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High-Nonlinearity Dispersion-Shifted Lead-Silicate
Holey Fibers for Efficient 1-pum Pumped
Supercontinuum Generation

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, Heike Ebendorff-Heidepriem, S. Asimakis, R. C. Moore,
K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson

Abstract—This paper reports on the recent progress in the de-
sign and fabrication of high-nonlinearity lead-silicate holey fibers
(HFs). First, the fabrication of a fiber designed to offer close to the
maximum possible nonlinearity per unit length in this glass type is
described. A value of v = 1860 W~ . km~! at a wavelength of
1.55 pum is achieved, which is believed to be a record for any fiber
at this wavelength. Second, the design and fabrication of a fiber
with a slightly reduced nonlinearity but with dispersion-shifted
characteristics tailored to enhance broadband supercontinuum
(SC) generation when pumped at a wavelength of 1.06 ym—a
wavelength readily generated using Yb-doped fiber lasers—are
described. SC generation spanning more than 1000 nm is observed
for modest pulse energies of ~ 100 pJ using a short length of
this fiber. Finally, the results of numerical simulations of the SC
process in the proposed fibers are presented, which are in good
agreement with the experimental observations and highlight the
importance of accurate control of the zero-dispersion wavelength
(ZDW) when optimizing such fibers for SC performance.

Index Terms—Holey-fibers (HFs), optical fiber fabrication,
photonic crystal fibers (PCFs).

1. INTRODUCTION

HE ADVENT of holey-fiber (HF) technology has enabled

the design and fabrication of optical fibers with unique
and enabling optical properties, opening a host of new sci-
entific and technological opportunities. These unique optical
properties, for example, endlessly single mode guidance [1],
result directly from the way that the guided mode “experiences”
the microstructured cladding region. In a conventional fiber,
this is, to the first order, independent of wavelength. However,
in an HF, the large index contrast between glass and air and
the small structural dimensions combine to make the effective
cladding index strongly wavelength dependent. Moreover, the
large index contrast itself allows for more extreme values of
numerical aperture (NA), which can be achieved using conven-
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tional doped fiber technology. The structural design space for
HFs is also very rich, and these factors combined ensure that
HFs can have a substantially broader range of optical properties
than conventional optical fibers.

Arguably, one of the most exciting prospects for microstruc-
tured fiber technology is the development of fibers with large
values of optical nonlinearity per unit length v = 27ns /A Aegt,
where no is the Kerr nonlinear coefficient for the glass and
Aeqg is the effective area. Fibers with a small core dimension
and a cladding with a large air-fill fraction allow for extremely
tight mode confinement, i.e., small effective area, and hence, a
high value of v [2]. Using this approach, it has been possible
to fabricate pure-silica HFs with a v of 70 W=! . km™! at
1.55 pm (note, for comparison, that the corresponding value
for conventional single-mode fibers is ~ 1 W1 km™) [3].
This is close to the ultimate limit that can be achieved in silica,
restricted by the nonlinear refractive index nq of this glass and
minimum achievable effective area [4].

Significantly higher values of v can be achieved by com-
bining tight mode confinement with the use of glasses with
greater intrinsic material nonlinearity coefficients than silica.
Examples of suitable glasses that have been used to make HFs
include chalcogenide [5], tellurite [6], [7], bismuth oxide [8],
and lead-silicate glasses [9]-[12]. The emergence of HF tech-
nology is particularly enabling in terms of making fibers in
these more exotic glasses since it allows fibers to be made from
just a single material, eliminating the need for two thermally,
chemically, and optically compatible glasses to form the fiber
core and cladding. Compound glasses also exhibit far lower
processing temperatures than silica (for example, each of the
above glasses exhibits low softening temperatures of ~ 500 °C,
as opposed to ~ 2000 °C for silica), which enable the use
of extrusion for fiber preform manufacture. Aside from being
simpler and less labor intensive than the more conventional
stacking technique developed for silica HFs, extrusion readily
allows the implementation of structures with high-air-content
claddings, as required for high-nonlinearity HF fabrication.
Of all the aforementioned high-index glass types, lead-silicate
glasses offer the good thermal and crystallization stability, and
exhibit the relatively flat viscosity—temperature curves, making
them particularly attractive for microstructured fiber fabrica-
tion, although the fact that their intrinsic material nonlinearity
is lower than that of chalcogenide and heavy metal oxide
glasses is also to be appreciated [13]. Schott SF57, which is
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the glass on which we have focused in this work, exhibits the
highest nonlinearity among the commercially available lead-
silicate glasses. The high lead concentration of this glass leads
to the large linear refractive index of 1.81 at 1.55 um and large
nonlinear refractive index of 4.1 x 107!? m? /W (as measured
at 1.06 pm [14]). Although much higher than silica, losses in
bulk SF57 can be as low as 0.3 dB/m at 1.55 pym [14].

