Copyright © 2002 IEEE. Reprinted from
IEEE/ACM International Symposium on Cluster Computing and the
Grid (2nd : 2002 : Berlin, Germany)

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE%2FACM+International+Symposium+on+Cluster+Computing+and+the+Grid+%282nd+%3A+2002+%3A+Berlin%2C+Germany%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE%2FACM+International+Symposium+on+Cluster+Computing+and+the+Grid+%282nd+%3A+2002+%3A+Berlin%2C+Germany%29

Java Coglets

Darren Webb and Andrew L. Wendelborn
Department of Computer Science
University of Adelaide
South Australia 5005, Australia

Abstract

This position paper considers how existing Grid in-
frastructure can be used to support Java computation
on the Grid. We are interested in a class of Java appli-
cations characterized by distributed, mobile code. We
identify and address these problems by building upon
existing Grid services, resulting in a proposed infras-
tructure called Coglets that supports homogenous, se-
cure access to Java-enabled Grid resources.

1 Introduction

The Grid is a geographically-dispersed, large-scale
execution environment used to solve large, complex
problems. The Grid integrates heterogeneous resources
with dynamic availability and capability connected by
an unreliable network. The Globus toolkit[1] is an en-
abling technology that provides us with a uniform view
of this execution environment. The toolkit enables
us to find resources, obtain performance data, stage
program inputs, remotely execute programs, and stage
program results.

Many projects have extended their software to take
advantage of Grid-enabled resources. Generally, these
projects access basic Grid services through the Java
Commodity Grid toolkit (CoG)[4]. The toolkit enables
their software to transfer Java code to a resource and
fork a virtual machine to execute the code. An alterna-
tive is the “100% Java GRAM?”[4] which treats a JAR
file as an executable. The Java GRAM first stages the
JAR file then forks a virtual machine to execute its
code. The CoG does not address issues of locating
Java-enabled Grid resources, heterogeneous Java in-
stallations, or security. The Java GRAM handles some
of these issues, but necessitates replacing some existing
Globus services with those of the Java GRAM.

Here we propose a new infrastructure to standard-
ize Java computation on the Grid. This infrastructure

exploits existing Globus services and protocols for se-
curely staging and executing Java code in a manner
that is natural to Java programmers. Central to this
infrastructure is the Coglet, a simple mechanism for
specifying Java execution on the Grid. Coglets aim
to exploit the platform independence of Java, and the
architecture-neutral protocols of Globus, in a consis-
tent, secure manner.

2 Coglets

A Coglet is a simple specification for running Java
on the Grid. A Coglet is similar to an applet, specify-
ing a reference to Java code to be downloaded and the
name of an executable class. However, Coglet execu-
tion occurs on a Grid resource. Like an applet, a Coglet
is specified by a Coglet tag. This tag is an application
of the Resource Specification Language (RSL), used in
Globus for resource queries and job requests.

Suppose we want to issue a request to execute a Java
program named Main whose class is stored in a JAR
file named classes. jar, parameter name=value and
program argument argl. To execute the Java program,
we start a virtual machine program with arguments
including the location of classes, parameters, the name
of the class containing a main () method, and program
arguments. Specified directly in RSL it is:

& (executable=java)
(arguments=-classpath classes.jar
-Dname=value Main argl)

There are several problems with this request. First,
the executable attribute specifies the Java virtual ma-
chine program and the arguments attribute is littered
with low-level details. The executable should be the
Main class and its codebase in classes.jar. This
has ramifications for executable staging. Globus sup-
ports staging of the executable, stdout and stderr
attributes. This means the Java programmer is respon-
sible for staging the codebase. Second, the request as-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

sumes that Java is installed, in the path, invoked by
the command java, and is correctly configured. This
is not always the case.

We propose the request be:

& (executable=Main)
(codebases=https://codebase:666/classes.jar)
(params=-Dname=value) (arguments=argl)

We have introduced two new attributes and modi-
fied the interpretation of another two. The executable
attribute now specifies a class containing a main()
method, denoting the name of a Java program. Op-
tionally, this attribute could specify a JAR file with
a manifest entry denoting a class containing a main()
method. The codebases attribute specifies the class-
path as a comma-delimited list of URLs denoting the
search path for classes. Each URL specifies a direc-
tory or JAR file. The params attribute enables the
programmer to specify additional virtual machine pa-
rameters, including system properties and virtual ma-
chine configuration. Finally, the arguments attribute
specifies input arguments for the program.

We feel the new request is more intuitive to Java
developers, and better fits the definition of the request
attributes. However, addition and redefinition of the
request will require a specialized jobmanager capable
of correctly interpreting the attributes.

We propose a jobmanager-java for Java programs,
that interprets these request arguments and forks a
machine with the correct arguments. A dedicated job-
manager for Java programs offers a number of benefits.
The jobmanager-java implicitly identifies a Java byte-
code processor independent of its implementation (vir-
tual machine or direct execution processor) and low-
level execution details. The jobmanager-java identifies
a Java-enabled resource that can be published to the
grid information services. This identifies Java-enabled
Grid resources to users without the guess work. But
importantly, the virtual machine program can be con-
figured to apply security policy to code mobility. We
now discuss this issue in more detail.

3 Grid Sandbox

Java introduces a number of interesting problems to
the Grid. A Java class loader can download code across
a network. Code downloaded across the network is not
trustworthy, so there is a need to apply some control.
For this purpose, Java provides the security manager
or access controller to establish security policy.

One reason for the success of applets is the applet
sandbox. Applets are untrusted programs downloaded
over the network and run locally. The sandbox is a

security manager that imposes strict controls on what
untrusted code can and cannot do. For example, an
applet can not access the local filesystem, execute pro-
grams or native code of the local system, or initiate
socket communication to hosts other than the web
server. These controls are too low-level and too re-
strictive for Grid computation[3].

We propose a Grid Sandbozr that is intended to se-
cure code mobility and still facilitates data mobility
with other participants. We envisage the sandbox,
built upon the Grid Security Infrastructure (GSI)[2],
will establish a “ring of trust”, ultimately comprising
a set of mutually authenticated resources and partici-
pants within which less restrictive interchange can take
place.

The sandbox enforces a policy whereby code can be
downloaded only from trusted services or participants
inside the sandbox. GSI provides communication in-
tegrity, hence an eavesdropper can read downloaded
code but not modify it. Consequently, we do not feel
it necessary to enforce strong policies that restrict file
access, initiation of socket connections or invocation of
external code.

4 Summary

The Coglet infrastructure we propose enables secure,
peer-to-peer computation using Java on the Grid. The
Coglet tag fits neatly within the RSL framework to
standardize the submission of Java-based job requests.
The jobmanager-java interprets the Coglet tag and ini-
tiates a Java virtual machine, with a flexible but re-
strictive Grid sandbox security model. The infrastruc-
ture is simple, flexible and general. Further, we believe
the Coglet infrastructure can be easily applied to other
commodity toolkits, such as the toolkit for Python.

References

[1] I. Foster and C. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. The International Journal
of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

[2] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke.
A Security Architecture for Computational Grids. In
Proc. 5th ACM Conference on Computer and Commu-
nications Security Conference, pages 83—92, 1998.

[3] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi,
M. Satoh, and U. Nagashima. Ninflet: a migratable
parallel objects framework using Java. Concurrency:
Practice and Ezperience, 10(11-13):1063-1078, 1998.

[4] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A
Java Commodity Grid Kit. Concurrency and Computa-
tion: Practice and Ezperience, 13(8-9):643-662, 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

	29501
	hdl_29501

