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A Mixed MAP/MLSE Receiver for Convolutional
Coded Signals Transmitted Over a Fading Channel

Langford B. White, Senior Member, IEEE,and Robert J. Elliott

Abstract—This paper addresses the problem of estimating
a rapidly fading convolutionally coded signal such as might
be found in a wireless telephony or data network. We model
both the channel gain and the convolutionally coded signal as
Markov processes and, thus, the noisy received signal as a hidden
Markov process (HMP). Two now-classical methods for estimating
finite-state hidden Markov processes are the Viterbi algorithm
and the a posteriori probability (APP) filter. A hybrid recursive
estimation procedure is derived whereby one hidden process (the
encoder state in our application) is estimated using a Viterbi-type
(i.e., sequence based) cost and the other (the fading process) using
an APP-based cost such as maximuma posteriori probability.
The paper presents the new algorithm as applied specifically to
this problem but also formulates the problem in a more general
setting. The algorithm is derived in this general setting using
reference probability methods. Using simulations, performance
of the optimal scheme is compared with a number of suboptimal
techniques—decision-directed Kalman and HMP predictors and
Kalman filter and HMP filter per-survivor processing techniques.

Index Terms—Convolutional decoding, fading channels, hidden
Markov models, per-survivor processing.

I. INTRODUCTION

I N WIRELESS telephony and data networks, propagation
characteristics of the radio channel give rise to often rapid

fluctuations in the received signal power [1]. For multilevel
signaling constellations such as pulse amplitude modulation
(PAM) and quadrature amplitude modulation (QAM), it is
necessary for the receiver to have a good estimate of the instan-
taneous channel power gain in order to properly demodulate
the signal. For many practical channels, the channel power
gain may vary so quickly that gain estimation methods based
on a static model of the channel gain (e.g., adaptive methods,
maximum likelihood) may not track sufficiently quickly to
permit demodulation of the signal. Thus, dynamic models for
the channel gain should be applied in such cases. Dynamic
models will give rise to estimation structures that are designed
to track more quickly and, thus, should improve performance.
In this paper, we specify a finite state Markov chain to model
the amplitude gain process.
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Most wireless telecommunications signals employ forward
error correction (FEC) at the physical layer to give protection
against symbol errors introduced by noise on the channel.
The most common type of FEC is convolutional coding [2].
Convolutional coding works by adding redundancy (linear
dependence) into the transmitted symbol stream by multiple
input–multiple output linear FIR filtering (modulo 2). The
maximum delay in the filter is called the constraint length of
the encoder. An encoder that producesoutput bits for each
input bits is called a rate encoder. Commonly used rates
are 1/2, 3/4, 5/6, and 7/8; however, for some applications (e.g.,
deep space communications), rates as low as 1/128 might be
used. In this paper, we consider only rate encoding.

A convolutionally encoded signal may be represented as a
hidden Markov model (HMM) with state consisting of all the
input bits stored in the encoder memory and observation con-
sisting of the output symbol stream. The transition structure of
the state is highly constrained. For example, for a rate 1/2 en-
coder of constraint length has states (corresponding to
all possible combinations of the stored input bits in the en-
coder), but there are only two possible transitions from each
state, corresponding to the two possibilities for the next input bit.
In such highly constrained problems, it is recognized thatmax-
imum likelihood sequence estimation(MLSE) should be used,
leading to the well-known Viterbi algorithm (VA) [4], where it
is demonstrated that MLSE yields (asymptotically) the optimal
error performance.

In this paper, we model our received signal as the product
of the channel gain process and the convolutionally encoded
process observed in additive white Gaussian noise. Thus, we
have an HMP dependent on two underlying Markov chains: one
being the state of the convolutional encoder and the other being
the state of the channel gain process. We derive a optimal mixed
estimation algorithm, whereby we seek MLSE for the encoder
state and maximuma posterioriprobability (MAP) estimates
for the channel gain process. Such an algorithm clearly involves
joint estimation of both underlying Markov process states, albeit
with different criteria used to determine each component. The
MLSE for the encoder then allows us to extract the original input
bit sequence. For motivational reasons, we initially present the
algorithm as applied to this specific application (Section II), but
subsequently, we derive the algorithm in general terms using
reference probability methods [3] (Sections IV–VI).

