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Abstract

Many evaluations of cognitive models rely on data that have been averaged
or aggregated across all experimental subjects, and so fail to consider the possi-
bility that there are important individual differences between subjects. Other
evaluations are done at the single-subject level, and so fail to benefit from the
reduction of noise that data averaging or aggregation potentially provides. To
overcome these weaknesses, we develop a general approach to modeling indi-
vidual differences using families of cognitive models, where different groups
of subjects are identified as having different psychological behavior. Separate
models with separate parameterizations are applied to each group of subjects,
and Bayesian model selection is used to determine the appropriate number of
groups. We demonstrate the general approach in a concrete and detailed way
using the ALCOVE model of category learning, and data from four previously
analysed category learning experiments. Meaningful individual differences are
found for three of the four experiments, and ALCOVE is able to account for
this variation through psychologically interpretable differences in parameter-
ization. The results highlight the potential of extending cognitive models to
consider individual differences.
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http://www.psychology.adelaide.edu.au/members/staff/michaellee/homepage
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Introduction

Much of cognitive psychology, as with other empirical sciences, involves the development
and evaluation of models. Models provide formal accounts of the explanations proposed by
theories, and have been developed to address diverse cognitive phenomena ranging from
stimulus representation (e.g., Shepard 1980; Tversky 1977), to memory retention (e.g.,
Anderson & Schooler 1991; Estes 1997; Laming 1992), to category learning (e.g., Ashby
& Perrin 1988; Berretty, Todd, & Martignon 1999; Kruschke 1992; Tenenbaum 1999).
One recurrent shortcoming of these models, however, is that (whether intentionally, or as
an unintended consequence of methodology) humans are usually modeled as ‘invariants’,
and not as ‘individuals’. This occurs because, most often, models are evaluated against
data that have been averaged or aggregated across subjects, and so the modeling assumes
that there are no individual differences between subjects.

The potential benefit of averaging data is that, if the performance of subjects really
is the same except for ‘noise’ (i.e., variation the model is not attempting to explain),
the averaging process will tend to remove the noise, and the resultant data will more
accurately reflect the underlying psychological phenomenon. When the performance of
subjects has genuine differences, however, it is well known (e.g., Estes 1956; Myung, Kim,
& Pitt 2000) that averaging produces data that do not accurately represent the behavior
of individuals, and provide a misleading basis for modeling.

Even more fundamentally, the practice of averaging data restricts the focus of cognitive
modeling to issues of how people are the same. While modeling invariants is fundamental,
it is also important to ask how people are different. Experimental data reveal individual
differences in cognitive processes, and in the psychological variables that control those
processes, that also need to be modeled.

Cognitive modeling that attempts to accommodate individual differences usually as-
sumes that each subject behaves in accordance with a different parameterization of the
same basic model, and so the model is evaluated against the data from each subject
separately (e.g, Ashby, Maddox, & Lee 1994; Nosofsky 1986; Wixted & Ebbesen 1997).
Although this avoids the problem of corrupting the underlying pattern of the data, it also
foregoes the potential benefits of averaging, and guarantees that models are fit to all of
the noise in the data.

Another problem with individual subject analysis, from a model theoretic perspec-
tive, is that fitting each additional subject requires an extra set of free parameters, and
so leads to a progressively more complicated accounts of the data as a whole. As has
been pointed out repeatedly in the psychological literature recently (e.g., Myung & Pitt
1997; Pitt, Myung, & Zhang 2002), it is important both to maximize goodness-of-fit and
minimize model complexity to achieve the basic goals of modeling. Unnecessarily com-
plicated models that “over-fit” data often do not provide any insight or explanation of
the cognitive processes they address, and are less capable of making accurate predictions
when generalizing to new or different situations.

A better approach, therefore, is to partition subjects according to their individual
differences, and model the averaged or aggregated data from each group. Under this
approach, data are addressed by a set of models, called a model family, where a different
parameterization is applied to each group of subjects. Where averaging is appropriate,
within groups of subject, it is applied. Where averaging is not appropriate, between
groups of subjects, it is not applied.



3

In this paper, we apply these ideas to model individual differences in category learning,
using Kruschke’s (1992) well known, empirically successful, and widely used ALCOVE
model. Our basic approach, however, is applicable to any model of category learning or,
indeed, models of other cognitive phenomena.

Modeling Individual Differences in Category Learning

Formally, a model family M partitions the subjects S into G groups S → {S1, . . . , SG},
and so partitions the complete data D into G averaged data sets D → {D1, . . . , DG}. For
the ith data set, a model family also specifies a model parameterization θi. Any possible
partitioning of subjects can be considered, including the possibility that all subjects are in
the same partition (corresponding to averaging across subjects), or that each has their own
partition (corresponding to a complete individual analysis). Differences in the category
learning processes between groups are revealed by differences in the parameter values they
use.

