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Abstract

Support for evolution can be classified as static or dy-
namic. Static evolvability is principally concerned with
structuring systems as separated abstractions. Dynamic
evolvability is concerned with the means by which change
is effected. Dynamic evolution provides the requisite flex-
ibility for application evolution, however, the dynamic ap-
proach is not scalable in the absence of static measures to
achieve separation of abstractions. This separation comes
at a price in that issues of concern become trapped within
static abstraction boundaries, thereby inhibiting dynamic
evolution.

The need for a unified approach has long been recog-
nised but existing systems that attempt to address this need
do so in an ad-hoc manner. The principal reason for this is
that these approaches fail to resolve the incongruence in the
underlying models. Our contention is that this disparity is
incidental rather than fundamental to the problem. To this
end we propose an alternative model based on the Compli-
ant Systems Architecture (CSA), a structuring methodology
for constructing software systems.

The overriding benefit of this work is increased flexi-
bility. Specifically our contribution is an instantiation of
the CSA that supports unified static and dynamic evolution
techniques. Our model is explored through a worked exam-
ple in which we evolve an application’s concurrency model.

1 Introduction

Support for evolution can be classified as static or dy-
namic. Static evolvability is principally concerned with
structuring systems as separated abstractions, and then
evolving these abstractions offline. By identifying all de-
pendencies, and isolating those abstractions that are inde-
pendent, static evolvability enables individual application
requirements to be changed in isolation. Dynamic evolv-
ability is concerned with the means by which online change
is effected. Techniques such as type-safe linguistic reflec-
tion are used to perform run-time modifications to code, dy-
namically changing the way in which the code executes in
response to system changes. In this paper, we focus on the
use of dynamic evolution techniques under application con-
trol. Specifically, we consider the use of dynamic evolution
to fulfil the changing needs of non-functional requirements.

A standard practice in software development is to parti-
tion systems into modules implementing separate abstrac-
tions [29]. Dynamic or static evolution can then be applied
to individual abstractions, reducing the potential for pro-
grammer error and decreasing application complexity. This
separation comes at a price, however, in that issues of con-
cern become trapped within static abstraction boundaries.

A complete model of evolution must support:

e Changes to the implementation of an abstraction.
e The reallocation of responsibilities for an abstraction.

e The merging of abstractions through the construction
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] Function | Static \ Dynamic ‘
Change Implementation Yes Yes
Merge Abstractions Yes Yes
Reallocate Responsibilities | Yes No
Continuous Operation No Yes

Table 1. Support for evolution as charac-
terised by static and dynamic evolution tech-
niques.

of a higher-level abstraction. This is an important spe-
cial case of the previous point.

e Continuous application operation throughout the evo-
lution process.

Static and dynamic evolution techniques each support
only a subset of these requirements, as depicted in Table 1.
The conflict between support for continuous operation and
reallocation of responsibilities between abstractions repre-
sents an incongruence between the models of static and dy-
namic evolution. Run-time information used by dynamic
evolution techniques can not in extant models be used to
impact dynamic reallocation of responsibilities across ab-
straction boundaries. Correspondingly, reallocation of re-
sponsibilities can not be easily performed dynamically in
response to changing application requirements.

An additional consideration is whether the changes are
anticipated or unanticipated. Anticipated dynamic evolu-
tion requirements may be partially accommodated through
the definition of appropriate abstractions; however, unantic-
ipated changes, the majority of cases [28], can not.

Applications are commonly divided into their functional
requirements (fundamental requirements of the application)
and their non-functional requirements (requirements de-
signed to support the application such as concurrency or dis-
tribution) [12] [19]. For example, an application might per-
form sorting of data provided by multiple clients (threads).
The functional requirements of this application are the pro-
vision of a sorting algorithm and an interface for client
access. That is, an abstraction is made available to the
client. The non-functional requirements include support-
ing consistency in the face of concurrent access through
synchronising access to the functional interface. Systems
that support static evolution encourage the consideration of
non-functional requirements as separated abstractions. In
this example, concurrency abstractions are partitioned from
functional requirements.

