

 Copyright © 2005 IEEE. Reprinted from
IEEE International High Level Design Validation and Test Workshop

(10th : 2005 : Napa Valley, California)

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

A Software Test Program Generator for Verifying
System-on-Chips

Adriel Cheng*+ Cheng-Chew Lim*
*School of Electrical and Electronic Engineering

The University of Adelaide
Adelaide, SA, Australia 5005

{acheng,cclim}@eleceng.adelaide.edu.au

Atanas Parashkevov+
+Freescale Semiconductor Australia
2 Second Avenue, Mawson Lakes

Adelaide, SA, Australia 5095
{Adriel.Cheng,Atanas.Parashkevov}@freescale.com

Abstract—Design verification is crucial for successful systems-
on-chips (SoCs). However, validating and proving the
correctness of SoCs is often a bottleneck in the design project.
This paper presents a novel technique to test the SoC at the
system level using software application based programs. Our
Software Application Level Verification Methodology
(SALVEM) employs test programs composed of dynamic
sequences of software code segments. The SALVEM system
implements a test generator to create these software test
programs automatically. Experiments were conducted
applying SALVEM tests to the Altera Nios SoC. A feedback
verification flow is also feasible in our SALVEM system.
SALVEM test runs are analyzed to direct the test generator
toward important SoC scenarios.

I. INTRODUCTION
System-on-chips (SoCs) are used in many different

devices such as consumer electronics and military
applications. Advances in semiconductor fabrication and
integrated circuit (IC) design techniques have enabled
systems traditionally implemented on a printed circuit board,
to be embedded completely on a single chip. A SoC
integrates many peripherals and processor cores into a
standalone system, packing many more transistors and
functions into the IC. The increased complexity in a SoC
poses many difficulties for design verification.

In a typical IC design project, verification and validation
may require as much as 70% of the project lifecycle [1].
Advances in IC manufacturing and design technology have
not been matched by similar progress in verification and test.
Different techniques must be employed to reduce the
verification bottleneck and ensure SoC correctness prior to
fabrication. In particular, functional tests must be efficiently
generated to test and certify the wide range of behaviors on a
SoC.

This paper discusses a technique to generate system tests
for verification of SoCs. The test generation technique is
encapsulated by our Software Application Level Verification
Methodology (SALVEM) previously introduced in [2].

SALVEM employs software application tests for design
verification of SoCs during the pre-silicon phase. Software
application testing has been employed for co-verification and
co-simulation [3,4]. However, these techniques are
restrictive. The size of a software application test may be too
large requiring fast hardware emulation platforms to ensure
they can be executed.

The SALVEM test generator addresses these limitations
by extracting and composing segments of software
applications known as ‘snippets’ into software tests. The
generated software tests are smaller in size, do not require
external hardware testers but still validate the SoC as typical
applications would.

The SALVEM concept originated from a number of
successful verification projects at Freescale Semiconductor
Australia. However, the method employed was ad-hoc and
application tests were created manually. The contribution of
this paper is an automated software test generator and a
feedback verification approach for SALVEM.

The reminder of the paper is as follows. Section II
discusses related work in test generation. Section III
summarizes the general SALVEM approach. Software test
snippets are introduced in Section IV. Section V examines
the test generator that composes software test programs using
snippets. Experiments demonstrating SALVEM’s test
generation capabilities are outlined in section VI. Section VII
concludes the paper and proposes future research directions.

II. RELATED WORK
The SALVEM verification paradigm is similar to co-

verification [3] and co-simulation [4]. These techniques
apply stimulus derived from complete software applications
to exercise the hardware design. However, co-verification
operates later in the design cycle when the hardware design
is more complete. Co-verification is often used for
confidence-testing to bring up the fabricated IC, whilst co-
simulation is more suited for software application
development and debug.

0-7803-9571-9/05/$20.00 ©2005 IEEE. 79

SALVEM is solely driven by verification of the hardware
design. The software test programs are generated for
simulation at the register-transfer-level (RTL) to verify
application behaviors and detect hardware design bugs. This
alleviates any need for expensive emulation platforms or
additional co-simulation software prototypes.

