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ABSTRACT hot-clutter signals to provide improved interference ceje
tion. Both methods will however cause secondary modula-
ions during image formation, similar to that shown by [5].

his paper analyses these techniques for sidelobe and main-
lobe jamming in SAR and utilises the derivative constraints
for improved final image quality.

Large regions of a Synthetic Aperture Radar (SAR) im-
age can potentially be destroyed by an airborne broadban
jammer. Jammer components include both the direct-path
and multipath reflections from the ground, known as hot-
clutter or terrain scattered interference. Using multgole
tennas on a SAR provides spatial degrees of freedom and al- 2. SYSTEM MODELSAND GEOMETRY
lows for beamforming to reject the direct-path signal. How-
ever, to effectively suppress non-stationary hot-clutten- 2.1. SAR Signal Model
ponents, fast-time taps from within a pulse have shown to be
effective for airborne radar, [1]-[2]. The goal of interégice
suppression for SAR is to successfully suppress these inter
ferences while not significantly effecting the image qualit
by blurring, reducing the resolution or raising the sidedo

Consider a SAR travelling along the y-axis, imaging a point
in the slant-plane: € [X. — Xy, X. 4+ Xo], v € [-Y0, Yo .

The radar transmits a broadband chirp and the received sig-
nal 5, (t,u, z,y), is base-banded and sampled for each of

level. This paper looks at two fast-time STAP algorithms, 1€/ channels of a linear antenna array with equi-spaced

the Minimum Variance Distortionless Response (MVDR) "ecéivers along the azimuth direction. The varialfles)

and the Generalised Sidelobe Canceller (GSC) to study thdepresent (fggt-time) samples Withir,‘ a pulse and the SAR
effect of non-stationary interference suppression for SAR Platform position (slow-time) respectively. As the SAR dan
images width, B (Hz) is much smaller than the carrier frequency,

w, (rad/s), the SAR signal model can be split into tempo-
ral and spatial components and adaptive filtering can occur
either before or after range processing.
1. INTRODUCTION The spatial delay is given by the time difference be-
tween the centre and theé” channel and can be approxi-
Typical SAR imaging is performed with a large offset range mated as a function of the SAR positiaror equivalently,
and small field of view. Any jammer signal incident outside an angular offsef(u).
the main-beam field of view can easily be suppressed with . 1
spatial beamforming alone. However, if the jammer signal Tn(u) = c [B(Xe,ut dn) = B(Xe, )]
is incident in the main-beam, the range profile of a target
can be nulled and consequent image formation will lead to
a blurry final image. The use of derivative constraints to 0w
reduce potential signal suppression has shown to be an efwhere is the speed of lightR(-) is the radial distance
fective compromise to reduce the interference without com- given by Pythagoras and, = nd is the antenna offset
promising the targets range profile, [3]. from the array phase centre with antenna spadirand
In addition to this, non-stationary interference from the ,, ¢ [—(N —1)/2,(N —1)/2] for N (odd) antenna ele-
‘hot-clutter’ will cause the training statistics to charfgem ments. The spatial steering vector can then be written as,
pulse to pulse and traditional slow-time Space Time Adap-
tive Processing (STAP) techniques [4], will not be effeetiv sn(u) = exp[—jweTn(u)] (2)
Therefore adapting within each pulse is required by exploit The total ground return for the SAR is the integral over all
ing spatial beamforming or combing spatial/fast-time beam scatterers with radar cross sectiffx, y),
forming. Fast-time STAP offers the advantage of exploiting R
the coherency between the direct-path jammer and other n(t,u) = /y/zf(m’y)s"(t’“’x’y)dmdy‘ (3)

~ —d—cn sin [arctan(u/X.)] (1)
N————



Also, if the SAR is being jammed by an airborne platform, The power spectral density of the jammer signal has a
there will be an extra signal component required in the databandwidthB <« w,, centred at baseband. Although the
model to represent the direct-path and the ground reflectedammer bandwidth is greater than the SAR bandwidth, the
path (hot-clutter)z,(-). These signals with the addition of received signal is filtered within the receiver to match the
receiver noise(-), form the components seen by the SAR.  SAR bandwidth. Realisations of the jammer sigi@l) can
be created from the Inverse Fourier Transform of this signal
Tn(t,u) = Yalt,u) + 2n(t,w) + vn(t, u). (4) or autocorrelation,

