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ABSTRACT

Large regions of a Synthetic Aperture Radar (SAR) im-
age can potentially be destroyed by an airborne broadband
jammer. Jammer components include both the direct-path
and multipath reflections from the ground, known as hot-
clutter or terrain scattered interference. Using multiplean-
tennas on a SAR provides spatial degrees of freedom and al-
lows for beamforming to reject the direct-path signal. How-
ever, to effectively suppress non-stationary hot-cluttercom-
ponents, fast-time taps from within a pulse have shown to be
effective for airborne radar, [1]-[2]. The goal of interference
suppression for SAR is to successfully suppress these inter-
ferences while not significantly effecting the image quality
by blurring, reducing the resolution or raising the side-lobe
level. This paper looks at two fast-time STAP algorithms,
the Minimum Variance Distortionless Response (MVDR)
and the Generalised Sidelobe Canceller (GSC) to study the
effect of non-stationary interference suppression for SAR
images.

1. INTRODUCTION

Typical SAR imaging is performed with a large offset range
and small field of view. Any jammer signal incident outside
the main-beam field of view can easily be suppressed with
spatial beamforming alone. However, if the jammer signal
is incident in the main-beam, the range profile of a target
can be nulled and consequent image formation will lead to
a blurry final image. The use of derivative constraints to
reduce potential signal suppression has shown to be an ef-
fective compromise to reduce the interference without com-
promising the targets range profile, [3].

In addition to this, non-stationary interference from the
‘hot-clutter’ will cause the training statistics to changefrom
pulse to pulse and traditional slow-time Space Time Adap-
tive Processing (STAP) techniques [4], will not be effective.
Therefore adapting within each pulse is required by exploit-
ing spatial beamforming or combing spatial/fast-time beam-
forming. Fast-time STAP offers the advantage of exploiting
the coherency between the direct-path jammer and other

hot-clutter signals to provide improved interference rejec-
tion. Both methods will however cause secondary modula-
tions during image formation, similar to that shown by [5].
This paper analyses these techniques for sidelobe and main-
lobe jamming in SAR and utilises the derivative constraints
for improved final image quality.

2. SYSTEM MODELS AND GEOMETRY

2.1. SAR Signal Model

Consider a SAR travelling along the y-axis, imaging a point
in the slant-planex ∈ [Xc − X0, Xc + X0], y ∈ [−Y0, Y0].
The radar transmits a broadband chirp and the received sig-
nal s̃n(t, u, x, y), is base-banded and sampled for each of
theN channels of a linear antenna array with equi-spaced
receivers along the azimuth direction. The variables(t, u)
represent (fast-time) samples within a pulse and the SAR
platform position (slow-time) respectively. As the SAR band-
width, B (Hz) is much smaller than the carrier frequency,
ωc (rad/s), the SAR signal model can be split into tempo-
ral and spatial components and adaptive filtering can occur
either before or after range processing.

The spatial delay is given by the time difference be-
tween the centre and thenth channel and can be approxi-
mated as a function of the SAR positionu or equivalently,
an angular offsetθ(u).

τ̃n(u) =
1

c
[R (Xc, u + dn) − R (Xc, u)]

≈ −
dn

c
sin [arctan(u/Xc)]

︸ ︷︷ ︸

θ(u)

(1)

wherec is the speed of light,R(·) is the radial distance
given by Pythagoras anddn = nδ is the antenna offset
from the array phase centre with antenna spacingδ and
n ∈ [−(N − 1)/2, (N − 1)/2] for N (odd) antenna ele-
ments. The spatial steering vector can then be written as,

sn(u) = exp [−jωcτ̃n(u)] (2)

The total ground return for the SAR is the integral over all
scatterers with radar cross sectionf(x, y),

γn(t, u) =

∫

y

∫

x

f(x, y)s̃n(t, u, x, y)dxdy. (3)



Also, if the SAR is being jammed by an airborne platform,
there will be an extra signal component required in the data
model to represent the direct-path and the ground reflected
path (hot-clutter),zn(·). These signals with the addition of
receiver noiseν(·), form the components seen by the SAR.1

xn(t, u) = γn(t, u) + zn(t, u) + νn(t, u). (4)

The noise signalνn(·) represents the receiver noise for each
channel. It is modelled as white Gaussian noise with zero
mean and unity variance. Figure 1 shows the processing
chain from transmission of the chirp signal, formation of
the signalxn(t, u), range processing, adaption and image
formation.

