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MATRIX OF A BLOCK- G I/M/1 MARKOV CHAIN
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Abstract

An efficient probabilistic algorithm is presented for the determination of the rate matrix of
a block-G I=M=1 Markov chain. Recurrence of the chain is not assumed.

1. Introduction

Following the work of Neuts, consolidated in his book [16], there has been con-
siderable interest in the structure and application of block-G I=M=1 Markov chains.
Such a chain is customarily taken as one whose one-step transition matrix may be
partitioned as

Q̂ =


D1 C0 0 0 : : :

D2 C1 C0 0 : : :

D3 C2 C1 C0 : : :

D4 C3 C2 C1 : : :
:::

:::
:::

:::
: : :

 ; (1.1)

where each matrixCm is k×k, the matrixC := ∑
m≥0 Cm is stochastic and irreducible

and the blockD2 is nonzero. The sets of states corresponding to successive blocks are
envisaged as constitutinglevels, and the states within each blockphases.

Neuts remarked on a number of special cases that appear in the literature, par-
ticularly various elaborations of the basicG I=M=1 queueing model. With such
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applications, the primary question is again the determination of the invariant probabil-
ity measure in the case when the chain is positive recurrent. This may be determined
through the use of an auxiliary parameter, the rate matrixR.

Denote byRj ;¹ the expected number of visits made by the process to state.i +1; ¹/
before the first revisit to leveli > 0, given it begins in the state.i; j /. Since the
chain is skip-free from below, we may argue by homogeneity to the right thatRj ;¹ is
well-defined and independent ofi and is the minimal nonnegative solution to

R = C.R/ :=
∞∑

i =0

Ri Ci : (1.2)

This result was given by Neuts [16, Lemma 1.2.3] for the positive recurrent case,
but careful examination reveals that the proof does not actually depend on positive
recurrence or indeed even recurrence.

As before, denote the invariant probability measure in the positive recurrent case
by ³ = .³0; ³1; : : : /, with each³i a k-vector. Neuts [16, Theorem 1.2.1] has shown
that

• ³i +1 = ³i R for i ≥ 0;
• the matrixD.R/ := ∑∞

j =0 Rj Dj +1 is stochastic and³0 an invariant measure
on it;

• the matrixI − R is invertible and³0 is normalised by³0.I − R/−1e = 1.

Knowing R is thus central for the determination of the invariant probability measure of
a positive recurrent block-G I=M=1 Markov chain. Neuts has provided an algorithm
[16, p. 13] based on (1.2) for the evaluation ofR, but this can converge very slowly.
Our present aim is to provide a more efficient algorithm, which we shall call H∗. The
notation is chosen to provide consistency in a subsequent companion article where
we demonstrate a natural duality, manifested by use of∗, with Algorithm H∗ dual to
Algorithm H, a procedure presented in [11]. The role of Algorithm H in evaluating the
fundamental matrixG in a block-M=G=1 Markov chain (see, for example, [6, 17]) is
comparable to that of Algorithm H∗ for determiningR in the present article.

In fact we shall see via the duality how to construct some further efficientalgorithms
for calculatingR andG in the case of a quasi-birth-and-death process. We shall also
find relations between Algorithm H∗, the logarithmic reduction algorithm of Latouche
and Ramaswami [12] and the cyclic reduction algorithms of Bini and Meini (see, for
example, [7, 8, 9] and [15]). Further, duality provides results on convergence rates.
Accordingly we defer for the present comparison of Algorithm H∗ with those other
algorithms relating to the QBD case.

In the following two sections we set up the probabilistic ideas involved in our
construction. These ideas are drawn together for a succinct formulation of Algorithm
H∗ in Section4. The remainder of the article is concerned with five extended nu-
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merical experiments comparing Algorithm H∗ with algorithms other than those that
will be considered in connection with duality. These are invariant subspace methods,
introduced in Section5 and applicable whenC.z/ is rational and the chain positive
recurrent, and the Neuts method.