For most nonlinear fiber applications, control of the fiber
dispersion is more important than achieving the maximum
possible nonlinearity per unit length, and here, again, the use
of HF technology provides unique opportunities. The small
core dimensions possible in HFs with a high cladding air-
fill fraction result in a strong wavelength dependence of the
effective cladding index, which affects both the magnitude and
spectral profile of the waveguide dispersion. This can be used
to control the total fiber dispersion over extended wavelength
ranges compared to conventional solid fibers. For example, in
silica-glass HFs, it is possible to achieve anomalous dispersion
at visible wavelengths, i.e., at wavelengths much shorter than
the material zero-dispersion wavelength (ZDW), allowing soli-
ton formation at wavelengths shorter than 600 nm [15]. Similar
benefits in terms of controlling the dispersion properties of
fibers at wavelengths of technological interest can be obtained
in compound-glass HFs. The material ZDW for SF57 glass is
~ 1.97 pm; yet, as we show in this paper, it is possible to
use the large waveguide dispersion available in SF57 HFs
to obtain fibers with ZDWs shifted by more than 1000 nm
to allow efficient SC generation when pumped at wavelengths
around 1 pum. SC generation depends on the fiber character-
istics over a broad range of wavelengths, so complex dispersion
profiles—for example, with two ZDWs—could also be envis-
aged, as suggested by other authors [16]. For this initial exper-
imental demonstration, we have considered a single ZDW, and
this has practical significance as it reduces the pulse energies
required for the initial stages of SC generation down to the
100-pJ regime—a pulse-energy regime that can readily be ac-
cessed directly from mode-locked Yb-doped fiber laser cavities.
This should lead to the development of truly compact and
practical SC sources for metrological applications. To date, the
majority of work on SC generation has used nanojoule pulses
from bulky and expensive Ti—Sapphire laser systems, which has
restricted widespread deployment of the technology.

The objective of this work is to explore the limits of nonlin-
earity and dispersion control in lead-silicate-based microstruc-
tured fibers. Our focus has been on establishing the maximum
nonlinearity that can be achieved in these fibers at telecommu-
nications wavelengths and to develop high-nonlinearity fibers
with dispersion-shifted characteristics suited for SC-generation
applications at 1.06 um. The paper is organized as follows.
The next section describes the results of a systematic study of
how our fiber design parameters affect the fiber nonlinearity
dispersion and mode profile. In Section III, we describe the
results of our work on the fabrication and characterization of
fibers, both with record nonlinearity at 1550 nm, and high-
nonlinearity fibers with a ZDW shifted to the 1-pum regime.
The rest of the paper is devoted to the SC studies we carried
out using the two types of fibers produced. We present both
experiments and numerical simulations and discuss how the

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 1, JANUARY 2006

-1

-2

Fig. 1. Predicted mode intensity profiles for HF of core diameter ~ 0.95 pum
(Fiber#1) at (a) 1.06 pm and (b) 1.55 pm (1 dB per contour).

properties of each of the fibers affected the broadened spectra.
The conclusions of this work are presented in Section V.

