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SYNOPTIC ABSTRACT

Some dependent variables are not fully quantitative and
cannot be exactly measured, yet the categories are not merely
qualitatively different states: rather, observations are
‘classified into ordered grades. Are the proportions of
observations in the several grades related to one another in gome
systematic way, for example, do they arise from an underlying
normal distribution? In some datasets, there are just three
grades, and comparison. is made of several different
circumstances. An important question is whether the proportion in
category 3 is positively correlated with the ratio of the
proportions in. categories 2 and 1. Statistical models are given
which permit methods of linearizing this relationship to be
suggested. The areas of application-considered are as follows:
injury severity in road accidents; “don't know* regponses in
contingent valuation surveys; fracturing and shape of particles;
taphonomy (i.e., the extent of deterioration of bioclogical
material over time); heart rate variability; pyrolysis (liquid
may be intermediate between gas and solid); errors in
neuropsychological tests (some may be less serious than others) ;
errors in speechreading (one condition may be more difficult than
another) . o
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1. INTRODUCTION

It is common in many fields of science-to assign-grades to
some dependent variable, because it is impossible to measure it,
and to analyse statistically those grades. Injury severity is one
example. It is frequently graded as none, nonfatal, fatal.
Typically, there is a hope that if we could measure the dependent
variable, we would find there is only one variable to be analysed
(that might be interpreted as the average or typical level), and
that separate consideration is not needed for the different
grades. Putting this another way, it should not matter. (in the
injury severity context) whether (a) we define a threshold
between none ahd nonfatal, and consider the proportions above and
below this (i.e., the proportion having any level of injury,
fatal or not, is of interest), or (b) we define a threshold
between nonfatal and fatal, and consider the proportions above
and below this (i.e., the proportion of fatalities is what is of
interest). Of course, if we really suspected that different
variables were influencing fatal versus nonfatal injury from
those influencing nonfatal versus no injury, we should be
conducting separate analyses. (But with different processes
operating, we might well completely avoid any notion of severity,
and instead treat the various grades as qualitatively different.)
Two gquestions then arise. Firstly, do the data support the idea
that (a) and (b) give similar results? Secondly, can we find a
theory to connect the two proportions? (Obviously, there will be
a systematic difference between them; clearly, also,; the
relationship will depend upon how wide the middle category is;
but what exactly might be the form of the relatipnship?)

The present paper will give some theory, ana describe its
application in a number of different areas of science. The
background is that Hutchinson (1976a) considered data on injury

severity in road accidents, the data being from two sets of
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circumstances.only and being detailed in the sense of having many
(i.e., more than three) grades of severity, and then Hutchinson
(1985) reviewed the use of similar statistical methods in other
contexts, This.line of work will .be used to introduce the
-relevant concepts, in Section.2.1 below. With some variables, it
-is.common to find.them graded .into only. three categories (e.qg.,
because the categorisation is used routinely, and anything more
complex is considergd impracticable). Hutchinson (1976b)
discussed this for injury severity, and now the present paper
‘reviews such datasets arising in a number of contexts.

The examples in this paper are as follows: injury sevérity
in road accidents; “don't know” responses in contingent valuation
.surveys; fracturing and shape of particles; taphonomy " (i.e., the
extent of deterioration of bioclogical material over  time); heart
rate variability; pyrolysis (liquid may be intermeédiate between
gas and solid); errors in neuropsychological tests (some may be
-less serious than others); errors in speechreading (one condition
may be more difficult than another). Examples 2 (“don't know”
responges), 4 (taphonomy); and 7 (exrrors in néuropsychological
tests) are published here for the first time, Ehe others are

summaries of earlier publications.

2. THEORY

2.1. Two sets of circumgtances, many grades of severlty

Let x be severity on:an-unobservable continuous scale of

-measurement, and p;(x) and p,(x) be: the proportions of casualties

having severity x or less in two sets of circumstances. The idea

‘that it is unnecessary to . give separate consideration. to

different. grades of severity ---.i.e., that ‘there exists some

definition of severity such that:consideration of average

severity is sufficient --- suggests that it is possible to

‘tepresent the distribution of severity x in circumstances i as
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F(x-;), where the function F is the same in all circumstances. It
is not necessarily the case that F is something simple and
familiar, but it is worth investigating this. It might be, for
example, that the distributions of severity in two %ircumstances
are related to each other in the same way that two equal-variance

normal distributions are. That is, the two distributions are

®((x-p;) /o) and O (x-p;) /o) (where & is the onventional symbol =~ 7

for the normal cumulative distribution function, and ¢ is the
standard deviation). Writing z for the inverse function of ®
" (that is, z(p) is the normal deviate corresponding to a
cumulative proportion p), z(p;) = (x-p)/o and z(p;) = (x-y,) /o,
Consequently, z(p,) = z(p;) + 8, where & = (W-u,) /o, the
difference between the means expressed in units of the common
‘standard deviation.
What this tells us is to convert cobserved proportions p; and
p: to the corresponding normal deviates and plot one against the
other, with the data points referring to different severities, x;
if the equal—vaiiance normal model is valid, we will find a
straight line whose slope is 1 and whose intercept is the
difference between the means, expressed in units of the common

standard deviation. (One could alternatively work with the

quantities 1-p; and 1-p,, the proportions having severity more than

x, and convert these to the respective Z-gcoores.) )
Such graphs have been used in various fields of application

(Hutchinson, 1985).

e In the general statistical literature, they are termed P-

P plots (Gnanadesikan, 1977/1997, Section 6.2).
e In the context of signal detection theory (used
originally in the psychology of perception), they are

termed-ROC (Receiver Operating Characteristic) curves.

See, for example, Hutchinson (1981) and Swets; Dawes, and

Monahan (2000) for reviews of the usefulness of these =~
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ideas outside of the original context of detecting a
‘faint-signal in-a noisy background.