The SALVEM software test generation approach is
similar to assembler instructions test generation techniques
in [5,7,8,9,10]. Many sophisticated test generator platforms
have previously created tests targeting microprocessor cores
and memory modules only. In [5,6], the AVPGEN test
generator generates assembler test programs using constraint
solving and symbolic techniques. Similarly, Shen and
Abraham [8] developed the VERTIS test generator to
produce assembler instruction sequences for functional
verification and manufacturing testing. IBM has also
employed their Genesys-Pro generator to verify the
POWER5 processor [9].

Corno el at [10,11] developed their µGP test generator to
create many variants of assembler test programs to stress the
Intel i8051, DLX/pII and LEON P1754 microprocessors.
Their initial technique was to randomly select assembler
instructions from the relevant instruction set architecture
library and compose them into test programs. Each test
program would contain different sequences of instructions,
and each instruction would hold different operand values.
The test programs invoke different processor units such as
the ALU, cache, pipeline engine, etc to exercise different
operations that interact with each other.

The µGP ensures the generated instruction sequence is
always legal, accounting for various (non-) conditional
branch instructions. However, these test programs are not
suitable for SoCs as they overlook the other on-chip system
peripherals. Assembler test programs are myopically focused
on exercising and verifying the processor core exclusively.

SALVEM takes on a similar method to µGP but
generates software tests at a higher programming level to
exercise system-wide SoC functions. Software test programs
composed of code segments (snippets) invoke specific
operations and collectively exercise many device functions
throughout the SoC. Like assembler instructions and operand
values, different sequences of snippets and snippet
parameters will test the SoC processor and peripherals
differently.

However, snippets must be carefully developed to invoke
a range of SoC operations. Snippets must allow for
parameterization to initiate different device functions and
integrate seamlessly into snippet sequences. In contrast, an
assembler test generator can use the available instructions
from the processor instruction set architecture.

Various techniques to compose assembler instructions
have been proposed and implemented. The intuitive
approach is to bias-randomize instruction sequences and
operands. Other techniques allow user influences and adopt
more involved algorithmic processes during test generation.
In [5,6], users influence generated test programs toward
interesting test behaviors by specifying test generator
templates. The templates are described in a constraint-like
language. Tests generated from these templates are
represented as symbolic instruction graphs and then
converted into executable test programs.

Genetic and evolutionary algorithms were also proposed
in [10,11] as a means to continually generate high coverage
tests. Their aim is to attain the optimal minimum test size and
maximum coverage test suite. Specifically, (µ+λ) techniques
were applied to generate effective tests and attain full
coverage. Crossover and mutation operators are used to
select the best set of test programs generated.

The SALVEM test generator currently randomizes
snippet sequences and parameter values. Snippet biasing
facilitates external test generator influences. Users override
default randomization and specify biases to direct the test
generator toward particular test scenarios.

III. VERIFICATION SYSTEM
The complete SALVEM verification system is

summarized in Fig. 1. Initially, the target SoC is analyzed to
identify common use-case applications. This forms the basis
for generating the types of software test programs simulated.
Software code segments are extracted from these use-cases
and modularized into software callable functions forming a
library of snippets.

The test generator automatically creates test programs
that call snippet functions from the library. The snippet
functions use low-level device drivers to invoke and test
various SoC operations. The Nios compile tool-chain [12]
builds the software test program and drivers into an
executable binary. Other external data files loaded into
memories and streamed by input-output (IO) peripherals are
also generated directly by the test generator.

During test generation, a Verilog testbench file
configures the SoC hardware environment. The testbench
initializes the SoC external pin settings, boot-loads the SoC,
and initiates and monitors software test execution. It
communicates with other SoC design modules directly to
apply external stimulus from the generated data files.
Synopsys VCS is used to simulate the SoC according to the
test program and various testbench commands. Upon test
program termination, the testbench collates SoC test results
and coverage data.

80

Figure 1. The SALVEM System

IV. SNIPPETS
Snippets initiate and exercise specific operations on a

SoC. Each SoC device is assigned a set of snippets. Snippets
test specific functionalities on their SoC device but invoke
operations on other on-chip peripherals as well. This enables
extensive individual device testing and verifies a range of
system-wide transactions.

