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Abstract—Design verification is crucial for successful systems-
on-chips (SoCs). However, validating and proving the 
correctness of SoCs is often a bottleneck in the design project. 
This paper presents a novel technique to test the SoC at the 
system level using software application based programs. Our 
Software Application Level Verification Methodology 
(SALVEM) employs test programs composed of dynamic 
sequences of software code segments. The SALVEM system 
implements a test generator to create these software test 
programs automatically. Experiments were conducted 
applying SALVEM tests to the Altera Nios SoC. A feedback 
verification flow is also feasible in our SALVEM system.  
SALVEM test runs are analyzed to direct the test generator 
toward important SoC scenarios. 

I. INTRODUCTION 
System-on-chips (SoCs) are used in many different 

devices such as consumer electronics and military 
applications. Advances in semiconductor fabrication and 
integrated circuit (IC) design techniques have enabled 
systems traditionally implemented on a printed circuit board, 
to be embedded completely on a single chip. A SoC 
integrates many peripherals and processor cores into a 
standalone system, packing many more transistors and 
functions into the IC. The increased complexity in a SoC 
poses many difficulties for design verification. 

In a typical IC design project, verification and validation 
may require as much as 70% of the project lifecycle [1]. 
Advances in IC manufacturing and design technology have 
not been matched by similar progress in verification and test. 
Different techniques must be employed to reduce the 
verification bottleneck and ensure SoC correctness prior to 
fabrication. In particular, functional tests must be efficiently 
generated to test and certify the wide range of behaviors on a 
SoC. 

This paper discusses a technique to generate system tests 
for verification of SoCs. The test generation technique is 
encapsulated by our Software Application Level Verification 
Methodology (SALVEM) previously introduced in [2]. 

SALVEM employs software application tests for design 
verification of SoCs during the pre-silicon phase. Software 
application testing has been employed for co-verification and 
co-simulation [3,4]. However, these techniques are 
restrictive. The size of a software application test may be too 
large requiring fast hardware emulation platforms to ensure 
they can be executed.  

The SALVEM test generator addresses these limitations 
by extracting and composing segments of software 
applications known as ‘snippets’ into software tests. The 
generated software tests are smaller in size, do not require 
external hardware testers but still validate the SoC as typical 
applications would.  

The SALVEM concept originated from a number of 
successful verification projects at Freescale Semiconductor 
Australia. However, the method employed was ad-hoc and 
application tests were created manually. The contribution of 
this paper is an automated software test generator and a 
feedback verification approach for SALVEM. 

The reminder of the paper is as follows. Section II 
discusses related work in test generation. Section III 
summarizes the general SALVEM approach. Software test 
snippets are introduced in Section IV. Section V examines 
the test generator that composes software test programs using 
snippets. Experiments demonstrating SALVEM’s test 
generation capabilities are outlined in section VI. Section VII 
concludes the paper and proposes future research directions. 

II. RELATED WORK 
The SALVEM verification paradigm is similar to co-

verification [3] and co-simulation [4]. These techniques 
apply stimulus derived from complete software applications 
to exercise the hardware design. However, co-verification 
operates later in the design cycle when the hardware design 
is more complete. Co-verification is often used for 
confidence-testing to bring up the fabricated IC, whilst co-
simulation is more suited for software application 
development and debug.  
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SALVEM is solely driven by verification of the hardware 
design. The software test programs are generated for 
simulation at the register-transfer-level (RTL) to verify 
application behaviors and detect hardware design bugs. This 
alleviates any need for expensive emulation platforms or 
additional co-simulation software prototypes. 

The SALVEM software test generation approach is 
similar to assembler instructions test generation techniques 
in [5,7,8,9,10]. Many sophisticated test generator platforms 
have previously created tests targeting microprocessor cores 
and memory modules only. In [5,6], the AVPGEN test 
generator generates assembler test programs using constraint 
solving and symbolic techniques. Similarly, Shen and 
Abraham [8] developed the VERTIS test generator to 
produce assembler instruction sequences for functional 
verification and manufacturing testing. IBM has also 
employed their Genesys-Pro generator to verify the 
POWER5 processor [9]. 