Figure 1: SAR Processing Diagram

2.2. Jammer model

The bistatic jammer model assumes there areK hot-clutter
patches within a given area. If an absolute time variable,
t̃ = u/vp + t is defined as the sum of slow-time and fast-
time, then the output of thenth receiver,zn(·), is the su-
perposition of the direct path and the hot-clutter scatterers,

zn(t, u) =
K∑

k=0

bkJ(t̃ − τ̃n,k(t, u)) (5)

whereJ(·) is the jamming signal waveform,̃τn,k(·) is the
bistatic delay andbk is defined as the relative magnitude be-
tween the direct-path signal and the jammer signal reflected
by thekth scatterer. The zero index refers to the direct-path
with b0 = 1.

1Note: If there were moving targets in the scene, these would be addi-
tional components.

The power spectral density of the jammer signal has a
bandwidthB ≪ ωc, centred at baseband. Although the
jammer bandwidth is greater than the SAR bandwidth, the
received signal is filtered within the receiver to match the
SAR bandwidth. Realisations of the jammer signalJ(·) can
be created from the Inverse Fourier Transform of this signal
or autocorrelation,

rJ(τ ) = sinc(Bτ ) (6)

A physically based model for the multipath scattering is
presented by Beckman, [6] and used by [7]. It uses a flat-
earth approximation and is referred to as a glistening sur-
face. Using this model, a surface roughness parameterKβ

defines the scattering distribution between the SAR and an
airborne jammer at heightshP andhJ respectively, sepa-
rated by a distancẽxJ in the ground plane. The scatterer
positions are projected onto the slant plane to fit our sim-
ulation model and rotated byθJ according to the jammer
position. The coefficients,bk = ρBk for k > 1 are formed
with a scaling factorρ, relative to the direct-path and a ran-
dom magnitudeBk, determined from the scattering model.

The degree of diffuseness from the hot-clutter will
greatly effect the final image quality. For example, a high
Kβ will cause the hot-clutter reflections to be specular and it
will appear spatially that only one jamming source is present.
However, whenKβ is low, the diffuseness is large and the
hot-clutter will spread in angle, giving the appearance of a
number of different jammer sources incident on the SAR.

The real beampattern for five antenna elements is shown
in Figure 2. If the direct-path jammer signal is incident in
the mainlobe, the jammer scenario is defined as mainlobe
jamming. Correspondingly, for a direct-path jammer sig-
nal outside the mainlobe, the jammer scenario is defined as
sidelobe jamming. The jammer itself will also have an an-
tenna characteristic with a mainlobe and sidelobes. To em-
ulate this, for each direct-path signal incident on the SAR
at θJ relative to broadside, there will be energy from the
sidelobes of the jammer atθJ ± θSL.
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Figure 2: Array Beampattern forN = 5, θSL = 10o,
(–) SAR Field of View, (-.-) Mainlobe Jamming,θJ = 0o,
(- -) Sidelobe Jamming,θJ = 40o



3. FAST-TIME FILTERING

Spatial beamforming requires stacking both the received
data and the signal model to form spatial vectors for the
lth fast-time range bin withl = 1 . . . L andtl = l∆t,

x(l, u) = [x1(tl, u), x2(tl, u), . . . , xN(tl, u)]T ∈ CN×1,

s(u) = [s1(u), s2(u), . . . , sN (u)]T ∈ CN×1

Conventional beamforming is then performed by matching
the received data vector with the spatial steering vector,

y(tl, u) = s(u)H
x(l, u) (7)

To extend the processing to use fast-time taps, the spatial
data vector is stacked over the pastL̃ < L fast-time taps,

X(l, u) =
[

x(l, u),x(l − 1, u), . . . ,x(l − L̃ + 1, u)
]T

∈ C
L̃N×1

with data components forl < L̃ set to zero. Note that in this
formulation for fast-time filtering, range ambiguities have
been ignored. The corresponding fast-time reference vector
is formed by setting the spatial vector at the first block and
zeros for the remainder,

S(u) = e1 ⊗ s(u) ∈ CL̃N×1 (8)

whereeq is an L̃ × 1 unit vector with zeros in all posi-
tions except for theqth element, which is unity. This form
for the fast-time steering vector is used post range process-
ing and assumes the signal of interest is located at the first
range gate with negligible range sidelobes. It is also used to
maintain the phase of the target signal.

