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We consider the thermally driven motion of a microcantilever in a fluid environment near a wall, a
configuration characteristic of the atomic force microscope. A theoretical model is presented which
accounts for hydrodynamic interactions between the cantilever and wall over a wide range of frequencies
and which exploits the fluctuation-dissipation theorem to capture the Brownian dynamics of the coupled
fluid-cantilever system. Model predictions are tested against experimental thermal spectra for a cantilever
in air and water. The model shows how, in a liquid environment, the effects of non-�-correlated Brownian
forcing appear in the power spectrum, particularly at low frequencies. The model also predicts accurately
changes in the spectrum in liquid arising through hydrodynamic wall effects, which we show are strongly
mediated by the angle at which the cantilever is tilted relative to the wall.
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Brownian effects in fluids have long been a source of
noise contamination in atomic force microscope (AFM)
measurements, but techniques have evolved which exploit
thermal fluctuations of cantilevers to provide low-
amplitude sample measurements [1] and to enable calibra-
tion of the cantilever’s spring constant [2]. AFM experi-
ments often involve functionalization of the cantilever tip
with biological molecules. These molecules require a liq-
uid environment for their native state to be maintained,
making it necessary to calibrate the AFM cantilever in
liquid. The AFM and other biosensors therefore demand
a good understanding of the Brownian dynamics of oscil-
lating microcantilevers in fluid environments.

To address this, Sader [3] extended the analysis of Butt
[4], where 1

2kBT of thermal energy (kB is Boltzmann’s
constant and T temperature) was allocated to each
in vacuo mode of cantilever oscillation, by incorporating
fluid damping in the classical beam equations. Sader’s
analysis requires that the Brownian forcing is � correlated
(i.e., has no memory); however, this is valid only if the fluid
loading is quasisteady [5,6]. Since an AFM cantilever
oscillates in the kHz frequency range, the flows it generates
can possess non-negligible unsteady inertia, and the as-
sumption of equipartition of energy among cantilever
modes is not justified.

To overcome this difficulty, we follow here an alterna-
tive method suggested by Paul and Cross [7] whereby the
fluctuation-dissipation theorem is used to predict thermal
fluctuations of a cantilever directly from deterministic
simulations of the cantilever-fluid dynamics. Our model
for the hydrodynamics takes full account of the presence of
a nearby wall [8,9], and demonstrates the striking sensi-
tivity of spectra to the angle at which the cantilever is tilted
relative to the wall (a configuration difficult to model using
Sader’s method). We present new experimental results
against which we test our analysis.
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We consider a rectangular cantilever of length L, width
D � �L (�L), and thickness B (�D), at a height H�x�
above a plane horizontal wall, where x measures distance
along the long axis of the cantilever from its clamped end.
The cantilever is tilted at a small angle � to the horizontal,
such that H � H�L� is the minimum height from the wall.
The cantilever has Young’s modulus E, moment of inertia
I, density �c, and mass per unit length mc � �cBD. It is
immersed in fluid of viscosity � and density �. Oscillations
of the cantilever take place in a vertical plane and are
assumed to be of amplitude comparable to the thermal

scale A �
������������������������
kBT L3=EI

q
. Assuming A� B, we can model

the motion using a linear Euler-Bernoulli beam equation
and the fluid flow with the linearized unsteady Stokes
equations. At its unclamped end, the beam is assumed to
be subject to a point torque �kBT L=A�T�t� at time t.