Corno el at [10,11] developed their µGP test generator to 
create many variants of assembler test programs to stress the 
Intel i8051, DLX/pII and LEON P1754 microprocessors. 
Their initial technique was to randomly select assembler 
instructions from the relevant instruction set architecture 
library and compose them into test programs. Each test 
program would contain different sequences of instructions, 
and each instruction would hold different operand values. 
The test programs invoke different processor units such as 
the ALU, cache, pipeline engine, etc to exercise different 
operations that interact with each other.  

The µGP ensures the generated instruction sequence is 
always legal, accounting for various (non-) conditional 
branch instructions. However, these test programs are not 
suitable for SoCs as they overlook the other on-chip system 
peripherals. Assembler test programs are myopically focused 
on exercising and verifying the processor core exclusively.  

SALVEM takes on a similar method to µGP but 
generates software tests at a higher programming level to 
exercise system-wide SoC functions. Software test programs 
composed of code segments (snippets) invoke specific 
operations and collectively exercise many device functions 
throughout the SoC. Like assembler instructions and operand 
values, different sequences of snippets and snippet 
parameters will test the SoC processor and peripherals 
differently.  

However, snippets must be carefully developed to invoke 
a range of SoC operations. Snippets must allow for 
parameterization to initiate different device functions and 
integrate seamlessly into snippet sequences. In contrast, an 
assembler test generator can use the available instructions 
from the processor instruction set architecture. 

Various techniques to compose assembler instructions 
have been proposed and implemented. The intuitive 
approach is to bias-randomize instruction sequences and 
operands. Other techniques allow user influences and adopt 
more involved algorithmic processes during test generation. 
In [5,6], users influence generated test programs toward 
interesting test behaviors by specifying test generator 
templates. The templates are described in a constraint-like 
language. Tests generated from these templates are 
represented as symbolic instruction graphs and then 
converted into executable test programs. 

Genetic and evolutionary algorithms were also proposed 
in [10,11] as a means to continually generate high coverage 
tests. Their aim is to attain the optimal minimum test size and 
maximum coverage test suite. Specifically, (µ+λ) techniques 
were applied to generate effective tests and attain full 
coverage. Crossover and mutation operators are used to 
select the best set of test programs generated.  

The SALVEM test generator currently randomizes 
snippet sequences and parameter values. Snippet biasing 
facilitates external test generator influences. Users override 
default randomization and specify biases to direct the test 
generator toward particular test scenarios. 

III. VERIFICATION SYSTEM 
The complete SALVEM verification system is 

summarized in Fig. 1. Initially, the target SoC is analyzed to 
identify common use-case applications. This forms the basis 
for generating the types of software test programs simulated. 
Software code segments are extracted from these use-cases 
and modularized into software callable functions forming a 
library of snippets.  

The test generator automatically creates test programs 
that call snippet functions from the library. The snippet 
functions use low-level device drivers to invoke and test 
various SoC operations. The Nios compile tool-chain [12] 
builds the software test program and drivers into an 
executable binary. Other external data files loaded into 
memories and streamed by input-output (IO) peripherals are 
also generated directly by the test generator.  

During test generation, a Verilog testbench file 
configures the SoC hardware environment. The testbench 
initializes the SoC external pin settings, boot-loads the SoC, 
and initiates and monitors software test execution. It 
communicates with other SoC design modules directly to 
apply external stimulus from the generated data files. 
Synopsys VCS is used to simulate the SoC according to the 
test program and various testbench commands. Upon test 
program termination, the testbench collates SoC test results 
and coverage data. 
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Figure 1.  The SALVEM System 

IV. SNIPPETS 
Snippets initiate and exercise specific operations on a 

SoC. Each SoC device is assigned a set of snippets. Snippets 
test specific functionalities on their SoC device but invoke 
operations on other on-chip peripherals as well. This enables 
extensive individual device testing and verifies a range of 
system-wide transactions. 

