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Abstract

We consider the problem of blowing-induced boundary-
layer separation of a general class of shear-thinning fluids.
A uniform blowing velocity is prescribed at the surface
of a flat plate. In the case of a Newtonian fluid this
flow separates at a finite distance downstream from the
leading edge of the plate. In order to quantify separation
for a non-Newtonian fluid, the boundary-layer equations,
in both similar and non-similar form, are solved. Our
results demonstrate that shear-thinning fluids can act as
a useful deterrent of flow separation.

Introduction

Boundary-layer separation is one of the fundamental
problems of fluid dynamics. The potential benefits in
controlling flow separation have driven much of recent
work on this topic. Here we consider the problem of
the constant rate injection of a shear-thinning fluid into
a laminar boundary-layer flow over a flat plate; the
boundary-layer fluid and the injection fluid are taken to
be identical in all respects.

Wu & Thompson [9] demonstrated that the boundary-
layer approximation is valid for shear-thinning fluids
down to Reynolds number of the order of thousands. This
work was confined to attached flat-plate flows and did not
consider the question of flow separation. In the case of
Newtonian fluids, boundary-layer separation induced by
fluid injection has received considerable attention in the
past thirty years. The early work of Catherall et al. [3]
considered the problem of the separation of the flow of a
Newtonian flat-plate boundary layer induced by blowing
through the plate. Their numerical solution of Prandtl’s
boundary-layer equations demonstrated the structure of
the flow at the onset of separation. From these results
they were able to deduce that at the point of vanishing
skin-friction the flow develops in such a way that
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where z, is the point of separation. Thus the flow ter-
minates in a singularity at the point of separation. This
singularity is different from the classical Goldstein singu-
larity [5] which exhibits an algebraic dependency on z* in
the limit £* — 0. This work was subsequently extended
by a number of authors to supersonic flows [8] and injec-
tion [7] through a finite slot (see [2] for a recent review
on boundary-layer separation).

The boundary-layer flow of shear-thinning fluids can be
characterised by the fact that the shear stress is reduced
as compared to an otherwise equivalent Newtonian flow
[1]. This then suggests that the onset of flow separation
will be affected, perhaps quite dramatically, by the intro-
duction of a non-Newtonian fluid into the flow. Such is
the subject of the present investigation.
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Formulation

Consider then the boundary-layer flow of a non-
Newtonian fluid over a permeable flat plate through
which fluid is injected at a constant rate. For definite-
ness we will take as our model non-Newtonian fluid one
in which the shear stress is related to the rate-of-strain
via the power-law model

T=KYy",

where * is the rate-of-strain given by
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We focus on shear-thinning fluids for which the fluid in-
dex n < 1. Here x and § are Cartesian coordinates
aligned along and normal to the plate, respectively, and
U, V are the corresponding components of the velocity
field. All lengths have been non-dimensionalized with re-
spect to a characteristic length scale L and speeds with
respect to a characteristic speed Ux.

In order to pose the problem within a boundary-layer
context we must restrict our attention to a regime in
which the wall-normal blowing (or injection) speed is
of size O(Re™Y™*V) (see below). Introducing the
boundary-layer variables

V= Refl/("ﬂ)v(x,y),

y = Re'/ "tV U = u(z,y)

we find the boundary-layer equations can be written as
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which must be solved subject to boundary conditions

y =0, (2a)
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In arriving at (1b) we have used the fact that under the
boundary-layer approximation the rate-of-strain reduces
to
g = Rel/("ﬂ)@.
dy
Self-similar flows

In general it is not possible for the flow to develop in a
self-similar fashion unless the blowing velocity is chosen
to take on a particular functional form in terms of the
distance z from the leading edge of the plate. To see this
we seek a general solution in similarity form

w=a"f'(n), v=a"""snf — (s +m)f],



where

n=y/(az"").
For such a similarity form to exist the blowing velocity
must be prescribed by

v(0) = C(x) = Cox*t™ ",
and the similarity index s given by

5= 1+m(n—2)
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with a=n

The equation governing the self-similar flow is then
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which must be solved subject to the boundary conditions
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f(0) = - f1(0)=0 (4)

Note that the case of a flat-plate boundary layer is re-
covered by setting m = 0 in equation (3).