Writing x � L� and frequency !� � !0!, where !0 ���������������������
EI=mcL4

p
, transverse displacements Aw��; t� in the tem-

poral Fourier domain Aŵ��;!� satisfy the dimensionless
beam equation [3]

ŵ ���� � �4ŵ �0 � � � 1� (1)

(ignoring stochastic forcing for the present), subject to
ŵ � ŵ� � 0 at � � 0 and ŵ�� � T̂�!�, ŵ��� � 0 at
� � 1. Here

� � 	!2 
 i!M����;H=L��1=4; (2)

� � �M�1=2!1=2 � D�!�=��1=2; (3)

whereM � �=!0L
2 relates fluid loading to bending forces

and � � L2�=mc is the fluid/beam density ratio. The !2

term in (2) represents beam inertia and the � term is the
hydrodynamic drag per unit length, accounting both for
viscous and unsteady inertial forces in the fluid. We assume
1-1 © 2006 The American Physical Society
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that the induced flow is locally two-dimensional, so that �
depends only on the local distance between the cantilever
and wall H�x�=L and the frequency parameter � [see (3)],
which relates the cantilever width to the thickness of
viscous boundary (or Stokes) layers. The validity of the
locally two-dimensional assumption is justified (for an
oscillating rigid cylinder) when two independent screening
effects are effective, one arising at high frequencies (for
�� �) and the other at low cantilever-wall separation and
low tilt angle (for H � L, �� 1) [9]; however, three-
dimensional flows are significant for high-order modes of a
flexible cantilever [10]. The drag � is determined using
boundary-integral computations for a rectangular cylinder
oscillating normally to a wall [8] (see also Ref. [11]); thus,
in general (for � � 0), � varies along the length of the
cantilever. For a cantilever far from a wall, Stokes’ ex-
pression for the drag on an oscillating circular cylinder of
width D,

�S � i	�2f1
 4K1�
��
i
p
��=	

��
i
p
�K0�

��
i
p
���g; (4)

where K0 and K1 are modified Bessel functions, provides
an effective approximation [3]. We assume no slip at the
cantilever surface, a reasonable assumption in most liquid
environments [8].

We characterize the cantilever’s motion by the angle of
deflection at the tip, Ŵ��!� � ŵ��1; !�, under various
torques. Setting T�t� � ��t� for example, so that ŵ�� � 1

at � � 1, Ŵ� gives the system’s dynamic susceptibility

�!� � ŵ��1; !�. In general, we determine this numeri-
cally, by solving the damped cantilever dynamics (1) plus
boundary conditions using a finite difference method,
where � is computed numerically at each discretization
point [8]. For nontilted cantilevers with H � L, it is
straightforward to show that


�!� �
cos� sinh�
 sin� cosh�
��1
 cos� cosh��

; (5)

where � is given by (2) and � by �S . The response to a
general torque T�t� is then Ŵ��!� � 
�!�T̂�!�.

We use the fluctuation-dissipation theorem to obtain the
thermal power spectrum of the cantilever tip’s angle of
deflection under Brownian forcing, following Ref. [7].
Equilibrium fluctuations of the cantilever are probed by
placing the cantilever into a nonequilibrium state through
application of a small torque to its tip, so that T�t� � T0 for
t < 0 and T�t� � 0 for t > 0, so that

T̂�!� � T0		��!� 
 i=!�: (6)

As the cantilever tip decays back to equilibrium, the aver-
age value for its tip deflection hW��t�ineq satisfies [12]

hW��t�ineq � T0C�t�; (7)

where C�t� � hW��t�W��0�ieq measures the correlation be-
tween initial fluctuations of the tip deflection about the
05080
equilibrium location and those at time t > 0. The connec-
tion between the laws governing the microscopic and
macroscopic dates back to the regression hypothesis of
Onsager [13], which states that the regression of sponta-
neous microscopic fluctuations in an equilibrium system
are governed by the same laws that describe the relaxation
of macroscopic nonequilibrium disturbances. These mac-
roscopic disturbances are represented simply by the aver-
aged microscopic state hW��t�ineq. This is determined
knowing the susceptibility of the system using

hŴ��!�ineq � 
�!�T̂�!� (8)

with T̂ given by (6). Combining (7) and (8) gives

C�t� �
1

2	T0

Z 1
�1


�!�T̂�!�ei!td!