As a comparison, we use two classes of suboptimal ap-
proaches. These approaches are introduced in Section III. The
simplest class is a decoupled structure consisting of an estimator
for the channel gain process, combined with a standard MLSE
algorithm applied to estimate the encoder state. This structure
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mimics in some sense the usualautomatic gain control(AGC)
commonly used in receivers. Decision feedback of delayed
symbols is used to parameterize the channel gain estimator.
The other suboptimal methods used are based onper-survivor
processing(PSP) [7]. Here, a bank of amplitude estimators are
used; each is associated with a surviving candidate optimal
path from the MLSE. There is no requirement for feedback of
delayed (or otherwise) symbols with these PSP methods.

Within each class, we investigate the performance of two
types of amplitude estimators. The first class is based on an
AR(1) model for the amplitude process and results in a Kalman
filter-based amplitude estimator. The same AR(1) model is used
to derive the Kalman filter-based PSP method similar to [8]
(which also addresses the frequency-selective fading case). In
each case, the second-order statistics of the Markov chain am-
plitude process are used to parameterize the Kalman filter(s), as
detailed in Appendix A. The other type of estimator uses the fi-
nite state Markov chain model itself to derive the corresponding
HMP filter(s) for the amplitude process in both decision feed-
back and PSP modes of operation. Performance of the optimal
and the four suboptimal techniques is compared with the aid of
simulated four-level PAM signals in Section VII.

II. A PPLICATION

We will consider convolutionally coded signals with con-
straint length . Denote by the length- binary vector
with the convolutional encoder state at sample time. This
process follows a “shift-register” type behavior so that for

(1)

Here, is the shift matrix with if ,
and zero otherwise, and is the unit vector in with unity
in the first position. The sequence denotes the input binary
message stream that is independent and takes the values 0 and 1
with equal probability. Consequently, the state space ofhas

binary vectors. Following Section IV, this state
space can be identified with the set of unit

vectors in

(2)

We will write for the version of defined in the
canonical space . Each basis vector
corresponds to one binary vector in . Each binary
vector corresponds to a decimal integer; therefore, we will
choose the (decimal) underso that is associated with the
corresponding binary vector. Any vector has only two
possible successor states. The transition matrix for ,
therefore, is sparse with elements

else.

(3)

The encoder operates at rate , 1 with generator
matrix . Suppose that

, where is real, denotes the modulation oper-
ation. Its task is to map the possible values of the encoder
output onto real symbol values that may be transmitted. With
minor modifications, we can also handle complex modulation
types such as QAM.

The transmitted signal is then

(4)

The transmitted signal is propagated through a flat fading
channel, which acts on the channel as a multiplicative gain [1].
The fading process is here modeled as a finite state Markov
chain taking values in the set , where

.2 We provide some justification for the
choice of such a model in Appendix A. An additional reason for
such a choice is the applicability of an estimation theory based
on the expectation–maximization algorithm [3], which we ad-
dress in forthcoming work [6]. Write

and suppose the chain determining the fading dynamics
is , where takes values in the (canonical)
set of unit vectors

(5)

defined analogously to (2). Then, the real value (gain) associated
with the fading channel at timeis

(6)

We suppose the transition matrix of has
entries

(7)

with diagonal elements chosen so that each column of
sums to unity. The state transition structure is shown in Fig. 1.
This structure is somewhat restrictive as it does not permit more
general transitions between the amplitude levels. More general
transition models could be used if desired, although we do not
address this issue in this paper.

The received signal is given by

(8)

where the is a sequence of independent normal
random variables, and is the noise power. When is in the
state corresponding to the vector , write

and

1More general rates can also be dealt with using a multiple input version of
(1).

2The zero amplitude state is included to permit detection of the presence, or
nonpresence, of the signal, if desired.
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Fig. 1. State transition diagram for the fading process.

(9)

so that . We assume that all
parameters, , , , , , and are known. Adaptive estima-
tion is addressed in [6].

A. Optimal Demodulation

Given the observations , we wish
to obtain recursive estimates for and , perhaps with
some delay . If one was interested in minimum variance
or maximuma posterioriprobability (MAP) estimation of both
the underlying Markov chain states, one would proceed to de-
termine a recursive update for the jointa posterioriprobabilities

Pr (10)

and then compute the associated conditional expectations
or MAP estimates. In the usual Viterbi algorithm (dynamic
programming), computation of (10) is replaced by a se-
quential maximization over all possible sample paths of

. The new mixed estima-
tion procedure proposed in this paper consists of using thea
posteriori probability estimates for the process, coupled
with a Viterbi maximum likelihood sequence estimation crite-
rion for . Formally, this means considering quantities of
the form

Pr (11)

Candidate optimal sequences for are obtained in the
usual MLSE manner, except that the each time in the back-
tracking phase, MAP estimates are obtained for by maxi-
mization (over ) of (11). As shown in Section VI, we have the
following recursion:

(12)

where . Initialization at is given
by

(13)

where and are the initial probability distributions for
and , respectively.

