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Free surface potential flows past surfboards and sluice gates are considered. The problem

is solved numerically by boundary integral equation methods. In addition weakly nonlinear

solutions are presented. It is shown among the six possible types of steady flows, only three

exist. The physical relevance of these solutions is discussed in terms of the radiation condition

(which requires that there is no energy coming from infinity). In particular, it is shown there

are no steady subcritical flows which satisfy the radiation condition. Similarly there are no

solutions for the flow under a sluice gate.

1 Introduction

Many applications involve free surface flows past surface piercing objects. Examples

include the flow due to a moving ship and the flow under a sluice gate.

An idealised two-dimensional configuration is sketched in Figure 1(a). Here the object

is a flat plate BC inclined at an angle σc with the horizontal. The fluid is inviscid and

incompressible and the flow is steady, irrotational and bounded below by the horizontal

bottom A′D′. The free surfaces AB and CD are assumed to separate tangentially from the

plate at the points B and C . A system of Cartesian coordinates (x∗, y∗) is defined with the

origin on the bottom and the y∗-axis passing through the separation point B. Gravity acts

in the negative y∗-direction. We assume that the flow approaches a uniform stream with

constant velocity U and constant depth H as x∗ → ∞. The dimensionless downstream

Froude number can then be defined as

F =
U√
gH

, (1.1)

where g is the acceleration due to gravity. The flow is referred to as subcritical if F < 1

and as supercritical if F > 1. Linear theory predicts that supercritical flows are waveless.

Far upstream the flow can be uniform or possess a train of waves. When it is uniform,

we introduce the upstream Froude number

F∗ =
V√
gD

(1.2)

where V and D are the uniform velocity and uniform depth far upstream.
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The configuration of Figure 1(a) describes the flow due to a plate BC moving at a

constant horizontal velocity U when viewed in a frame of reference moving with the plate.

It also models the free surface flow under a sluice gate or past a ‘surfboard’.

As we shall see, the dynamic boundary condition and the conservation of mass restrict

the possible flows to six types: subcritical flows with one train of waves (F < 1, waves

as x∗ → −∞, no waves as x∗ → ∞), subcritical with two trains of waves (waves as

x∗ → ±∞), waveless subcritical flows (F = F∗ < 1, no waves as x∗ → ±∞), supercritical

flows (F = F∗ > 1, no waves as x∗ → ±∞), critical flows (F∗ < 1, F > 1, no waves as

x∗ → ±∞) and generalised critical flows (F > 1 and waves as x∗ → −∞).

The subcritical flows describe the free surface flow due to a plate moving at a constant

velocity U at the surface of the fluid, when viewed in a frame of reference moving with

the plate. We note that subcritical flows with waves have to satisfy the radiation condition

(which requires that no energy comes from infinity). Therefore only the subcritical flow

with one train of waves satisfies the radiation condition provided that the direction of

the flow (i.e. the direction of the arrow in Figure 1(a)) is reversed. This can be done since

potential flows are reversible.

The critical flows describe the flow under a sluice gate. This is a classical problem

of hydrodynamics which has been considered by many previous investigators (see, for

example, Binnie [4], Benjamin [2], Frangmeier & Strelkoff [9], Lamb [11], Chung [6],

Vanden-Broeck [14], Budden & Norbury [5] and Asavanant & Vanden-Broeck [1]).

The supercritical flows were considered before by Vanden-Broeck & Keller [13]. They

are referred to as ‘surfing flows’ because the level of the plate is higher than the level of

the free surface at x∗ → ±∞.

In this paper, we show that out of the six types of flows, only the supercritical flows,

the subcritical flows with two trains of waves and the generalised critical flows exist.

This is established by careful numerical computations using boundary integral equation

methods and by analytical methods based on weakly nonlinear theories. These results

imply in particular the nonexistence of subcritical flows satisfying the radiation condition.

Similarly there are no solutions for the flow under a sluice gate which satisfies the radiation

condition (there is always a train of waves as x∗ → −∞). This finding is consistent with

the previous results of Vanden-Broeck [14], who considered the case of a vertical sluice

gate.

The formulation and numerical procedure for flow past an inclined sluice gate or surf-

board is given in § 2. Nonlinear and weakly nonlinear free surface profiles for surfboards

and sluice gates presented and discussed in § 3. Finally, concluding remarks are made in

§ 4.

2 Formulation

Consider the steady two-dimensional irrotational flow of an incompressible inviscid fluid

bounded below by the horizontal bottom ÁD´ (see Figure 1(a)). The flow is bounded

above by a wall BC and two free surfaces AB and CD. The equations of the free surfaces

AB and CD can be written as y∗ = H + η∗(x∗) (see Figure 1(a)). The function η∗(x∗) is

uniquely defined by requiring η∗(x∗) → 0 as x∗ → ∞.



