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A Mixed MAP/MLSE Receiver for Convolutional
Coded Signals Transmitted Over a Fading Channel

Langford B. White Senior Member, IEEEand Robert J. Elliott

Abstract—This paper addresses the problem of estimating ~ Most wireless telecommunications signals employ forward
a rapidly fading convolutionally coded signal such as might error correction (FEC) at the physical layer to give protection
be found in a wireless telephony or data network. We model 4qqinst symbol errors introduced by noise on the channel.

both the channel gain and the convolutionally coded signal as - . )
Markov processes and, thus, the noisy received signal as a hiddenThe most common type of FEC is convolutional coding [2].

Markov process (HMP). Two now-classical methods for estimating Convolutional coding works by adding redundancy (linear
finite-state hidden Markov processes are the Viterbi algorithm dependence) into the transmitted symbol stream by multiple
and the a posteriori probability (APP) filter. A hybrid recursive  jnput—multiple output linear FIR filtering (modulo 2). The

estimation procedure is derived whereby one hidden process (the \;,avimum delay in the filter is called the constraint length of

encoder state in our application) is estimated using a Viterbi-type -
(i.e., sequence based) cost and the other (the fading process) usinéhe encoder. An encoder that produeesutput bits for each

an APP-based cost such as maximuna posteriori probability.  Input bits is called a rate:/»n encoder. Commonly used rates
The paper presents the new algorithm as applied specifically to are 1/2, 3/4, 5/6, and 7/8; however, for some applications (e.g.,
this problem but also formulates the problem in a more general deep space communications), rates as low as 1/128 might be
setting. The algorithm is derived in this general setting using |;sed. In this paper, we consider only rafe, n > 2 encoding.
reference. probability methods. Usmg. simulations, performqnce A uti I ded si | b ted
of the optimal scheme is compared with a number of suboptimal _~* convoiutionally encoded signal may be represented as a
techniques—decision-directed Kalman and HMP predictors and hidden Markov model (HMM) with state consisting of all the
Kalman filter and HMP filter per-survivor processing techniques.  input bits stored in the encoder memory and observation con-
Index Terms—Convolutional decoding, fading channels, hidden sisting of Fhe .output symbgl stream. The transition structure of
Markov models, per-survivor processing. the state is highly constrained. For example, for a rate 1/2 en-
coder of constraint length/ has2™ states (corresponding to
all possible combinations of thi/ stored input bits in the en-
coder), but there are only two possible transitions from each
N WIRELESS telephony and data networks, propagatigtate, corresponding to the two possibilities for the next input bit.
characteristics of the radio channel give rise to often rapid such highly constrained problems, it is recognized thax-
fluctuations in the received signal power [1]. For multileveimum likelihood sequence estimati@viLSE) should be used,
signaling constellations such as pulse amplitude modulatitsading to the well-known Viterbi algorithm (VA) [4], where it
(PAM) and quadrature amplitude modulation (QAM), it igs demonstrated that MLSE yields (asymptotically) the optimal
necessary for the receiver to have a good estimate of the instafior performance.
taneous channel power gain in order to properly demodulateln this paper, we model our received signal as the product
the signal. For many practical channels, the channel pow#rthe channel gain process and the convolutionally encoded
gain may vary so quickly that gain estimation methods basptpbcess observed in additive white Gaussian noise. Thus, we
on a static model of the channel gain (e.g., adaptive methobigye an HMP dependent on two underlying Markov chains: one
maximum likelihood) may not track sufficiently quickly tobeing the state of the convolutional encoder and the other being
permit demodulation of the signal. Thus, dynamic models fdhe state of the channel gain process. We derive a optimal mixed
the channel gain should be applied in such cases. Dynaraitimation algorithm, whereby we seek MLSE for the encoder
models will give rise to estimation structures that are designethte and maximura posteriori probability (MAP) estimates
to track more quickly and, thus, should improve performanctr the channel gain process. Such an algorithm clearly involves
In this paper, we specify a finite state Markov chain to modgint estimation of both underlying Markov process states, albeit
the amplitude gain process. with different criteria used to determine each component. The
MLSE for the encoder then allows us to extract the original input
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mimics in some sense the us@aitomatic gain contro{AGC) The encoder operates at ratéP, P > 2! with generator
commonly used in receivers. Decision feedback of delayeaatrix G: {0, 1} — {0, 1}*. Suppose thatt: {0, 1}7° —
symbols is used to parameterize the channel gain estimafax, ..., ¢.r }, whereg; is real, denotes the modulation oper-
The other suboptimal methods used are basepenrsurvivor ation. Its task is to map th2” possible values of the encoder
processingPSP) [7]. Here, a bank of amplitude estimators a@utput ont®” real symbol values that may be transmitted. With
used; each is associated with a surviving candidate optinmainor modifications, we can also handle complex modulation
path from the MLSE. There is no requirement for feedback ¢fpes such as QAM.

