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Abstract ric, featural, alignment-based, and transformational. Of
An algorithm is developed for generating featural rep these, the two most widely used approaches are the ge-
resentations from similarity data using Tversky’s (1977) ometric, Wh.ere St'mu.“ are _represented in terms of their
Contrast Model. Unlike previous additive clustering ap-  Values on different dimensions, and the featural, where
proaches, the algorithm fits a representational model that stimuli are represented in terms of the presence or ab-
allows for stimulus similarity to be measured in terms of  sence of weighted features. The geometric approach
both common and distinctive features. The importantis- is most often used in formal models of cognitive pro-

sue of striking an appropriate balance between data fit and S
representational complexity is addressed through the use C€SSeS, partly because of the ready availability of tech-

of the Geometric Complexity Criterion to guide model ~ hiques such as multidimensional scaling (e.g., Kruskal
selection. The ability of the algorithm to recover known 1964; see Cox & Cox 1994 for an overview), which gen-
featural representations from noisy datais tested, and itis - erate geometric representations from similarity data. The
2';8 {ag?mlsed to real data measuring the similarity of kin-  ¢o o3 approach to stimulus representation, however, is
' at least as important as the geometric approach, and war-
) rants the development of techniques analogous to multi-
Introduction dimensional scaling.
Understanding human mental representation is necessary Accordingly, this paper describes an algorithm that
for understanding human perception, cognition, decisiorgenerates featural representations from similarity data.
making, and action. Mental representations play an im-The optimization processes used in the algorithm are
portant role in mediating adaptive behavior, and form thestandard ones, and could almost certainly be improved.
basis for the cognitive processes of generalization, inferin this regard, we draw on Shepard and Arabie’s (1979)
ence and learning. Different assumptions regarding thelistinction between the psychological model that is be-
nature and form of mental representation lead to differentng fit, and the algorithm that does the fitting. We make
constraints on formal models of these processes. For thigo claims regarding the significance of the algorithm it-
reason, Pinker (1998) argues that “pinning down menself (and certainly do not claim it is a model of the way
tal representation is the route to rigor in psychology” (p. humans learn mental representations), but believe that
85). Certainly, it is important that cognitive models use the psychological representational model that it fits has
principled mental representations, since dldehocdefi-  three important properties. First, it allows for the arbi-
nition of stimuli on the basis of intuitive reasonablenesstrary definition of features, avoiding the limitations of
is a highly questionable practice (Brooks 1991, Komatsipartitioning or hierarchical clustering. Second, it uses a
1992, Lee 1998). more general model of featural stimulus similarity than
One appealing and widely used approach for derivinghas previously been considered. Third, it generates feat-
stimulus representations is to base them on measures ufal representations in a way that balances the competing
stimulus similarity. Following Shepard (1987), similarity demands of data-fit and representational complexity.
may be understood as a measure of the degree to which )
the consequences of one stimulus generalize to another, Featural Representation
and so it makes adaptive sense to give more similar stimyithin a featural representation, stimuli are defined by
uli mental representations that are themselves more simhe presence or absence of a set of saliency weighted fea-
ilar. For a domain wittn stimuli, similarity data take the tures or properties. Formally, if a stimulus domain con-
form of ann x n similarity matrix, S = [sj], wheres;j  tainsn stimuli andmfeatures, a featural representation is
is the similarity of theith and jth stimuli. The goal of  given by then x mmatrix F = [fik], where
similarity-based representation is then to define stimulus
representations that, under a given similarity model, cap- o 1 if stimulusi has featurd 1
ture the constraints implicit in the similarity matrix by k=13 o otherwise (1)
approximating the data.
Goldstone’s (in press) recent review identifies fourtogether with a vectow = (wy, ..., wm) giving the (pos-
broad model classes for stimulus similarity: geomet-itive) weights of each of the features.



The Contrast and Ratio Models hyper-parametera and® can be incorporated into one

Tversky's (1977) Contrast Model and Ratio Model of Parameterp = 6/(8+a), which represents the relative
stimulus similarity provide a rich range of possibilities Weighting of common and distinctive features, with
for generating featural representations that have been si¢- < P < 1. Setting the functional forn () using the
nificantly under-utilized. Using the assumption that theS@me ‘sum of saliency weights’ approach as additive
similarity between two stimuli is a function of their com- clustering yields the similarity model

mon and distinctive features, the Contrast Model mea-

sures stimulus similarity as: 1-p

. §; = P Wkfikfjk——— Wi fik (1 — fix

§; = OF (finfj) —aF (f —f;) = BF (f; —fi),  (2) J 3 il | 3l (1= )
wheref; N fj denotes the features common to itreand _EVE
jth stimuli, fi — f; denotes the features present in the + Zwk(l fi) fjc | +C. )