Snippets are implemented as separate ANSI-C software
functions. Snippets are created by breaking down SoC
applications into modular operations and embedding them
into callable parameterized functions.

Our concept behind snippets is based on the observation
that many SoC operations are initiated by reading and
writing to device configuration registers. At the highest
software operating level, software programs must access
these registers to exercise particular behaviors. Hence, our

snippet functions contain low-level application programming
interface (API) device driver calls, operating system
routines, and other software code to implement the correct
sequence of register accesses. Fig. 2 shows the embedded
software and hardware implementation levels of a SoC.
Snippets operate at a higher level initiating hardware
functions using device drivers and subsequently via register
assesses to bridge the various abstraction layers.

Figure 2. SoC Software-Hardware Interface

Fig. 3 illustrates the internal control flow of a DMA
initialization and execution snippets sequence. Each oval-
shaped node corresponds to DMA configuration register(s)
accesses that initialize DMA operations, initiate DMA
transfer, and monitor data transactions. The register accesses
are facilitated by device driver calls, and are shown in italics
in each node. This enables our high-level snippets to be
reused for other SoCs with similar devices. Only device
specific drivers for the target SoC needs to be implemented.

Table I shows a basic set of snippets for a typical SoC
with a processor, memories and IO peripherals. Each snippet
executes sequential or concurrent SoC operations between
different devices. The InitDMA snippet configures different
data size transfers between memories and IO devices.
ExecDMA transfers the data in either blocking or interrupt
mode. TermDMA and CheckDMA stops and checks for
successful data transfers respectively. Similarly, snippets
Tx|Rx|RxTxUart initiates serial transfers. Other
administrative snippets supervise the overall test execution.

To compose a SALVEM test program, snippets are
combined into random sequences. Fig. 4 shows an abstract
graph of a typical sequence of snippets. The sequence is
intermixed with snippets that invoke different operations
from various on-chip devices. Different snippet sequences
are created by the test generator and transformed into
executable test programs.

Besides randomizing snippet sequences, snippets provide
parameterized variables in its callable function header.
Different parameter values will be passed into snippet
functions from different sequences. This enables snippets to
vary the internal device operations it executes. Parameters
control sequential or concurrent operations, enable self-
checking, employ prioritized processes, etc. Table II shows
the parameters for an InitDMA snippet to configure different
types of DMA transfers.

Test Generator
(Fig. 5.)

Main Software
Test Program

VCS Compile

Simulate SoC
Software Test
(Solaris/Linux)

START

START

END

Snippets
Library

Use-Cases
Identify and

Extract

Randomized
Mem/UART Data

Device Drivers

Nios
Compile/Link

Software Test
Binary Image

Test Results and
Coverage

Verilog SoC and
Testbench

Software Domain
Hardware Domain

simv Simulation
Executable

Test Generator
(Fig. 5.)

Main Software
Test Program

VCS Compile

Simulate SoC
Software Test
(Solaris/Linux)

START

START

END

Snippets
Library

Use-Cases
Identify and

Extract

Randomized
Mem/UART Data

Device Drivers

Nios
Compile/Link

Software Test
Binary Image

Test Results and
Coverage

Verilog SoC and
Testbench

Software Domain
Hardware Domain

simv Simulation
Executable

Low Level
Hardware

High Level
Software User Programmable Applications

Operational Protocols

Operating System API Device Drivers

SoC Hardware CPUs Peripherals

SoC Register Transfer Level Design

SoC Configurable Registers

Snippets

81

Figure 3. Init-ExecDMA Snippet Control Flow

TABLE I. EXAMPLE SNIPPET LIBRARY

Snippets Purpose
InitDMA(…) Initializes DMA Transfers
ExecDMA(…) Starts and Monitors DMA Transfers
TermDMA(…) Stops DMA Transfers
CheckDMA(…) Checks for Successful Transfers