3.1. Adaptive Filtering with Constraints

If the focussing vector in Equation 7 is replaced with a
weighted vector, than spatial only adaptive processing can
be performed,

ỹ(tl, u) = w
H(u)x(l, u) (9)

These weights are typically chosen to minimise the mean
squared value of the output power subject to to a set of con-
straints, i.e.

min
w(u)

E{|wH(u)x(l, u)|2} subject to C
H(u)w(u) = d

where columns ofC(u) describe constraint conditions and
d is the desired responses of theNcon constraints. The
constrained optimisation problem is solved using Lagrange
multipliers to find the weight vector,

w(u) = R
−1(u)C(u)

[

C
H(u)R−1(u)C(u)

]−1

d ∈ CN×1

whereR(u) is the spatial interference plus noise covariance
matrix. The most common constraint on the weight vector
is constraining the look direction to be unity by substituting

C(u) = s(u) ; d = 1 (10)

into the previous equation. This processor is known as the
Minimum Variance Distortionless Response (MVDR) and
provides good interference cancellation with sharp nulls in
each interference direction.

If the adaption is too strong and the target signal is being
modulated, extra constraints can be added to prevent poten-
tial signal suppression. One common method is to constrain
the first derivative to be zero in the steering direction. In this
case, the derivative constraint is given by,

C(u) =

[

s(u),
∂s(u)

∂θ(u)

]T

; d = [1, 0]T (11)

with,
∂sn(u)

∂θ(u)
= sn(u)

[

−jωc

dn

c
cos [θ(u)]

]

Fast-time Extension

The fast-time equivalent of Equation 9 is known as an ele-
ment space implementation and is given by,

ỹ(tl, u) = W
H(u)X(l, u) (12)

where the constrained optimisation problem and solution
are identical but for fast-time vectors instead of spatial ones,

W(u) = R
−1
f (u)Cf (u)

[

C
H
f (u)R−1

f (u)Cf(u)
]−1

df ∈ C
L̃N×1

The space/fast-time covariance matrix is given byRf(u)
and the fast-time constraint matrix by,

Cf(u) = IL̃ ⊗ C(u) ∈ CL̃N×L̃Ncon (13)

with corresponding desired response vector,

df(u) = e1 ⊗ d ∈ CL̃Ncon×1 (14)

3.2. Generalised Sidelobe Canceller

An alternative beam space implementation is known as the
Generalised Sidelobe Canceller (GSC) and is shown in Fig-
ure 3. It forms a set of ‘beams’ with the main beam in the
‘desired’ target direction and the other ‘reference’ beams
going through a blocking matrixB(u) to remove the de-
sired signal from the data. This signal then goes through an
adaptive filter to minimise the output power, before being
subtracted from the main beam. While the MVDR method
relies on constraints to let the target signal through, the GSC
is formulated to keep its main beam fixed on the target sig-
nal. Also due to the loss ofNcon degrees of freedom in the
adaption, less training data is required for the same adap-
tive performance. The most important difference however
is its behaviour with steering errors, which is superior to the
element space adaptive processor previously presented, [8].



Figure 3: Generalised Sidelobe Canceller

The canceller’s output is given by

y(t, u) = w
H
d (u)x(t, u) −w

H
a (u)BH(u)x(t, u)

= [wd(u) − B(u)wa(u)]H x(t, u) (15)

where the desired weightwd(u), is given by

wd(u) = C(u)
[

C
H(u)C(u)

]−1

d ∈ CN×1 (16)

The adaptive weight vectorwa(u), is designed to minimise
the output power by solving the unconstrained optimisation
[9],

min
wa

[wd(u) − B(u)wa(u)]H R(u) [wd(u) − B(u)wa(u)] ,

wa(u) = [BH(u)R(u)B(u)]−1
B

H(u)R(u)wd(u) ∈ C
(N−Ncon)×1

To remove the desired signal, the blocking matrix must be
orthogonal to the constraint matrix,BH(u)C(u) = 0. It
is designed so each column is a shifted version of a single
orthogonal vector of sizeN × (Ncon − 1) with Ncon + 1
non-zero elements. Using the Moore-Penrose Pseudo In-
verse, [10] a suitable constraint matrixA(u) can be formed
as the concatenation ofN − Ncon− 1 unit vectors with the
constraint matrixC(u). The unit vectors are used to define
the position of zeros within the blocking matrix,

A(u) = [eNcon+1 · · · eN |C(u)] ∈ CN×(N−Ncon) (17)

with the Moore-Penrose Pseudo Inverse,

A
†(u) = [AH(u)A(u)]−1

A
H(u) ∈ C(N−Ncon)×N (18)

The first orthogonal column of the blocking matrix is then

b(u) = IN − A(u)A†(u)

= [b̃T (u)|0T
N−Ncon−1]

T ∈ CN×1 (19)

whereb̃(u) containsNcon+ 1 non-zero elements and0N is
anN × 1 vector of zeros. The blocking matrix then has the
form,

B(u) =











b̃(u) 0 0 0

0 b̃(u) 0
...