delayed (or otherwise) symbols with these PSP methods. The transmitted signal is then
Within each class, we investigate the performance of two
types of amplitude estimators. The first class is based on an o = M(GXy mod 2). (4)

AR(1) model for the amplitude process and results in a Kalman . . . .
filter-based amplitude estimator. The same AR(1) model is usedThe transmitted signal is propagated through a flat fading

to derive the Kalman filter-based PSP method similar to [ﬁqannel, which acts on the channel as a multiplicative gain [1].

; . . e fading process is here modeled as a finite state Markov

(which also addresses the frequency-selective fading case). N . .

" _ “’chain taking values in the s€t, as, ..., ayw }, whered =

each case, the second-order statistics of the Markov chain am- : N

. . . a1 < ag < -+ < ay .2 We provide some justification for the
plitude process are used to parameterize the Kalman filter(s), %s

detailed in Appendix A. The other type of estimator uses the firoice of Sl.JCh a model m_App_e_ndlx A An z_;tddlt_lonal reason for
) . . . .such a choice is the applicability of an estimation theory based
nite state Markov chain model itself to derive the correspondi

n . L i .
HMP filter(s) for the amplitude process in both decision feeao-% the expectation—maximization algorithm [3], which we ad-

i . Lo T
back and PSP modes of operation. Performance of the opti d%&SS in forthcoming work [6]. Write = (ay, ..., ayw)" €

(1) . .. . .
and the four suboptimal techniques is compared with the aid of (1)51nd sur(nlo)ose the cha(ulr)w determining t-he fading dynam|cs
simulated four-level PAM signals in Section VII. is Xt = {X,'}, where X, takes values in the (canonical)

set of unit vectors
Il. APPLICATION {egl)’ o 65\1%)} c RV )
We will consider convolutionally coded signals with con- ) .
straint length}M . Denote byX,, the lengthd/ binary vector defined analogously to (2). Then, the real value (gain) associated

with the convolutional encoder state at sample timeThis With the fading channel at timeis

process follows a “shift-register” type behavior so that for ¥ 6
E>0 koo @ (6)
h iti WD = (o'Y) of X h
Xpy1 = SXp + e1brgt. (1) We suppose the transition matr (a;;’) of X as
entries
Here,S is theM x M shift matrix with.S;; = 1if ¢ = j 41, p, i=1j=2
and zero otherwise, and is the unit vector irR* with unity g =2 =1
in the first position. The sequen¢é, } denotes the input binary a](é) = T ’ W o )
message stream that is independent and takes the values 0 and 1 A i=2,, N =1 j=i+1
with equal probability. Consequently, the state spac& dfas py §=2,...,NU -1, i=5+1
2M = N pinary vectors. Following Section 1V, this state )
space can be identified with the 5@{12 R 65\322>} of unit With diagonal elemennsgi) chosen so that each column.4f")

sums to unity. The state transition structure is shown in Fig. 1.
This structure is somewhat restrictive as it does not permit more
/ general transitions between the amplitude levels. More general
C]('2) —lo,..., \1/ 0,...,0]| € RV (2) transition models c'ould. be used if desired, although we do not
address this issue in this paper.
The received signal is given by

. (2
vectors inRN®

jtltposition

We will write X for the version ofX defined in the (1) L (2)
canonical space{e§2), e, eg\?,Zz)}. Each basis vectorzEQ) Yk = <‘X’C ’ a> <‘X’C ’ d> +onk (8)

corresponds to one binary vector {®, 1}*. Each binary
vector corresponds to a decimal integer; therefore, we wi
choose the (decimal) undeérso thate; is associated with the
corresponding binary vector. Any vectdf; has only two

possible successor states. The transition matf& for X2, d; = M(GX), mod 2)
therefore, is sparse with elements ’

here the{n; } is a sequence of independent norm&lo, 1)
ndom variables, angf is the noise power. Wheij, is in the
state corresponding to the vectzﬁ), write

and
0.5, ¢=2j mod N® IMore general rates can also be dealt with using a multiple input version of
(2) _ = . . (2) 2).
a = 4 =2 3
R 0.5, ¢=2j+1mod N ( ) 2The zero amplitude state is included to permit detection of the presence, or
0, else. nonpresence, of the signal, if desired.
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P A A A At each time point, we keep track of the maximizing index in
m /\C@ (12), i.e., let
..... 5 o
q N " m Wy (4, j) = argmax a](i) Z agrll)ék(n, £). (14)
1<E<N(@) ot