Free surface flows past surfboards and sluice gates 603

y*=H+η* A 

U 

B 

H 

D 

x* 0 

y* 
C 

ψ 

A B 
0 φ

ψ = –1

D C 

β

α 
A B C D’ 

0 

A’ D’ 

y*=H+η* 

A’ D’ 

φc 

A’ D 
1 αc 

FLUID 

AIR 

(a) 

(b) 

(c) 

σc 

Figure 1. (a) Sketch of flow in physical coordinates (x∗, y∗). (b) Sketch of flow in the plane of the

complex potential (f-plane). (c) Sketch of flow in the lower half-plane (ζ-plane).

The dynamic boundary condition on the free surfaces AB and CD gives

1

2
(u∗2

+ v∗2
) + gη∗(x∗) =

1

2
U2 + gH on y∗ = H + η∗(x∗) (2.1)

where u∗ and v∗ are the horizontal and vertical components of the velocity. Here, we have

used the conditions u∗ → U, v∗ → 0, η∗(x∗) → 0 as x∗ → ∞, to evaluate the Bernoulli

constant on the right hand side of (2.1).

As mentioned in the introduction, the flow as x∗ → −∞, can be characterized either by

a uniform stream with constant velocity V and constant depth D or by a train of waves.

When the flow as x∗ → −∞ is uniform a relation between F and D/H can be derived in

the following way. First the conservation of mass implies

VD = UH. (2.2)

Next (2.1) evaluated in the limit x∗ → −∞, yields

1

2
V 2 + gD =

1

2
U2 + gH. (2.3)
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Combining (2.2) and (2.3) gives the relations

F2

[
D2

H2
− 1

]
=

2D2

H2

(
D

H
− 1

)
(2.4)

and

F∗2

[
H2

D2
− 1

]
=

2H2

D2

(
H

D
− 1

)
(2.5)

Equations (2.4) and (2.5) are satisfied if either

H = D, F = F∗ (2.6)

or

F =
2(

H
D

)2
+ H

D

, F∗ =
2(

D
H

)2
+ D

H

(2.7)

Assuming without loss of generality D > H , equations (2.7) implies that F > 1 and

F∗ < 1. From (2.6) and (2.7) we see that there are three possible types of solutions with a

uniform stream as x∗ → ±∞. The first is a (waveless) supercritical flow with F = F∗ > 1.

The second is a waveless subcritical flow with F = F∗ < 1. The third is a waveless critical

flow with F∗ < 1 and F > 1.

There are in addition three possible types of solutions with a train of waves as x∗ → −∞.

The first is a subcritical flow with F < 1 (no waves as x∗ → ∞) and a train of waves as

x∗ → −∞. The second is a subcritical flow with two trains of waves as x∗ → ±∞. The

third is a generalised critical flow with F > 1 (no waves as x∗ → ∞) and a train of waves

as x∗ → −∞.

Therefore there are six types of solutions. As we shall see only the supercritical flows,

the subcritical flows with two trains of waves and the generalised critical flows exist. In

the next subsection we give details of the formulation of the boundary integral equation

method for the fully nonlinear problem.

2.1 Boundary integral equation method

We define dimensionless variables by taking H as the reference length and U as the

reference velocity. Thus we define the dimensionless variables (x, y) = (x∗, y∗)/H . The

free surfaces AB and CD are then described by y = 1 + η(x), where η = η∗/H . The

dimensionless horizontal and vertical components of the velocity are u and v respectively.

The dynamic boundary condition (2.1) is now rewritten as

1

2
(u2 + v2) +

1

F2
y =

1

2
+

1

F2
(2.8)

where F is the Froude number defined by (1.1).

The nonlinear problem can be reduced to a problem in complex analysis. We first

introduce the potential function φ and stream function ψ. We then define the complex

potential, f = φ + iψ, and complex velocity, w = df
dz

= u − iv. Without loss of generality

we choose ψ = 0 on the free surface streamline, ABCD and φ = 0 at the separation

point B. We denote the value of φ at the separation point C , by φc. It follows from the

conservation of mass, that ψ = −1 on the bottom of the channel ÁD.́ The fluid domain

in the complex f-plane is the strip −1 < ψ < 0, see Figure 1(b).
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We map the strip −1 < ψ < 0 onto the lower half ζ-plane by the transformation

ζ = α+ iβ = eπf . (2.9)

The flow configuration in the ζ-plane is shown in Figure 1(c).

We define the function τ− iθ by

u− iv = eτ−iθ (2.10)

and we apply Cauchy integral equation formula to the function τ− iθ in the ζ-plane with

a contour consisting of the α axis and a semi circle of arbitrary large radius in the lower

half plane. Since τ− iθ → 0 as |ζ| → ∞, there is no contribution from the half circle and

we obtain (after taking the real part)

τ̃(α) =
1

π

∫ ∞

−∞

θ̃(α0)

α0 − α
dα0, (2.11)

where τ̃(α) and θ̃(α) are the values of τ and θ on the α-axis. The integral in (2.11) is a

Cauchy principal value.

