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A Note on the Applied Use of MDL Approximations

Daniel J. Navarro
Department of Psychology

Ohio State University

Abstract

An applied problem is discussed in which two nested psychological models of retention are
compared using Minimum Description Length (MDL). The standard Fisher information
approximation (FIA) to the Normalized Maximum Likelihood (NML) is calculated for these
two models, with the result that the full model is assigned a smaller complexity, even for
moderately large samples. A geometric interpretation for this behavior is considered, along
with its practical implications.

The Minimum Description Length (MDL) principle (Rissanen 1978; see also Grünwald 1998)
has attracted interest in applied fields, because it allows comparisons between non-nested and
misspecified models without requiring restrictive assumptions. Of particular interest is the
Normalized Maximum Likelihood (NML) criterion,

NML =
p(X |θ∗(X))∫
p(Y |θ∗(Y )) dY

where θ∗(X) denotes the maximum likelihood estimate (MLE) for the data X . While the NML
has many desirable properties (Rissanen 2001), a practical difficulty is that the normalization
term is difficult to evaluate. Consequently, an approach based on Fisher information (FIA) is
often used in its place (e.g. Rissanen 1996). This criterion is given by,

FIA = − ln p(X |θ∗(X)) +
k

2
ln

(
N

2π

)
+ ln

∫ √
|I(θ)| dθ + o(1)

where k denotes the number of free parameters, N denotes the sample size, and I(θ) denotes the
expected Fisher information matrix of sample size one. The second and third terms are often
referred to as a complexity penalty. Under regularity conditions1 (Rissanen 1996, p. 41-42), it
can be shown that the FIA asymptotically converges to − ln(NML).

The practical advantage to the FIA is that it only requires integration over the parameter
space, and that the Fisher information matrix is sometimes easier to find than the maximum
likelihood. However, while the optimality of the NML criterion holds for all N , the FIA is only
guaranteed asymptotically, which can be problematic in some applications. This note presents
one such case. Since applied researchers are often forced by necessity to use asymptotic measures
such as the FIA, it is useful to take note of circumstances under which they are inappropriate,
and give consideration to the reasons.

1The regularity conditions, most importantly the asymptotic normality of the MLE, are satisfied for models
that constitute compact (i.e. closed and bounded) subsets of an exponential family, such as those discussed here.
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The Applied Problem

The applied problem originates in the study of human forgetting (“retention”; see Navarro,
Pitt & Myung, in press). In a typical retention experiment, participants are presented with a
list of words, and asked to recall them later. Measurements at different times after stimulus
presentation produce a “retention curve”: The probability of accurate recall is initially high, but
tends towards zero over time. A retention model takes the form p(C|t) = f(t, θ) where p(C|t)
denotes the probability of correct recall at time t, and f(t, θ) is the hypothesized form of the
retention curve, parametrized by θ. Obviously, f(t, θ) must lie on [0, 1] for all t. Additionally, t
is normalized to lie between 0 and 1.

The classic retention model is the exponential (EX) model, f(t, θ) = a exp(−bt), where
θ = (a, b) such that a ∈ [0, 1] denotes the initial retention probability, and b gives the decay
rate. While definitive bounds on b are not easy to specify, experience with a large database
suggests that [0, 100] is reasonable (see Rubin & Wenzel 1996 or Navarro et al., in press). A
second retention model is provided by Wickelgren’s (1972) “strength-resistance” (SR) theory,
which hypothesizes that f(t, θ) = a exp(−btw) where θ = (a, b, w). Importantly, w is constrained
to lie on [0, 1], since w < 0 results in an increasing retention function, and w > 1 results in a
faster-than-exponential decay, neither of which is consistent with the theory. Note that the EX
model is a special case of the SR model, and by inspection, the NML denominator term is always
smaller for the EX model than for the SR model, irrespective of sample size.

Fisher Information Matrices

In any retention experiment, continuous measurements are impractical, so retention is measured
at some number m of fixed time intervals t1, . . . , tm. Thus the observed data may be treated as
N observations from an m-variate binomial distribution, where the i-th Bernoulli probability is
described by f(ti, θ). A standard result (e.g., Schervish 1995, p110-115; Su, Myung & Pitt, in
press) allows the uv-th element of the Fisher information matrix of sample size one for these
models to be written

Iuv(θ) =
m∑

i=1

1
f(ti, θ)(1 − f(ti, θ))

∂f(ti, θ)
∂θu

∂f(ti, θ)
∂θv

.

The partial derivatives of f(ti, θ) are simple. For the EX model, ∂f(ti, θ)/∂a = exp(−bti) and
∂f(ti, θ)/∂b = −ati exp(−bti). For the SR model, the partial derivatives are ∂f(ti, θ)/∂a =
exp(−btwi ), ∂f(ti, θ)/∂b = −atwi exp(−btwi ), and ∂f(ti, θ)/∂w = −abtwi ln(ti) exp(−btwi ). Substi-
tution into the Fisher information formula yields

I(a, b) =
[
(1/a)

∑m
i=1 y(i) −∑m

i=1 tiy(i)
−∑m

i=1 tiy(i) a
∑m

i=1 t2i y(i)

]

for the EX model, where y(i) = 1 /(exp(bti)− a) . For the SR model,

I(a, b, w) =

[
(1/a)

∑m

i=1
z(i) −

∑m

i=1
twi z(i) −b

∑m

i=1
twi (ln ti)z(i)

−
∑m

i=1
twi z(i) a

∑m

i=1
t2w
i z(i) ab

∑m

i=1
t2w
i (ln ti)z(i)

−b
∑m

i=1
twi (ln ti)z(i) ab

∑m

i=1
t2w
i (ln ti)z(i) ab2

∑m

i=1
t2w
i (ln ti)2z(i)

]

where z(i) = 1 /(exp(btwi )− a) .