Fig. 1. State transition diagram for the fading process. o
We also keep track of the maximizing valueXf) for each

2
d=(d, ..., dye)" (9) Value ofX®,
so thatM(GX;, mod 2) = d; = (X7, d). We assume that all () = S ACE)E (15)
parameters, d, o2, p, g, A, andy are known. Adaptive estima- -
tion is addressed in [6]. Estimatesf(,gi)mk and X ®  [of XV andx ¥, re-

spectively] are produced by backtracking by a fixed number

A. Optimal Demodulation samples at each time > A:

Given the observationy, = {vo, v1, - .., ¥}, We wish o o
to obtain recursive estimates fai'" and_x*, perhaps with (x, j*) == arg max g(s, 7)
some delayA > 0. If one was interested in minimum variance e
or maximuma posterioriprobability (MAP) estimation of both Fors=k—-1,....,k—A

the underlying Markov chain states, one would proceed to de-

: : =) o S g =Wy (ix, j%)
termine arecursive update for the joanposterioriprobabilities

o (1) 1) (2 @ i i=15(J%)

G (2 2
X@, =

gk

X =l (16)

and then compute the associated conditional expectations
or MAP estimates. In the usual Viterbi algorithm (dynamic
programming), computation of (10) is replaced by a se-

que{mal maximization over 32” possible sample paths of The packtracking delay is necessary to enable proper con-
(XYL XL X, X)) The new mixed estima- struction of the maximum likelihood sequence. This delay is
tion procedure proposed in this paper consists of usingathehosen sufficiently large that all candidate optimal sequences
posteriori probability estimates for th& (V' process, coupled backtracking from time: have merged at timé — A. Thus,

with a Viterbi maximum likelihood sequence estimation Crith order to app|y the a|go|'ithm, the quantiti@ﬁ(i’ J) are ini-

rion for X (2. Formally, this means considering quantities ofialized at timek = 0 according to (13) and updated for each
the form time k£ > 0 via (12). At each time, we also retain maximizing
indices via (14) and (15). Backtracking also takes place at each
timek > A according to (16) to extract the desired estimates.

nax

ar(i, j) = I
XL x?),

% pr{ng)’ L X® xW W) X;EQ)IGJ(»Q)‘%}- (11) lll. REDUCED COMPLEXITY FILTERS

A standard approach in designing a suboptimal filter for the
Candidate optimal sequences fﬁ’f) are obtained in the signal (8) is to decouple the gain and encoder state estimation
usual MLSE manner, except that the each time in the bagkoblems. Thus, the Viterbi algorithm decoding function will
tracking phase, MAP estimates are obtainedXéP by maxi- employ estimates of the amplitude process, which is derived
mization (over) of (11). As shown in Section VI, we have thefrom a separate gain estimator that itself uses (possibly) delayed

following recursion: estimates of the encoder state. The first set of gain estimators
o we will use as a comparison against the optimal HMM filter
Gret1(d, J) are two decision-directed predictors. Prediction is required in

D d)(ykﬂ_a{dj) this decoupled structure because good estimates of the encoder
—  max agi) Z agrll)ék(ﬂ, 0) o (12) state sequence requires a delay, a|jd thus, amphtude_ estimates
1<e<N@ Y — oO(Ynt1) for the Viterbi decoder must be predicted forward by this delay.
. The two types of predictors used differ in that one is based on
whereg(z) = (1/v/27)e=* /2. Initialization atk = 0 is given an AR(1) model for the amplitude and results in a Kalman pre-

by dictor, whereas the second is based on the Markov chain model
introduced in Section Il and, correspondingly, results in a HMP
o d)(%) o predictor.
do(é, j) = “odlm) w0 (1) 73 () (13)  There has recently been considerable interest in suboptimal

seguence estimation techniques known as PSP (see e.g., [7]).

wherer (1) andz(? are the initial probability distributions for As it applies to our current problem, the amplitude process
X® and X, respectively. (XY a) is regarded as an uncertainty in computation of the
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VA likelihood function. In PSP, this uncertainty is estimated ‘A)k[k- A
at each time using an estimator appropriate for our model of % Delay Kﬁ%ﬂMP

the amplitude process. However, a separate estimator for the i

amplitude process is used for each possible survivor path.

