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From Natural Kinds to Complex Categories

Daniel J. Navarro (daniel.navarro@adelaide.edu.au)
School of Psychology, University of Adelaide, SA 5005, Australia

Abstract

The rational analyses of generalization proposed by
Shepard (1987) and Tenenbaum and Griffiths (2001a)
are extended to category learning. Categories are as-
sumed to possess a rich microstructure of subtypes, and
people are assumed to adapt to the context implied by
the learning task. Selective attention and typicality gra-
dients are shown to emerge from Bayesian inference over
the possible category microstructures and task contexts.

In outlining the universal law of generalization, Shep-
ard (1987, p. 1322) wrote: “We generalize from one sit-
uation to another not because we cannot tell the differ-
ence between the two situations but because we judge
that they are likely to belong to a set of situations hav-
ing the same consequence”. According to the theory, the
probability of generalizing from one stimulus to another
decays exponentially with distance in a suitable psycho-
logical space. The theory argues that people perceive
stimuli as members of natural kinds, where a natural
kind is assumed to occupy a consequential region that is
connected, convex, and centrally symmetric. The proba-
bility of generalizing from x to y is treated as the proba-
bility that the two belong to the same natural kind. Nat-
urally, these probabilities are dependent on the assump-
tions one makes about the distribution of natural kinds.
However, Shepard demonstrates that under a wide range
of choices for this distribution, the generalization prob-
ability is well-approximated by an exponential function
of psychological distance. This roughly-exponential de-
cay is well-documented, and Shepard’s law is now widely
adopted when modelling higher-level cognitive tasks.

The success of the exponential law has led other re-
searchers to extend the theory, to see if these notions of
kinds and consequences can deal with a wider range of
cognitive phenomena. Recently, Tenenbaum and Grif-
fiths (2001a) reformulated the law as a form of Bayesian
inference. Each possible kind/region constitutes a hy-
pothesis for how stimuli were generated. The advan-
tage to this approach is that it naturally handles stimuli
that cannot be represented spatially, and the explicitly
Bayesian formulation makes it simple to extend Shep-
ard’s law to multiple examples. Moreover, by treating
concepts as natural kinds, Tenenbaum (1999) used the
theory to predict how people learn simple concepts from
a set of positive examples.

This attempt to extend Shepard’s work has not been
uncontroversial. For example, the work has been crit-

icized for not accounting for structural relations in
similarity judgments (Gentner, 2001) and for not pro-
viding methods for deriving suitable hypothesis spaces
(Boroditsky & Ramscar, 2001). While Tenenbaum and
Griffiths (2001b) discuss how many of these problems
might be addressed, the majority of traditional category
learning research still remains outside the scope of the
theory (Love, 2001; Heit, 2001). Yet, to some extent “the
value of this model surely will be its ability to address
already documented phenomena in generalization, cat-
egorization, and inductive inference . . . To address this
large body of existing research, the Bayesian model itself
would require some further generalization” (Heit, 2001,
p. 673). This paper provides an initial, though tentative,
attempt to do so. As with other ‘rational’ accounts, the
paper is concerned with statistical structures that may
explain why we act the way we do, rather than the pro-
cess by which we exploit this structure.

From Natural Kinds . . .

The impressive achievement of Shepard’s theory is that it
is possible to make strong predictions using only the con-
sequential regions that he associates with natural kinds.
Yet while Shepard’s work is commonly cited to justify
the use of exponential functions (e.g., Kruschke, 1992;
Love, Medin & Gureckis, 2004; Nosofsky, 1984), very
few papers use the consequential regions upon which the
exponential law relies. In that sense, the Tenenbaum
and Griffiths’ model (henceforth the T&G model) is a
rare example of a consequential region model.

