ROBUST INTERFERENCE SUPPRESSION FOR MULTICHANNEL SAR
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ABSTRACT 2. SYSTEM MODELSAND GEOMETRY

Consider a SAR travelling along the y-axis, imaging a
Forming a Synthetic Aperture Radar (SAR) image while patch in the slant-plane € (X, — X0, Xc 4+ X0,y €
suppressing a broadband jammer can potentially destroy|_y; y;]. The radar transmits a broadband chirp and the
large regions of the image. In addition to this, multipath recejved signal is base-banded and sampled for each of
reflections from the ground, known as hot-clutter or ter- ihe & channels of a linear antenna array with equi-spaced

terference component to the image. The goal of interfer- tne ,th channel is given by,

ence suppression for SAR is to successfully suppress these .
interferences while not significantly effecting the image Sn(tyu,2,y) = at) exp[—jwern(@,y — u)+

quality by blurring, reducing the resolution or raising the jo(t —mn(z,y — u))2] Q)
side-lobe level. Using multiple antennas on a SAR pro- i o ! .
vides spatial degrees of freedom and allows for adaptive "Where the chirp pulse duratiah is defined by(#) which
beamforming to suppress the jammer signals. This paper'> unity for.O sts T, and zero otherW|se.. The carrier
presents two constrained spatial techniques which reducdredquency is given by (rad/s) and the chirp rate by

the interference level without significantly effecting the (rad/s). The variableg, ) represent (fast-time) samples
image quality. within a pulse and the SAR platform position (slow-time)

respectively. If a signal is transmitted from the centre of
the linear array when the SAR platform is«atthen the
relative delay for the:!” channel is given by the sum of

1. INTRODUCTION temporal and spatial delays,

T,y = u) = < [R(@,y = u = dn) + R(z,y — u)
Typical SAR imaging is performed with a large offset range
and small field of view. Any jammer signal incident out- X .
side the main-beam field of view can easily be suppressec?fsét from the array phase centre with antenna spacing
with spatial beamforming alone. However, if the jammer dgandn € [-(N-1)/2,(N —1)/2] .for N (qdd) an-
signal is incident in the main-beam, the range profile of tenna elements. As the SAR bandwidfh(Hz) is much
a target can be nulled and consequent image formations_maller than the carrier _frequenayc (rad/s), th_e SAR
will lead to a blurry final image. In addition to this, non- Signal model can be splitinto temporal and spatial compo-
stationary interference from the ‘hot-clutter will cause ~ N€NtS. The spatial component of the total delay is given by
training statistics to change from pulse to pulse and tradi- t€ time difference between the centre andstHechan-
tional slow-time Space Time Adaptive Processing (STAP) nel._ I_t can be ap_prommated as a function of just the SAR
techniques [1], will not be effective. Therefore adapting positionw or equivalently, an angular offsétu).
within each pulse is required by exploiting spatial beam- Fulu) = 1 (R (Xe,u +dn) — R (Xe,u)]
forming or combining spatial/fast-time beamforming. ’ c ’ ’

whereR(-) is the radial distancel,, = no is the antenna

. . . dn .
For the similar problem of detecting moving targets ~ —sin (arctan(u/Xc)) .
in airborne radar, a number of space/fast-time approaches o(w)

have been suggested, [2]. The secondary problem known ) ) )
as ‘coherency modulation’ has also been been studied inThe spatial steering vector can then be written as
[3]. To begin addressing this problem for SAR, this pa- sn (1) = exp [—jweTn (u)] 2
per is restricted to spatial only adaption and presents two
‘robust’ methods which restore the final image quality by
using either derivative or amplitude constraints. As exper 3,(t,u,z,y) ~ a(t) exp [—jwer (2, y — u) +

imental data was not available, results are based on simu- ) 9

lations using a diffuse scattering model. jodt = 7(@,y = w))”| sn(u) (3)

and the corresponding SAR signal model as



The separation of temporal and spatial components is a
key point and implies that spatial adaptive filtering can
occur independent of fast-time and either before or after
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range processing if desired.
The total ground return for the SAR is the integral over
all scatterers with radar cross sectifx, y), .
Imaging
Area

/ e
Also, if the SAR is being jammed by an airborne plat- / \YL/
form, there will be an extra signal component required in ~ /

the data model to represent the direct-path and the grounc Y < (ka3 0) Yo
reflected path (hot-clutter},, (). These signals with the
addition of receiver noise(-), form the components seen
by the SAR!?

Hot-clutter Area

/]
Lo

n(tu) = / / Fy)in(tuz,y)dedy.  (4)
y xT

Fig. 2. Jammer Geometry

(5) If an absolute time variablé,= u/v, +t is defined as
the sum of slow-time and fast-time, then the output of the
The noise signal, () represents the receiver noise for n" receiver,z,(-), is the superposition of the direct path
each channel. It is modelled as white Gaussian noise withand the delayed reflectors for each patch,
zero mean and unity variance. Figure 1 shows the process-
ing chain from transmission of the chirp signal, formation
of the signale,, (¢, u), adaption, range processing and im-
age formation.