Thus, we have a bank of filters for the amplitude process: one —
associated with each possible signal state value. The use of PSP

in the current context will be shown to reduce the problems Viterbi MLSE
associated with the delay introduced in the decision-directed
approach, albeit at the expense of increased computational
requirements compared to the decision-directed approach. 2o Backrack A
Again, two PSP estimators result: one consisting of a bank of " Ak

Kalman filters and the other a bank of HMP filters.

Fig. 2. Structure of the predictor-based methods.

A. Decision-Directed Kalman Predictor B. Decision-Directed HMP Predictor

In this case, the Kalman predictor from Section IlI-A is re-
placed by ?Q HMP predictor. The un-normalized filter APPs
r(1 . .
Pr41 = APk + ug (17) [mip € RN, with . (é) o PrixX = eVlys, ..., )]
for the amplitude are updated according to [3]

Here, we use the AR(1) signal model

as an approximation to the second-order statistics of the process <X 2 d>
(X,El), a). Here,u; is a zero-mean, white noise process witf) (6) = Yb — klk+A—1
meany,, and variance2. The constand < A < 1 determines kIR o
the bandwidth of the process, i.e., how rapid the variations in
the fading process are. Appendix A shows how to relate the N
parameters of this process to the true Markov amplitude process X Z am Tr—1)k—1(n) (21)
(X ,El), a). The Kalman predictor structure is
fori =1, ..., N, We then predict forward\ samples ac-
Prlk—1 = APk—1|k—1 T fhu cording to
=+~ s (K ) 0)?
Pklk = Pk|k—1 EY Yk — Prlk—1 Elk+A—1" ThtAlk = (A ) Tk (22)
¢ (2)
Gy — Lkfk—1 <Xk|k+Afl’d> (18) whereWHMk(i) x P_r{X,E]jr)A = c( )|y1, e Ukt _The ampli-
k= @ J ) tude estimator used in the VA update is the amplitude state level
Ekl’“—1< klk+A—1 > to associated with the maximizing indexof -
2) ) _ C. PSP Kalman Filter Model
WhereXk x+a_1 IS an estimate of the encoder (binary) state

vector Xk written in terms of the canonical variables, given V& now show details of the PSP approach, which will con-

measurements:, .. ., yrra_1. The predictions are given by sist of N2 Kalman filters toget_h_e_r with Fhe VA_. Sgppose we
seek to compute the VA probabilities at tichewhich involves

1A maximization over each valid previous signal state at timel
AN (19) for each state at timé. Associated with each state/at- 1 is
I—=A a survivior sequence and a sequence of Kalman filter estimates
of the amplitude process that have been recursively computed
These are used in the next step of the Viterbi algorithm prgsing the corresponding signal state estimates. We assume that
cessing data at time+ A, which, in turn, results in estimatesthese estimates are currently labeled by the index of the state
Xit111+a- The error “covariance” terms in (18) are updated byt timek — 1. The VA chooses the maximum likelihood prede-
cessor signal state for each current state (which does not require
2 5 (2) 2 the data likelihood at timé&) and then updates its path proba-
Ritiin = ATl { B <X’“|’“+A L d> Gk} +ou RO pilities by computing the d)ata Iikelihooz at tinig uF;ing ?hat
value of amplitude obtained by using the KF state predictions
The computational complexity is dominated by the Viterbhssociated with the path terminating in the optimal predecessor
part with the Kalman predictor computations being insignifistate. That KF state is then updated and relabeled with the index
cant by comparison. The Viterbi algorithm needs amplitude esfthe current signal state. The process is repeated for each pos-
timates for timeg: = 1, ..., A — 1 in order to produce the es- sible current state.
timate ofoQ) and, thus, permitting the VA to commence. With Weretainthe model (17)fortheamplitude processand compute
such a scheme as this, suitable initialization is important. FigpPediction errors associated with each possible signal state level
depicts the structure of the predictor based algorithms. at timek, d;, i =1, ..., dye and its optimal predecessor.

Prtale = A2 Prji + b
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For each, let j(¢) denote the index of the optimal predeces&sor ‘A)k|k-1 1
(from VA) for stated;. Let ;

¥

ex(i) = Yr — Prlp— Ldz 23 A

k( ) Yk — Pk l[J( )] ( ) Yy @ X,. A
wherepy|—1[j] denotes the (one-step prediction) state associ- @_ VA —
ated with Kalman filterj at timek — 1. Filter j(¢) will now be —’
relabeled according to its terminal state at tifnd.e., . The ‘ :
update equations for (now) filtérare F@;

Prinli) = P 1 i (D] + G e () E
G _ Zipe—1l1(0)] di : -
P S ()] dZ 4 02 d
ﬁk+1|k[i] = )\ﬁklk[i] + pu Fig. 3. Structure of the PSP methods.

