figure 5.1, the visual feature node, VNode provides a common frame for representing
mixed-initiative dialogue in the interaction model. Two distinct views are mapped onto the same
representation. First, the results of exploration initiated by the description formalism are available
as partial satisfiers (incorporating types, features, descriptions) of a VNode. Second, the represen-
tation of the results of user manipulation are available as feature nodes (incorporating problem

states, choices and functions, interaction history) through the extrinsic attributes of the VNode.

5.2. REPRESENTATION OF DIALOGUE 74

extrinaic » Visual Feature Node < _intrinsic
+Intrinsic attributes =
+Extrinsic attributes =
Feature Node Partial Satisfier
+pstate +Description =
+disjuncts +Type =
+history +Features =

Figure 5.2: The elements of the visual feature node map onto the domain layer constructs. The
intrinsic attributes represent the formal features along which the exploration may proceed. The
extrinsic attributes represent designer moves.

The representation of dialogue based on rationality, cooperation, common purpose and direc-
tion through the visual feature node is described in Section 5.2. The conjunction of the visual

representation and the model of turn-taking are described in Section 5.3.

5.2 Representation of dialogue

Formally, all the elements of a typed feature structure are simply features. Operationally, these
feature collections are interpreted as part-whole and property hierarchies — both common means
of representation. The domain layer concepts represent intentional actions (choice and history),
problems and their partial solutions (partial satisfiers, alternatives) during exploration. In this
section, a visual representation of feature structures is used in representing exploration dialogue.

The representation of feature structures is in three forms, text (in the form of descriptions),
graph notation [Carpenter 1992, p 37] and the attribute-value matrix notation [Pollard & Sag 1987],
hereafter AvM. Each of these forms map feature structures into different parts of the description
formalism.

For example, the type system is directly expressed in structured textual form, as are constraints
and problem formulations. Textual descriptions in a description language, through the satisfaction
and describability theorems, make feature structures interchangeable with descriptions. Given this
equivalence, descriptions and feature structures can both be written in textual notation, following
the logical description language, Desc, described in Appendix A. Textual descriptions are useful
for persistence, storage and coding of problem statements.

Feature structures, are rooted, labelled graphs. Their automata-like and graph-like character
can be cast into a graph representation comprising nodes and edges. In this view, nodes and edges
of a graph are taken to represent the type and attributes of a feature node. In a typed feature

structure, @), the set of nodes represent domain objects and edges represent functional connections.

5.2. REPRESENTATION OF DIALOGUE 75

Similarly, a feature node can be conceptualised as a form of directed graph as depicted in Figure 5.3.
For example, node 4 represents a general property class. Two examples of features are shown, where

the attributes COLOUR, RVALUE of node property point to nodes 5 and 6. The nodes are enclosed in

@ massing @ rvalue
Fd S Ed

” ~ 4
-

~ PROPERTY L e
L MASSEL Sao .+ “ RVALUE
-
Pis ~ - g
- o I
= -.@ entity @ property
-~
. N ~.
~ N ”, ~
~ GEOM P ~ . COLOUR
~ ~

.
~ , 7 ATTRIBUTE ~

~ ” - \
@ ® =
geometry

Figure 5.3: Feature node in directed acyclic graph DAG notation. The numbered nodes represent
structures annotated by their type labels. The edges represent features annotated by their feature
attributes. The values of attributes are other nodes.

circles, with the arrow pointing at the root, types appear in boldface next to their nodes. Features,
in small caps, label the connective arcs between nodes. The graph representation is useful for
depicting small dialogue fragments and their relations. When the typed feature structures become
very large, it is difficult to understand the nodes and track relationships in this notation. Further,
this approach does not capture the semantics of a feature node and the behaviour of individual
elements of the notation.

The analogy between feature nodes and frames provides a notation for visualising large collec-
tions of feature structures. Each node is a frame, the features on arcs represent slot labels, and
the arcs themselves point to the slot fillers. This frame-based notation is the standard notation
for visualising feature structures used in the description of linguistic fragments and discourse rep-
resentation [Pollard & Sag 1987, Carpenter 1992]. The notation is called attribute-value matriz or
AVM notation. The AVM notation provides a direct method for representing feature nodes and their
formal and behavioural attributes. Figure 5.4 illustrates the components of the AvM notation. It
depicts the same feature node shown in Figure 5.3. Each node is represented with the frame delim-
iters “[” and “]”. The frame is annotated with the type of the node. Thus far, feature structures
have described the results of generation. This visual representation of feature structures paves the
way for introducing them as the mode of user manipulation. The potential of representing the

visual feature node using AVM notation is described in the next section.

5.2. REPRESENTATION OF DIALOGUE 76

RVALUE : rvalue

MASS_EL : |PROPERTIES : GEHGTR = colons
massing - i

RVALUE : rvalue

GEOM - ATTRIBUTES : COLOUR % colour
geometry L property

entity - -

Figure 5.4: Feature structure in AVM notation. The feature stucture of type, entity with features,
MASS_EL and GEOM. These features have two substructures of type massing and type geometry.

5.2.1 A visual notation

The AVM notation visually describes feature structures. A wisual feature node maps the intrinsic
and extrinsic attributes of a feature node, FNode onto elements of the AvM notation. This mapping
annotates the visual feature node with the type, feature names, feature values and coreferences
taken from the underlying partial satisfier. The connection between a visual feature node, VNode

and a FNode is given as follows:
VNode = VNode o FNode (5.1)

The VNode composes and aggregates elements of the underlying representation, shown in 5.1.
In a VNode, the values of a feature may be atomic, complex or another feature node. The value of a
visual feature node VNode, is given either by a feature value pair or feature-value map. The smallest
element of the visual feature node is the feature value pair or feature-value pair. The feature-value
pair represents the relation between a feature and its value. This is shown in Figure 5.5.

The feature-value map specifies the relation between a feature node and its sub nodes. For
example, in Figure 5.5, the feature-value map represents the functional relationship between the
GEOM and its value. A feature-value map is enclosed by the delimiters “[” and “|” and annotated
by the type label drawn from its partial satisfier. In the example, the partial satisfier is of type,
geometry. Feature nodes support recursive containment. Thus, the value of a feature node may be
another feature node. The attribute-value notation is easily adapted for a visual representation of a
feature-value map as follows: the feature-value map can be conceptualised as a recursive container
of entities of type feature-value pair.

In Figure 5.5, the feature-value pair, represents the functional relation between the feature,
MASS_EL and its a value, which is minimally the type massing. The value of MASS_EL may also be
complex, such as a query description, resolution step or function application or external complex
datatype. The value of MASS_EL may also be another feature structure.

In a visual feature node, VNode, two or more paths can share the same information. This is
called structure sharing. Paths engaging in structure sharing are called reentrant. Shared structure

in a visual feature node is represented by co-references, also called tags. The co-reference

5.2. REPRESENTATION OF DIALOGUE 77

MASS_EL : massing

(a)

|:GEOM : [ATTRIBUTES : [H]
property
entity geometry

(b)

Figure 5.5: A feature value pair (a) and a feature value map is shown in (b). The pair ATTRIBUTES
: property, is indicated by a co-reference tag, indexed by the number 1 to a node outside of the
diagram fragment shown.

denotes an index value where n is the identity of the node that is shared between one or more
feature structures. Co-references and their denotation by indices is straightforward in the AvMm
notation. As shown in Figure 5.6, reentrancy, or structure sharing is indicated by reference tags

such as . The slots are the features and the values are written next to them.

[RVALUE g rvalue}

MASS_EL : PROPERTIES :
COLOUR : colour
massing Erorcid]
GEOM : ATTRIBUTES : []
geometry property

entity - =

Figure 5.6: A visual feature node incorporating coreference notation. The shared feature structure
of type property, is indicated by the coreference tag, indexed by the number 1.

5.2.2 Choices

The notation supports user choices in the VNode through the representation of alternatives, reso-
lution steps and function applications.

The notation incorporates the operators of the description language, conjunctions and disjunc-
tions. Conjuncts and disjuncts in feature structures are denoted using the same notation as feature
value pairs. In place of the feature labels, the labels conjunct and disjunct are used, with the
values as feature structures. This common representation can be scaled to represent the conjunc-
tion of disjuncts and the disjunction of conjuncts. In linguistic attribute-value formalisms [Pollard
& Sag 1987, Pollard & Moshier 1990], conjuncts and disjuncts are denoted by special delimiters,
such as “{” and “}” and their edge names are either omitted, suppressed or obscured. This is not
necessary in this interactive representation.

An example of a conjunct of disjunctive visual feature nodes is shown in Figure 5.7. User

5.2. REPRESENTATION OF DIALOGUE 78

DISJUNCT-1 : |geoml
geometryt -

DISJUNCT-2 : |geom2

]
MASS_EL : CONJUNCT : geometry

DISJUNCT.-3 : |geom3
geometryl B

[T
DISJUNCT_4 : [geom4
geometry’ E

disjunct

conjunct

DISJUNCT_5 : |geomb
geometryt o

DISJUNCT_6 : |geom6

1 L
GEOM : CONJUNCT : geomeung

DISJUNCT_7 : [geom7
geometryl E

DISJUNCT.8 : |geom8
geometryt

¥
L

coniunct disjunct
entity - J -

L
L

Figure 5.7: An example of a conjunct of disjunctive visual feature nodes. The disjunctive nodes are
accessed by a node of type conjunct and represented as a feature-value map and each disjunct is
represented as a feature-value pair, whose features are defined by DISJUNCT_n where n is an index
over disjuncts.

interaction is necessary to resolve the structures associated with the features MASS_EL, and GEOM
of the feature structure of type, entity. The disjunctive nodes of type disjunct are represented as
a feature-value map. BEach feature-value map is accessed by a feature CONJUNCT, of type conjunct.
Each feature-value map has four possible disjuncts, which are represented as a feature-value pair,

whose features are defined by DISJUNCT_n where n is an index over disjuncts.

MASS_EL : [geonﬂ]
geometry.

GEOM : [geonl 7]

entity geometry

Figure 5.8: The resultant visual feature node arising out of the resolution of disjunctive nodes by
user interaction.

The user can choose a single conjunct for each of features of the node entity shown in Figure 5.7.
For example, if the designer selects the disjuncts, DISJUNCT_2 and DISJUNCT_7 shown in Figure 5.8,
as the appropriate values of MASS_EL and GEOM respectively, the node that results will carry the
structure shown in Figure 5.8. Through the dialogue layer construct, VNode, it is possible to
expose the internal representation of descriptions (problem states), partial satisfiers (solutions) and
alternatives (choices) for user interaction. Since the VNode is recursively defined, a collection of

choices and user interaction history is expressed as a collection of visual feature nodes. Thus far, the

5.2. REPRESENTATION OF DIALOGUE 79

notation has shown how the intrinsic attributes of a feature node FNode can be visually represented
for direct manipulation by the designer. It is also possible to represent the attributes of a FNode

that are extrinsic to the formalism, using the same notation.

Functions

This representation of functions, commands and their arguments extends the visual feature struc-
ture notation for user interaction. The behaviour of functions and commands during interaction,
namely function application, function unification and function unfolding! can be added to the
interaction.
append(X,Y) < ARG1 : [X
arg

ARG2 = [Y]

append arg

Figure 5.9: Encoding a function as a feature-value map. The function append(X, Y) which con-
catenates values can be represented as the feature-value map of type, append and the two features
ARG1 and ARG2. The features, ARGl and ARG2 encode the values X and Y as two feature value
pairs.

For example, a function can be represented in the visual feature node. Functions can be encoded
within the feature-value map representation such that the functor annotates the feature-value map
and the arguments are features. An example of the duality of a function and its arguments with a
feature node representation is shown in Figure 5.9. This representation allows the feature structure
to encode traditional command languages found in geometry-based design systems. The specifica-
tion of a command or function then returns a value, which can be atomic, complex or a feature
structure. The use of feature structures to encode functions can also be used to pass commands?.

The expressiveness of feature structure command representations needs to address the possibility
of cyclic feature structures and structure sharing. A cycle arises when following a non-empty
sequence of features out of a node leads back to that node, which is a useful property in the
finite modelling of knowledge [Carpenter 1992, p 51-p 52]. A recognition mechanism is necessary
to interrupt infinite loops in a visual feature node representation for commands. The restriction
on commands is that structure sharing is not considered a valid part of the command syntax. If
co-references do occur, the structures they represent are copied uniquely within each command.

Another way of visualising functions within feature structures is to encode the functional defi-

nition as the value of a feature-value pair . In this scheme, for a function append(X, Y) with two

Lthe term unfolding is defined in Section 3.1.1. Here, it is used in a restrictive sense of exploring the arguments of
a function as described above.

2Programming languages like LIFE [Ait-Kaci & Cosmo 1993] use types for commands

5.2. REPRESENTATION OF DIALOGUE 80

arguments,there exists a type function, such that its value is a function definition with the syntax,
append(X,Y).

GEOM: geoml

TRANSFORM: (translate(a, b, c))
design_unit

Figure 5.10: The function translate(a,b,c) is represented as a feature-value pair and contained
within a visual feature node, with feature TRANSFORM and value, translate(a,b,c).

An example of a procedural function in visual form is shown in Figure 5.10. User interaction on
this node involves three possible behaviours. First, the application of the function to an appropriate
node results in a new node, consistent with the application. Second, the unification of a functional
node with an appropriate feature, results in a new feature structure, following the laws of unification
for typed feature structures described in Section 2.2.3. Finally, the function can be unfolded into its
constituent subparts following the interaction defined above and its values subject to exploration.
An example of the latter is shown in Figure 5.11. The unfolding of a functional representation
shows that the feature node representation of the function, translate(a,b,c) is of type translate and

the arguments are the three feature value pairs, TX, TY and Tz.

[cEOM: geoml 1
rx: [t]
arg
TRANSFORM: TY : [b]
arg
v [
translate - arg -4

design_unit -

Figure 5.11: An unfolding of a functional representation shows the feature structure notation of
the function, translate(a,b,c). The type of the function is translate. The arguments are unfolded
into the three feature value pairs, TX, TY and TZ.

5.2.3 Interaction with visual feature nodes

The visual feature node representation is extended to incorporate behaviours that admit user
level actions extrinsic to the formalism. Interaction with a large collection of visual feature nodes
requires functionality for panning, zooming in and out of context, search and the expansion of
tags. Visual feature nodes are nested entities. User navigation of a large collection of feature nodes
is enhanced by functionality for zooming in and out of nodes, imploding nested nodes and the
expansion of coreference tags. If the nesting is very deep or broad, panning functionality provides
the ability to scroll through the whole feature node. Zoom and implode interaction behaviour

provide functionality for controlling depth nesting. By using this functionality the user can fold

5.2. REPRESENTATION OF DIALOGUE 81

(implode) and unfold (zoom) feature nodes. The user obtains information about substructures of a
node by zooming into them. Further, zooming into the selected substructure enables a reorientation
of context such that the selected node becomes the new root node of exploration. An example of

unfolding substructures by user interaction is given in Figure 5.12.

Zooming and imploding nodes

cEoMl : |cEOM2 : |:GEOM3 - [GEOM4 : []]]
’ geometry
geometry

geometry
entity geometry

Figure 5.12: An example of an imploded feature node hiding the contained substructures. The
symbol “4” indicates that the substructures of the feature-value map of type entity are closed.
User interaction on this node is necessary to open these hidden structures.

Feature nodes can be nested recursively to arbitrary levels containing many substructures.
The interactive mechanism accounts for folding the nested substructures of a feature-value map
to hide their underlying notation and for unfolding the imploded structure to see the details of a
feature value map. In the visual representation, this is realised by allowing users to open or close
substructures visually through the the symbol .

MASS_EL : |PROPERTIES : [”

massing property

GEOM : }

entity geometry

Figure 5.13: Another example of an imploded feature node. The symbol “+” indicates that the
feature-value map of type property and geometry contains nested subnodes that can be unfolded
by user interaction.

The unfolding symbol, shows up in two different situations. A restriction may be placed on
the depth of display of a feature-value map. Any substructure in a feature-value map that exceeds
that depth, is represented by the symbol, . This is automatically managed by the dialogue layer
and the nesting levels set through preferences. The user can also manipulate the feature-value map
interactively. The feature-value map will be shown as folded, until it is explicitly unfolded. Thus,
the symbols on the feature-value map coming from depth restriction are generated and removed
dynamically while the user navigates a feature structure. In contrast, the maps that are unfolded
manually need explicit interaction to change their display. This enables the user to control the level
of detail shown, while zooming and imploding very large feature node collections.

Pan functionality is provided by enclosing the feature structures in scroll bars. This is a standard

means for providing canvas real estate. User interaction with the scroll bars allows context to be

5.2. REPRESENTATION OF DIALOGUE 82

shifted horizontally and vertically.

Interaction with co-reference tags

Path equality in structures is one of the oldest information structuring concepts in computational
design®. This notion is captured through structure sharing between feature structures at the formal

substrate.

RVALUE : rvalue
MASS_EL : PROPERTIES :
COLOUR : colour
massing - property
GEOM : ATTRIBUTES : []
geometry property

FUNCTION_UNIT : fu

DESIGN_UNIT : du
entity - Y

Figure 5.14: An example of substitution of a feature-value map with a co-reference tag, . The
co-reference tag is an index to the nested partial satisfier of type property that is shared by the
features, PROPERTIES and ATTRIBUTES.

From the perspective of the designer, path equality in the underlying formalism is visually
displayed through co-reference tags. Thus, the appearance of co-reference tags in the visual rep-
resentation indicate nodes that are strictly structure shared partial satisfiers. In the context of
exploration, these correspond to entities that are feature values that by definition, are feature
structures.

Co-reference tags are used in two ways, both shown in Figure 5.14. Firstly, a co-reference is
used to annotate a feature-value pair that structure-shares a feature-value map. Secondly, it is
used to simplify the visual representation of partial satisfiers, by simple substitution of the shared
feature-value map by the co-reference tag, denoted by [n]. The co-reference tag can be substituted
by the partial satisfier it denotes by user interaction. If the partial satisfier is represented, the
co-reference appears outside the feature-value map , as shown in the value of PROPERTIES. If the
co-reference is used to refer to the partial satisfier, it appears inside the feature-value map as shown
in the value of ATTRIBUTES.

The user can move within a collection of nodes using the find operation. Search for a nested
node using the find operation is supported by the use of tags. A successful search results in
the matching feature-value pair being panned into focus. The user can specify find function to
search only for features, types, co-references or atomic values. In the case of co-reference search,
the tag number is used to locate the partial satisfier corresponding to the specified tag. This is

useful in dialogue situations when structure shared partial satisfiers are widely separated. Tags

3The first instance was Sutherland [1963].

5.3. INTEGRATION OF DIALOGUE 83

mark structure shared nodes and these can be expanded in-situ following the general convention
of appearing in the first location in which they are introduced. When tag expansion occurs during
dialogue, the co-references are updated and the partial satisfiers that they represent are redisplayed.
These extensions are discussed in the next sections.

Having defined the visual feature node, its representation and its support for interaction, it is
now possible to address how this construct supports mixed-initiative in the dialogue layer. In the
next section, the integration of exploration dialogue between the user and formalism through the

visual feature node construct is described.

5.3 Integration of Dialogue

The second requirement, dialogue integration, combining two modalities into a common frame, is
described in this section. Modes of input and output, for example, typed commands, generated
structures or the direct manipulation of graphical symbols need integration during dialogue. This
section describes how the visual notation for representing dialogue can support the integration of

these modalities.

5.3.1 Supporting partiality

As shown in Section 5.2.1, a visual feature node, VNode inherits key behavioural properties of typed
feature structures. Thus, given the well-defined semantics of types, features and descriptions,
the visual feature node supports partiality of input and output. The representation framework
of visual feature nodes, type annotated frame delimiters, feature-value pair/ feature-value map
and co-reference tags carry the specification of partial information. Partial information during
dialogue provides the opportunity for both user and formalism to underspecify, relying on the
extension of dialogue through turn-taking. A partially specified exploration move is represented
as an underspecified visual feature node. In this situation, a subset of feature-value pairs is not
instantiated, following the intensional nature of feature structure representation. Instead, they
are assigned a certain type, corresponding to the semantics of the move. This bears explanation
through an example of turn-taking on a partial specification.

An example of supporting partiality in mixed-initiative dialogue is explained in Figure 5.15. In
this example, a given description can be integrated with a massing of type geometry, the resultant
is assigned an underspecified location feature, whose value is required to be of type geom. The
description, massing is assigned to the visual feature node shown. In this scheme, it is possible
to state during exploration that there exists an entity of massing with three features PROPERTIES,
OBJECT and LOCATION.

In the visual feature node representation, it is possible to specify the features, PROPERTIES of

type property and OBJECT of type geometry but not the feature LOCATION, which is assigned a

5.3. INTEGRATION OF DIALOGUE 84

STYLE continuous
PROPERTIES COLOUR yellow
LABEL mass
property
INSTANCE geom
OBJECT
ATTRIBUTES [1]
geometry
LOCATION _ |
pon

massing - E

Figure 5.15: Visual feature node for underspecified entity of type massing.

generic type, point. Thus, the visual node captures the idea that there exists a geometric object of
type massing and that its feature LOCATION is constrained to be of type point. Given the equivalence
of structures and descriptions, the underspecified visual feature node shown in Figure 5.15 can be
interpreted as a formal command for the generation of massing elements. More importantly, the
possibilities for locating the massing element are open to mixed-initiative specification by the user’s

action on a visual feature node or through the resolution of formal constraints.

COORD_X [VALUE 625.6]-‘

real

LOCATION COORD_Y |VALUE 125.6}
real

COORD_Z [VALUE 3.6]

int b real |
command - pow =

Figure 5.16: Visual feature node for underspecified entity of type command.

This is explained in Figure 5.16 with another underspecified feature node of type command,
whose feature LOCATION is constrained to be of type point with specified coordinates. Note, that
this is only true under the assumption that feature nodes can carry maximal values such as the
coordinates of a location?. It follows from the above, that if massing from Figure 5.15 is compatible
with command from Figure 5.16, the unification of the two will provide a feature structure whose
location feature LOCATION will result in the more specific of the two values. To be compatible in
type, the result must be the meet or a subtype of the meet of the two argument types. Hence,
the result of a typed unification is a more specific feature structure or atom drawn from the
type hierarchy. Thus, in a mixed-initiative scenario, the user might provide a location value for
an underspecified geometry generated by the formalism. Alternatively, the user might specify a
geometry for which the description formalism provides one or a number of possible locations in a

current problem state. Through turn-taking, both the location and geometry of an element in a

“In the design of GENEsIS, Heisserman [1991, p 133] notes that the inability to specify an intensional model of
geometric information remains a major drawback for interactive systems for generative design.

5.3. INTEGRATION OF DIALOGUE 85

solution state can be resolved.

5.3.2 Supporting structure sharing

STYLE continuous
PROPERTIES COLOUR yellow
LABEL mass

property
INSTANCE geoin
OBJECT
ATTRIBUTES
geometry

LOCATION _ |
i poin
massing =

Figure 5.17: Substructures can be shared in a visual feature node. For example, the PROPERTIES
of massing are the same as the ATTRIBUTES of geometry. Further, the specification of property can
be changed either through the PROPERTIES of massing or through the ATTRIBUTES of geometry.

Structure sharing is another fundamental property of typed features that plays a significant
role during mixed-initiative dialogue. Visual feature nodes enable the user to develop specific
exploration paths in great detail and then provide the resultant feature structure to the generator.
The generator can reuse the resultant feature structure multiple times in other feature node contexts
through structure sharing. Recall that feature nodes compose feature structures (Section 4.4).
Thus, at the visual feature node level, dialogue constructs can take advantage of structure sharing
in their underlying feature structures.

Feature structures can be shared across a design space. By reusing of shared feature structures,
the user can converge information from other exploration paths into the current path of exploration.
This bears explanation. For example, there may be two bathrooms in two distinct house designs
that are identical. The feature node collections that represent the exploration steps of the first
and second designs are distinct paths in the satisfier space. The problem states and choices made
by the designer in both paths are also distinct states. However, a portion of the solution state,
subsequent to exploration, is identical, in this case, the bathroom design.

In design space, this fact would result in the existence of two distinct feature structures contain-
ing the same information (feature structures are intentional). The feature node allows the designer
to structure share the bathroom solution of the second design with the first. Once this equivalence
is declared, the exploration structure of the first is converged into the exploration structure of the
second design. It is important to note that two distinct visual feature nodes can represent two dis-
tinct exploration threads in satisfier space. Through structure-sharing dialogue, feature structures
can be shared, reused and converged in design space.

Another result of structure-shared feature nodes is the fact that no single value has a unique

5.3. INTEGRATION OF DIALOGUE 86

status. For example, the creation of symbolic links in a unix file system, creates the illusion of
sharing structure, but merely points to a different node in the file system. In feature structures, all
structure-shared nodes have equal presence.

In Figure 5.17, the PROPERTIES of massing are the same as the ATTRIBUTES of geometry. Fur-
ther, the specification of type property can be reformulated either through the feature PROPERTIES
of type massing or through the feature ATTRIBUTES of type geometry. During exploration, the gen-
erative component can instantiate a massing element, with an unspecified feature ORIENTATION.
Subsequently, the user might specify an orientation by direct manipulation, by drawing an arrow
that has a value, direction for its feature, ANGLE. The process of typed feature structure unification
enables the explorer to structure share the value of feature ANGLE of the feature structure of type
direction with the value of ORIENTATION. Thus, when the two features are unified successfully, the
resultant feature node of massing has a new value for the feature, ORIENTATION. This value is now
given by the more specific value of the feature, ANGLE. Note that the property of structure sharing
can be nested. Feature nodes are recursively contained through the feature-value map and feature-
value pair relations of the notation. Structure sharing and its representation using co-reference

tags presents the notation with the ability to avoid redundant substructures®.