The noise signal, () represents the receiver noise for each ry(7) = sinc(B7) (6)
channel. It is modelled as white Gaussian noise with zero

mean and unity variance. Figure 1 shows the processingA physically based model for the multipath scattering is
chain from transmission of the chirp signal, formation of presented by Beckman, [6] and used by [7]. It uses a flat-
the signalz,, (¢, u), range processing, adaption and image earth approximation and is referred to as a glistening sur-

formation. face. Using this model, a surface roughness paranieter
defines the scattering distribution between the SAR and an
Repeat for M Pulses Send out Radar pulse — airborne jammer at heightsp andh; respectively, sepa-
broadband chirp rated by a distancé; in the ground plane. The scatterer
l positions are projected onto the slant plane to fit our sim-
: ulation model and rotated b; according to the jammer
Jammer signal — Ground Scatterers — . .
dir ) . . position. The coefficient$y, = pBy, for k > 1 are formed
ect-path / hot-clutter stationary / moving . . . .
with a scaling factop, relative to the direct-path and a ran-

dom magnitudd3;, determined from the scattering model.
NReceive Antennas— | Receiver noise The degree of diffuseness from the hot-clutter will
greatly effect the final image quality. For example, a high
K5 will cause the hot-clutter reflections to be specular and it
Receive / base-band will appear spatially that only one jamming source is présen
& sample signals However, wherks is low, the diffuseness is large and the

U 1 = 1§ <L Fast-time Samples hot-clutter will spregd in angle, giving the appearance of a
‘ Range Processing ‘ per chanmel number of different jammer sources incident on the_SAR.
T 1 - 11 _ The real beampa_lttern forflye antenn_aeleme_nts_ is shqwn
‘ Adaptive Filtering ‘ in F|gure 2. If the thect-path jammer S|gr!al is mmdent in
‘ the mainlobe, the jammer scenario is defined as mainlobe
v jamming. Correspondingly, for a direct-path jammer sig-
Imaging nal outside the mainlobe, the jammer scenario is defined as
Algorithm sidelobe jamming. The jammer itself will also have an an-

tenna characteristic with a mainlobe and sidelobes. To em-
ulate this, for each direct-path signal incident on the SAR
at 0 relative to broadside, there will be energy from the
sidelobes of the jammer 8y + 0.

The bistatic jammer model assumes therelgreot-clutter o
patches within a given area. If an absolute time variable,

t = u/v, + t is defined as the sum of slow-time and fast- ~10
time, then the output of the!” receiver,z,(-), is the su-
perposition of the direct path and the hot-clutter scattgre

Figure 1: SAR Processing Diagram

2.2. Jammer model

K S
zn(t,u) = bed (F = Foi(t,u)) (5) <
k=0
where J(+) is the jamming signal wavefornt,, (-) is the
bistatic delay and is defined as the relative magnitude be- _so
tween the direct-path signal and the jammer signal reflected
by thekt" scatterer. The zero index refers to the direct-path Figure 2: Array Beampattern fa¥ = 5, s, = 10°,
with by = 1. (-) SAR Field of View, (-.-) Mainlobe Jammind,; = 0°,
(- -) Sidelobe Jammingd),; = 40°
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INote: If there were moving targets in the scene, these woeilaidoli-
tional components.



3. FAST-TIME FILTERING Cu)=s(u) ; d=1 (20)

Spatial beamforming requires stacking both the received. . . . .
. . into the previous equation. This processor is known as the
data and the signal model to form spatial vectors for the

It fast-time range bin with = 1. .. L andt, — IAL, Minimum Varia_nce Distortionless Re_spon_se (MVDR) anq
provides good interference cancellation with sharp nalls i

x(Lu) = [z1(t,w), za(ty, ), . ..,z (b, u)]" e VX, each interference direction.

T o oNx1 If the adaption is too strong and the target signal is being
modulated, extra constraints can be added to prevent poten-

Conventional beamforming is then performed by matching tial signal suppression. One common method is to constrain

the received data vector with the spatial steering vector,  the first derivative to be zero in the steering directionhis t

case, the derivative constraint is given by,

s(u) = [s1(u), s2(u), ..., sn(u)]

Vit ) = ) (1, ) ) !
Os(u
To extend the processing to use fast-time taps, the spatial C(u) = {S(“)v agéuﬂ ; d=[10" (11)
data vector is stacked over the past L fast-time taps,
} with,
X(Lu) = [e(Lu),x(l — L), oox( — L+ 1w e eV D5 (1)