Because of the enormous flexibility allowed by model families, they can be made almost
arbitrarily complicated, and could potentially fit any data set perfectly by adding new
models, with extra parameters, to account for any remaining unexplained variation in
data. It is necessary, therefore, for model fitting methods to use model selection criteria
that balance goodness-of-fit and model complexity. The application of Bayesian model
selection criteria (e.g., Pitt, Myung, & Zhang 2002) is most easily pursued by specifying
a probabilistic account, in the form of a likelihood function, of the relationship between
a parameterized model family and empirical data.

To develop a likelihood function for category learning, suppose, under a proposed
partitioning of subjects, the ith partition has ki subjects, and that the n category learning
trials are divided into blocks, with the jth block having bj trials. Choosing one block with
b1 = n corresponds to an analysis of the average response probabilities over all trials.
Choosing n blocks with all bj = 1 corresponds to a trial-by-trial analysis.

In a two category learning experiment, the data take the form of counts, dij, of the
number of correct responses made by all of the subjects in the ith partition on the jth
block of learning trials. Suppose also that a category learning model M , with its parame-
terization θi, predicts a correct response probability of γij at the ith group of subjects on
the jth block. Then the likelihood of the data arising under the model is given by the bi-
nomial distribution: p (dij | Mi, θi) =

(
bjki

dij

)
γ

dij

ij (1 − γij)
bjki−dij . The likelihood of a model

family simply extends this result to consider every block of trials and every partition, so
that

p (D | M) =
∏

i

∏

j

(
bjki

dij

)
γ

dij

ij (1 − γij)
bjki−dij . (1)

The extension of this likelihood function to more general category learning experiments
with more than two possible category responses, using a multinomial distribution, is
straightforward.

Having defined the likelihood function, the Bayesian Information Criterion (BIC:
Schwarz 1978) can be applied to balance goodness-of-fit with the complexity of a model
family. The BIC is given by:

BIC = −2 ln p (D | θ∗) + P lnN, (2)
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where P is the number of parameters in the model family (i.e., the sum of all the pa-
rameters used by the models for each group), N is the total number of data, and θ∗ is
the maximum likelihood parameterization over all the models. Different possible model
families, corresponding to different groupings of subjects, can be compared in terms of
their BIC values, with the minimum BIC corresponding to the most likely account of the
data.

Demonstration Using ALCOVE

Kruschke’s (1993) Study

ALCOVE is a model of category learning that uses an exemplar-based stimulus rep-
resentation, similarity-based generalization that is mediated by selective attention, and
error-based learning from external feedback. The standard ALCOVE model (Kruschke
1992) uses four free parameters. These control the rate of learning for attention weights
(λa), the rate of learning for the associations between stimulus representations and cat-
egory responses (λw), the gradient of the generalization function that measures stimulus
similarity (c), and the way in which different levels of evidence for category alternatives
are mapped onto response probabilities (φ).

Kruschke (1993) considered the ability of ALCOVE to model human category learning
for filtration and condensation Categorization tasks (Garner 1974). The results of four
separate experiments were reported, covering two filtration tasks (called position-relevant
and height-relevant, due to the nature of the stimuli) and two condensation tasks (called
condensation A and condensation B). The data involved a total of 160 subjects, with
40 completing each task. Kruschke (1993) fit ALCOVE to all four sets of experimental
results simultaneously, using trial-by-trial data formed by averaging across all 40 subjects.
An examination of the individual learning curves in the raw data, however, reveals a large
degree of variation between subjects within each experiment, and raises the possibility
that there are psychologically meaningful individual differences in category learning.

Heuristic for Partitioning Subjects

In classification and clustering, an essential requirement for the determination of homoge-
nous classes is a calculable similarity or distance measure between objects being compared
(Gordon 1999). For category learning, the objects are the individual experimental obser-
vations for each subject, (i.e., each subject’s learning curve). A candidate measure for
describing the similarities between these curves is the correlation coefficient, which we
used in the a two-stage heuristic. In the first stage, singular value decomposition is ap-
plied to produce an ordered eigenvector-based representation of the similarities between
the learning curves of subjects. In the second stage, a simple k-means clustering algorithm
is applied to this representation to find clusters of subjects.

For each of Kruschke’s (1993) four category learning tasks, this heuristic was applied
to produce a range of partitions of the data, from a single group with all 40 subjects, to
seven groups with differing numbers of subjects in each group. As a concrete example of
this process, the clusters found when the subjects were divided into two groups for the
position-relevant filtration task are shown in Figure 1. Each circle represents the learning
curve of a subject, represented according to their values along the first two component
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Figure 1: The application of the heuristic for partitioning subjects to find two groups for
the position-relevant filtration data.

eigenvectors. The two groups of subjects identified by k-mean clustering are superimposed
using broken lines. One cluster on the left encompasses 28 of the subjects, while a much
tighter cluster on the right encompasses the remaining 12 subjects.