Non-functional requirements that are identified as sepa-
rated abstractions are constrained by the same conflict be-
tween dynamic and static evolution models as functional
requirements. In this paper, we propose a model for ap-

plying both static and dynamic evolution techniques to non-
functional requirements that supports both continuous ap-
plication operation and the reallocation of responsibilities
between abstractions.

Further, non-functional requirements are divided into
those requirements that are identified as separated abstrac-
tions and those that are tangled within existing abstrac-
tions. The inability to reallocate abstraction responsibili-
ties dynamically constrains this latter group from recogni-
tion as a separate abstraction. Moreover, the selection of the
point of division is frequently system-dependent rather than
application-dependent.

The need for a unified approach that combines static and
dynamic evolution techniques has long been recognised [7]
[9] [33] but existing systems that attempt the unification do
so in an ad-hoc manner. The principal reason for this is that
these approaches fail to resolve the incongruence in their
underlying models.

We propose an alternative model based on the Compli-
ant Systems Architecture (CSA) [23] [24], a structuring
methodology for constructing software systems. Architec-
tural compliance allows the support architecture to be varied
dynamically to meet the changing demands of the applica-
tion. Supporting compliance at the language level facilitates
the development of applications that are capable of exploit-
ing and adapting the run-time system to support their needs.

The fundamental result of Reynolds [31] tells us that any
layered software architecture necessarily has a fixed point.
Hence, it is no surprise that the CSA cannot deliver com-
pletely evolvable systems. Any instantiation of the CSA
statically defines a fixed point in the operational abstrac-
tions which accordingly defines a limit on the dynamic evo-
lution that can be applied.

The property that distinguishes the CSA from other dy-
namic evolution systems is a separation of policy (the strat-
egy defining an objective) and mechanism (the implemen-
tation of an objective). This separation of policy and mech-
anism, well established as an important property of sys-
tem design [5] [35], enables the development of new pol-
icy from run-time information, independently of the mech-
anisms used. Mechanism and policy typically exist within a
spectrum (see Figure 1) of design choices. Support systems
generally select a fixed point further along the spectrum, in-
tegrating core mechanism with part or all of the available
policy. Compliant policy is defined as policy that has been
completely removed from mechanism and is, hence, uncon-
strained by the assumptions and implementation of mecha-
nism.

A separation of mechanism and policy decomposes ap-
plications into groups defined by policy interdependence.
Hence, where a subject-based categorisation may identify
two non-functional requirements that must be defined as
separate abstractions, a categorisation based on mechanism
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Figure 1. The spectrum of mechanism and
policy.

and policy particular to an application may identify one
combined non-functional requirement, removing static bar-
riers to specifying requirement interdependencies. Further,
the strict methodology of separating mechanism and policy
across all system components (removing the division within
non-functional requirements) delivers support for unified
evolution of all application requirements.

The overriding benefit of our model is increased flexibil-
ity. The identification of which requirements to separate and
the extent to which these abstractions are interdependent is
dynamically under application-control. Specifically, we in-
troduce an instantiation of the CSA that unifies support for
static and dynamic evolution.

We have constructed a compliant architecture [6]
through which we explore evolution of policy. This archi-
tecture supports experimentation into compliant policies for
distributed systems, such as memory management [25] and
cache coherency [10]. Here, the efficacy of the compliant
evolution model is demonstrated through worked examples,
detailing policy specification for concurrency and distribu-
tion models.

2 Developing a Compliant Evolution Model

Static evolution involves the separation of code defining
functional requirements from code defining non-functional
requirements, thereby enabling independent evolution of
both requirement groups [19]. Early static evolution sys-
tems enforce a strict separation of application requirements,
and introduce distinct programming languages or modules
for defining specific concerns. Subsequent to their inde-
pendent specification, each non-functional requirement is
unified with the functional requirements via a language-
specific integration process.