II. FIBER DESIGN AND MODELING

Before starting any fabrication work, we performed an initial
assessment of how the nonlinear and dispersive properties of
high-nonlinearity lead-silicate fibers vary with core structure.
We assumed a similar geometric fiber design to that adopted in
our earlier work in SF57 [9], [11] and bismuth-oxide HFs [8].
According to this design, which is readily achieved through a
two-step preform extrusion technique, a small core is supported
by three fine and long struts (see Figs. 1 and 4), which ensures
a very large air-fill fraction in the surrounding cladding region,
and high optical isolation between the core and the glass in the
jacket of the fiber. This high-NA design closely resembles the
air-suspended rod (ASR) structure—an idealized configuration
of a circular glass core surrounded by air. Consequently, we
used an ASR model in our initial studies to help us establish the
range of core dimensions that we should target in our initial
fabrication attempts to realize high-nonlinearity dispersion-
shifted fibers. It is however to be appreciated that our three-
strut design, which naturally results in a triangular-shaped
core, gives slightly increased values of A.g, and increased
confinement losses compared to an ASR of the same geometric
area. Therefore, in order to refine our findings, we repeated
our calculations after fiber fabrication using scanning electron
microscopy (SEM) images of the actual fibers fabricated. It is
the results of these refined calculations on real structures that
are presented in this section.

For our calculations, we first studied the modal character-
istics of the HF waveguide. Single transverse-mode operation
is a prerequisite for most applications. However, because of
the extremely high NA of these HFs, single-mode operation is
not always rigorously obtained. Nevertheless, many HFs can be
effectively single mode over a broad range of wavelengths since
the confinement losses associated with any higher order modes
supported theoretically by the structure are significantly higher
than those of the fundamental mode. For our specific design,
single-mode operation can be achieved when reducing the scale
of the microstructure beyond a certain value. Practically, for this
type of HF, single-mode or effectively single mode operation
was obtained for a core diameter of 1.8 ym or less at 1.047 pm
(Nd:YLF laser). Note that when specifying core diameters for
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Fig. 2. Effective nonlinear coefficient at 1.55 and 1.06 pm.

our fibers, we are referring to the diameter of the circle that just
fits within the triangular-core region, as illustrated in Fig. 4(a).
The fundamental modes of our fibers reflect the triangular sym-
metry of the fiber core, as illustrated in Fig. 1, where we plot the
theoretical fundamental mode profiles at wavelengths of both
1 and 1.55 pm for a fiber with an ~ 0.95-um core diameter.
These calculations were performed using a commercial beam
propagation package based on a core geometry as extracted
from an SEM image of the fiber. For both wavelengths, the
predicted profile of the guided mode has a triangular shape. The
predicted effective mode areas are 0.84 pm? at 1.06 um and
1.1 um? at 1.55 pm.

Fig. 2 shows a prediction of the effective nonlinearity v of
an SF57 HF as a function of the core diameter calculated at
1.06 and 1.55 pm. These calculations were performed using
a commercial full-vector modal solver, based on the finite
element method (FEM). The figure shows that the effective
nonlinearity can be drastically enhanced by decreasing the core
diameter due to the tighter mode confinement. The nonlinearity
increases up to the point that the core becomes too small
to confine the mode tightly. For diameters below this critical
diameter, the effective nonlinearity decreases rapidly as the
mode spreads progressively further out of the core and into the
air. The ultimate limit on fiber nonlinearity at 1.55 pm is nearly
2000 W= - km! for triangular-core HFs with core diameters
in the range 0.6—1.0 um. It should be noted that higher values
of effective nonlinearity can be achieved at shorter wavelengths
due to a combination of the 1/\ wavelength of + and the fact
that shorter wavelengths can be confined to the core down to
smaller core dimensions.