Consequential region models require a stimulus rep-
resentation X and a hypothesis space H. The stimulus
representation defines the relationships between differ-
ent objects x, and the hypothesis space contains all the
consequential regions that the observer might encounter.
A critical constraint is that the hypothesis space should
respect the topology of the stimulus representation. For
spatially represented stimuli, this implies that H should
be a set of connected regions in the stimulus space, de-
noted R (Shepard, 1987). In Shepard’s (1987) one-point
generalization model, and the basic version of the T&G
model for a spatial X , the probability of generalizing
from a set of old items x = (x1, . . . , xn) to a new one y
is given by the probability that y belongs to the same
region r that generated x. However, since r is unknown,
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Figure 1: Generalization gradients produced by a consequen-
tial region model. The left panel shows the gradients for the
original T&G model in which every x comes from the same
region, while the right panel shows the gradients for a model
in which every x comes from an independently sampled re-
gion.

we obtain1

p(y ∈ r |x) =
∑

r|y∈r

p(r |x),

where Bayes’ theorem implies that p(r |x) ∝ p(x | r)p(r).
For objects located in a one-dimensional space, regions
are defined by a mean m and a width s. When items are
generated from a region, it is assumed that every element
of the region is equally likely, so for items inside the
region, p(x | r) = 1/sr . In any case, because the regions
respect the structure of the stimulus representation, the
generalization gradient is flat over the locations spanned
by the previously observed stimuli, as shown by the left
panel in Figure 1.

An extension to the theory (Tenenbaum & Griffiths,
2001b) allows items to be generated from different re-
gions. In an extreme case, the observer might assume
that all old items were generated from independently
chosen regions. Under this assumption, the chance that
a novel item y falls inside at least one of the regions
∪r = r1 ∪ r2 . . .∪ rn is now given by,

p(y ∈ ∪r |x) = 1 −
∑

∪r | y /∈∪r

∏

i

p(ri |xi).

This generalization gradient is illustrated in the right
panel of Figure 1. The difference in the gradients is
striking, and illustrates the importance of considering
the manner in which multiple stimuli are generated from
consequential regions. Naturally, if one makes different
assumptions about the generative process, one observes
different generalization gradients.

. . . To Complex Categories
In discussing category learning, Anderson (1990, p. 411)
remarks that, “[p]eople notice that a number of objects
serve similar functions and proceed to form a category
to include them”. The plural term “similar functions”
is crucial. Most cricket bats are wooden, fairly large
and covered with reddish marks that indicate they have
been used for the function of playing cricket. Others

1If the hypothesis space is continuous, the summations
should be replaced with integrals.
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Figure 2: A highly stylized partial map of the (author’s)
category of fruit, built up from basic-level classes such as
apple, orange and lemon. While it is simple to observe that
superordinate categories consist of many subregions in the
space, it is also true of basic level categories. Red apples and
green apples occupy distinct regions, as do Valencia oranges
and blood oranges.

lack reddish marks, but are instead covered with the
signatures of famous cricketers, indicating that they are
used as memorabilia. Still others are plastic, lightweight
and yellow, indicating that they are used by children
in primary school. As a result, the category of cricket
bats is unlikely to consist of a single a consequential re-
gion. Rather, the category has a rich structure of sub-
types, each of which entail their own idiosyncratic conse-
quences. For instance, Figure 2 shows a map of various
different fruit. Not only is the superordinate category
‘fruit’ broken into multiple regions, so too are the ba-
sic level categories of ‘apples’ and ‘oranges’. In view of
Wittgenstein’s (1953) discussion of ‘games’ and Rosch’s
(1978) notion of category hierarchies, it seems likely that
this phenomenon is quite general.

Motivated by this discussion, I outline a statistical
model for category learning in which each category is
built from an arbitrary number of subtypes, each asso-
ciated with a single consequential region as illustrated
in Figure 2. Category learning is primarily associated
with the statistical task of inferring these consequential
regions, referred to as the microstructure of a category.
This learning problem has parallels with the cluster re-
cruitment procedure suggested by Love et al. (2004) and
the rational category learning approach proposed by An-
derson (1990). In all three cases, the learner is required
to infer which stimuli should be clustered together. How-
ever, while there may be an arbitrary number of sub-
types, the learner is unlikely to assume that the locations
and sizes of the regions are arbitrary. This has important
implications for the learning problem, discussed next.