The kinematic boundary conditions on the bottom of the channel and free surface rigid

plate BC imply

θ̃(α) = 0 for α < 0 (2.12)

and

θ̃(α) = −σc for 1 < α < αc. (2.13)

Here αc = eπφc . Substituting (2.12) and (2.13) in (2.11) gives

τ̃(α) = −σc

π
ln

|αc − α|
|1 − α| +

1

π

∫ 1

0

θ(α0)

α0 − α
dα0 +

1

π

∫ ∞

αc

θ(α0)

α0 − α
dα0. (2.14)

We assume that α > 0 (i.e. that α corresponds to points on the free surface) and rewrite

(2.14) in terms of φ by using the change of variables

α = eπφ, α0 = eπφ0 . (2.15)

This gives

τ(φ) = −σc

π
ln

|eπφc − eπφ|
|1 − eπφ| +

∫ 0

−∞

θ(φ0)e
πφ0

eπφ0 − eπφ
dφ0 +

∫ ∞

φc

θ(φ0)e
πφ0

eπφ0 − eπφ
dφ0 (2.16)

Here τ(φ) = τ̃(eπφ) and θ(φ) = θ̃(eπφ).

Integrating the identity

xφ + iyφ =
1

u− iv
= e−τ+iθ (2.17)

and equating real and imaginary parts we can obtain parametric relations for the shape

of the free surfaces AB and CD. The equations for the upstream free surface AB are

x(φ) =

∫ φ

0

e−τ(φ0) cos θ(φ0)dφ0 for −∞ < φ < 0 (2.18)
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and

y(φ) = y(0) +

∫ φ

0

e−τ(φ0) sin θ(φ0) dφ0 for −∞ < φ < 0. (2.19)

Those on the downstream free surface CD are

x(φ) = x(φc) +

∫ φ

φc

e−τ(φ0) cos θ(φ0) dφ0 for φc < φ < ∞ (2.20)

and

y(φ) = 1 +

∫ φ

∞
e−τ(φ0) sin θ(φ0) dφ0 for φc < φ < ∞. (2.21)

We will define y(0) in (2.19) for particular types of nonlinear solutions in section § 3.

Another equation on the free surfaces is obtained by substituting (2.10) into (2.8). This

yields

e2τ +
2

F2
y = 1 +

2

F2
. (2.22)

Equations (2.16), (2.19), (2.21) and (2.22) define a nonlinear integral equation for the

unknown function θ(φ) on the free surfaces −∞ < φ < 0 and φ > φc. We note that the

values of x(φ) and x(φc) in (2.18) and (2.20) are not needed to calculate θ(φ). Therefore

they can be evaluated after a converged solution has been obtained.

2.2 Numerical scheme

We solve the integral equation defined by (2.16), (2.19), (2.21) and (2.22) numerically. The

numerical procedure follows Vanden-Broeck [14], Binder et al. [3] and others. We first

introduce the equally spaced mesh points in the potential function φ:

φUI = −(I − 1)∆1, I = 1, . . . , N1 (2.23)

and

φDI = φc + (I − 1)∆2, I = 1, . . . , N2, (2.24)

where ∆1 > 0 and ∆2 > 0 are the mesh sizes. The corresponding unknowns are

θUI = θ(φUI ), I = 1, . . . , N1 (2.25)

and

θDI = θ(φDI ), I = 1, . . . , N2. (2.26)

Since the flow separates tangentially from the sluice gate or surfboard θU1 = θD1 = −σc.
There are then N1 +N2 − 2 unknowns θUI and θDI .

The values τUI+1/2 and τDI+1/2 of τ(φ) are evaluated at the midpoints

φUI+1/2 =
φUI + φUI+1

2
, I = 1, . . . , N1 − 1 (2.27)
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and

φDI+1/2 =
φDI + φDI+1

2
, I = 1, . . . , N2 − 1 (2.28)

by applying the trapezoidal rule to the integrals in (2.16) with summations over the points

φUI and φDI . The symmetry of the quadrature and of the distribution of the points enable

us to evaluate the Cauchy principal values as if they were ordinary integrals.