ith, but not thejth, stimulus, and~ () is some mono-
tonically increasing function. By manipulating the posi- It is this symmetric version of the Contrast Model that
tive weighting hyper-parametedsa andp, differentde- is used in this paper to develop general featural repre-
grees of importance may given to the common and dissentations. It allows for any relative degree of empha-
tinctive components. In particular, Tversky (1977) em-sis to be placed on common and distinctive features and,
phasizes the two extreme alternatives obtained by setting particular, subsumes the additive clustering model
8=1,a= =0 (common features only), alt=0,a0 =  (p = 1) and the distance-based feature-matching similar-
B = 1 (distinctive features only). A different approach ity model (@ = 0). Technically, it is worth noting that the
is given by the Ratio Model, where similarity takes the additive constant used in additive clustering, which is
form: added to all pairwise similarity estimates in both addi-
tive clustering and Contrast Model clustering representa-
oF (fi N fj)

§ = . (3) tions,is nottreated as a cluster, and thus is not weighted
V7 OF (finfj) +aF (f — ;) +BF (f; — fi) by p.

While the Contrast Model and the Ratio Model pro-  Limiting Representational Complexity

vide great flexibility for measuring similarity across fea- Shepard and Arabie (1979) have noted that the ability to

tural representations, the only established techniques fQt, o iy jarge numbers of features and set their weights
generating the representations from similarity data are, | ows any similarity matrix to be modeled perfectly by

additive clustering algorithms (e.g., Arabie & Carroll a featural re : ;
) . S ) presentation using the common features ver-
1980; Lee 1999, in press; Mirkin 1987, Shepard & Ara- gjo of the Contrast Model. The same is true for the ma-

bie 1979; Tenenbaum 1996), which rely exclusively on,_ ; i ;

' A . jority of Tversky’s (1977) similarity models, and is cer-
the comtrﬂotn feziltures version |°f the Cofntrast Mfot?]d' Thi ainly true for Eq. (4). While the representational power
means that only one Special case Of one O NeSe aRy 6qe| data is desirable, the introduction of uncon-

proacr;es has befen used as tthef basis of a practical te rained feature structures with free parameters detracts
nlqruhe or ge_r;eraflng r.?pglesfn "F: lons. . . from fundamental modeling goals, such as the achieve-
€ paucity of available 1echniques IS SErious, giVeNy,ant of interpretability, explanatory insight, and the abil-

the recognition (e.g., Goodman 1972; Rips 1989; se l | : inf .
Goldstone 1994 for an overview) that similarity is not (IYeteoz%?)rllZ;? ize accurately beyond given information

a unitary phenomenon, and the way in which it is mea-" 15 eans that techniques for generating featural rep-
sured may change according to different cognitive de-

g ! . 7~ ““resentations from similarity data must balance the com-
mands. Direct empirical evidence that featural similar-

O ; ; eting demands of maximizing accuracy and minimizing
ity judgments can place varying emphasis on commo

and distinctive features is provided by the finding thattignmﬁfgxﬁ’ ;c;lI%vgﬂﬁ;&gsbgigoprp?,\(;Ig[/)llﬁgfg ggf Ilsgtgl%c i

“ef.“s pres_ented in written form 9"Cit common feature- pyo, precision must also be considered, since precise
weighted judgments, whereas pictures tend to be rateHata warrants a representation being made more detailed
more in terms of d|§t|nct|ve features (Gati & Tversky to improve data-fit, while noisy data does not.

1984; Tversky & Gati 1978). In practice, this means that featural representations
A Symmetric Contrast Model should not be derived solely on the basis of how well

they fit the data, as quantified by a measure such as the
Although the Contrast Model has three hyper-y4riance accounted for,

parameters,a and [ remain distinct only when

Sj # sji. While it is certainly the case that real world Yicj(sj—§j)?
domains display asymmetric similarity, modeling tech- VAF =1- (s =52 (%)
niques based on similarity data generally assume that 2i<(Sij

similarity is symmetric. Further, if the similarity ratings where s’is the arithmetic mean of the similarity data.
are assumed to lie between 0 and 1, the remainindRather, some form of complexity control must be used