2. Preliminaries

As with finding G in a structuredM=G=1 Markov chain, it proves convenient to
label the levels of the chainC as−1;0;1;2; : : : , so thatC is homogeneous in the
one-step transition probabilities into all nonnegative levels. In evaluatingR we are
concerned with the numbers of visits ofC to states of level 0 from initial level−1,
with −1 as a taboo level. We may thus, without loss of generality, replaceC with a
chainĈ with levels−1;0;1;2; : : : and structured one-step transition matrix

P̂∗ =


0 C0 0 0 · · ·
0 C1 C0 0 · · ·
0 C2 C1 C0 · · ·
0 C3 C2 C1 · · ·
:::

:::
:::

:::
: : :

 :

Our analysis will be mostly in terms of the (substochastic) subchainC0 with levels
0;1;2; : : : and structured one-step transition matrix

P∗.0/ =


C1 C0 0 0 · · ·
C2 C1 C0 0 · · ·
C3 C2 C1 C0 · · ·
:::

:::
:::

:::
: : :

 :
The assumption thatC is irreducible entails that every state in a nonnegative-

labelled level has access to level−1. Hence all the states ofC0 are transient or
ephemeral.

For t = 0;1;2; : : : , denote byXt , Yt respectively the state and level ofC0 at time
t . For r; s ∈ K := {1;2; : : : ; k} we define

Ur;s := P

(⋃
t>0

{Xt = .0; s/; Yu > 0 .0 < u < t/} |X0 = .0; r /

)
:

ThusUr;s is the probability that, starting in.0; r /, the processC0 revisits level 0 at
some subsequent time and does so with first entry into state.0; s/.

The matrixU := .Ur;s/ may be regarded as the one-step transition matrix of a
Markov chainU on the finite state spaceK . The chainU is a censoring ofC0. No
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state ofU is recurrent, for ifr ∈ K were recurrent, the state.0; r / in C0 would be
recurrent, a contradiction. Since no state ofU is recurrent,I − U is invertible and

∞∑
i =0

U i = .I − U /−1:

The matrixU is also strictly substochastic.
By elementary Markov chain theory, the.m; s/ entry in .I − U /−1 gives the

expected number of visits made byC0 to .0; s/, givenC0 begins in.0;m/. In Ĉ , any
path whose probability contributes toRr;s begins in.−1; r /, moves immediately to
some state.0;m/ and then makes one or more visits to state.0; s/. Allowing for all
possible choices ofm, we derive that

Rr;s =
∑

m∈K
.C0/r;m

( ∞∑
i =0

U i

)
m;s

;

so that

R = C0

∞∑
n=0

U n = C0.I − U /−1: (2.1)

We proceed to determineR via U .
For ` ≥ 0, we writeU .`/ for the matrix whose entries are given by

U .`/r;s := P

(⋃
t>0

{Xt = .0; s/; 0 < Yu < ` .0 < u < t/} |X0 = .0; r /

)
for r; s ∈ K . ThusU .`/ corresponds toU when the trajectories inC0 are further
restricted not to reach level` or higher before a first return to level 0.

We may argue as above thatI − U .`/ is invertible and

I − U .`/ =
∞∑

i =0

.U .`//i :

Further, sinceU is finite,U .`/ ↑ U and[I − U .`/]−1 ↑ [I − U ]−1 as` → ∞.
The probabilistic construction we are about to detail involves the exact algorithmic

determination (to machine precision) ofU .`/ for `of the form 2N with N a nonnegative
integer. This leads to an approximation

T∗
N := C0

[
I − U .2N+1/

]−1

for R. We have

T∗
N ↑ R as N → ∞:

The matrixT∗
N may be interpreted as the contribution toR from those trajectories from

level−1 to level 0 inĈ that are restricted to pass through only levels below 2N+1.
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3. Probabilistic construction

We construct a sequence.C j / j ≥0 of censored processes, each of which has as
its levels the nonnegative integers. Forj ≥ 1, the levels 0;1;2; : : : of C j are
respectively the levels 0;2;4; : : : of C j −1, that is,C j isC j −1 censored to be observed
in even-labelled levels only. ThusC j is a process that has been censoredj times. By
the homogeneity of one-step transitions inC , a straightforward induction gives that
C j has a structured one-step transition matrix of the form

P∗. j / =


D. j /

1 C. j /
0 0 0 · · ·

D. j /
2 C. j /

1 C. j /
0 0 · · ·

D. j /
3 C. j /

2 C. j /
1 C. j /

0 · · ·
:::

:::
:::

:::
: : :

 ;
that is, each chainC j is of structuredG I=M=1 type. We have

D.0/
n = Cn .n ≥ 1/ and C.0/

n = Cn .n ≥ 0/:

We shall construct below the block entries ofP∗. j +1/ in terms of those ofP∗. j /.
In the previous section we saw thatC0 contains no recurrentstates, so the same must

be true also for the censoringsC1;C2; : : : . Thus the substochastic matricesD. j /
1 , C. j /

1

formed by restrictingC j to levels 0 and 1 respectively thus also contain no recurrent
states. HenceI − D. j /

1 andI − C. j /
1 are both invertible.