More recent static evolution systems relax the separa-
tion by annotating application requirements with informa-
tion that enables a generic unification process. Although
unification may be invoked online, thereby supporting dy-
namic evolution of each separated requirement, the iden-
tification of which requirements may be separated and the
integration process remain statically defined.

The information barrier present in existing unified static

and dynamic evolution systems constrains evolution except-
ing the case where requirements have been defined indepen-
dently. A well-recognised problem is how to perform effec-
tive run-time evolution where information is required from
multiple separated modules [33]. The support for scalable
evolution via separation of concerns is in conflict with the
need to evolve as required by the application.

2.1 Support for Static Evolution within the CSA

The CSA acknowledges that a strict separation of re-
quirements is not always beneficial to the application or its
dynamic evolution. By allowing the form of separation to
be evolved in a uniform and unrestrictive manner, the appli-
cation can flexibly define its evolution needs.

A formal treatment of the CSA is presented in [24]. The
CSA defines systems in terms of operational abstractions.
Mechanism and policy at any level can be replaced dy-
namically with the combination of mechanism and policy
that better suits the application. Within this view, opera-
tional abstractions are themselves evolvable, enabling the
construction of new architectures.

System services (non-functional requirements) are de-
fined via layers of mechanism and policy; at any one layer,
z, the combination of mechanism and policy at any lower
layer, y : y < z, is viewed by = as composed mechanism
of y. Generic compliance enables mechanism to be placed
(and evolved) at the layer at which it is of most benefit. A
compliant system supports bi-directional information shar-
ing between system layers through the use of upcalls and
downcalls. Downcalls allow policy to dictate the operation
of lower layers. Upcalls trigger the execution of policy code
written at a higher level, enabling lower levels to influence
policy choices. An instantiation of the CSA is defined by
the selection of operational abstractions, where one of these
abstractions, typically the lowest architectural layer, repre-
sents the necessary fixed point.

2.2 Application-controlled Separation of Re-
quirements

All application requirements (be they functional or non-
functional) are modelled through a separation of mecha-
nism and policy, with interactions between these captured
using upcalls and downcalls. In a compliant system, appli-
cations are free to choose whether they use the abstractions
provided or interact with lower level mechanism directly
through the instantiation of new policy.

The CSA layers an architectural model over a system
(which need not be a layered architecture) based on the or-
dering of mechanism and policy composition. These layers
and the contents of the each layer are dynamically evolv-
able. Flattening of the architecture, as performed by the uni-
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Figure 2. Static evolution in the CSA sup-
ported by upcalls and downcalls.

Communications

fication process in static evolution systems, limits the ability
to evolve the structure. In contrast, the CSA allows the ap-
plication to specify and modify its interactions dynamically,
with no pre-determination of required interactions. Unifica-
tion is therefore an ongoing and dynamic process.

Figure 2 depicts a CSA instantiation designed to support
the integration of separated requirements. In this model, the
CSA supports dynamic evolution of mechanism and policy
between a system whose operational abstractions, for sim-
plicity of explanation, consist of an application layer, an
abstract machine layer and a communications layer. The
abstract machine groups its instructions into core instruc-
tions, which represent the fixed point of the system, and
compliant instructions (such as function invocation), which
are evolvable and consist of layered mechanism and policy.

Requirements that the application wishes to separate are
defined in distinct modules; code libraries that may be
reused by later applications. These modules define the pol-
icy that represents the requirements and data sets (such as
invocation information) that are required by lower levels to
indicate when the module should be applied during appli-
cation execution. The application, via a downcall, registers
both a module’s policy and its data sets with the abstract
machine. Applications (dynamically or statically) construct
their libraries with the level of interdependence that they
require for evolution. The definition of the libraries, com-
pliant instructions and their composition can be a dynamic
process with the degree of structuring dictated by the ap-
plication, rather than the underlying system. This defines
a tradeoff rather than a strict separation: with greater in-
terdependence the process of evolving each module using
a run-time evolution mechanism such as reflection [17] in-
creases in complexity. The benefit of exposing this tradeoff
to the application is increased application control.