5.3.3 Supporting dialogue integration

The visual feature node addresses problems associated with the integration of input from the
differing modalities of exploration. While the input of each individual mode of exploration can be
assigned meanings, the problem of combining each input into an integrated meaning remains.
From the perspective of the formal substrate, integration is realised by conducting the dialogue
in terms of the formal mechanisms available for information combination. For example, consider
the unification algorithm, described in Section 2.2.3. Feature structure unification® is an operation
that determines the consistency of two pieces of partial information, and if they are consistent,
combines them into a single result. Within the formalism, this operation is used to address dialogue
integration. Unification is an appropriate basis for mixed-initiative integration as it can combine
complementary input or redundant input from both modalities of exploration. Further, in the
case of contradictory inputs, unification can rule out the possibility of integration. A feature node
consists of a collection of feature value pairs. The value of a feature may be an atom, a variable
or another feature value map. When two maps are unified, a composite map containing all of the
feature specifications from each component structure is formed. This is subject to the restriction
that any feature common to both feature structures must not clash in value. If the values of a

common feature are atoms, they must be identical. If one is a variable, it becomes bound to the

5In the design of GRAMMATICA, Carlson [1993] notes that the ability to detect and represent duplicates remains a
major challenge for interactive exploration of design spaces.

See Carpenter [Carpenter 1992, p 45] for a formal discussion of unification.

5.3. INTEGRATION OF DIALOGUE 87

value of the corresponding feature in the other feature structure. If both are variables, they become
bound together, constraining them to always receive the same value. If the values themselves are
feature structures, then the unification operation is applied recursively.

Similarly, the formal mechanism for extending partial satisfiers incrementally, 7-resolution, is
used to extend dialogue. During exploration, this enables a given step of formal exploration to
be compatible with a given step of user manipulation. If two dialogue fragments are compatible,
then the two inputs can be combined together into a single result. The compatibility of dialogue
fragments is captured through the unification operation. Note that the order in which feature value
pairs are displayed in a visual feature node is flexible. If conflicts arise during dialogue, the position
of a feature-value pair can be reordered to reveal inconsistent features. From the perspective of
the user, the results of the application of exploration moves are seen in the dialogue layer as visual
feature nodes. User interaction with feature nodes forms the basis for dialogue integration. In this
manner, the user and the formalism are able to integrate their actions to act jointly on exploration

problems.

5.3.4 Supporting dialogue disambiguation

Mutual disambiguation is another property supported in the visual feature node. An exploration
move that is partially specified is open to multiple interpretations. In such a situation, a collection
of many feature-value pairs may be available for unification. For example, if a given description
can be integrated with a massing of type geom, it can be assigned an underspecified LOCATION
feature, whose value is required of be of type geom as shown in the previous discussion of partiality
in Figure 5.15. In the description node, massing can also be assigned a feature node of type
location from a number of sources. For instance, the location might be constrained to be adjacent
to a previously created entity of massing. Thus, it is possible that there exists not one, but a
number of feature nodes of compatible type with type massing with the feature, LOCATION. The
dialogue layer provides a mechanism for mutual disambiguation, such that it is possible to specify
the feature, LOCATION of any compatible type at the current state of exploration to disambiguate
the choice. Given multiple options for interpreting the value of the feature node of type location
shown in Figure 5.15, a disambiguation process is a necessary attribute of dialogue to resolve non-
determinism. The same process of dialogue disambiguation applies to disjunctive nodes. Given a
number of possible alternative choices, the designer can disambiguate a disjunction by interaction
with the visual feature node representing the disjuncts.

For example, in a user driven query, the formalism might compute a range of possible feature
nodes that are extensions of type location. The dialogue layer makes them available to the user
as a collection of visual feature nodes. Alternatively, for an explorer-driven step, for instance, a

command to create an entity of type massing, the type location can be disambiguated by the user

5.3. INTEGRATION OF DIALOGUE 88

through interactive browsing of the current state, selection of a current point, command input,
structure-sharing or a constraint specification.

It follows from the above that when conflicts or multiple choices arise during exploration, mixed-
initiative in the dialogue layer can provide for mutual disambiguation through the visual notation.

In the visual feature node, this process of disambiguation is mutual. This is, it can be interpreted
either as a formal command for the generation of massing elements by the explorer or a user-driven
process wherein the possibilities for locating the massing element are open to exploration through
the specification by the user’s action on the visual feature nodes.

Figure 5.18 shows a feature node of type massing, whose feature LOCATION is constrained to be
of type point. The feature value can be resolved either by the user or by the formal generator. It
follows that if the location feature of massing is compatible with one or more locations of compatible
location, the unification of the two can be resolved through a process of mutual disambiguation.

In the example of disambiguation shown here, there are several partial interpretations, one
for massing and two for location. Since, either of the two locations might be equally valid for
the unification to succeed, only a process of mutual disambiguation can isolate the valid choice
of location. The dialogue layer allows either of the above and does not distinguish between the
modality of exploration, direct specification by the user or constrained search by the generator.
In each case, the unification-based integration strategy ensures that mixed-initiative exploration
compensates for exploration non-determinism through type constraints on the values of features.
Further, the restrictions imposed on these values ensure that the exploration maintains integrity

and consistency during the process of disambiguation.

5.3.5 Supporting multiple modes

Visual feature nodes provide support for multiple modes of exploration. An exploration process
can enter into an explicit “mode” of operation in which a specific type of operation is repeated
until either the mode is changed or incorrect input is enfered. This enables an exploration process
to block out input that is inconsistent with the first specification. The modality consists of an
initial input specification by either the generator or the user and all subsequent moves are filtered
through unification with this mode. The mode is set by an initial input specifying a feature
structure. Subsequent moves result in the creation of more specific feature structures that unify
with the specified mode. This constrains and restricts the dialogue to entities that are refinements or
extensions of the feature structure specification setting the mode. When there is no interpretation
that unifies with the one initially specified, the “mode” is ended. The setting of multiple modalities
introduces a stronger form of mixed-initiative, where the output of the processes are directed by
the initial mode. For example, the generator can enter into a mode for creating entities of type,

massing, whose OBJECT value is constrained to be of type column. This results in a more specific

5.3. INTEGRATION OF DIALOGUE &89

PROPERTIES ',_D[]

OBJECT m]]

| LOCATION mm[]
massing

(a)

COORD_X [VALUE 125.0]
real

LOCATION COORD_Y [VALUE 25.0]

real

COORD_Z [VALUE 3.5}

. real |
location - point o
(b)
COORD_X [VALUE 625.6]
real
LOCATION COORD_Y |VALUE 125.6]
real
COORD_Z [VALUE 3.6]
i real /]
command - point B

()

PROPERTIES tJ]

proper
OBJECTgeomemlﬂ
COORD_X [VALUE 1125.6]
real
LOCATION COORD_Y lVALUE 125.6]
Teq

COORD_Z [VALUE 13.6]

point - real 4]

massing

(d)

Figure 5.18: Feature node of type massing (top) with two options location and command for
disambiguation of feature LOCATION.

5.4. SUMMARY 90

feature structure, which serves as the initial specification for the mode, which will be subsequently
unified with future input, either from the generator, user or both. For example, the user could move
the mouse to a desired location in the state and lock in the location. This will result in the creation
of a massing entity with OBJECT of type column and LOCATION of type point. The modality enables
the initial input to be unified with the subsequent input resulting in a structure that represents a
more specific type of entity. Further, subsequent exploration moves directed from the user’s mouse
actions on the feature nodes, creating feature structures of type point, will result in the creation of
massing units with OBJECT value column and each LOCATION value of point. When the user enters
an input that results in the failure of unification, the mode ends, and initiative is returned to its

default mode.

5.4 Summary

This Chapter develops the dialogue layer of the interaction model for design space exploration. T'wo
requirements posed in developing human-computer dialogue, dialogue representation and dialogue
integration are addressed using the attribute-value matrix notation for typed feature structures.
Mixed-initiative dialogue in design space exploration is addressed through the development of a
visual notation for representing problems, solutions, cﬁoices and history.

The notation is extended into interaction objects by specifying interaction logic for unfolding
the components of the visual notation. The feature structure representation, and interaction logic
are brought together in the dialogue layer construct, the visual feature node. The process of mixed-
initiative dialogue during exploration is implemented using visual feature nodes. Through this
construct, the user is able to participate in a dialogue with the description formalism to construct
problems, navigate solutions, make choices and record the history of exploration. Visual feature
nodes implement the display, feedback and propagation of dialogue during exploration. They are
implemented as user interface objects in FOLDS, a detailed discussion of which awaits description
in Chapter 7, Section 7.1 on Page 108. The next chapter addresses the task layer of the mixed-

initiative interaction model for supporting design space exploration.

Chapter 6

A mixed-initiative task layer

The third and final layer of the mixed-initiative model is the task layer. The specification of
the task layer completes the development of the mixed-initiative interaction model for design space
exploration. The task layer permits the user to access the formal design space exploration movement
algorithms in terms of the designer’s domain concepts specified in the domain layer and through a

model of mixed-initiative dialogue specified in the dialogue layer.

6.1 The Task layer

The domain layer constructs, problem states, solution states, feature nodes and satisfier spaces
encapsulate the entities of exploration from the designer’s perspective. The dialogue layer con-
struct, the visual feature node, provides a model of turn taking between the formalism and the
designer. Based on these constructs, the task layer addresses user access to the formal operations
for computing exploration described in Section 2.4 and enables the designer to generate, navigate
and synchronise a range of design moves.

As noted in the requirements of the interaction model in Section 3.1.2, mixed-initiative must
permit the user to access the formal exploration operators, integrate system-driven and user-driven
moves and enable the user and the formalism to share joint responsibility.

During exploration, system-driven moves represent the operations that modify the intrinsic
attributes of a feature node. The unfolding! of the intrinsic properties of a visual feature node
is based on the movement operators of the exploration formalism described in Section 2.4. The
formal moves operate on a partial satisfier PSat through the visual feature node, VNode.

Designer-driven moves represent operations that modify the intrinsic and extrinsic attributes of
a visual feature node. The unfolding of the intrinsic attributes of a visual feature node is based on

interaction with formal design moves. The unfolding of extrinsic properties of the feature node is

'the term unfolding is defined in Section 3.1.1.

91

6.1. THE TASK LAYER 92

Tank Layer |

Generation Navigation Synchronisation
+construct () +choone () +recall{}
saxrend () sratrack () +erage (|}

+join()

Ameet L !
qunerate I navigate gynchroniie |

Dialogue Layer |

. Visual Feature Node 4 bibrral
————————=<>{iIntrinoic attributes =
sExtrinnic attributen =
Domaln Lays: |
Feature Node Partial Satisfier
spurate j+Deneripeion -
sdinjunctn +Typo =
thintory +Foaturen =

Figure 6.1: The exploration tasks are specified over a wisual feature node. The elements of the
visual feature node map onto the domain layer constructs.

based on interaction with the interface components of a visual feature node, VNode. The designer
operates on the visual interface components of the feature node to affect change during exploration
and these changes are cast as extrinsic to the representation. To incorporate mixed-initiative, it is
necessary to integrate both types of moves in the task layer.

This is addressed by treating both types of operations under a common conceptual metaphor,
termed unfolding. Visual feature nodes can be unfolded by formal moves as well as their behavioural
properties during exploration. The task layer permits the designer and the formalism to unfold a
visual feature node during exploration. The task layer for mixed-initiative unfolding is subdivided
into node generation, node navigation and node synchronisation. This mapping is diagrammed in
Figure 6.1.

The generation task corresponds to the process of creating visual feature nodes from initial
problem statements. The navigation task corresponds to movement along the attributes of a vi-
sual feature node. Navigation comprises movement along both intrinsic (formal) and extrinsic
(behavioural) attributes of a feature node. The synchronisation task covers the process of unifying
two feature nodes, suppression of features and erasure of nodes.

Each task layer construct comprises specific types of operations for node unfolding. Under each
operation, the role of the user, the role of the formalism and the resultant changes to the exploration

space are examined.

6.2. THE TASK OF GENERATION 93

¢ Generate a visual feature node, VNode
The task of generation comprises interaction with the CONSTRUCT and EXTEND operations.
The construct operation involves the specification of a query description. The query is parsed

and converted into a visual feature node for further exploration.

e Navigate a visual feature node VNode
Navigation corresponds to movement along the paths of the feature node, VNode. Path
navigation comprises finding and moving between paths in the current node through search,
query and sequential moves. The path navigation process comprises interaction with the

operations, CHOOSE, RETRACT.

e Synchronise paths, P; and P;.
Given two extant paths, P; and P; in the exploration, synchronisation comprises interaction
with four operations, RECALL, ERASE, JOIN, MEET. The RECALL operation permits the reuse
of previously explored paths. The ERASE operation allows the designer to perform deletion
and hysterical undo of paths. The JOIN operation computes the specialisation of two distinct

exploration paths. The MEET operation computes the generalisation of two exploration paths.

6.2 The task of generation

(S | I

4 _extrinsic Visual Featura Nodo satrinsic »
eIntrinnic attributen =
sExtrinaic attributen =
0f Formalioam |
4 _§ntrinaic intrinmic »
Description TypeSystem Partial Satisfier
e ——" — —_—
—————

Figure 6.2: The task of generation comprises the construction of problem states through CON-
STRUCT and the extension of partial design states through EXTEND. The visual feature node maps
the generation task between the user and the design space formalism.

The visual feature node maps the generation task between the user and the description formalism

6.2. THE TASK OF GENERATION 94

as shown in Figure 6.2. The operators involved in the task of generation are described in the next

sections.

6.2.1 The construct operation

The generation of a visual feature node comprises the conversion of an initial problem statement
as a query ¢, into a problem state d and its subsequent extension. A problem state is initially
defined in the attribute-value description language, as described in Section 4.2. A visual feature
node composes the problem state, d, as the first element of a satisfier space, SatSpace. The task of
generation comprises the construction of problem states through CONSTRUCT operation.

The initial feature node is constructed using the CONSTRUCT operation. The CONSTRUCT
operation comprises taking the initial query ¢ converting it into a problem state d and computing
its visual feature node representation, VNode. The attributes of VNode are displayed as a feature-
value pair. The sequence of interactions involving the designer and the formalism in the feature
node construction process is shown in Figure 6.3.

The designer represents the problem state through a query description, ¢ in the attribute-value
description language described in Chapter 2. The explorer then converts ¢ using the satisfiability
algorithm into a problem state, d. The result of this step of exploration is the creation of a satisfier
space and its corresponding visual feature node as defined in Chapter 4. The mixed-initiative
dialogue layer displays d as the visual feature node, V Node. This node serves as the basis for

sharing context and problem focus for the next steps of exploration.

| Visual Feature Node | | Partial Satisfier |

| initial query

]
]
s 1
L s
I J_‘lﬂsl general satisfiers
i ThEmTmEmT 1

satisfier nodas '
1
1

- featurg valus map _ _ ﬂ
madily quary -
| auery |

1

\

1

I
|
'
L
|

Designer ' pese
[state]

explorer
[statel

]
partial safisfier |
satisfier

L]
i
i
|
i

Figure 6.3: Interaction sequence of the CONSTRUCT operation. The designer specifies an initial
problem statement to the description formalism. The formalism returns a collection of partial
satisfiers. The vertical bars indicate shifts in control.

The designer controls the visual feature node and its surrounding context through the dia-
logue layer. Dialogue with this node allows designers to display and explore the visual attributes
associated with a feature node and their values.

For example, as shown in Figure 6.3, mixed-initiative interaction with the CONSTRUCT operation

6.2. THE TASK OF GENERATION 95

begins with the specification of a description in the form of an initial query (problem) by the
designer. The explorer then constructs a a satisfier node, PSat. The satisfier node represents the
specification of the problem through the feature-value map. Through the feature-value map , the
most general satisfier is mapped to a visual feature node, VNode and control handed back to the
designer. The user can unfold this node along a valid path, generate a new description query, ¢ or
reformulate the problem description. In this way, the visual feature node becomes the context for

subsequent tasks of exploration.

6.2.2 The extend operation

Once a feature node has been constructed as described in Section 6.2.1, the explorer retrieves the
last element in the path sequence and returns its root node as a partial satisfier. This node is
converted to a visual feature node and the designer can interact with any one of the attributes of
the visual feature node, defined in chapter 5.

The exploration of an initial problem state, d, to partial design states is performed through the
EXTEND operation. The generative algorithm underlying stepwise extension of a feature-value pair
of the visual feature node is incremental 7-resolution. The incrementality of m-resolution, described
in Section 2.4.1, provides natural entry points for user interaction. The designer interacts with the
resolution process, by selecting a feature-value pair and seeking to extend it to the next state.
Exploration advances by stepwise operations on the feature-value map displayed as a visual feature
node. At each step, the explorer (description formalism) constructs a sequence of partial satisfiers,
PSat through incremental 7-resolution. This permits the explorer to introduce new nodes in design
space corresponding to the steps of extension specified by the designer. These steps of extension
are performed over a feature-value map. Path extension by the designer comprises a sequence of
extension steps corresponding to the selection of a feature-value pair, and the selection of a type
constraint as a direction for extension. The mixed-initiative interaction with the EXTEND operations
is shown in Figure 6.4.

The designer selects a feature-value pair and requests an EXTEND operation on this structure.
Given this feature-value pair, the explorer traces a path through the subspace of possible states that
are consistent with it. Since the EXTEND operation is synonymous with an incremental 7-resolution
step, the set of legal types and associated recursive type constraints to which the selected node
can be refined along this attribute are presented to the designer as a list of types and constraints.
Thus, given the existence of a set of legal types, the designer can choose one of the subsuming
types and present the explorer with a legal operation that extends the current node. If the EXTEND
operation is successful, the new feature-value map is displayed. The dialogue between the designer
and the explorer continues through this type of turn-taking until the partial satisfier is fully resolved.

Decisions are not subject to a global inference strategy, but are goal-directed in that each resolution

6.3. THE TASK OF NAVIGATION 96

l VisualFeature Node ” Partial Satisfier |

| construct

_ﬁnnlunclhfa salisfiers
o =1

=4
]
3
&
w
g
2
]
Ix"

selec feature-value

Y
&
e
s
o
L
s 2
,g-
2
=
2

|] explorer

Depigner] | [state]

[state]

> U ph- rasolutbontfeam re-value)
¥ satisfier partial satisfier

. praeactROC =) g RECR Sausiier)
resolved node
............... e e e ik]
11 feare-value map
.L-J.... --------

Figure 6.4: Interaction with the EXTEND operation. The designer selects a feature-value pair and
requests a move to the next state. The explorer returns the list of available types to which the
feature-value pair can be extended as a collection of types from (Type, C). The designer then selects
a type from the selection set and returns the type to the explorer. The explorer computes the partial
satisfier and returns the value to the mixed-initiative dialogue layer for further exploration until
the node is fully resolved. The solid arrows indicate flow of the designer’s interaction, while the
dotted arrows indicate the flow of the explorer’s actions.

step introduces new constraints and opens up possible spaces. Once the next legal operation has
been decided by the two-stage dialogue described above, the explorer extends the computation to

the next state and the interaction loop described above is repeated.

6.3 The task of Navigation

Navigation corresponds to movement along the attributes (paths) of a visual feature node. Nav-
igation comprises the incremental movement from the rooted partial satisfier to another along a
defined path. Navigation operations enable the designer to locate, identify and move through the
collection of constructed nodes and their paths. Navigation operations support forward and back-
ward traversal from a node in satisfier space along any one attribute of the node. For example, a
step forward along a feature path in the current node will bring the exploration to the next feature
node. A step backward on a feature at the current node will return the focus to the previous node.
The operations for navigating a rooted partial satisfier node PSat are CHOOSE and RETRACT. They

are shown in Figure 6.3.

6.3.1 The choose operation

The CHOOSE operation supports the resolution of branching conditions that arise during ex-
ploration. Support for choice at branch points is a key element for dealing with exploration non-

determinism.

6.3. THE TASK OF NAVIGATION

97

ey |

| Navigation |

|

Problem State

| Choice |

0

Eﬁt ata

? dotate

datata | Design States |

L

-

gxtrinsic

Visual Feature Node

- sxrringle »

+Intrinsic attributes «
+Extringic attributes =

0

D5 Formaliom [

4 intrinaie

intringic »

| Disjunctive Description

| TypeSystem |

Partial Satisfiers

Figure 6.5: The task of navigation comprises movement through through the operations of CHOICE
and RETRACT. The visual feature node maps the navigation task between the user and the design
space formalism.

Denigner
[stata]

Disjunctive Dasc

1

inilial query

Visual Feature Node] | Partial Satisfier]

Description |

select disjul

ot

canjunct of isjuncls
- feature valye maps _ _ Jj

_explorer
[state]

Figure 6.6: The CHOOSE operation. The designer specifies a disjunctive query description, ¢\/ .
The explorer returns the most general satisfiers as a conjunct of disjuncts. The conjunct is displayed
as a collection of feature nodes, each representing the disjunctive portion of the query. The vertical
bars indicate explicit focus of control. The shaded box indicates areas of mixed-initiative. The
horizontal lines indicate the direction and flow of control.

6.3. THE TASK OF NAVIGATION 98

Problems can be specified in the form of disjunctive descriptions such as, ¢\/ 1. Such a dis-
junction creates alternatives in the path sequence, requiring user intervention. In such a disjunctive
problem specification, the possible solutions to the problem description are represented as a con-
gunct of disjuncts in the visual feature node (see Section 5.2.2). The explorer presents all the
choice points of branching to the designer. The designer resolves the non-determinism by choos-
ing one of the disjuncts. Figure 6.6 shows the sequence of interaction involving the resolution of
non-determinism through mixed-initiative dialogue.

Further, choices made by the designer are recorded as visual feature nodes in SatSpace. Hence
the intentionality of the history of exploration is made transparent for future exploration. In the
example figure, this amounts to returning to the visual feature node and choosing an alternate
disjunct. Choice enables the designer to engage the power of the formalism but maintain control

over the generation of alternatives and their exploration.

6.3.2 The retract operation

I Visual Feature Node ” Partial Satisfier l

! [T —

compute regoiving nodes

........ compute nodes _ _ _
[t i=loflvalidicodes g -

1
I

i
[|
Designer L i \ explorer
[state] [[state]
I
I

select node

L)
retract{feature-valug) _ | }

0 feature-value map

Figure 6.7: A RETRACT operation over the design space. The designer specifies a visual feature
node to retract. The explorer computes the list of nodes that satisfy the retract operation on the
map. The designer selects a valid node from the returned list. The explorer computes the partial
satisfier and returns the feature value map corresponding to a retract operation on the node.

The RETRACT operation enables a designer to reverse the effects of an EXTEND operation on
the current node. The RETRACT operation is also the exploration equivalent of backing up the
current active path to the previous state. The path sequence in satisfier space enables the explorer
to perform a RETRACT operation on a substructure node in the partial satisfier and retract the
current state to any of the previous subsuming states of the current node. All paths from a
state to its immediate subsuming states and recursively to all subsuming states are accessible in
design space. Retraction permits the designer to access this ordering at the satisfier space. Thus

retraction corresponds to a form of information abstraction, providing the means to move from a

6.4. THE TASK OF SYNCHRONISATION 99

more detailed feature value to a less detailed one. Through RETRACT, the designer can move to
any previous feature-value map available in the path sequence. The designer can move back along
the current path sequence at the finest level of granularity, that is, an incremental w-resolution
step. Alternatively, the retraction can be to any node in SatSpace that is conceptually a more
general subsumer of the current node. Thus backwards movement in satisfier space is a useful
operation for moving either to any previous w-resolution state along a path sequence or to an
arbitrary state representing a more abstract state of the current node. As a concrete example of
backward movement in the design space consider the exploration of an abstract massing model of
a house of type house that contains a substructure node of type, kitchen. The designer begins with
an overall massing model of the house and creates an exploration fragment to detail the kitchen.
The designer can move backward along the resolution path of the kitchen exploration or change
the massing model of the house, which subsumes the kitchen exploration.

The generation and navigation operations operate at the level of a single path of exploration. It
is possible? to operate at the level of the design space structuring mechanism, subsumption. Large

grained interaction over design space is covered in the next section.

6.4 The task of synchronisation

The satisfier space is the collection of feature nodes traced by interaction. The design space is the
collection of all possible subsumption ordered states of exploration. Synchronisation addresses the
problem of unfolding the results of two distinct exploration paths in the satisfier space with respect
to their underlying ordering in the design space. In the formalism, exploration is organised by
logical components related through the property of subsumption. Subsumption ordering in design
space maintains information integrity. Through subsumption, it is possible to recover the results
of previous explorations. This may happen either along different attributes of the node or along
the same attribute of different nodes. The task of synchronisation is shown in Figure 6.4. These
operations address the problem of synchronising two paths into a single one. The interleaving of
path unfolding through synchronisation enables the designer to make large moves, shift between
parts of a design and retrieve or re-use previous paths of exploration. The operations for supporting

synchronisation are RECALL, ERASE, JOIN and MEET.

6.4.1 The recall operation

The RECALL operation enables the designer to retrieve exploration fragments from related path
sequences to assist in the current exploration. For example, the RECALL operation allows the

designer to access problems and solutions of past explorations. The type of a node in an exploration

2See the formal operations in Section 2.4 and the domain layer construct, SatSpace in Chapter 4.

6.4. THE TASK OF SYNCHRONISATION 100

| Synchronisation |

oor
| Recall | | Erase | | Join | Meet |
? 0 0 0
index Enode fpath
fpath

Satisfier Space e dotupace olement »| Visual Feature Nodes |
0

DS Formalism I
4 _intxinsic

Partial Satisfiers
)

donignapace element

Figure 6.8: The task of synchronisation comprises movement through through the operations of
RECALL, ERASE, JOIN AND MEET. The visual feature node maps the synchronisation task between
the user and the design space formalism.

1 } Visual Feature Node I Fatisfier Space l J Fartinl fintinfier | Design Space

i i i
: sinjoh Seaign tpace rom ndices
} : patialsatistiors_ | __ !
: ;

explorer
[state]

Recall nedn

|
L)
)
\
| ’ .. Jow fealure-value pair : :
)]
]
])
| H (]

Figure 6.9: The RECALL operation uses the underlying subsumption ordering over feature nodes.

6.4. THE TASK OF SYNCHRONISATION 101

path acts as an index for recall. The use of a feature structure type as an index to a collection
of design cases is covered in Section 2.4.2. A detailed view of indexing and recall is set out in
[Woodbury et al. 1999].