to balance data-fit with model complexity. Most es- More interestingly, Figure 1 shows that the level of
tablished algorithms strike this balance in unsatisfactonyfit for the entirely common features data deteriorates
ways, either pre-determining a fixed number of clusteramore rapidly than for the entirely distinctive features
(e.g., Shepard & Arabie 1979; Tenenbaum 1996), or predata when the wrong value is assumed. Similarly,
determining a fixed level of representational accuracyfor the evenly balanced data, the fit is greater when
(e.g., Lee 1999). too much emphasis is placed on common features in
Recently, Lee (in press) has applied the Bayesian Inthe assumed similarity model. These results imply that
formation Criterion (BIC: Schwarz 1978) to limit the common features-weighted models are more able to fit
complexity of additive clustering representations. Un-data when they are wrong than are distinctive features-
fortunately, an important limitation of the BIC is that it weighted models. In the language of model complex-
equates model complexity with the number of parame-ty, the common features functional form is more flexible
ters in the model. While this is often a reasonable apthan the distinctive features functional form, and this ex-
proximation, it neglects what Myung and Pitt (1997) tra complexity improves the fit of incorrect models. For
term the ‘functional form’ component of model com- this reason, it is important to derive featural representa-
plexity. For featural representations, parametric com+ions using a measure that is sensitive to functional form
plexity is simply the number of features used in a rep-complexity.
resentation. Functional form complexity, however, con- . i o
siders the feature structufe and is sensitive to the pat- A Geometric Complexity Criterion
terns with which stimuli share features (see Lee 2001a)Myung, Balasubramanian, and Pitt (2000) have recently
as well as any difference arising from the relative emphadeveloped a measure called the Geometric Complexity
sis given to common and distinctive features. Criterion (GCC) that constitutes the state-of-the-art in
Itis important to account for functional form complex- accounting for both fit and complexity in model selec-
ity with featural representational models that can varytion. The basic idea is to define complexity in terms
their emphasis on common and distinctive features. Figof the number of distinguishable data distributions that
ure 1 shows the results of fitting featural representationsthe model can accommodate through parametric varia-
assuming different levels gb, on similarity data that tion, with more complicated models being able to index
were generated using either entirely common featuresore distributions than simple ones. Using Tenenbaum’s
(p = 1), entirely distinctive featurep(= 0), or an even  (1996) probabilistic formulation of the data-fit of a featu-
balance of the twof(= 0.5). These results are averaged ral model, and extending Lee’s (2001a) derivation of the
across five different similarity matrices, each based on gisher Information matrix for the common features case
five-feature representation, and show one standard erref the Contrast Model, it is a reasonably straightforward
about the mean level of fit. exercise to derive a GCC for the current similarity model.

The final result is:
100% — - -

90%-r }

80%

1 o Mm+1 n(n—1)
GCC ZSZiZJ(SJ §j)°+ > n( I >

+% IndetG, (6)

wheres denotes an estimate of the inherent precision of
the data (see Lee 2001l is the number of features,

is the number of stimuli, an@ denotes then x m com-
plexity matrixfor the feature structure. Tharth cell of

the complexity matrix is given by,

D 8ix8iy ™

i<]

VAF

70%

0 05 1
Clustering p wheres jx equals if xis a common feature; (1—p) /2
if X is a distinctive feature, and O if neithenor j pos-
. . . sesses the featuxe
Figure 1: The change in VAF value, as a fur_lct_lon _Of the An interesting aspect of the complexity matrix, and the
assumed balance between common and distinctive feg5cc measure as a whole, is that it is independent of the
tures, for the entirely common (dotted line), entirely dis- harameterization of the model. Thatis, the complexity of
tinctive (dashed line) and balanced (solid line) similarity 3 featural representation is dependent only on the feature
data. structure, and not the saliencies assigned to the features.
We should make two technical points about the GCC.
As expected, the best-fitting featural representations-irst, this derivation is based on the assumption that
have p values matching those that generated the datas a fixed property of a model, and not a free parameter.



An alternative would be to modify the GCC so thatitac-  38r
commodate@ as a model parameter. Second, since the
additive constant is not weighted lpy the terms in the 360,
complexity matrix corresponding to the additive constant
behave as ip = 1. 34¢

Algorithm 032
In developing an algorithm to fit featural representa- O
tions using the Contrast Model, we were guided by the O30}
successful additive clustering algorithm reported by Lee
(submitted). Basically, the algorithm works by ‘grow- 28}
ing’ a featural representation, starting with a one-feature
model, and continually adding features while this leads g/
to improvements in the GCC measure. For any fixed
number of features, the search for an appropriate as 54l ‘ ‘ ‘ ‘
signment of stimuli to features is done using stochastic 0 0.25 0.5 0.75 1
hill-climbing, with the best-fitting weights being deter- Clustering p
mined using a standard non-negative least squares algo-

rithm (Lawson & Hanson 1974). The algorithm termi- g, e 3: The change in GCC value, as a function of the

hates once the_ process of adding features leads to r®Bssumed balance between common and distinctive fea-
resentations with GCC values that are more than a pre-

specified constant above the best previously found, an}'res for the enurely common (dotted “.ne).’ e”“fe'Y d[s-
the featural representation with the minimum GCC valuetinctive (dashed line) and balanced (solid line) similarity
is returned. data.