... 0
... b̃(u) 0

0 0 0 b̃(u)











∈ C
N×(N−Ncon)

Fast-time Extension

To extend this algorithm to usẽL fast-time taps, assume
that the target signal is located at the first range gate and
the range sidelobes are negligible. The desired fast-time
weights are given as,

Wd(u) = e1 ⊗ wd(u) ∈ CL̃N×1 (20)

with the fast-time blocking matrix expanded similarly to the
constraint matrix,

Bf(u) = IL̃ ⊗ B(u) ∈ CL̃N×L̃(N−Ncon) (21)

and the fast-time adaptive weight,

Wa(u) =
[

B
H
f (u)Rf(u)Bf(u)

]−1
B

H
f (u)Rf(u)Wd(u) ∈ C

L̃N×1

The overall fast-time weight can then be written as,

W(u) = Wd(u) − Bf(u)Wa(u) ∈ CL̃N×1 (22)

3.3. Covariance Matrix

The covariance matrix is estimated by averaging overLt

range bins. The space/fast-time covarianceR̂f(u), then re-
placesRf(u) in the previous algorithms and is known as the
sample matrix estimate,

R̂f(u) =
1

Lt

Lt∑

l=1

Z(l, u)ZH(l, u) ∈ CL̃N×L̃N (23)

It is assumed that techniques as described in [4] can be used
to get different realisations of the interference plus noise
signal without any targets present. The interference plus
noise vector,Z(·) can then be formed similarly to the data
vectorX(·).

4. SIMULATED RESULTS

For the analysis in this paper, a multichannel SAR simula-
tion has been implemented in MATLAB. The parameters
chosen are summarised in Table 1 and a comparison be-
tween a synthetic SAR ‘S’ image and the same image with
hot-clutter (HC) added is shown in Figure 4. For image
formation, a multichannel Spatial Matched Filter / Interpo-
lation algorithm is used [11].

The purpose of this paper is to measure the effect of
different constraints on a final SAR image when increasing
fast-time taps. Since both element and beam space formula-
tions will produce the same results with no steering errors,
only element space results are presented here.

4.1. Performance Measures

The adaptive performance is measured by the amount of in-
terference energy remaining after cancellation. Ifyideal(t, u)
is the output signal prior to image formation with no in-
terference present, then the Residual Interference to Noise
Ratio (RINR) is estimated by,



Table 1: Simulation Parameters

Parameters Value
Carrier Frequency(fc) / Bandwidth(B) 10 / 0.3 GHz
Number of Elements(N) / Spacing(δ) 5 / λ

2
m

Number of Pulses(M) / Range Bins(L) 100 / 280
Range Centre(Xc) / Clutter Noise Ratio 10 km / 20 dB
Range(∆X) / Azimuth Resolution(∆Y ) 1 / 5 m
PRI (TPRI) / Pulse Length(Tp) 3 ms / 45µs
Fast-time Sampling(∆t) / Training Size(Lt)

1
2B

/ 3L̃N
SAR Height(hP ) / Jammer Height(hJ ) 3 / 3 km
Jam. Offset(x̃J) / Jammer Sidelobes (θSL) 50 km / 4 deg
No. HC Scats.(K) / Relative HC Magnitude(ρ) 200 / 0.7
Mainlobe/Sidelobe Angle(θJ) 0 deg / 40 deg
Diffuse/Specular Jammer Power(σ2

J ) 65 dB / 40 dB

Ideal Image Jammed Image

Figure 4: Sample Image - Ideal and with Interference

RINR(t, u) =
|y(t, u)|2

|yideal(t, u)|2
(24)

For comparisons in this paper, the RINR is measured di-
rectly after adaption and is averaged over all the range-
bins and pulses. A second measure of performance is the
Signal Distortion Ratio (SDR) post image formation. Let
Y (xf , yg) denote the adapted images for pixelsf = 1 . . . F,
g = 1 . . .G. Correspondingly, letD(xf , yg) denote the
ideal image with no jammer added. The SDR is then esti-
mated as

SDR =

∑

f,g
|D(xf , yg)|

2

∑

f,g
|Y (xf , yg) − D(xf , yg)|2

(25)

4.2. Sidelobe Jamming

Sidelobe jamming isn’t as hard to suppress as the mainlobe
case since the steering directions are not in the same region
as the interference. For this reason there will be little differ-
ence with the addition of fast-time taps except with the most
diffuse scenario. Comparisons for the MVDR, MVDR with
derivative constraint and the conventional processor are pre-
sented in Figures 5 to 7.