* In evaluating the -accuracy of -diagriostic tests, many
medical papérs these days provide a graph showing the
relation between sensitivity (probability of a positive
result when disease is present) and specificity
(probability of’4 negative result in healthy people).

¢ 'In life tésting of someé item of eéquipment, the
distributions of times before failure in different
conditions are of interest. The expression of one

distribution in terms of the other is sometimes termed an
acceleration  function.

:2.2. Many sets of circumstances, three ordinal categories

Now suppose there are only three ordinal categories, but the
proportions of these are observed in many (i.e., ‘more than two)
sets of circumstances. In the injury severity context, the
ordered categories might be fatal, nonfatal, and none; or severe
(including fatal), moderate, and slight  (including none). Let q
be the propertion of casualties -in theé ﬁost—severe category, and
qi-be the proportion in the 'middle category; (The subscripts on
the .q's refer to different categories; in Section 2.1 above, the
subscripts on the p's referred to different sets of

¢ircumstances.) Then, if the equal-variance normal model is

valid; gy”and g, are rélated to two thresholds x; and x, by q; = 1-
@ ((x,-p) /o) and-queqy = 1 - D ((x;-p) /o) . (For brevity, the
subscript i has been omitted from it.) Thus z(l-g,) = (x,-1) /o and
Z2(l-q~q) = (x;-p) /0. Consequently,rsince -z(1-p) may

alternatively be writtehras z(p), zZ(g+q.) = z{qg;) + o, where o =

(%,-x,) /o, the difference between the two thresholds exbressed in

units of therstagdard deviation of the distributions.

What ‘this tells us is to convert observed proportions g, and

%+q; to the corresponding normal deviates and plot one against
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the other, with the data points referring to the different sets
of circumstances; if the model is valid, we will find a straight
line whose slope is 1 and whose intercept is the difference
between the thresholds, expressed in dnits of the standard
deviation. A straight line with a slope other than. 1 is also
interpretable, see Section 2.4 below.

_There may be some reason of interpretability or a convention
in a particular topic area that lead to the use of some variation
on this method of plotting.

e Perhaps the simplest variation is to work from the left

hand end of the distribution instead of the right, i.e.,
with the quantities g, = 1-g;-q, (the proportion in the
least severe category) and g,+q; = 1-g, (the proportion
having the lowest or the middle severity). Another choice
is to plot q, versus ¢,. Since q; = 1-(q+@;), this is
equivalent to plotting q, versus qi+d;, but with one of the
axes being reversed.

e If the quantities plotted are g, and gi+g; (or o and
Qo+d:) , the proportion in the most extreme category is
both plotted horizontally and is included in what is
plotted vertically; consequently, there may be concern
that an observed correlation is in some sense artificial.
This concern may be unjustified, as when q; is much
smaller than g;+q;, which it typically is when we are
referring to severities of injury. Even so, one might
choose g, as the horizontal axis and plot qu vertically.
The disadvantage of this is that the expected
relationship is nommonotonic: when g, is close to 0, a
positive association with gq; is expected, but when q. is
close to 1, a negative association with q; (and a positive
association between q, and q;) is expected. Consequently,
one might choose g, as the horizontal axis, and plot

qi/ (1-qp) vertically. For example, it is expected that
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proportion of fatalities and the proportion of nonfatally
injured casualties who are seriously (rather than

slightly) injured. There will be an example of ‘this type
in Section 9 below.

Figure 1(A) is a plot of q.+q, versus d2. .The data:are from
Kidwell, Rothfus, and Best: (2001); and will be discussed as
example 4-below, In Figure 1(B),: the z's have been plotted. A
straight line of slope 1 appears to be an appropriate

description. In Figure 1(C), the proportion q; is plotted directly
against q,.

The next two subsections discuss variations .on this basic

idea. Some readers may wish.to go to the applications starting in

Section 3, and refer back to 2.3 and 2.4 when needed.
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FIGURE 1, Data from Kidwell, Rothfus, and Best (2001, Fig. 11)

on_encrustation. (A) Relation between prépértion of shells with

igh damage and proportion with either high or low damage.

there will be a positive association between the

.
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FIGURE 1 (continued). (B) The proportions have here been

transformed to the corresponding normal deviates, z(q,) and

z (g;+d,) ; the straight lines are of slope 1.
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FIGURE 1 (continued). (C) Relation between proportion of shells

with high damage and the proportion with low damage.
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2.3. Varieties of one-parameter- theory .

sz The assumption: that: the F’s are. normal- digtributions led to

_a-linear relation between the z-,t::ansf,ormationsrof proportions. A
-linear relation between éomé more elementary ﬁraﬁsformations may

be more appealing.

* Logistic model. Suppose the F'g are logistic
distributions with the same standard deviation. (Logistic
distributions are ‘similar, but not"ideni:icél, in:shape to
normal-distributionst) There is- an ‘eleméntaty expression

Sl * for the cumulative distribution funétiom: exp(x-p)/[1 +
exp (x-u)1. Thus ‘q; and q, are now related to two
thresholds x;, and %, by a5 = 1 - {exp(x-p)/[1 + exp(x,-
#1} and qi+qs = 1 - {exp(x;<w)7/[1 + exp(x,-p)1}. The
transformation we now want is lnlq/(1-q)], which is
referred to as the logit of g. Then logit(qg,) = p - %X, and
logit(gi+qz) = p - x;. Consequently, logit(qi+q,) =
logit(q,) + (x; - x;).