�
�1

	
�
Z 1
�1


�!�
!

sin!td!: (9)

In computing C�t� when � � 0 and H � L by contour
integration [using (2)–(5)], there are contributions from
poles ! � !k in Im�!�> 0 satisfying 1
 cos� cosh� �
0, which capture the behavior of the in vacuo modes
damped by the presence of the fluid. Because � depends
on

����
!
p

via � [see (2) and (3)], 
�!� also has a branch cut
along Im�!�> 0 which captures the continuous spectrum
of disturbances that leads to the algebraic decay of C�t� as
t! 1, associated with the fact that the Brownian forcing
is not � correlated.

The power spectrum of the tip’s deflection angle
[P��!�� � �A2=!0�P�!�] is found in dimensionless form
by taking the Fourier cosine transform of (9),

P�!� � 2
Z 1

0
C�t� cos!tdt

� �
2

	

Z 1
�1


�!0�

!02 �!2 d!
0

� 2
=	
�!��

!
(10)

by the residue theorem (see also Ref. [14]). The thermal
spectrum is therefore given in terms of the susceptibility 
,
which can be computed deterministically. When � � �S
[see (4)], it is instructive to decompose (10) into contribu-
tions from the discrete and continuous components of the
autocorrelation function. The residue theorem yields

P�!� �
Z 1

0

�Im	
�i
���
x
p
��

	�x2 
!2�
dx� 2i

X1
k�1

�k=��k�
0
k�

!2
k �!

2 ; (11)

�k �
cos�k sinh�k 
 sin�k cosh�k
cos�k sinh�k � sin�k cosh�k

; (12)

�0k �
�k

2!k

�
K2

0 
 2M��1
k K1K0 
MK2

1

K2
0 
 4M��1

k K0K1 
MK
2
0

�
; (13)
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where ��!� evaluated near !k is written � � �k 

�0k�!�!k� 
 
 
 
 , and �k �

��
i
p
�k is evaluated at ! �

!k, as are K0��k�, K1��k� in (13). The branch cut, which
has its origins in the unsteady diffusion of vorticity from
the cantilever surface into the fluid, produces an integral
contribution to the power spectrum in (11).

Experiments were conducted using a molecular force
probe (MFP-1D) (Asylum Research, Santa Barbara, CA)
and a rectangular silicon nitride cantilever (MLCT micro-
lever, cantilever B, Veeco) coated with gold on the back
surface and with a pyramidal tip, about 2 �m high, on the
opposite surface. The same cantilever was used to collect
thermal spectra in air and in water. The water used was
Ultrapure, with a resistance of 18:2 M � cm, and was
passed through a 0:2 �m filter prior to use. Freshly cleaved
mica was used as the substrate and all measurements -
were conducted at room temperature. High-resolution
measurements of the cantilever’s dimensions were ob-
tained using scanning-electron microscopy which showed
that �L;D; B� � �232:4; 20:11; 0:573� �m. Raw deflection
data, representing the thermal noise of the cantilever, were
collected over 10 s and processed using Asylum Research
software (IGOR Pro, Wavemetrics) to generate thermal
power spectra. We present experimental spectra (square-
rooted) obtained in air (Fig. 1) and water when far from and
nearby the solid substrate (Figs. 2 and 3 respectively).

By gold-coating the cantilever to improve its reflectivity,
we altered its material properties, making it necessary to
determine the effective density �c by fitting theoreti-
cal predictions to the thermal spectrum; this was done in
air, where the resonant peaks are well defined. Varying �c
in the theoretical model changes the height-to-width ratio
(quality factor) of the first resonant peak; �c � 5:3 g cm�3

gave the best fit (in approximate agreement with similar
FIG. 1. Thermal power spectrum of the cantilever tip’s angle
of deflection, measured in air far from the substrate, showing
experiment (gray, solid line), predictions using Sader’s method
[3] (black, dashed line) and Eqs. (4), (5), and (10) (black, solid
line).
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experiments by Chon et al. [15]), both for Sader’s model
[3] and using (10). We then normalized the theoretical
spectra so that the amplitude of the first resonant peak in
air matched its experimental value. These values for the
density and normalization constant were then used for
predicting spectra in water (Figs. 2 and 3). Neither theo-
retical model accounts for 1=!� noise at low frequencies
(evident in Fig. 1) due to mechanical vibrations from the
apparatus, or for low-level white noise from the apparatus
electronics giving a nonzero spectral baseline. Neither
model captures the second harmonic exactly (Fig. 1),
with discrepancies between theory and experiment possi-
bly arising from a number of different factors, including
three-dimensional flows along the cantilever’s axis [10],
hydrodynamic interactions with other cantilevers attached
to the same support and torsional motion [16].