An example of recall is set out in Figure 6.9. The designer can query the satisfier space, SatSpace
for possible exploration paths corresponding to the type of the current node. The formalism returns
the indices (types) of possible nodes in design space matching the query as a feature-value map.
The designer can browse this collection and select a feature-value pair that satisfies the needs of
the current path. The formalism then commits this selection as a PSat in design space, updates
the satisfier space and presents the recalled PSat as a new feature-value pair.

This operation supports the recall of an entire path of exploration for a given partial satisfier
in design space. This corresponds to a notion exploring object evolution and design history. For
example, in the example of recall illustrated in Figure 6.9, the designer can select a node and
request its exploration history. In this case, the formalism can reconstruct the path sequence of an
index and return the history as a feature-value map. The designer can then unfold the resultant

visual feature node through interaction to trace its progeny and ancestor nodes in SatSpace.

6.4.2 The erase operation

Support for erasure is central to designing. Conventional design support systems provide undo,
delete and history mechanisms for dealing with erasure. Undo is the reversal of the last operation
performed. Delete applies to a selection and removes objects from persistent memory. History
records a list of operations and is used as a rudimentary form of version control. These systems
support only linear forms of erasure [Norman 1988] and do not support arbitrary levels of undo
[Cooper 1999]. In generative systems, this process is cast as the substitution of a more detailed
symbol by a more abstract one. For example, the grid definition process in Stiny & Mitchell’s
[1978b] Palladian grammar is an example of such substitution.

In design space exploration erasure corresponds to movement in the backward direction [Woodbury
et al. 2000]. Here, the separate treatment of undo, delete and history are replaced by a notion of
information abstraction. Section 2.4.3 provides an account of the movement operation hysterical
undo. In subsumption ordered design spaces, erasure fulfils the conventional model of undo as well
as the computation of less specific instances of the current feature node, which may not have been
retrieved previously.

The ERASE operation is a novel backward navigation technique that conceptually extends simple
retraction. In a subsumption-based representation, ERASE pertains to the uncovering of more
general states in the implicit design space, not so much to the removal of parts of a state. The
ERASE operation corresponds to the movement from the current feature-value pair to a less specific

one. The user interaction with the ERASE operation involves a mixed-initiative dialogue, similar

6.4. THE TASK OF SYNCHRONISATION 102

| I Visual Feature Node l 1 Satisfier Space i [Dartial fiatinfler I Design Space
¥ T T T

Designer I
[state]

explorer
[state]

ipdutn satisdler spnca ¢ |

| quiKy dnaign space I, it new satlsflers
-------]
i partial gatlstiers !

] i

L)

i

|

|

fte i

Figure 6.10: The selected node is removed from the satisfier space. This removal yields a change in
underlying design space, which is reflected as a set of possible, less specific partial satisfiers. The
designer selects one of the satisfiers and the ubsumption ordering is updated to relfect the erasure.

to the previous operators. The user selects the ERASE operation and applies it to a feature-value
pair in the current feature node. The explorer then determines the erasure possibilities outlined
above. An example of this operation in the task layer is illustrated in Figure 6.10. The designer
selects a node in SatSpace for removal. The visual feature node marked for removal is deleted
from SatSpace. The control then reverts the description formalism. The design space is queried for
all satisfiers that subsume the erased node and a feature-value map corresponding to the partial
satisfiers that subsume the node are returned to the‘ designer. The designer then selects a less
specific node that corresponds to the notion of information abstraction and commits this to design
space. The state from which information would be “erased” remains unchanged in the design space
while the designer’s perspective shifts to the the state that corresponds to the notion of information
abstraction. This concept provides a clean view of information deletion within the formal properties
of the explored space.The effect of an ERASE operation is to shift the focus of the exploration to

another node in design space.

6.4.3 The join and meet operations

The JOIN operation corresponds to computing the unification of two distinct exploration paths. The
MEET operation operation corresponds to computing the subsumption of two exploration paths.

The JOIN operation provides access to the formal movement operator for design-unification. This
operator is discussed in Section 2.4.4. Design-unification is defined with respect to the subsumption
ordered collection of feature structures as a least upper bound. Given two exploration paths, the
join of the two partial satisfiers is the result of combining the derivation steps of each path into a
single partial satisfier containing the union of design commitments in the two operands. Figure 6.11
shows an example of exploration using the JOIN operator.

A user interacts with the JOIN operation by selecting two paths from different states. If uni-

fication succeeds, the result is a single structure containing all information accessible along either

6.4. THE TASK OF SYNCHRONISATION 103

Unification of path1 and path2

Figure 6.11: Representation of a JOIN exploration operator. Path A : E : F : G and Path
A : B:C: D have a valid join. The feature node H represents the specialisation of the values of
paths, Pathl and Path2.

path in the two argument structures. If the paths are simply the root nodes of two feature struc-
tures, unification, if successful, results in a single structure combining them both and the resulting
structure would take its place in the design space above each of the argument structures. The
interactive JOIN procedure is useful in achieving the reuse of design fragments, particularly where
the two operand design states embody work on distinct aspects of a common problem.

Figure 6.11 depicts an illustration of the JOIN operation over nodes in a subsumption relation.
The example represents the decomposition of a single node A into two distinct explorations, signified
by the paths A: E: F : G and A: B: C : D. The paths leading to these nodes denote building
entities and the edges denote functional roles in the design. Both paths are partial alternate
explorations of some final design. The designer can decide to merge these two alternatives into a
final design using the JOIN operation. The final outcome represents the specialisation of Path 1
and Path 2 into a single design, denoted by the node H.

The properties of the MEET operation over two paths in the present a mechanism for synchronisa-
tion in the downward direction. This operator is discussed in Section 2.4.5. Design anti-unification
is defined over two partial designs as the most specific feature structure generalising the operands
— the greatest lower bound. The subsumption ordering over design space guarantees a greatest

lower bound. The result of a MEET operation over two paths is the conjunction of the shared

6.5. SUMMARY 104

Figure 6.12: Representation of a MEET operation. Paths A: E: FF: Gand A: B : C : D have a
valid meet. The feature node H represents the generalisation of Pathl and Path2.

derivation steps, which in the extreme case is simply the minimal design state. Contrary to JOIN,
MEET is guaranteed to succeed.

Figure 6.12 shows an example of synchronisation through the MEET operation. The example
represents the decomposition of a single node into two distinct explorations, signified by the paths
A:E:F:Gand A: B:C: D. The paths leading to the nodes represent two distinct and
partial alternate explorations. The designer can decide to compute the generalisation of these
two alternatives into a single design using the MEET operation. The final outcome represents the
collapsing of the two paths, denoted by Path! and Path2 into a single design, denoted by the node
H

As illustrated above, MEET presents a sophisticated means for large scale information synchro-
nisation. The explorer traverses the subsumption ordering and moves the computation through
mixed initiative interaction with the exploration formalism. The designer can choose to continue

the exploration process from the resultant state in the subsumption ordering.

6.5 Summary

This Chapter develops the task layer of the mixed-initiative interaction model for design space
exploration. The constructs of the task layer provide access to the formal design space move-
ment algorithms (Section 2.4 on page 32). Exploration moves are cast in terms of the interaction
metaphor, unfolding. Three user level constructs for unfolding, construction, navigation and syn-

chronisation of visual feature nodes are described. Through the unfolding of visual feature nodes,

6.5. SUMMARY 105

the designer constructs problems, navigates possible solutions to these problems and synchronises
nodes in the satisfier space. The specification of the task layer completes the development of the

mixed-initiative interaction model for design space exploration.

Part 111

FOLDS : FOLDABILTIY OF LARGE
DESIGN SPACES

106

107

Part III: On the Foldabiltiy of Large Design Spaces

“In the act of design we bring forth the objects and regularities in the world of our
concern. We are engaged in an activity of interpretation that creates both possibilities
and blindness. As we work within the domain we have defined, we are blind to the
context from which it was carved and open to the new possibilities it generates. These
new possibilities create a new openness for design, and the process repeats in an endless
circle.”

Winograd and Flores [Winograd & Flores 1987, p 178].

Part III presents an implementation of the mixed-initiative interaction model, a demonstration
of mixed-initiative unfolding of design spaces and the results of the study. It is divided into the

following chapters below:

- Chapter 7 discusses the design and implementation of FOLDS, a prototype implementation
of the mixed-initiative interaction model for design space exploration. FOLDS is used to
demonstrate mixed-initiative exploration through an example of massing configurations in

the context of architectural design.

- Chapter 8 presents the results of the study, the scope and limitations of the mixed-initiative
model and a discussion of future work for addressing the limitations of the current work in

design space exploration.

- The appendices, Appendix A, Appendix B, Appendix C and Appendix D, contain background
material on the typed feature structure implementation underlying the FOLDS system, a
collection of formal terms and definitions used in the thesis, a brief summary of the UML

notation, the description of the massing case and notes on the design and implementation of
FOLDS.

Chapter 7
Enabling mixed-initiative exploration

To examine how the model of mixed-initiative interaction developed in the thesis can support
exploration, an illustrative example of a concrete application in the domain of massing design is
presented in this Chapter. The application comprises the implementation of the prototype, FOLDS
and its connection to KRYOS, a collection of class libraries implementing the formal substrate
of design space exploration. Through the example implementation, mixed-initiative interaction

between the designer and the formalism in massing exploration are discussed.

7.1 FOLDS

FOLDS or the Foldability Of Large Design Spaces, is an implementation of the mixed-initiative
interaction model proposed in this thesis. FOLDS provides the interaction infrastructure for mixed-
initiative exploration through a suite of user interface modules that harness the domain, dialogue
and task layers of the mixed-initiative interaction model. Through these layers, the designer can
interact with the formal machinery of design space exploration. Notes on the design and imple-
mentation of FOLDS are given in Appendix D.

KRYOS is an implementation of the formal machinery of design space exploration [Burrow 2003].
It provides the formal substrate of the description formalism presented in Chapter 2. KRYOS main-
tains the relationships between constructs in the description formalism, provides object manage-
ment and maintains the integrity of design space structure. Notes on the technical architecture of
KRyo0s are described in Appendix D.

Several kinds of configuration problems arising in design have been identified in the literature on
configuration design. They include the following: layout dealing with composition of spatial layouts
in two dimensions [Flemming et al. 1988, Flemming & Chien 1995, Akin & Sen 1996]; massing
dealing with abstract composition of solids [Flemming 1990, Woodbury & Griffith 1993, Datta &
Woodbury 1998]; enclosure dealing with external-internal building envelopes [Woodbury & Chang
19954] and structure dealing with structural support systems [Fenves, Rivard & Gomez 1995].

108

7.1. FOLDS 109

Each kind of configuration problem requires different representation and algorithms. Massing,
the configuration of abstract three dimensional entities during the early phases of design is the
focus of this study. Although all configuration problems share the requirement for a design space
representation, each would require different type hierarchies and descriptions to be represented in
FOLDS. For example, exploration of structural configurations would require the mapping of the
domain layer constructs onto type hierarchies, descriptions and other domain specific tools suitable
for supporting structural configuration.

To illustrate how mixed-initiative supports exploration, the scope of the example problem is
restricted to the domain of massing configuration. In conceptual architectural design, massing
enables a designer to rapidly develop design schemes and explore possible alternatives in the form
of abstract compositional forms in three dimensions. The notion of massing configuration addressed
in the example is based on the detailed overview of massing given is the SEED-Config Knowledge
level [Woodbury & Chang 19959)].

Mixed-initiative exploration of massing configurations of single-fronted cottages is explained in
FOLDS. The example builds upon the kinds of configuration design addressed in SEED-Config
[Woodbury & Chang 1995b4] and the layout configurations of single-fronted cottages reported in
Woodbury et al. [1999]. A detailed specification of the massing configuration example is given in
Appendix C.

Mixed-initiative interaction between the designer and KR0S (formal substrate) through FOLDS
(interaction model) is described through the illustrative example from the domain. The demon-
stration addresses the states, structure and moves of exploration, the interaction process between
user and formalism and the role of mixed-initiative in supporting interaction.

The example of mixed-initiative exploration is described through the following :

- Domain interaction.
The domain layer implements four constructs, problem states, solution states, feature nodes
and satisfier space for tying the designer’s view of exploration (the domain) to the formal sub-

strate of KRyos. Mixed-initiative in the domain layer of FOLDS is described in Section 7.2.

- Dialogue in Exploration.
FOLDS implements the dialogue layer construct, visual feature node. Through interaction
with intrinsic and extrinsic attributes of a visual feature node, FOLDS enables mixed-initiative
coordination and communication between the designer and KRy0s. Mixed-initiative in ex-

ploration dialogue through FOLDS is described in Section 7.3.

- Exploration tasks.
FOLDS supports supports mixed-initiative in the task layer through the construction, navi-
gation and synchronisation of visual feature nodes. Examples of mixed-initiative in the task
layer of FOLDS are described in Section 7.4.

7.2. DOMAIN INTERACTION 110

7.2 Domain interaction

The domain layer comprises the constructs, PState, SState, FNode, and SatSpace. Together, they
reify problems, partial solutions, choices and history. Through this layer, FOLDS accesses the
KRYO0S substrate constructs, type hierarchy, appropriateness specifications, constraint system, gen-

erators and design space.

7.2.1 PState and SState

The process of defining and initialising a PState involves interaction with elements of a KRYOS
TypeSystem. The designer writes the KRYOs TypeSystem components comprising the type defini-
tions, types, the appropriateness specifications, FEATS and constraints, cons respectively. Each of
these components are recorded in text files. A detailed description of these files with respect to the

example discussed here is given in Appendix C.

Type Hierarchy

| massing_o | [masatona | [massing_c |

wealo |rotate | [trunuton |

Figure 7.1: The inheritance hierarchy of types. This hierarchy extends the example presented in
Figure 2.3 for interactive exploration. The extended hierarchy provides new additional types for
supporting massing design exploration including the types: command, geom, fu, du.

A PState is mapped onto the type hierarchy as shown in Section 4.2, Equation 4.1. An inher-

itance hierarchy comprising a list of 43 types representing the domain is shown in Figure 7.2.1.

7.2. DOMAIN INTERACTION 111

In the type hierarchy, above the type universal, two new types are introduced. The first type fu,
corresponds to function-units and the second type du corresponds to design-units in the SEED
Knowledge Level. The models corresponding to the type du can be thought of as designs for build-
ings; those corresponding to the type fu as architectural briefs. Immediately above du, the type
configuration is introduced. The configuration of a design comprises the subtypes layout, massing,
structure, enclosure. All of these types are abstract, serving to refine the type bottom and do not
introduce any features, but such abstract types can be used in constraint expressions. A massing
element is a refinement of the type configuration which is a subtype of type du or design_unit. This
example concentrates on the exploration of massing designs. Thus the type massing, corresponding
to abstract volumes that configure an overall building mass, are discussed in greater detail here.
A detailed representation of massing elements is shown in Figure 7.2. The type massing, inherits
two features from du, DU_LABEL, GEOM. It introduces three types of features, namely MASS_LABEL,
MASS_POS, FU. The feature MASS_LABEL serves to identify the geometric design_unit with a name.
The feature MASS_POS provides the magsing with a positional co-ordinate of type point. The feature
FU is a hook to the functional roles that the massing element may play during exploration. Massing
configurations can recursively contain other massings. The type massing has a sequence of sub-
types massing_a, massing_b... in which massing_a C massing_b. Each massing of type massing_n
introduces a feature MASSEL_N which denotes a sub-massing of massing. Thus a feature structure
representing a massing of type massing_f is a design configuration of a4+ b+ ¢+ d+ e sub-massings.
The type fu has a single sub-type house at which features corresponding to functions are introduced.
These features carry only functional information, in contrast to the the features introduced in the
type, sfc, representing a single fronted cottage. These features, corresponding to a porch, hall, row
of rooms and skillion, denote the particular spatial organisation of single-fronted cottages without
making commitment to actual addition or dimensions. Type house inherits from both building
and massing. The role of this type is to specialise the generic types, building and massing by
introducing features that correspond to explorations of residential buildings. The type sfc_house

inherits features from both sfc and house. Finally, the type sfc extends the type, sfc_house.

Description queries

The definition of a designer’s view of a problem is enunciated in Section 4.2, Equation 4.2. A PState
is specified through s a textual description with respect to the InheritanceHierarchy as explained in
the previous section. For example, consider the problem statement shown in Figure 7.3.

Problem statements in the description language are loaded and stored in the construct PState.
The example problem formulation shown in Figure 7.3 comprises a collection of path equations
stated in the form of a conjunctive description. For each valid disjunction-free description of this

form, there exists a corresponding PState. With reference to the massing example, the designer

7.2. DOMAIN INTERACTION

112

massing_£
DU_LABEL:value
PU:fu
GEOM:geom
MASSEL_A:massing
MASSEL_C s nanning|

*MASSEL_F:masning|
MASS_LAREL:valuel
MASS_POS:point

L

massing d
DU_LABEL:value
FU: Eu
GEQM: geom
MASSEL Aimanning

*MASSEL_UBsmanning
MASE LAWEL:valus
MASS_POS:point

masaing_c
DU_LABEL:value
FU:fu
GEOM:geom
MABSEL Ashasning|
SMAHSEL_C:manaing|
MASS LABEL:vaAlie

MASS_POS:point

massing_e
DU_LABEL:value
FU:fu
GEOM:geom
MASSEL_B:mannilng)
*HASSEL E:mamaing|
MASS_LABEL:valuol
MASS_POS:point

L

massing_a
DU_LABEL:value
FU:fu
GEOM:geom
*MASSEL_A :tmannd ng
MASS_LABEL: V& it

MASS_ POS:point

massing_b
DU_LABEL:value
FU:fu
GEOM:geom

*MASSEL_B t iannifi)
MASS LABEL;walue
MABS POS:point

1

massing
.ngz:ﬁELwalue layout structure enclosure
GE&M :geom OU_LABEL rvalun DU_LABEL :walug DU_LAREL:value
) EOM: EOM: GEOM:

*MASS_LABEL:value GEOM: geom GEOM: geom geom
*MASS_POS:point L

configuration

DU_LABELivalue

GEOM:geom

L 3

du fu

*DU_LABEL:Valus +FUNCTION : valiie

*GEOM: geom *FU_LABEL :¥alue|

Figure 7.2: Representation of massing elements. A type hierarchy fragment showing their inheri-
tance from the type du and the introduced features. The asterisk symbol marks features that are
introduced on that type.

(ENTITY A FU : massing'a) &
(ENTITY A FU == ENTITY'B FU)

Figure 7.3: A problem statement in the description language of KRYOS.

7.2. DOMAIN INTERACTION 113

wishes to explore massings with the following constraints on the problem domain, the feature path
ENTITY_A FU must be of type massing_a and that the former path must be structure-shared with
the path ENTITY_B FU. This statement of the problem is analogous to the query,

What are the possible massing configurations in design space that satisfy the constraints on their
features ?

The designer can compose such queries and pass it to KRYOS through the FOLDS interface. If
the description is well-formed, it is parsed by KRYOS into a feature node with the label, DescNode.
The successful parse of a description is loaded into FOLDS as a PState. This parsed description is
then avaialable for exploration by designer.

Consider the more detailed example shown in Table 7.1. Here, the problem to be explored is
encoded as a collection of path descriptions. Each path is connected by a conjunction, denoted by
the symbol &. Such a PState represents the initial element of an exploration path. The conversion
of this statement to a SState is enabled by user interaction. The domain layer construct SState
represents the notion of a partial design solution in FOLDS. In it, are embedded the symbol
substrate concepts of description, the satisfaction of a description as satisfiers and the trace of
intermediate solutions as partial satisfiers. Since problems and solutions are composed as feature

nodes in the designer’s view, this process is explained in the next section.

(SFC'HOUSE GEOM POS : point &
SFC'HOUSE GEOM COMMAND : command) &
FU : fu
DU 1 du

DU DULABEL == FU FU'LABEL

DU GEOM COMMAND == SFCHOUSE GEOM COMMAND
PORCH SFC'PORCH : du

ROOMROW ENTITY'A DU GEOM == SFC'HOUSE GEOM
ROOMROW ENTITY'B DU GEOM == DU GEOM)

© W YO Tt W N

R

Table 7.1: A collection of path equations in the form of a conjunctive description.

7.2.2 FNode and SatSpace

The PState is a compiled representation corresponding to the above description and is displayed in
the interface through a feature node FNode with the label, Satspace Element as shown in Figure 7.4.
Thus, a problem state, PState is the initial representation of a problem. It appears to the user in the
FOLDS interface as the first element with the label, Satspace Element. It is on this structure that the
process of modification and reformulation of problems occurs. Once a TypeSystem and a DescNode
are successfully parsed, the designer regains control of the dialogue and can either construct a
SatSpace and continue with the next state of exploration or formulate additional problems.

A Satspace Element labels a single exploration state, the FNode. An FNode composes a PState
and SState. The first element of a FNode is a PState as shown in Figure 7.4. By interaction with

7.2. DOMAIN INTERACTION 114

B SatSpace Element
E] T A
E-ENTITY_A
: Ii]«massing
E-FU
_ E-[1] massing_a
E-ENTITY_B
E- massing
B-FU
E-[1]

Figure 7.4: The label SatSpaceElement represents the feature node corresponding to the PState.

The figure shows a SState labelled by the type sfc_roomrow.two uncovered in the exploration of the
problem,

Gescaplions | 25- Resolulion

Bess Nodas line

G- SalBpace E Bagm piras AlteB
P mh Selact Disjunct At

) S35P80H Everreer

sfc
[+ Salspace Element
B [1] unlversal
£ SalSpace Element

3 sfc_roomrow_two
El ENTITY_A
| El'massing

d 25 _-ld‘l | s

Figure 7.5: The FNode with the label Satspace Element can be loaded into the interface after
parsing the query description. Each element represents the most general satisfier of a query, and
can be subject to interactive unfolding from this point upwards.

7.3. DIALOGUE IN EXPLORATION 115

this element, the designer can either modify (reformulate) the PState or generate a new problem
state. The rest of the elements of a FNode are entities representing SState nodes. These are the
partial satisfiers (solution states) of the FNode. By interaction with these elements, the designer
can unfold the possible solution states of the problem. The elements composed by label Satspace
Element become the subject of mixed-initiative dialogue with KRYOS via w-resolution and other
movement operations.

The SatSpace is the largest and most complex object in the domain layer. The technical details
and its relation to the formal substrate of subsumption ordered design space are given in Section 4.5
and in Appendix A. The design space descriptions are written as ASCIT text files' and accessible
through project names. The interface module of FOLDS is described in Section D. This interface
provides the interface hooks to initialise the Kryos system, load in project definitions, construct
the design space and begin the process of exploration. This module provides the interface for
loading a TypeSystem. Construction of feature nodes is mediated by an iterator-like object, i.e., a
SatSpacePath. Such an object is a path of computations from the statement of the problem, PState
to a partial satisfier. However, like all generative processes, a starting condition is necessary. In
FOLDS , exploration begins with an empty path, the path from the problem state PState to its
trivial conversion to a partial satisfier, PSat. Given the empty path, the user can explore the partial
satisfiers on this path by iterating through the possible elements of this path using the exploration
operations. The label SatSpace Element provides a hook to its SatSpace. So given an exploration
path, the user can explore element on this path by interaction.

In order to advance the exploration, the designer performs an incremental m-resolution operation
on this structure. The substructures corresponding to the results of the 7-resolution operation are
returned by the formalism as feature nodes. The designer then selects a substructure, SatNode to
the node at PORCH. This node can be selected from the feature-value graph shown in Figure 7.2.2
or from the massing elements shown in Figure 7.15. If the designer picked a type t from the list of
legal type_resolutions shown in Figure 7.9, then the exploration is advanced to the next element in

the satisfier space.

7.3 Dialogue in exploration

7.3.1 Unfolding visual feature nodes

As identified in Chapter 4, the visual feature node provides a sound representation for the commu-
nication and coordination of mixed-initiative dialogue. Two partial satisfiers of a query description
from KRYOS and their interpretation as visual feature nodes in FOLDS are shown in Figure 7.7.

Interaction with the visual feature node involves three possible behaviours. First, the feature

1 An example of these files are given in Appendix C.

116

7.3. DIALOGUE IN EXPLORATION

= Config enien Spece [Motule
Blodibe Dascripion AGSw D-Rencktn Yee Banles
u - -

ddss. e .\lo

MEIES0NE Cllen AL LB 091 Exphiczien beao

brorarm B Bopounm Exampi
Fails
- @ Desagn Spate Moditle
Modiss Deadrntion | WGSal Teackiifn) ow il
48 ARabm I\-Io_
| G Betpae Stleat A Locmlon, | suin L apiinton feie
SEED Eapairs Al
| Prorsiacidl PR Eai i
i Py fion
v DaeseTyis -

TUNNG | mading

|

g |
i — T

| HEIGHT : urtvergal Lo BaARpa0oBy THo _'“T‘E:.I
YEQBTH Cramii (20 e A

| MEE wwiter et Drsjurct Al

HEIGHT onworsd
TUIING (ol
HEWGHT . uriees i
SEED-Cordis Dwrigm Spate Moghule
ook [wdplon EGSa El-Resaumn ee o = — —

iiadavmsnt Y

RNSEpaon Ottect . A1 LooaRon] agn Explxanon hare i

srrE el R bt E onegpn [~
S Bkt I

Figure 7.6: Implementation of interactive unfolding of a feature-value map using the visual repre-

sentation of a feature node.

7.3. DIALOGUE IN EXPLORATION

117

LIVING : scalar

DINING : scalar
Partial Satisfier house

(a)

DESCTYPE :

LIVING : [HEIGHT : universa-l]

DiEscTYPE : scalar
DINING : [HE]GHT i universal]
scalar
Partial Satisfier house
(b)
.I:wnﬁ-ﬂ.n;l.“:ﬁ:: m———)
—— |
tLMING : scalar |
& DINING :scdar
Partlal Satisfer :
v DescTyps :house i
VLMVING :scalar
o I.HEIGHT suniversal

EEED Eaproes il

(¢)

Figure 7.7: Implementation of a visual feature node in FOLDS . The notation in (a) and (b), are

implemented as the interactive nodes shown in (c).