Equation (3) was solved using a simple shooting method
which employed a fourth-order Runge-Kutta quadrature
scheme. After some experimentation the integration
step-size was chosen to be Anp = 0.02. Near the point
of vanishing skin-friction the behaviour of the veloc-
ity field in the far field was monitored to ensure that
f' had the correct asymptotic behaviour (i.e. f' —
1 + exp. small terms). We therefore monitored the be-
haviour of f” to ensure that it approached zero in the
far-field. This dictated setting the far-field boundary
condition at 7. = 200 thus giving 10° points in the 7
direction.
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Figure 1: Plot showing the dependency of the reduced
skin-friction on Cy/s for values of n =1,0.9,...,0.3.

The results of this calculation, for the case of Blasius-like
flow m = 0, are presented in Figs. 1 and 2. Figure 1 shows
plots of the reduced skin-friction f,,(0) versus the nor-
malized blowing velocity Cy/s for values of the power-law
index n ranging from 1 to 0.3. The zero-blowing results
Co = 0 agree with the earlier results of Acrivos et al. [1].
In all cases presented, increasing the magnitude of Co/s
leads to separation, defined in this instance as the point
at which the wall shear f,,,(0) = 0. This is readily seen in
Fig. 2 where we plot the value of Cy/s at which separation
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Figure 2: Plot showing the dependency of the “point of
separation” on the power-law index n. Here the bound-
ary layer is deemed to have separated (i.e. a point of van-
ishing skin-friction is attained) when £ (0) < 1.0 x 10™%.

occurs versus n. Flows whose parameters fall in the re-
gion above the curve are separated (or detached). These
results hint at the separation-delaying potential of shear-
thinning fluids. However, because of the nature of these
results (being for a blowing velocity v(0,z) = Coz*™'),
it is difficult to interpret them for the more physically
realistic flow of constant blowing. Although similarity
solutions do exist for this case (we have the requirement
that m = 1 — s in (3)) the simplest case of uniform flow
over a flat plate with uniform injection of fluid at the
plate cannot be described via a similarity solution. We
are thus forced to solve the full boundary-layer equations
(1) numerically. We now turn our attention to this task.

Non-self-similar flows

In order to place the system (1) into a form that is
suitable for computational purposes we define new in-
dependent variables ¢ = (nz)™ ("*1 | the streamwise co-
ordinate, and = y/(nz)"*/"*Y the wall-normal co-
ordinate. The z-momentum equation (1b) becomes
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while the continuity equation (1a) reduces to
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Integrating (6) with respect to n gives
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where the boundary condition v = C on i = 0 has been
used to determine the constant of integration. Combin-
ing equations (5) and (7) produces the following integro-
differential form of the boundary-layer equations
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Setting n = 1 (the case of a Newtonian fluid) we find
equation (8) reduces to that solved by Catherall et al. [3].

The numerical scheme

Equation (8) was solved using the method employed
by Catherall et al. [3]. Second-order centred differences
were used to replace derivatives with respect to n and
¢.  The discretization in the ¢ direction exploits the
parabolic nature of the boundary-layer equations and al-
lows for an efficient marching scheme in the ¢ direction
to be set-up. The resulting numerical scheme is fully
implicit and consists of a set of J non-linear algebraic
equations. These equations relate the J pivotal values
u; at the current £ station to the J pivotal values u; at
the previous £ station:
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where the circumflex denotes the arithmetic mean of val-
ues at the current and previous ¢ stations, 7" denotes the
trapezoidal sum with the first and last terms halved, and
k is the iteration count. At each ¢ station the bound-
ary conditions uwp = 0 and ws4+1 = 1, corresponding to
no-slip along the plate and matching to the free-stream
velocity in the limit 15 = Nmaee > 1, were explicitly satis-
fied. The J nonlinear algebraic equations (9) were solved
using a J-dimensional Newton iteration method. At each
level of iteration k the linear system of J equations was
solved by Gaussian elimination. In all results reported
here the injection velocity, denoted by C in (9), is taken
to be constant along the entire plate and was set equal
to unity.

A uniform step-size in £ was adopted with the step-size,
AE. After some experimentation we chose A¢ = 1x107%.
In the wall-normal direction the grid was uniform and the
spacing h was set to 0.01. To commence the marching
an initial velocity profile at £ = 0 is needed. These were
calculated by solving a Blasius-like ordinary differential
equation, (3) with m = 0, for different values of the fluid
index n. To monitor the progress of the calculations and
to determine the location of the point of separation the
reduced skin friction, which is given by g_Z|y=0, is cal-
culated. At each ¢ station a value for the reduced skin
friction is calculated using a second-order accurate finite-
difference approximation. When the value of the reduced
skin friction falls below a certain threshold, 1 x 10™* in
this case, separation of the flow was deemed to have oc-
curred and the computations were terminated.