Snippets are implemented as separate ANSI-C software 
functions. Snippets are created by breaking down SoC 
applications into modular operations and embedding them 
into callable parameterized functions. 

Our concept behind snippets is based on the observation 
that many SoC operations are initiated by reading and 
writing to device configuration registers. At the highest 
software operating level, software programs must access 
these registers to exercise particular behaviors. Hence, our 

snippet functions contain low-level application programming 
interface (API) device driver calls, operating system 
routines, and other software code to implement the correct 
sequence of register accesses. Fig. 2 shows the embedded 
software and hardware implementation levels of a SoC. 
Snippets operate at a higher level initiating hardware 
functions using device drivers and subsequently via register 
assesses to bridge the various abstraction layers. 

 

 

 

 

 

 

 

Figure 2.  SoC Software-Hardware Interface 

Fig. 3 illustrates the internal control flow of a DMA 
initialization and execution snippets sequence. Each oval-
shaped node corresponds to DMA configuration register(s) 
accesses that initialize DMA operations, initiate DMA 
transfer, and monitor data transactions. The register accesses 
are facilitated by device driver calls, and are shown in italics 
in each node. This enables our high-level snippets to be 
reused for other SoCs with similar devices. Only device 
specific drivers for the target SoC needs to be implemented. 

Table I shows a basic set of snippets for a typical SoC 
with a processor, memories and IO peripherals. Each snippet 
executes sequential or concurrent SoC operations between 
different devices. The InitDMA snippet configures different 
data size transfers between memories and IO devices. 
ExecDMA transfers the data in either blocking or interrupt 
mode. TermDMA and CheckDMA stops and checks for 
successful data transfers respectively. Similarly, snippets 
Tx|Rx|RxTxUart initiates serial transfers. Other 
administrative snippets supervise the overall test execution. 

To compose a SALVEM test program, snippets are 
combined into random sequences. Fig. 4 shows an abstract 
graph of a typical sequence of snippets. The sequence is 
intermixed with snippets that invoke different operations 
from various on-chip devices. Different snippet sequences 
are created by the test generator and transformed into 
executable test programs. 

Besides randomizing snippet sequences, snippets provide 
parameterized variables in its callable function header. 
Different parameter values will be passed into snippet 
functions from different sequences. This enables snippets to 
vary the internal device operations it executes. Parameters 
control sequential or concurrent operations, enable self-
checking, employ prioritized processes, etc.  Table II shows 
the parameters for an InitDMA snippet to configure different 
types of DMA transfers. 
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Figure 3.  Init-ExecDMA Snippet Control Flow 

TABLE I.  EXAMPLE SNIPPET LIBRARY 

Snippets Purpose 
InitDMA(…) Initializes DMA Transfers 
ExecDMA(…) Starts and Monitors DMA Transfers 
TermDMA(…) Stops DMA Transfers 
CheckDMA(…) Checks for Successful Transfers 

SetupPIO(…) Initializes Parallel IO (PIO) Pins for 
Access 

WritePIO(…) Access PIO Pins for Parallel Transfer 

ResetUart(…) Initializes UART for Serial Data  
Transfer 

TxUart(…) Transmit UART Serial Data 
RxUart(…) Receives UART Serial Data 

RxTxUart(…) Receives and Transmit UART Serial 
Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Example Snippet Sequence 

 

TABLE II.  InitDMA SNIPPET PARAMETERS 

DMA Snippet Function Header :  
InitDMA(id, src, dest, len, eop, t_size, int, src_inc, dest_inc) 
Parameters Parameter Options & Values 
Transfer Process ID (id) 32bit Integer Value 
Source Read Address 
(src) 

Memory Address ranges or Peripheral 
Port Addresses 

Destination Write  
Address (dest) 

Memory Address ranges or Peripheral 
Port Addresses 

Transfer Length (len) 32bit Integer Value 
End-of-Packet (eop) 8bit Character Value 