At each time point, we keep track of the maximizing index in
(12), i.e., let

(14)

We also keep track of the maximizing value of for each
value of ,

(15)

Estimates and [of and , re-
spectively] are produced by backtracking by a fixed number
samples at each time :

For

Then

(16)

The backtracking delay is necessary to enable proper con-
struction of the maximum likelihood sequence. This delay is
chosen sufficiently large that all candidate optimal sequences
backtracking from time have merged at time . Thus,
in order to apply the algorithm, the quantities are ini-
tialized at time according to (13) and updated for each
time via (12). At each time, we also retain maximizing
indices via (14) and (15). Backtracking also takes place at each
time according to (16) to extract the desired estimates.

III. REDUCED COMPLEXITY FILTERS

A standard approach in designing a suboptimal filter for the
signal (8) is to decouple the gain and encoder state estimation
problems. Thus, the Viterbi algorithm decoding function will
employ estimates of the amplitude process, which is derived
from a separate gain estimator that itself uses (possibly) delayed
estimates of the encoder state. The first set of gain estimators
we will use as a comparison against the optimal HMM filter
are two decision-directed predictors. Prediction is required in
this decoupled structure because good estimates of the encoder
state sequence requires a delay, and thus, amplitude estimates
for the Viterbi decoder must be predicted forward by this delay.
The two types of predictors used differ in that one is based on
an AR(1) model for the amplitude and results in a Kalman pre-
dictor, whereas the second is based on the Markov chain model
introduced in Section II and, correspondingly, results in a HMP
predictor.

There has recently been considerable interest in suboptimal
sequence estimation techniques known as PSP (see e.g., [7]).
As it applies to our current problem, the amplitude process

is regarded as an uncertainty in computation of the
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VA likelihood function. In PSP, this uncertainty is estimated
at each time using an estimator appropriate for our model of
the amplitude process. However, a separate estimator for the
amplitude process is used for each possible survivor path.
Thus, we have a bank of filters for the amplitude process: one
associated with each possible signal state value. The use of PSP
in the current context will be shown to reduce the problems
associated with the delay introduced in the decision-directed
approach, albeit at the expense of increased computational
requirements compared to the decision-directed approach.
Again, two PSP estimators result: one consisting of a bank of
Kalman filters and the other a bank of HMP filters.

A. Decision-Directed Kalman Predictor

Here, we use the AR(1) signal model

(17)

as an approximation to the second-order statistics of the process
. Here, is a zero-mean, white noise process with

mean and variance . The constant determines
the bandwidth of the process, i.e., how rapid the variations in
the fading process are. Appendix A shows how to relate the
parameters of this process to the true Markov amplitude process

. The Kalman predictor structure is

(18)

where is an estimate of the encoder (binary) state
vector written in terms of the canonical variables, given
measurements . The predictions are given by

(19)

These are used in the next step of the Viterbi algorithm pro-
cessing data at time , which, in turn, results in estimates

. The error “covariance” terms in (18) are updated by

(20)

The computational complexity is dominated by the Viterbi
part with the Kalman predictor computations being insignifi-
cant by comparison. The Viterbi algorithm needs amplitude es-
timates for times in order to produce the es-
timate of and, thus, permitting the VA to commence. With
such a scheme as this, suitable initialization is important. Fig. 2
depicts the structure of the predictor based algorithms.

Fig. 2. Structure of the predictor-based methods.

B. Decision-Directed HMP Predictor

In this case, the Kalman predictor from Section III-A is re-
placed by an HMP predictor. The un-normalized filter APPs
[ , with Pr ]
for the amplitude are updated according to [3]

(21)

for . We then predict forward samples ac-
cording to

(22)

where Pr . The ampli-
tude estimator used in the VA update is the amplitude state level
associated with the maximizing index of .

C. PSP Kalman Filter Model

We now show details of the PSP approach, which will con-
sist of Kalman filters together with the VA. Suppose we
seek to compute the VA probabilities at time, which involves
maximization over each valid previous signal state at time
for each state at time. Associated with each state at is
a survivior sequence and a sequence of Kalman filter estimates
of the amplitude process that have been recursively computed
using the corresponding signal state estimates. We assume that
these estimates are currently labeled by the index of the state
at time . The VA chooses the maximum likelihood prede-
cessor signal state for each current state (which does not require
the data likelihood at time) and then updates its path proba-
bilities by computing the data likelihood at time, using that
value of amplitude obtained by using the KF state predictions
associated with the path terminating in the optimal predecessor
state. That KF state is then updated and relabeled with the index
of the current signal state. The process is repeated for each pos-
sible current state.