7.3. DIALOGUE IN EXPLORATION 118

node can be unfolded into its constituent subparts following the standard interaction and its values.
Second, an unfolding operation can be applied to a feature-value pair. Third, the unification of a
type with a feature node can be specified. An example of interactive node unfolding in FOLDS is
shown in Figure 7.2.2. In this example, a description query returns a partial satisfier of type sfc
comprising three feature-value pairs, LIVING, PORCH, DINING and their most general substructure
nodes. The elements can be expanded and imploded using the triangular arrows, while the selected

feature-value pair, SIZE of type wvector can be subject to exploration through mixed-initiative.

7.3.2 Implementation

Mixed-initiative unfolding between the designer and the explorer is implemented in FOLDS us-
ing the signal/slot protocol for communication between the designer and the generative system.
This protocol is a straight forward adaptation of the message passing system, signal-and-slots
[Dalheimer 1999] available in QT2. This communication method is combined with the visual feature
node interaction to form the basis for the interactive path operations in FOLDS. The signal/slot
mechanism, used for bi-directional communication between interface operations on a FNode and

KRyY0s, is shown in figure 7.8.

Kryos Facade
SLOTS:

Feature Value Pair,

SIGNALS:

i construct
FeatureNode omit signa extend
choose
retract

erase
join
meet

constructPath sl
extendPath Kryos
choosePath
retractPath
erasePath
joinPath
meetPath

4 update Feature Value map

Figure 7.8: Interactive node operations in FOLDS use the signal /slot mechanism for communication
with KRYOs. User interaction on a node, emits signals to the selected feature-value pair. Each
feature-value pair signal is connected to a slot that communicates with KRYOS. The results of the
operation update the initial feature node with the new feature value pair.

A signal is a type of message that is emitted when a particular event occurs, either initiated by
the designer at the interface or by the generative system. A slot is a function that is called in re-
sponse to a particular signal. Signals and slots are coupled together using the connect(signal, slot).
If the signal is interesting to two or more objects, the connect function can couple the signal to slots
in all the objects. Manipulation of a feature-value pair results in a signal. When a signal is emitted,

the slots connected to it are executed immediately in KRYOS. The results of the operation are then

?An elegant notification mechanism for communication belween sollware componenls is available in the QU dis-
tribution based on signals and slots. Signals are emitted by objects when they change their state in a way that
may be interesting to the outside world. Slots are normal member functions used for receiving signals. A single
slot can receive multiple signals and a signal can be broadcast to multiple slots.

7.4. TASKS OF EXPLORATION 119

returned to the feature node as an updated feature-value map. Technical details of the signal-slot
mechanism and dialogue through visual feature nodes are described in Appendix D. A deeper
understanding of dialogue awaits the discussion of interaction with the exploration operations in

the next section.

7.4 Tasks of exploration

The exploration operations enable the generation, navigation and synchronisation of visual feature

nodes in a satisfier space, SatSpace of candidate massing configurations.

(21 Fin ros Bovrmmrs Dok Widar ey

[— =

scalar
scalar

BEL: maiing
LIV g
MEWGHT: 1] snlvwrsd

BATHROON masung
DAHIHG maiying
HIEIGHT. 1}
vl

BATHROOM
DINING
KITCHEN

Fatching ievakving fypes fo s nedi
Fatohing Suttiruttimed Sor thiy nods
Subsbiztkire st Faature

dE & A B | |om e ABO SOBAECY B

Figure 7.9: Interactive node unfolding in FOLDS showing in the DesignSpace Module.

The Design Space module shown in Figure 7.9 is the main interface to exploration operations
in FOLDS. Its comprises a graphical view of the feature value nodes. The feature nodes are shown
in first level to the left and the substructure nodes are shown in the right. During interaction
with the movement operations, type resolutions or disjunctive points are shown in smaller pop up
widgets. The central portion of the module displays the massing designs graphically. Camera,
shading and transformation controls are provided for viewing massing elements. The console linked
to the unfolding process provides feedback during exploration.

The functionality of FOLDS in supporting exploration tasks through mixed-initiative is de-
scribed here. First, the process of feature node construction describes the problem formulation and
extension process through interaction with the CONSTRUCT and EXTEND operations. Second, the

navigation of the feature node using the CHOICE and RETRACT operations are described.

7.4. TASKS OF EXPLORATION 120

Finally, the synchronisation of feature nodes in satisfier space, supported through interaction

with the RECALL, ERASE, JOIN and MEET operations is discussed.

7.4.1 Extending feature nodes

Recall that feature node navigation is defined in Section 6.3 as the incremental movement from
the rooted partial satisfier to another along a defined path. The exploration path is advanced
by small-grained, monotone operations over partial satisfiers. As for all paths, for each element
in the exploration path of massing designs of single fronted cottages, there exists a feature graph
corresponding to its contents. Exploration is advanced by navigation operations on the feature-
value graph of the satisfier, PSat. The operations available for unfolding a given visual feature node

are CHOOSE and RETRACT.

Desc Nodes
B SatSpace Element
B sfc_roomrow
E-5FC_ROOMROW
B massing_f

(a) (b)

Figure 7.10: The description query, (SFC_ROOMROW : massing-f), its corresponding PState, labelled
as a DescNode (a) and massing representation of type, sfc_roomrow, (b).

The EXTEND operation is used to unfold the implicature of a conjunctive description query.
The designer can simultaneously perceive visual change in the substructures of the developing
exploration path and trigger changes in the functional feature node representation. Both forms are
indices to the underlying design space of massing solutions. As an example, consider the initial
query shown in Figure 7.10 for massing exploration.

The designer instantiates the feature SFC_LROOMROW and constrains it to be of type, massing_f.
Using the CONSTRUCT operation described in the previous section, its corresponding FNode is
provided for user interaction. The user instantiates the feature to the massing geometry, and
KRYOS infers its type to be at least as specific as sfc_roomrow. From this starting point, the
EXTEND operation is used to extend the thread specified by the type sfc.roomrow. The thread
of exploration shown in Figure 7.10 can now be extended by user interaction. In Figure 7.11,
the initial query is extended by adding the feature, ENTITY_A and committing the massing type,
massing-c as its value. The designer is then returned the visual feature node corresponding to
the advance in the computation associated with the extension of the query. Figure 7.12 shows the

introduction of the feature, ENTITY_C and committing the massing type, massing_d as its value.

7.4. TASKS OF EXPLORATION 121

Desc Modes

B SatSpace Element
=R = roomrow_twio

B ENTITY_A

- E-massing_c

B SFC_ROOMROW
H-massing_f

(a) (b)

Figure 7.11: The initial query is extended by introducing the feature, ENTITY_A with value of type,
massing_c. Its corresponding DescNode is shown in (a) and the massing representation is extended
to be of type, sfc_roomrow_two, shown in (b).

The mixed-initiative dialogue enables the designer to incrementally extend the computation path
until no further exploration through EXTEND is possible.

Note that though exploration begins at a point in the satisfier space specified by the type
sfc_roomrow, it is possible to move to other points in the satisfier space. From this point, it is
possible to direct the exploration through either query reformulation, or substructure extension.
Through mixed-initiative, these possibilities enable richer forms of interaction to explore the moti-

vating example of single-fronted cottage massing configurations.

Desc Nodes
EI SatSpace Element
E Elusﬂ:“_momrnw_three
B-ENTITY_A
' massing_c
E-ENTITY_C
E| massing_d
B-5FC_ROOMROW
& massing_f

(a) (b)

Figure 7.12: The exploration is advanced by introducing feature, ENTITY_C with value of type,
massing_d. Its corresponding DescNode is shown in (a) and the massing representation is extended
to be of type, sfc_roomrow_three, shown in (b).

To evaluate the range of interactions further, consider the state of the interface shown in Fig-
ure 7.13. The visual feature node generated in its attribute-value matrix notation of type sfc is as

follows :

7.4. TASKS OF EXPLORATION 122

sfc
DINING: massing
HEIGHT: [3] integer
SIZE: vector
OX: [4] integer
OY: [4]
LIVING: massing
HEIGHT: [3]
SIZE: vector
OX: [5] integer
OY: [5]
PORCH: massing
HEIGHT: [3]
SIZE: vector
OX: [5]
OY: [5]

In this example, the PState comprises three features LIVING, DINING, PORCH and their massing
values. Note the co-reference tags that indicate the heights of each of the geometries representing
the type massing are structure shared. Further note that the sizes, here denoting the layout
dimensions, are also the same. Given these constraints, the massing explorations generated from
this problem statement will maintain the type constraints associated with the type sfc.

Of specific interest is the fact that the designer is not restricted to exploration within these
constraints. The designer can return to a previous PState of the current exploration and change
the constraints to generate a new set of partial satisfiers. Further, the designer can modify a
generated partial solution of type SState and use this entity as a starting point for another cycle of
generation. Thus, the task of exploration through mixed-initiative allows the designer to modify,
change and retract not only the initial PState, but also use the generated collection of partial
satisfiers to advance the exploration.

While the distinction between problems and solutions is maintained in the domain layer, the
nature of the formalism permits interchange between these distinctions. Thus, mixed-initiative en-
ables the freedom to reformulate and change the nature of generation without losing the advantages
of the underlying order structure. The next section shows how the CHOICE operation permits even

more freedom in exploration in the case of disjunctive problem statements.

7.4.2 Choice in exploration

Disjunctive problem statements comprise the composition of queries as explained above. However,
the disjunction operator, “|” provides natural choice points to the selection of solutions in FOLDS.

As an example, consider the problem shown in Table 7.2.

7.4.

TASKS OF EXPLORATION

123

(| FHe tew Baokmeshs Dask Windows Hew

i —4 Su Design Space Moduts s
Descions. Ri-Rasolition
Lisse Nixies =
BS-5al5pace Element
El-house
&
#-scalr
B LIVING
E-SalSpace Elament
1) univareal
| B Satspace Elgmant

Fatum Valyes

S

Madules Hwip
HEIGHT 3]

Printing sat node. COMPLETED.
Selecled Disjunct Mode
Prinling at Node to consale .
house
LIVING: scalar

HEIGHT: [1] universal

LIVING

HEIGHT- [1]
Piinting sal node: COMPLETED, _]
Fetching resolving iypes for this node
Type resolulion:

]| |

|5 & R[B o Jcom [oow [t OB O S LBCRSS B

Figure 7.13: An EXTEND operation in FOLDS . Note that a description node of type universal is
introduced as a massing element. This element is extended by interaction to be of type house. A
list of features, DINING, LIVING of type scalar and the constraints on them (both share the value of
the feature HEIGHT) are incorporated into the satisfier. These features are assigned type scalar as
this type represents the most general or least specific resolution of the features under the current
problem statement.

7.4. 'TASKS OF EXPLORATION 124

E Fatipacn Eloment
o ake
UL ABEL
BFU
i GEGN
HI HALL
@ PORCH
LI ROOGMROW
B wfe_iddmita
B SFC_RODMNOW
(U]

B SFC_WIWSE
3 Sapsce Elwniid
B 1) urieein ol
1) Satipace st
B 1] universal

(a)

& SatSpace Etement
B sic
DU_LABEL
FuU
GEOM
& HALL
#-PORCH
B ROOMROW
: af
EENTITY_A
;B sfc_room
B SFC_ROOM
N massing_a
B ENTITY_B
=] sfc_room
B-5FC_ROOM
massing_h

SFC_HOUSE
(b)

B Salspace Element
B-sic

E DU_LABEL

FU

GEOM

HALL

E-PORCH

E ROOMROW

B oaniroes_|hiee
ENTITY_A
ENTITY_B
B ENTITY_C
B sfc_room
E SFC_ROOM
massing_c

SFC_HOUSE
(c)

B Ssl3pace Element
O sfc

DU_LABEL
FU
H GEOM
HALL
PORCH
E ROOMROW
- o I

10In i
ENTITY_A
ENTITY_B
ENTITY_C
B ENTITY_D

B sfc_room

B 5FC_ROOM

massing_d

SFC_HOUSE
(d)

Figure 7.14: The exploration of a disjunctive query description. The values of the conjuncts within
the disjunct are shown in the visual feature node representation in the left. Their corresponding
design states with massing representations and type extensions are shown in the right.

7.4, 'TASKS OF EXPLORATION 125

(SFC'HOUSE GEOM POS : point &

1
SFC'HOUSE GEOM COMMAND : command) & 2
(DU DU LABEL == FU FULABEL 3
& DU GEOM COMMAND == SFC'HOUSE GEOM COMMAND 4
& PORCH SFC'PORCH : massing’a 5
& PORCH SFC'PORCH MASSEL'A DU GEOM == DU GEOM) & 6
l
(SFC'HOUSE ROOMROW ENTITY A MASSEL'A == SFC'HOUSE GEOM) — 8
9
(SFC'HOUSE ROOMROW ENTITY A DU GEOM == SFC'HOUSE GEOM 10
& SFC'HOUSE ROOMROW ENTITY'B DU GEOM == DU GEOM) — 11
12
(SFC'HOUSE ROOMROW ENTITY A DU GEOM == SFC'HOUSE GEOM 13
& SFC'HOUSE ROOMROW ENTITY'B DU GEOM == DU GEOM 14
& SFC'HOUSE ROOMROW ENTITY C DU GEOM == DU GEOM) — 15
16
(ROOMROW ENTITY A MASSEL'A == SFC'HOUSE GEOM 17
& SFC'HOUSE ROOMROW ENTITY'B DU GEOM == DU GEOM 18
& SFC'HOUSE ROOMROW ENTITY C DU GEOM == DU GEOM 19
& SFC'HOUSE ROOMROW ENTITY'D DU GEOM == DU GEOM) 20

Table 7.2: Path descriptions from the massing example presented as a collection of disjunctive
descriptions. Disjunctions signify non-deterministic choice points in the satisfier spaces. The de-
signer constrains the massing exploration to the paths shown above and provides the constraints
on features through structure sharing and path equality.

In the above PState, the feature SFC_HOUSE is constrained by two path equations. Line #1
of Table 7.2, constrains the exploration path SFC_HOUSE GEOM POS to be of type point. This is
analogous to the natural language statement,

The position of the geometries of this type must be given as a point in the geometry window.

Thus any geometry that satisfies the feature SFC_HOUSE is associated with a point, provided by
the designer through the geometry interface. Line #2 states that the exploration path, SFC_HOUSE
GEOM COMMAND is constrained to be a command type of command. The path SFC_HOUSE PORCH
has the type massing_a and its extension path MASSEL_A DU GEOM is structure shared with the
current path DU GEOM. The next part of the query is a collection of four disjunctions describing
the constraints on the entities that are introduced in the path SFC_HOUSE ROOMROW. Line # 7,
10, 13, 17 in Table 7.2 equate the structure at the end of path SFC_HOUSE ROOMROW ENTITY_A
MASSEL_A with the current structure DU GEOM. The rest of the query constrains the formalism
to generate alternate arrangements for the value of ROOMROW comprising one, two, three or four
massings. The disjunctive choice points are maintained within the SatSpaceEl representation, such
that they can be displayed in a graphical interface for user intervention as shown in Figure 7.15.
In this figure, two possible resolution paths exist. The user must choose between the two disjuncts

in order to resolve the non-determinism.

7.4. TASKS OF EXPLORATION 126

W[P tew Bosiwans D Wiwoss Wil
[Descdglont. Bi-Resoluon :
[asc tioues Ensur Vatwes | oge Types

iodes |
| S;ISE&W Elmonl
[T sl

=] dmeesntt &

- SCEniy Mol
otles | Heip
TICToTTT qET
disjunct_0x5125120
sfc
PORCH: massing
HEIGHT: [3) universal
SIZE: veclor
OV: [4] universal
LIVING: massing
HEIGHT: [3]
SIZE: vector
ov: [
ox: {4
DINING: scalar
HEIGHT: (3]
Prinling sat node: COMPLETED
Sl

= st af Oprations CERA

l disjunci_0x8125120

Figure 7.15: Interface to resolving disjunctions with the CHOICE operation in exploration. Disjunc-
tive problems present the user to with the alternative possiblities to resolve.

In the example above, mixed-initiative in FOLDS presents a natural way to resolve the non-
determinism arising out of the resolution of disjunctive problems, that is, problems with many
alternative arrangements. This is necessarily an explanatory example: the scalability of the propo-
sition remains to be tested in very large sets of disjunctions. One solution to very large sets of

disjunction is foreshadowed in the discussion on incrementality in Section 2.4.1.

7.4.3 Retract

As described in Section 6.3 on Page 96, the RETRACT operation enables the exploration to move to
any previous feature-value map available in the path sequence. In the case of the massing example,
path retraction provides the means to move from a more detailed feature value to a less detailed
one. Consider the exploration of a massing model of a house as shown in Figure 7.12. The designer
begins with an overall massing model of the house of type sfc, creates an exploration fragment to
detail the ROOMROW to the type, sfc_roomrow_three. At this point in the exploration, it may be
necessary to abstract away some of the exploration details and redirect the exploration along a
different path. The RETRACT operation enables a designer to reverse the effects of the most recent
EXTEND operation on the current node. Further, the RETRACT operation is also the exploration

equivalent of the conventional model of undo, which is the action of backing up the current path

7.4. TASKS OF EXPLORATION 127

to the previous state. The “path sequence” in the design space is the set of feature nodes that are
more abstract (less specific in terms of information) than the current node.

Using this operation, the designer can then return to change the exploration of the massing
model, and modify aspects of the earlier ROOMROW exploration and retract the massing to the
type sfc_roomrow, which is a less specific type. This act of moving to less specific states during

exploration is illustrated in Figure 7.16.

[lft_momww_tnw |

3

house_massing

I house I [conﬂgumﬂon

universal

Figure 7.16: Path retraction enables the designer to move from the currently selected substructure
to the set of states that are strictly less specific in terms of information than the current substruc-
ture. The feature node at the end of the path SFC_HOUSE ROOMROW can be retracted along the
types sfc_roomrow_three, sfc_roomrow_two, sfc_roomrow.

Mixed-initiative enables the explorer to perform a RETRACT operation on the substructure node,

denoted by the feature path SFC_HOUSE ROOMROW in the partial satisfier. This operation allows

7.4. TASKS OF EXPLORATION 128

the user to move back along the current path sequence at the finest level of granularity, that is, an
incremental m-resolution step. Thus, the massing entities denoted by the types sfc_roomrow_two,
sfc_roomrow_three, sfc_roomrow_four are available to the designer. The designer can choose to move
backwards along this path using the RETRACT operation to move to the less specific states denoted

by the types, sfc_roomrow, sfc_roomrow_two, sfc_roomrow.

7.4.4 Reuse of past exploration

In the massing example thus far, exploration moves along a single thread of exploration are de-
scribed. As discussed in Section 6.4, synchronisation operations provide the designer with the
ability to integrate two distinct threads of exploration in the design space into a unified state.

The RECALL operation allows the designer to access the problems and solutions of past explo-
rations which have been stored in a database of exploration histories for the given design project.
In the case of the massing example discussed above, note the descriptions in Figure 7.17. They
represent distinct queries over the massing type system undertaken in different sessions. It is pos-
sible, using the RECALL operation to query the design space, seeking to find exploration paths that
might satisfy the specification for the current path SFC_HOUSE ROOMROW ENTITY_C SKILLION.
Using unification, mixed-initiative dialogue can incorporate past exploration paths into the current
path of exploration. Since the monotone operations based on incremental mw-resolution maintain
information integrity and consistency in the space, it is possible to engage the RECALL operation
to recover the results of previous explorations. In another thread of exploration, the SKILLION is
elaborated in the exploration of type house. The RECALL operation is used to extend the path
ROOMROW ENTITY_C to a skillion. The result of the recall is shown in Figure 7.17.

The RECALL operation can operate on two levels. First, the recall of paths corresponding to
the type of the curent node, which acts as an index for recall. The use of a feature structure as an
index to a collection of design cases is covered in [Woodbury et al. 1999]. Second, this operation
deals with tracing the exploration history of a current node in the design space. This corresponds
to a notion of object evolution and design history of the current node. This operation allows the
dialogue layer to enable extended interactions across and between sessions, between different parts

of the design space and between different designers.

7.4.5 Erasure

The definition of information removal, or erasure [Woodbury et al. 2000] is a novel backward
navigation technique [Woodbury et al. 2000]. The ERASE operation conceptually extends simple
retraction as shown in Figure 7.16. The ERASE operation allows the designer to perform non-
destructive undo, destructive deletion and suppression of features in the design space.

Figure 7.18 shows how the ERASE operation is used in massing exploration to set the value of the

7.4. TASKS OF EXPLORATION 129

Gl SatSpace Element
Bl sfc_house
HALL
PORCH
E-ROOMROW
B sfc_roomrow_three
ENTITY_A
ENTITY_B
B ENTITY_C
I =0 1llin
& SaiSpace Element

(a)

B SalSpace Elemenl
' B house
DINING
LIVING

B skillian
B BATHROOM
massing_d
O HALLWAY
massing_d
| B KITCHEN
massing_c

(b)

& SalSpace Element
& sic_house
HALL
PORCH
B ROOMROW
B sfc_roomrow_three
ENTITY_A
ENTITY_B
B ENTITY_C
a
B BATHROOM
massing_d
E HALLWAY
: massing_e
E KITCHEN
massing_c

(¢)

Figure 7.17: Using the RECALL operation. The exploration of type sfc_house is developed with
the features PORCH, HALLWAY, ROOMROW shown in (a). In another thread of exploration, the
SKILLION is elaborated in the exploration of type house shown in (b). The RECALL operation is

used to extend the path featroomrow entity_c to a skillion by combining (a) and (b). The result of
the recall is shown (c).

7.4. TASKS OF EXPLORATION 130

B sfc_hause
HALL
E'ROOMROW
B sfc_roomrow_three
Bl ENTITY_A
massing_a
B ENTITY_B
2] nassitg_l
E ENTITY_C
massing_c

(a)

& sfc_house
HALL
E-ROOMROW
3 sfc_roomrow_three
B ENTITY_A
massing_a
B ENTITY_B
¢ e
B ENTITY_C
massing_c

(b)

Figure 7.18: The ERASE operation allows the designer to remove massing entities from a configura-
tion. The exploration of type sfc_house is developed with the features PORCH, HALLWAY, ROOMROW
shown in (a). The massing entity corresponding to the ENTITY_B is deleted from the composition
leaving the massing and corresponding feature node shown in (b).

7.4. TASKS OF EXPLORATION 131

feature path ROOMROW ENTITY_B to the type universal to suppress its effect on the massing. The
intensional nature of the feature nodes is apparent in this operation, as erasure is achieved by feature
suppression rather than removal. The only difference is that the new states are are conceptually
less specific than the feature nodes from which they are computed. An implementation of erasure

in the general case as outlined in Section 2.4.3 awaits further research.

7.4.6 Joins and Meets

Since unification is defined with respect to the ordered collection of feature structures as a least
upper bound, it is also possible to conceive of unification as a formal means for combining two
partial designs signified as exploration paths in a coherent, single exploration path. The JOIN
operation provides a means for computing the unification of two distinct exploration paths. In
the implementation of FOLDS , JOIN failed consistently to result in a least upper bound. While
JOIN remains a valid synchronisation operation, it requires stringent type compatibility in order to
succeed. The unification of partial designs through JOIN requires further work, both at the level
of the substrate as well as in its implementation in FOLDS. The MEET operation corresponds to

computing the subsumption of two exploration paths.

(a) (b) ()

(d)

Figure 7.19: The MEET operation allows the designer to explore massing entities from a configu-
ration through synchronisation of multiple paths of exploration. The MEET of the configurations
shown in (a), (b) and (c) is the configuration of type sfc shown in (d).

Figure 7.19 depicts massing states structures in a subsumption relation. The example represents

the decomposition of a massing design using the MEET operation. The upper nodes denote building

7.5. DISCUSSION 132

entities from separate exploration. The lower node denotes their respective reductions to single
entity.

The MEET operation presents a sophisticated means for large scale information synchronisation.
A user interacts with the MEET operator by selecting two paths, each from a different state as shown
in Figure 7.19. The explorer then traverses the subsumption ordering and moves the computation
to the meet of the selected states. The user can then choose to continue the exploration process as
the result is a design state automatically placed somewhere in the subsumption ordering. If the two
paths are the root nodes of states in the design space, anti-unification produces the most specific

subsumer of those two states.

7.5 Discussion

From the implementation of FOLDS and an example demonstration in the exploration of massing
designs for single-fronted cottages, it is now possible to discuss the findings arising out of the

prototype implementation. The findings are as follows:

- A substantial effort is required to author a valid type system in terms of specifying types,
features and constraints on types. In the current implementation, a type system is constructed
manually with a text editor and this process remains error-prone. To make this process

interactive, extending the domain layer to the authoring of type systems is necessary.

- The clear distinction between problems and solutions identified in the domain layer is blurred.
In the example discussed above, following the SEED Knowledge level, functional decompo-
sitions and design solutions are specified in different parts of the type hierarchy. This is
borne out by the example to be an unnecessary construction for design space exploration. As
implemented in FOLDS, problem formulation and solution generation are distinct processes.
However, in the mixed-initiative environment, these categories are interchangeable. This is a
reflection of real world designing, where solutions and problems remain intertwined in com-
plex ways. Further, in the formal substrate, no distinctions are made between problems and

solutions.

- Mixed-initiative permits the satisfier space to be independent from the design space. The
real power of this independence is revealed in the making of choices and the recording of
the history of exploration. A trail of exploration rationale is built up in the satisfier space
and these are easily accessible to the designer. This permits the designer to experiment
and explore with a range of problem statements, without losing the threads of intentional
exploration. Mixed-initiative permits the complexity of design space (large subsumption
ordered graph) to be encapsulated in satisfier space (folded intentional tree). This proved to

be the most successful aspect of the implementation.

7.5. DISCUSSION 133

- A loss of generality comes with the tree formulation of the SatSpace. This is a trade off with
respect to ease of use and implementation. This loss of generality in satisfier space means
that the implications of redundant states through structure sharing in the case of non-trivial
type hierarchies (the massing example has only 43 types) is not currently known and awaits
a construction of larger automated type systems. However, this is not a problem in theory:
given the subsumption ordering of design space, redundant states would be automatically

detected3.