The three simulation scenarios each have a different to-
tal amount of interference. The very diffuse scenario shows
a 15-20dB reduction of the interference with respect to the
conventional RINR, while this increases to 40dB for the
moderately diffuse and specular scenarios. Increasing fast-
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Figure 5: Sidelobe Jamming -Kβ = 0.01 (very diffuse),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional
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Figure 6: Sidelobe Jamming -Kβ = 0.3 (mod. diffuse),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional
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Figure 7: Sidelobe Jamming -Kβ = 10 (specular),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional

time taps in the very diffuse scenario shows an improve-
ment of 4-5dB in the RINR. This is also mirrored with
the SDR, where the MVDR algorithm shows the best per-
formance with 15 taps. As the diffuseness becomes less,
there is a smaller improvement with using fast-time taps
and the derivative constraint algorithm starts to show bet-
ter SDR than the MVDR. In fact for the specular scenario,
the derivative constraint doesn’t suppress more interference
than the MVDR, but produces an image with 40dB im-
provement in SDR! This is due to the derivative constraint
preventing the target signal from being as suppressed. The
moderately diffuse and specular RINR results also show a
negative RINR, further confirming that part of the target sig-
nal has been suppressed during the adaption.

4.3. Mainlobe Jamming

Mainlobe jamming is a much harder interference to sup-
press. Without constraints, the adaptive processor would
null the target signal with the interference. However, if the
constraint from Equation 10 is imposed for the steering di-
rection, the power from any incident interference signals
will instead be minimised. Using derivative constraints to
prevent potential signal suppression can therefore be used
as a tradeoff to reduce the interference and not significantly
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Figure 8: Mainlobe Jamming -Kβ = 0.01 (very diffuse),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional
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Figure 9: Mainlobe Jamming -Kβ = 0.3 (mod. diffuse),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional
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Figure 10: Mainlobe Jamming -Kβ = 10 (specular),
(—) MVDR, (- -) First Order Deriv., (-.-) Conventional

modulate the target signals. It is expected that using fast-
time taps will increase the performance due to the coherency
between the direct-path and other hot-clutter scatterers.

The two diffuse simulation scenarios indicate a 20dB
reduction in the RINR, while this increases to 30dB for the
specular scenario. Increasing fast-time taps makes littledif-
ference for the very diffuse scenario. The MVDR algorithm
performs slightly worse, while the derivative constraint per-
forms slightly better.

For the moderately diffuse scenario however, the deriva-
tive constraint algorithm shows a 2dB improvement in both
RINR and SDR as the number of fast-time taps increase. It
is also 3dB above the conventional SDR when it achieves
its maximum of 10dB. While both algorithms offer good
interference suppression, the MVDR now forms an image
which is worse than the conventional one as it is not able to
prevent target signal cancellation.

Specular interference in the mainbeam is the toughest
to suppress while still maintaining a good quality image.
The MVDR algorithm shows the best RINR at a level 17dB
below the derivative constraint. With increasing fast-time
taps, the derivative constraint algorithm shows a 2dB im-
provement in SDR and is 6dB above the the MVDR image.
However, both algorithms still fall under the conventional
SDR level.

5. CONCLUSIONS

Two fast-time implementations of constrained adaptive fil-
tering have been presented with identical results as no steer-
ing errors were present in the simulation. In a real system,
the beam space GSC algorithm would be preferred over the
element-space for its ability to adapt in these situations.

It has been shown that there is a 4-5dB improvement
with sidelobe jamming as fast-time taps are used. For the
specular case, the first derivative constraint produced a greatly
improved SDR over the MVDR algorithm as it was able to
prevent the target signal from being as suppressed.

For the mainlobe case, only the moderately diffuse and
specular cases show any improvement with increasing fast-
time taps. A greater difference however was the moderately
diffuse case which showed a 3dB improvement over the
conventional SDR, while the specular scenario performed
worse than the conventional beamformer! This shows that
these algorithms are unable to prevent target signal cancel-
lation while removing a strong specular interference in the
main beam.
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