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The occurrence of a 3-cocycle in quantum mechanics or quantum field theory has 

been interpreted somewhat paradoxically as a breakdown of the Jacobi identity. The 

main result of this paper is that the 3-cocycle in chiral QCD arises as an obstruction 

which prevents the existence of a certain extension of one Lie algebra by another. 

This obstruction may be avoided by constructing a modified Lie algebra extension 

consisting of derivations on the algebra generated by the fields. However the 

3-cocycle then appears when an attempt is made to implement these derivations by 

commutation with unbounded operators in the canonical equal-time formalism. 

Assuming the existence of these unbounded operators is what leads to the violation 

of the Jacobi identity. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

In the physics literature the occurrence of 3-cocycles has been interpreted as the breakdown of 

the Jacobi identity for commutators of the field operators. However commutators of operators 

defined on a common dense invariant domain in Hilbert space must always satisfy the Jacobi 

identity. This forces the conclusion that when a 3-cocycle arises it must signal the absence of a 

representation by such operators of the algebra in question. Some time ago one of us’ showed how 

one could understand this conclusion in terms of an “obstruction” to representing a symmetry 

group of a quantum system on a Hilbert space (this was an extension of the traditional mathemati- 

cal approach to the existence of group extensions2). To apply this in an explicit way to the physical 

examples we found that further mathematical techniques were needed. A comprehensive investi- 

gation was undertaken in Ref. 3 where we adapted some results on cohomology theory of groups 

and Lie algebras, originally devised to study group actions on C*-algebras, so that they might be 

used to explain the properties of certain 3-cocycles in quantum mechanics and quantum field 

theory. The fact which we wish to report here is that this framework does indeed show that in one 
of the principal examples found in the physics literature (chiral QCD,,,) the 3-cocycle does arise 

as an obstruction. 
For the earlier literature on anomalies in general including these 3-cocycles see Refs. 3-15 

and references therein, The only explicit examples given in Ref. 3 were of a nonphysical nature. 

While the abstract theory of Ref. 3 is quite technical it turns out to be simple to apply and hence 
our aim in this account is to show how to describe two physically interesting cases. The first of 

these is inspired by the Dirac monopole problem and occupies Sec. II. The second is the problem 

of anomalous commutators in non-Abelian chiral gauge theories. We describe the results of the 

perturbation theory calculation for equal time commutators in Sec. III and our interpretation of the 
result in Sec. IV. We find that the 3-cocycle predicted by perturbation theory arises from an 
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2606 Carey et a/.: Realizing 3-cocycles as obstructions 

algebraic interpretation of the anomalous commutators followed by an application of Ref. 3 to this 
situation. It should be regarded as further evidence of the failure of the canonical equal time 

formalism, something which should not surprise the experts.‘6 We preface our overall discussion 
with some mathematics in Section 1 which presents the theory behind these examples in a Lie 
algebra framework. The reader may omit Section 1 on the first reading, dipping into it for the 
motivation for the methods used in the examples. 

Note that Ref. 3 deals, except for its last section, with groups acting on algebras of bounded 

operators (it has in mind the Haag-Kastler framework for quantum field theory) whereas here we 
are more concerned with the Wightman viewpoint (that is algebras of space-time smeared 

operator-valued distributions). Thus Section 1 is an amplification of the classical theory of Lie 
algebra extensions following Ref. 3 necessitated by this application to Wightman field theory. 

Finally it is worth summarizing our interpretation of the results described here. In the axiom- 
atic approach to quantum field theory it is assumed that the quantum fields are operator-valued 

distributions which are defined on a common dense invariant subspace of the Hilbert space of 

states of the theory. Moreover it is normally assumed that the test functions are, say, functions of 
fast decrease or of compact support on Minkowski space. These fields generate the so-called field 

algebra which is an algebra of unbounded operators. On the other hand the canonical approach to 
quantum field theory works with fields defined at sharp time and smeared only in the space 

variables. Now, the conclusion of the present paper is that the difficulty with the canonical equal- 
time formalism for chiral QCD suggested by perturbation theory methods has an independent 

mathematical formulation in terms of a version of extension theory for Lie algebras. 

This raises the question of how one is to interpret the sharp time formalism. Calculations 
involving free field current algebras indicate that sharp time space-smeared electromagnetic cur- 

rents exist only as derivations on the space-time smeared algebra of currents. In other words one 
may define sharp time currents by their commutation relations with the space-time smeared 
currents (which do exist). One cannot construct the sharp time currents as operator-valued distri- 

butions on the test functions defined on the space variables only: it is well known that the usual 
expressions for these currents which are written in the literature must be interpreted as defining 
quadratic forms (in other words only their matrix elements are well defined). The conclusion to be 

drawn from the present paper is that for chiral QCD s+i one must also regard the equal-time 
formalism as being defined only by its algebraic relations with the full space-time smeared field 

algebra (which of course has not been shown to exist in any mathematically reasonable sense). 