Model Fitting and Evaluation

For each of the clusterings for each task, maximum likelihood fits of ALCOVE were found
using a different parameterization for each group according to Eq. (1). BIC values were
then calculated for each model family using Eq. (2), giving the results1 shown in Figure 2.
It is clear that the minimum BIC for three of the four tasks (position-relevant filtration,
condensation A and condensation B) is achieved when two separate groups of subjects
are considered, while the height-relevant filtration data are best modeled by considering
all of the subjects as learning in the same way.

Figures 3 and 4 give more detailed results for, respectively, the position-relevant fil-
tration and condensation A tasks. In both of these figures, the top panel, labeled “All”,

1The full range of BIC values for the CB task is not shown because, when four or more groups are
considered, at least one of the groups contains only subjects who become less accurate as learning blocks
progress. ALCOVE is qualitatively unable to accommodate the decrease in the averaged learning curve
for this type of group, leading to very poor fit, and very large BIC values. We have omitted these values.
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Figure 2: The pattern of change in BIC values for each clustering of the position-relevant
filtration (FP), heigh-relevant filtration (FH), condensation A (CA) and condensation B
(CB) category learning data.
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shows the average accuracy of all subjects across the eight learning blocks, and the max-
imum likelihood fit of ALCOVE to these data. The middle and bottom panels show the
first (G1) and second (G2) groups of subjects proposed by the two-group model family
that is prefered by the complexity analysis. These panels show the average accuracy
for both groups of subjects separately, together with the maximum likelihood ALCOVE
learning curve.

Figure 3 shows that the moderate learning evident when treating the subjects as
having no individual differences is better modeled as coming from two distinct groups of
subjects. Some subjects, in the first group, maintain near-perfect accuracy throughout
the category learning task. Other subjects, in the second group, learn more gradually,
only achieving near-perfect accuracy in the last few learning blocks. Figure 3 shows that,
with the exception of the rapid achievement of accuracy in the first block for the first
group of subjects, ALCOVE is able to model both of these patterns of learning2.

In a similar way, Figure 4 shows that the gradual increase in accuracy, evident when
treating the subjects as having no individual differences, is better modeled as coming from
two distinct groups of subjects. The first group exhibits almost no learning, while the
second learns at a moderate rate. Once again, ALCOVE is able to model both of these
patterns of learning. In fact, ALCOVE has more difficulty accommodating the learning
data resulting from averaging across all of the subjects. What the individual differences
analysis developed here suggests is that this inability may not indicate a fundamental
weakness in ALCOVE, but rather that the averaging process involved in summarizing
human performance has masked important individual differences, and corrupted the un-
derlying learning patterns in the original data.

Table 1 shows the maximum likelihood parameter values for each group of subjects in
the model family with the lowest BIC value, for all four learning tasks. These parameter
values are generally interpretable in terms of the different learning behavior revealed by
the individual differences analysis. For example, for the position-relevant filtration task,
the first group of subjects have a greater λw value than the second group, consistent
with their more rapid learning. For this task, both groups have high φ values, consistent
with their decisiveness (or ‘confidence’) in mapping evidence into response probabilities.
Both groups of subjects in the condensation A task, however, have much lower φ values,
consistent with their inferior learning performance, and the first group in this task, who
basically fail to learn, have a very low φ value. Other comparisons of this type, both within
and across tasks, generally have meaningful and useful interpretations, and highlight the
ability of ALCOVE to represent psychologically important variations in category learning
through its free parameters.

Discussion

There are at least two conclusions that can be drawn from modeling individual differ-
ences in Kruschke’s (1993) category learning data using ALCOVE. The first is that there
is strong evidence for large and meaningful differences in the learning behavior of groups

2It is possible the application of one of ALCOVE’s descendents, such as RASHNL (Kruschke & Jo-
hansen 1999) or the unified mixture of experts model (Kruschke 2001), which emphasize rule-oriented
learning and incorporate a rapid attention shifting capability (Kruschke 1996), could overcome the defi-
ciency.
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Figure 3: The change in accuracy across learning blocks for the subjects (broken lines)
and ALCOVE (solid lines), for the one group (“All”) and two group (“G1” and “G2”)
model families on the position-relevant filtration task. Error bars on the subject data
represent one standard error in each direction.
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Figure 4: The change in accuracy across learning blocks for the subjects (broken lines)
and ALCOVE (solid lines), for the one group (“All”) and two group (“G1” and “G2”)
model families on the condensation A task. Error bars on the subject data represent one
standard error in each direction.
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Table 1: The maximum likelihood parameter values for each group of subjects in the
model family with the lowest BIC value, for all four learning tasks.