We now consider how to derive the block entries inP∗. j +1/ from those inP∗. j /.
First we extend our earlier notation and writeX. j /

t , Y. j /
t respectively for the state and

level ofC j at timet ∈ {0;1; : : : }. Forn ≥ 0, define thek × k matrixL . j +1/
n by

(
L . j +1/

n

)
r;s

:= P

[⋃
t>0

{
X. j /

t = .2`+ 1; s/; Y. j /
t − Y. j /

u even .0< u < t/
}

∣∣∣ X. j /
0 = .2`+ 2n; r /

]

for r; s ∈ K . By the homogeneity of the one-step transition probabilities inC j for
transitions into positive-labelled levels, the right-hand side is independent of the value
of ` ≥ 0, justifying its absence from the notation on the left-hand side.

We may express the transitions inC j +1 in terms of those inC j and the matrices
L . j +1/

n by an enumeration of possibilities. Supposei > 0. A single-step transition
from state.i − 1 + n; r / to .i; s/ (n ≥ 0) in C j +1 corresponds to a transition from
.2.i − 1 + n/; r / to .2i; s/ in C j in one or more steps without passage through any
intermediate state in an even-labelled level. Forn > 0, this can occur in a single step,
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with probability .C. j /
2n−1/r;s. For a transition involving more than one step, we may

condition on the last step. This gives

C. j +1/
n = C. j /

2n−1 +
n∑

m=0

L . j +1/
n−m C. j /

2m .n ≥ 1/: (3.1)

For n = 0, the transition always requires more than one step and we have

C. j +1/
0 = L . j +1/

0 C. j /
0 : (3.2)

Similarly we derive

D. j +1/
n = D. j /

2n−1 +
n∑

m=1

L . j +1/
n−m D. j /

2m .n ≥ 1/: (3.3)

The determination of the matricesL . j +1/
n proceeds in two stages. Forn ≥ 0, define

thek × k matrixK . j +1/
n onC j by

(
K . j +1/

n

)
r;s

:= P

[⋃
t>0

{
X. j /

t = .2`+ 1; s/; Y. j /
t − Y. j /

u even .0 < u < t/
}

∣∣∣ X. j /
0 = .2`+ 2n + 1; r /

]
for r; s ∈ K . Again the left-hand side is independent of`.

Any path inC j contributing toL . j +1/
n involves an initial step to an odd-labelled

level followed by a sequence of steps avoiding even-labelled levels. By conditioning
on the first step, we derive

L . j +1/
n =

n∑
m=0

C. j /
2.n−m/K

. j +1/
m .n ≥ 0/: (3.4)

To complete the specification ofP∗ j +1/ in terms ofP∗. j /, we need to determine the
matricesK . j +1/

n . We have by definition that(
K . j +1/

0

)
r;s

= P

[⋃
t>0

{
X. j /

t = .2`+ 1; s/; Y. j /
t − Y. j /

u even .0 < u < t/
}

∣∣∣ X. j /
0 = .2`+ 1; r /

]
:

SinceC j is skip-free to the right, trajectories contributing toK . j +1/
0 do not change level

and so

K . j +1/
0 =

∞∑
i =0

(
C. j /

1

)i =
(

I − C. j /
1

)−1

: (3.5)
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For n > 0, paths contributing toK . j +1/
n involve at least one change in level and do

not visit even-labelled levels. We may condition on the last step involving a change
of levels to obtain the recursive relation

K . j +1/
n =

n−1∑
m=0

K . j +1/
m C. j /

2.n−m/+1K
. j +1/
0 .n ≥ 1/: (3.6)

We may also develop a recursion by conditioning on the first jump between levels.
This gives the alternative relation

K . j +1/
n :=

n−1∑
m=0

K . j +1/
0 C. j /

2.n−m/+1K
. j +1/
m .n ≥ 1/: (3.7)

Since level 1 inCN corresponds to level 2N in C0, paths inCN from .0; r / to .0; s/
that stay within level 0 correspond to paths from.0; r / to .0; s/ in C0 that do not reach
level 2N or higher. Hence.D.N/

1 /r;s = .U .2N//r;s for r; s ∈ K , or D.N/
1 = U .2N/.