Transaction Size (t_size) Byte (8bit), Halfword (16bit),  
Word (32bit) 

Interrupt (int) Boolean Value 
Source Address  
Increment (src_inc) Boolean Value 

Destination Address 
Increment (dest_inc) Boolean Value 
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int main () { 
    // variables declarations 
    ResetUart(…parameters…); 
    InitDMA(…); 
    TxUart(…); 
    ExecDMA(…);   
    TermDMA(…); 
    CheckDMA(…); 
    InitDMA(…); 
    ExecDMA(…); // Interruptable 
    SetupPIO(…); 
    // TermDMA and CheckDMA  
    // called by DMA interrupt 
    RxUart(…); 
    … etc … 
} 

etc …

Test Program 

Stop Transfer 
(‘go’ reg) 
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Snippet sequences and parameters are intermixed as 
much as possible to verify the SoC more comprehensively. 
However, snippet tests must be composed according to test 
generator and SoC architectural rules. Various constraints are 
required to ensure illegal conflicts or erroneous conditions do 
not occur unintentionally. Constraints such as 
CON((DMA_Read_Addr = UART)→(DMA_trans_size = 
byte)) ensure only byte sized transactions are executed to 
read from the UART 8-bit port. Similarly, constraint 
CON((DMA_non_blocking = 1) && (DMA_int_en = 1)) 
ensures an interrupt is always invoked for non-blocking 
DMA transfers. Our test generator creates software test 
programs that adhere to a list of such constraints. However, 
to evaluate error handling and verify illegal SoC conditions, 
the test generator can be configured to ignore these 
constraints. 

Dependency rules ensure only legal snippet sequences 
are generated. SALVEM defines two types of dependencies. 
A strict dependency requires a dependent snippet to be 
executed immediately before (or after) the target snippet. A 
non-strict dependency implies the dependent snippet can be 
generated amongst other snippets before (or after) the target 
snippet. Table III defines notations to describe these 
dependencies. 

TABLE III.  DEPENDENCY DEFINITIONS 

Strict Dependency 

targ_snip→Sdep_snip Dependent snippet required immediately 
after target snippet 

dep_snipS←targ_snip  Dependent snippet required immediately 
before target snippet 

Non-Strict Dependency 

targ_snip→NSdep_snip Dependent snippet required after target 
snippet 

dep_snipNS←targ_snip Dependent snippet required before 
target snippet 

 
For example, in DMA blocking mode, 

DEP(ExecDMA→STermDMA→SCheckDMA) require DMA 
termination and check snippets to execute immediately after 
a DMA transfer snippet. This example shows dependencies 
between snippets can also be cascaded.  

Similarly, DEP(ResetUartNS←TxUart|RxUart|RxTxUart) imply 
the UART can be initialized in between other snippets before 
it is used to transmit or receive data. A comprehensive set of 
dependencies governs the types of snippet sequences 
composed by our test generator. Fig. 4 showed examples of 
strict and non-strict dependencies. 

Random snippets are useful building blocks for SoC 
software test programs because they verify application 
functionalities. In contrast, a randomized sequence of 
assembler instructions will not invoke proper device 
operations. Randomized instructions are unlikely to access 
device configuration registers in the correct sequence using 
suitable values. Snippets implement the correct register 
accesses in terms of software C code. Snippets are compiled 

and linked into proper sequences of assembler instructions to 
invoke device operations like DMA or UART transfers. 

V. SALVEM TEST GENERATOR 
SALVEM employs a test generator to create many 

snippets software tests automatically. The test generator 
pseudo algorithm is summarized in Fig. 5. A snippet is 
randomly selected from the snippet library. Snippet 
dependency rules are checked to ensure the selected snippet 
comply, otherwise a new snippet is selected. At least one 
complying snippet in the snippet library is guaranteed for 
selection. Next, the snippet object is created.  Snippet 
parameter values are randomly chosen according to user 
selection biases. Chosen values are checked against 
parameter constraints. If any constraint is violated, 
parameters are re-selected. The snippet sequence and main 
test program is then updated with the new snippet. The test 
generation routine is called recursively until the desired 
snippet test length is attained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Test Generator Pseudo Algorithm 

During test generation, the history of snippet sequence 
and the state of the SoC is maintained. This enables the test 
generator to identify which devices are in use at any stage. 
Dependency rules can be checked, and snippets are chosen 
based on available SoC resources released by previous 
snippets. For example, a DMA snippet cannot initiate 
streaming UART to memory transfers unless previous 
UART snippets complete and release the UART device. 