Results and Discussion

The results from our calculations are presented in Figs. 3
— 5. Fig. 3 shows a plot of the streamwise location x; at
which the flow separates as a function of the fluid index
n. As n is decreased, so that the shear-thinning nature
of the fluid increases, the point of separation moves fur-
ther from the leading edge of the plate. It is perhaps
not surprising that the variation of xz, with n is non-
linear given the nonlinear dependency of the governing
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equations on n. In order to interpret these results we
slightly recast our problem and suppose that in our non-
dimensionalisation of the streamwise variable we take our
characteristic length scale L to be equal to the length of
the plate. A non-dimensional streamwise variable z = 1
now corresponds to the trailing edge of the plate.t We
can then determine the value of n for which the bound-
ary layer remains attached along the whole length of the
plate (for the constant value of the blowing velocity con-
sidered here C = 1). From Fig 3, reading off the value
of n for which z; = 1, we find for n < 0.89 the flow re-
mains attached (unseparated) along the whole length of
the plate.

0.6 I I I I

0.85 0.9 0.95 1

Figure 3: Plot showing the location of the separation
point, xs, versus the fluid index, n.

During our calculations we encountered a significant de-
pendency of the location of the separation point on the
choice of the position 7, at which the far-field boundary
condition was applied. If n = JAn was not selected
carefully, so as to ensure that the streamwise velocity
satisfies its correct asymptotic boundary condition, the
numerical scheme converged to an invalid velocity profile
and would generally under-predict the point of separa-
tion. In Fig. 4 we present velocity profiles at the numer-
ically determined value of separation x = z,. Here we
see that, for the range of n-values considered, v — 1 and
up — 0 at 7 = . As the value of n is decreased the
value of 1o was increased. This is a direct consequence of
the fact that the boundary-layer thickness increases with
decreasing n. This computational requirement of 7., on
n places a heavy computational burden on the scheme
that we have used if we are to retain sufficient accuracy
in the n direction. It also provides a lower bound on the
values of n which we were able to study; with the com-
putational resources available n = 0.75 was the limiting
case.

In Fig. 5 we present plots of the streamwise velocity field
versus 7 for values of & ranging from x = 0 (the starting
profile) to z = x, for the particular case of fluid index n =
0.75. This demonstrates how the velocity profile develops
as the marching scheme progresses along the plate. As
x increases the boundary layer thickens. Further down

fOf course, the calculations must terminate at that point
as the boundary layer equations are no longer valid in the
wake, or for that matter in the vicinity of the trailing edge.
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Figure 4: Plot of streamwise velocity u versus n at the
point of separation for different values of the fluid index
n.

the plate the flow shows quite a sudden and dramatic
growth of the boundary layer as the point of vanishing
skin friction (the separation point) is approached. Such
blow-off of the boundary layer is typical when injection of
fluid is present. We also note that these results serve to
provide confirmation that the flow does not develop in a
self-similar fashion when the blowing velocity is constant.
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Figure 5: Plot of the streamwise velocity versus n at
different locations, x = 0,0.2,0.4,0.6,0.8,1.0 and z = xs,
along the plate for a fluid with index n = 0.75.

Conclusions

We have considered the problem of blowing-induced
boundary-layer separation for a general class of non-
Newtonian fluids whose shear stress is modelled by a
power-law constitutive relation. For a fixed value of
the blowing velocity the effect of decreasing the fluid in-
dex n is to shift the point of separation further down-
stream from the leading edge of the plate. This re-
sult clearly demonstrates the separation-delaying effec-
tiveness of shear-thinning fluids.

The analysis was based upon the assumption that the

fluid within the boundary layer and the injected fluid
were identical. This somewhat restrictive assumption
could, of course, be relaxed by considering the problem as
a two-component flow in which the upper fluid is New-
tonian and the lower fluid is non-Newtonian. Such a
formulation would resolve the question as to how a film
of shear-thinning fluid will affect the dynamics of the
boundary layer.

The results presented above have been obtained under
the assumption that the boundary-layer flow remains
laminar prior to separation. However, associated with
the onset of boundary-layer separation the flow will de-
velop points of inflexion at which wuyy(ye,z) = 0; see
Fig. 5. In this case the flow becomes susceptible to the
short wavelength instabilities known as Rayleigh waves
[4]. Whether, or where, the flow does develop these short-
wavelength instabilities and how their growth rates are
modified by the non-Newtonian nature of the underlying
boundary-layer flow is, as yet, unknown. We hope to be
able to answer these questions in the near future.
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