Thus the recursive relations connecting the block entries inP∗. j +1/ to those inP∗. j /

for j = 0;1; : : : ; N − 1 provide the means to determineU .2N/ and so lead to an
approximation forR.

4. Algorithm H ∗

In the last section we considered the sequenceC0;C1; : : : ;CN of censored pro-
cesses. The determination ofD.N/

1 requires only a finite number of the matrix entries
in eachP∗. j / to be determined. For the purpose of calculatingT ∗

N , the relevant parts
of the construction may be summarised as follows.

The algorithm requires initial input ofC0, C1; : : : ;C2N −1. First we specify

D.0/
n = Cn .n = 1; : : : ;2N/;

C.0/
n = Cn .n = 0;1; : : : ;2N − 1/:

We determineD. j /
1 ; D. j /

2 ; : : : ; D. j /
2N− j andC. j /

0 ;C. j /
1 ; : : : ;C. j /

2N− j −1 recursively for j =
1;2; : : : ; N as follows. For obtaining the block matrices inC j +1 from those inC j ,
first find the auxiliary quantities

K . j +1/
0 =

[
I − C. j /

1

]−1

;

with

K . j +1/
n =

n−1∑
m=0

K . j +1/
0 C. j /

2.n−m/+1K
. j +1/
m
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for n = 1;2; : : : ;2N− j −1 − 1 and

L . j +1/
n =

n∑
m=0

C. j /
2.n−m/K

. j +1/
m

for n = 0;1; : : : ;2N− j −1 − 1.
CalculateC. j +1/

0 = L. j +1/
0 C. j /

0 and

D. j +1/
n = D. j /

2n−1 +
n∑

m=1

L. j +1/
n−m D. j /

2m;

C. j +1/
n = C. j /

2n−1 +
n∑

m=0

L. j +1/
n−m C. j /

2m;

for n = 1;2; : : : ;2N− j −1 − 1.
The above suffices for the evaluation ofD.N/

1 . The algorithm may be specified as a
short MATLAB program.

5. Invariant subspace approaches

A number of invariant subspace techniques have been developed in connection with
the solution of the matrix Riccati equation. Akar and Sohraby have adapted two of
these for the determination of the rate matrix. For brevity we refer to these simply as
TELPACK and Schur factorisation. Both apply only in the positive recurrent case.

5.1. TELPACK TELPACK can be used to determineR whenC.z/ is rational in a
way parallel to its use for the determination ofG whenA.z/ is rational.

ThreeG I=M=1 examples were also provided in the TELPACK package, two of
which we consider below in our numerical experiments. The example omitted relates
to the case of 1× 1 matrices.

5.2. Schur factorisation A second approach for determining the left-invariant
subspace of a matrix is the so-called Schur approach. Akar, Oˇguz and Sohraby have
implemented this for evaluatingR in the special case of a QBD. Details are given in
[1, 2] and [4].

The approach uses the fact that a real matrixX is orthogonally similar to a quasi-
upper triangular matrix [10]. The term “quasi-upper” signifies that the (block) diagonal
consists of 2× 2 matrices corresponding to complex-conjugate eigenvalues ofX and
the 1× 1 blocks to its real eigenvalues.

Its numerical implementation [14] includes balancingX, casting it into upper-
Hessenberg form, obtaining the real Schur form using the double Francis QR iteration
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TABLE 1. Experiment 1

Algorithm Iterations I ‖R − RI ‖∞ CPU Time (sec.)
Neuts 268 7.1054e-15 0.010
Schur - 1.2648e-16 0.050

TELPACK 7 1.9429e-16 0.070
H∗ 8 0 0.006

and ordering the eigenvalues appropriately using orthogonal transformations. The
approach is numerically stable.

In the following section, all outputs designated as being TELPACK (the in-
variant subspace approach) or Schur (the Schur factorisation method) have been
obtained running C programs downloaded from Khosrow Sohraby’s home page
http://www.cstp.umkc.edu/org/tn/telpack/home.html .

6. Numerical experiments

We now consider some numerical experiments. All code for the Neuts and H∗

Algorithms has been implemented by us in MATLAB .
No iteration counts are given for the Schur factorisation technique as these are not

provided by the TELPACK package.