The test generator and snippets are implemented in an 
object-oriented manner. Whenever a new snippet is selected 
into the test sequence, a snippet object is instantiated by the 
test generator. The snippet object is self-contained, and 
executes internal methods to select parameters and self-
checks against constraint rules. The snippet object also 
creates the function interface for the main test code to call.  

Dependency and constraint rule specifications are also 
implemented as objects. Similarly, the test generator 

snippet_library s_lib = {InitDMA, ExecDMA,  … etc …}; 
 
Gen_Snippets_Test (constraint cons, dependency deps,  

       bias biases, snippet_history s_hist) { 
 

snippet_type s_type = Select_Snippet(s_lib, biases); 
while (Illegal(s_type, deps, s_hist))  

s_type = Select_Snippet(s_lib, biases); 
 

// Instantiate snippet object and parameterize 
snippet snip = s_type(); 
snip.Parameterize(biases); 
while (Illegal(snip, cons)) 

snip.Parameterize(biases); 
  

num_snippet++; 
Add_to_Snippet_Sequence(snip); 
Add_to_Snippet_History(snip, s_hist); 
Update_SoC_State(snip); 
if (num_snippet < snippet_test_length) 

Gen_Snippets_Test(cons, deps, biases, s_hist); 
} 
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maintains the SoC state by instantiating SoC devices as 
objects. Each on-chip device object checks and updates its 
internal set of resources ensuring illegal conflicts amongst 
snippets are avoided.  

The SALVEM test generator allows external user 
influences to direct verification toward certain SoC devices 
and important test scenarios. Test generator biases enhance 
the generation likelihood of certain snippet sequences and 
parameter values. A verification test run can be analyzed to 
identify uncovered or insufficient testing of specific SoC 
functions.  Biasing is employed to generate new tests to 
target these functional corner cases. Using coverage test 
information and biasing, a feedback verification flow is 
feasible. Section VI demonstrates the use of biasing in our 
SALVEM feedback flow. 

SALVEM implements two types of biasing, weight and 
range biases. A weight bias assigns relative probabilities to a 
particular snippet or parameter choice. The choice with the 
higher weight value is more likely to be selected. A weight 
of wx for choice ‘x’ implies a selection probability of  

∑
=

=

n

i
i

x
x

w

w

1

P , where n is the total number of choices. 

For example, weights can be assigned to particular 
snippets to influence the snippets chosen in the test sequence. 
Similarly, weights can be used for manipulating the 
likelihood of byte, halfword, or word transaction sizes in 
DMA transfers. 

Weight biases are useful for constrained discrete choices. 
Other test generator choices such as UART end-of-packet 
characters or DMA transfer lengths span a larger range; and 
each value cannot be specified with a weight. Instead, a 
range bias is used to specify a sub-range of values. For 
example, a range bias can specify DMA transfer lengths 
towards the maximum memory block or segment sizes. The 
test generator will select values from these bias sub-ranges 
more likely than other values.  

VI. EXPERIMENTS AND RESULTS 
The SALVEM system was implemented and applied on 

the Altera Nios SoC [12]. The Nios SoC is an ASIC 
synthesizable and FPGA compliable design in RTL Verilog. 
The SoC can be configured with different devices to 
implement a variety of applications. Our SoC is configured 
with common IO and memory devices typical of many SoCs 
today. The SoC consists primarily of a Nios 32bit 5-stage 
pipeline processor, RS-232 UART, DMA, PIO, on-chip 
ROM and RAM, and external SRAM and Flash. The Nios 
Avalon bus links these devices into a system. Snippets were 
developed for these devices to verify data transfer, IO 
communicating, and other SoC functions.  