Weretainthemodel(17)fortheamplitudeprocessandcompute
prediction errors associated with each possible signal state level
at time , and its optimal predecessor.
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For each , let denote the index of the optimal predecessor3

(from VA) for state . Let

(23)

where denotes the (one-step prediction) state associ-
ated with Kalman filter at time . Filter will now be
relabeled according to its terminal state at time, i.e., . The
update equations for (now) filterare

(24)

At time , the VA uses the estimate to compute
the data likelihood corresponding to signal state. Fig. 3 shows
the structure of the PSP algorithms.

D. PSP HMP Filter Model

In this case, we have a bank of HMP filters sim-
ilar to Section III-B, each associated with a survivor
path, as in Section III-C. The survivour path HMP
one-step prediction unnormalized APPs with

Pr ,
and filter APPs (defined analogously) associated with
signal state are updated according to

(25)

for . The amplitude state level associated with
the maximizing index of is used to determine the
VA likelihood for signal state at time .

E. Computational Complexity

In this section, we compare the computational requirements
for the optimal, per-survivor Kalman and HMP filter techniques
and the decision-directed predictor methods. For the optimal
method, there is a total of states. Using a general
amplitude process Markov chain model, where the transition
matrix is not sparse, each update (12) thus requires

operations. For the sparse amplitude process
model considered above, this reduces to opera-
tions per sample, i.e., times the complexity of a standard
VA. The PSP method is comprised of a VA and scalar
Kalman filters, thus requiring operations per sample.
The decision-directed Kalman predictor technique also requires

operations, which is considerably fewer that the PSP

3We assume here that a unique optimal predecessor exists.

Fig. 3. Structure of the PSP methods.

technique, since only one Kalman filter is required. In the case
of the decision-directed and PSP HMP methods, there are, in
addition to the VA, respectively, one and HMP filters,
each requiring operations for the general amplitude
model or for the sparse amplitude process model in
Section II. It is interesting to note that the optimal technique
has approximately the same computational requirements as the
PSP HMP method.

IV. GENERAL SIGNAL MODEL

In this section, we describe a signal model that generalizes
the application considered in Section II.

Consider two finite-state Markov chains . Without
loss of generality, the state space of can be taken to be the

unit vectors . The Markov chains
are supposedly time homogeneous and defined on the proba-
bility space . Let denote the transi-
tion probability matrices for . Then, for

(26)

where and are (vector) martingale increments. That
is, if

(27)

then

(28)

The Markov chains are not observed directly.
Rather, there is an observation process of the
following form:4

(29)

4Here,
 denotes Kronecker product.
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We suppose the processis scalar valued, although our dis-
cussion extends immediately to the case whenis vector valued.
Here, the , are a sequence of independent

random variables. The functionsand are repre-
sented by their possible values that correspond to the

values of . Let , and
similarly define . We will suppose all the values of are
positive.

V. REFERENCEPROBABILITY METHOD

The above dynamics for and describe the model
under a “real world” probability . Suppose we have a dif-
ferent “reference” probability on such that under ,

and still have the same dynamics, that is, under,
(26) holds, where and are now martingales.
However, under , is itself a sequence of inde-
pendent random variables. We know (see [1]) that the
“real world” probability can be constructed from in terms
of a martingale density process

(30)

Let

(31)
and set . Write .
If we define the probability by setting

(32)

then under , and remain Markov chains with the re-
quired transitions matrices and , but the process

, is a sequence of
independent random variables. Call them , .
Then, under , (29) holds as required. Thus, and are,
respectively, the joint probability density functions of the pro-
cesses , , and under the original and reference proba-
bility models. The reference probability method has been shown
[3] to greatly facilitate the derivation of both state and param-
eter estimation procedures associated with dynamic models. In
general, estimation arises under, according to the Bayes’ rule

(33)

for appropriately measurable functions, where and de-
note expectation under and , respectively. Often, we work
only with the numerator in (33), which is referred to as anun-
normalizedquantity; the correct value is obtained by appropriate
normalization [3].