The process of unification of support for static evolution
and dynamic evolution measures throughout the execution
of the application is as follows:

(a) The application registers policy handlers for all re-
quirements for which it has defined separated libraries.
In this example, the application has defined require-
ments affecting concurrency and distribution.

(b) Each module provides, via a downcall, any invocation
information that is required by the lower level. In this
case, the concurrency module is used to specify syn-
chronisation constraints between two functions defined
by the application. The policy that defines the synchro-
nisation must be invoked (via an upcall) before either
of the two functions is invoked. The invocation infor-
mation passed to the abstract machine in this example
consists of a list containing references to the functions
in question.

(c) The abstract machine determines whether the function
to be invoked requires synchronisation by examining
the invocation information provided by the application.

(d) If synchronisation is required (requiring policy direc-
tion) an upcall is performed to the concurrency mod-
ule, causing the execution of the concurrency policy
code registered in step (a). In this example, the syn-
chronisation constraints are examined by the policy
handler function and it is then determined whether the
invocation of the synchronised function may proceed.

It is important to note that this process is not necessarily
sequential. An application chooses when it registers an up-
call handler, and may change and evolve these handlers or
data sets at any time.

3 An Instantiation of the CSA

ProcessBase [22] is a compliant language that utilises the
modern practice of an abstract machine model. ProcessBase
has the properties of strong typing, first class procedures,
hyper-programming [17] and persistence [4].

Figure 3 illustrates the ProcessBase architecture: an in-
stantiation of a distributed CSA that consists of four distinct
architectural layers.

The application layer views the remaining layers as a
unified system through a single logical address space (with
transparency of the address space controlled by policy). The
second operational abstraction comprises a set of abstract
machines, one per node in the system. Each abstract ma-
chine is further decomposed into a run-time system and a
local cache. The communications layer facilitates commu-
nication between the abstract machines. A collection of ob-
ject stores constitutes the fourth layer and provides orthog-
onally persistent storage. In this instantiation, upcalls are
defined as a form of interrupt and downcalls as the direct
execution of an abstract machine instruction.
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Figure 3. The Distributed ProcessBase archi-
tecture.

3.1 The Constraints of our Instantiation

In order to explore compliance in a practical setting,
we have chosen a pragmatic limit on the available mech-
anisms. Here, the definition of mechanism below the ap-
plication layer is static; the addition of compliant instruc-
tions requires the identification of any further mechanism
and the static integration of this mechanism into the appro-
priate layer. This constraint affects the identification and
placement of mechanism and policy, reducing the poten-
tial benefit of the operational abstractions. All policy that
requires run-time evolution must be identified as such and
placed at the application level.

Policy which represents separated requirements are de-
fined through application-level ProcessBase code. Applica-
tions can access commonly used policy through the use of
ProcessBase libraries. In addition, applications may choose
to define their own libraries or define functions for specific
requirements within individual applications.

Within the limitations of a static abstract machine layer,
instructions that require upcalls or integration of invocation
information must be statically identified and integrated with
the abstract machine before application execution (repre-
senting the fixed point). This defines a static interface be-
tween the application and the abstract machine, and hence
places a strict limit on evolution. An implementation of a
separated requirement consists of the following steps:

e Identification of compliant mechanism to be extended
with policy.

e Identification of the points of policy invocation.
o Identification of the information interface.

e Identification of policy for the requirement.

e Evolution of policy and data sets.

The work represents a proof of concept of the unifica-
tion of support for static evolution and dynamic evolution

principles. We are designing an alternative language system
where compliance is extended to the abstract machine and
communications layers. This alternative system follows an
abstract machine design (based on the Jikes Research Vir-
tual machine [1]) and hence operational abstractions identi-
fied in this work are applicable to this future research. Our
research is strongly influenced by similar research into the
Arena library-based operating system [21], a nano-kernel
which is layered underneath the ProcessBase run-time sys-
tem.