SetupPIO(…) Initializes Parallel IO (PIO) Pins for
Access

WritePIO(…) Access PIO Pins for Parallel Transfer

ResetUart(…) Initializes UART for Serial Data
Transfer

TxUart(…) Transmit UART Serial Data
RxUart(…) Receives UART Serial Data

RxTxUart(…) Receives and Transmit UART Serial
Data

Figure 4. Example Snippet Sequence

TABLE II. InitDMA SNIPPET PARAMETERS

DMA Snippet Function Header :
InitDMA(id, src, dest, len, eop, t_size, int, src_inc, dest_inc)
Parameters Parameter Options & Values
Transfer Process ID (id) 32bit Integer Value
Source Read Address
(src)

Memory Address ranges or Peripheral
Port Addresses

Destination Write
Address (dest)

Memory Address ranges or Peripheral
Port Addresses

Transfer Length (len) 32bit Integer Value
End-of-Packet (eop) 8bit Character Value

Transaction Size (t_size) Byte (8bit), Halfword (16bit),
Word (32bit)

Interrupt (int) Boolean Value
Source Address
Increment (src_inc) Boolean Value

Destination Address
Increment (dest_inc) Boolean Value

SetupPIO
Snippet

Set fix sized transfer
(length reg)

Set streaming transfer
(end packet reg)

Set read device
(source reg)

Set write device
(destination reg)

Set transaction size
(byte/halfword/word reg)

ResetUart
Snippet

Start Transfer
(‘go’ reg)

Execute other
Snippets

Handle interrupt
(int reg)

InitDMA (…parameters…)
Snippet

if device = PIO

if device = UART

non-blocking (interrupt) transfer

blocking
transfer

done = 0

done = 1

done = 1

TermDMA (…parameters…) Snippet … etc

ExecDMA (…parameters…) Snippet

Monitor Transfer
(‘go’, ‘done’ reg)

concurrent
execution

Non-Strict Dependent Snippets
DEP(ResetUartNS←TxUart)

Strict Dependent Snippets
DEP(ExecDMA→STermDMA→SCheckDMA)

ExecDMA

TermDMA

CheckDMA

InitDMA

ExecDMA

SetupPIO

TermDMA

CheckDMA

RxUart

ResetUart

InitDMA

TxUart

se
qu

en
tia

l e
xe

cu
tio

n

int main () {
 // variables declarations
 ResetUart(…parameters…);
 InitDMA(…);
 TxUart(…);
 ExecDMA(…);
 TermDMA(…);
 CheckDMA(…);
 InitDMA(…);
 ExecDMA(…); // Interruptable
 SetupPIO(…);
 // TermDMA and CheckDMA
 // called by DMA interrupt
 RxUart(…);
 … etc …
}

etc …

Test Program

Stop Transfer
(‘go’ reg)

82

Snippet sequences and parameters are intermixed as
much as possible to verify the SoC more comprehensively.
However, snippet tests must be composed according to test
generator and SoC architectural rules. Various constraints are
required to ensure illegal conflicts or erroneous conditions do
not occur unintentionally. Constraints such as
CON((DMA_Read_Addr = UART)→(DMA_trans_size =
byte)) ensure only byte sized transactions are executed to
read from the UART 8-bit port. Similarly, constraint
CON((DMA_non_blocking = 1) && (DMA_int_en = 1))
ensures an interrupt is always invoked for non-blocking
DMA transfers. Our test generator creates software test
programs that adhere to a list of such constraints. However,
to evaluate error handling and verify illegal SoC conditions,
the test generator can be configured to ignore these
constraints.

Dependency rules ensure only legal snippet sequences
are generated. SALVEM defines two types of dependencies.
A strict dependency requires a dependent snippet to be
executed immediately before (or after) the target snippet. A
non-strict dependency implies the dependent snippet can be
generated amongst other snippets before (or after) the target
snippet. Table III defines notations to describe these
dependencies.

TABLE III. DEPENDENCY DEFINITIONS

Strict Dependency

targ_snip→Sdep_snip Dependent snippet required immediately
after target snippet

dep_snipS←targ_snip Dependent snippet required immediately
before target snippet

Non-Strict Dependency

targ_snip→NSdep_snip Dependent snippet required after target
snippet

dep_snipNS←targ_snip Dependent snippet required before
target snippet

For example, in DMA blocking mode,

DEP(ExecDMA→STermDMA→SCheckDMA) require DMA
termination and check snippets to execute immediately after
a DMA transfer snippet. This example shows dependencies
between snippets can also be cascaded.