Following Hocking & Vanden-Broeck [10], the integrals in (2.16) are re-written as

∫ 0

φUN1

(θ(φ0) − θI+1/2)e
πφ0

eπφ0 − eπφI+1/2
dφ0 +

θI+1/2

π
ln

|1 − eπφI+1/2 |
|eπφUN1 − eπφI+1/2 |

(2.29)

and

∫ φDN2

φc

(θ(φ0) − θI+1/2)e
πφ0

eπφ0 − eπφI+1/2
dφ0 +

θI+1/2

π
ln

|eπφDN2 − eπφI+1/2 |
|eπφc − eπφI+1/2 |

(2.30)

before applying the trapezoidal rule. The values θUI+1/2, θ
D
I+1/2 of θ at the mesh points

(2.27), (2.28) are evaluated in terms of the unknowns (2.25) and (2.26) by interpolation

formulas.

Now yUI = y(φUI ) and yDI = y(φDI ) can be evaluated recursively using (2.19) and (2.21).

This yields

yU1 = y(0)

yUI = yUI−1 − e[−τ
U
I−1/2] sin [θUI−1/2]∆1, I = 2, . . . , N1; (2.31)

yDN2
= 1,

yDI = yDI+I − e[−τ
D
I+1/2] sin [θDI+1/2]∆2, I = N2 − 1, . . . , 1. (2.32)

The values (2.31) and (2.32) are used to evaluate y(φ) at the midpoints (2.27) and (2.28)

by interpolation formulas.

Now (2.22) can be satisfied at the midpoints (2.27) and (2.28). This yields a system of

N1 +N2 − 2 nonlinear algebraic equations. We shall refer to this system of N1 +N2 − 2

equations as the system [*].

Another equation can be derived by fixing the length L of the plate BC . Using (2.13)

and the identity (2.17) gives

∂y

∂φ
= −e−τ sin [σc] on 0 < φ < φc. (2.33)

Numerically integrating (2.33) yields the length L of the plate BC in terms of the unknowns

and the extra equation is then

yU1 − yD1 − L sin[σc] = 0. (2.34)

Further details on the schemes depend on the type of flow calculated and will be given

in section § 3.
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2.3 Weakly nonlinear theory

The determination of the number of independent parameters needed to obtain a unique

solution to a free surface problem is often delicate and counter intuitive. It can be found

by careful numerical experimentation (fixing too many or too few parameters fails to

yield convergence). An alternative approach is to perform a weakly nonlinear analysis

in the phase plane. This second approach has the advantage of allowing a systematic

determination of all the possible solutions (within the range of validity of the weakly

nonlinear theory). Both approaches are used in this paper for flows past sluice gates and

surfboards.

As we shall see, the Korteweg de Vries (KdV) equation can be used to model the flow

past an inclined sluice gate or surfboard in a channel. Since the present paper deals with

steady solutions, we only consider the steady KdV equation. Our approach follows the

work of Shen [12], Dias & Vanden-Broeck [8] and Binder et al. [3], who derived forced

Korteweg de Vries equation to model the flow past an obstacle on the bottom of the

channel.

The classical derivation of the Korteweg de Vries equation is based on long wavelength

asymptotics. Thus if L denotes a typical horizontal lengthscale and H is the constant

depth as x∗ → ∞, we introduce the small parameter ε = (H/L)2 � 1, the dimensionless

spatial variables (x́, ý) = (ε1/2x∗, y∗)/H and the free-surface elevation εή = η∗/H . The

Froude number F is written as F = 1 + εµ.

Substituting expansions in powers of ε into the exact potential equations (rewritten in

terms of the new scaled variables), the KdV equation is derived by equating coefficients

of the powers of ε. The KdV equation (rewritten in terms of the variables x = ε−1/2x́ and

η = y − 1 = εή used in the nonlinear computations) is

ηxx +
9

2
η2 − 6(F − 1)η = 0. (2.35)

Equation (2.35) is valid when F ∼ 1 and |η| � 1. It can therefore be expected to describe

the free surfaces AB and CD of Figure 1(a) when F ∼ 1 and σc � 1.

Multiplying (2.35) by ηx and integrating yields

η2
x = 6(F − 1)η2 − 3η3 + C. (2.36)

Here C is a constant of integration.

If we extend the definition of η(x) to denote the elevation of the complete streamline

ABCD we can write

ηx = −tan[σc] on BC (2.37)

Weakly nonlinear solutions of the flow of Figure 1(a) are solutions of (2.36) and (2.37).

It is convenient to describe them in the phase plane where we plot values of ηx versus η.

There are two fixed points η = 0, ηx = 0 and η = 4/3(F − 1), ηx = 0. Classification

of the fixed points depend on whether F > 1 (supercritical) or F < 1 (subcritical). For

supercritical flow F > 1, there is a centre at η = 4/3(F − 1), ηx = 0 and a saddle point at

η = 0, ηx = 0. For subcritical flow F < 1, there is a centre at η = 0, ηx = 0 and a saddle

point at η = η = 4/3(F − 1), ηx = 0. Phase portraits with no disturbances for supercritical



Free surface flows past surfboards and sluice gates 609
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dη/dx 

η η

(a) 

(b) 

η 0 

dη/dx 

η=4/3(F–1) 

=4/3(F–1) 

Figure 2. Weakly nonlinear phase portraits, dη

dx
versus η. (a) Supercritical flow, F > 1. There is a

saddle point at η = 0, ηx = 0 and a centre at η = 4/3(F − 1), ηx = 0. (b) Subcritical flow, F < 1.