The SoC is simulated using Synopsys VCS to execute 
snippet test programs and collect coverage data. The 
SALVEM system, SoC and VCS simulation environment are 

integrated into an automated flow to generate and batch-run 
large test suites. 

In our experiments, a software test program contains 
approximately 125 snippets. Previous test suite executions 
indicate 125 snippets is an ideal test size for debugging test 
failures and monitoring test simulation. Each test is loaded 
and executed from on-chip memories. On average, using a 
3Ghz CPU and 1Gbyte RAM Linux platform, a typical test 
generation and execution required 0.30 and 642 CPU 
seconds respectively. When collecting coverage information 
however, execution times increased to 1221, 1621 and 7605 
seconds for line, toggle and conditional coverage. Without 
coverage measurement, a large and comprehensive test suite 
can be created and run in an efficient time frame. 

During a verification phase, the SALVEM system was 
used to generate and execute 25 tests on the Nios SoC. Table 
IV shows the initial and analyzed (final) coverage statistics. 
The analyzed coverage is considered the true coverage result. 
It is obtained by examining coverage data against the SoC 
design for dead code and other untestable error conditions. 
For example, unused timer peripherals and several redundant 
Nios CPU arithmetic units cannot be tested and are 
considered dead code. Re-configurable features in the Nios 
SoC imply not all design blocks or functions can be used in 
the system. Furthermore, some error conditions cannot be 
tested because the Nios SoC cannot recover from certain 
illegal operations. For example, the SoC enters a deadlock 
state when executing DMA transfers between UARTs using 
data unit sizes larger than the UART ports.  

Besides accounting for dead code and error conditions, 
testing and coverage of the Nios SoC can be improved by 
employing feedback verification in SALVEM (Fig. 6). 
During test generation and execution, coverage and test 
statistics are collected to characterize the type of test 
programs generated; and identify what SoC devices were 
insufficiently exercised. Using this information, biasing can 
be used to direct the test generator to create tests for 
previously untested functions and improve coverage. 

 

 

 

 

 

 

 

 

Figure 6.  SALVEM Feedback Verification 

Fig. 7 and Fig. 8 show a subset of the test generation 
statistics collated from the test suite in Table IV. The 
histogram in Fig. 7 identifies which snippets were deficient 
in the test programs. For example, compared to other 

Generate 
Snippet Tests 

Execute 
Tests 

Analyze 
Testing 

Test 
Programs

Test 
Statistics 

Coverage 
Results 

Biases 
(to improve 
coverage) 

START 

Feedback 

84



snippets, DMA and WritePIO snippets were not generated 
and executed as often. The histogram shows more snippets 
initialized the PIO instead of using it. Additional WritePIO 
snippets would improve the current PIO coverage of the 
unbiased test suite. 

Despite low DMA snippets and inadequate parameterized 
test configurations (Fig. 8), the unbiased test suite achieved 
full line coverage for the DMA device (Table IV). This result 
is misleading because line coverage satisfaction criteria 
require statements in the design code be exercised once only. 
The structure of the DMA hardware design code requires 
only a few transfer scenarios to exercise each line of the 
DMA device. Lower DMA toggle and conditional coverage 
confirms other transfers scenarios were untested and the 
DMA was insufficiently tested. Similarly, higher PIO and 
UART line coverage may not imply these devices were 

sufficiently verified. In general, line coverage is always 
greater than toggle or conditional coverage. However, line 
coverage alone is not always reliable and other metrics must 
be used as well. New coverage methods for SALVEM are 
also being investigated [2]. 