In order to assess the dependence of the fiber-dispersion
characteristics on the HF core diameter, we evaluated the group
velocity dispersion of a range of HFs with different core dimen-
sions using an FEM code adopting the refractive index profile
of the real fiber. The results of our calculations are summarized
in Fig. 3, where we plot the corresponding dispersion curves
for different core diameters. The waveguide dispersion is seen
to have a more pronounced effect on the shape of the overall
fiber-dispersion curve as the core dimension is reduced. The
plots show that a fiber with a core diameter of ~ 1.3 ym results
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Fig.3. Dispersion curves for bulk glass and HFs with different core diameters.
in a ZDW at 1.06 um (note, however, that the dispersion slope
is still quite high at this wavelength, i.e., ~ 1 ps/nm? - km).
From Fig. 2, it is seen that this fiber exhibits v = ~ 2000 W~ -
km~! at this wavelength, a factor of 3 or so less than the
maximum possible nonlinearity achievable with such fibers
at this wavelength. HFs with diameters around 1.3 pm thus
appear well suited for nonlinear fiber-optic applications such
as SC generation around 1 pm, where the combination of high
effective nonlinearity and low values of chromatic dispersion
are essential to realize power-efficient nonlinear devices.

III. FIBER FABRICATION, STRUCTURE, AND
BASIC PROPERTIES

The three-step procedure we use for the fabrication of our
compound-glass small-core HFs has been previously reported
in [8], [9], [11], and [12] and consists of 1) two extrusion proce-
dures for the fabrication of preform elements (core preform and
an outer jacket tube); 2) caning of the core preform; and finally,
3) drawing of the assembled preform into fiber. Microstructured
preforms, tubes, and canes can be reliably and reproducibly
fabricated in this way, and good dimensional control can be
achieved. Careful adjustment of the tension applied during fiber
drawing allows us to accurately control the outer diameter of
the fiber, and hence, the dimensions of the inner core itself.
HFs with core diameters in the range of 0.9-1.8 pym were
produced from two different assemblies. From a single preform
of length of ~ 15 cm, we produced fiber lengths of more than
200 m, wound on a spool in several bands of uniform outer
diameter in the range 100—150 pm. Note that the ratio between
core size and fiber diameter can be changed via the choice of
jacketing geometry and corresponding cane size, which allows
the fiber diameter for a certain core size to be set to the
desired value. The geometry of the microstructure can be well
maintained throughout the various scale-reduction processes
in going from structured preform down to the end fiber. To
explore the impact of the microstructure on the fiber loss, we
also drew unstructured and unclad fibers (so-called bare fibers)
from extruded rods made from the same batch of SF57 material
used to produce our HFs.

A typical SEM image of the resulting fiber cross section, and
a magnified central region of the fiber are shown in Fig. 4(a).
The three fine struts that join the core to the outer section of
the fiber have a length in the range of 3—5 pm (depending on
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Enclosed

Fig. 4. (a) SEM image of the small-core extruded SF57 HF with an
~ 0.95-pm core and the enclosed area is the diameter of the circle that fits
just inside the core region. (b) Measured mode profile for HF at 1.047 pm.

the core size and hole shapes) and a thickness of < 250 nm.
This HF design allows the formation of extremely small cores
(0.9-1.3 pum in this case) with low confinement loss (calculated
to be < 10~* dB/m) and which provide single-mode guidance
at infrared wavelengths. All of the HFs we fabricated from the
two assemblies demonstrate similar transverse refractive index
profiles. Note that the diameter variation along 1-m-long fiber
samples used in the experiments described below was relatively
small (< £0.1 pm), meaning that the dispersive properties
were highly uniform along the full device length.

We have studied closely the properties and SC-generation
performance of two HFs with core diameters of 0.95 £ 0.05
and 1.30 4+ 0.05 pum (denoted Fiber#1 and Fiber#2, respec-
tively). The spatial-mode guidance characteristics of Fiber#1
and Fiber#2 at 1.047 pm (Nd: YLF laser) were first investigated
by imaging the near field of the guiding mode from the output
end of the HF onto an infrared charge-coupled device (CCD)
camera. At this wavelength, the measured fundamental mode
profile for both fibers has a triangular shape [Fig. 4(b)], which
is in good agreement with the predicted mode profile (Fig. 1). It
can be concluded that robust single-mode guidance is observed
for both fibers at 1.047 pm and, consequently, for all wave-
lengths longer than 1.047 pm.