Task Participant Group λw λa c φ

Position-relevant Filtration (FP) G1 0.38 0.49 1.68 3.20

G2 0.06 27.0 6.83 2.66

Height-relevant Filtration (FH) All 0.23 0.58 1.56 1.00

Condensation A (CA) G1 0.47 1.14 2.53 0.27

G2 0.24 0.38 7.52 0.93

Condensation B (CB) G1 0.41 0.32 0.79 0.31

G2 0.17 0 .02 3.37 1.09

of subjects for three out of the four tasks. Previous analyses, adopting the standard cog-
nitive modeling practice of considering all of the subjects as a single group, are insensitive
to these potentially important patterns of variation. The second conclusion is that, for
these data, the basic ALCOVE model is generally able to capture the individual differ-
ences in learning, when asked to model appropriate groups of subjects. It does this by
applying different psychologically meaningful parameterizations to accommodate varia-
tions in learning behavior. In this sense, what the results presented here demonstrate is
that accounting for individual differences using model families has the potential to extend
and increase the usefulness of existing cognitive models significantly.

From this promising start, there are a number of directions in which the basic ap-
proach described here can be refined and extended. Most generally, the extension to
other cognitive phenomena provides a rich set of opportunities for future research. As
with category learning, there is evidence of individual differences in the similarity data
used to model stimulus representations (e.g., Ashby, Maddox, & Lee 1994; Lee & Pope
2003), and in the curves of forgetting used to model memory retention (e.g., Anderson &
Tweney 1997; Heathcote, Brown, & Mewhort 2000; Myung, Kim, & Pitt 2000; Wixted
& Ebbesen 1997), and in a range of other data from which cognitive models have been
developed.

Considering a broader range of cognitive phenomena highlights the possibility of ex-
tending individual difference accounts to incorporate fundamentally different models to
capture between-subject variation, rather than relying solely on parametric variation
within the same basic model. In memory retention, for example, one group of sub-
jects could be modeled using a power function while another group is modeled using an
exponential decay function. For stimulus representation, some groups of subject could
be modeled using a featural representation while others use a dimensional representa-
tion. In the category learning context considered here, it may make sense to model some
subject groups using ALCOVE or its descendants, but apply a very different category
learning model to others, such as the fast and frugal account provided by Categorization-
By-Elimination (Berrety et al. 1999).
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One of the weaknesses of the demonstration presented here is the reliance on the BIC
to compare different competing individual differences models. While the BIC is conceptu-
ally and computationally straightforward, it is insensitive to the complexity effects arising
from the functional form of parametric interaction within the individual models (Myung
& Pitt 1997). This is a potentially important shortcoming, especially if fundamentally
different models are used to explain performance for different subject groups. There are,
for example, many competing models of retention that use two parameters (Rubin &
Wenzel 1996), with different complexities that the BIC is unable to distinguish. The
obvious remedy for this problem is to use more sophisticated model selection criteria that
are sensitive to all of the components of model complexity. These include measures such
as the Stochastic Complexity Criterion (SCC: Rissanen 1996; see also Myung, Balasub-
ramanian, & Pitt 2000) and Normalized Maximum Likelihood (NML: Rissanen 2001).
For cognitive models that resist the formal analysis needed to derive these measures, an
alternative is to use numerical methods, such Markov Chain Monte Carlo (e.g., Gilks,
Richardson, & Spiegelhalter 1996) to approximate the Bayesian posterior distributions
that compare model families.

A final possibility for refining the approach demonstrated here is to use a more prin-
cipled optimization approach to determine the groupings of subjects. The method used
here, based on k-means clustering of correlations, is a sensible heuristic one. It is partic-
ularly well suited to a model like ALCOVE that requires considerable computation effort
when finding maximum likelihood parameter values. The clustering heuristic is designed
to identify good partitions of the subjects into groups, and only requires parameter fitting
to be done once for each possible number of subject groups. For other models, however,
such as analytic models of memory retention, finding maximum likelihood parameteriza-
tions is straightforward. In these cases, a more explicit optimization approach to finding
partitions could be adopted, because repeated parameter fitting is possible. For example,
a stochastic hill-climbing procedure could be used to find subject groups that minimize
the BIC, SCC or NML of the model family.

Collectively, these possibilities describe a principled and general approach for building
and evaluating cognitive models, using a variety of basic models and numbers of para-
meterizations, to accommodate individual differences. It is a more general approach to
cognitive modeling than one that averages data, assuming there are no individual differ-
ences. It is a more powerful and succinct approach than one that uses subject-by-subject
analysis. While much of the work to realize this potential remains to be done, the demon-
stration presented here, using multiple ALCOVE models to capture differences in category
learning, provides a good concrete example of its potential. It shows how using model
families, and relying on principled model selection criteria, can be used to develop detailed
and interpretable accounts of both how people are cognitively the same, and how they
are different.
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