The algorithm was applied to this similarity data un-
der different assumptions regarding the balance between
common and distinctive features, usipgvalues of 0,
0.25, 0.5, 0.75 and 1. In calculating the GCC measure, a
data precision value af = 0.05 was assumed, in accor-
dance with the known level of noise. Figure 3 summa-
rizes the results of 10 runs of the algorithm for each of
the three similarity conditions, across all of the assumed
p values. The mean GCC value of the 10 derived rep-
resentations is shown, together with error bars showing
one standard error in both directions.

Figure 3 shows that the GCC is minimized at the cor-
rectp value for all three similarity conditions. An exami-
nation of the derived representation revealed that the cor-
rect featural representation was recovered 25 times out
Figure 2: The artificial featural representation containingof 30 attempts: nine times out of ten for the entirely dis-
seven stimuli and four features. tinctive data, and eight times out of ten for the evenly

balanced and the entirely common data. It is interesting

To test the ability of this optimization algorithm to to note that Figure 3 is far more symmetric than Figure 1,
fit similarity data, we examined its ability to recover a suggesting that the GCC has successfully accounted for
known featural representation. This representation hathe differences in functional form complexity between
seven stimuli and four features, and included partitionthe common and distinctive feature approaches to mea-
ing, nested, and overlapping clusters, as shown in Figurguring similarity.

2. Using this representation, similarity data were gen-

erated assuming entirely common features, entirely dis- Additional Monte Carlo simulations with other feat-
tinctive features, or an even balance between the twaural representations, based on particular structures re-
Feature weights were chosen at random subject to thported by Tenenbaum (1996, Table 1) and Lee (1999,
constraint that they resulted in positive similarity values.Table 5), also suggested that the algorithm is capable of
Each of the similarity values was perturbed by addingrecovering known configurations when more stimuli or
noise that was independently drawn from a Normal dis-more features are involved, although problems with lo-
tribution with mean 0 and standard deviation 0.05. cal minima are encountered more frequently.




Table 1: Representation of Rosenberg and Kim’s (1975) kinship terms domain.

STIMULI IN CLUSTER WEIGHT

aunt uncle niece nephew cousin 0.319
granddaughter grandson grandmother grandfather 0.291
mother daughter grandmother granddaughter aunt niece sister 0.222
sister brother cousin 0.221
father son grandfather grandson uncle nephew brother 0.208
mother father daughter son sister brother 0.163
mother father daughter son 0.136
daughter son granddaughter grandson niece nephew sister brother 0.128
mother father grandmother grandfather aunt uncle sister brother 0.091
additive constant 0.563

VARIANCE ACCOUNTEDFOR 92.7%

An lllustrative Example In terms of future work, it should be acknowledged

To demonstrate the practical application of the algorithmthat the symmetric version of the Contrast Model is cer-
we used the averaged similarity data reported by Roserf@inly not the only possibility for combining common
berg and Kim (1975), which measures similarity of En- fand distinctive features gp_proag:hes to measuring similar-
glish kinship terms. A data precision estimatsef0.09  ity. Tenenbaum and Griffiths (in press) provide a com-
was made based on the sample standard deviation of tielling argument for the use of the Ratio Model in the
individual matrices. Since the data was obtained by haveontext of their Bayesian theory of generalization. It
ing participants sort items into different stacks, we mightwould also be worthwhile to examine featural represen-
expect a model that provides a weighting of common andations where each feature is assumed to operate using
distinctive features to provide a better fit than one allow-€ntirely an distinctive or an entirely common approach.
ing only for common features. Usingvalues of 0, 0.1, The distinctive similarity features would be those that

0.2,...,1.0, the representation with the minimum GCC globally partition the entire stimulus set, as for the fea-

was found ap = 0.4. ture ‘male’, which implies the existence of the comple-
This representation contained the nine features dementary feature ‘female’. The (more prevalent) common

tailed in Table 1, and explained 92.7% of the varianceSimilarity features would be those that captured shared

in the data. Interpreting most of the features in Ta-Properties, such as eye or hair color, where no broader

ble 1 is straightforward, since they essentially capturdmplications are warranted.

concepts such as ‘male’, ‘female’, ‘nuclear family’, ‘ex-

tended family’, ‘grandparents’, ‘descendants’, and ‘pro- Acknowledgments

genitors’. While this representation is very similar to the +1ic 2 ticle was supported by a Defence Science and

hine-feature representation generated by additive clustetro o664y Organisation scholarship awarded to the first
mg_(Lee .Sme'tted' Figure 2.)’ It explalns more of.th.e author. We wish to thank several referees for helpful
variance in the data, suggesting that participants did NS omments on an earlier version of this paper
deed use both common and distinctive features in assess- '
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