There is a saddle point at η = 4/3(F − 1), ηx = 0 and a centre at η = 0, ηx = 0.

and subcritical flow are shown in Figures 2(a),(b). If there is a gate, (2.37) shows that

we need to incorporate in the phase diagrams Figures 2(a),(b), horizontal jumps whose

magnitude is equal to the difference of heights between the ends of the gate or surfboard.

As we shall see in the next section, the resulting phase diagrams provide weakly nonlinear

solutions for the flow configuration of Figure 1(a) which are valid for F ≈ 1 and σc � 1.
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Figure 3. Supercritical flow for F = 1.10, L = 1.00 and σc = 0.0 (a) Fully nonlinear free surface

profile, γ = 0.21 and φc = 0.80. (b) Values of dy

dx
= tan(θ) versus y − 1 = η, showing the fully

nonlinear phase trajectories for figure (a). (c) Weakly nonlinear profile, γ = 0.20. (d) Weakly

nonlinear phase portrait for figure (c), dη

dx
versus η.

3 Results

In this section, we present fully nonlinear results and weakly nonlinear results for super-

critical flows, subcritical flows and flows under a sluice gate. These results are described

in three separate subsections.

3.1 Supercritical flows: flows past surfboards

Here we discuss nonlinear and weakly nonlinear free surface profiles for supercritical

flows F∗ = F > 1 past a plate of length L, see Figures 3(a), (c) and 4(a), (c). Since the

plate is on top of the level of the flow in the far field, we refer to these flows as ‘surfing

flows’ and to the plate as a ‘surfboard’. The range of validity of the weakly nonlinear

theory is established by comparing nonlinear and weakly nonlinear free surface profiles.

Previously, Vanden-Broeck & Keller [13] computed nonlinear solutions using a method

of series truncation. They found that for a horizontal surfboard (σc = 0), there is a two

parameter family of solutions, whereas for an inclined board (σc � 0), there is a one
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Figure 4. Supercritical flow for F = 1.10 and σc = 2.30◦. (a) Fully nonlinear free surface profile,

γ = 0.20 and L = 3.59. (b) Values of dy

dx
= tan(θ) versus y−1 = η, showing the fully nonlinear phase

trajectories for figure (a). (c) Weakly nonlinear profile, γ = η1 = 0.184, η2 = 0.062 and L = 3.05.

(d) Weakly nonlinear phase portrait for figure (c), dη

dx
versus η.

parameter family of solutions. We recover these results by using our boundary integral

equation method. In addition we explain the qualitative behaviour of the solutions

(in particular, the number of parameters needed to determine uniquely solutions) by

applying the weakly nonlinear theory. Finally new types of solutions are identified and

discussed.

For the nonlinear computations we defined the height of the intersection of the upstream

free surface with the surfboard as

yU1 = y(0) = 1 + γ.

Here γ is the elevation of the point B on top of the level of the free surface at x = ∞ (see

Figure 1(a)).

For a horizontal surfboard, σc = 0, a two parameter family of solutions was found.

The parameters can be chosen as the downstream Froude number F > 1 and the length

of the surfboard L (or φc). There are then N1 + N2 − 1 unknowns γ, θUI , I = 2, . . . , N1,

and θDI , I = 2, . . . , N2. The system of equations [*] yields N1 +N2 − 2 nonlinear algebraic
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equations and for a horizontal surfboard the last equation is

yD1 = y(φc) = 1 + γ.

This system of N1 + N2 − 1 equations with N1 + N2 − 1 unknowns can be solved using

Newton’s method for given values of F > 1 and L (or φc). We note that γ is the elevation

of the horizontal plate or surfboard.

Figure 3(a) is a computed nonlinear profile for F = 1.10, L = 1.00 (φc = 0.80) and

γ = 0.21. Figure 3(c) is the weakly nonlinear profile for F = 1.10, L = 1.00 and γ = 0.20.

Essentially the nonlinear profile, Figure 3(a) and weakly nonlinear profile, Figure 3(c),

are the same for F = 1.10 and L = 1.00. Figure 3(b) is the nonlinear phase trajectory for

Figure 3(a). This provides a check that our analysis of the weakly nonlinear phase plane

(η, ηx) is correct. Analysis of the phase plane Figure 3(d) can help us understand these

solutions and determine the number of independent parameters. We start to move from

the saddle point η = 0, ηx = 0, in a clockwise direction on the solitary wave orbit, C = 0,

past the maximum elevation η = 2(F − 1), ηx = 0, before returning to the saddle point

(see Figure 3(d)). The point η = 2(F − 1), ηx = 0 in the weakly nonlinear phase plane

represents the horizontal surfboard of arbitrary length L. Hence, for a given value of

F > 1, the elevation of the horizontal board γ = 2(F−1) comes as part of the solution and

we are free to choose the length L of the surfboard. Therefore there is a two parameter

family of solutions for σc = 0. Here the parameters are Fand L.