- The dialogue layer construct of visual feature nodes is posited in Chapter 5 as a straight for-
ward adaptation of feature structure notation. As borne out by the example implementation,
it demonstrates the mixed-initiative nature of interaction but is a limiting case for explo-
ration. The visual feature nodes generate and control the configuration of massing designs.
The visualisation of these designs is achieved through a straight forward mapping into the
three-dimensional viewer in FOLDS. A more compelling interface metaphor, for example the
direct manipulation of graphic entities, is necessary for seamless exploration. As far as possi-
ble, dialogue needs to be construed in terms of the language designers understand best, two
and three dimensional visual representations, not in terms of symbol level abstractions and
their visualisation. The lack of direct manipulation of massing entities to further exploration

remains a limitation in FOLDS.

- The tasks of exploration in FOLDS mirror the movement algorithms of the formalism. All of
these are conceptual variations of information ordering and inference operations available at
the symbol level. Currently, the implementation is truly mixed-initiative in three operations,
EXTEND, CHOICE AND RETRACT. At the time of writing, ERASE is performed without mixed-
initiative interaction. As explained in the example, the feature path is suppresed in terms of
the formulation enunciated in Chapter 2, Section 2.4.3. The complexity of mixed-initiative

erasure at the user level requires further research.

- The case of JOIN proved problematic to demonstrate through mixed-initiative. The theo-
retical soundness and completeness of this large grained synchronisation operation has been
argued in the thesis (See for example, Section 2.4.4 and Section 6.4.3). However, the demon-
stration of its validity in the general case in FOLDS awaits further research into the nature
of synchronisation from the perspective of implementation. The successful implementation
and demonstration of JOIN requires careful and automated construction of the TypeSystem,
in relation to type checking for computing compatibility of joins. In the manual example
illustrated here, this proved difficult to achieve as types became specialised and incompatible

fairly early in the process.

3This is foreshadowed in Woodbury et al. [2000] discussion of duplicate detection

7.6. SUMMARY 134

- The case of MEET proved to be the only large scale operation demonstrated through mixed-
initiative. This is attributed to the fact that the formalism consistently returns the greatest
lower bound, which in the example is the simple massing of type sfc_roomrow. Reconstructing
the intermediate nodes in the path to the greatest lower bound would make this operation

more compelling as a metaphor for exploration.

- The FOLDS implementation opens a new area in terms of query and retrieval interfaces for
recall operations. In the case of RECALL, simple substitution rather than inference is used in
the current example due to the lack of persistence and storage mechanisms for exploration
results. However, given a persistent data storage of past explorations, mixed-initiative is
potentially an effective mechanism for search, match and retrieval of past explorations. Taken
together, a type hierarchy editor, a visual description authoring environment and a repository
of exploration results present a potentially powerful environment for developing a new form

of systematic design reuse.

7.6 Summary

This chapter describes a prototype implementation, FOLDS, of the mixed-initiative interaction
model developed in Part II. The FOLDS prototype is implemented over the KRYOS, an implemen-
tation of the formal machinery of design space exploration. FOLDS demonstrates mixed-initiative
interaction between the formalism and the designer. An example of mixed-initiative exploration
in the domain of three dimensional configurations of massing designs is described. Through this
example, the role of the mixed-initiative interaction model during exploration is demonstrated. In
the next chapter, the conclusions of the study with reference to the hypotheses investigated, the de-
velopment of the mixed-initiative interaction model, the prototype implementation and directions

for future work are presented.

Chapter 8

Conclusions

This study investigates the role of mixed-initiative interaction in design space exploration. In this
Chapter, the results of this investigation, the constraints on the results and directions for further

work are described.

8.1 Mixed-initiative Exploration

The research hypotheses on the role of mixed-initiative in design space exploration, posed in Sec-

tion 1.4 on page 19 can now be addressed.

8.1.1 Assumptions

The assumptions underlying the study are as follows:

1. The process of computational exploration can be formally encoded with a design space descrip-
tion formalism.
The design space exploration formalism provides a sound basis for representing the concepts
of state, move and structure. First, types, features and descriptions taken together provide
well founded support for representing problem and solution states. The state representation
supports the formal properties of intentionality, partialness, structure sharing, and cyclicity as
discussed in Section 2.2.3. Second, the inference algorithms over this representation support
a principled notion of exploration moves that enumerate partial states under a subsumption
ordering. Moves generate new states, navigate and modify existing states. These moves are
discussed in Section 2.4. Finally, underpinning the exploration of partial satisfiers is an order-
ing based on subsumption. In Chapter 2, a description formalism for representing the formal
substrate comprising state, move and structure is described. The work on the formal sub-

strate has been reported in Woodbury et al. [1999], Burrow & Woodbury [1999], Woodbury

135

8.1. MIXED-INITIATIVE EXPLORATION 136

et al. [2000] and in Chang’s [1999] and Burrow’s [2003] theses. The implementation of the

formal theory of design space exploration is available in KRYOS [Burrow 1999].

2. Integrating the role of the designer in computational exploration with a description formalism
requires an interaction paradigm.
Interaction paradigms provide a mechanism for introducing human design intent into compu-
tational exploration. Such a paradigm provides a systematic exposition of how communica-
tion, coordination and control strategies enable a designer to interact with a formal system.
Manual, automated and cooperative paradigms for integrating the user with the system have
been proposed in the literature. These models are described in Section 1.2. These accounts
adopt a “black-box” approach to user interaction, where communication, coordination and
control is based on the apriori division of labour between user and system. These paradigms
posit a neat separation of the tasks to be performed between the user and the system under a
global control policy. The mixed-initiative interaction paradigm models a more fine grained
division of labour, allocating and sharing control over the same task jointly between the user
and the system. This fine grained division of control offers a more flexible mechanism for

acquiring and relinquishing initiative between the designer and the formalism.

8.1.2 Research hypothesis

The mized-initiative formulation for supporting user interaction with a formalism is a useful
paradigm for design space exploration. To identify how the mixed-initiative paradigm of interaction
can address the problem of computational exploration, the following hypothesis was investigated:

That a mized-initiative model of interaction presents a promising new approach for integrating
the roles of the user and the description formalism in computational exploration.

This hypothesis posits the need for a mixed-initiative model of interaction for supporting de-
sign space exploration. The requirements necessary for addressing mixed-initiation exploration are
identified in Chapter 3. To integrate the designer’s view of exploration identified in chapter 1
with the entities supported by the description formalism described in Chapter 2, an interaction
model for supporting mixed-initiative in developed in Part II. To address the requirements of
mixed-initiative, the thesis develops an interaction model comprising the following: a representa-
tion of the domain, a communication layer for dialogue between the user and the formalism and
operations for performing the tasks associated with exploration. The interaction model proposes
feature node unfolding as the interaction paradigm for integrating the role of the user and the role
of the formalism in design space exploration. Feature node unfolding is implemented in FOLDS.
The prototype comprises interfaces for constructing fcaturc nodes, a navigator of interacting with
visual representations of partial satisfiers, a viewer for visualising geometry in partial states and

a communication mechanism for coordination and control of dialogue between the designer and

8.1. MIXED-INITIATIVE EXPLORATION 137

the formalism. Mixed-initiative interaction is demonstrated through an example in the domain of
architectural design: the exploration of three-dimensional massing configurations.

The fundamental contribution of mixed-initiative interaction to design space exploration is
that it enables the designer to maintain exploration freedom, preserves the underlying structure of
exploration and permits a finer granularity of dialogue.

These characteristics of the mixed-initiative formulation of interaction can be summarised as

follows:

1. Maintenance of exploration freedom.
Mixed-initiative maintains freedom for incorporating the intentional actions of the designer at
any state of exploration. The satisfier space provides a unified model for representing the set
of problems, subproblems, problem revisions and associated designs that a designer actually
considers. Problems need not be fixed. Designs can be partial or complete with respect to the
initial problem formulation. A designer may make varied choices that imply different kinds
of design space operations. All are captured in the satisfier space. Symbolically, the satisfier
space is a tree of visited design possibilities. The independence of the satisfier space from
design space is developed in Section 4.5 and demonstrated in the example of mixed-initiative

exploration outlined in Section 7.2.

2. Preservation of order.
Mixed-initiative enables order preserving exploration. The structure of exploration is repre-
sented through the ordering relation of subsumption. The concept of an ordered design space
underpins interaction between the designer and the description formalism. In it, the collec-
tion of exploration states are ordered by the relation of subsumption. Exploration moves
are cast in terms of moves in a design space upwards or downwards in an information order-
ing. In Section 2.3, the ordering of exploration structure through subsumption is described.
Mixed-initiative provides a principled way for keeping track of additions, deletions and other
forms of change as the exploration progresses without negating the underlying subsumption

ordering of possible states.

3. Granularity of interaction.
Mixed-initiative permits a finer granularity of interaction between between the designer and
the formalism. It supports incrementality and turn-taking in the process of exploration dia-
logue. Through incrementality, emphasis is shifted from the the final results of exploration to
its intermediate constructive steps. Through turn-taking, the formal movement algorithms
are made accessible to the designer. The incremental, turn-taking model of interaction per-
mits a sound treatment of exploration non-determinism, where disjunctions in description

queries, alternative constraints, conflicts and errors can be resolved by user intervention.

8.2. CONTRIBUTIONS OF THE THESIS 138

8.2 Contributions of the thesis

The mixed-initiative interaction model for design space exploration is predicated on the develop-
ment of three interface level constructs: the feature node representation (Section 4.4) in the domain
layer, a visual notation representing feature nodes (Section 5.2.1) in the dialogue layer, and a set
of unfolding operations over feature nodes (Section 6.1) in the task layer. The contributions of the

thesis are as follows:

1. Feature node representation.
An interface construct for composing both the substrate concepts and the designer’s view of

exploration in a common representation.

2. Visual notation for feature nodes.
A visual notation for presenting the input and output modalities of both the formalism and

the user in an integrated manner.

3. Unfolding operations.
Operations for unfolding feature nodes both by formal computation (intrinsic attributes) and

by user interaction (extrinsic attributes).

8.2.1 Feature node representation

The feature node is an interface construct for composing the designer’s view of exploration and
the substrate concepts available in the formalism into a common representation. The designer’s
view of exploration is in terms of problems, solutions, choices and history. In this view, the
process of exploration is elaborated as problem formulation and reformulation, solution generation
and reuse, choice-making over alternatives and revisions and the ability to use the rationale or
history of exploration. The symbol substrate provides a formalism stated in terms of the logical
language of typed feature structures. It is a generic theory supporting the computational concepts
of information ordering, partiality, intensionality, structure sharing and satisfiability. The symbol
level is construed in terms of types, features, descriptions and resolution algorithms. This approach
to search and exploration through mixed-initiative is reported in Datta & Woodbury [2000] and
Datta & Woodbury [2001].

The role of the domain layer in the mixed-initiative model of exploration (described in Sec-
tion 3.2.3) is to support the designer’s view of the domain, provide a shared representation that
mediates between the designer’s view and the formal substrate and support joint responsibility over

domain goals. The feature node representation addresses these requirements as follows:

- Support for the designer’s view of the domain.

The feature node, FNode expresses the relationship between a problem state, PState and an

8.2. CONTRIBUTIONS OF THE THESIS 139

alternative design that is a partial solution to the problem, SState and enables the designer to
access the processes of problem formulation, solution generation and design space navigation.
The FNode captures what choices a designer might make and how a designer would make such
choices, that is, design intention. Finally, a Satisfier Space composes a set of ancestor and
progeny feature nodes recording the history of exploration, as uncovered by the designer’s
actions. The satisfier space is a a tree of visited design possibilities such that each element
in the satisfier space is a feature node, Fnode, which connects to the underlying design space

machine.

- Joint responsibility over goals.
The goals of exploration are bounded by the domain of discourse encoded in the TypeSystem.
The designer can specify problems as descriptions which appear in the interface as feature
nodes. The results of formal exploration are also cast in the same representation. An exam-
ple of such a domain is given in Section 7.2. The first element of a FNode is a PState (see
Figure 7.5). By interaction with this element, the designer can either modify (reformulate)
the PState or generate a new problem state. The rest of the elements of a FNode are entities
representing SState nodes generated by the formalism. These are the partial satisfiers (solu-
tion states) of the FNode. By interaction with these elements, the designer can unfold the
possible solution states of the current problem. In this manner, through feature nodes, both

the user and the formalism share joint responsibility in advancing the goals of exploration.

8.2.2 Visual notation for feature nodes

The visual notation presents the input and output modalities of both the formalism and the user
in an integrated manner. The visual representation of a feature node is based on extensions to the
AVM notation developed in computational lingustics. While the AVM notation visually describes
feature structures, the notation introduces typed feature structures as the medium of dialogue and
a mode of user manipulation.

The role of the dialogue layer in the mixed-initiative model of exploration (described in Sec-
tion 3.4.3) is to support the representation (input and output) and integration (turn-taking) of
dialogue between user and formalism. The visual notation for feature nodes addresses these re-

quirements as follows:

- Support for the representation of dialogue.
The intrinsic attributes of a feature node, FNode are mapped onto elements of the AvM nota-
tion. This mapping annotates the feature node with the type, feature names, feature values
and co references taken from the underlying symbol substrate. Through the intrinsic at-

tributes of a feature node, the formalism is able to represent its input and output modalities.

8.2. CONTRIBUTIONS OF THE THESIS 140

The notation is extended into interaction objects by specifying interaction logic for represent-
ing the extrinsic attributes of a feature node. The feature structure representation and the
interaction logic are brought together in the dialogue layer construct, the Visual feature node.
The designer’s input and output modalities are handled through the extrinsic attributes of a
feature node. The connection between a visual feature node, VNode and a FNode using the

AVM notation is described in Section 5.2.1.

- Support for the integration of dialogue.
The process of mixed-initiative dialogue during exploration is implemented using visual fea-
ture nodes. Through this interface construct, the user is able to participate in a dialogue with
the description formalism. The dialogue layer supports a model of incremental turn-taking.
Turn-taking allows the designer to manipulate the output from the formalism through visual
means. It permits the formalism to manipulate the input from the designer in terms of typed

feature structures. The integration of dialogue through user interface objects is implemented
in FOLDS and is described in Section 7.3.1.

The graphical notation for mixed-initiative dialogue developed here is reported in Datta &
Woodbury [2002] and Datta [2002].

8.2.3 Unfolding operations

Operations for unfolding feature nodes both by formal computation (intrinsic attributes) and by
user interaction (extrinsic attributes) are supported. To incorporate mixed-initiative, it is necessary
to integrate system-driven and designer-driven moves in the task layer. This is addressed by treating
both types of operations under a common conceptual metaphor, termed, unfolding. Visual feature
nodes can be unfolded by formal and behavioural properties during exploration.

During exploration, system-driven moves modify the intrinsic attributes of a feature node. The
unfolding of the intrinsic properties of a visual feature node is based on the movement operators of
the exploration formalism described in Section 2.4. The formal portion of an unfolding operation
operates on a partial satisfier PSat through the visual feature node, VNode.

Designer-driven moves represent the unfolding of the extrinsic attributes of a visual feature
node. The unfolding of extrinsic properties of the feature node is based on interaction behaviour of
a visual feature node, VNode. These behaviours are described in Section 5.3. The designer operates
on the visual elements of the feature node to affect change during exploration and these changes
are cast as extrinsic to the representation.

The mixed-initiative unfolding of feature nodes comprises the generation, navigation and syn-
chronisation of feature nodes. The role of the task layer in the mixed-initiative model of explo-

ration (described in Section 3.3.3) is to support the construction and reformulation of problems,

8.3. CONSTRAINTS ON THE RESULTS 141

the navigation of problems and solutions and the synchronisation of exploration results. Unfolding

operations over feature nodes address these requirements as follows:

- Support for problem formulation and solution generation.
The designer represents the problem state through a query description, ¢ in the attribute-
value description language. The explorer converts ¢ using the satisfiability algorithm into a
problem state, d. The CONSTRUCT operation takes a problem state d, computes its visual
feature node representation, VNode, and displays it for user input. Through the EXTEND
operation, the designer can interact with the resolution process, by selecting a feature-value
pair and seeking to extend it to the next state. Exploration is advanced by stepwise operations
on the feature-value map displayed as a visual feature node. At each step, the explorer
(description formalism) constructs a sequence of partial satisfiers, PSat through incremental -
resolution. The sequence of interactions for unfolding a feature node through the CONSTRUCT

and EXTEND operations are described in Section 6.2.

- Support for the navigation of problems and solutions.
This operation of unfolding corresponds to the task of navigating attributes of a visual fea-
ture node. Navigation in the design space is supported through the operations of CHOICE,
RETRACT. Navigation operations enable the designer to locate, identify and move through
the collection of generated nodes and their paths. The sequence of interactions for unfolding

a feature node through the CHOOSE and RETRACT operations are described in Section 6.3.

- Support for the synchronisation of exploration results.
Support for synchronisation addresses the problem of unfolding the results of two distinct
exploration paths in the satisfier space with respect to their underlying ordering in the design
space. Synchronisation of distinct exploration paths is supported through the operations
of RECALL, ERASE, MEET, JOIN. The sequence of interactions for unfolding a feature node

through these operations are described in Section 6.4.

8.3 Constraints on the results

A number of constraints that limit the scope of the results reported in this study are outlined.

Restriction on subsumption-ordered design spaces.

The framework of design space navigation proposed in Chien [1998] uses a five-dimensional sruc-
ture to integrate problems, designs, versions and alternatives. During exploration, objects can be
added to any of the dimensions of the design space, an arbitrary number of times. As reported in
Chien & Flemming [1997], this formulation leads to computational intractability in keeping track

of relationships between components of the design space.

8.3. CONSTRAINTS ON THE RESULTS 142

This problem is partly alleviated in this study by keeping the conception of a design space simple:
using a formal structure in defining the design space based on a restricted but well understood set of
properties. New nodes are added along a single dimension in a strictly monotonic fashion based on
the relation of subsumption. To limit its complexity, one restriction enforced on the formal model
of a design space is to separate the subsumption ordering of the underlying design space from
user interaction. This is done through by mediating the interaction through the SatSpace, which
represents the tree of visited nodes rather than the full design space. Thus the mixed-initiative
model operates over a strictly monotonic, single-dimensional design space. No claims can be made

on non-monotonic, multi-dimensional and alternate conceptions of design space.

Restriction to functional decomposition

The scenario of designing outlined in this thesis is restricted to abstract, functional attributes. The
semantics of a design, the relation between conceptual and graphical domains is not addressed.
Two approaches that establish explicit relations in design semantics are proposed in Klein & Pineda
[1990] and in Harada et al. [1995]. The work reported in this study is limited by two assumptions.
First, designs are assumed to be strictly feature structure-like. Second type information, for ex-
ample, the types massing and house correspond to mutually exclusive decompositions. Thus the
mixed-initiative model of interaction operates on designs based on functional view of exploration.

No claims can be made on the manipulation of visual and geometric properties of designs.

Restriction to massing configurations

The mixed-initiative interaction model as implemented in FOLDS is limited to the demonstration
of a single class of configuration problem, namely massing. The SEED [Flemming et al. 1993, Akin
et al. 1995, Flemming & Chien 1995, Akin et al. 1997] project provides a discussion of work done in
supporting a comprehensive class of configuration problems, particularly the relationships between
different configuration modules. The mixed-initiative model of interaction described in this thesis is
restricted to exploring massing configurations. While the mixed-initiative interaction model is more
general than the example used to demonstrate it, no claims can be made about other configuration
tasks such as structure or the relationships between configuration problems such as layout and
enclosure. This requires the implementation of additional cases in these types of configuration

design.

Restriction on unfolding

In FOLDS , the representation of massing elements is restricted to a oue-lo-one mapping belween

geometric entities and partial satisfiers. The continuous transformation of a generated geometry,

8.4. FUTURE DIRECTIONS 143

that modifies or conflicts with the constrained bounds of the functional specification is not permit-
ted. Unfolding is restricted to feature nodes and the manipulation of geometry in design states is
treated as external to the formal exploration process. The mixed initiative model does not address
the relationship between the formal movement algorithms and model transformation operations
external to m-resolution. No claims are made on the handling of geometric manipulation during

exploration.

8.4 Future directions

Further extensions to the model of mixed-initiative exploration is necessary to address the limita-

tions discussed above. Four potential areas in design space exploration that remain are as follows:

- Interaction with type systems.
Domain knowledge is encoded through the specification of types, features and constraints.
Each component is manually edited in its own file, using a standard text buffer, which is
then loaded onto the interface using a shell console. The KRYOS feature structures system
parses this data into the TypeSystems. This process becomes complex and error-prone as
more types, features and constraints are added onto the system. The graph visualisation
program, DAVINCI [Frohlich & Werner 1994, Frohlich & Werner 1995] is used to correct the
complex relationships between types, features and constraints. To facilitate the authoring of
scalable TypeSystems, more comprehensive support for writing type systems is necessary. An

interactive editor would facilitate the crucial process.

- Description processor.
The authoring of descriptions comprises the processes of writing, displaying, browsing and
parsing description fragments. In the massing design example, a substantial effort is spent
in formulating and reformulating description queries. Description authoring comprises a two-
stage process. Valid syntactically correct description fragments in FOLDS are parsed into
description nodes in KRYOS while invalid descriptions are labelled with the type absurd and
returned for reformulation. Valid description nodes are then labelled in FOLDS by dumping
their memory address into strings from the raw data provided by the KRYOS feature structures
system. An interactive description processor that maintains the persistence of descriptions

by naming them, would enhance formulation and reformulation cycle of description authoring
in FOLDS .

- Visualisation of design spaces.
The development of algorithms for visualising the components of design space remains an ares

for future work. The work of Tecuci et al. [1999] in the visualisation of evolving knowledge

8.4. FUTURE DIRECTIONS 144

bases using mixed-initiative methods presents a possible way. The development of history-rich
tools for interaction [Wexelblat 1999, Wexelblat & Maes 1999] and mechanisms for implement-
ing and tracing object evolution [Feijo & Lehtola 1996] offer new possibilities for the support

for tracing the rationale of exploration.

e Incorporation of concrete domains.
Further progress on the theoretical characterisation of concrete domains within the theory of
typed feature structures is necessary. Burrow foreshadows how this may be done. In Burrow
[1999], integer intervals are incorporated into type hierarchies using OrderTypes. Chang’s
[1999] Geometric Feature Structures extends this idea of order types [Burrow 2003] to repre-
sent geometric information directly within the framework of typed feature structures. Han-
dling interaction with such types of concrete domain information remains a topic of future

research.

Appendix A

Typed Feature Structures

Typed feature structures provide a representation for design space exploration in which both the
action of exploration and the structure of a design space are given a sound theoretical basis. Typed
feature structures provide well-founded support for an object-and-relations view of representation
and within that view support intentionality, partialness, structure sharing, and cyclicity. Typed
feature structures can tersely express and solve simple finite-domain generation of alternative map-
pings of function into form in the building domain [Woodbury et al. 1999]. Feature structures
provide a representation for the constraints on the design space, relates those constraints to the
generation of designs and supports intermediate, partial representations of design states.

A deep understanding of typed feature structures requires an appreciation of its formal me-
chanics. Carpenter [Carpenter 1992] provides a complete description of typed feature structures,
including many proofs on the logic of typed feature structures. This appendix describes the formal

definitions and terminology underpinning the exploration formalism described in Chapter 2.

A.1 Terminology and definitions

A.1.1 Type Hierarchy

The finite set of types is organised into a structure according to information specificity. The type
o subsumes type 7 (written as o C 7) if type 7 contains strictly more information than type o.
Type o is a super-type of 7 ; T a subtype of o. Beyond the partial order properties implied by type
subsumption (which is not same relation as the feature structure subsumption relation), a feature
structure type hierarchy is required to have two additional properties. First, for any set of types
there is at most one type that is directly subsumed by all types in the set. A set of types with a
common subtype is said to be bounded or consistent. This condition on the type hierarchy amounts
to saying that there must be a unique most general subtype for any consistent set of types in the

hierarchy. Second, there must be a most general type (conventionally called Bottom and written

145

A.1. TERMINOLOGY AND DEFINITIONS 146

1) at which all types meet. This condition is implied by the first if the sets of consistent types
includes the empty set. Together with the partial order conditions of transitivity, anti-symmetry
and reflexivity, these conditions create what is called a bounded complete partial order, refereed to
a BCPO.

With types are associated features, drawn from a finite set Feat of features. The function Intro :
Feat — Type defines for every feature a unique most general type at which that feature is introduced
into the type hierarchy. All sub-types of Intro(f) contain f and f is said to be appropriate for
Intro(f) and its successor sub-types. Sub-type feature inclusion and being a complete function in
Feat implies that any feature that is multiply inherited from two or more super-types is, in fact,
the same feature, thus some typical ambiguities of multiple inheritance do not arise. The partial
function Approp : Feat x Type — Type gives a type restriction on the values of a particular feature:
Approp(f,T) is the most general type that a value of feature f in type 7 can have. On Approp are
placed the conditions of upward closure mentioned above and that feature values can only become
more specific in subtypes, that is, if for two types o and 7, Approp(f, o) is defined and o C 7 then
Approp(f,) is also defined and Approp(f,o) E Approp(f,T).

Definition 1 (Appropriateness Specification [Carpenter 1992]) An appropriateness speci-
fication over the inheritance hierarchy (T'ype,C) and features Feat is a partial function Approp:

Feat x Type — Type that meets the following conditions:

Feature Introduction for every feature f € Feat, there is a most general type Intro(f) € Type
such that Approp(f, Intro(f)) is defined

Upward Closure if Approp(f,o) is defined and o T vy, then Approp(f,v) is also defined and
Approp(f, o) E Approp(f,7)

A.1.2 Feature Structures

Given an inheritance hierarchy, a BCPO of types (Type,C) and a set of features Feat, a typed

feature structure is formally defined as,

Definition 2 (Feature Structures [Carpenter 1992]) A feature structure is the tuple F' =
(@,4q,9,9), where

e (J is a finite set of nodes,
e G € (@ is the root node,
e 0 :(Q — Type is the node typing function,

o §: Feat x Q — @ is the partial feature value function, and

A.1. TERMINOLOGY AND DEFINITIONS 147

o Q is the smallest set such that §€ Q and g€ QA ¢ =6(f,q9) — ¢ € Q.