Similarly, DEP(ResetUartNS←TxUart|RxUart|RxTxUart) imply
the UART can be initialized in between other snippets before
it is used to transmit or receive data. A comprehensive set of
dependencies governs the types of snippet sequences
composed by our test generator. Fig. 4 showed examples of
strict and non-strict dependencies.

Random snippets are useful building blocks for SoC
software test programs because they verify application
functionalities. In contrast, a randomized sequence of
assembler instructions will not invoke proper device
operations. Randomized instructions are unlikely to access
device configuration registers in the correct sequence using
suitable values. Snippets implement the correct register
accesses in terms of software C code. Snippets are compiled

and linked into proper sequences of assembler instructions to
invoke device operations like DMA or UART transfers.

V. SALVEM TEST GENERATOR
SALVEM employs a test generator to create many

snippets software tests automatically. The test generator
pseudo algorithm is summarized in Fig. 5. A snippet is
randomly selected from the snippet library. Snippet
dependency rules are checked to ensure the selected snippet
comply, otherwise a new snippet is selected. At least one
complying snippet in the snippet library is guaranteed for
selection. Next, the snippet object is created. Snippet
parameter values are randomly chosen according to user
selection biases. Chosen values are checked against
parameter constraints. If any constraint is violated,
parameters are re-selected. The snippet sequence and main
test program is then updated with the new snippet. The test
generation routine is called recursively until the desired
snippet test length is attained.

Figure 5. Test Generator Pseudo Algorithm

During test generation, the history of snippet sequence
and the state of the SoC is maintained. This enables the test
generator to identify which devices are in use at any stage.
Dependency rules can be checked, and snippets are chosen
based on available SoC resources released by previous
snippets. For example, a DMA snippet cannot initiate
streaming UART to memory transfers unless previous
UART snippets complete and release the UART device.

The test generator and snippets are implemented in an
object-oriented manner. Whenever a new snippet is selected
into the test sequence, a snippet object is instantiated by the
test generator. The snippet object is self-contained, and
executes internal methods to select parameters and self-
checks against constraint rules. The snippet object also
creates the function interface for the main test code to call.

Dependency and constraint rule specifications are also
implemented as objects. Similarly, the test generator

snippet_library s_lib = {InitDMA, ExecDMA, … etc …};

Gen_Snippets_Test (constraint cons, dependency deps,

 bias biases, snippet_history s_hist) {

snippet_type s_type = Select_Snippet(s_lib, biases);
while (Illegal(s_type, deps, s_hist))

s_type = Select_Snippet(s_lib, biases);

// Instantiate snippet object and parameterize
snippet snip = s_type();
snip.Parameterize(biases);
while (Illegal(snip, cons))

snip.Parameterize(biases);

num_snippet++;
Add_to_Snippet_Sequence(snip);
Add_to_Snippet_History(snip, s_hist);
Update_SoC_State(snip);
if (num_snippet < snippet_test_length)

Gen_Snippets_Test(cons, deps, biases, s_hist);
}

83

maintains the SoC state by instantiating SoC devices as
objects. Each on-chip device object checks and updates its
internal set of resources ensuring illegal conflicts amongst
snippets are avoided.

The SALVEM test generator allows external user
influences to direct verification toward certain SoC devices
and important test scenarios. Test generator biases enhance
the generation likelihood of certain snippet sequences and
parameter values. A verification test run can be analyzed to
identify uncovered or insufficient testing of specific SoC
functions. Biasing is employed to generate new tests to
target these functional corner cases. Using coverage test
information and biasing, a feedback verification flow is
feasible. Section VI demonstrates the use of biasing in our
SALVEM feedback flow.

SALVEM implements two types of biasing, weight and
range biases. A weight bias assigns relative probabilities to a
particular snippet or parameter choice. The choice with the
higher weight value is more likely to be selected. A weight
of wx for choice ‘x’ implies a selection probability of

∑
=

=

n

i
i

x
x

w

w

1

P , where n is the total number of choices.