We confirmed this understanding of the phase plane by computing nonlinear profiles

for same value of F = 1.10 and different lengths L, of the horizontal surfboard. For L = 0

(i.e. solitary wave), L = 1.00 and L = 2.00 we obtained the same value of γ = 0.21.

We found that for values the Froude number F > 1.15 the differences between the

weakly and nonlinear profiles were more noticeable. Further solutions for large values of

F can be found in Vanden-Broeck & Keller [13].

We now consider supercritical flow, F > 1, past an inclined surfboard σc � 0. We

recovered Vanden-Broeck & Keller’s [13] one parameter family of nonlinear solutions.

For a given value of the angle of inclination σc, the independent parameter can be chosen

as the Froude number F . The elevation of the surfboard at the intersection with the

upstream free surface γ, and the length of the board L, (or φc) came as part of the

solution. Figure 4(a),(b) is a nonlinear profile and phase trajectory for F = 1.10, σc = 2.3◦,

γ = 0.20 and L = 3.59.

We also analytically derived a weakly nonlinear profile (see Figure 4(c)) for the same

values of F = 1.10 and σc = 2.3◦. The weakly nonlinear values of γ = 0.18 and L = 3.05

came as part of the solution. The nonlinear and weakly nonlinear profiles compare well

in Figures 4(a),(c).

We now analyse the weakly nonlinear phase plane (Figure 4(d)) to determine the

number of independent parameters to fix and give details of how the weakly nonlinear

profile Figure 4(c) was derived.

For a given value of F = 1.10 we can graph the phase portrait Figure 4(d). Then a

given value of σc determines the horizontal line − tan [σc] in the phase plane Figure 4(d).

The elevation of the intersections of the surfboard with the upstream and downstream

free surfaces, γ = η1 and η2 respectively, were determined as follows.
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Using equation (2.36), dη
dx

= −tan [σc] and C = 0, a cubic for η can be obtained

6(F − 1)η2 − 3η3 = tan [σc]
2. (3.1)

We can define the three roots as η3 < η2 < η1. The first root η1 = γ is then the elevation

of the surfboard at the intersection with upstream free surface. The second root, η2, is

then the elevation of the surfboard at the intersection with downstream free surface. The

length of the surfboard, L = (η1 − η2)/ sin [σc], must then come as part of the solution,

to ensure that the phase trajectory leaves and rejoins the solitary wave outer orbit in the

phase plane Figure 4(d). We note that the third root, η3 < 0, in (3.1) is no interest to us.

For values of F = 1.30 and σc = 10.80◦ we computed a nonlinear solution and compared

it to an analytically derived weakly nonlinear solution to establish the range of validity of

the weakly nonlinear theory. We obtained the nonlinear values of γ = 0.73 and L = 3.02

which differs from the weakly nonlinear values of γ = 0.56 and L = 2.10. This is due to

the fact that F is not close to 1. Qualitatively though, the free surface surface profiles are

similar.

We now turn our attention to investigating subcritical flow, F < 1, past a horizontal or

inclined plate of finite length.

3.2 Subcritical flows

We used the numerical scheme of § 2 in an attempt to compute fully nonlinear subcritical

flows past a horizontal or inclined plate of finite length. We allowed a train of waves as

x → −∞ and required the flow to be uniform as x → ∞. If such a solution is obtained,

we need to reverse the direction of the flow (i.e. the direction of the arrow in Figure 1(a))

to obtain a physically realistic flow satisfying the radiation condition.

We were not able to find any such solutions numerically. The nonexistence of these

flows is consistent with the analysis of the weakly nonlinear phase plane in Figure 5(b).

We note that there is now a saddle at η = 4/3(F − 1), ηx = 0 and a center at η = 0,

ηx = 0. The horizontal plate can be represented by points on an inner periodic orbit (for

example the bold one in Figure 5(b)), at the intersection with either the negative η-axis

or positive η-axis. For Figure 5(a), γ < 0, and the horizontal board is therefore at the

point where the bold inner periodic orbit intersects with the negative η-axis. To obtain a

solution with constant depth as x → −∞ there would have to be a ‘jump’ off the bold

inner periodic orbit into the centre at η = 0, ηx = 0 in the phase plane, see Figure 5(b).

As there is no ‘forcing’ term in the KdV equation this simply cannot be achieved.