Consider the four building types shown in Figure 3. If
a learner is exposed only to towers and skyscrapers, he
or she will encounter tall objects that vary much more
in height than in width. In contrast, the reverse will be
true if the learner only observes airports and factories.
Though it may be true that “psychological space has
been shaped over evolutionary history so that consequen-
tial regions . . . are not consistently elongated or flattened
in particular directions” (Shepard 1987, p. 1319), evolu-
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Figure 3: Heights and widths of different kinds of buildings.
Observe that the sizes of airports and factories differ from
towers and skyscrapers, on the horizontal and vertical di-
mensions, both on average and in variability.

tionary adaptation will produce an appropriate shaping
only on average. In any particular context, the regions
may be highly elongated. Moreover, these characteristics
are evident to the observer: no-one expects novel types
of fruit to average two meters in size, or to vary in size
only by millimeters, despite the fact that these are both
evolutionarily relevant scales for objects. Instead, peo-
ple recognize that only some parts of the psychological
space are plausible locations for consequential regions.

Given this, I assume that the category learner discov-
ers not only the microstructure of the individual cate-
gories, but also the gross statistical characteristics of the
task, such as where in psychological space the relevant
regions tend to be located, and on what scale variation
is manifested.

The Statistical Model

A consequential region model for category learning is
now developed based on the principles discussed, and is
illustrated in Figure 4. Much of the exposition here is
necessarily technical. However, since the model is in-
tended only to illustrate principles, the precise details
are of less importance than the ideas discussed above.
Richly Structured Categories. Regions are assumed to
be rectangular, defined by a mean m and a size s along
each dimension, and when generating a stimulus x from
a region, all points inside the region are assumed to be
equally likely. However, some subtypes are more impor-
tant than others, so we have a set of importance weights
w that are applied to the regions. Formally,

xij | m, s, r, z ∼ Uniform(m(z)
jri

, s
(z)
jri

)
ri | w, z ∼ Discrete(w(z)),

(1)

where xij denotes the location of the ith stimulus on
the jth dimension, ri denotes the region from which the
stimulus is generated, and z is an index for the category.

Learning Region Characteristics. The learner is taken
to postulate the existence of an unknown consequence
distribution over the possible locations and sizes of re-
gions. For simplicity, I assume that this consequential
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Figure 4: Graphical representation of the Bayesian catego-
rization model. Shaded circles denote observed variables and
white circles indicate latent, unobserved variables. Arrows in-
dicate dependencies between variables, while plates enclose a
set of independent replications. In this figure, n is the number
of stimuli, v is the number of categories, and d is the number
of dimensions. Since this paper is concerned with supervised
learning, the category variables z are shaded. Naturally, it
is only the previous category labels that are observed, not a
novel one.
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Figure 5: A graphical depiction of the stick-breaking process,
showing successive breaks of a stick with starting length one.
The final lengths produce an infinite set of weights.

distribution is shared by all categories,2

sjr | λj, ξ ∼ Gamma(ξ, λj)
mjr | µj, τj ∼ Normal(µj, 1/τj).

(2)

Since gammas and normals are both maximum entropy
distributions (see Cover & Thomas, 1991), these distri-
butions are plausible choices for a learner possessing lit-
tle prior knowledge.

Learning Region Assignments. If a category contains
regions of variable prominence, we need a prior for these
weights. A simple choice is the stick-breaking process
(e.g., Ishwaran & James, 2001), which provides arbitrar-
ily rich microstructures and allows some regions to be
weighted strongly enough to recur frequently during the

2This assumption is plausible only when the categories are
highly similar to one another. A more general formulation
would give each category a unique distribution, and allow
the context to induce dependencies between them. However,
this complication is unnecessary for the current paper.
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generative process3 . Formally,

w | α ∼ Stick(α). (3)

Stick-breaking processes are conceptually very simple:
an infinite set of weights is produced by taking a ‘stick’
of length 1, and snapping pieces off as illustrated in
Figure 5. If the proportion of the stick broken at
each step follows a Beta(1,α) distribution, then the pro-
cess can continue indefinitely, and the (infinite num-
ber of) fragment lengths follow a Stick(α) distribution.
Stick-breaking priors are very simple to work with (see
Navarro, Griffiths, Steyvers and Lee, 2006), since the
weights can be integrated out: if R+ denotes the set of
regions that have previously generated stimuli, then

p(ri = k | r1, . . . , ri−1, α, k ∈ R+) = nk

n+α

p(ri /∈ R+ | r1, . . . , ri−1, α) = α
n+α

(4)

where nk denotes the number of stimuli previously gen-
erated from the kth region. If ri is not in R+, then
the location and size of the region are sampled from the
distributions discussed in the next section.