® Exponential model. In this example and the next, the F's
do not have different locationnparameters u, but have
different scale parameters )A. Suppose the cumulative
distribution of severity x in particular circumstances is
1 ~ exp(-x/A). Then ¢, = exp(-x/A) and q+q; = exp(-x,/A).
Consequently, q:+q, is a power funét;ion of dz, and
In(@+@) = (x1/x,) .1n(q,) . '

®* Reversed exponential model. The exponential distribution
leads to a different re;,ar.tionship: if the horizontal axis
is réversed, with %, < x,, and the most severe injury
corresponding pé values less than x,, and the middle
category of severri,ty corresponding to values between x,
and x;. Now, 1 - q, = exp(-%/A). and 1 - (qu+q;) = exp(-
%1/A) . Therefore, 1 - (q+q;) dis.a powei function of 1 -

%z, and In{l-(g+q)] = (x/x;) .1n(1l-q.).
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An attractive feature of each of these examples is that they can threshold to -what-it:would be if:the:mean:of the- distribution

be linearised: in each case, some simple transformation W exigts were at the higher threshold).

such that W(q+q) is a linear function of W(g,). Hence graphical The same method of generalisation may be employed with the

analysis of data is feasible. models..in.Seation- 2.3.- onsider a location-scale family of

Although an assumption about the F's enables us to derive a distributions, F((x-p)/B), withp being linearly related to W
relation between and q;+ the reverse is not the case. That 3 - ; -

% 1+, -starting from @ =1 -F((%-W 7 (1+by)} and qu+qs = 1 - F({(x;-
is, given a relation between q, and q;+q,, the class of F's ig not

1+b ' n dil "ded 1i ¥ 1 t onship between
determined. To illustrate this, consider the last of the above p)/( +bu)) we ca readi Y a deduca a 1near eLats P

Fi(1- d Fl(1- tt lin
examples. (Remember, here g, is the proportion to the left of Xy, (1-a:) an (t-{@rq)) . In a emptlng to linearise an

o B ampird elati ip b fore, ight
and q,+q, is the proportion to the left of x,.) For x being betweer -empirical relationghip etweep d; and q;+q;, there ore, we mig

Do try any transformation that dorrespondslto the inverse function
-0 and ®©, let F(x) = 1 - expl-exp(x-p)] (this is one of the o o B N . . S - .
’ of a location-scale family of cumulative distributions
“extreme value” distributions). Then 1 - = expl-ex - . S G ITnAl it Sl : i

e v istributions) @ *pl P(x-W)] and preferably a reasonably well-known one). See also Section 9.3,

1 - (@+@) = expl-exp(x;-p)]. Consequently, 1 - (m+q) is a power ... ] where there will be a particular reason for considering the

function of 1 - @, as before. exponential model as the baseline: seeking an 1mprovement on

this, a linear relationship between ln( -1n) transformations of

2.4. Two-parameter theories probabilities is predicted, with a slope of 1 correspondlng to

The model based upon the normal distribution (Section 2.2) the exponential model 1tse1f

may be generalised to a two-parameter model (Hutchinson, 2002b, B
2005) . The motivation for doing this would be a finding of an

approximately linear relationship between z(qg+q,) and z(q;), but '3' EXAMPLE 1: INJﬁRf SEVERITY

with a slope different from 1. Suppose the F's are normal, with

standard deviation not constant but instead linearly related to 3.1. Empirical evidence

the mean. Let the two thresholds be at x; and X;, the mean of a Empirical evidence that'there is a positive correlation

distribution be p and its standard deviation be I + bj. Then z(1- etween the proportlon of casualties kllled and the proportion

@) = -z(q) = (x, - P /(1 + by) and z(l-q-qy) = -z(q+q) = (x; = seriously” injured was reported by Hutchinson (1976b) . The

u) /{1 + bp). After a little algebra, we find z(gi+q,) = A + examples included:

B.z(qz) . In this equation, the intercept A is (xz-%;) / (1+bxy) ® For some hours of the day, a hlgh proportlon of
(that is, the distance between the two tﬂresholds, expressed in - pedestrian casualties are killed and a high proportion
units of what the standard deviation would be if the mean of the seriously injured, while at other hours these proportions
distribution were at the higher threshold), and the slope B is are both relatively low.
(1+bx;) /(1+bx,) (that is, the ratio of what the standard deviation * For some age groups, a high proportion of pedestrian

would be if the mean of the distribution were at the lower casualties are killed and a high proportion seriously
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injured, while for other age groups these proportions are
both relatively low. .
But this correlation did not appear in .all circumstances. For
example, when considering pedestrians struck by diffe&ent types
of vehicle, there was no correlation.
0f course, there isg good reason to expect a positive
correlation. Many of the variables that distinguish one set of
circumstances from another would be expected to be related to
either the violence of the impact (speed, or the acceleration
inflicted), or to the victim's susceptibility. Violence and
susceptibility are each thought of as wide-acting variables,
likely to have an effect through the whole range of injury
severity, affecting the proportions killed and seriously injured
in similar ways.
Figure 2 refers to pedestrian casualties aged 50 or more,
injured on roads where the speed limit was 60 km/h or less, in
South Australia in the period 1980-2004. The points plotted are

for different age groups, with casualties in their 50's at upper -

right and casualties in their 80's at lower left. The
relationship seems to be a straight line of slope 1, as it was in

Figure 1(B).

3.2. Allowing for differences in assessment of severity
Different people, or different organizations; are likely to
differ slightly in their interpretations of rules governing the
classification of severity of injury. An analysis that ignored
these differences would Be less sensitive than one that took them
into account. Hutchinson and Lai (1981) examined the severity of
single-vehicle non-pedestrian crashes in five police force areas
of the U.K., and found that the police forces did differ.
3.3. Fatallties are important, but rare: Appropriate weighting
Fatalities, fortunately, are relatively rare. Consequently,

there are many road safety studies in which random variation is a
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large contributor: to the number: of fatalities. Suppose the

numbers of casualties in the table below were observed.