The propagation loss of both fibers (~ 4 m) was then
measured using the cut-back method. A tungsten halogen lamp
and an optical spectrum analyzer were used to record the trans-
mission spectra and to evaluate the loss from 350 to 1750 nm.
The loss measurement of Fiber#2 is summarized in Fig. 5,
where it is seen that this fiber exhibits a loss of 2.1 dB/m at
1.06 ym and 2.3 dB/m at 1.55 pm. A similar spectral loss
profile was also obtained for Fiber#1, albeit with an ~ 0.2-dB/m
higher loss due to the smaller core. The losses of these HF rep-
resent a significant improvement on the loss values we achieved
in our first demonstration of these forms of fiber (~ 9 dB/m
[11]). We attribute this to improvements in the (ultrasonic)
cleaning of our preform elements. We next measured the losses
of the extruded bare fiber. For this heavily multimode solid
SFE57 fiber, we measured a loss of 1.0 dB/m at 1 um (Fig. 5),
indicating a relatively modest increase in the background loss
in going from bulk glass conventional multimode fiber to
HF. This is likely to be due to surface imperfections within
the structured preform, which are sampled by the mode at
the air/glass boundaries of the core (see the calculated mode
profiles overlaid on the fiber structure in Fig. 1). We consider
that there is considerable potential for reducing further the fiber-
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Fig. 6. Measurement of the nonlinear phase shift as a function of input power
yielding v = 1860 W~ . km~?! from the slope of the linear fit for Fiber#1 of
length 144 cm.

loss levels in due course. Note that HF losses of 0.4 dB/m have
recently been demonstrated for a small-core compound-glass
HF [7].

We next estimated the effective nonlinear coefficient and
effective mode area of Fiber#1 at 1.55 ym from a measurement
based on the nonlinear phase induced through self-phase modu-
lation (SPM) of a continuous-wave dual-frequency optical beat
signal propagated through the fiber [16]. From the slope of the
linear fit of the measurement of nonlinear phase shift versus
launched power, and taking into account the effective length of
the test HF (Fig. 6), we estimate a -y value of 1860 W km™,
which, to the best of our knowledge, is the highest nonlinearity
value ever reported for an optical fiber at this wavelength. This
number is, in fact, slightly higher (~ 10%) than we anticipated
theoretically (Fig. 2), and we estimate it to be within ~ 10% of
the maximum value possible in this glass.

The performance of a nonlinear device depends both on the
effective nonlinearity and the effective length of the fiber [8].
The latter is determined by the fiber propagation loss. Although
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the soft-glass HFs we present herein have much higher losses
than state-of-the-art silica-based highly nonlinear fibers, their
effective nonlinearity is also much higher (by almost two
orders of magnitude). It follows that the required fiber length
to implement a nonlinear device for practical power levels
can thus be reduced considerably relative to high-nonlinearity
silica fibers. Therefore, the real potential of compound-glass
HFs is for the realization of short-length nonlinear devices
operating at low power levels. The use of a short fiber length
is significant in that it offers several important performance
benefits including reduced sensitivity to external perturbations,
reduced susceptibility to dispersion variation along the device
length, and reduced device latency, as required, e.g., in devices
such as all-optical demultiplexers, clock recovery systems, and
logic gates.

IV. SC GENERATION

In this section, we describe our SC studies at 1.06 ym using
the two SF57 HFs described above (Fiber#1 and Fiber#2).
We first present our SC-generation experiments, which yielded
spectra spanning over one octave and extending into the visible
regions of the spectrum. We next describe a numerical model
that we have used to simulate the nonlinear behavior of the
fibers. Finally, the results of the simulations are compared with
our experimental results. We also consider simulation results
for fibers with different core sizes and conclude by suggesting
promising combinations of pump wavelengths and fiber designs
for continuum applications using SF57 microstructured fiber.