6.1. Experiment 1. A TELPACK QBD example Our first example comes from
the infinite QBD section of TELPACK (ex-QBD-1). We have chosen it because its
simplicity enables us to calculateR exactly, and thus to use as an error measure the
supremum norm of the difference between the exact and estimated values ofR.

The defining transition matrices for the system are given by

C0 =
[
0 0
0 0:8

]
; C1 =

[
0 0:1

0:2 0

]
and C2 =

[
0:9 0
0 0

]
:

The results are displayed in Table1. The stopping criterion used was the difference
between two iterations being less thanž = 10−14. We note that this example is a QBD
and as such can be expected to favour the Schur factorisation method. The accuracy
of all four algorithms considered is comparable, but CPU times are much longer for
the Neuts Algorithm, Schur factorisation and TELPACK.

6.2. Experiment 2. An M=M=1 queue in a random environment Our second
example is drawn from Latouche [13] and Bini, Latouche and Meini [9]. The process
is that of anM=M=1 queue in a random environment featuring8 environmental phases.

http://www.cstp.umkc.edu/org/tn/telpack/home.html
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TABLE 2. The four sets of service rate values for Experiment 2

Case µ

1 2 2 2 2 2 2 2 2
2 1 1 1 1 5 5 1 1
3 0.4 0.4 0.4 0.4 10 2 2 0.4
4 0.2 0.2 0.2 0.2 13 1 1 0.2

The matrix infinitesimal generator of the process is given by

−1 1 · · · · · ·
· −1 1 · · · · ·
· · −1 · · · · ·
:::

:::
:::

: : :
:::

:::

· · · · · · −1 1
1 · · · · · · −1


:

The process cycles through the 8 phases in order from 1 to 8 and then starts again
at phase 1. The process remains in each phase for an interval with exponential
distribution and unit mean. Arrival rates are given by the vector

½ = ².0:2;0:2;0:2;0:2;13;1;1;0:2/T :

We consider four sets of values for the service rates in each phase (see Table2).
It is noted in [13] that this process may model a situation where the arrival process

occasionally experiences a sharp increase during a short period (note that for Cases
2–4 the sharp increase in arrival rate is matched in varying degrees by a sharp increase
in service rate). We note that for all four cases the overall arrival rate isÞ½ = 2²
customers per unit of time, whereÞ is the stationary probability vector for the phase
process. The four queues are positive recurrent if and only if² < 1. This process is
continuous-time, but discretisation is simple.

Results are shown in Table3. The stopping rule used was that the difference between
two iterations be satisfied to within 10−8. We note that this experiment is again a QBD
system, which can be expected to favour the Schur factorisation method. For this
experiment all methods except for the Neuts Algorithm had comparable accuracy.
CPU times for the Schur factorisation method were twice as long on average as those
for Algorithm H∗ and CPU times for TELPACK were 8.5 times longer on average.
The Neuts Algorithm was the worst performer with respect to both accuracy and CPU
time.

6.3. Experiment 3 Our third experiment concerns a QBD problem with 16× 16
transition matricesC0 = C1 = S andC2 = S+ Ž I , whereS is a matrix with zero
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TABLE 3. Results for Experiment 2

Case Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

1 Neuts 4110 9.9969e-09 5.020
TELPACK 11 2.4328e-13 0.080

Schur - 1.4384e-14 0.030
H∗ 12 9.5847e-13 0.010

2 Neuts 3386 9.9925e-09 3.890
TELPACK 11 2.8538e-13 0.090

Schur - 8.4030e-15 0.020
H∗ 12 8.8818e-16 0.010

3 Neuts 1871 9.9700e-09 2.080
TELPACK 10 2.6035e-14 0.080

Schur - 2.0067e-14 0.020
H∗ 10 4.3280e-12 0.010

4 Neuts 1644 9.9736e-09 1.8000
TELPACK 10 1.7153e-13 0.090

Schur - 2.6645e-14 0.010
H∗ 10 4.6629e-14 0.010

TABLE 4. Results for Experiment 3

δ Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

10−1 Neuts 136 6.9597e-13 0.393
TELPACK 8 2.2413e-15 0.017

Schur - 7.0083e-16 0.070
H∗ 6 3.4694e-17 0.008

10−2 Neuts 1133 6.6986e-13 3.247
TELPACK 11 1.1595e-14 0.023

Schur - 2.6298e-15 0.012
H∗ 9 4.8572e-17 0.012

10−3 Neuts 8353 6.6669e-13 24.370
TELPACK 13 1.3251e-12 0.250

Schur - 2.0720e-14 0.070
H∗ 12 6.9389e-17 0.020

10−4 Neuts 52940 6.6662e-13 228.45
TELPACK 16 1.0926e-10 0.270

Schur - 2.8047e-13 0.070
H∗ 15 4.1633e-17 0.018

10−5 Neuts 226944 6.6668e-13 2125.800
TELPACK 18 9.8710e-09 0.290

Schur - 3.2004e-12 0.070
H∗ 18 4.1633e-13 0.022
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TABLE 5. Results for Experiment 3 continued