Slight Serious Fatal-
Before 70 28 2
After 80 16.. 4
0.8
z(fatadm) | o
o)
0.4 - o °
o
7 o
0.0 °
]
T T WI f 1
1.0 14 dﬁm)ls

FIGURE 2. Proportion of fatalities and proportion of either

fatal or hospital-admitted, in each case transformed to the

normal deviate.

)
~If some measure has been introduced aimed at reducing séeverity,

these data suggest a degree of success. The proportion of serious
and fatal together has fallen from 30 per cent to 20 per cent,
and the increase in the fatalities might be ignored, on the
grounds that the numbers are 6bviously too few to give weight to.

But alternatively, the numbers might be taken at face value, in

-~ -which case it is very questionable whether the After situation is

to be preferred to the Before. The theory above offers a
compromise between these alternatives. Experience with such data
may have established that proportions of"different -injury
severities typically behave as if derived from underlying normal

distributions. This model could then be fitted to the data,
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resulting in estimates of the means p;-and l, in the two
conditions. These would answer the question of whether the After
situation was an improvement on the Before. The proportions of
fatal and serious injuries under this model could also be
obtained, and might be preferred over the raw numbers for input
into an economic analysis.

Following this method would have the advantage of giving
little weight to low numbers likely to be unreliable, without
discarding them completely. The price that is paid is that it is
necessary to make an assumption about how the data are
appropriately modelled. (The result would also be subject to the
limitation that a particular criterion for estimating the
parameters, e.g., maximum-likelihood, needed- to be -chosen.} It
might be thought that the separation o between the thresholds for
serious and fatal injury would be known through experience (and
thus the task of estimating p, and u, would be easier).
Unfortunately, this would probab;y not ?e Fhe case: o is
expressed in units of ﬁhe standard deviation of the severity

distributions, and this would change from one table of data to

another, depending upon the degree of disaggregation of the data.

(But having four or more severities of injury would be an
improvement. Four severity categories would mean three thresholds
separating them, and thus two separations o; and 0,. The ratio of
these should be known through experience, as the effect of

standard deviation would cancel out.)

3.4. Remark on failure of model -

It might be noted that it is possible that the stiffness of . -

a given thickness Qf,an energy-absorbing material covering a hardiT

surface is a practically-important variable for which the model

of Sections 2.2-2.3 may be unsuitable: stiffness may have

different effects at the high and low ends of the severi;y range.

Low stiffness may be better for most impacts, but a poor choice

-
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.-for high speeds, .as:the human who-strikes .it uses up all the
available distance and then strikes the hard surface underneath.
Thus -there may be circumstances where it would-be desirable for a
- test that two or more distributions of injury severity are the
same. to be sengitive.to: changes of both.location-and variability.
References to nonparametric tests of this type are given by

Hutchinson (2002a).

4. EXAMPLE 2: “DON‘T KNOW” IN CONTINGENT VALUATTION SURVEYS

The responses yes, no, and “don't -know" may be available to
survey respondents. A particular type of survey seeks to
establish how much people would be prepared to pay (e.g., through
taxation) for something good such as an environmental clean-up,
or-how. much -they would need to receive to compensate for

-.something bad such as a noisy highway; the term contingent

~valuation is often used for this. Attempts are made to establish

a-value of life:or a cost of injury by this methed. Figure 3
iZlustrates the data in Table I of Wang (1997), the points
referring to different amounts of money in an otherwise
imilarly-worded gquestion. This question concerned how the
espondent would .vote if.there were a referendum on an
nvironmental improyement accompanied by a leéy of a stated
amount. A relatively low proportion were in favour when the
roposed levy was- high, and a relatively high proportion when it
as .low. The stréightforward—interpretation of “don't know”
esponses -is as: being intermediate between yes and no,- like
onfatal injury is intermediate between fatal and no injury.
igure 3. shows how. the pioportion in favour and the proportion
ither in favour or unsure co-vary. In contrast to Figures 1(B)
nd -2, the slope -seems- a little less than 1.

~.The idea here is. that “don't anw" is- an opinion in between
es..and -no, and-.the three.proportions were co-varying in a
:ensible fashion. However, - the proportions unsure were quite

8imilar for all four proposed levies. In fairness, then, it
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should be added that the data are also consistent with the
hypothesis that the population includes a group of people who are
uninterested or hostile or uncomprehending.

0.4~ N

z(forunsu) | o

0.0 4

—0.4 - °

T T T
0.0 04 0.8 #(for) 1.2

FIGURE 3. Proportion for and proportion either for or unsure

about an environmental improvement plan, in each case transformed

to the normal deviate.

5. EXAMPLE 3: FRACTURING AND SHAPE OF PARTICLES

This example, also, has some connection with traffic safety,
in that the data concern some physical propertiesaof gravels used
in road construction. But it really comes within the field of
particle science. Particulate material has various properties,
such as the proportion of particles that afe fractured, or the
proportion that are flat or elongated, or the proportion that are
both flat and elongated. There is room for debate on how
fractured a particle must be before it is put into the fractured
category, or how flat it must be before it is put into the flat
category. Suppose we want to know how fractured are the particles

of a gravel. We might determine the proportion of particles
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baving two or more fractured faces. A less stringent criterion is
the proportion of particles having one or more friactured faces.
We hope that both criteria reflect the same concept. Figure 3 of
Hossain, Parker, and Kandhal (2000) (HPK) shows thie: relation
between these two criteria for 24 chert and quartz gravels, and
demonstrates that they are indeed highly correlated. Similar
issues arise with other variables: in the same paper, the
proportions of flat or elongated  particles assessed according to
5:1 and 3:1 criteria were compared, and the proportions of flat’
and elongated particles assessed according to 5:1'and 3:1
criteria were compared.