Sipaeli] = XS @) {1 - G0 b+ 02 (24
il 1) { , } G technique, since only one Kalman filter is required. In the case

of the decision-directed and PSP HMP methods, there are, in
addition to the VA, respectively, one amd(® HMP filters,
each requiringD(N"") operations for the general amplitude
model orO(N®) for the sparse amplitude process model in
D. PSP HMP Eilter Model Section Il. It is interesting to note that the optimal technique

has approximately the same computational requirements as the
In this case, we have a bank of HMP filters simpsp HMP method.

ilar to Section IlI-B, each associated with a survivor

At time k, the VA uses the estimaf®, ;1 [j(¢)] to compute
the data likelihood corresponding to signal state=ig. 3 shows
the structure of the PSP algorithms.

path, as in d_Se_ction mn-C. |'Th3 lejarvivour path _I—AMP IV. GENERAL SIGNAL MODEL
one-step prediction unnormalize dre—1[34] wit _ _ _ _ _
P .p 1 1 P 21[ { 2 In this section, we describe a signal model that generalizes
7r [n'z]ocPl’{X():e()|y Y X® = )} L ; . .
klk—L LT k. 7o NI e Il A = S 0 the application considered in Section 1.
and filter APPsry i [.; 4] (((jgfmed analogously) associated With * e two finite-state Markov chaif&?), X . Without
signal statg =1, ..., N are updated according to loss of generality, the state spaceX)@ can be taken to be the
‘ N@ unit vectors{e!”, e§?, ..., ¢”) 1. The Markov chains
. yk_andz L. w1 2 N (). )
x4 :d){f}ﬂk“ﬁ_l[ﬂ;j(l)] are supposedly time homogeneous and defined on the proba-
bility space(Q?, F, P). Let A®) v = 1, 2 denote the transi-
N tion probability matrices foX ). Then, fork > 0
mrerrp[nidl = Y alh melmsi] (25) o - o
m=1 Xpf =AY X+ My
forn =1, ..., NV, The amplitude state level associated with X2 =ADXP + M), (26)
the maximizing index of 1 [n; j(4)] is used to determine the
VA likelihood for signal stater at timek. whereM (Y andM(? are (vector) martingale increments. That
is, if

E. Computational Complexity

In this section, we compare the computational requirements Fr = U{Xe(l)a xPo<r< k} (27)
for the optimal, per-survivor Kalman and HMP filter technique
and the decision-directed predictor methods. For the optirﬁ Fn
method, there is a total oV (V) N(?) states. Using a general ) ) | w0
amplitude process Markov chain model, where the transition E[Mk+1 ‘Fk} :E[Mk+l ‘Xk }
matrix A is not sparse, each update (12) thus requires
O(N<1>2N<2>) operations. For the sparse amplitude process

model considered above, this reducesaVv®) N(2)) opera- ) @) _
tions per sample, i.ey() times the complexity of a standard_ 1he Markov chainsX™™, X< are not observed directly.

VA. The PSP method is comprised of a VA and? scalar Rather, there is an observation procgss {y., k > 0} of the
Kalman filters, thus requiring)(N(®)) operations per sample. following form:*

The decision-directed Kalman predictor technique also requires @ ) @) i

O(N®) operations, which is considerably fewer that the PSP~ ¥x =t (Xk ® Xy ) + O'(Xk ® Xy )”k (29)

—0eRM". (28)

3We assume here that a unique optimal predecessor exists. 4Here, denotes Kronecker product.
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We suppose the procegss scalar valued, although our dis- VI. STATE ESTIMATION IN THE GENERAL SETTING
cHussm?hexten:s[nmoetlnately tothe case wdnfsrvefc 'Fo(rjvalueg. Given the observationg, ¥4, - - -, ¥, We wish to obtain re-
ere, eny, & = U, 1,... are a sequence of indepen enc‘ﬁursive estimates foK,E1 and X,EQ or, equivalently,X,EQ) ®