4 Policy Evolution in the CSA

The principal motivations behind concurrent and dis-
tributed systems design are the promises of resource shar-
ing, computational speed-up and increased reliability. How-
ever, delivering these benefits typically involves a trade-off
between application programming complexity and underly-
ing system complexity. It is because of this tradeoff that
concurrency and distribution are commonly selected as ar-
eas in which to explore evolution.

4.1 Concurrency

Concurrency requirements are often chosen as an exem-
plar of non-functional requirements [3] [18] [19] [20]. Their
separation allows object and function synchronisation to be
defined independently of an application’s objects and func-
tions. However, it is also common for synchronisation con-
straints to be dependent on data expressed within a func-
tional requirement. It is therefore often impossible to com-
plete the separation and maintain application functionality.

Figure 4 shows a non-separated implementation of the
bounded buffer problem in ProcessBase, using semaphores
to implement the synchronisation constraints'. In this ex-
ample, these constraints apply to the put and get methods
and are defined through transitions between states where
specific methods are enabled. The transition definitions in-
teract with the application methods, in that data must be
shared between them - namely the size of the buffer. This
sharing leads to the transitions being interspersed through-
out the methods.

In contrast, Figure 5 shows a separated implementation
of the bounded buffer problem in ProcessBase, where a con-
currency library with policy at the abstract machine level is
used to implement the sychronisation constraints. Similar
models can be found throughout the literature [20] [18].

Synchronisation conditions for the get and put func-
tions are provided through their respective synchronisation
functions: syncGetFun and syncPutFun. Calls to a

IFor simplicity of explanation, the implementation of the buffer has
been elided
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type boundedBuffer is
view[put: fun(int); get: fun()->int]
let createBoundedBuffer <-
fun() -> boundedBuffer;
begin
let slots <- loc(buffer.length)
let count <- loc(0)
let empty <- new semapore (buffer.length)
let full <- new semaphore (0)

let putFun <- fun(x int) ;
begin
empty.wait ()
count := ’‘count + 1;
full.signal ()
end
let getFun <- fun() -> int;
begin
full.wait ()
slots := ’'slots + 1;
empty.signal ()
end

view (put <- putFun, get <- getFun)
end

Figure 4. The Bounded Buffer problem.

synchronised function cause the invocation of the respec-
tive synchronisation function, which is able to determine by
inspecting application data whether the invocation may pro-
ceed.

The mutual exclusion of the synchronisation functions
is guaranteed by the underlying abstract machine. In this
model, abstract machine level semaphores are used to en-
sure exclusive access; different implementations are possi-
ble, for example application-level semaphores or monitors
could be used to perform the synchronisation. This imple-
mentation also abstracts over the use of downcalls and up-
calls, which are concealed in the synchronisation library,
syncLib.

The syncLib module is responsible for managing the
data required by the abstract machine and for performing
any downcalls needed to register policy handlers or invo-
cation information. In this case the synchronisation library
creates a handler function which is able to invoke the syn-
chronisation functions created by the application. The ap-
plication programmer could choose to install their own han-
dler if they require more complex evaluation. The library
function activate invokes downcalls to install the han-
dler and the invocation information consisting of tuples of
synchronised functions and their synchronisation functions.

type boundedBuffer is
view[put: fun(int); get:
let createBoundedBuffer <-
fun() -> boundedBuffer;
begin
let count <- loc(0)
let putFun <- fun(x int) ;
count := ‘count + 1;
let getFun <- fun() -> int;
count := ‘count - 1;

fun () ->int]

let syncGetFun <- fun () -> bool;
if ’‘count > 0 then true;
else false
let syncPutFun <- fun () -> bool;
if ’‘count < buffer.size then true;
else false

// synchronisation library
syncLib.activate ()

syncLib.add (syncGetFun, any (getFun) )
syncLib.add (syncPutFun, any (putFun) )

view(put <- putFun, get <- getFun)
end

Figure 5. The compliant Bounded Buffer prob-
lem.