IORRAR {—jwcdf cos [Q(u)]:|

with data components fér< L set to zero. Note that in this
formulation for fast-time filtering, range ambiguities leav  Fast-time Extension
been ignored. The corresponding fast-time reference vecto

is formed by setting the spatial vector at the first block and The fast-t|m_e equivalent _Of Equa_t|on_ 9 is known as an ele-
zeros for the remainder ment space implementation and is given by,

S(u) =e1 ®@s(u) € CEN><1 (8) g(ti,u) = WH(“)X(LU) (12)

where the constrained optimisation problem and solution

wheree, is an x 1 unit vector with zeros in all posi- are identical but for fast-time vectors instead of spaties

tions except for thg'” element, which is unity. This form
for the fast-time steering vector is used post range precess W(u) = R, (u)Cr (u) [CfH(u)Rffl(u)Cf(u)} -1 di € cLNx1
ing and assumes the signal of interest is located at the first

range gate with negligible range sidelobes. Itis also used t The space/fast-time covariance matrix is givenRy(u)
maintain the phase of the target signal. and the fast-time constraint matrix by,

3.1. AdaptiveFiltering with Constraints Ci(u) =I; ® C(u) € ¢LV*ENeon (13)

If the fOCUSSing vector in Equation 7 is replaced with a with Corresponding desired response Vector,
weighted vector, than spatial only adaptive processing can N
be performed, di(u) =e1®@d e "o (14)
Gt u) = w (u)x(l,u 9
(f ) = () ®) 32 Generalised Sidelobe Canceller
These weights are typically chosen to minimise the mean

squared value of the output power subject to to a set of con-An alternative beam space implementation is known as the

Generalised Sidelobe Canceller (GSC) and is shown in Fig-

straints, i.e. ) : .
. ure 3. It forms a set of ‘beams’ with the main beam in the
min E{lw" (w)x(l,uw)*} subjectto C” (uw)w(u) =d ‘desired’ target direction and the other ‘reference’ beams
w(u) going through a blocking matriB(u) to remove the de-

describe constraint conditions and  Sired signal from the data. This signal then goes through an
adaptive filter to minimise the output power, before being
subtracted from the main beam. While the MVDR method
relies on constraints to let the target signal through, t8€G
» is formulated to keep its main beam fixed on the target sig-
w(u) = R (u)C(u) [CH(U)Rfl(u)c(u)] dechx! nal. Also due to the loss V.o, degrees of freedom in the
adaption, less training data is required for the same adap-
whereR(u) is the spatial interference plus noise covariance tive performance. The most important difference however
matrix. The most common constraint on the weight vector is its behaviour with steering errors, which is superioh® t
is constraining the look direction to be unity by substitgti ~ element space adaptive processor previously presenied, [8

where columns o€ (u)
d is the desired responses of th&,, constraints. The
constrained optimisation problem is solved using Lagrange
multipliers to find the weight vector,



x(t,u) Fast-time Extension
Desired Filter + y(t,u)

W) To extend this algorithm to usé fast-time taps, assume
that the target signal is located at the first range gate and
L[ Blocking Matrix || Adaptive Filter the. range 5|d_elobes are negligible. The desired fast-time
— B(u) — W, (@) weights are given as,

Wia(u) = e1 @ wy(u) € chvx (20)

Figure 3: Generalised Sidelobe Canceller
'gu I ! with the fast-time blocking matrix expanded similarly teth

constraint matrix,
Bi(u) = I; ® B(u) € ¢EV*E0—Nean) (21)

The canceller’s output is given by
y(t,u) = wy (u)x(t,u) — wa (w)B (u)x(t,u)
= [wa(u) — B(w)wa(u)] x(t, u) (15) and the fast-time adaptive weight,

: , L Wa(u) = [Bf ()R (w)Br(w)] B (u)Rs(u) Wa(u) € CEN?
where the desired weightq(u), is given by a f i f f d

wa(u) = Clu) [CH(u)C(u)] —1 decoNx (16) The overall fast-time weight can then be written as,

W (1) = Wa(u) — Bi(u)Wa(u) € CEV*1 (22)
The adaptive weight vectar,(u), is designed to minimise

the output power by solving the unconstrained optimisation 3-3: Covariance Matrix

(9, The covariance matrix is estimated by gveraging aver
min range bins. The space/fast-time covariaRgéu), then re-
Wa [wa(u) = B(u)wa(u)] " R(u) [wa(u) - B(u)wa(u)] placesRs(u) in the previous algorithms and is known as the
Wa(u) — [BH(U)R(U)B(U)]71 BH(U)R(U)Wd(u) c C(N—Ncon)xl Sample matrix eSt'mate,