N (0, 1) random variables. The functiorisand o are repre-

M - Tk - L
sented by theitv(®) N(®) possible values that corresgaond to thtt{é 'nl(fjgr'?e:Va&;?:(%rezae;n'gtr:t'g'smgg Vag'?gcioecsg;md?g%zgr_
NON® values ofX[? @ X{V. Lethy; = h(c!” @ i), and underlying vehal » onewould p

mine a recursive update for the joint unnormalizegosteriori

similarly defines;;. We will suppose all the values of; are probabilities

positive.
ai, ) = E[An (X7, ) (xP, D) 0] 34)
V. REFERENCEPROBABILITY METHOD

The above dynamics fot ), X ® andy describe the model where expectation is over botki{") and X{*. In the usual
under a “real world” probability”. Suppose we have a dif- Viterbi algorithm (dynamic programming), the expectation of
ferent “reference” probability® on (Q, F) such that undeP, (34) is replaced by a maximization over all possible sample
X® and X still have the same dynamics, that is, und®r paths of{X$", ..., X", x{® ..., X }. However, the
(26) holds, wheréZ(!) andM (®) are now( P, F,) martingales. new mixed estimation procedure proposed in this paper con-
However, undeP,y = {y, k > 0} isitself a sequence of inde- sists of using tha posterioriprobability estimates for thé (1)
pendent\(0, 1) random variables. We know (see [1]) that th@rocess, coupled with a Viterbi maximum likelihood sequence
“real world” probability P can be constructed froff in terms estimation criterion forX (). Formally, this means considering

of a martingale density process guantities of the form
A= {Ay, k> 0}. (3o WHI)=F
A Al x® O\ @ (2 ‘ 4
Let g [Xész?;izl k< ko G > < koG > Vel (39)
d)((yk - h(X,EQ) ® X,El)))/a (X,EQ) ® X,El))) i.e., we replace the conditional expectation ov&f”, ...,
Ak = @ W X,EQ_)I by maximization over the same quantities. We have the
O'(Xk @ X, )d)(yk) following recursion:
(31)
and set\ = [Tj_o Ac. Write Gr = o{ XV, X2, g £ <k} o (i, 5)
If we define the probability” by setting o (yHﬁhij)
_ @ €955 i
= max a; a;, qp(n, ) ———=. (36
d—f = Ay (32) 1<e<Ne 9t 712=:1 a4 i P(Yr+1) (36)
dP|g,

As the¢(yx.+1) factor is common to all terms, it may be dis-

. . . if ired. Initializati =0isgi
then unde, X&) and X remain Markov chains with the re- carded, if so desired. Initialization &t= 0 is given by

quired transitions matrice4(*) and A®, but the proces&;, — (/)(ygfhij )

(2 ~(1 ~(2 (1 H Tij . .
_h()x,g )®A,E >))/0(A,5 )®A,E )),Ic_ =0, 1, ...isasequence of doli, §) = W@ 7 (5) (37)
independentV(0, 1) random variables. Call thems,, & > 0. i P(yo)

Then, underP, (29) holds as required. ThuéP anddP are, o S
respectively, the joint probability density functions of the proWherew(l) and7(? are the initial probability distributions for
cesseX ("), X andy under the original and reference probaX(l) and X®, respectively. A proof of (36) is given in Ap-
bility models. The reference probability method has been shoRfindix B. Backtracking to extract the estimatesX6f” and
[3] to greatly facilitate the derivation of both state and param¥ ,52) is as described in (14)—(16).

eter estimation procedures associated with dynamic models. In

general, estimation arises undéraccording to the Bayes' rule VII. SIMULATIONS
In this section, we present results of simulation experiments
E{Akf (ngl)szEQ))‘ yk} used to compare six demodulators applied to the fading con-
E{f (X,El), X,EQ)) ‘yk} = = (33) volutionally coded signal described above. The performance of
E{ALD the optimal scheme as defined by the mixed cost function (11),

the Kalman and HMP PSP techniques, the Kalman and HMP
for appropriately measurable functiofiswhereE andE de- predictor-based methods, and the usual MLSE with the ampli-
note expectation unde? and P, respectively. Often, we work tude process known to the receiver were compared. The Kalman
only with the numerator in (33), which is referred to astam and HMM predictor methods used = 1, which we argue
normalizedjuantity; the correct value is obtained by appropriatater is the best value to choose, at least in the Kalman case. In
normalization [3]. our experiments, we did not observe any statistically significant
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difference between the performance of the Kalman filter-basBgtween that of the predictor methods and the optimal method.
methods and the corresponding HMP-based methods, i.e., I§ OPtimal technique performs quite close to the case where
Kalman predictor method performed similarly to the HMP pré€ receiver knows the fading process exactly. The performance
dictor method and similarly for the PSP techniques. This is d@&in in using the optimal filter appears to increase for higher
spite the fact that the Kalman-based algorithms use only t BRs. . ) .
second-order statistics of the gain process, whereas the HMVve also examlne_d the error behavior of the Kalman predictor
techniques utilize the true model. Evidently, there appears litfféfthod as a function of the parametar Recall thatA >

difference in terms of the resulting bit error rates (BERs) for thie d€notes the time lag (in samples) until we make a decision
examples we consider. about the encoder state. This value is used to predict the ampli-