For example, weights can be assigned to particular
snippets to influence the snippets chosen in the test sequence.
Similarly, weights can be used for manipulating the
likelihood of byte, halfword, or word transaction sizes in
DMA transfers.

Weight biases are useful for constrained discrete choices.
Other test generator choices such as UART end-of-packet
characters or DMA transfer lengths span a larger range; and
each value cannot be specified with a weight. Instead, a
range bias is used to specify a sub-range of values. For
example, a range bias can specify DMA transfer lengths
towards the maximum memory block or segment sizes. The
test generator will select values from these bias sub-ranges
more likely than other values.

VI. EXPERIMENTS AND RESULTS
The SALVEM system was implemented and applied on

the Altera Nios SoC [12]. The Nios SoC is an ASIC
synthesizable and FPGA compliable design in RTL Verilog.
The SoC can be configured with different devices to
implement a variety of applications. Our SoC is configured
with common IO and memory devices typical of many SoCs
today. The SoC consists primarily of a Nios 32bit 5-stage
pipeline processor, RS-232 UART, DMA, PIO, on-chip
ROM and RAM, and external SRAM and Flash. The Nios
Avalon bus links these devices into a system. Snippets were
developed for these devices to verify data transfer, IO
communicating, and other SoC functions.

The SoC is simulated using Synopsys VCS to execute
snippet test programs and collect coverage data. The
SALVEM system, SoC and VCS simulation environment are

integrated into an automated flow to generate and batch-run
large test suites.

In our experiments, a software test program contains
approximately 125 snippets. Previous test suite executions
indicate 125 snippets is an ideal test size for debugging test
failures and monitoring test simulation. Each test is loaded
and executed from on-chip memories. On average, using a
3Ghz CPU and 1Gbyte RAM Linux platform, a typical test
generation and execution required 0.30 and 642 CPU
seconds respectively. When collecting coverage information
however, execution times increased to 1221, 1621 and 7605
seconds for line, toggle and conditional coverage. Without
coverage measurement, a large and comprehensive test suite
can be created and run in an efficient time frame.

During a verification phase, the SALVEM system was
used to generate and execute 25 tests on the Nios SoC. Table
IV shows the initial and analyzed (final) coverage statistics.
The analyzed coverage is considered the true coverage result.
It is obtained by examining coverage data against the SoC
design for dead code and other untestable error conditions.
For example, unused timer peripherals and several redundant
Nios CPU arithmetic units cannot be tested and are
considered dead code. Re-configurable features in the Nios
SoC imply not all design blocks or functions can be used in
the system. Furthermore, some error conditions cannot be
tested because the Nios SoC cannot recover from certain
illegal operations. For example, the SoC enters a deadlock
state when executing DMA transfers between UARTs using
data unit sizes larger than the UART ports.

Besides accounting for dead code and error conditions,
testing and coverage of the Nios SoC can be improved by
employing feedback verification in SALVEM (Fig. 6).
During test generation and execution, coverage and test
statistics are collected to characterize the type of test
programs generated; and identify what SoC devices were
insufficiently exercised. Using this information, biasing can
be used to direct the test generator to create tests for
previously untested functions and improve coverage.

Figure 6. SALVEM Feedback Verification

Fig. 7 and Fig. 8 show a subset of the test generation
statistics collated from the test suite in Table IV. The
histogram in Fig. 7 identifies which snippets were deficient
in the test programs. For example, compared to other

Generate
Snippet Tests

Execute
Tests

Analyze
Testing

Test
Programs

Test
Statistics

Coverage
Results

Biases
(to improve
coverage)

START

Feedback

84

snippets, DMA and WritePIO snippets were not generated
and executed as often. The histogram shows more snippets
initialized the PIO instead of using it. Additional WritePIO
snippets would improve the current PIO coverage of the
unbiased test suite.