Lt

To remove the desired signal, the blocking matrix must be Ri(u) = L

=2 2wz () € CLNXIN —(23)
orthogonal to the constraint matri® (u)C(u) = 0. It Y=

is designed so each column is a shifted version of a single, j5 45sumed that techniques as described in [4] can be used
orthogonal vector of siz&V' x (Neon — 1) With Neon +1 5 get different realisations of the interference plus @ois

non-zero elements. Using the Moore-Penrose Pseudo Ingjona) without any targets present. The interference plus
verse, [10] a suitable constraint matAxu) can be formed  qice vectorz(-) can then be formed similarly to the data
as the concatenation &f — N.o, — 1 unit vectors with the vectorX (")

constraint matrixC(u). The unit vectors are used to define

the position of zeros within the blocking matrix, 4. SSIMULATED RESULTS
A(u) = [enpnt1 - - - en|C(u)] € ¢V Neow) a7 For the analysis in this paper, a multichannel SAR simula-
tion has been implemented in MATLAB. The parameters
with the Moore-Penrose Pseudo Inverse, chosen are summarised in Table 1 and a comparison be-

tween a synthetic SAR ‘S’ image and the same image with
hot-clutter (HC) added is shown in Figure 4. For image
formation, a multichannel Spatial Matched Filter / Interpo
lation algorithm is used [11].
b(u) = Iy — A(u)A'(u) The purpose of this paper is to measure the effect of
— BT ()05 _y. ]T € CVX1 (19) differ_ent constrai.nts on a final SAR image when increasing
e fast-time taps. Since both element and beam space formula-
tions will produce the same results with no steering errors,
only element space results are presented here.

Af(u) = [AT (w)A(w)] A (u) € VNN (18)

The first orthogonal column of the blocking matrix is then

wheref)(u) containsN¢on+ 1 non-zero elements artdy is
anN x 1 vector of zeros. The blocking matrix then has the

form, 4.1. Performance Measures
b(w) 0 0 0 The adaptive performance is measured by the amount of in-
B — 0 b 0 : € N XV N terference energy remaining after cancellatiomighfa(¢, «)

. _ is the output signal prior to image formation with no in-
: 0 + b(u) 0 terference present, then the Residual Interference toeNois
0 0 0 b(u) Ratio (RINR) is estimated by,



Table 1: Simulation Parameters

Parameters Value
Carrier Frequencyf.) / Bandwidth(B) 10/0.3 GHz
Number of Element$N) / Spacing(d) 5/4m
Number of Pulse$M) / Range Bing L) 100/ 280
Range CentréX.) / Clutter Noise Ratio 10 km /20 dB Fast-time Taps, (L) Fast-time Taps, (L)
Range(Ax ) / Azimuth Resolution(Ay-) 1/5m ) ) ) )
PRI(Trr:) | Pulse Lengti(T}) 3 ms/ 45us Figure 5: Sidelobe Jammingisg = 0.01 (very diffuse),
Fast-time SamplingAt) / Training Size( L) 5= /3LN (—) MVDR, (- -) First Order Deriv., {.-) Conventional
SAR Height(hp) / Jammer Heighth s) 3/3km 20
Jam. Offse{(z ;) / Jammer Sidelobe®§;) 50 km /4 deg .
No. HC Scats(K) / Relative HC Magnitudép) | 200/0.7 @
Mainlobe/Sidelobe Angléd) Odeg/40deg & °
Diffuse/Specular Jammer Powgt?3) 65dB/40dB| & o

-10,

Ideal Image Jammed Image

0
Fast-time Taps, (L) Fast-time Taps, (L)

Figure 6: Sidelobe Jammingks = 0.3 (mod. diffuse),
(—) MVDR, (- -) First Order Deriv., {.-) Conventional
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, Fast-time Taps, (L) Fast-time Taps, (L)
ly(t, uw)|
RINR(t,u) = —————— 24 . o . B
(t,u) el ) (24)  Figure 7: Sidelobe Jammingk ; = 10 (specular),