δ Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

10−6 Neuts * * *
TELPACK 23 8.1815e-07 0.290

Schur - 4.1806e-11 0.060
H∗ 21 2.7756e-17 0.028

10−7 Neuts * * *
TELPACK 34 6.9935e-05 0.420

Schur - 2.4769e-10 0.080
H∗ 24 8.3267e-17 0.030

10−8 Neuts * * *
TELPACK 25 0.0023 0.310

Schur - 3.9794e-09 0.070
H∗ 27 4.1633e-17 0.030

10−9 Neuts * * *
TELPACK 41 0.0037 0.510

Schur - 7.3487e-09 0.070
H∗ 28 4.1633e-17 0.030

10−10 Neuts * * *
TELPACK 20 2.3243 0.260

Schur - 5.0173e-06 0.080
H∗ 28 6.9389e-17 0.030

TABLE 6. Results for Experiment 4

Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

TELPACK 7 3.3307e-16 0.060
H∗ 9 5.5511e-17 0.010

diagonal and constant off-diagonal entries. The traffic intensity for this problem is
² = 1− Ž; whereŽ ranges between 10−1 and 10−10.

This QBD model is a block-G I=M=1 version of a blockM=G=1 example of
Meini [15]. We have³þ∗ = 1+ Ž in the usual notation, so that the condition³þ∗ > 1
for positive recurrence (see Neuts [16, Theorem 1.3.2]) is satisfied. This process, like
the example in [15], is close to the null recurrent limit.

Results are shown in Tables4 and 5. The stopping criterion used was that the
difference between two iterations was less than 10−12.

TELPACK does not perform well in this experiment, with errors of several orders
of magnitude greater than those for the other algorithms as well as much larger CPU
times. The errors increase considerably in size as the value ofŽ decreases. This
parallels TELPACK’s behaviour in Meini’sM=G=1 example.
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Again, as expected, the Neuts Algorithm is the worst performer with respect to
both time andaccuracy. The asterisks appearing in the Neuts column signify that we
did not run the algorithm for values ofŽ < 10−5.

6.4. Experiment 4 Our fourth experiment comes from the TELPACK suite of
examples. Here

Cn =
.10=101/ .1=101/n .4=21/ .1=21/n .7=50/ .4=5/n

.90=101/ .1=101/n .1=21/ .1=21/n .1=100/ .4=5/n

.30=101/ .1=101/n .2=7/ .1=21/n .2=25/ .4=5/n


for n ≥ 0. This gives

C.z/ =
.1 + .1 − z/=100/−1 0 0

0 .1 + .1 − z/=20/−1 0
0 0 .1 + 4.1 − z//−1


×
1=10 2=10 7=10

9=10 1=20 1=20
3=10 3=10 4=10

 :
The reason for our choice is that this example provides a very simple form of

rationalC.z/ for which everyCn is nonzero. This example can therefore be expected
to favour TELPACK. As can be seen from Table6however, Algorithm H∗ has superior
CPU time with comparableaccuracy.

6.5. Experiment 5 The numerical experiments above all involve matrix functions
C.z/ of rational form. We could find no examples in the literature for whichC.z/
is not rational. The following is an original example showing how Algorithm H∗

performs in the general case whenC.z/ is not rational.
A two-stage queueing system consists ofk−1 homogeneous servers as a first stage

and an overflow pool of unlimited capacity with a separate service facility as a second.
An arrival is taken up by one of the first-stage servers if a free server is available;
otherwise it overflows to the pool. During the time between consecutive arrivals to
the system, each customer in the first stage has its service completed with probability
p (whereupon it departs) and not completed with probabilityq = 1 − p (whereupon
it remains).

The number of pool customers that (if available) can be served (and depart) in an
inter-arrival interval of the system has a Poisson distribution with meanr .