VI. STATE ESTIMATION IN THE GENERAL SETTING

Given the observations , we wish to obtain re-
cursive estimates for and or, equivalently,

. If one was interested in minimum variance estimation of
the underlying Markov chain states, one would proceed to deter-
mine a recursive update for the joint unnormalizeda posteriori
probabilities

(34)

where expectation is over both and . In the usual
Viterbi algorithm (dynamic programming), the expectation of
(34) is replaced by a maximization over all possible sample
paths of , . However, the
new mixed estimation procedure proposed in this paper con-
sists of using thea posterioriprobability estimates for the
process, coupled with a Viterbi maximum likelihood sequence
estimation criterion for . Formally, this means considering
quantities of the form

(35)

i.e., we replace the conditional expectation over
by maximization over the same quantities. We have the

following recursion:

(36)

As the factor is common to all terms, it may be dis-
carded, if so desired. Initialization at is given by

(37)

where and are the initial probability distributions for
and , respectively. A proof of (36) is given in Ap-

pendix B. Backtracking to extract the estimates of and
is as described in (14)–(16).

VII. SIMULATIONS

In this section, we present results of simulation experiments
used to compare six demodulators applied to the fading con-
volutionally coded signal described above. The performance of
the optimal scheme as defined by the mixed cost function (11),
the Kalman and HMP PSP techniques, the Kalman and HMP
predictor-based methods, and the usual MLSE with the ampli-
tude process known to the receiver were compared. The Kalman
and HMM predictor methods used , which we argue
later is the best value to choose, at least in the Kalman case. In
our experiments, we did not observe any statistically significant
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Fig. 4. BER performance for filter(� = � = 0:05).

Fig. 5. BER performance for filter(� = � = 0:2).

difference between the performance of the Kalman filter-based
methods and the corresponding HMP-based methods, i.e., the
Kalman predictor method performed similarly to the HMP pre-
dictor method and similarly for the PSP techniques. This is de-
spite the fact that the Kalman-based algorithms use only the
second-order statistics of the gain process, whereas the HMP
techniques utilize the true model. Evidently, there appears little
difference in terms of the resulting bit error rates (BERs) for the
examples we consider.

The resulting BERs are shown in Fig. 4. Here,
, , and . Fig. 5 repeats, for , a

more rapidly varying amplitude case. Here, the average SNR is
defined by

SNR (38)

It is seen that in both cases, the predictor-based methods per-
form the worst, with the PSP methods yielding performance in

Fig. 6. Effect of parameter� on the Kalman predictor method.

Fig. 7. Effect of smoothing lag in MLSE.

between that of the predictor methods and the optimal method.
The optimal technique performs quite close to the case where
the receiver knows the fading process exactly. The performance
gain in using the optimal filter appears to increase for higher
SNRs.

We also examined the error behavior of the Kalman predictor
method as a function of the parameter. Recall that

denotes the time lag (in samples) until we make a decision
about the encoder state. This value is used to predict the ampli-
tude process (gain) value forward from the Kalman filter to the
Viterbi decoder. Fig. 6 shows rather interesting behavior in that
the smallest possible resulted in the best overall BER
performance. Here, , and the SNR was 29 dB.
Clearly, larger smoothing lags, which one would normally ex-
pect to result in better state estimates (for the encoder process),
are not resulting in better performance of the overall scheme.

In order to investigate this behavior, we examined the per-
formance of fixed-lag smoothing when the amplitude process
is exactly known at the receiver. Fig. 7 shows the reduction in
the bit error probability as is increased. This is the expected
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type of behavior [5], with error probability reducing rapidly for
a small lag but approaching a constant value as . Here,

, and SNR 25.9 dB. Thus, we can conclude
that the behavior evident in Fig. 6 is due to the poor prediction
performance of the Kalman method. This is to be expected since
it is not generally possible to accurately predict a discrete state
HMM. We conclude that some sort of joint estimation proce-
dure (either explicit as in our optimal approach or implicit as in
PSP) is really necessary to obtain reasonable performance with
the model we have assumed for the fading channel amplitude
process.