The resulting BERs are shown in Fig. 4. Hete,= ;1 = tqde process (gain) value forward frc_>m the Kalman fiIt_erFo the
0.05,p = 1, andg = 0. Fig. 5 repeats, foA = x = 0.2, a Viterbi decoder. Fig. 6 shows rather interesting behavior in that
more rapidly varying amplitude case. Here, the average SNR{§ Smallest possibl& = 1 resulted in the best overall BER
defined by performance. Herey = A = 0.1, and the SNR was 29 dB.

Clearly, larger smoothing lags, which one would normally ex-
i 2 ) 2 pect to result in better state estimates (for the encoder process),
E<Xk ; a> E<Xk ; d> are not resulting in better performance of the overall scheme.
2 y (38) In order to investigate this behavior, we examined the per-
formance of fixed-lag smoothing when the amplitude process

It is seen that in both cases, the predictor-based methods peexactly known at the receiver. Fig. 7 shows the reduction in

form the worst, with the PSP methods yielding performance the bit error probability as\ is increased. This is the expected

SNR=

o
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type of behavior [5], with error probability reducing rapidly for(mean and autocorrelation) match that of the amplitude process
a small lag but approaching a constant valuéas: oc. Here, (X,El), a). Consider the AR(1) process in (17). The first two

p = A = 0.05, and SNR= 25.9 dB. Thus, we can concludemoments ofp; are (ask — oo)

that the behavior evident in Fig. 6 is due to the poor prediction

performance of the Kalman method. This is to be expected since E{pi} = Al
it is not generally possible to accurately predict a discrete state 1-=A
HMM. We conclude that some sort of joint estimation proce- a?
. ude th: ; J ation proce E{pg)}: + E{p) (39)
dure (either explicit as in our optimal approach or implicit as in 1— )2

PSP) is really necessary to obtain reasonable performance with ) o
the model we have assumed for the fading channel amplitude N€ autocorrelation function is given by
process. n
E{pkprin} — E{pr}* = E{pi ;AT (40)
VIil. ConcLusION The stationary probabilitieg for the birth-death process
In this paper, we have derived the optimal filter for a hiddeJX,El) can be easily determined via the usual formula, and thus,
Markov process consisting of the product of two statistically inthe first- and second-order moments can be determined. The
dependent underlying Markov chains observed in additive whipeobabilities are given by

Gaussian noise, which may have state dependent moments. We

apply a mixed estimation criterion in order to formulate the L, n=1
filter. We seek thenaximum likelihood sequencerresponding i =714 D/, n=2 (42)
to one of the underlying chains ardposteriori probabilities plaN )2, n=3,..., NO

(APP’s) for the other underlying chain. This mixed criterion

is motivated by a particular application, namely, the demodwherer; is chosen to normalize the sum of all the to unity.
lation of a rapidly fading convolutionally coded communicaThus, the first two moments are (As— ~c)

tions signal. The signal is decoded using maximum likelihood

sequence estimation (MLSE). Estimation of the fading process N

is performed according to the maximunposterioriprobability E{<X;El), a>} = Z AnTp

criterion, requiring computation of APPs. The performance of n=1

the optimal filter for this example is compared with a more con- ) N

ventional approach consisting of decoupled estimators for each E{<X;E1)v a> } — Z a’m,. (42)
underlying chain. These estimators are standard MLSE imple- el

mented via the Viterbi algorithm for the convolutionally coded _ _ ) )

part and a decision-directed predictor for the gain process. Thel he autocorrelation function of the fading process is approx-
case where the gain process is known to the receiver is ué&gtely given by

as a benchmark. We also compare performance with a per-sur- )

vivor processing (PSP) technique that has computational comE{<X,§1), a> <X,$2n, a>} ~ E{<X,§1), a> } )\|2"| (43)
plexity less than the optimal method but greater than the simple

prediction technique. In both the prediction and PSP methogg, e re )\, is the second largest magnitude eigenvalue of the state
we examined both Kalman and hidden Markov process-bas[?%sition matrixA(*) 5 Thus, by moment matching, the param-

approaches and found no significant difference in performangge, <\ 11w, ando? can be determined. The second-order statis-

between them in each case. The PSP approach has beer}iggl'properties O(X’gl)’ a) andpy, will then be approximately