We may model this system as a block-G I=M=1 chain in which the level represents
the number of customers in the pool and the phase the number.0;1; : : : ; k − 1/ of
busy first-stage servers. The time points are taken immediately before arrival epochs.
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We then have

C0 = �0e−r ; Cn = �0e−r r n

n! +�1e−r r n−1

.n − 1/! .n ≥ 1/;

where

�0 =


0 0 · · · 0 0
:::

:::
: : :

:::
:::

0 0 · · · 0 0
pk−1

(k−1
1

)
pk−2q · · · (k−2

k−1

)
pqk−2 qk−1


and

�1 =


p q 0 · · · 0 0
p2 2pq q2 · · · 0 0
:::

:::
:::

: : :
:::

:::

pk−1
(

k−1
1

)
pk−2q

(
k−1

2

)
pk−3q2 · · · (

k−2
k−1

)
pqk−2 qk−1

0 0 0 · · · 0 0

 :

We remark that

C.z/ :=
∞∑

m=0

Cmzm = .�0 + z�1/e
−r .1−z/ .|z| ≤ 1/;

so thatC.z/ is irrational, irreducible for 0< z ≤ 1 and stochastic forz = 1.
With the choiceDn := ∑∞

m=n Cm (n ≥ 1), the chainC is irreducible and

D.R/ :=
∞∑

n=0

Dn+1Rn > D1 = C − C0 = �0

(
1 − e−r

)+�1:

HenceD.R/ is irreducible. By the form ofDn it is also finite and so has a strictly
positive left-invariant probability measure. AlsoC = �0 + �1 is irreducible and
stochastic.

By Neuts [16, Theorem 1.3.2], a necessary and sufficient condition for C to be
positive recurrent is that³Tþ∗ > 1, where³T = .³0; : : : ; ³k−1/ is the left-invariant
probability measure ofC andþ∗ := ∑∞

n=1 nCne.
We have

∞∑
n=1

nCne = �1e+ .�0 +�1/ re;

soþ∗ = .1;1; : : : ;1;0/T + re and³Tþ∗ = .1 − ³k−1/ + r . Hence with the above
scenario,r = 1 is a sufficient (but not necessary) condition for positive recurrence for
all p with 0< p < 1.
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TABLE 7. Experiment 5: matrices of size 2× 2

k p Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

2 0.05 Neuts 283 5.8487e-13 3.430
H∗ 8 1.1102e-16 0.008

0.1 Neuts 147 6.1617e-13 1.810
H∗ 6 1.7553e-13 0.007

0.2 Neuts 75 5.6666e-13 0.950
H∗ 6 2.2204e-16 0.007

0.3 Neuts 50 4.0212e-13 0.620
H∗ 5 2.2204e-16 0.004

0.4 Neuts 36 5.0676e-13 0.490
H∗ 5 1.1102e-16 0.004

0.5 Neuts 28 3.0442e-13 0.340
H∗ 4 2.2204e-16 0.003

0.6 Neuts 22 3.7170e-13 0.280
H∗ 4 1.1102e-16 0.003

0.7 Neuts 18 1.7308e-13 0.230
H∗ 4 2.7756e-17 0.003

0.8 Neuts 14 1.9862e-13 0.180
H∗ 3 5.5511e-16 0.003

0.9 Neuts 10 4.1589e-13 0.130
H∗ 3 1.1102e-16 0.003

0.95 Neuts 8 3.2707e-13 0.120
H∗ 2 1.2623e-13 0.002
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TABLE 8. Experiment 5: matrices of size 3× 3

k p Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

3 0.05 Neuts 148 5.6544e-13 1.860
H∗ 7 1.1102e-16 0.007

0.1 Neuts 76 5.5345e-13 1.030
H∗ 6 1.1102e-16 0.007

0.2 Neuts 38 4.5275e-13 0.490
H∗ 5 5.5511e-17 0.003

0.3 Neuts 25 2.5380e-13 0.330
H∗ 4 5.5511e-17 0.002

0.4 Neuts 18 2.5985e-13 0.240
H∗ 4 5.5511e-17 0.002

0.5 Neuts 14 1.1086e-13 0.180
H∗ 3 1.9429e-15 0.002

0.6 Neuts 11 6.6003e-14 0.160
H∗ 3 5.5511e-17 0.002

0.7 Neuts 8 5.5556e-13 0.120
H∗ 3 2.7756e-17 0.002

0.8 Neuts 7 1.8929e-14 0.120
H∗ 2 1.6098e-15 0.002

0.9 Neuts 5 4.4464e-14 0.080
H∗ 2 5.5511e-17 0.002

0.95 Neuts 4 4.4631e-14 0.070
H∗ 1 1.8974e-13 0.001
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TABLE 9. Experiment 5: matrices of size 4× 4