Learning the Context. Given the inherent variety to the
number of situations one might encounter, I assume the
learner approaches an unknown context with a diffuse
prior, but subsequently learns these gross characteristics
of the consequential regions as the context becomes clear:

λj | β1, β2 ∼ Gamma(β1, β2)
µj | µ0, τ0, τ ∼ Normal(µ0, 1/ττ0)
τj | φ1, φ2 ∼ Gamma(φ1, φ2).

(5)

These distributions provide conjugate priors for the re-
gion distributions in Equation 2. The hyper-parameters
β1, β2, φ1 and φ2 are all fixed at 1, yielding standard
exponential priors, with µ0 = 0 and τ0 = .001 yielding
a very diffuse Gaussian. The shape parameter ξ is held
fixed. Since the space is separable, the distributions for
each dimension are kept independent in order to pre-
serve the city-block metric structure that is typical for
separable stimuli (see Shepard, 1987).

Base Rates. In general, category base rates (i.e., the
relative likelihood of observing items from different cat-
egories) can vary. A simple learning model for this would
place some prior over the possible base rates, which is
updated as category exemplars are learned. A standard
model is:

z | ζ ∼ Discrete(ζ)
ζ | η ∼ Dirichlet(η). (6)

Unless there is a reason for people to have an a priori
bias for one category over another, the prior over ζ is
uniform, so I fix η = 1. Since the Dirichlet is a conjugate
prior, it is trivial to find the expected posterior base rate
for a category. This is simply (nz + 1)/(n + v), where
v is the number of categories, and nz is the number of
times a member of category z has been observed.

3In fact, the stick-breaking priors include the Dirichlet
process prior that Anderson’s model implicitly adopts.
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Figure 6: Category distributions for a variety of parameter
values.

Statistical Inference. Learning takes place by invert-
ing the generative model, learning the posterior dis-
tributions over the category microstructure, and the
context-specific region distributions. Since analytic ex-
pressions for this posterior distribution do not exist, we
can use Markov Chain Monte Carlo methods (e.g., Gilks,
Richardson & Spiegelhalter, 1995) to sample from the
posterior, allowing numerical approximation. A method
for doing so is discussed in a technical note available from
the author (Navarro, 2006).

Applications

Two brief applications of the model are presented, show-
ing typicality effects (e.g., Mervis & Rosch, 1981) and
selective attention effects (e.g., Kruschke, 1993), cho-
sen because the primitive unit for the model (a natural
kind) behaves much like a classical category and shows
no graded structure, and because selective attention ap-
pears to be a necessary component to concept learning.

Typicality Effects
Typicality effects imply that category membership is
graded: some exemplars are better members than oth-
ers. Although consequential regions have a flat, non-
graded structure, some exemplars are more likely to fall
within highly-weighted regions than others, producing
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Figure 7: Category structures for a filtration task (left) and
a condensation task (right).

typicality effects. To see this, consider a simple per-
ceptual category consisting of the letters M, N, W and
L. Multidimensional scaling on the pairwise similarities
collected by Rothkopf (1957) shows that a single spatial
dimension can account for 90% of the variance4. Us-
ing this dimension as the representation, we can find the
category distributions implied by the Bayesian model.

Figure 6 shows these distributions across a substantial
range of the parameter space. Typicality effects can be
seen in two respects. Firstly, the exception item L is
accorded much lower probability than M, N and W, since
a region covering three items receives higher weight than
a region encompassing only one. The second typicality
effect shown in Figure 6 is prototype enhancement. The
letter M, which has vertical sides and twin diagonals, lies
between N (vertical sides) and W (twin diagonals). Since
the hypothesis space respects the continuity of X , any
time that W and N share a region, so does M. Naturally,
the reverse is not true. So, ignoring the influence of L,
M will always be more typical than N or W.

The figure also shows the effect of varying the two
key model parameters, α and ξ. As α increases, the
learner is more prepared to assume that new items arise
from new regions, leading to a proliferation of regions
containing few members. This tends to produce more
jagged distributions. In contrast, varying ξ alters the
assumptions made about the size of the regions rather
than their members. As ξ increases, the regions tend to
be larger, which has a smoothing effect. So both α and
ξ are smoothing parameters of a sort, but they smooth
in different ways.