(—) MVDR, (- -) First Order Deriv., {.-) Conventional
For comparisons in this paper, the RINR is measured di-

rectly after adaption and is averaged over all the range—tIme taps in the very diffuse scenario shows an improve-

ment of 4-5dB in the RINR. This is also mirrored with
E%he SDR, where the MVDR algorithm shows the best per-
formance with 15 taps. As the diffuseness becomes less,
there is a smaller improvement with using fast-time taps
and the derivative constraint algorithm starts to show bet-
ter SDR than the MVDR. In fact for the specular scenario,
the derivative constraint doesn’t suppress more intemfsge
than the MVDR, but produces an image with 40dB im-
provement in SDR! This is due to the derivative constraint
preventing the target signal from being as suppressed. The
4.2. Sidelobe Jamming moderately diffuse and specular RINR results also show a

. . S . negative RINR, further confirming that part of the target sig
Sidelobe jamming isn’t as hard to suppress as the mamlobqqal has been suppressed during the adaption
case since the steering directions are not in the same region '

as the interference. For this reason there will be littléedif
ence with the addition of fast-time taps except with the most
diffuse scenario. Comparisons for the MVDR, MVDR with Mainlobe jamming is a much harder interference to sup-
derivative constraint and the conventional processorm@e p press. Without constraints, the adaptive processor would
sented in Figures 5to 7. null the target signal with the interference. However, & th
The three simulation scenarios each have a different to-constraint from Equation 10 is imposed for the steering di-
tal amount of interference. The very diffuse scenario showsrection, the power from any incident interference signals
a 15-20dB reduction of the interference with respect to the will instead be minimised. Using derivative constraints to
conventional RINR, while this increases to 40dB for the prevent potential signal suppression can therefore be used
moderately diffuse and specular scenarios. Increasing fas as a tradeoff to reduce the interference and not signifigantl

Signal Distortion Ratio (SDR) post image formation. Let
Y (z,y,) denote the adapted images for pixgls- 1. .. F,

g = 1...G. Correspondingly, leD(z,y,) denote the
ideal image with no jammer added. The SDR is then esti-
mated as

g 1P y0)l”

SDR =
20 1Y (@5:49) = Dy, yg)l?

(25)

4.3. Mainlobe Jamming
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Figure 8: Mainlobe JammingK s = 0.01 (very diffuse),
(—) MVDR, (- -) First Order Deriv., {.-) Conventional
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Figure 9: Mainlobe JammingK 3 = 0.3 (mod. diffuse),
(—) MVDR, (- -) First Order Deriv., {.-) Conventional
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Figure 10: Mainlobe Jammingks = 10 (specular),
(—) MVDR, (- -) First Order Deriv., {.-) Conventional

modulate the target signals. It is expected that using fast-

time taps willincrease the performance due to the coherency [3]

between the direct-path and other hot-clutter scatterers.

The two diffuse simulation scenarios indicate a 20dB
reduction in the RINR, while this increases to 30dB for the
specular scenario. Increasing fast-time taps makesdittle
ference for the very diffuse scenario. The MVDR algorithm
performs slightly worse, while the derivative constraiat-p
forms slightly better.

For the moderately diffuse scenario however, the deriva-
tive constraint algorithm shows a 2dB improvement in both
RINR and SDR as the number of fast-time taps increase. It
is also 3dB above the conventional SDR when it achieves
its maximum of 10dB. While both algorithms offer good
interference suppression, the MVDR now forms an image
which is worse than the conventional one as it is not able to
prevent target signal cancellation.

Specular interference in the mainbeam is the toughest

to suppress while still maintaining a good quality image.
The MVDR algorithm shows the best RINR at a level 17dB
below the derivative constraint. With increasing fastdim
taps, the derivative constraint algorithm shows a 2dB im-
provementin SDR and is 6dB above the the MVDR image.
However, both algorithms still fall under the conventional
SDR level.

5. CONCLUSIONS

Two fast-time implementations of constrained adaptive fil-
tering have been presented with identical results as no stee
ing errors were present in the simulation. In a real system,
the beam space GSC algorithm would be preferred over the
element-space for its ability to adapt in these situations.

It has been shown that there is a 4-5dB improvement
with sidelobe jamming as fast-time taps are used. For the
specular case, the first derivative constraint producedatiyr
improved SDR over the MVDR algorithm as it was able to
prevent the target signal from being as suppressed.

For the mainlobe case, only the moderately diffuse and
specular cases show any improvement with increasing fast-
time taps. A greater difference however was the moderately
diffuse case which showed a 3dB improvement over the
conventional SDR, while the specular scenario performed
worse than the conventional beamformer! This shows that
these algorithms are unable to prevent target signal cancel
lation while removing a strong specular interference in the
main beam.
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