4.2 Distribution

Distribution transparency reduces application complex-
ity but precludes the application from controlling its execu-
tion in a distributed context and, therefore, its performance.
We are using our CSA model to explore systems where
transparency of distribution is also compliant: the applica-
tion is able to define what aspects of distribution it wants to
control, and can ignore all others. Two areas in which we
are examining compliance and policy evolution are remote
method accessibility and migration.

4.2.1 Accessibility

Many distribution systems define remote interfaces for
modules or objects; these interfaces define the signatures of
those functions or methods that are available for remote ac-
cess, defining the parameter transfer modes and, dependent
on the system, the call mode. Typically, the underlying dis-
tribution support system will make decisions regarding seri-
alisation models, synchronisation of remote call invocation,
object transfer, communications protocol and any migration
opportunities.

In our compliant system, we are interested in exposing
the following areas to compliant application control:
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e Defining multiple remote interfaces that may expose
different functions to remote access and with different
policies regarding the call mode, communications pro-
tocol or migration policy.

e Selecting which interface is provided on a per-client
basis.

e Evolving their set of interfaces, and the interface ele-
ments.

4.2.2 Migration

A fundamental question is what is permitted to migrate?
It is possible, and often desirable, to let applications deter-
mine the answer to this question [13]. The Emerald [14]
approach supports a language-level concept that fixes ob-
jects to particular sites. There are primitives in the language
to flag that a particular object is fixed, or unfixed, but that
marks the end of application control. The current CSA in-
stantiation provides a more rigorous method of controlling
whether application-level entities are permitted to migrate.
The CSA framework’s support for evolution extends the ba-
sic concept in three ways. Applications can evolve:

e The set of fixed objects (simple application of evolu-
tion) but also:

e How the notion of being fixed is determined, and
e What being fixed means.

The notion of restricting migration to a (dynamically de-
termined) subset of objects means that the implementation
of a migration request must determine if the given object is
allowed to relocate. That is, migration involves an opera-
tion (isfixed) to test whether the object in question is fixed.
This property could be based on the type or mutability of
the object, assigned by the application, or determined by the
object or application’s current access capability. The isfixed
operation is implemented as a handler; any policy code may
be registered to this handler.

When the set of fixed objects is determined by
application-level assignment, the current set is easily main-
tained in an application-level data structure. This is an
example of where rigid separation of concerns is not al-
ways appropriate. For instance, an integral part of a mobile
agent’s functionality may be to move between several sites
in a distributed system and then become a permanent resi-
dent at one, perhaps based on some run-time information.
The ability to place such a directive in the agent implemen-
tation is a more accurate model of the problem domain than
trying to implement location or migration information in a
separate component.

An application can dynamically evolve this model into
one based on type. Then, instead of searching through a

list of fixed objects, the migrate operation inspects an ob-
ject’s type, comparing it against the set of permitted migra-
tion types. This model entails a greater degree of migration
transparency in that applications no longer explicitly iden-
tify which objects are permitted to move. The evolution
process consists of defining the type-comparison code and
installing it with the isfixed handler.

The set of relocatable types may be defined entirely
within this policy code, or it may be augmented by the ap-
plication via a similar fix/unfix notation. This illustrates
the potential for different levels of policy weaving. At one
level, there is the registration of policy code for the isfixed
operation. At a higher level, the application may continue
to participate in the definition of a particular policy, extend-
ing the weave process. Application specification of fixed
objects or relocatable types are examples of this continued
policy involvement.

When the isfixed policy determines that an object is tied
to a particular site, the migration concern must interpret this
decision. The migration abstraction’s response represents
another avenue for evolution - and one that may involve in-
teraction with other distributed concerns. It may be appro-
priate to simply abort the migration, but another response is
to replicate the item instead. This approach requires coop-
eration between migration, replication and coherency poli-
cies. Applications may also determine their own, individ-
ual, response, such as moving code to data when the latter
may not be transferred.