II. LIE ALGEBRA 3-COCYCLES 

From a mathematical point of view the relationship between obstruction theory and 3-cocycles 

is well understood. The main task in applying this theory to the examples found in physics is to 
identify and interpret the Lie algebras from which the putative extensions are to be constructed 
and hence to give explicitly the 3-cocycles which act as obstructions to the existence of them. This 

task was carried out at the group level in Ref. 3 where the situation is in some ways more 
complex. As the physics literature deals mainly with Lie algebras it is worthwhile to present some 
of the key ideas ab initio at the infinitesimal level. The purpose of this section then is to explain 

the theory necessary for the ensuing discussion. It should be read in conjunction with Section 5 of 
Ref. 3. 

We start from some (possibly infinite dimensional) Lie algebras A, I?, where A is an ideal of 
r and fi:=r/A. We summarize this situation by saying there is a short exact sequence: 

In a quantum field theory I? is given as derivations on the observables or algebra of quantum fields 
of the theory. Thus we assume the existence of a field algebra .4 on which I acts as derivations. 
One then seeks operators which implement these derivations and hence we assume that there is 

I 
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algebra JY consisting of operators preserving some common dense domain D of a Hilbert space 

X with Lie bracket given by the commutator. For .A and $4 to be compatible we need the field 

algebra . ?? to also act as operators preserving D. Mathematically this is expressed by saying that 

I’CDer . 4 (the derivations on ,,4) such that $X implements r, i.e., for each g E r there is a y E,P 

such that g(A)=ad(y)(A)= [y, A] on D for all A E.,+$ and adl, &Y=r. Let X=(y ~$4j[y, 

A] = 0 for all A E. -4}, then this situation may be summarized in the following diagram of exact 

sequences of Lie algebras: 

0 0 

1 1 

w c x 

1 1 

ad/d 13 2, ad/d 1 
3 

8 

O---+n--+r--tn~o 

1 1- 

0 0 

where 7-1 ={u E ,fladl, /u E A} and T”= ?TX As we shall see in the examples this diagram 
summarizes certain desiderata of quantum theory. Our aim will be to show how these desiderata 

may fail to exist in particular cases. This is analogous in a way to Wigner’s theorem which forces 
us to consider representations up to a factor when a priori we might hope for ordinary represen- 
tations. Before continuing we make one notational remark, in the following Z(B) denotes the 

center of the algebra B. 
For each of the exact sequences (both vertical and horizontal) in the preceding diagram we 

may choose linear sections U, 6, and w, as indicated in the diagram, which then define consequent 

2-cocycles CL, ,&, a via the relations 

These equations simply summarize the fact that a Lie algebra extension is defined either by the 

short exact sequences above or explicitly via commutation relations using these 2-cocycles. In 
these circumstances we can prove some elementary facts. 

Lemma: The algebra 7 is a Lie ideal of ,$/. 

Proof Let 14 E 7 and y E $Y. Then we need to show [u ,y] E 9? 

adl,A[u, yl)=[adl,/u, adl.,~lEA 

because ad[ , is a Lie homomorphism, adl, ,u E A, adi ,y Er, and A is an ideal of r. Hence 
[u, y]s7-. 0 
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Downloaded 06 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



2608 Carey et a/.: Realizing 3-cocycles as obstructions 

The key point is that we are given the action of I by Lie bracket on the ideal A. We implement 

the subalgebra A by operators in 9’” and then ask: is it possible to define an action of r on these 
operators? The previous lemma shows that we can now define an action 6: IY-+Der P by 

a&>: =[ulg , u] for all u E P,g or. 

Clearly S is a linear map on I. For it to be an action, we need St,, h1 = [ Sa , S,] . Let us check this 
relation: 

v,9 4tlw=[[u”g, fib], u] using the Jacobi identity 

=[;I& h]l ul+G(g,hh 4=$,, /&J>+[&g,h), u]. 

Thus 6is an action if and only if [j$g,h), u]=O, i.e., 

~:r*~z(JZ;‘~~:=(yE~[y, u]=O for all u E  Y>. 

Henceforth assume this. Now we are in a position to apply the philosophy of Ref. 6, namely to 
measure the difference between u and v* on A. Let 

q(d):=rTd-ud for all dEA, 

so qo:A--+-T is linear. 
Theorem 2.1: Given u, v^, and S as above, then S: lT+Der P is an action such that 

6) SJud) E ulg, d] +%Q”for all gEI’, dEA and 

(ii> Sd(u)=[ud, u] for all d E A, u ~*3’7/; 

if and only if cp( d) E Z(Ydfl,B/ for all d E A. 
In this case we may define a function A (cf. Ref. 6) by 

Vg+4:=~gbd)--U[g, d] E%=Z(Gqnw 

and then 

A(g,d)=~(g,d)-S,(~o(d))+cp([g, 4). 

Proof First we see that 

(adI. ~~,(~d))(A)=[~,(ud)~ Al=lIC~,, ud]? Al 

= -ECA&l, ud]-[cud, Al&l 

=[&A), Udl-[d(A), $1 

=dd(A))-d&(A)) 

=k, 4(4=b[,, d], Al. 