In water (Fig. 2) both theoretical models work well in
capturing the shift in location, amplitude, and sharpness of
the resonant peaks as the density of the surrounding me-
dium is increased. However, the fluctuation-dissipation
approach (10) offers noticeable improvements over
Sader’s method. At low frequencies, in particular (see the
inset), the two predictions diverge significantly. This can
be attributed in part to the neglect by Sader’s method of
memory effects in the fluid motion: neglecting the con-
tinuous component of the power spectrum [the integral in
(11), representing Brownian forcing that is not � corre-
lated], leads to a noticeable overestimate of the height of
the spectrum for !� � 2 kHz (Fig. 2, inset). We attribute
the divergence between the experimental spectrum and the
fluctuation-dissipation prediction below 1 KHz to 1=!�

noise.
FIG. 2. Thermal power spectrum, measured in water far from
the substrate, showing experiment (gray, solid line), predictions
using Sader’s method [3] (black, dashed line) and Eqs. (4), (5),
and (10) (black, solid line). Inset: a close-up of the first har-
monic, where, in addition, the dash-dotted line gives the power
spectrum computed without the inclusion of the branch-cut
integral in (11).
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FIG. 3. Thermal power spectrum in water near a wall.
Experimental data for a cantilever tilted at 	=12 to the wall
are shown at minimum separation H � 70 �m (solid black
line, higher peak) and H � 8:87 �m (solid gray line, lower
peak). Theoretical predictions using (10) are shown for H �
70 �m (solid line); H � 8:87 �m, � � 	=12 (solid line with
dots); H � 8:87 �m, � � 0 (dash-dotted line).
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Figure 3 shows how, when the cantilever is moved close
to the substrate, wall effects produce a shift in the spectrum
which is captured well by (10). The thermal spectrum
obtained experimentally, at a minimum separation distance
H � 8:87 �m, has a lower amplitude, resonant fre-
quency, and quality factor than at H � 70 �m, where
wall effects are weaker. These changes are captured well
by (10) when the hydrodynamic drag is computed using a
two-dimensional boundary-element method for a rectan-
gular cantilever near a wall [8], accounting for tilt of � �
	=12 through varying the ratio H�x�=L in (2). If tilt is
ignored, the hydrodynamic loading on the cantilever is
artificially high and the predicted spectrum is substantially
altered, no longer displaying a well defined peak (Fig. 3,
� � 0).

In conclusion, we have demonstrated the effectiveness
of an approach exploiting the fluctuation-dissipation theo-
rem [7] for describing the Brownian dynamics of an AFM
cantilever and we have highlighted differences with the
popular model due to Sader [3]. In gases, both approaches
give near-identical spectra (Fig. 1), although each over-
predicts the amplitude of the second harmonic; this
warrants further investigation. In water, however, the
05080
fluctuation-dissipation approach gives a more accurate
prediction of the shape of the first and second resonant
peaks, and the effects of the long-time tail in the autocor-
relation appears in the power spectrum at low frequencies.
Furthermore, in the presence of hydrodynamic wall effects,
the fluctuation-dissipation approach, supplemented with
accurate predictions of drag that vary along the length of
the tilted cantilever [8], captures accurately the shift in
amplitude and resonant frequency observed in the experi-
mental data. These results have important consequences
for experimentalists wishing to extract properties of the
cantilever and the sample through parameter fitting using
thermal methods [1].
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