Small Sample Behavior

The experimental design was assumed to consist of 8 evenly spaced ti values, though the results
are consistent across a range of designs. Without a closed form for the integral in the FIA,
numerical estimates were obtained using Monte Carlo methods (e.g. Robert & Casella 1999).
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Figure 1: The complexity assigned by the Fisher information approximation (FIA) for the EX
and SR models (before taking logarithms).

Given the low dimensionality of the integrals and the unnecessarily extensive sampling (108

samples were taken), even simple Monte Carlo methods provide adequate results. The integral
term

∫ √|I(θ)|dθ for the EX model is approximately 8.0817, whereas for the SR model the value
is approximately 0.4426. Substituting this into the FIA expression indicates that the SR model
has a higher estimated complexity only when N ≥ 2096, as shown in Figure 1. This presents
a substantial difficulty for the applied problem, since not one of the 77 data sets considered
by Navarro et al. (in press) had a sample size this large. Therefore, every data set that could
possibly be observed would be better fit by SR, yet the nested EX model would be penalized
more severely for excess complexity.

It is worth considering the source of this problem. Following Myung, Balasubramanian
and Pitt (2000) and Balasubramanian (1997), the complexity terms in the FIA can be viewed
as approximations to (the logarithm of) the ratio of two Riemannian volumes. The first is
the volume occupied by the model in the space of probability distributions (assuming the
Fisher information metric), given by Vf =

∫ √|I(θ)|dθ. The second volume is that of a lit-
tle ellipsoid around θ∗, intended to quantify the size of a “region of appreciable fit”, given by
Vc = (2π/N)k/2 √|J(θ∗)|/|I(θ∗)| where J(θ∗) = −1/N [∑

t ∂2 ln p(C|t)/∂θu∂θv

]
θ=θ∗ is the ob-

served information. In general, the observed information J(θ∗) will differ from the expected
information I(θ∗), but for the current purposes it suffices to note that there are data sets for
which they are very similar, yielding J(θ∗) ≈ I(θ∗). As these are binomial models, an example
of such a data set would be one in which Ci ≈ Nf(ti, θ∗) for all i since the data are almost
identical to their expected values at the MLE parameters. Note that these are the data sets
that are well fit by the model, and are thus precisely those of most interest to applied research.
In such cases, Vc ≈ (2π/N)k/2.

When the observed information matrix closely approximates the expected information ma-
trix, it is reasonable to view the complexity penalty for the FIA as approximately equivalent to
ln (Vf /Vc ). At N = 1 we observe that, for the EX model, Vc = 2π < 8.0817 ≈ Vf . The little
ellipsoid is smaller than the model, as it should be. However, by expanding the EX model into a
third dimension, one obtains the SR model, for which Vc = (2π)3/2 > 0.4426 ≈ Vf . The volume
of the three dimensional ellipsoid is now larger than the volume of the entire model. Taken
together, these observations suggest that the extension of the model along the new dimension
induced by the addition of the w parameter is so tiny that the “small” ellipsoid now protrudes
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extensively, like a marble embedded in a sheet of paper. Most of the “region of good fit” no
longer lies within the region occupied by the model. In short, until N gets very large, θ∗ does
not seem to lie sufficiently within the model manifold to support the Gaussian approximations
that underlie the FIA.

As an aside, it does not appear that the problem can be entirely solved by incorporating
the

√|J(θ∗)|/|I(θ∗)| term. After all, by judicious choice of t and C, data sets could be chosen
for which the observed information is precisely equal to the expected information even at small
samples. For instance, if t = (.25, .5, .75, 1) and N = 16, then the data set C = (8, 4, 2, 1) yields
MLE parameters a∗ = 1 and b∗ = ln 16 for both models, and w∗ = 1 for SR. In both cases,
f(ti, θ∗) = Ci/N for all i: The data take on their expected values at the MLE. Accordingly,
Vc = (2π/N)k/2 for these data. Even so, Vf ≈ 0.07 for the SR model, while Vf ≈ 3.39 for the
EX model, indicating that the little ellipsoid is not well-located for the SR model.

Discussion

Asymptotic approximations are useful in practice only insofar as they can be relied on to give
the right answers. Clearly, if Vc < Vf is not satisfied, the standard FIA expression is not
necessarily reliable. In psychology, for instance, it is rare to find studies with N > 2000, yet Vc

can still remain smaller than Vf even at this sample size. This “well-locatedness” requirement
is mentioned by Balasubramanian (1997) as a condition of his asymptotic expansions, but is not
generally thought of as a regularity condition because it holds asymptotically (i.e. Vc tends to
zero as N tends to infinity). In finite samples, some care is needed. While observing Vc < Vf

does not guarantee that θ∗ is well-located, observing that Vc > Vf does imply that it is not.
It may be possible to use this observation to formulate approximations that perform better in
small samples, though this question is left to more theoretically-inclined researchers.

In any case, it is clear that the source of the current difficulty does not lie with the MDL
principle itself: The NML criterion does not suffer from this problem at any N . It is only
that the o(1) term in the asymptotic criterion can be large enough to make the approximation
impractical for smaller samples. While the point is somewhat obvious, it does imply the need
to take care in the use of the criterion. To that end, it is worth ensuring that Vc < Vf before
using the approximation.
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