A. Experiments

At present, we have no ready way to measure the dispersion
profile of short lengths of our fibers around 1 pm, so we
rely on our spectral-broadening/SC experiments to confirm that
these HFs have a low dispersion in the 1-pum range. For our
SC-generation experiments, we used a diode-pumped mode-
locked Nd:glass laser operating at 1.06 ym as a pump source.
This laser generated 300-fs transform-limited pulses at a rep-
etition rate of 80 MHz, and we were able to launch pulses
with energies of up to ~ 250 pJ into short lengths of the two
fibers. Typical measured launch efficiencies into the fundamen-
tal mode were 15%—-20% for these experiments, depending on
the specific fiber/coupling lens choice.

The pulses were first launched into ~ 60 cm of Fiber#l
(~ 0.95-um core). Fig. 7 illustrates the spectra obtained at
various launched powers. For modest power levels (launched
pulse energies below ~ 20 pJ), we saw clear evidence of Raman
soliton formation, an indication that this HF has anomalous dis-
persion at the wavelength of operation. However, the presence
of four-wave mixing and the generation of new components at
shorter wavelengths relative to the pump is an indication that
the ZDW is close to the predicted wavelengths. As we increased
the power further, the spectral extent of the newly generated fre-
quencies became broader (extended mainly towards the longer
wavelength side) and the spectrum became smoother. At higher
pulse energies (~ 100 pJ), the spectral components in the HF
spanned more than one octave and extended significantly into
the near-IR/visible wavelength regions of the spectrum. We
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achieved a spectral broadening in excess of 1000 nm for
launched pulse energies as low as ~ 100 pJ. Note that we also
investigated the sensitivity of the SC process to input pulse
polarization but found the shape of the output SC spectrum to
be relatively insensitive to this.

We next experimented with a short length (~ 6.8 cm) of
Fiber#2 with a larger core diameter of ~ 1.30 um. In Fig. §,
we see that the SC-generation properties of this fiber are quite
different from those of Fiber#1. Although the overall spectral
broadening is not as strong (a bandwidth of ~ 700 nm is ob-
served in this case), broadening (at least up to certain power
levels) occurred much more symmetrically than in Fiber#l.
However, for pulse-energy levels higher than 178 pJ, spectral
broadening was again more significant at longer rather than
shorter wavelengths.

B. Numerical Model

We performed numerical simulations to help us interpret
our SC-generation data. As with silica, we have assumed that
SF57 glass is centrosymmetric and has a homogeneous third-
order nonlinear susceptibility (y(*)), which is small compared
to the linear susceptibility, and is also wavelength independent
over the wavelength range considered. The total refractive
index therefore includes a small intensity-dependent nonlinear
contribution (n = ng + nal).
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The model used to simulate pulse propagation includes both
the instantaneous electronic response (responsible for the Kerr
effect), and the delayed ionic response (responsible for Raman
and Brillouin scattering) in the nonlinear component of the
refractive index ns. As is usual when modeling silica fibers, the
nonlinear response to the applied field A(z,t) has been written
as R(t) = (1 — fr)d(t) + frh(t), where the § function repre-
sents the instantaneous electronic response, and h(t) represents
the delayed Raman response of the ions. The optical amplitude
A(z,t) will be changed according to

AA(z,t) =iy (1 + i@)
+t
x | A(z,t) / R(') |A(z,t — ")) at’

For silica, the Raman temporal response has been previously
determined from the shape of the Raman gain in the frequency
domain [18], and the Raman fraction of the total nonlinearity
was determined to be 0.18 from measurements of the absolute
value of the Raman gain. We are not aware of any previous
measurements of the delayed temporal response or absolute
Raman gain for SF57, and we have calculated the temporal
response from uncalibrated spontaneous Raman spectra follow-
ing the procedure used for silica by Stolen et al. [19]. For SF57,
we assumed the Raman fraction of the total nonlinearity was
fr = 0.2, based on the known fraction of 0.18 for silica. As
far as we are aware, this is the first time that nonsilica Raman
responses have been included in numerical SC simulations.