Selective Attention Effects

Human participants adapt to learning tasks by attend-
ing more heavily to dimensions that are diagnostic of
the underlying category structure. Accordingly, a key
test of any account of category learning is the ability
to accommodate attentional effects. Kruschke’s (1993)
filtration-condensation task provides an initial test, in-
volving linearly-separable categories represented in two
separable dimensions (height and position). As shown in
Figure 7, there are eight stimuli, arranged octagonally.
In a filtration task, the decision boundary runs parallel

4Of course, this representation is not entirely appropriate,
since continuity is probably violated.
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Figure 8: Learning curves for the Bayesian model (left) with
α = 6 and ξ = 8 on a filtration-condensation task, with
two empirical data sets shown on the right (from Kruschke,
1993). The model learns faster, but reproduces the filtration
advantage effect.
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Figure 9: Distributions over region size for the two dimen-
sions in filtration tasks (left) and condensation tasks (right),
at the end of the 6th trial block.

to one of the representational axes, while in a condensa-
tion task the boundary runs at an angle. With param-
eter values of α = 6 and ξ = 8, and injecting a small
amount of trial-to-trial Gaussian noise (with σ = 0.025)
to the stimulus representations as a very crude approx-
imation to perceptual and memory errors, the Bayesian
model produces the learning curves shown in Figure 8.
As one might expect, the Bayesian model learns faster
than humans. Still, for the purposes of an initial inves-
tigation, what matters is that the model learns to filter
faster than to condense.

It is noteworthy that the model can produce this effect
without having an explicit attentional mechanism. To
some (perhaps limited) extent, attention can be justified
as an adaptation to the consequential context implied
by category exemplars. This adaptation can be observed
in Figure 9, which shows the learned distributions over
region sizes at the end of the sixth trial block. In the
condensation task, the two dimensions have identically
distributed regions, so there is no differential scaling of
the dimensions. In contrast, the filtration task shows
a clear asymmetry between the two dimensions, in that
the regions are smaller along the diagnostic dimension.
The resulting category distributions for the two tasks are
shown in Figure 10.

Discussion

In a sense, the model used in this paper is not novel,
and is probably best thought of as an attempt to exam-
ine how the consequential regions employed by Shepard
(1987) and Tenenbaum and Griffiths (2001a) might be
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Figure 10: Category distributions after the 6th “trial block”
(i.e., presentation of each stimulus once) in a condensation-
filtration task, displayed as contours located at the 20th,
40th, 60th and 80th percentiles. Observed instances are
shown as grey circles, and the locations of the opposing cate-
gory members are indicated with crosses. The filtration cat-
egory (left panel) has a compact distribution that covers the
stimuli (black dots) without extending very far along the ver-
tical dimension. In comparison, the condensation category
(right) is fairly diffuse, and extends vertically just as far as
it extends horizontally.

applied in a supervised learning context. The major ob-
servation is that, in order to cover disjoint categories, it
is necessary to allow categories to be built from multi-
ple regions. This development was in fact suggested by
Shepard (1994), and later explored in a generalization
context by Tenenbaum and Griffiths (2001b). Follow-
ing Anderson’s (1990) approach, a flexible prior over the
number of (manifest) regions was employed. The result-
ing model is very similar to Anderson’s model, perhaps
unsurprisingly. The primary differences lie in the use
of flat, sharply bounded regions, and in the inclusion
of the context distributions. The context distributions
themselves relate to the second aim of the paper, namely
to explore the use of hierarchical structure in category
learning models. The intuition here is that models of
concept learning may need to address Rosch’s (1978)
horizontal dimension (variation in type) and vertical di-
mension (variation in abstraction) of categories.

While these initial results are promising, caution is ad-
visable. The model used here is clearly incomplete, and
the applications are illustrative at best. If microstruc-
tures and context distributions are to be mapped onto
“category hierarchies”, the same kinds of distributions
should govern the relations between types at different
levels. This is not currently the case, since the context
distributions have a different form to the distributions
over possible microstructures. Also, the current analy-
sis is based on the assumption that observations are ex-
changeable, which seems implausible in changeable en-
vironments. To account for trial-order effects such as
highlighting (e.g., Kruschke, 2003), this assumption may
need to be altered.
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