What relationship might exist between proportions satisfying
criteria of different stringency? A really good theory would
connect the statistical variation in, say, degree of fracturing
to the properties of the material (strength, brittleness, etc.)
and the characteristics of the crushing process. But that seems
beyond present-day knowledge. The lines Ffitted in HPK go to the
other extreme of being purely empirical (a straight line in their
Figure 3 and quadratic curves in their Figures 6 and 7).

The approach in Section 2 above seems ‘applicable. HPK
comment on the subjectivity involved in classification:
concerning fracturing, they say that fractured faces need to be
distinguished from chipped or flaked surfaces; and concerning
shape, they say the positioning of a particle in the: proportional
callipers needs the exercise of judgment. They make the
distinction between a definition in a test procedure being
precise, and the use of that definition being imprecise. The
equations in Section 2 are a stepmore theoretically justified
than those used by HPK, and the parameters fitted therefore more
interpretable. Hutchinson (2002b) demonstrated their ‘relevance to
the data in the paper of HPK; the specific -approach-was that of a
family of normal distributions with standard deviation linearly

related to the mean (see Section 2.4), as the z-transformations
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of the proportions seemed to lie on a straight line whoge slope

was not 1.

6. EXAMPLE 4. TAPHONOMY
s 2t IAPHONOMY

Taphonomy, according to the Oxford English Dictionary, is
the branch of pPalaeontology that deals with the processes of
fossilisation. (Also, research dealing with rotting over periods
of months and Years, which may be of forensié inéerest, or over
periods of hundreds of years, which may be of archaeological
interest, ig carried out, as well as that concerniné much longer
periods.) .

Taphonomists may wish to use death assemblages to make
inferences about the environment thousands or millions of years
ago, and thus an understanding of how biological material changes
after death wilil be important. Consequently, they need to be able
to assign grades of postmortem damage, and to analyse
statistically those grades. Kidwell, Rothfus, and Best (2001)
(KRB) presented data on the degree of damage to shells, graded ag
none, low, or high. They reported results for several different
forms of damage. One of these wag encrustation, see Figure 1{(a).
A high correlation can be seen: sites that have a high proportion
92 of shells in the high damage category tend also tolhave a high
broportion q,+q, in the high plus low categories combined (and
therefore a low proportion in the no damage category). As
mentioned earlier, Figure 1(B) shows the proportions transformed
to their respective z's, and that the relationship is now
approximately a straight line of slope 1. Figure 1(C) shows q
plotted against d2; the cufve is the prediction made by the equal-
variance normal model with a difference of 1.31 between the
thresholds, Agreement between the curve and the data points
appears satisfactory.
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for presentation because the method is successful. Figure 4 ig
similar to Figure 1{a), €xcept that the nature of damage is fine-

scale surface alteration. There appears to be-no correlation. So

category tend also to have a high proportion in the high Plus low
categories combined? (If not, then damage should probably not be
regarded ag semi—quantitative, and instead'one,should conceﬁtrate
on the qualitative features.) 1f it is sometimes the case, then
in what circumstances (or, for.what forms. of damage):-isi-it true

variance normal model, or some other?

0.0 0.2 0.4 0.6 0.8
q2
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Incidentally, taphonomic datasets are some;imes encountered
in which there are many grades of damage,‘and thus can be plotted
in the same manner as in Hutchinéon‘(1976a, 1985). There is a
dataset in Flrsich and Flessa (1987, Figure 15) that is suitable
for this. If z(p,) is plotted versus z(p;), the two distributions
being the preservation quality of Chione in the mid channel and
the outer channel, the result is found to be approximately a
straight line of slope 1. But again, the method is not always
successful: if the two sites compared are the mid channel and the
mid flat, the points do not appear. to lie on a straight line of

slope 1.

7. EXAMPLE S5: HEART RATE VARIABILITY

One of the approaches to the measurement of heart rate
variability is to consider the absolute differences between
successive normal sinus intervals and determine. the percentage
that are greater than some threshold value. Having introduced the
subject in this way, the obvious question is what threshold? And
then we realise that an important issue is whether the
distributions of intervals constitute a single-parameter family,
because if they do, we will easily be able to convert results
obtained using one threshold to their equivalents if another
threshold had been used, by using a formula similar to those in
Section 2 above (and if they do not, we are faced with a much
more complex problem altogether). The most commonly used
threshold is 50 ms, and the statistic obtained is termed pNN50.
It is interpreted as a measure of cardiac parasympathetic
modulation. Some studiee have used thresholds other than 50 ms.
Mietus, Peng, Henry, Goldsmith, .and Goldberger (2002) proposed.-
that pNN20, the percentage exceeding 20 ms, is a better

statistic. Their reason was that several groups, including
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normal/congestive -heart failure, -sleeping/waking,. and
young/elderly, were distinguished more decigively (lower p-value)
by pNN20 than by pNN50.

-Hutchinsoen: (2003) pointed out that the relation between the

--two statistics-is -nonlinear, and that it.is possible to transform

them in such a way that the relation is linear. Plotting pNN20

versus. pNN50 using transformed. scales.is. likely té be generally

~useful.---~ a.seatterplot is.a natural. tool to investigate the

relationship, and different groups of people may be identified

~using different symbols. In the absence of a theory about the

connection between them, and with the relationship being non-
linear, there is a danger-that .a gscatterplot will be
uninterpretable. But the methods of Section 2 above might
together make clear whether there are any deviations from one
single relationship. If it did emerge that different information
is conveyed by pNN20 and pNN50, this could be followed up by more
detailed study of the dependent variable (e.g., pNﬁlo and pNN100
might be considered also), and of the. independent variables
(e.g., the identification of the conditions in which PNN20 and
pNN50 behave differently). A choice between the alternative
statistics would then be necessary. For example, if it were found
that variation.in parasympathetic modulation of heart rate led to
a consistent relation between pNN20 and pNN50; but some other
factor distorted pNNS0 while leaving pNN20 less affected, then
there would be a reason for preferring pNN20 over pNN50 (assuming

the aim was to reflect parasympathetic activity).