Effects such as two-photon absorption have not been in-
cluded, and we have considered a single polarization only,
and processes occurring within the fundamental fiber mode,
and not mode mixing to possible higher order modes. These
simplifications enable modeling of the pulse propagation using
the modified nonlinear Schrodinger equation (NLSE) [20], with
loss, as shown below, and as used previously for SC simulations
[21]-{23]

9A ik 3k gk A

a(w)
5z "2 Th +
k>2

otk 2 A

+t
i LQ / V2 gy
—iy <1+WO 6t> A(z,t)/R(t)|A(z,t o) di

where A = A(z,t) is the electric field envelope, () are the
dispersion coefficients at the center frequency wp, and o (w)
is the frequency-dependent fiber loss. The full wavelength-
dependent loss and dispersion profile of the fiber was included
as shown in the previous sections. We used the A.g data from
the previous section as calculated at the seed-pulse wavelength.
To solve the propagation equation, we used a standard split-
step Fourier algorithm treating dispersion in the frequency
domain and the nonlinearity in the time domain, apart from
the temporal derivative for the self-steepening effect, which
was evaluated using Fourier transforms. Our simulation results
show the expected fine structuring [20], and we have applied
a rolling average to smoothen the spectra, which should be
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approximately comparable to the time average over several
pulses, which was measured in the experiments, and is com-
putationally straightforward since it does not require repeated
simulations with slight variations of the input pulse. We believe
that, given the uncertainties of the exact characteristics of the
fiber and the generally good agreement with the experimen-
tal data, the simulations provide a strong indication that the
fiber performance may be understood based on the simulated
dispersion profiles and nonlinearity. The simulated seed pulse
was a transform-limited 300-fs [full-width at half-maximum
(FWHM)] Gaussian profile at 1.055 pm.

C. Comparison of Simulations and Experimental Results

SC generation depends on the interplay between the seed
pulse, fiber length, dispersion, nonlinearity, and loss. Consid-
ering the short lengths of fiber used in these experiments, we
believe that the loss did not strongly influence the spectra,
except possibly at wavelengths below ~ 500 nm, where the
absorption is strong. Furthermore, comparing fibers with dif-
ferent core sizes, the difference in nonlinearity parameter varied
with effective mode area and, therefore, showed only a modest
variation (Fig. 2). In addition, the width of the SC spectrum
saturates after a threshold propagation distance along the fibers
[23]. Therefore, the dispersion has the strongest influence on
the shape of the continuum.

The 0.95-pum core fiber has a ZDW of ~ 945 nm, so the
dispersion is anomalous at the pump wavelength. Fig. 7 shows
the experimental spectrum from the fiber, and there is clear
evidence of the soliton-self-frequency shift (SSFS) transferring
energy to longer wavelengths due to Raman gain, together
with a dip in the spectrum close to the ZDW, and a low-
power short-wavelength spectral peak. Comparing simulation
results with the data, there is reasonable agreement with the
overall shape of the spectra. Slight differences are that the
short-wavelength peak is sharper in the simulation and that on
the long-wavelength side, the individual Raman solitons have
not merged to a flat continuum. We suggest that the flatter
experimental spectrum may well be due to time averaging
of several input pulses with a slight energy jitter, although
we unfortunately did not measure the amplitude jitter of the
launched pulses source during these experiments and are thus
unable to substantiate this comment further. Furthermore, small
differences between the simulated and the exact dispersion pro-
file could change the position and shape of the short-wavelength
peak and influence the soliton fission process, thus influencing
the longer wavelength spectral shape. Such differences are to
be expected since the calculated dispersion profiles shown in
Fig. 3 are for fibers with core sizes in 0.1-ym increments, and
a finer grid should enable closer agreement. We believe that
the relatively high intensity at the pump wavelength in the
experimental spectrum is due to some residual power guided
along the cladding of this uncoated fiber, which, due to the
larger cladding area, is not broadened by nonlinear effects.