Despite low DMA snippets and inadequate parameterized
test configurations (Fig. 8), the unbiased test suite achieved
full line coverage for the DMA device (Table IV). This result
is misleading because line coverage satisfaction criteria
require statements in the design code be exercised once only.
The structure of the DMA hardware design code requires
only a few transfer scenarios to exercise each line of the
DMA device. Lower DMA toggle and conditional coverage
confirms other transfers scenarios were untested and the
DMA was insufficiently tested. Similarly, higher PIO and
UART line coverage may not imply these devices were

sufficiently verified. In general, line coverage is always
greater than toggle or conditional coverage. However, line
coverage alone is not always reliable and other metrics must
be used as well. New coverage methods for SALVEM are
also being investigated [2].

Fig. 8 shows the DMA snippet parameter selections.
Examining this histogram, the UART, PIO and ROM device
was chosen insufficiently as DMA source and destination
transfer devices. Subsequently, this resulted in unsatisfactory
coverage for these devices (Table IV). The ROM was
selected once partly because the ROM can only be chosen by
the DMA as a read-only source device. Parameter selections
for DMA execution modes also favors non-interrupt
(blocking) mode heavily, suggesting insufficient
simultaneous SoC operations were executed.

TABLE IV. COVERAGE RESULTS FOR INITIAL UNBIASED TEST SUITE

Device Full SoC CPU Memories DMA UART PIO
Line 84.55 97.86 67.40 100 95.93 89.57
Toggle 76.11 83.27 57.43 74.81 70.99 59.74 Initial Coverage % (Unbiased)
Conditional 66.48 66.77 26.36 93.98 72.62 60.00
Line 90.99 97.95 68.85 100 98.15 89.57
Toggle 78.06 84.98 58.09 77.08 74.05 63.64 Final Coverage % (Unbiased)
Conditional 66.48 66.77 26.36 93.98 72.62 60.00

TABLE V. COVERAGE RESULTS FOR REVISED BIASED TEST SUITE

Device Full SoC CPU Memories DMA UART PIO
Line 91.43 98.03 69.03 100 98.15 98.26
Toggle 80.79 86.39 63.70 82.37 74.43 83.12 Final Coverage % (Biased)
Conditional 69.35 69.72 29.09 94.98 72.62 83.33

Figure 7. Snippet Statistics

Figure 8. DMA Parameter Statistics

1
- R

O
M

63
 -

R
AM

10
2

- S
R

AM

72
 -

Fl
as

h

0
- P

IO

33
 -

U
AR

T

12
2

- B
lo

ck
in

g
M

od
e

13
 -

N
on

-B
lo

ck
in

g
M

od
e

0

60

120

Fr
eq

ue
nc

y

DMA Transfer
Deivces

DMA Execution
Modes

13
5

- I
ni

tD
M

A

13
5

- E
xe

cD
M

A

13
5

- T
er

m
D

M
A

13
5

- C
he

ck
D

M
A

52
1

- S
et

up
PI

O

44
4

- W
rit

eP
IO

52
7

- R
es

et
U

ar
t

53
1

- T
xU

ar
t

55
0

- R
xU

ar
t

52
4

- R
xT

xU
ar

t

0

300

600

Snippets

Fr
eq

ue
nc

y

85

Based on our analysis, a revised test suite is created by
the test generator according to biases in Table VI. For the
DMA parameters, UART, PIO and ROM devices are
selected more often as transfer devices; and we increase the
number of DMA interrupt executions. DMA and WritePIO
snippets are also weighted with greater selection likelihood.
DMA snippets are assigned a greater weight because the
DMA exercises other source and destination transfer devices
concurrently. The effect of these bias recommendations is an
increase in coverage for most of the on-chip devices and
overall SoC (Table V).