A similar analysis can be performed for subcritical flow past an inclined plate, see

Figure 5(c)(d). Here the inclined plate is represented in Figure 5(c) by the horizontal line
dη
dx

= −tan [σc], joining the two inner periodic orbits in the phase plane Figure 5(d). There

is no way to ‘jump’ from a periodic orbit into the centre η = 0, ηx = 0, in the phase plane,

see Figure 5(d). Therefore, solutions are characterized by two trains of waves, upstream

and downstream of the inclined surfboard, see Figure 5(d).

We have just established that in terms of the weakly nonlinear theory there can be

no solutions that satisfy the radiation condition, for subcritical flow past a surfboard of

finite length. We confirmed this understanding with our nonlinear theory and found no

subcritical solutions that satisfied the radiation condition.
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Figure 5. Subcritical flow for F = 0.76. (a) Weakly nonlinear profile, γ = −0.12, σc = 0.0◦ and

L = 1.00. (b) Weakly nonlinear phase portrait for figure (a), dη

dx
versus η. (c) Weakly nonlinear

profile, γ = 0.031, σc = 2.86◦ and L = 2.74. (d) Weakly nonlinear phase portrait for figure (c), dη

dx

versus η.

We have so far considered supercritical and subcritical flow past a rigid free surface

obstruction (surfboard). In the next section we consider critical flow past an inclined sluice

gate.

3.3 Flows under sluice gates

Flows under a sluice gate are defined by the configuration of Figure 1(a) with a uniform

subcritical flow (F∗ < 1) as x → −∞ and a uniform supercritical flow (F > 1) as x → ∞.

Vanden-Broeck [14] solved numerically the flow for σc = π/2 and showed that there

are no solutions with an uniform stream as x → −∞. All computed solutions have a train

of waves as x → −∞. These solutions are not physical because the waves do not satisfy

the radiation condition. In other words there are no sluice gate solutions for σc = π/2.

Here we extend this result for σc � π/2. For σc � π/2, we can supplement the numerical

computations by the weakly nonlinear theory and confirm that there is always a train of

waves as x → −∞.
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Figure 6. Critical flow for a value of the downstream Froude number, F = 1.30. (a) Weakly

nonlinear free surface profile for values of σc = 2.9◦, γ̄ = 0.79 and L = 8.23. (b) Weakly nonlinear

phase portrait for figure (a), dη

dx
versus η. (c) Fully nonlinear free surface profile for values of

σc = 3.4◦, γ̄ = 0.79 and L = 6.92. (d) Values of dy

dx
= tan(θ) versus y − 1 = η, showing the fully

nonlinear phase trajectories for Figure (c).

We specified the height of the intersection of the upstream free-surface with the gate as

yU1 = y(0) =

(
1 +

F2

2

)
γ̄

at x = 0. For flow separating tangentially from the gate at x = 0, γ̄ < 1. If there is a

stagnation point at x = 0, γ̄ = 1.

We obtained numerically a three parameter family of nonlinear solutions with a train

of waves on the upstream free surface. The three parameters were chosen as σc, F and

γ̄. The length of gate L (or φc) was found as part of the solution. These waves violate

the radiation condition as x → −∞. Figures 6(c) and 7(a) are typical nonlinear profiles.

No nonlinear solutions were obtained that satisfied (2.7) and the radiation condition as

x → −∞.

Performing a weakly nonlinear analysis of the phase plane can determine the number of

independent parameters and explain why there is no solution that satisfies the radiation

condition, see Figure 6(b). For a given value of F = 1.30 the phase portrait can be plotted

(Figure 6(b)) with a center at η = 4/3(F − 1), ηx = 0 and saddle point at η = 0, ηx = 0.
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Figure 7. Critical flow, for F = 2.15 and σc = 21.6◦. (a) Fully nonlinear free surface profile,

γ̄ = 0.98, L = 5.56 and φc = 2.58. (b) Values of dy

dx
= tan(θ) versus y − 1 = η, showing the fully

nonlinear phase trajectories for Figure (a).

A given value of σc then determines the horizontal line, dη
dx

= −tan [σc], in Figure 6(b).

Fixing a value of C = Ca in (2.36) then determines the inner periodic orbit or the

amplitude of the waves.

The length of the gate L must then come as part of the solution to ensure that the

horizontal line in Figure 6(b) joins the inner periodic orbit to the outer solitary wave

orbit. Figure 6(a) is a weakly nonlinear profile for given values of F = 1.30, σc = 2.9◦ and

γ̄ = 0.79. Here we have viewed γ̄ as the third parameter instead of Ca to be consistent with

the nonlinear independent parameters. In Figure 6(c) we computed a nonlinear profile

for the same values of F = 1.30 and γ̄ = 0.79 to compare with 6(a). Figure 6(d) is the

nonlinear phase trajectory for Figure 6(c).