dressed in [8], which also considers frequency-selective fadiqﬁe same. More details on the approximation of Markov chains
Simulations show that the predictor methods perform worst, b d HMMs by a linear Gauss—Markov processes is given in [11]
the optimal filter illustrates minimal performance degradation, '

as compared with the known amplitude case. The PSP te%w_tionship to Standard Fading Models
nigue offers performance between that of the simple predictionI woical mobil io. the ch | qain i deled
method and the optimal method. In this paper, we have not\;{z;; a typical mobile scenario, the channél gain 1S modeled as

dressed the issue of estimating the fading process model par Tpf}roduct of t:ree terms [1].' TE.e firs; re|<1)_rhesents pgth l%SSl’
eters. This problem is being addressed in current work [6]. ich we regard as constant in this study. The second models

have also not addressed frequency-selective fading here bu?};—_called shadow fading, which involves variations on the order
dicate that the same idea as presented here could be applie] i ng (I)f gj/vave;:): hgths atlthe gropaga_tlobT fr?_qug_rscy. -Il-lh's. gain
such cases, albeit with a substantial increase in computatio g['0d€Ied as sg-hormayl rahdom variable. fraditionatly, in-
: ependenlog-normal variables are chosen; however, temporal
requirements. ) . . o .
correlations can be introduced as in [10] by filtering these vari-

ables with a first-order lowpass filter. The third term models

APPENDIX A multipath fading. We consider here only flat (nonfrequency-se-

STATISTICAL PROPERTIES OF THEAMPLITUDE PROCESS

. . . SThis assumes that the second largest magnitude eigenvalue is distinct, and
In this Appendix, we show how to parameterize the AR(1)fciently larger than the third largest in magnitude. The result can be gener-

amplitude process model (17) so that its second-order statistitiged.
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lective) fading. This gain is modeled as a Ricean random vari- (/)(M)
able. Again, filtering can be employed to model temporal cor- =E  max Ak$<A(2)X,E2), e§2)>
relations in the gain. X2, xP i P(Yr+1)
Let Uy andV;, denote, respectively, an ildg-normal process
and an iid Ricean process with the same second-order statistics W@ @
that are mutually independent. Suppose these sequences are fil- X <A Xy e >‘ Yk
tered with single pole filters (as suggested in [10]), resulting in
- ¢(yk+1*hij)
We=(1=8)> B Uk — oij dyr+1) v Xé”?%{,@l I;(l,;)f
n=0
o (A x® §2)> < W x W (1)>‘ }
Zy=1-7> v"Vion (44) XPM<A A e pAATAT @)
n=0 d)(ylwrl*hij)
. =N 7/ E max max
whereg, v € (0, 1) are the filter poles. The processé&% and oij PYr+1)  x®x® x@
Z, will have complicated probability distributions due to the o o

filtering; however, they have autocorrelation functions of the

form x| Ax Z<X£1)7621)> % Z<XIE2)’6§2)>

n=1 =1
Ry(n) =0y
(2)y(2) (2 (1) (1) (1)

R.(n) = Cpy"! (45) x (40X, ) (A0x0, V)|
whereC; and C, are constants. By the independencelif (M) N
andV;, we have that the autocorrelation function of gieduct = 79 7 pax a,(i)agi)E
Wiz is 5 ) e 2

Ryz(n) = 03(/3'7)|n| (46) X max Ap X <X£1), CS)> <X;§2), 652)>‘ Vi
X XL,

i.e., the fading process is a first-order Markov process, albeit
one with a complicated probability distribution form. We ap- ¢(y"j—’hﬂ) ) N .
proximate the process by discretizing the amplitude range and = — max a](»g) Z algu(n, £) (48)

. LS L . 1<U<N)
applying the procedure above resulting ina HMM. This is equiv- n=1
alent to approximating the above density by step functions, and
in principle, such an approximation may be made arbitrarily ags required. U
curate by taking the number of states of the Markov process toT he steps in the proof rely use of the martingale property of
be sufficiently large. X,El) andX,EQ) (lines 1-2) together with the independence pf

under P (line 3). The remainder consists of algebraic manipu-
APPENDIX B lations that rely on the unit basis vect@éé) andef).
PROOF OFRECUSION FOR THEOPTIMAL FILTER

Tij ¢(yk+1)

In this Appendix, we provide a proof for the recursion (36). ACKNOWLEDGMENT
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N ¢(yk+l_h7‘j )
L ) ) o1
+1(4, j) = max a; a; qgp(n, ) ———=.
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