k p Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

4 0.05 Neuts 101 5.1015e-13 1.690
H∗ 6 5.4210e-20 0.006

0.1 Neuts 51 5.5744e-13 0.810
H∗ 5 2.7756e-17 0.003

0.2 Neuts 25 4.1073e-13 0.430
H∗ 4 5.5511e-17 0.002

0.3 Neuts 16 4.2949e-13 0.270
H∗ 3 4.2866e-13 0.002

0.4 Neuts 12 9.9615e-14 0.210
H∗ 3 5.5511e-17 0.002

0.5 Neuts 9 1.3001e-13 0.150
H∗ 3 2.7756e-17 0.002

0.6 Neuts 7 1.4144e-13 0.130
H∗ 2 3.4667e-14 0.001

0.7 Neuts 6 2.3120e-14 0.110
H∗ 2 5.5511e-17 0.001

0.8 Neuts 5 5.8842e-15 0.100
H∗ 2 2.7756e-17 0.001

0.9 Neuts 4 7.2164e-16 0.080
H∗ 1 3.8858e-15 0.001

0.95 Neuts 3 6.7724e-15 0.070
H∗ 1 6.9389e-18 0.001
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TABLE 10. Experiment 5: matrices of size 5× 5

k p Method Iterations I ‖RI − C(RI )‖∞ CPU Time (sec.)

5 0.05 Neuts 76 5.9908e-13 1.360
H∗ 6 3.3307e-16 0.006

0.1 Neuts 39 3.2402e-13 0.770
H∗ 5 5.5511e-17 0.004

0.2 Neuts 19 2.1871e-13 0.340
H∗ 4 1.3878e-17 0.002

0.3 Neuts 12 2.3789e-13 0.230
H∗ 3 2.2204e-16 0.002

0.4 Neuts 9 7.0111e-14 0.170
H∗ 3 8.3267e-17 0.002

0.5 Neuts 7 6.7696e-13 0.150
H∗ 2 2.4286e-14 0.001

0.6 Neuts 6 8.8124e-15 0.120
H∗ 2 2.7756e-17 0.001

0.7 Neuts 5 4.4686e-15 0.100
H∗ 2 5.5511e-17 0.001

0.8 Neuts 4 4.0523e-15 0.080
H∗ 1 2.1982e-14 0.001

0.9 Neuts 3 3.1641e-15 0.070
H∗ 1 3.4694e-18 0.001

0.95 Neuts 2 6.2450e-13 0.050
H∗ 1 1.1102e-16 0.001
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The calculations were performed withr = 1. The stopping criterion used was that
the difference between two iterations was less than 10−12. Results for the Neuts and H∗

Algorithms are given in Tables7–10. We note that these are the only two algorithms
which can be applied here. As expected, the Neuts Algorithm is less accurate with
much greater CPU times.
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[10] G. H. Golub and C. F. Van Loan,Matrix computations(Johns Hopkins University Press, Baltimore,
1989).

[11] E. Hunt, “A probabilistic algorithm for determining the fundamental matrix of a blockM=G=1
Markov chain”,Math. Comput. Modelling38 (2003) 1203–1209.

[12] G. Latouche and V. Ramaswami, “A logarithmic reduction algorithm for Quasi-Birth-Death pro-
cesses”,J. Appl. Probab.30 (1993) 650–674.

[13] G. Latouche and P. Taylor,Matrix-analytic methods(World Scientific, Singapore, 2002).
[14] A. J. Laub, “A Schur method for solving algebraic Riccati equations”,IEEE Trans. Auto. Control

24 (1979) 913–925.
[15] B. Meini, “Solving QBD problems: the cyclic reduction algorithm versus the invariant subspace

method”,Adv. Perf. Anal.1 (1998) 215–225.
[16] M. F. Neuts,Matrix geometric solutions in stochastic models(Johns Hopkins University Press,

Baltimore, 1981).
[17] V. Ramaswami, “A duality theorem for the matrix paradigms in queueing theory”,Comm. Statist.

Stochastic Models6 (1990) 151–161.

http://www.cstp.umkc.edu/personal/akar/home.html