VIII. C ONCLUSION

In this paper, we have derived the optimal filter for a hidden
Markov process consisting of the product of two statistically in-
dependent underlying Markov chains observed in additive white
Gaussian noise, which may have state dependent moments. We
apply a mixed estimation criterion in order to formulate the
filter. We seek themaximum likelihood sequencecorresponding
to one of the underlying chains anda posterioriprobabilities
(APP’s) for the other underlying chain. This mixed criterion
is motivated by a particular application, namely, the demodu-
lation of a rapidly fading convolutionally coded communica-
tions signal. The signal is decoded using maximum likelihood
sequence estimation (MLSE). Estimation of the fading process
is performed according to the maximuma posterioriprobability
criterion, requiring computation of APPs. The performance of
the optimal filter for this example is compared with a more con-
ventional approach consisting of decoupled estimators for each
underlying chain. These estimators are standard MLSE imple-
mented via the Viterbi algorithm for the convolutionally coded
part and a decision-directed predictor for the gain process. The
case where the gain process is known to the receiver is used
as a benchmark. We also compare performance with a per-sur-
vivor processing (PSP) technique that has computational com-
plexity less than the optimal method but greater than the simple
prediction technique. In both the prediction and PSP methods,
we examined both Kalman and hidden Markov process-based
approaches and found no significant difference in performance
between them in each case. The PSP approach has been ad-
dressed in [8], which also considers frequency-selective fading.
Simulations show that the predictor methods perform worst, but
the optimal filter illustrates minimal performance degradation,
as compared with the known amplitude case. The PSP tech-
nique offers performance between that of the simple prediction
method and the optimal method. In this paper, we have not ad-
dressed the issue of estimating the fading process model param-
eters. This problem is being addressed in current work [6]. We
have also not addressed frequency-selective fading here but in-
dicate that the same idea as presented here could be applied to
such cases, albeit with a substantial increase in computational
requirements.

APPENDIX A
STATISTICAL PROPERTIES OF THEAMPLITUDE PROCESS

In this Appendix, we show how to parameterize the AR(1)
amplitude process model (17) so that its second-order statistics

(mean and autocorrelation) match that of the amplitude process
. Consider the AR(1) process in (17). The first two

moments of are (as )

(39)

The autocorrelation function is given by

(40)

The stationary probabilities for the birth–death process
can be easily determined via the usual formula, and thus,

the first- and second-order moments can be determined. The
probabilities are given by

(41)

where is chosen to normalize the sum of all the to unity.
Thus, the first two moments are (as )

(42)

The autocorrelation function of the fading process is approx-
imately given by

(43)

where is the second largest magnitude eigenvalue of the state
transition matrix .5 Thus, by moment matching, the param-
eters , , and can be determined. The second-order statis-
tical properties of and will then be approximately
the same. More details on the approximation of Markov chains
and HMMs by a linear Gauss–Markov processes is given in [11].

Relationship to Standard Fading Models

In a typical mobile scenario, the channel gain is modeled as
the product of three terms [1]. The first represents path loss,
which we regard as constant in this study. The second models
so-called shadow fading, which involves variations on the order
of tens of wavelengths at the propagation frequency. This gain
is modeled as a -normal random variable. Traditionally, in-
dependent -normal variables are chosen; however, temporal
correlations can be introduced as in [10] by filtering these vari-
ables with a first-order lowpass filter. The third term models
multipath fading. We consider here only flat (nonfrequency-se-

5This assumes that the second largest magnitude eigenvalue is distinct, and
sufficiently larger than the third largest in magnitude. The result can be gener-
alized.
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lective) fading. This gain is modeled as a Ricean random vari-
able. Again, filtering can be employed to model temporal cor-
relations in the gain.

Let and denote, respectively, an iid -normal process
and an iid Ricean process with the same second-order statistics
that are mutually independent. Suppose these sequences are fil-
tered with single pole filters (as suggested in [10]), resulting in

(44)

where are the filter poles. The processes and
will have complicated probability distributions due to the

filtering; however, they have autocorrelation functions of the
form

(45)

where and are constants. By the independence of
and , we have that the autocorrelation function of theproduct

is

(46)

i.e., the fading process is a first-order Markov process, albeit
one with a complicated probability distribution form. We ap-
proximate the process by discretizing the amplitude range and
applying the procedure above resulting in a HMM. This is equiv-
alent to approximating the above density by step functions, and
in principle, such an approximation may be made arbitrarily ac-
curate by taking the number of states of the Markov process to
be sufficiently large.

APPENDIX B
PROOF OFRECUSION FOR THEOPTIMAL FILTER

In this Appendix, we provide a proof for the recursion (36).
Theorem: The “pseudo-probabilities” of (35) are computed

recursively via

(47)
Proof: Consider

(48)

as required.
The steps in the proof rely use of the martingale property of

and (lines 1–2) together with the independence of
under (line 3). The remainder consists of algebraic manipu-
lations that rely on the unit basis vectors and .
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