5 Related Work

Static support for evolution is traditionally viewed as a
software engineering technique [19] [33]. Aspect-oriented
programming [16] introduces the separation of concerns
as a technique designed to encompass both static and dy-
namic support for evolution. Aspect-oriented programming
systems use a weaving process to perform static unifica-
tion of the functional and non-functional requirements. As-
pect] [15] defines single aspects that are not composable.
Hyper/J [26] [27] defines an extended model of aspect-
oriented programming where multiple aspects may be de-
fined and integrated according to a static application con-
trolled composition definition.

In addition to aspect-oriented programming, there exist
several similar models that define separation of application
requirements according to some subject-based categorisa-
tion [11] [3] [18].

Duclos et al [9] recognise the need for the dynamic def-
inition of new aspects that can be integrated with the func-
tional requirements of the application. The authors define
an aspect definition language which can be used to define
independent aspects that are introduced into the system. In
order to extend this system to aspects with interdependen-
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cies, the authors recognise the need to introduce a con-
straint definition language, used to broach the barrier be-
tween the functional requirements and each non-functional
requirement. This model has a similar goal to our work,
but we believe it is made artificially complex by the adop-
tion of separate structural models for the development of
functional requirements, non-functional requirements and
constraint identification. Wand et al [34] propose a model
of aspect-oriented programming where weaving is applied
dynamically at points of execution. However, Wand et al
focus on the denotational semantics and correctness of the
weaving process itself, rather than the potential for dynamic
evolution.

Recent research into dynamic aspect-oriented systems
has shown that existing models are monolithic and exhibit
performance problems [30]. In addition, dynamic weav-
ing may be insecure in that some weave points may be up-
dated with evolved implementations while others are not.
Popovici et al [30] introduce a novel model of dynamic
aspect-oriented programming based on just-in-time compi-
lation that addresses the performance issue. The CSA sup-
ports a broader model of support for evolution than that sup-
ported by dynamic aspect-oriented programming systems in
that it encompasses the identification of aspects, the integra-
tion or weaving process, and provides evolution capabilities
limited only to the fixed points within the architectural in-
stance.

Adaptive systems [2] [8] support a form of dynamic evo-
lution, but are inherently constrained by their nature to re-
spond to past application behaviour. In order for an applica-
tion to obtain the most benefit out of any evolution process,
it must be an active as well as a reactive process.

Computational reflection [20] and metaobject proto-
cols [7] represent unified evolution systems. These sys-
tems provide a reflective architecture and meta-languages
that provide alternate views of the underlying system. It is
through these meta-languages that applications are able to
dynamically evolve their requirements. Metaobject proto-
col systems are also typically constrained by the static defi-
nition of abstraction barriers.

Sullivan [32] describes a model of aspect-oriented pro-
gramming controlled by metaobject protocols (MOPs). In
this model, MOPs control how the weaving process of as-
pects is performed, introducing the potential for dynamic
control of this process through mutable MOPs. This work
has similar aims to that described in this paper, but is still in
its initial phase of development.

6 Conclusions and Future Work

Support for static evolution provides a separation of ab-
stractions which, when combined with support for dynamic
evolution, produces a scalable and flexible evolution sys-

tem with reduced potential of programmer error. Existing
approaches to the unification of support for static and dy-
namic evolution introduce static abstraction barriers which
artificially constrain the resulting evolution system.

We introduce a model based on the Compliant Systems
Architecture. Our model provides the generic framework
needed to support scalable dynamic evolution without any
abstraction barriers. The CSA can describe a separation of
policy and mechanism between components of any system
and can be used to drive evolution in a controlled manner.
The fixed point of evolution depends on the instance of the
CSA and once that is defined the amount of dynamic evo-
Iution can be ascertained and implemented in a structured
manner.

This work represents a proof of concept of the unification
of support for static and dynamic evolution principles. We
are designing a more complex system where compliance is
extended beyond the application level to the abstract ma-
chine and communications layers. In this extended system
we plan to pursue research into evolution of mechanism and
policy at multiple levels, specifically evolution of the oper-
ational abstractions within an instantiation of the CSA, and
evolution of the interfaces between separated requirements.
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