Definition 3 (Resolved Feature Structure [Carpenter 1992]) A feature structure F' is re-
solved if and only if

Vr € Path,Vt € Type : t <yype 7(FQn) — FQr satisfies Cons(t) (A.1)

Definition 3 describes the properties of a fully resolved feature structure. However, resolved
feature structures are the endpoints in a constraint resolution process. Since the design space is
explicitly concerned with partiality it will include intermediate stages in the resolution process as

design states

A.1.3 Type System
A type system is composed of the objects types, features, constraints and descriptions.
Definition 4 (Type System) A TypeSystem is the quadruple ((T'ype, E) , Feat, Cons, Desc) where
e (T'ype,C) is an inheritance hierarchy of types,
e Feat is a finite set of features,
e Cons is a constraint system and

e Desc is a description language.

A.1.4 Descriptions

Definition 5 (Generator) The set of generators over a TypeSystem and collection of descrip-

tions Desc is the least set Gen such that
e 0 € Gen if o0 € Desc
o 7 :¢ € Gen if m € Path, ¢ € Desc
e T = 7y € Gen if w1, my € Path

e OV, A € Gen if 9 € Gen

A.1.5 Type constraints

Given a type inheritance hierarchy (T'ype, C), and an appropriateness specification, Approp a con-

straint system can be defined as

Definition 6 (Constraint System [Carpenter 1992]) A constraint system is a total function

Cons : Type — Desc.

A.1. TERMINOLOGY AND DEFINITIONS 148

The type t of a feature structure F asserts only that the represented object is an instance of ¢ or
some subtype. By stating restrictions on the feature structures of each type, we assert additional
properties on the feature structures and therefore, by implication, about represented objects. The
constraint system expresses restrictions on a substructure, according to its type, which determine
legal labellings over a finite but arbitrary collection of paths.

Let Desc be the resulting collection of descriptions and G be the resulting collection of feature
structures. A constraint system associates every type o with a description ¢ in Desc. A feature

structure of type o must satisfy the constraint ¢,
o= ¢,

where ¢ is an arbitrary description. Taken in the form of an implication, a feature structure F,
satisfies a system of constraints if every one of its substructures satisfies the constraints on its type.
An algorithm for constraint resolution determines whether a feature structure satisfies a constraint
system. A substructure satisfies the constraint system if it satisfies the type constraints for its type
and all super-types. A feature structure is resolved if it satisfies the constraint system at every
substructure.

The process of constraint resolution constructs and orders these partially resolved feature struc-
tures. It is a complex recursive process — as substructﬁres are resolved new substructures and type
labellings are introduced that require further resolution steps.

A type constraint description at a substructure is satisfied if a most general satisfier subsumes
the constrained substructure. Therefore, constraint resolution is the search for the most general

feature structure subsumed by both a constraint satisfier and the current substructure.

A.1.6 Incremental m-resolution

The fundamental structure construction process is called 7-resolution [Carpenter 1992, p 230]. It
is a non-deterministic search for solutions to a query description stated formally in terms of paths.
A solution is a feature structure, which satisfies a description and the constraint system. Starting
with the most general satisfier(s) of the query, all of the solutions to the query can be effectively
enumerated.

Given a type system and a description, a 7-resolution procedure enumerates the most general
feature structures satisfying the conjunction of description and type constraints. In design, non-
deterministic resolution is more useful in the generation of branch points in the design space than for
retrieving the set of solutions. Design processes are intrinsically processes of incremental construc-
tion, where the representation of the intermediate states of constraint resolution is essential. Hence,
incrementality and nondeterminism in the resolution process are critical to supporting exploration.
The following definition extends the formalism to address these difficulties. A non-deterministic

rewriting procedure that enumerates solutions to a given constraint system based on a strongly

A.1. TERMINOLOGY AND DEFINITIONS 149

typed system is proposed by Burrow [Burrow 2003]. The incremental m-resolution procedure is
a special case of the approach described Carpenter’s Typed Feature Structures [Carpenter 1992,
p 227-242].

Definition 7 (Incremental m-Resolution [Burrow & Woodbury 1999]) Given I' a feature
structure and 7, a path to F, such that FQm is defined, a function recording resolution steps A, and

a type t such that t <type T(FAT) At <1ype t — t' € A(FQr), we take an incremental 7-resolution
yp ypP

step
(F,A) Z5 (F' A
if
IF, € MGSats(Cons(t)) : F'@r ~ FQr U F, (A.2)
t € A'(F'ar) (A.3)
Va' € Path : FQn' defined — A(F@r') C A'(F'@n') (A.4)

In incremental w-resolution, each decision point in the enumeration is available as an interme-
diate result. An intermediate state satisfies the invariant that every node in the partially resolved
satisfier has been resolved against a down-set of types whose join subsumes the target type. The
elements of AntichainLattice [Burrow 2003] represent intermediate states in the summation of type
constraints. An intermediate state satisfies the invariant that every node in the partially resolved
satisfier has been resolved against a down-set of types, called the AntichainLattice, whose join
subsumes the target type. The elements of AntichainLattice [Burrow 2003] represent intermediate
states in the summation of type constraints. The subsumption ordering of these objects form a lat-
tice structure called an antichain lattice. An antichain lattice is shown in Figure A.2. An antichain
is the set of mutually incomparable elements in a partially ordered set, poset.

The solution is the result of a sequence of extension steps corresponding to the satisfaction of
constraints, which are organised into an inheritance hierarchy of types. Since m-resolution proceeds
by extension, the resultant search space can be order embedded into the information ordering over
feature structures. Since constraints are drawn from an inheritance hierarchy, alternatives may be
organised according to notions of abstraction. Thus, if feature structures are employed to represent
functional decompositions, w-resolution non-determinism allows exploration in terms of alternative
functional decompositions.

The operation in Definition 7 is one step in an incremental m-resolution search. During the
search process the current partial satisfier evolves via numerous such resolution steps with the
addition of information from the constraint system. Fach step acts on a substructure of the current
partial satisfier. This is depicted in Figure A.1. The argument 7 selects the substructure, and the

argument ¢ selects the constraint to resolve. The definition of a step includes restrictions that ensure

A.1. TERMINOLOGY AND DEFINITIONS 150

resolution steps are goal directed and well ordered with respect to the type hierarchy. Namely, that
t be a super-type of the type at 7 and that all types more general than ¢ are already resolved at .

The execution of a step involves unification at the substructure.

r

Figure A.1: The generating procedure, m-resolution captures a relation from descriptions to the
satisfiers and is the main generative mechanism in the system. The resultant feature structure in
each sequence is the most general satisfier of the query description [Burrow & Woodbury 1999].

Definition 7 differs from [Carpenter 1992, p 231] in its granularity, and in explicitly recording the
resolution of each type constraint. Rather than resolve the conjunction of constraints from types
subsuming 7(F @), a sequence of steps accumulates this same down-set and records the progress in
A. Given a query description D, w-resolution is the construction of sequences of feature structures
PyC P, C P,C...C P, The initial feature structure in each sequence is a most general satisfier
of the query description. The sequence represents the inclusion of type information in the form of
constraints — each element extends its predecessor by unification with a type constraint. Since
most general satisfiers may occur as collections and unification may fail, the search for resolved
feature structures involves a collection of sequences.

An example of incremental 7-resolution is given by compiling the following disjunctive descrip-

tion over the type hierarchy,

(LIVING HEIGHT == DINING HEIGHT) |
(LIVING HEIGHT == DINING HEIGHT
& LIVING SIZE OY == PORCH SIZE OY
& LIVING SIZE 0X == LIVING SIZE 0Y
& PORCH HEIGHT == LIVING HEIGHT)

A partial satisfier is constructed from the query and this node becomes the subject of an

incremental mw-resolution.

Al

TERMINOLOGY AND DEFINITIONS

151

manslng
rect blypa
slize
mn:aln position
helght size
Iayout centre point
3 3
scalar size
layout wiith holaht vector point
Integer size) t
layout integer peatar vectol
layout ulzo Intogor

house
helght
Iayout

btype
helght
layout

univorsal

helght
btypa

acalar
house
layout
A
LA P scalar ::::3:’
Houss layout layout
‘ |
scalar house house ::g::"
btype Integer la) --‘: Jayout
Integer | btype
btype '“‘“:“ layout
[
btype

Figure A.2: An antichain lattice,) comprises the down set of types.

A.1l. TERMINOLOGY AND DEFINITIONS

152

[1] universal
[1]
conjunct_0x812b498
disjunct_0x80bb070

house

DINING:

LIVING:

scalar
HEIGHT: [2] universal

scalar

HEIGHT:

[2]

disjunct_0x80cbff8

sfc

DINING:

LIVING:

scalar
HEIGHT: [3] universal
massing
HEIGHT: [3]
SIZE: vector
0X: [4] universal
oY: [4]

PORCH: massing

HEIGHT: [3]
SIZE: vector

0Y: [4]

Appendix B

UML Notation

The Unified Modelling Language [Fowler, Scott & Jacobson 1997, Jacobson, Booch & Rumbaugh
1998], UML, is a formally defined, object-oriented modelling notation. It aims to provide a standard
notation for modelling systems, particularly software intensive systems where an object-oriented
implementation is anticipated. It is independent of programming language or development tech-
niques.

In the UML, a model is a complete representation of a system from a particular viewpoint, that
is, an aggregation of a set of views from a specific perspective. At the same time, systems are
composed of many nearly independent models representing many independent subsystems, each of
which can be treated as a model. Thus, a system is implicitly represented by a top-level model
with subsidiary models representing the subsystems.

In UML, a model is made up of diagrams and text. The UML specification' describes diagrams
as “views of a model”, each representing a particular perspective that the overall model integrates.
Thus a UML model is an abstraction of a system, and models the concepts, relationships, behaviours
and interactions in the system. Models are made up of model elements. Models and model elements
are rendered graphically in diagrams.

In UML notation, model concepts are expressed as symbols icons. Relationships are expressed by
adorned lines, with semantic content. The way the model concepts connect provides the meaning
of the model. Thus, underlying the graphics of the model are the specifications of model elements,
a mix of formal and informal elements. Diagrams are two dimensional and text is used to annotate

the diagrams. Their are three kinds of relationships in diagrams, namely,

e connection.

Adorned lines connect icons and symbols, forming connecting paths.

e contalnment.

1Object Management Group [online]. 1999. UML specification, Version 1.3. Available from www.omg.org.

153

B.1. MODELLING CONCEPTS 154

Enclosed shapes such as boxes and circles contain symbols, icons and lines.

e visual attachment.
Elements close together, such as a name above a line or a number next to a box imply that

they apply to that element.

B.1 Modelling concepts

In this study, a subset of symbols from the UML notation is used to express modelling concepts.
This subset is presented in this section. The reader can refer to these definitions for understanding

the diagrams that are presented in UML notation in the thesis.

B.1.1 Symbols

- - fesull - —
X -
I

designer 1 s

ACTOR USE CASE SEQUENCE DIAGRAM

Node facade I

CLASS & OBJECT STATE PACKAGE

Figure B.1: Symbols in UML notation.

Actor

An actor is something or someone outside the system that interacts directly with the system.

Use case and Sequence diagrams

A use case is a sequence of interactions between an actor and the system.
A pattern of interaction among objects is shown on an interaction diagram. Interaction diagrams
cowe in bwo forms based on the same underlying information but each emphasising a particular

aspect of it: sequence diagrams and collaboration diagrams.

B.1. MODELLING CONCEPTS 155

A sequence diagram shows an interaction arranged in time sequence. In particular, it shows
the objects participating in the interaction by their lifelines and the messages that they exchange
arranged in time sequence. It does not show the associations among the objects. A collaboration
is a collection of objects that interact to implement behaviour. A collaboration is used to specify

the realisation of a use case.

Class and Object

A class is an abstraction of a set of possible objects that share the same attributes, operations and

relationships. An object is an instance of a class.

Package

A Package is a UML container used to organise model elements.

State

A state is the situation or status of an object as the result of an interaction. A state can model

ongoing activity.

B.1.2 Relationships

In UML, lines are used to express dynamic connections between model elements, relationships

between model elements and interactions.

arent ig

GENERALIZATION AGGREGATION

? isa

maps »

\ 4

ASSOCIATION COMPOSITION

Figure B.2: Relationhips in UML notation.

B.1. MODELLING CONCEPTS 156

Generalisation

A generalisation is a relation between two elements in which one is a more general form of the

other.

Association

An association maps one object to another set of objects. Aggregation and composition are special

forms of association. A plain form of association shows the relationship between peers.

Aggregation

An aggregation represents a part-whole relationship between one object and several subparts. One

element is the whole and the other(s) are parts.

Composition

A composition is an aggregation that exhibits strong ownership on its parts, that is, the parts

belong to the composing object.

B.1.3 Diagrams

In UML, diagrams are the graphical presentation of semantic models. In this study, two diagram

types, the class diagram and the sequence diagram are used.

Class diagram

A class is the descriptor for a set of objects with similar structure, behaviour, and relationships.
UML provides annotation for declaring classes and specifying their properties, as well as using classes
in various ways. The class diagram is a static structural representation of the interfaces, packages
and relationships the comprise a model specification. Use case diagrams show actors, use cases and

their relationships.

Interaction diagrams

Interaction diagrams are used for modelling dynamic situations. A sequence diagram shows an
interaction arranged in a time sequence comprising objects, the messages that pass between them
and the interaction that occurs. A sequence diagram has a list of participating objects, an object
lifeline, the time-ordered visual framework for message exchange between objects exchange between
objects.

A collaboration diagram shows the passing of objects between objects focusing on the order of

their execution.

B.1. MODELLING CONCEPTS

1567

Salistier Space

4 patate onst »
Problem Stato [Partial Satistier |

T
]
]
satinfies !

Figure B.3: Class diagram in UML notation.

SatSpaceElem PSat PState
1 T 1
| | e
satspace o : :
= rootNode Y
disjuncts
set_disjuncts
types 3
o - Settypes_ _ L.
. T T

Figure B.4: Sequence diagram in UML notation.

Appendix C

Massing Configurations in FOLDS

The massing configuration problem described in Chapter 7 is based on the creation of a TypeSystem
(defined in Section A.1.3) in KRYOS. The definition comprises the declaration of types, features,
constraints and descriptions. Examples of these components of the massing TypeSystem are given

in this Appendix.

C.1 An inheritance hierarchy of types

The specification of the inheritance hierarchy of the massing configuration problem is given as

follows:

SIS, sk sk o o ek ok ok o o ke ok o sk s s sk sk s o ok sk sk sk sk o o sk ke sk ek sk sk ok sk ok ok ek ok sk ok ok e kok 0,)
%% Kryos : type hierarchy $Id: sfc.types,v 1.1.1.1 1999/12/22
%%% 05:19:29 akids Exp $

S5k ek ks sk o sk o sk ok sk o ok sk sk o sk o ok sk ok sk o ke o ks ks ks s ko e sk s sk s ksl o stk e skok ks sk ok skokok

% math types

integer

inherit universal;

scalar

inherit universal;

% basic spatial types

158

C.1. AN INHERITANCE HIERARCHY OF TYPES 159

point

inherit universal;

position

inherit point;

centre

inherit point;

geom

inherit universal;

%%%**%%
Do

%%% SEED KNOWLEDGE LEVEL TYPES

Tl

O LY. ks e s ook o o s sk ok o ek sk ok ks sk ke e skt ke sk ok sk sk ke ke ks s ko ke sk koo ek o ok ke ok ke ok 7

btype

inherit universal;

brief

inherit universal;

function
inherit universal;
du

inherit universal;

fu

inherit universal;

configuration

inherit du;

%a single geometry

C.1. AN INHERITANCE HIERARCHY OF TYPES

160

massing

inherit configuration;

layout

inherit configuration;

solid
inherit scalar;
wall
inherit scalar;
column
inherit scalar;
slab

inherit scalar;

/massing types
massing_a

inherit massing;
massing_b

inherit massing_a;
massing_c

inherit massing_b;
massing_d

inherit massing_c;
massing_e

inherit massing_d;
massing_f

inherit massing_e;

% a house is a functional specification related to a formal model

house

inherit fu;

#derived sfc types

skillion

C.1. AN INHERITANCE HIERARCHY OF TYPES

161

inherit massing;
sfc_house

inherit house;

%single units
sfc_hall

inherit fu;
sfc_room

inherit fu;
sfc_roomrow

inherit fu;
sfc_porch

inherit fu;
sfc_skillion

inherit skillion;
sfc_kitchen

inherit fu;

sfc_bath
inherit fu;

% double units
sfc_roomrow_two

inherit sfc_roomrow;

sfc_roomrow_three

inherit sfc_roomrow_two;

sfc_roomrow_four

inherit sfc_roomrow_three;

% massing exploration types

house_massing inherit house & massing;

%sfc_massing inherit sfc & massing;

C.1. AN INHERITANCE HIERARCHY OF TYPES 162

sfc inherit sfc_house & house_massing;

%command components

command

inherit universal;

arg_list

inherit universal;

empty_arg_list
inherit arg_list;

nonempty_arg_list

inherit arg_list;

C.2. APPROPRIATENESS SPECIFICATIONS 163

C.2 Appropriateness specifications

The specification of the appropriateness specifications (feature introduction, as explained in Sec-

tion A.1.1) of the massing configuration problem is given as follows:

SO, ks o o ok ok ke s ok ok ke ke ok sk sk sk s o o ok ok s s ok ksl sk ok o e ke ke sk sk s s ke sk sk sk sk e ok sk ksl skt sk o sk ok ok Y
%A% Appropriateness Specifications

Yok K e e ok ek sk sk o sk e sk ok ok ke ok ke ke ke s ok ks s s sk sk ok ok ok ke ok ks ok ok sk sk ok)

yA a hook to base datatypes
scalar
intro SCALAR : integer;
) basic spatial type
point
intro 0X : scalar
& 0Y : scalar
& 0Z : scalar;
% A complex data type for geometric elements
geom
intro POS : point
& COMMAND : command;
h Design Unit representation
du
intro DU_LABEL : scalar
& GEOM : geom;
A Function Unit representation
fu
intro FU_LABEL : scalar
& FUNCTION : function;
A massing types introduce a function unit and a position
massing
intro MASS_LABEL : scalar
& MASS_POS : position

& FU : fu;

C.2. APPROPRIATENESS SPECIFICATIONS

164

b building types are described with massing
% => functional names and positions
house
intro HOUSE : massing_a
& LIVING : du
& DINING : du
& SKILLION : skilliomn
& LOUNGE : du
& BED : du;
A a single fronted cottage, i.e. sfc is a type of house
% introducing some features
sfc_house
intro SFC_HOUSE : fu
& PORCH : sfc_porch
& ROOMROW : sfc_roomrow
& ROOMNUM : scalar
& HALL : sfc_hall;
h Types of massing

sfc_roomrow

intro

sfc_hall

intro

sfc_porch

intro

sfc_room

intro

skillion
intro
&

SFC_ROOMROW : massing;

SFC_HALL : massing;

SFC_PORCH : massing;

SFC_ROOM : massing;

BATHROOM
HALLWAY

! massing

: massing

C.2. APPROPRIATENESS SPECIFICATIONS 165

& KITCHEN : massing;

sfc_skillion
intro SFC_SKILLION : massing;

sfc_kitchen
intro SFC_KITCHEN : massing;

sfc_bath
intro SFC_BATH : massing;

%single functional labels with 2 du

sfc_roomrow_two

intro ENTITY_A : sfc_room
& ENTITY_B : sfc_room;
A single functional labels with 3 du

sfc_roomrow_three

intro ENTITY_C : sfc_room;

sfc_roomrow_four

intro ENTITY_D : sfc_room;
% massing types are expressed as features with design units
b attached to them

massing_a

intro MASSEL_A : massing;
massing_b
intro MASSEL_B : massing;

massing_c

intro MASSEL_C : massing;

massing_d

C.2. APPROPRIATENESS SPECIFICATIONS 166

intro MASSEL_D : massing;
massing_e

intro MASSEL_E : massing;
massing_f

intro MASSEL_F ! massing;
h command features
command

intro ARG_LIST : nonempty_arg_list;

h recursive types for creating lists

nonempty_arg_list
intro ARG : scalar
& AL_TAIL : arg_list;

C.3. CONSTRAINT DECLARATIONS 167

C.3 Constraint declarations

The specification of constraints on types and features of the massing configuration problem is given

as follows:

S5/ s ke ks sk ok ks ok s ok o sk ok o sk o ks s sk s o e e sk o ks ek skl ke ke s ke ok o ok ks o sk ok sk e kok o 7)

%%% Constraint System

S, e sk ke s e ks sk s o o ok sk o sk s ke ks s ke sk e o ke o ks ks ke s o ko ook sk sk ok sk sk sk stk ok ok k)
scalar

cons SCALAR : integer;

% basic spatial types

point
cons 0X : scalar
& 0Y : scalar
& 0Z : scalar;
yA Geom constraints
geom
cons POS : point
& COMMAND : command ;
h Function unit constraints
b the fu label is the same as the massing label
fu
cons FU_LABEL : scalar
& FUNCTION : function;
du
% the du label is the same as the massing label
cons DU_LABEL H fu
& GEOM 5 geom;
h massing types introduce a function unit and a position
massing
cons MASS_LABEL : scalar
& MASS_POS : position

& FU : fu;

C.3. CONSTRAINT DECLARATIONS 168

% constraints on the house type
house
cons HOUSE : massing
& BATHROOM : du
& LIVING : du
& DINING : du
& KITCHEN : du
& LOUNGE t du
& BED : du;
% constraints on single fronted cottage type
sfc_house
cons SFC_HOUSE : du
& PORCH : sfc_porch
& ROOMROW :

(sfc_roomrow |
sfc_roomrow_two |
sfc_roomrow_three |

sfc_roomrow_four

)
& ROOMNUM :
(scalar |
integer
)
& SKILLION SFC_SKILLION GEOM
POS : point
& HALL : sfc_hall;
h single functional labels with du

sfc_roomrow

cons SFC_ROOMROW : du;

sfc_hall

C.3. CONSTRAINT DECLARATIONS

169

cons SFC_HALL : du;

sfc_porch
cons SFC_PORCH : du;

sfc_room

cons SFC_ROOM : du;

sfc_skillion
cons SFC_SKILLION : du;

sfc_kitchen
cons SFC_KITCHEN : du;

sfc_bath
cons SFC_BATH : du;

h single functional labels with 2 du

sfc_roomrow_two

cons ENTITY_A : sfc_room
& ENTITY_B : sfc_room;
A single functional labels with 3 du

sfc_roomrow_three

cons ENTITY_C : sfc_room;

sfc_roomrow_four

cons ENTITY_D : sfc_room;

h massing types are expressed as features with design units

) attached to them
massing_a

cons MASSEL_A : massing;

massing_b

cons MASSEL_B : massing;

C.3. CONSTRAINT DECLARATIONS

170

massing_c

cons MASSEL_C : massing;
massing_d

cons MASSEL_D : massing;
massing_e

cons MASSEL_E : massing;
massing_f

cons MASSEL_F : massing;
% command features
command

cons ARG_LIST :

% constraints on list ltype

nonempty_arg_list

cons ARG :

& AL_TAIL : arg_list;

%EQF

nonempty_arg_list;

scalar

C.4. DESCRIPTIONS 171

C.4 Descriptions

The specification of initial descriptions is explained in Section A.1.4. An example of the output of

parsing a generator from the massing configuration problem is given as follows:

sfc’house
SFC'HOUSE: geom
DU: (1] du
DUHEIGHT: [2] universal
DULABEL: [3] fu
DU LENGTH: integer
FU: [3]
COMMAND: command
POSITION: centre
ROOMROW: sfc'roomrow two
ENTITY B: geom
DU: du
DU'HEIGHT: [2]
ENTITY A: geom
DU: [1]
PORCH: sfc'porch
SFC'PORCH: [1]

Appendix D

Design and Implementation Detalils

In Part III, a software prototype, FOLDS, is used to demonstrate the mixed-initiative interaction
model for design space exploration. This appendix presents the design of the software components
underlying FOLDS. The domain objects and interactions between the software components are
presented visually using the notation of the Unified Modelling Language [Erich Gamma & Vlissides
1995], UML. As with the description of the interaction model in Part II, the notation of UML permits
a sufficient level of abstraction to describe the entities and their interactions without burdening the
description with the symbol level implementation in Ct+.

The software components of the mixed-initiative exploration system, FOLDS, developed in this

thesis comprise the following:

® KRYOS
KRYOS is an implementation of Carpenter’s typed feature structures, designed and developed
by Burrow [2003] in C++. The libraries implement the design space exploration machinery
underlying the description formalism described in Chapter 2. KRYOS [Burrow 1999] comprises
five libraries. Containers is a library of basic data structures. Patterns] a library implementing
reusable design patterns [Erich Gamma & Vlissides 1995]. Orders is a library of order struc-
tures. FeatureStructures is a library comprising parsers, data structures for representing and
reasoning with feature structures. TFSShells provides commandline shell programs for inter-

action with the exploration machinery, such as the incremental 7-resolution of descriptions.

e the QT QUI toolkit
The FOLDS interfaces and interaction framework are implemented using the multi-platform
C++ graphical user interface toolkit, Qt'. The interactive components of the mixed-initiative
model are implemented in C++ using the QT libraries for the front end and OpenGL for 3D
graphical interaction. The QT cur toolkit provides the basic building blocks for elementary

! Available from Troll Tech, http://www.troll.no/

172

173

user interface widgets, basic data structures and higher level application components for
interface design. The Qt Class hierarchies, documentation and other details are available in
the QT web site, http://www.troll.no/.

e Geometry visualisation is supported in FOLDS using the open source MindsEye 3D rendering
and modeling package? based on the OpenGL [Neider, Davis & Woo 1993] 3D graphics library.

The design framework of FOLDS comprises the following software layers:

Facade The Facade layer of FOLDS enables the encapsulation of the components described above,
namely, KRYoS, the QT GUI libraries and the MindsEye. For example, the KrFacade class

provides a unified interface to elements of the KRYOS libraries.

Module The module layer is a grouping abstraction that provides a framework for developing user-
centred views of the context. In FOLDS , a module comprises a context and a view, which

implement specific functional classes associated with the mixed-initiative interaction model.

Explorer The Explorer is the front end layer of FOLDS. It serves as an aggregation of a collection

of modules.

Each of the components of the above software layers of FOLDS are described in the following

sections.