Fig. 8 shows the DMA snippet parameter selections. 
Examining this histogram, the UART, PIO and ROM device 
was chosen insufficiently as DMA source and destination 
transfer devices. Subsequently, this resulted in unsatisfactory 
coverage for these devices (Table IV). The ROM was 
selected once partly because the ROM can only be chosen by 
the DMA as a read-only source device. Parameter selections 
for DMA execution modes also favors non-interrupt 
(blocking) mode heavily, suggesting insufficient 
simultaneous SoC operations were executed. 

 

TABLE IV.  COVERAGE RESULTS FOR INITIAL UNBIASED TEST SUITE 

Device Full SoC CPU Memories DMA UART PIO 
Line 84.55 97.86 67.40 100 95.93 89.57 
Toggle 76.11 83.27 57.43 74.81 70.99 59.74 Initial Coverage % (Unbiased) 
Conditional 66.48 66.77 26.36 93.98 72.62 60.00 
Line 90.99 97.95 68.85 100 98.15 89.57 
Toggle 78.06 84.98 58.09 77.08 74.05 63.64 Final Coverage % (Unbiased) 
Conditional 66.48 66.77 26.36 93.98 72.62 60.00 

TABLE V.  COVERAGE RESULTS FOR REVISED BIASED TEST SUITE 

Device Full SoC CPU Memories DMA UART PIO 
Line 91.43 98.03 69.03 100 98.15 98.26 
Toggle 80.79 86.39 63.70 82.37 74.43 83.12 Final Coverage % (Biased) 
Conditional 69.35 69.72 29.09 94.98 72.62 83.33 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Snippet Statistics 

 

 

Figure 8.  DMA Parameter Statistics 
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Based on our analysis, a revised test suite is created by 
the test generator according to biases in Table VI. For the 
DMA parameters, UART, PIO and ROM devices are 
selected more often as transfer devices; and we increase the 
number of DMA interrupt executions. DMA and WritePIO 
snippets are also weighted with greater selection likelihood. 
DMA snippets are assigned a greater weight because the 
DMA exercises other source and destination transfer devices 
concurrently. The effect of these bias recommendations is an 
increase in coverage for most of the on-chip devices and 
overall SoC (Table V). 

TABLE VI.  RECOMMENDED BIASES 

Snippets Bias DMA Parameters Bias 
InitDMA 3 ROM 2 
ExecDMA 3 RAM 1 
TermDMA 3 SRAM 1 
CheckDMA 3 Flash 1 
SetupPIO 1 PIO 3 
WritePIO 2 

Transfer 
Devices 

UART 3 
ResetUart 1 Blocking 1 
TxUart 1 

Execution 
Modes Interrupt 2 

RxUart 1 
RxTxUart 1 

(A weight bias greater than 1 
 indicates greater selection likelihood) 

 

This case study demonstrates SALVEM to be a feasible 
feedback verification technique. The initial coverage and test 
feedback iteration provided a small but significant increase 
in coverage. Additional coverage feedback iterations will 
enhance verification toward full coverage. In this paper, we 
have chosen to focus on the DMA and PIO device. However, 
similar analysis and biasing feedback can be applied to the 
UART and memory devices. Additional memory specific 
snippets are also required to improve overall SoC coverage. 
Furthermore, during SALVEM tests execution, a number of 
design bugs were uncovered in the Nios SoC. For example, 
vector port width mismatches and inconsistent interrupt 
masking or priority behaviors. 

VII. CONCLUSION 
Verification of SoC designs is a significant bottleneck for 

many design projects. This paper presented a new approach 
to tackle SoC verification. Software code fragments 
(snippets) are extracted from application use-cases to test 
specific SoC tasks. A test generator automatically composes 
snippets into software test programs.  

The SALVEM technique was applied to the Altera Nios 
SoC. Experiments demonstrated the verification 
effectiveness of the SALVEM test programs. SALVEM can 
be applied as a feedback verification system. A case study 
was conducted using coverage and test information to 
manually drive test generation and improve coverage.  

Our work so far has established SALVEM as a feasible 
and promising SoC verification method. In the future, we 
will explore automated coverage feedback techniques in 
SALVEM. Alternative snippet test composition techniques 
will also be investigated. 
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