TABLE VI. RECOMMENDED BIASES

Snippets Bias DMA Parameters Bias
InitDMA 3 ROM 2
ExecDMA 3 RAM 1
TermDMA 3 SRAM 1
CheckDMA 3 Flash 1
SetupPIO 1 PIO 3
WritePIO 2

Transfer
Devices

UART 3
ResetUart 1 Blocking 1
TxUart 1

Execution
Modes Interrupt 2

RxUart 1
RxTxUart 1

(A weight bias greater than 1
 indicates greater selection likelihood)

This case study demonstrates SALVEM to be a feasible
feedback verification technique. The initial coverage and test
feedback iteration provided a small but significant increase
in coverage. Additional coverage feedback iterations will
enhance verification toward full coverage. In this paper, we
have chosen to focus on the DMA and PIO device. However,
similar analysis and biasing feedback can be applied to the
UART and memory devices. Additional memory specific
snippets are also required to improve overall SoC coverage.
Furthermore, during SALVEM tests execution, a number of
design bugs were uncovered in the Nios SoC. For example,
vector port width mismatches and inconsistent interrupt
masking or priority behaviors.

VII. CONCLUSION
Verification of SoC designs is a significant bottleneck for

many design projects. This paper presented a new approach
to tackle SoC verification. Software code fragments
(snippets) are extracted from application use-cases to test
specific SoC tasks. A test generator automatically composes
snippets into software test programs.

The SALVEM technique was applied to the Altera Nios
SoC. Experiments demonstrated the verification
effectiveness of the SALVEM test programs. SALVEM can
be applied as a feedback verification system. A case study
was conducted using coverage and test information to
manually drive test generation and improve coverage.

Our work so far has established SALVEM as a feasible
and promising SoC verification method. In the future, we
will explore automated coverage feedback techniques in
SALVEM. Alternative snippet test composition techniques
will also be investigated.

REFERENCES
[1] Collett International Research, "2002 IC/ASIC Functional

Verification Study, " 2002.
[2] A. Cheng, A. Parashkevov, and C.C. Lim, "Coverage measurement

for software application level verification using symbolic trajectory
evaluation techniques," in 2nd IEEE International Workshop on
Electronic Design, Test & Applications (DELTA2004). Perth,
Australia: IEEE Computer Society, 2004, pp. 237-242.

[3] L. Semeria and A. Chosh, “Methodology for hardware/software co-
verification in C/C++,” in IEEE International High Level Design
Validation and Test Workshop (HLDVT’99). San Diego, 1999, pp.
67-72.

[4] H. Hubert, “A survey of HW/SW cosimulation techniques and tools,”
Internal Report, Vetenskap Och Konst Royal Institute of Technology.
Stockholm, Sweden, 1998, 48 p.

[5] A. Chandra, V. Iyengar, R. Jawalekar, M. Mullen, I. Nair, and B.
Rosen, "Architectural verification of processors ssing symbolic
instruction graphs," in IEEE International Conference on Computer
Design, 1994, pp. 454-459.

[6] A. Chandra, D. Geist, Y. Wolfsthal, V. Iyengar, D. Jameson, R.
Jawalekar, I. Nair, B. Rosen, M. Mullen, J. Yoon, and R. Armoni,
"AVPGEN – A test generator for architecture verification," in IEEE
Transaction on Very Large Scale Integration (VLSI) Systems. Vol. 3,
1995, pp. 188-200.

[7] A. Hosseini, D. Mavroidis, and P. Konas, "Code generation and
analysis for the functional verification," in 33rd Annual Conference
on Design Automation (DAC'96). Las Vegas, Neveda, USA, 1996,
pp. 305-310.

[8] J. Shen and J. A. Abraham, "Native mode functional test generation
for processors with applications to self-test and design validation," in
International Test Conference. Washington, DC, USA, 1998, pp. 990-
999.

[9] M. Behm, J. Ludden, Y. Lichtenstein, M. Rimon, and M. Vinov,
"Industrial experience with test generation languages for processor
verification," in 41st Annual Conference on Design Automation
(DAC'04). San Diego, California, USA, 2004, pp. 36-40.

[10] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero, "Evolutionary
test program induction for microprocessor design verification," in
11th Asian Test Symposium, 2002, pp. 368-373.

[11] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero, "Fully
automatic test program generation for microprocessor cores," in
Design, Automation and Test in Europe (DATE2003). Munich,
Germany, 2003, pp. 1006-1011.

[12] Altera Inc. "Nios Hardware Development Tutorial," ver 1.0, 2003, 54
p.

86

	28565.pdf
	hdl_28565