Facade

The Facade layer describes the interface to the components of the kernel of the design space ex-
ploration machinery. The design criteria for this interface is the use of the object-oriented facade
design pattern as described in Erich Gamma & Vlissides [1995]. A fagade pattern provides a uni-
fied interface to a set of interfaces in a subsystem and defines a higher-level interface that makes
the subsystem easier to use. The fagade pattern simplifies access to a related set of objects by
providing a single facade object that all objects outside the set use to communicate with the set.
The implementation of communication between the designer and the formal substrate take place
through the singleton class, KrFacade. The relationships between the formal components of KRYOS
and FOLDS are shown in Figure D.1. The subcomponents of the Facade layer provide access to
the KRYOS Feature Structure System.

The UML notation in this figure represents how the KrFac¢ade implements the facade design pat-
tern and communicates with the substrate of KRYOS objects, InheritanceHierarchy, ConstraintSys-

tem, AppropSpecification, comprising the TypeSystem constructed in Section 7.2 on Page 110.

2 Available from http://mindseye.sourceforge.net/main html

174

KrFacade <
inok =
= «_inatance;: KrFacade
_typam; | ManualTypes
. Foulu) MarmielFoate
- _conp: ManualCons
|_pHat _space fiabSpace
WKrFacadn ()}
sconptruct peat_epace il bool
sout_space() | BatOpace
sTnstanca () : KrFacade
smakin Lypo ayabemitchar conatd, fichar conmt,c:char conate): bool :
_typan e e _pRaL_spaco
_donu
fant
{ Trharit) hy I SalSpace
] v-Hatipaca (1]
seonst_types(l InheritanceHierarchy const*
~r— +connt_featall AppropSpecification const¥
C y +connt_cona (} 1 ConstraintSystem const ¥
+eonnt_moeta(l: TypuDownSete *
sconut domcl}: DescNods const *
—~ spathi} satSpacePath *
ppropSpoecification +faPathi{) : bool
[sdootyoy pathi) i virtusl volid

Figure D.1: The implementation of the domain layer constructs, their connection to FOLDS,
the communication between the designer and the generative design system take place through the
singleton, KrFacade. The notation in this figure shows how KrFacade implements the fagade design
pattern and communicates with the underlying objects, InheritanceHierarchy, ConstraintSystem,
AppropSpecification, SatSpace in the kryos feature structures system.

All communication with the Kryos feature structures system in FOLDS uses this single interface
object, KrFacade, that encapsulates the underlying complexity of KRYOs within it. Any communi-
cation between the kryos libraries and FOLDS is done through a collection of messages to KrFacade,
which communicates with the underlying implementation and returns the results to FOLDS . The
Facade pattern ensures that the KrFacade object acts as an intermediary for method calls between
FOLDS objects and other external objects not known to the FOLDS objects. FOLDS sends the
files to KRYOS for parsing. KRYOS parses the files and if the specification is error-free, creates a

satisfier space corresponding to the problem domain and signals the designer to continue.

Module

The interfaces of FOLDS are organised into independent subsystems called modules. Modules are a
grouping abstraction that aggregate the design space interaction machinery into specific functional
entities, composing a wview and a context. In FOLDS, the ScModule Class is the basic root class
in the dialogue interfaces. First, the ScModule connects the formal domain and the operations
for exploration to the user. Second, the ScModule provides the base class for implementing the
interaction between the resolution machinery and the user. Figure D.2 shows the composition of
an ScModule class that provides the interface to the kernel facade classes and access to a loadable
collection of prototype modules and a console.

Further, the ScModule implements operations for registering and unregistering a prototype
module [Erich Gamma & Vlissides 1995, p 121]. This design makes the FOLDS system extensible
and flexible. For example, external modules for evaluation and building performance tasks, can

be dynamically incorporated into FOLDS. Alternatively, the system can be enhanced simply by

175

ScModule

+mtype: enum mduleﬁpe = DEFAULT
+itsView: ScView
+itgsContext: BeContext *

i‘ iéview

a3

#-ScModule(): void

+type () : enum moduleType
+win() : QWidget~

+oontext () : ScContext *
+acmodule (cx: ScContext *}:

Module (context : ScContext *,m:enum Mtype=DEFAULT)

+makeNewWindow (context:ScContext *,name:char *): ScContext *

ScModule *

itsContext

ScContext
-kryos: KrFacade *

ScView

L modulegyrTe Scodule
vie

i

fold: FldFacade *
+ScContext ()

+ ~ScContext ()

krf da() : KrFacade *

kryos

KrFacade

-_instance;: KrFacade

- _types; : ManualTypes
-_feats: ManualFeats

-_cons: ManualCons

- psat_space: SatSpace
#KrFacade ()
+construct_psat_space(): bool
+sat_space () : SatSpace
+Instance () : KrFacade

+8cView (parent ;QWidget=0)

+~ScView (]}

+module () : virtual void

+setMessage (message: const char *}: void
#imessengerMessage [:const char *): void

Figure D.2: The ScModule Class and its context

176

extending the functionality of the ScModule.

Explorer

The Explorer is the front end of FOLDS, comprising an aggregation of modules. Three modules of
the explorer, ScConsoleModule, ScEntryModule and DesignSpaceModule are described here.

ScConsoleModule

ScModule

+mtype: enum moduleType = DEFAULT w
+itsView: ScView
+itsContext: ScContext *
e lo{contexc:SeContaxt *, m:enum Mbypae=DEFAULTY
#~ScModulel): void
+makeNewWindow (context : ScContext *,name:char *): ScContext *
stype () . enum moduleType
swin{): OWidgers
veontext () ¢ BoContoxt *
+pomodule (ex:ScContext *): ScModulo *
A

itaContext
ScConsoleModule
TScConATlevadule) [ARiole
ScView
ScContext | fimodule: BoWodule
-kryos: KrFacods # vig sBoView (parent (ORidget=0]
fold; Fldracade *

suGoviow ()

smodylel) : virtual void

spetMoanage (mousaqe rconat char *): vold
HmessengarMessage (:const. char *): void
spontext () SeContext

+BeContext. ()
+ =BcContoxt ()
krfacadel) ; KrPacade

kryon

KrFacade

-_Instanca;; KrPacade
Lyprea = ManualTypes
-_featn: ManualFeatn
-_cona: Hanuallons
gat_spaco: SatSpace
#ErPacade()
sConatIuct_peat npacs () @ bool
spat_space() @ BatBpace ScConsole
sInstance() : KrFacade ——

+ScConaole ()

Figure D.3: The organisation of the ScConsoleModule class

The ScConsoleModule, shown in UML notation in Figure D.3, is the container module that loads
all the context necessary for design space exploration. Other modules of SEED, as well as external

libraries are available to the explorer through this module.

177

ScEntryModule

The entry module, shown in Figure D.4, provides provides the interface hooks to initialise the Kryos

system, load in project definitions, construct the design space and begin the process of exploration.

3

ScModule

T enum moduioType = DRFAGLT

#iteWing OMainWindow
4exs ScContext *

Lls

BhcHedn Yo {contoxt folontext

H-fcModalel) : wold

smakelowk indow [context ; BeContoxt * namo:char *): SoConbtext *
oyph

(11 onum. modl ot

emin) : ORidgate
scontext () : ScContoxt *
spcmodilo lox; flefontoxt *): AcModule *

. MLOnuh RLypesDEFAULT

sorrore ()

sprint_kryoo_output to console(): void

soutgut 1}

ScEntryModulo
Teonsclol Beloneolevion * em'——_l.
iGeintryModule (cx:FeContext ¢, patent :QWidget *=0) Loy Sec
v ~sclintrydodulo () =
8 popalatedonubior imenul :Qanufar o) : vold
krdiales
dopaca
ScDspacoModule

ScDstateView

vitype: enum
sotype: enum
-_inntance: static ScDstateView
ki ScDetateViewPrivate
«filaTooln) QToolBar
_€t: ctype
-“console: ScKryosConsole
-Env: Fawidget
- tfile: char *
—_ffile: char *

ofile: chir *

L
aBolistateViow [}
s=~HoDstateViow!]

pop {ndba
sloadKrfilen () bool

3 *)1 void

ScContext

J-xryos: Krracade *
LH.fold: FldFacade *

+ScContext (}

+ ~ScContext ()
+newModule (context:ScContext *,mtype:enum moduleType): ScMedule ¥
+krfacade(): KrFacade *
+(}

s=fchepaceModule()

sRtatavinw: BepatateViow *
sitoMidget 1 OMainkindow ¢
sEoDwpaceModule (ox: ScContext. *)

spopul ateMenuBar | (QMenuBar *); vold
soonat_paat_spaca il virtual void
sboign_piren () : vircual void

(i)

1
ScKryosDialog

—_inatanch: GoRryoacontlyg *

shckryoabialeg ()
s-BeEryollalog ()
#icad {Triftypo): bool

sroloadl): void

)
sJoad (@Rering: fn, FE:ftype) s vold

Figure D.4: The organisation of the ScEntryModule class

The console module, shown in Figure D.5, described above provides a messaging interface for

communication between FOLDS and KRYOS.

ScDesignSpaceModule

The software components described thus far implement the interfaces necessary to connect FOLDS

with KRYOS, to create a flexible and extensible module design and to implement a communication

mechanism between the user and the underlying formalism. The ScDesignSpaceModule shown in

Figure D.6, implements the dialogue and task layers of the interaction model directly and permits

mixed-initiative exploration. In this module, contexts and views that permit interaction with the

visual notation, and interaction with the tasks of exploration are implemented.

178

= ——— 5C Enlry Modike -
e Hily

oo

ScCrpicn View b Raady
(Cpaning a Design Space tathih

(= 210
| Dt Epace Moduls SisD prnt Type Hemerhy . CHlP
Qovign Sude Module Cirel Coniuin =
He Tl f
Quit SEEC.Conly CieO

Loading Descriplion

|GiFdeEddlag) Stowod dasciphion Is |
FUBE SIDE »= WALL WALL_LEN
Desetioda conslrucled |
padd_spate consirucled
fnhing Sal Node lo console
atiurd
CUBE: cube
TIDE (1] wndewryal
WALL: wall
WALL_LEN: [1]
Pridling sal node: COMPLETED |

™ g i walls Shat madin bt = iyt wilth Siia ipgiiec alluti

ScOspace View i Ready
(Oporing a Desiga Space Moduly

[Tox |

Agpiy I

Chnchl]

Loadshg Datcipion

=1

Figure D.5: FOLDS interface to the Kryos Feature Structure System. The SC Entry Module
provides provides the interface hooks to initialise the Kryos system, load in project definitions,

construct the design space and begin the process of exploration. The console provides a messaging
interface for communication between FOLDS and KRYOS.

- likrPacade()

tcmnttucr._[pnn:_npacn(): bool
+aat_npace(): SatSpace
s+Instance(): KrFacade

| ScModule | QWidget |
T moduleType = DEFAULT
+itoView: Seview
+itotlontext: ScContext *
JaY
ituContext
ScView
-fileTeoals; QToolBar »
-gontxols: QPopupMenu *
+3
[T5cVicw (purent :QWidget=0)
ScContext = +-BcView()
-kryog: KrFacade * +emdAbout () virtual wvoid
+£old: FldFacade * ol +endAbout SEED{) : void .
yScCantext () +cmdAbout SEERConfig(): void
+ ~ScContext () s+petMesnnge (mesaage: const char *): void
E s dapace fipopulat v (mbar:QMenuBar *): virtual void
facade{): KrFacade * (1conat_char *) : void
ScDspaceModule
+datateview: ScDstateView *
+itawidget: OMainWindow *
+8eDopaceModule (cx: ScContext *)
+~SeDopacetodule () ScDspaceView
+populatad (1 *): void : T
kryos scongt_poat_space(}: virtual void :f;:?tg::g{;g:t“‘: ScDopaceView = 0
:ﬁzgn_piren{]: virtual void -fih‘ﬂmla: 1Bar *
+controln: QPopur
+8eDapaceView ()
+=SeDepaceView()
KrFacade +popul v (:0Q *): void
-_instance;: KrFacade +connt_poat_space () : virtual void
- _types; : ManualTypes +beign_pires(}: virtual void
-_Feats: ManualFeats +
-_cone: ManualCone
|-_paat_opace: SatSpace

Figure D.6: The organisation of the ScDesignSpaceModule class

179

Figure D.7 shows the ScDesignSpaceModule, comprising views of the current state of exploration

and interface constructs for supporting dialogue and task operations through mixed-initiative.

oL

T
Cé‘!}l\ £ITD
i Node

Al& e [[ore fa AW O TOBEAHSY B

Figure D.7: The ScDesignSpaceModule in FOLDS . Note that the visual notation for feature nodes
is introduced in the top half of the window. The ScEntry module is shown in the lower right. The
design space module includes a geometry viewer in the lower half of the window. As exploration
progresses, support for exploration specific tasks are provided through type and feature operations.

Bibliography

Ait-Kaci, H. & Cosmo, R. D. [1993], Compiling order-sorted feature term unification, Technical Report
PRL-TN-7, Digital Paris Research Laboratory.

Ait-Kaci, H., Podelski, A. & Smolka, G. [1992], A feature constraint system for logic programming with
entailment, Technical Report PRL-RR-20, Digital Paris Research Laboratory.

Akin, O., Aygen, Z., Chang, T. W., Chien, S. F., Choi, B., Donia, M., Fenves, S. J., Flemming,
U., Garrett, J. H., Gomez, N., Kiliccote, H., Rivard, H., Sen, R., Snyder, J., Tsai, W.-J.,
Woodbury, R. & Zhang, Y. [1997], ‘SEED: A Software Environment to support the Early
phases of building Design’, The International Journal of Design Computing.

URL: hittp://www.arch.usyd. edu.au/kede/journal /index. html

Akin, O. & Sen, R. [1996], ‘Navigation within a structured search space in layout problems’, Environment
and Planning B: Planning and Design 23, 421-442.

Akin, O., Sen, R., Donia, M. & Zhang, Y. [1995], ‘SEED-Pro: Computer assisted architectural pro-
gramming in SEED’, ASCE Journal of Architectural Engineering 1(4), 153-161.

Allen, J. F. [1999], ‘Mixed initiative interaction’, Proc. IEEE Intelligent Systems 14(6), 14-23.

Allen, J. F., Ferguson, G. & Schubert, L. K. [1996], Planning in complex worlds via mixed-initiative in-
teraction, in ‘Advanced Planning Technology: Technological Achievements of the ARPA /Rome
Laboratory Planning Initiative’, pp. 53—60.

URL: http://www.cs.rochester.edu/research/trains/

Amant, R. S. [19974], Navigation and planning in a mixed initiative user interface, in ‘Proceedings of
the 14th National Conference on Artificial Intelligence (AAAI-97)’, AAAI Press / MIT Press,
Providence, Rhode Island, pp. 64-69.

URL: citeseer.nj.nec.com/st9Tnavigation.html

Amant, R. S. [1997b], Navigation and planning in a mixed initiative user interface, in ‘Proceedings of

the 14th National Conference on Artificial Intelligence’, AAAT-97, MIT Press, pp. 64-69.

180

BIBLIOGRAPHY 181

Amant, R. S. & Cohen, P. R. [1997], Interaction with a mixed-initiative system for exploratory data
analysis, in ‘Proceedings of Intelligent User Interfaces’, pp. 15-22.

Borgida, A., Brachman, R. J., McGuinness, D. L. & Resnick, L. A. [1989], CLASSIC: A structural data
model for objects, in ‘Proceedings of the 1989 ACM Special Interest Group on Management
of Data (SIGMOD) International Conference on Management of Data’, pp. 58-67.

Borning, A. [1977], Thinglab - an object-oriented system for building simulations using constraints, in

‘Proceedings of the Fifth International Joint Conference on Artificial Intelligence’, pp. 497-498.

Borning, A. [1981], “The programming language aspects of thinglab, a constraint-oriented simulation

laboratory’, ACM Transactions on Programming Languages and Systems 3(4), 353-387.

Burrow, A. [1999], Design and Implementation of the KRYOS feature structure libraries, University of

Adelaide, Adelaide, Australia. Unpublished manual on feature structures libraries.

Burrow, A. L. [2003], Computational Design and Formal Languages, Unpublished PhD Thesis, Depart-

ment of Computer Science, The University of Adelaide.

Burrow, A. L. & Woodbury, R. [1999], m-resolution and Design Space Exploration, in G. Augenbroe &
C. Eastman, eds, ‘Computers in Building: Proceedings of the CAADF’99 Conference’, Eighth
International Conference on Computer-Aided Design Futures, Kluwer Academic Publishers,
pp. 291-308.

Burrow, A. & Woodbury, R. [2001], Design spaces-the forgotten artefact, in M. Burry, T. Dawson,
J. Rollo & S. Datta, eds, ‘Hand, Eye, Mind, Digital’, Proceedings of the Third International
Mathematics and Design Conference, The Mathematics and Design Society, pp. 56-62.

Burstein, M., Ferguson, G. & Allen, J. [2000], Integrating agent-based mixed-initiative control with an
existing multi-agent planning system, Technical Report 729, Computer Science Dept., Univer-
sity of Rochester.

URL: hitp://www.cs.rochester.edu/u/ferguson/papers /burstein-ferguson-allen-tr729. pdf

Burstein, M. & McDermott, D. [1996], Issues in the development of human-computer mixed-initiative

planning, in B. Gorayska & J. Mey, eds, ‘Cognitive Technology’, Elsevier Science, pp. 285-303.

Burstein, M., Mulvehill, A. & Deutsch, S. [1999], An approach to mixed-initiative management of
heterogeneous software agent teams, in ‘Thirty-second Annual Hawaii International Conference
on System Sciences’, Maui, Hawaii.

URL: http://www.computer.org/proceedings/hicss/0001/00018/00018055. PDF'

Carbonell, J. R. [1970], ‘Al in CAL: An artificial intelligence approach to computer-assisted instruction’,
IEEE Transactions on Man-Machine Systems 11(4), 190-202.

BIBLIOGRAPHY 182

Cardelli, L. & Wegner, P. [1985], ‘On understanding types, data abstraction and polymorphism’, Com-
puting Surveys 17(4), 471-522.

Carlson, C. [1993], Grammatical Programming: An algebraic approach to the Description of Design
Spaces, PhD thesis, Carnegie Mellon University.

Carlson, C. [1994], Design space description formalisms : Discussion, in J. S. Gero & E. Tyugu, eds,
‘Formal Design methods for CAD’, TC5/WG5.2 Workshop on Formal Design methods for
CAD, IFIP, Elsevier Science Publishers B.V., pp. 121-134.

Carlson, C., McKelvey, R. & Woodbury, R. [1991], ‘An introduction to structure and structure gram-
mars’, Planning and Design 18, 417-426.

Carlson, C. & Woodbury, R. [1994], ‘Hands-on exploration of recursive patterns’, Languages of Design
2, 121-142.

Carpenter, B. [1992], The Logic of Typed Feature Structures with applications to unification grammars,
logic prorgams and constraint resolution, Cambridge Tracts in Theoretical Computer Science,

Cambridge University Press.

Cesta, A. & D’Aloisi, D. [1999], ‘Mixed-Initiative Issues in an Agent-Based Meeting Scheduler’, User
Modeling and User-Adapted Interaction 9(1-2), 45-78.
URL: citeseer.nj.nec.com/199120.html

Chang, T. [1999], Geometric Typed Feature Structures, PhD thesis, School of Architecture, Landscape
Architecture and Urban Design, Adelaide University.

Chase, S. [1989], ‘Shapes and shape grammars: from mathematical model to computer implementation’,
Planning and Design 16(2), 215-241.

Chase, S. C. [1999], Grammar based design: Issues for user interaction models, in O. Ataman &
J. Bermudez, eds, ‘Media and Design Process, proceedings of ACADIA ’99’, pp. 198-210.

Chase, S. C. [2002], ‘A model for user interaction in grammar-based design systems’, Automation in
Construction 11(2), 161-172.

Chien, S. [1998], Supporting information navigation in generative design systems, PhD thesis, School

of Architecture, Carnegie-Mellon University.

Chien, S. & Flemming, U. [1996], Design space navigation: An annotated bibliography, Technical
Report No EDRC 48-37-96, Engineering Design Research Center, Carnegie-Mellon University,
Pittsburgh, PA, USA.

BIBLIOGRAPHY 183

Chien, S. & Flemming, U. [1997], Information navigation in generative design systems, in Y. Liu, J. Tsou
& J. Hou, eds, ‘CAADRIA 97’, Vol. 2, Computer Aided Architectural Design Research in Asia,
National Chia Tung University, Hsinchu, Taiwan, pp. 355-366.

Chu-Carroll, J. & Brown, M. K. [19974], Initiative in collaborative interactions —its cues and effects,
in ‘Computational Models for Mixed Initiative Interaction’, AAATI Spring Symposium Series,
AAATI Press, Stanford University, pp. 16-22.
URL: citeseer.nj.nec.com/9991.html

Chu-Carroll, J. & Brown, M. K. [1997}], Tracking initiative in collaborative dialogue interactions, in
‘Meeting of the Association for Computational Linguistics’, pp. 262-270.
URL: citeseer.nj.nec.com/82163.html

Chu-Carroll, J. & Brown, M. K. [1998], ‘An evidential model for tracking initiative in collaborative
dialogue interactions’, User Modeling and User-Adapted Interaction (UMUAI) 8(3-4), 215-
253.

Cohen, R., Allaby, C., Cumbaa, C., Fitzgerald, M., Ho, K., Hui, B., Latulipe, C., Lu, F., Moussa,
N., Pooley, D., Qian, A. & Siddiqi, S. [1998], ‘What is initiative?’, User Modeling and User-
Adapted Interaction 8(3-4), 171-214.
URL: citeseer.nj.nec.com/cohen98what.html

Cooper, A. [1999], About Face: The Essentials of User Interface Design, Programmers Press.
Dalheimer, M. K. [1999], Programming with Qt, O'Reilly Verlag GMBH Co., KG, Kéln, Germany.

Datta, S. [2002], Managing knowledge navigation in design with mixed-initiative dialogue, in Z. Turk &
R. Scherer, eds, ‘Proceedings of the fourth european conference on product and process mod-
elling in the building and related industries: eWork and eBusiness in Architecture, Engineering
and Construction’, ECPPM, A.A. Balkema, The Netherlands, pp. 501-508.

Datta, S. & Woodbury, R. [1998], Reducing semantic distance in generative systems: A massing example,
in T. Seebohm & S. V. Eyck, eds, ‘Digital Design Studios : Do computers make a difference ?’,
Proceedings of the 1998 Association for Computer-Aided Design in Architecture Conference,

Universal Printing, Albuquerque, NM, pp. 164-171.

Datta, S. & Woodbury, R. [2000], Proactivity and mixed-initiative in unfolding design spaces, in K. Ben-
nett & S. Goss, eds, “Workshop on Situated Activity Of Entities (AgentsHumans) Within Com-
plex, Dynamic, Real-Time Environments (RealSimulated)’, OZCHI2000 : Interfacing Reality
in the New Millenium, pp. 15-16. submitted for publication.

BIBLIOGRAPHY 184

Datta, S. & Woodbury, R. [2001], An approach to search and exploration through mixed-initiative,
in S. C. J. Gero & M. Rosenman, eds, ‘Proceedings of The Sixth Conference on Computer
Aided Architectural Design Research in Asia’, CAADRIA, Key Centre of design computing
and cognition, Sydney, Australia, pp. 275-282.

Datta, S. & Woodbury, R. [2002], A Graphical Notation for Mixed-initiative dialogue with generative
design systems, in J. S. Gero, ed., ‘Artificial Intelligence in Design’02’, AID, Kluwer Academic
Publishers, The Netherlands, pp. 256—40.

Eggleston, R. [1999], Mixed-initiative transactions: A cognitive engineering approach to interface agent
modeling, in ‘Proceedings of the AAAI-99 Workshop on Mixed-Initiative Intelligence’, AAAI
Press, Orlando Fl.
URL: http://www.cs.wright.edu/people/faculty/mcoz/mii/papers/eggleston. pdf

Erich Gamma, Richard Helm, R. J. & Vlissides, J. [1995], Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Publishing.

Feijo, B. & Lehtola, N. [1996], Reactive design agents in solid modelling, in J. S. Gero & F. Sudweeks,
eds, ‘Artificial Intelligence in Design ’96’, Kluwer Academic Publishers, pp. 61-75.

Fenves, S. J., Rivard, H. & Gomez, N. [1995], An information model for the preliminary design of
buildings, Technical report, Engineering Design Research Center, Carnegie-Mellon University,
Pittsburgh, PA.

Ferguson, G. & Allen, J. F. [1994], Arguing about plans: Plan representation and reasoning for mixed-
initiative planning, in ‘Proceedings of the 2nd International Conference on Al Planning Sys-
tems’, AIPS-94, Chicago, IL, pp. 43-48.

Ferguson, G. & Allen, J. F. [1998], Trips: An integrated intelligent problem-solving assistant., in ‘Pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative
Applications of Artificial Intelligence Conference’, AAAI/TAAI, The MIT Press, pp. 567-572.

Ferguson, G., Allen, J. & Miller, B. [1996], Trains-95: Towards a mixed-initiative planning assistant,
in ‘Proceedings of the 3rd International Conference on Al Planning Systems’, AIPS-96, Edin-
burgh, Scotland, pp. 70-77.

Flemming, U. [1978], ‘Wall representations of rectangular dissections and their use in automated space

allocation’, Environment and Planning B: Planning and Design 5, 215-232.

Flemming, U. [1986], ‘On the representation and generation of loosely-packed arrangements of rectan-

gles’, Environment and Planning B: Planning and Design 13, 189-205.

BIBLIOGRAPHY 185

Flemming, U. [1987a], ‘More than the sum of parts: the grammar of queen anne houses’, Environment

and Planning B: Planning and Design 14, 323-350.

Flemming, U. [1987b], The role of shape grammars in the analysis and creation of designs, in Y. Kalay,
ed., ‘Computability of Design’, Principles of Computer-Aided Design, Wiley Interscience, New
York, N.Y., chapter 12, pp. 245-272.

Flemming, U. [1990], Syntactic structures in architecture: Teaching composition with computer assis-
tance, in M. McCullough & W. J. Mitchell, eds, ‘The Electronic design studio : architectural
knowledge and media in the computer era’, MIT Press, Boston, chapter 2, pp. 31-48.