8. EXAMPLE 6: PYROLYSIS

Gas, liquid, solid. In a sense, these have a natural order,

liquid.is between gas and solid, but this is a less convineing

-ordering than when referring to a dimension like severity of
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injury or variability in heart rate. Whether or not it-is a
useful conceptualisation can only be determined by experience,

Gillls (2003) reported-on the productsbobtained from
pyrolysis of four materials (hazelnut shell, tea factory waste,
tobacco stalk, and yellow pine wood). In the study of pyrolysis,
it is common for a broad classification of products as gas,
liquid, or char to be of interest. (Detailed chemical analysis is
also of interest, of course.) Table 2 of Gilli’s paﬁer gives the
proportions of gas, liquid, -and char-obtained from four source
materials at each of eight temperatures. Hutchinson (2005)
considered whether the proportion of char can be predicted from
the proportion of gas. Do circumstances that lead to a high
proportion of gas tend also to lead to a high liquid to char
ratio, and thus a low char proportion? This would be so if there
is a single unobserved (latent) variable that independent
variables like pyrolysis temperature and source of material
determine, which is then manifested in the proportions of gas,.
liquid, and char. It would imply a single equation is sufficient
for predicting the latent variable from the independent
variables; going from the latent variable to the three
proportions would involve no additional variables.

Hutchinson (2005) plotted the proportion of char versus the
proportion of gas, and found that if all 32 data points are
included, the relationship is only an approximate éne: the
correlation coefficiéent is -0.76. Howevér, many different
chemical reactions are taking place in pyrolysis. It might be
considered appropriate to restrict consideration to the lowest
temperatures in Gilli's experiments: at temperatures 675, 725,
and 775 X, the reactions are exothermic, but these temperatures
are not so high that vigorous secondary reactions occur. It then
turns out that there is one single relation (approximately a
straight line) that applies to three of the starting materials
and all three temperatures. (Restricting attention to these nine

data points, the correlation is -0.97.,) Tea factory waste is
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different from the other materials, giving ‘more:char (and less
liquid) at a given proportion of gas. A -family -of normal
~distributions with standard deviation linearly related to the
mean - (see Section.2.4) was: used-in Hutchinson- (2005), as a plot
of the z-transformations of the proportiomns was a straight line
with a slope not equal to 1,

A sceptic might ofject that what has been done is to
restrict attention to three out of eight temperatures, and three
out of four source materials, and it might be thought that 1if one
searches among subsets of any 32 pairs of miscellaneous numbers,
it is almost inevitable that a relationship will be found.
However, two datasets in Demirbas (2002) show a similar

relationship, which is some-evidence that it is not entirely
fortuitous.

9. EXAMPLE 7: ERRORS IN NEUROPSYCHOLOGICAL TESTS

One strategy of research in the field of cognitive
neuropsychology centers on testing of patients with injuries or
diseases of the brain, and then attempting to infer what has gone
wrong with them, in the hope that this will throw light on the
structure of mental processes in healthy people.’ The present
example concerns one aspect of the paper by -Shallice, Rumiati,
and Zadini (2000) (SRZ). Figure 5, taken from Figure 3 of that
paper, shows a positive relationship between the proportion of
responses that were correct and.the proportion of wrong responses
that were of a particular type, namely, single phoneme/letter
errors. The eleven data points-refer to .four patients in fhree
conditions, with one combination missing. The three conditions
were repetition,  reading, -and writing (of nonwords). It is plain
that SRZ attach some.importance to this relationship, and would
like to have a theory for it: they discuss the finding at p. 534,

there is further discussion at p. 540, and on their Figure 3
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itself they include a curve (it is quadratic and it passes
through (0, 0), but no justification is given for either of these
features). An explanation for the empiricai relationship in
Figure 5 will be proposed below that in general termsiis similar
to earlier examples of this present paper. But an additional

feature will be an explicit model for the cut-off.

0

9.1. Assumptions and argument ‘

On two grounds, it seems reasonable to suppose that single
phoneme/letter errors are more similar to correct responses than
other errors are. (a) The other types of errors are double or
complex errors. These terms appear to indicate an error that is
larger or more serious. (b) The empirical relationship (Figure 5)
between single phoneme/letter errors and correct responses is
positive.

There is variability: the patient does not. always respond
correctly, or always make one type of error. The existence of
variability suggests we need some random variable, with some
distribution. SRZ (p. 540) refer to a “resource” being damaged,
and to the four patients being on a “single dimension” of
impairment. It might be, then, that how much of the resource is
given to the task determines whether it is performed correctly or
not: if it is sufficiently great, the response is correct; if it
is less, there is a minor error; less still, and there is a more
serious error. For example, the random variable might be time
devoted to the task. If sufficiently long, the response is
correct; less, and a single phoneme/letter errcr results; less
still, and there is a double or complex error. A specific
assumption about the probability of ending processing and giving
a response (at any particular moment) may be suggested: this
probability is constant (i.e., does not change as time passes).
This would mean that the giving of a response is a Poisson

process. The consequence will be that time (elapsing until
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—-response} has an exponential distribution. That.is; the emission

of a response is unconnected with the progress of the processing.