The phase plane analysis shows (Figure 6(b)) that there are no weakly nonlinear

solutions that satisfy the radiation condition far upstream, for critical flow. This is because

there can be no ‘jump’ from the center η = 4/3(F − 1), ηx = 0, onto the horizontal line
dη
dx

= − tan [σc]� 0, in the phase plane Figure 6(b).

We confirmed this new result in terms of the nonlinear theory by considering a given

value of σc = 15.3◦ and F = 2.15 for various values of γ̄. We then plotted the amplitude of

the waves (appearing on the upstream free surface) versus γ̄, see Figure 8(b). Figure 8(b)

illustrates that the amplitude of the waves can be decreased to a minimum amin � 0. Similar

results were obtained for other given values of the Froude number F and inclination σc,

while varying γ̄. Since amin > 0 there are no waveless nonlinear solutions and the radiation

condition is violated far upstream.

The effect of decreasing F , for a given angle of inclination, σc = 21.6, is shown in Figures

7(a) and 8(a). This result is qualitatively similar to that obtained by Vanden-Broeck [14]

for the flow under a vertical sluice gate. As the Froude number is decreased, the amplitude

of the waves increase and the profiles develop broad troughs and sharp crests. Ultimately

they are expected to reach the Stokes limiting configuration of 120◦ angle at their crests.

Another Stokes limiting configuration with a stagnation point at the intersection of the

upstream free-surface with the gate (at x = 0) is approached as γ̄ → 1 in Figure 7(a).
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Figure 8. (a) Fully nonlinear free surface profile for F = 1.75, φc = 1.74, L = 3.20, γ̄ = 0.95 and

σc = 21.6◦. (b) Graph of the wave amplitude a versus γ̄, for a fixed value of F = 2.15 and σc = 15.3◦.

(c) Fully nonlinear free surface profile with a Stokes limiting configuration of 120◦ for a stagnation

point at B. F = 2.15, φc = 2.57, γ̄ = 1.00, σc = 21.6◦ and θU1 = 38.4◦. (d) Fully nonlinear free surface

profile for a vertical sluice gate, F = 2.15, φc = 0.31, γ̄ = 1.00, θU1 = 0◦ and σc = 90◦.

This limiting configuration can be computed directly by fixing γ̄ = 1 and imposing a 120◦

angle at x = 0, for σc < 60◦, see Figure 8(c). (i.e. θU1 = 60◦ − σc.) Notice that in Figure

7(a) the free surface is ‘smooth’ at the intersection of the gate with upstream free surface

whereas in Figure 8(c) there is a slope discontinuity at x = 0.

Lastly, we consider the effect of varying the third parameter σc. For a given value of

the Froude number F = 2.15 increasing the gate inclination σc decreases the amplitude of

the waves appearing on the upstream free surface, see Figures 7(a), 8(c) and 8(d). Note

that the amplitude of the waves in Figure 8(d) is small, but never equal to zero.

In Figure 8(d), we recover Vanden-Broeck’s [14] solution for a vertical sluice gate

(σc = π/2). This solution is outside the range of validity of the weakly nonlinear theory

which assumes σc � π/2.

One way to derive models which satisfy the radiation condition is to replace the free

surface AB by a rigid lid (see Budden & Norbury [5] and Asavanant & Vanden-Broeck

[1]). Two such solutions are shown in Figure 9 for a vertical sluice gate. The top solid line
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Figure 9. The solid curves are rigid lid approximations for a vertical sluice gate, F = 1.55. Top

solid curve φc = 0.086 and bottom solid curve φc = 0.051. The broken curve is Vanden-Broeck’s

[14] recovered solution for a vertical sluice gate, F = 1.55 and φc = 0.073.

corresponds to the choice γ̄ = 1. The bottom solid line is a better approximation in which

γ̄ was chosen so that the dynamic boundary condition (2.1) is satisfied as x∗ → −∞. The

broken line in Figure 9 is Vanden-Broeck’s [14] wavy solution.

Another way to develop models which satisfy the radiation condition is to introduce

an additional disturbance upstream. Such flows are not considered in this paper.

Finally, let us mention that solutions satisfying the radiation condition might be

obtained by allowing a spray (or jet) at B (see for example Vanden-Broeck & Keller [13]

and Dias & Vanden-Broeck [7]).

4 Conclusions

We have computed nonlinear free surface flows past surfboards and under sluice gates.

Weakly nonlinear solutions were also derived analytically. We have shown that out of

the six possible types of flows, only the supercritical flows, the subcritical flows with two

trains of waves and the ‘generalised critical’ flows exist. The results imply in particular

the nonexistence of subcritical flows satisfying the radiation condition. Similarly there are

no solutions for the flow under a sluice gate that satisfy the radiation condition.
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