The 1.30-um core fiber has a ZDW of ~ 1080 nm, so that
the fiber has normal dispersion at the pump wavelength. The
lower power spectra (both experimental and simulation plots)
in Fig. 8 clearly show that a threshold power is required for
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explosive spectral broadening. Simulations indicated that, for
the first several centimeters of propagation, broadening was
due to pure SPM in the normal-dispersion region and that only
when sufficient power was transferred across the ZDW would
soliton effect compression lead to SC. The propagation distance
to the soliton effect compression reduced with increasing power
from ~ 7.5 cm at low power to ~ 6.5 cm at high power.
Therefore, for the experimental fiber length of 6.8 cm, the
data in Fig. 8 show both behaviors were clearly observed. The
high-power simulation spectrum shown in the figure is in good
agreement with the experimental data and is reasonably flat
from 800 to 1400 nm, apart from the dip close to the ZDW.
We again interpreted differences between the simulation and
experimental spectra to be due to slight differences between
the calculated and actual dispersion profiles and to cladding
guidance, leading to the increased experimentally measured
intensity at the pump wavelength.

We also performed simulations for fibers with smaller core
sizes than 0.95 pxm which have increasing anomalous dispersion
at the pump wavelength. Simulations for a 5-cm fiber length
with 0.8-um core diameter indicated that pulse energies of
~ 100 pJ (as used in the above experiments) would produce
a more pronounced blue-shifted component at < 700 nm and
Raman solitons extending to > 1600 nm but with very low
power in the range 700-900 nm (other authors have considered
even smaller core sizes [16]). However, in practice, wavelengths
below ~ 500 nm would be strongly absorbed in longer lengths
of SF57 fiber. Further simulations indicated that with ~ 100-pJ
pulses and 1.05-um pump wavelength, the broadest and flattest
continuum were produced by seeding slightly on the anomalous
dispersion side of the ZDW, which corresponds to the disper-
sion profiles of fibers with core sizes in the range 1.0-1.1 pym.
The predicted spectra spanned from 750 to 1500 nm. Fibers
with core sizes above 1.4 um were not predicted to be efficient
for continuum generation due to the strong normal dispersion
at the pump wavelength.

For all of the fibers, the steep dispersion profile at short
wavelengths was due to the need for a large waveguide disper-
sion to shift the bulk SF57 ZDW from ~ 1.97 ym towards the
~ 1.05-pm pump wavelength. The steep dispersion prevented
broad visible continuum generation with this pump wavelength.
To create an SF57 fiber with a flatter dispersion profile would
require moving the fiber ZDW closer to that of the bulk glass,
e.g., a dispersion-flattened SF57 HF with ~ 1.5—1.6-um ZDW
is likely to be feasible [25] (for comparison, the ZDW of
bulk silica is at 1.3 pm, and therefore, a smaller waveguide
dispersion is required to shift the ZDW to 1 um, and, as a con-
sequence, a dispersion-flattened silica HF with ZDW at 1 ym
is feasible). Since an SC source comprises both a nonlinear fiber
and pump laser, we expect that a dispersion-flattened SF57 HF
with an Er-fiber pump system could provide a very attractive
and practical source for broadband continuum generation in the
1-2-pm-wavelength region.

V. CONCLUSION

We have used extrusion techniques to fabricate small-core
HFs with an extremely high effective nonlinearity in lead-

silicate glass (SF57). The fibers we have fabricated exhibit
an effective nonlinearity of 1860 w-! -km_l, which is the
highest value reported to date for a fiber at 1550 nm. By
carefully tailoring the size of the microstructure, we achieved
a ZDW of ~ 1 pum, which made our fibers extremely useful
for SC-generation applications at that wavelength. We have
used two HFs that differed only slightly in the size of their
cores to demonstrate the critical effect of dispersion in the SC-
generation process. We backed our experimental findings with
numerical simulations of the SC generation, which enabled us
to explain fully the nonlinear behavior of the HFs.

This paper highlights the potential of this technology and
material for nonlinear applications. We believe that similar
techniques can be applied at longer wavelengths as well, which
are better suited to the material dispersion of this glass, e.g., for
SC generation extending beyond 2 pm.
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