9.2. Predicted relationship

The idea that the distribution of the time is exponential
implies that exp(-t/p).is the probability that the time exceeds t,
where p is the mean.-In other -words, the rate of ‘occurrence of the
event that' terminates processing and triggers response is 1/j.
Both the degree of impairment and the difficulty of the task are
envisaged as having their effect via u: the greatef the impairment
or the more difficult the task, the smaller is p. A correct
response is given if the time exceeds some threshold; without
loss of generality, this can be taken to be at t = 1; a single
phoneme/letter error is made if time is between some value T and
1; and a more serious error is made if time is less than T. Now,
if we use the symbol q, for the probability of a correct response
and q; for the probability of giving an error of the single
phoneme/letter type, what is plotted in Figure 5 is the
conditional probability q;/{1-q;) versus qg,. The probability of a
correct response is @, = exp(-1/p); also, qi+q, = exp(-T/p); thus
the vertical axis in Figure 5 is q/(1-q;) = [exp(-T/p) - exp(-
1/w1/[1 - exp(-1/p)1. Finally, the predicted relationship in
Figure 5 is q/(1-q;) = (@7 - @)/ (1 - q).

Thus it has been possible to find a simple, theoretically
based, functional form for the association that is evident in
Figure 5. It has only one parameter, T. For the lower line in
Figure 5, T has been taken to be 0.26 (the mean of ln(q;+q;)/1ln
qz2) . To my eyes, the curve appears too flat, but at least this
approach has predicted a positive relationsghip. The fit is not so
poor as to compel rejection of this theory. And, there is no
other theory competing with it.

One way forward would be to dismiss the idea that data for

all patients in all conditions should lie on the same curve.
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Tnstead, we might say that we now have an interpretation for the
quantity In(q+q,)/ln g {(that is, it is T), and calculate this for
each data point, and look for patterns in éhe values for the four
patients in three conditions. On doing this, the folllowing was
found.

» It seems that T is unaffected by whether the task was

repetition, reading, or writing: no pattern was found.
¢ . In each condition, patient LT has the highest value of T.

1.0+

0.8-
q/(1—q)
0.6-

04"

0.2

0.0 T T T T

0.0 0.2 04 0.6 0.8 1.0

q2
FIGURE 5. Proportion of single phoneme/letter errors qi/(1-qy).
as related to proportion of correct responses g,: data for four

patients in three conditions (Shallice, Rumiati, and Zadini,

2000). Solid disks refer to patient LT, open circles to the other

three patients. Single-parameter curves having T = 0.26 (lower)

and T = 0.21 (upper) are also shown.

SRZ regarded patient LT as being qualitatively similar to the

other patients, but differing in degree, having suffered more

)
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serious impairment. However, the fact that the values of T found
in this patient are different from those of other patients could
be taken as supporting an opposing view. {To say that LT is more
severely impaired than the other patients is to say that his data
points are on the left in Figure 5; to say that LT has .a high T
is a differ%gt issue --- given his values of dz, -his data points
are lower on 'the Figure than would be expected.) Figure 5 has
been drawn in such a way as to permit LT to be geen ag different
from the other patients. The upper -line has been fitted with data
from LT (shown as solid disks) excluded. This line has T = 0.21
and appears to be a good fit to the other eight points, with LT
clearly deviating from the general trend. However, we would
conclude that LT is qualitatively different from the other
patients only if we found the one-parameter theory very plausible
and persuasive. If, on the other hand, we feel it is permissible
to adjust both the location and the slope of the relationship, we
will see one single relationship in Figure 5. Two strategies for
obtaining such a relationship, by modifying the theory so that
two parameters can be chosen, thus obtaining a better fit for all

of the data, will now be sketched.

9.3. Two-parameter theories
The first strategy adds a second levél of randomness to thé
exponential distribution already present, and might take either
of two forms.
* Let either a correct response be givenr(with probability
¢), or else the original theory épply (with probability
1-c). Then q; = ¢ + (1-c) .exp(-1/y), qu+g = ¢ + (1-
¢).exp(-T/p), and an expression for @/ (l-q) in terms of
d> could be obtained.
® Let the original théory apply, except that either
response is instantaneous (the time elapsing is 0), and

the probability of this is i, or else has an exponential
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distribution (with probability 1-i).. Then g, = (1-1i).exp(-
/1), gi+qy = (1-i).exp(=T/W), and an -expression for qy/(1-
q;) in termg of g, could be obtained. .

But why should c (or i) be the same for everyone, fegardless of

their degree of impairment, and in all conditions, regardless of

difficulty? UnEil this can- be answered, it~ is difficult to view ¢

(or i) as anything more than a fiidge factor-td improve the fit ‘of

the prediction curve. ' ’ -

The second strategy involves introducing‘extra flexibility
into the family of distributions, as in Section 2.4. Let us
suppose the distribution of the resource is not exponential, -but
is normal. (Time devoted to the task could not have a normal
distribution, because a negative time is impossible in this
context, but the logarithm of time might have this distribution.)
Furthermore, although the normal distributions still only vary in
one parameter |, extra flexibility is introduced by the standard
deviation o not being constant but being linearly related to the
mean: 6 = 1 + bu. The slope of the relationship is the extra
flexibility. Without loss of generality, the threshold for a
correct response can be taken to be 0. The lower threshold is T
(negative). Then (as in Section 2.4) we find z(qu+q,) = -T +
(1+bT) .z (q,) . Figure 6 shows the data from Figure 5 plotted in
this way. T is estimated to be -0.92 and b is to be -0.15.