Flemming, U. & Chien, S.-F. [1995], ‘Schematic layout design in the SEED environment’, ASCE Journal
of Architectural Engineering 1(4), 162-169.

Flemming, U., Coyne, R. F., Glavin, T., Hsi, H. & Rychener, M. D. [1989], A generative expert system
for the design of building layouts, Technical Report from 1989 Report Series, Engineering

Design Research Center, Carnegie-Mellon University.

Flemming, U., Coyne, R., Glavin, T. & Rychener, M. [1988], A generative expert system for the design
of building layouts - version 2, in J. Gero, ed., ‘Artificial Intelligence in Engineering: Design’,
Elsevier, New York, N.Y., pp. 445-464.

Flemming, U., Coyne, R. & Woodbury, R. [1993], SEED: A Software Environment to support the Early
phases in building Design, in ‘Fourth International Symposium on Computer Aided Design in
Architecture and Civil Engineering’, Institut de Technologia de la Construccio de Catalunya,

Barcelona.

Flemming, U., Coyne, R., Woodbury, R., Bhavnani, S., Chien, S.-F., Chiou, S.-C., Choi, B., Kiliccote,
H., Stouffs, R., Chang, T.-W., Han, S.-J., Jo, C., Shaw, J. & Suwa, K. [1994], ‘SEED-Layout
requirements analysis’. http://seed.edrc.cmu.edu/SL/SL-start.book.html.

Flemming, U., Rychener, M. D., Coyne, R. F. & Glavin, T. J. [1986], A generative expert system for
the design of building layouts: Version 1, Technical report, Center for Arts and Technology,

Carnegie-Mellon University.

Flemming, U. & Woodbury, R. F. [1995], ‘Software Environment to support Early phases in building
Design, SEED: Overview’, ASCE Journal of Architectural Engineering 1(4), 147-152.

Fowler, M., Scott, K. & Jacobson, 1. [1997], UML Distilled: Applying the standard object modelling
language, Addison Wesley, Reading, MA.

BIBLIOGRAPHY 186

Franz, B. & Jrg, S. [1994], Unification theory, in D. Gabbay, C. Hogger & J. Robinson, eds, ‘Handbook
of Logic in Artificial Intelligence and Logic Programming’, Oxford University Press, Oxford,
UK.

Freedman, R. [1999], Atlas: A plan manager for mixed-initiative, multi-model dialogue, in ‘Proceedings
of the AAAI-99 Workshop on Mixed-Initiative Intelligence’, Orlando Fl.
URL: http://www. cs.wright.edu/people/faculty/mcox/mii/papers/freedman. pdf

Friedell, M. & Kochhar, S. [1991], ‘Design and modeling with schema grammars’, Visual Languages and
Computing 2, 247-273.

Fréhlich, M. & Werner, M. [1994], The graph visualization system DAVINCI - a user interface for

applications, Technical Report 5/94, Universitét Bremen.

Fréhlich, M. & Werner, M. [1995], ‘Demonstration of the interactive graph visualization system

DAVINCI’, Lecture notes in computer science 894.

G. Fischer, R. M. & Morch, A. [1988], ‘Design environments for constructive and argumentative design’,
Proceedings of CHI ’89 pp. 269-275.

Galle, P. [1981], ‘An algorithm for exhaustive generation of building floor plans’, Communications of
the ACM 24, 813-825.

Gero, J. S. [19944], Formal design methods for computer-aided design : closing discussion, in J. S. Gero
& E. Tyugu, eds, ‘Formal Design methods for CAD’, TC5/WG5.2 Workshop on Formal Design
methods for CAD, IFIP, Elsevier Science Publishers B.V., pp. 353-359.

Gero, J. S. [1994b], Towards a model of exploration in computer-aided design, in J. S. Gero & E. Tyugu,
eds, ‘Formal Design methods for CAD’, TC5/WG5.2 Workshop on Formal Design methods for
CAD, IFIP, Elsevier Science Publishers B.V., pp. 3156-336.

Gero, J. S. & Kazakov, V. A. [1996], ‘An exploration-based evolutionary model of a generative design
process’, Microcomputers in Civil Engineering 11(3), 211-218.

Grice, H. [1989], Studies in the way of words, Harvard University Press.

Grice, H. P. [1975], Logic and conversation, in P. Cole & J. Morgan, eds, ‘Syntax and Semantics’, Vol. 3,
Academic Press, pp. 41-58.

Gross, M. D., Ervin, S., Anderson, J. & Fleisher, A. [1988], ‘Constraints: Knowledge representation in
design’, Design Studies 9(3), 133-143.

BIBLIOGRAPHY 187

Guinn, C. [1993], A computational model of dialogue initiative in collaborative discourse, in ‘AAAI’93:
Fall Symposium on Human-Computer Collaboration’, Raleigh, NC, pp. 32-39.
URL: hitp://citeseer.nj.nec.com/quinn9Scomputational. html

Guinn, C. I [1996], Mechanisms for mixed-initiative human-computer collaborative discourse, in
A. Joshi & M. Palmer, eds, ‘Proceedings of the Thirty-Fourth Annual Meeting of the Associa-
tion for Computational Linguistics’, Morgan Kaufmann Publishers, San Francisco, pp. 278-285.
URL: citeseer.nj.nec.com/56118.html

Hakim, M. & Garrett, J. H. J. [1993], ‘Using description logic for representing engineering design
standards’, Journal of Engineering with Computers 9, 108-124.

Haller, S., McRoy, S. & Kobsa, A., eds [1999], Computational Models of Mized-Initiative Interaction,
Published collection of papers from the 1997 AAAT Spring Symposium, Kluwer Academic
Publishers.

Harada, M. [1997], Discrete/Continuous Design Exploration by Direct Manipulation, PhD thesis,
Carnegie-Mellon University, Pittsburgh, PA, USA.

Harada, M., Witkin, A. & Baraff, D. [1995], Interactive physically-based manipulation of dis-
crete/continuous models., in ‘SIGGRAPH '95 Conference Proceedings’, Vol. 29, ACM Sig-
graph, ACM, pp. 199-208.

Hartrum, T. & DeLoach, S. A. [1999], Design issues for mixed-initiative agent systems, in ‘Proceedings
of the AAAI-99 Workshop on Mixed-Initiative Intelligence’, Orlando FL.
URL: http://www. cs.wright.edu/people/faculty/mcox/mii/papers /hartrum. pdf

Heisserman, J. [1991], Generative Geometric Design and Boundary Solid Grammars, PhD thesis, De-

partment of Architecture, College of Fine Arts, Carnegie-Mellon University.

Heisserman, J. [1994], ‘Generative geometric design’, IEEE Computer Graphics and Applications
14(2), 37-45.

Heisserman, J. & Woodbury, R. [1993], Geometric design with boundary solid grammars, in J. Gero &
F.S. (eds.), eds, ‘In Formal Design Methods for CAD’, North-Holland, Amsterdam, pp. 79-100.

Horvitz, E. [1999], Principles of mixed-initiative user interfaces, in ‘Proceedings of CHI ’99’, ACM
SIGCHI Conference on Human Factors in Computing Systems, ACM press, Pittsburgh, PA,
pp. 159-166.

Hudson, S. E. & Yeatts, A. K. [1991], Smoothly integrating rule-based techniques into a direct ma-
nipulation interface builder, in ‘Fourth Annual Symposium on User Interface Software and
Technology’, Vol. 4 of UIST, pp. 145-153.

BIBLIOGRAPHY 188

Hybs, I. & Gero, J. S. [1992], ‘An evolutionary process model of design’, Design Studies 13(3), 273-290.

Ishizaki, M., Crocker, M. & Mellish, C. [1999], ‘Mixed-initiative dialogue using computer dialogue
simulation’, User Modeling and User-Adapted Interaction 9(1-2), 79-91.

Jacobson, I., Booch, G. & Rumbaugh, J. [1998], The Unified Modeling Language User Guide, Addison
Wesley, Reading, MA.

Kasper, R. T. & Rounds, W. C. [1990], “The logic of unification in grammar’, Linguistics and Philosophy
13(1), 35-58.

Kiefer, B. & Fettig, T. [1995], FEGRAMED-—an interactive graphics editor for feature structures,
Research Report RR-95-06, German Research Center for Artificial Intelligence (DFKI),

Saarbriicken, Germany.

Kitano, H. & Ess-Dykema, C. V. [1991], Toward a plan-based understanding model for mixed-initiative

dialogues, in ‘Meeting of the Association for Computational Linguistics’, pp. 25-32.

Klein, E. & Pineda, L. A. [1990], Semantics and graphical information, in ‘Proceedings of the Inter-
national Conference on Human-Computer Interaction-INTERACT ’90°, Elsevier, New York,
pp. 485-491.
URL: www.hcre.ed.ac.uk/Site/KLEIE9.html

Knight, K. [1989], ‘Unification : A multidisciplinary survey’, ACM Computing Surveys 21(1), 93-124.

Kochhar, S. [1994], ‘A paradigm for human-computer cooperation in design’, Computer Graphics and
Applications 17(16), 54-65.

Krishnamurthy, R. & Stouffs, R. [1993], Spatial grammars : Motivation, comparision and new results,
in U.Flemming & S. VanWyk, eds, ‘CAAD Futures ’93: Proceedings of the Fifth International
Conference on Computer-Aided Architectural Design Futures’, Carnegie Mellon University,
Pittsburgh, PA, Elsevier, Pittsburgh, PA, pp. 57-74.

Krishnamurti, R. [1980], “The arithmetic of shapes’, Environment and Planning B: Planning and Design
7, 463-484.

Krishnamurti, R. [1992], “The arithmetic of maximal planes’, Environment and Planning B: Planning
and Design 19, 431-464.

Krishnamurti, R. & Earl, C. F. [1992], ‘Shape recognition in three dimensions’, Environment and Plan-
ning B: Planning and Design 19, 585-603.

Lambrix, P. [1996], Part-Whole Reasoning in Description Logics, PhD thesis, Lingkoping University.

BIBLIOGRAPHY 189

Lester, J., Stone, B. & Stelling, G. D. [1999], ‘Lifelike pedagogical agents for mixed-initiative problem
solving in constructivist learning environments’, User Modeling and User-Adapted Interaction
9(1-2), 1-44.
URL: citeseer.nj.nec.com/347209.html

Lynch, K. [1960], The Image of the City, MIT Press, Cambridge, Mass.

McCall, R., Fischer, G. & Morch, A. [1990], Supporting reflection-in-action in the Janus Design Environ-
ment, in ‘The Electronic Design Studio’, MIT Press, Cambridge, MA, chapter 17, pp. 247-260.

Minsky, M. [1975], A framework for representing knowledge, in P. H. Winston, ed., ‘The Psychology of
Computer Vision’, McGraw-Hill, New York, pp. 211-277.

Mitchell, W. J. [1977], Computer-Aided Architectural Design, Petrocelli/Charter, New-York.
Mitchell, W. J. [1990], The Logic of Architecture, MIT Press, Cambridge, MA., USA.

Mitchell, W., Steadman, J. & Liggett, R. [1976], ‘Synthesis and optimization of small rectangular floor
plans’, Environment and Planning B: Planning and Design 3, 37-70.

Neider, J., Davis, T. & Woo, M. [1993], OpenGL Programming Guide, second edition edn, OpenGL
Architecture Review Board, Addison-Wesley, Reading, Massachusetts.

Newell, A. [1982], “The Knowledge Level’, Artificial Intelligence 18(1), 87-127.
Newell, A. & Simon, H. A. [1972], Human Problem Solving, Prentice-Hall Inc., Englewood Cliffs, NJ.
Norman, D. [1988], Design of Everyday Things, Basic Books, New York.

Novick, D. [1988], Control of mixed-initiative discourse through meta-locutionary acts: A computational

model., PhD thesis, Department of Computer and Information Science, University of Oregon.

Novick, D. & Sutton, S. [1994], An empirical model of acknowledgment for spoken-language systems,
in ‘Proceedings of ACL-94’, pp. 96-101.

Novick, D. & Sutton, S. [1997], What is mixed-initiative interaction?, in ‘Computational Models for
Mixed Initiative Interaction’, number SS-97-04 in ‘1999 AAAI Spring Symposium’, AAAI
Press, Stanford University, pp. 114-116.

Patel-Schneider, P. F., McGuinness, D. L., Brachman, R. J., Resnick, L. A. & Borgida, A. [1991], ‘The
CLASSIC knowledge representation system: Guiding principles and implementation rationale’,
SIGART:ACM Special Interest Group on Artificial Intelligence 2(3), 108-113.

Piela, P. [1989], ASCEND, An Object-Oriented Computer Environment for Modeling and Analysis,
PhD thesis, Department of Chemical Engineering, Carnegie-Mellon University.

BIBLIOGRAPHY 190

Piela, P., McKelvey, R. & Westerberg, A. [1993], ‘An introduction to the ASCEND modeling system: It’s

language and interactive environment’, Journal of Magagement information system 9(3), 91—
121.

Pollard, C. J. & Moshier, M. [1990], Unifying partial descriptions of sets, in P. Hanson, ed., ‘Information,
Language and Cognition’, Vol. 1 of Vancouver Studies in Cognitive Science, Oxford University
Press, pp. 285-322.

Pollard, C. & Sag, 1. [1987], Information-based Syntax and Semantics, in ‘Volume 1: Fundamentals’,
Vol. 13 of CSLI Lecture Note Series, Center for the Study of Language and Information,
Stanford University, Stanford, CA.

Poon, J. & Maher, M. L. [1996], Emergent behaviour in co-evolutionary design, in J. S. Gero & F. Sud-
weeks, eds, ‘Artificial Intelligence in Design '96’, Kluwer Academic Publishers, pp. 703-722.

Quadrel, R. [1991], Asynchronous Design Environments: Architecture and Behaviour, PhD thesis,

Department of Architecture, Carnegie-Mellon University.

Rich, C. & Sidner, C. L. [1997], COLLAGEN: When agents collaborate with people, in W. L. Johnson &
B. Hayes-Roth, eds, ‘Proceedings of the First International Conference on Autonomous Agents
(Agents’97)’, ACM Press, New York, pp. 284-291.

URL: citeseer.nj.nec.com/rich96collagen.html

Rich, C. & Sidner, C. L. [1998], ‘COLLAGEN: A collaboration manager for software interface agents’,
User Modeling and User-Adapted Interaction 8(3-4), 315-350.
URL: citeseer.nj.nec.com/rich98collagen.html

Rittel, H. & Webber, M. [1984], Planning problems are wicked problems, in N. Cross, ed., ‘Developments
in Design Methodology’, John Wiley Sons, pp. 135-144.

Schon, D. A. [1983], The Reflective Practitioner : How Professionals Think in Action, Basic Books,
New York.

Schén, D. A. [1988], ‘Designing: Rules, Types, and Worlds’, Design Studies 9(3), 181-190.

Schén, D. A. & Wiggins, G. [1992], ‘Kinds of seeing and their functions in designing’, Design Studies
13(2), 135-156.

Schulte, C. [1997], Oz Explorer: A visual constraint programming tool, in L. Naish, ed., ‘Proceedings
of the Fourteenth International Conference on Logic Programming’, The MIT Press, Leuven,
Belgium, pp. 286-300.

BIBLIOGRAPHY 191

Shieber, S. [1984], The design of a computer language for linguistic information, in ‘Proceedings of the

10th International Conference on Computational Linguistics’, Stanford, pp. 362-366.

Shieber, S. M. [1986], An introduction to Unification-Based Approaches to Grammar, CSLI Lecture
Notes 4, Stanford, CSLI: Center for the Study of Language and Information, Stanford, CA.

Shieber, S. M., Uszkoreit, H., Pereira, F. C. N., Robinson, J. J. & Tyson, M. [1983], The formalism and
implementation of patr-ii, in B. Grosz & M. Stickel, eds, ‘Research on Interactive Acquisition
and Use of Knowledge’, SRI Final Report 1894, Artificial Intelligence Center, SRI International,
Menlo Park, California.

Shih, S. G. & Schmitt, G. [1994], ‘The use of post interpretation for grammar based generative systems’,
in Formal Design Methods for CAD IFIP WG5.2 J.S. Gero and E. Tyugu(editors) B(18), 101~
113.

Shneiderman, B. [1982], ‘The future of interactive systems and the emergence of direct manipulation’,
Behaviour and Information Technology 1(1), 237-256.

Shneiderman, B. [1983], ‘Direct manipulation: a step beyond programming languages’, IEEE Computer
16(8), 57-69.

Shneiderman, B. [1997], Direct manipulation for comprehensible, predictable, and controllable user
interfaces, in ‘Proceedings of IUI97’, International Conference on Intelligent User Interfaces,
pp- 33-39.

Simon, H. [1973], ‘The structure of ill-structured problems’, Artificial Intelligence 4, 181-201.

Simon, H. A. [1969], The sciences of the artificial, Karl Taylor Compton lectures, 1968 M.I.T. Press,
Cambridge, Mass.

Simon, H. A. [1975], Style in design, in C. M. Eastman, ed., ‘Spatial Synthesis in Computer-Aided
Building Design’, Applied Science Publishers.

Smith, R. [1991], A Computational Model of Expectation-Driven Mixed-Initiative Dialog Processing,
PhD thesgis, Duke University.

Smith, R. & Hipp, R. D. [1994], Spoken Natural Language Dialog Systems: A Practical Approach, Oxford

University Press.

Smithers, T. [1992], Design as exploration : puzzle-making and puzzle-solving, in J. S. Gero, ed., ‘Work-
shop on Search-based and Exploration-based models of Design Process’, Artificial Intelligence

in Design 92, Carnegie-Mellon University, Pittsburgh, pp. 1-21.

BIBLIOGRAPHY 192

Smithers, T. [1994], Exploration in design : Discussion, research issues, in J. S. Gero & E. Tyugu,
eds, ‘Formal Design methods for CAD’, TC5/WG5.2 Workshop on Formal Design methods for
CAD, IFIP, Elsevier Science Publishers B.V., pp. 337-350.

Smithers, T. [1996], On knowledge level theories of design process, in J. S. Gero & F. Sudweeks, eds,
‘Artificial Intelligence in Design *96’, Kluwer Academic Publishers, pp. 561-579.

Smithers, T. [1998], Towards a knowledge level theory of design process, in J. S. Gero & F. Sudweeks,
eds, ‘Artificial Intelligence in Design '98’, Kluwer Academic Publishers, pp. 2-22.

Smithers, T. [2000], Designing a font to test a theory, in J. S. Gero, ed., ‘Artificial Intelligence in Design
00°, Kluwer Academic Publishers, pp. 3-22.

Smithers, T. [2002], Synthesis in Designing, in J. S. Gero, ed., ‘Artificial Intelligence in Design '02’,
Kluwer Academic Publishers, pp. 3-24.

Smithers, T., Corne, D. & Ross, P. [1994], On computing exploration and solving design problems, in
J. S. Gero & E. Tyugu, eds, ‘Formal Design methods for CAD’, TC5/WGbH.2 Workshop on
Formal Design methods for CAD, IFIP, Elsevier Science Publishers B.V., pp. 293-313.

Smolka, G. & Ait-Kaci, H. [1989], ‘Inheritance hierarchies: Semantics and unification’, Journal of
Symbolic Computation 7, 342-370.

Snyder, J., Aygen, Z., Flemming, U. & Tsai, J. [1995], ‘SPROUT- a modeling language for SEED’,
ASCE Journal of Architectural Engineering 1(4), 195-203.

Stiny, G. [1980], ‘Introduction to shape and shape grammars’, Environment and Planning B: Planning
and Design 7(3), 343-352.

Stiny, G. & March, L. [1981], ‘Design machines’, Environment and Planning B: Planning and Design
8(3), 241-244.

Stiny, G. & Mitchell, W. [19784q], ‘Counting palladian plans’, Environment and Planning B: Planning
and Design 5, 189-198.

Stiny, G. & Mitchell, W. J. [1978b], ‘The Palladian Grammar’, Environment and Planning B: Planning
and Design 5, 5-18.

Stouffs, R. [1994], The Algebra of Shapes, PhD thesis, Carnegie Mellon University, Pittsburgh, PA
15213.

Sutherland, I. E. [1963], Sketchpad-—a man-machine graphical communication system, in ‘Proceedings
of the Spring Joint Computer Conference’, Vol. 23 of IFIPS, pp. 328-346.

BIBLIOGRAPHY 193

Tapia, M. [1999], ‘A visual implementation of a shape grammar system’, Environment and Planning B:
Planning and Design 26(1), 59-73.

Tapia, M. A. [1996], From Shape to Style Shape Grammars: Issues in Representation and Computa-
tion, Presentation and Selection, PhD thesis, Department of Computer Science, University of

Toronto.

Tecuci, G., Boicu, M., Wright, K. & Lee, S. [1999], Mixed-initiative development of knowledge bases, in
‘Proceedings of the AA AI-99 Workshop on Mixed-Initiative Intelligence’, AAAI Press, Orlando,
Florida.
URL: http://lalab.gmu.edu/publications/data/MIDKB-sent1999.pdf

Tsai, M., Reiher, P. & Popek, J. [1999], Baby steps from GUI towards dialogue: Mixed-initiative com-
puterese, in ‘Proceedings of the AAAT-99 Workshop on Mixed-Initiative Intelligence’, AAAI
Press, Orlando Fl.
URL: hitp://www.cs.wright.edu/people/faculty/mcox/mii/papers/tsai.pdf

Veloso, M. M. [1996], Towards mixed-initiative rationale-supported planning, in A. Tate, ed., ‘Advanced
planning technology’, AAAI Press, Menlo Park, CA, pp. 277-282.

Veloso, M. M., Mulvehill, A. M. & Cox, M. T. [1997], Rationale-supported mixed-initiative case-based
planning, in ‘Innovative Applications of Artificial Intelligence’, Proceedings of IAAI-97, Prov-
idence, RI, pp. 1072-1077.

Walker, M. & Whittaker, S. [1990], ‘Mixed initiative in dialogue: An investigation into discourse seg-
mentation’, Proceedings of the 28th Annual Meeting of the Association for Computational

Linguistics pp. 70-78.

Weitzman, L. & Wittenburg, K. [1993], Relational grammars for interactive design, in TEEE/CS Work-
shop on Visual Languages’, Institute of Electrical and Electronics Engineers, Loa Alamitos,

California: IEEE Computer Society Press, Bergen, Norway, pp. 4-11.

Wexelblat, A. [1999], Footprints: Interaction History for Digital Objects, PhD thesis, MIT Program in
Media Arts & Sciences.

Wexelblat, A. & Maes, P. [1999], Footprints: History-rich tools for information foraging, in M. Williams,
G. Altom, M. Ehrlich & K. Newman, eds, ‘Proceedings of the Conference on Human Factors
in Computing Systems (CHI-99)’, ACM Press, pp. 270-277.

Whittaker, S. & Stenton, P. [1988], ‘Cues and control in expert-client dialogues’, Proceedings of the 26th
Annual Meeting of the Association for Computational Linguistics pp. 123-130.

BIBLIOGRAPHY 194

Winograd, T. & Flores, F. [1987], Understanding Computers and Cognition: A New Foundation for
Design, Addison-Wesley, Reading, MA.

Witkin, A., Fleischer, K. & Barr, A. [1987], ‘Energy constraints on parameterized models’, Computer
Graphics 21(4), 225-232.

Witkin, A., Gleicher, M. & Welch, W. [1990], ‘Interactive dynamics’, Computer Graphics, Proc. 1990
Symposium on 3-D Interactive Graphics 24(2), 11-21.

Woodbury, R., Burrow, A., Datta, S. & Chang, T. [1999], ‘Typed feature structures and design space
exploration’, Artificial Intelligence in Design, Engineering and Manufacturing 13(4), 287-302.

Special Issue on Generative Design Systems.

Woodbury, R., Carlson, C. & Heisserman, J. [1988], Geometric Search Spaces in Design, in ‘Workshop
on Intelligent CAD’, IFIP WG5.2, Cambridge, England, pp. 490-492.

Woodbury, R., Datta, S. & Burrow, A. [2000], Erasure in design space exploration, in J. Gero, ed., ‘Arti-
ficial Intelligence in Design’00’, Artificial Intelligence in Design, Kluwer Academic Publishers,
pPp. 521-544.

Woodbury, R. F. & Chang, T.-W. [19954], Building enclosures using SEED-Config, in M. Tan &
R. Teh, eds, ‘The Global Design Studio: Proceedings of the Sixth International Conference
on Computer-Aided Architectural Design Futures’, CAADFutures 95 Conference, Singapore,
pp. 49-58.

Woodbury, R. F. & Chang, T.-W. [1995b], ‘Massing and enclosure design with SEED-Config’, ASCE
Journal of Architectural Engineering 1(4), 170-178.

Woodbury, R. F., Radford, A. D., Taplin, P. N. & Coppins, S. A. [1992], Tartan worlds: A genera-
tive symbol grammar system, in D. Noble & K. Kensek, eds, ‘ACADIA 92’, Charleston, SC,
pp. 211-220.

Woodbury, R., Flemming, U., Coyne, R., Fenves, S. & Garrett, J. [1995], The SEED project: A
Software Environment to support the Early phases in building Design, in G. F. Forsyth &
M. Ali, eds, ‘Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems: Proceedings of the Eighth International Conference’, IEA/AIE, Gordon and Breach
Publishers, Melbourne, Australia, pp. 781-786.

Woodbury, R. & Griffith, E. [1993], Layouts, solids, grammar interpreters and firestations, in U. Flem-
ming & S. VanWyk, eds, ‘CAAD Futures 93’, Carnegie Mellon University, Pittsburgh, PA,
Elsevier, Pittsburgh, PA, pp. 75-90.

BIBLIOGRAPHY 195

Zeller, A. [1997], Configuration Management with Version Sets - A Unified Software Versioning Model
and its Applications, PhD thesis, TU Braunschweig.

Zeller, A. & Snelting, G. [1995], Handling version sets through feature logic, in W. Schfer & P. Botella,
eds, ‘Proc. 5th European Software Engineering Conference (ESEC)’, Vol. Vol. 989 of LNCS,
pp. 191-204.