Zn(t,u) = yn(t,u) + zn(t,u) + vn(t, u).

K

Zn(t’ u) = Z ka(ff %n,k(ty u)) (6)

k=0

whereJ(-) is the jamming signal waveforn,, 1 (-) is the
Send out Radar pulse — bistatic delay e_m(bk is defi|_1ed as the relfitive mag_nitude

broadband chirp between the direct-path signal and the jammer signal re-

flected by thek!” scatterer. The zero index refers to the

l direct-path withhy = 1.

The power spectral density of the jammer signal has
a bandwidthB <« w,, centred at baseband. Although the
jammer bandwidth is greater than the SAR bandwidth, the
received signal is filtered within the receiver front-end to
match the SAR bandwidth. Realisations of the jammer
signal.J(-) can be created from the Inverse Fourier Trans-
form of this signal or autocorrelation,
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rj(7) = sinc(7 BT) @)

A physically based model for the multipath scattering is
presented by Beckman, [4] and used by [5]. It uses a flat-
v earth approximation and is referred to as a glistening sur-
‘ Range Processing ‘ face. Using this model, a surface roughness paraniéser
\ defines the scattering distribution between the SAR and an
v airborne jammer at heightsp andh; respectively, sep-
‘ Imaging Algorithm ‘ arated by a distanc@; in the ground plane. The scat-
terer positions are projected onto the slant plane to fit our
simulation model and rotated I8y according to the jam-
mer position. The coefficient;, = pBy for k > 1 are
formed with a scaling factop, relative to the direct-path
and a random magnitudey, determined from the scatter-
ing model.
The bistatic jammer model assumes therefatgot-clutter The degree of diffuseness from the hot-clutter will
patches within a given area. The po;ition and velocity _of greatly affect the final image quality. For example, a high
thek*" patch relative to the SAR and jammer platforms i fc_ will cause the hot-clutter reflections to be specular and
shown in Figure 2. it will appear spatially that only one jamming source is
INote: If there were moving targets in the scene, these would be Présent. However, whefi; is low, the diffuseness is large
additional components. and the hot-clutter will spread in angle, giving the appear-

‘ Adaptive Filtering ‘

Fig. 1. SAR Processing Diagram

2.1. Jammer model




ance of a number of different jammer sources incident onjs ¢;, R(u) is known as the sample matrix estimate with

the SAR.
For the analysis in this paper, a multichannel SAR
simulation has been implemented in MATLAB. The pa-

rameters chosen are summarised in Table 1 and a com-

ndB of diagonal loading,

L

R(uw) = = >zt u)z (t,u) + ply € VN (9)

| —

parison between a synthetic SAR ‘'S’ image and the same =1

image with hot-clutter added is shown in Figure 3. The

jammer has been applied in the mainbeam and the dif-

It is assumed that techniques as described in [1] can be
used to get a interference plus noise only estimate of the

fuse hot-clutter scatterers are both inside and outside thecovariance matrix and hence the spatial veetoris ob-

mainbeam. For image formation, a multichannel Spatial
Matched Filter / Interpolation algorithm is used [6].

Table 1. Simulation Parameters

Par ameters Value

Carrier Frequencyf.) / Bandwidth(B) 10/0.3 GHz
Number of Element$N) / Spacing(d) 5/4m
Number of Pulse$M ) / Range BingL) 200/ 150
Range(A x ) / Azimuth Resolution(Ay) 1/5m
Range CentefX.) / Targ. Power(o}) 10 km /20 dB
SAR Height(hp) / Jammer Heighth.r) 3/3km
Surface Roughnegd() / Jam. Offse{zs) | 0.1/50 km
Velocity - SAR (vp) / Jammer(v ) 200/100 m/s
Direct Path Jam. - Powéb2)/ Angle (6;) | 70 dB /0 deg
No. HC Scats(K) / Relative HC powefp) | 200/-10 dB

3. CONSTRAINED FILTERING

To focus an array of receivers, a spatial steering vector is
required to determine the response for each focussing po

sition. If we form vectors from théV channels of the re-
ceived signak,, (¢, u) and the spatial steering vectoy(u)
from Equation 2,

. (t, u)]TECNX1

.,sN(u)]Te cVxl

then the focussed or beamformed conventional output is

given by,

(8)

y(t,u) = sH(u)x(t7 u).