A similar idea leads to a direct generalisation of the
original exponential model. Consider the cumulative distribution
1 - expl-exp({(x-a)/B)]. Again taking the threshold for a correct
response to be 0, q, = expl-exp(-a/B)], and qu+§, = expl-exp((T-
a)/B)]. If B is a constant, this may readily be seen to be
indistinguishable from the exponential model: q;+q. is a power
function of q,, as before (we have in effect transformed the time
axis to the logarithm of time). But instead of B being constant,
let us now say that B is linearly related to o. The consequence is

that a linear relationship between transformations of qi+q; and qQ
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is predicted: Inl-In(g+qp)] =+T-% (1+T)+In(=
sln{~1n)* transformation is used and the. data plotted, a straight

< Tineig-evidenty similar to-Figupe 6. i it is ‘

).+ 'When: the

“This second- strategy, whether it utilizes the normal

distribution,  the-exponential.distribution, o¥ Something else, is
-more-attractive:than the first,” partly becausge of the convenient
- -data procemsing(a-linearizable relationship), and partly because
the result-is interpretable: it has permitted the conclusion that
i circumstances (severe impairment; or high difficulty of task)
that are associated with a low probability of correctness are
also associated with a high:degree of variability in the latent

random variable that reflects level of performance. (That is, low

q, corresponds to low y, and low ' is associated with high oc.)

2.5+ °

2(q1+¢qa)
2.0

1.5+ ° o

T T T 1
-0.5 0.0 0.5 1.0 1.5

-1.0
z(qe)
FIGURE 6. Data from Figure 5 with proportions ¢, and qi+q

transformed to their corresponding normal deviates.
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9.4. Concluding comment
This type of theory is sufficiently abstract that it may

find application whenever there is a grading of the incorrectness
of incorrect responses, as well as a distinction bétween correct
and incorrect. The specifics of the theory are open to debate: it
is mere speculation to say that the relevant resource is time;
even if this were true, the question would arise yhether the
important thing is the passage of time per se or whether
something has been utilized and exhausted during the passage of
time; and any conclusion about the family of distributions
(exponential, normal with constant standard deviation, normal
with varying standard deviation, etc.) can only be tentative, on

the limited evidence of four patients in three conditions.

10. EXAMPLE 8: ERRORS IN SPEECHREADING

This example concerns the proportion of errors made in
speechreading, in two conditions. The transformation to a linear
relationship is very similar to the previous examples. However,
to consider the proportions being compared as differing in the
location of a threshold may be considered a rather unnatural
interpretation in this case.

When considering the probability of responding correctly to

a test item, the following model is sometimes employed. There are

quantities that might be called difficulty and ability, that
respectively are characteristic of the item and the person

responding to it. A person’s ability varies from moment to

moment, around some mean. A correct response is given if ability

exceeds difficulty at the moment the item is attempted.

Specifically, the logistic distribution is often used in this

context. The expression for this (see Section 2.3) is exp (x-p) /[1

+ exp(x-p)]. This expression represents the probability of ability
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SETE

being .less. than x, which is the probability ef=xan: incorrect

-response when item difficulty is x.

- Now: consider a comparison of ‘two conditions. Let the
..Qifficulty in the first condition. be d. The probability of
correct response is q; = 1 - {exp(d-p)/[1 + exp(d-p)]}. In going
to the second condition, suppose difficulty changes by an amount
A, i.e., it becomes d - A. Then the probability of correct

response becomes q;' = 1.~ {exp(d-A-p)/[1 + exp(d-A-w)1}. Then

logit(qg;) = p - d and logit(q,') = p - (d- A). Consequently,
logit(q,) = logit(gy) + A. '

The practiqalities of experimentation are likely to depart
in two respects from what is implied in the previous paragraph.
First, d was there viewed as a constant, but data will usually be
based on a number of items of different difficulties. Second,
each subject is likely to be presented with different items in
the two conditions, in order to avoid the effect of memory. The
experiment of Erber (1992), to be described in the hext
paragraph, had these features. Thus the randdém element, which was
described above -as moment-to-moment variation i & person’s
ability, also includes contributions from the differing
difficulties of the items and from differing average difficulties
of the two samples of items.

An experiment on speechreading of spoken sentences was
reported by Erber (1992). The two conditions were presentation of
the sentence in isolation, and presentation in response to a
question. The 24 data points referred to different people. Erber
found that subjects’ probabilities of correctness tended to be
higher for sentences that followed a question than for sentences
presented alone. Hutchinson and Cairns (2000) showed, in their
Figure 2, that the logits of the probabilities: are -approximately
linearly related, with a slope of about 1. (They noted that their
results were very similar whether the normal or the logistic

distribution was employed.) Actually, much of ‘the paper by
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Hutchinson and Cairns was not focussed on the consistency .or
accuracy of the relationship between the logits, but was
concerned with trying to explain the scatter in the relationship.
That is, A was calculated for each subject, and tLen an attempt
was made to relate A to characteristics of the subject: it was
found that the exfent of the advantage of the question-answer

sequence tended to be less for older subjects.

11. DISCUSSION

If we see a scatterplot like Figure 1(A) or Figure 5, why

might we care about fitting a theory to the data points?

e One simple answer is that if the relationship is
congidered interesting enough to show the scatterplot,
surely a theory to explain the relétionship is
interesting too!

e We may wish to be able to convert results using one
threshold to results using another, as with pNN20 and
pNN50 (example 5).

e We might aim for a theory explaining the latent variable
(e.g., in example 6, from the experimental conditions).
It would then be easy to calculate the proportions in the
several categories.

e We may wish to explore the limits of the relationship,
and the implications of any failure to find the
relationship. °

In some contexts the proposed approach is very plausible. It

would be surprising if it failed with severities of various
diseases or types of damage. (The problem here is whether the
concept  of severity is unidimensional.) In other cases, it is
much more questionable. For example, is liquid really

intermediate between gas and solid? Is one type of response
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s-really-less-correct -than another, and leas wg§Agl;nah a third? In

such contexts, the two probabilities are plotted in hope, rather

.:.than expectation,- that a relationship will be found. If a

relationship is found, this'may be the start of a fruitful new
line of enquiry.
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