To use an adaptive algorithm, the steering vector is re-

placed with a weight vectow (u) designed to minimise

the mean square value of the weighted observation subject

to the constrainC¥ (u)w(u) = d. C(u) is the constraint
matrix andd is a column matrix of constraining values.
The output power of the general optimisation problem can
be formally stated as

min
w(u)

where the output power can be written in terms of the co-
variance matrixg{|w (u)x(t,u)|?} = w (v)R(u)w(u).
The covariance matrix is typically estimated by averaging
overL < L range bins. If the'”" fast time sample sample

E{jw (w)x(t,u)*} subjectto C (u)w(u) =d

tained from signal free data. The diagonal loading acts
to improve the robustness by smoothing the adaption via
compression of the eigenvalues of the covariance matrix
[7]. The constrained optimisation problem is solved using
Lagrange multipliers to find the weight vector [8],

w(u) =

R (u)C(u) [CF (u)Rfl(u)C(u)] 4 (10)

4. PERFORMANCE MEASURES

The adaptive performance is measured by the amount of
interference energy remaining after cancellation. If
yideal(t, u) IS the output signal with no interference present,
then the Residual Interference to Noise Ratio (RINR) is
given by,

2
RINR(t,u) = ly(t, )|

 |Yideallt, u) |2 (1)

For comparisons in this paper, the RINR is measured di-
rectly after adaption and is averaged over all the range-
bins and pulses.

A second measure of performance is the Signal Dis-
tortion Ratio (SDR) post image formation. Le(x ¢, )
denote the adapted images for pixgls= 1...F,g =
1...G. Correspondingly, leD(z,y,) denote the ideal
image with no jammer added. The SDR is then defined
as

Zf,g ‘D(xf7yg)‘2

SDR =
Z_ﬂg ‘Y(xf’y(]) - D(mfqu)P

12)

As the final image is the key result, it is the SDR which is
the most appropriate comparison for this work.

5. SSIMULATED RESULTS

The most common use of the weight vector in Equation
10 is to minimise the beamformer variance, also called
the Minimum Variance Distortionless Response (MVDR).
This involves constraining the look direction to be unity
by substitutingC(u) = s(u) andd = 1 into Equation

10. This technique provides good interference cancella-
tion with sharp nulls at each interference direction. Un-
fortunately, as the hot-clutter scatterers change frorsgoul
to pulse, so does the interference direction for each corre-
sponding patch. As range profiles are built up with each
pulse, coherent modulations are formed over the entire



processing interval. Then after image formation, the Sig-

Ideal Image Jammed Image First Order Image

nal Distortion Rate (SDR) of the MVDR adaptionends up [ = e oy
being no better than the conventional beamformer! These '+ o1 | 1IN
secondary effects have been studied previously for target” *#l#£= =% .
detection in airborne radar [3] and require modifications _'!'.'"'-' ==
to the single constraint optimisation. ; f!gga. g

Improved ‘robust’ adaption is therefore required and | T 1
can be implemented by using extra constraints in the we|gh_ i A
vector formulation [8]. The goal of these techniques is to + &% SRR

reduce potential target signal suppression and hence im-
prove the final SDR. The first of these methods fixes a
number of amplitudes around the steering direction. A Fig.

3. ldeal SAR Image, Jammed Image, and Adapted

three point constraint is used in this example, with the am- Image using First order Derivative Constraints

plitude constraints defined as
C(u) = [s(u—d(u)),s(w), s(u+d(u))]"

The optimal choice ofi(u) will depend on the level of
target signal suppression and its effect on the SDR. Also
the contribution of the diagonal loading will act to smooth
any holes that form from the amplitude constraint. Figure
4 shows the variation of(u) from O to 15 degrees with

w = 25dB of diagonal loading and = 5N averages for
the sample matrix estimate. Based on the SDR, the bes
choice ofs(u) gives 6.9dB at 10 degrees. At this point the
RINR is also at a minimum of 5dB.

A second method to reduce potential target signal sup-
pression requires first and/or second order derivatives to
be zero in the steering direction. The form of the deriva-
tives is based on differentiating the steering vector ind&=qu
tion 2.

=,1,17

RINR (dB)

Fors) = su(w) (ke cos 0(u)].
Psnlu) _ ; Oon ) oos
P = jdnke [Sn(u) sin O(u) — 36(w) cos O(u)

[1] J. Ward,

The derivative constraints can then be written as,

ds(u) 8%s(u) r (2]

C(u) = {s(u), ETIO0R BQQ(U)} : d=][1,0,0]"
The form of the first order only constraint doesn't include
the third term in eithe€(v) ord. Results in Figure 4 show
that the first order constraint yields the best SDR at 6.5dB
and an RINR of 5.7dB. The second order constraint per-
forms worse than the MVDR constraint as it reduces the
interference as well as the target signal suppression. Fig
ure 3 shows a comparison between the synthetic SAR im-
age with no jamming, jamming and the recovered image
using first-order derivative constraints. The image size is
(F,G) =169 x 150 pixels.

(3]

[4]

(5]

6
6. CONCLUSIONS R

The use of amplitude and/or derivative constraints with
spatial only adaption has improved the SDR of the MVDR
adaption by up to 2.6dB. This is also reflected in the RINR
which indicates that more of the interference has been can-[8]
celled. Further work using fast-time taps should provide
an improvement for this situation.

[7]

Fig.
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