Thus 8g(ud) E  UL~, d1S.w. Next we have 

sd(u)=[u”dv u]=[ud, ul+[p(d), u]=[ud, U] for all UE,P; deA iff [q(d), b]=O, 

i.e., 

tp(d).sZ(Y7nLW=3Y for all dEA. 

For the last equation, 
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A(g,d):=S,(Ud)-U~g,d]=[U”g, Udh[g,d] 

=[v^,,U^d-(P(d)l-Ul[g,d]+~O([g, 4) 

= U”I~, d]+ /%g,d) +, 9 d41-&, d]+~([& 4) 

=iG,d)-i?,, d41+ cp([gv 4) 

=~(g,d)-S,(~o(d))+~o([g, 4) 

and clearly this is in Z by prior assumptions. 0 

Remarks: (1) In Section 5 of Ref. 3 we showed that the map X is the key ingredient for 

constructing 3-cocycles in this setting. The precise formula is given in Eq. (2.2) below from which 

we see that when cd= bd for all d E A (i.e., cp=O) we have X(g,d) = fi(g,d). Hence in this special 

case if G=O, the 3-cocycle is zero. 

(2) On the other hand actions 8 :r+Der *r satisfying the two conditions of Theorem 2.1 {but 

not necessarily of the form S,(u) = [t?, , u]} have also been studied in Ref. 3, and also determine 

a 3-cocycle K:R 3--+.K as in (2.2) below. The role of h is explained by Ref. 3, Theorem 5.1, which 

says that, given an action S:T+Der JC there will be an extension: 6:TtDer V if and only if 

p(d,k) E.Z for all d,k E A and there exists a map X:TXA--& such that 

X(O,d)=O=X(g,O), (2.la) 

(2.lb) 

Ng, hl,d)= 4JUWF 4(Vg,d))+Vg,[k dl)-Vh,[g, 41, (2.lc) 

X(d,k)=p(d,k) for d,k E A;g,h E I. (2. Id) 

Note that usually .Z consists of scalars so that the starting point for this result, an action 6 on .%, 

is not a problem. We emphasize that me existence of such a X guarantees there is an extension of 
S to the larger algebra ‘Y and conversely. In the examples we will encounter such actions (and 

consequent 3-cocycles K) in the case when the second vertical exact sequence in the previous 
diagram, 

o+.z--+-+r+o, 

is undefined. Now the existence of such a sequence is a desirable feature of any quantum field 

theory: it simply says that one may implement the symmetry defined by r by commutation with 
operators in jY on the Hilbert space of states. However we find that in the examples only the first 
sequence 

can be assumed to exist and that the 3-cocycle is an obstruction which prevents us finding the 
other vertical sequence. 

Definition: For each choice of X satisfying conditions (2.la)-(2.ld) above there is a 3-cocycle 
K:R3--+3T given by 

KW,f)=Ab,, a(h,f))+A(~ht(~tf,g))+A(~~,(~(g,h)) 

= Swg(U(kf))+ 4&4f,g))+ &fmJd)-u(k, ~l,f)-~(iY, gl,h)-4Ck fl,s) 

=(Ju)(gAf), (2.2) 

where ucf,g): =u(aCf,g)). [We refer the reader to Ref. 3 for the verification that (2.2) satisfies 
the 3-cocycle identity.] 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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The main point of this section is to explain how this [K] is to be interpreted as an obstruction. 

Hence let K be trivial, i.e., there is a linear antisymmetric 2-cochain p:R*+.X such that 

K(g,h,f)=6,r(pthf))+S,,(pCf,g))+S~~(ptg,h))-p([g, ~IJY-LW, glA)-p(Ck fl,g) 

=(~P)tgAf). 

Substituting this into K=du we obtain dW=O where W(g,h):=u(g,h)-p(g,h). 

Theorem 2.2: Given the Lie algebras, sections, and action S as above, with consequent 
3-cocycle K, assume that K is trivial. Then 

(i) E’=!&B P with bracket 

defines a Lie algebra (W as above). 
(ii) The map Y :Z%Der A given by 

v(gm)(A):=[u,A]+w,(A), AE.&!,g~fi,u&,” 

is an action. 

Proofi (i) Clearly % is a linear space and the bracket is linear in each entry and antisymmetric. 
Check the Jacobi identity: 

J=Cycl.[gt@ut , [g2@z42,gs@u3]] (sum of cyclic permutations over 1 2 3) 

=cYcl.kl~~l~ k2? g31@([u27 ~31+swg*~~3~-~~gj~~2~+w~~2’~3~~1 

=cYcl.{~1,[g*,g311~(r~1,[ u2~“311+[~1 d%g2(u3)- 942)+ w(g24?3)1 

+ ‘%$“2,u31+ 8+3)- s,,l(u2)+ wk2$3))- ~cqg2,g31h~+w(gl dg2, &I))}. 

Now using 

cYcl.rgl, [g*v g3ll=o=cYcl.[~1, [u*, u311 

and 

and notation 0 @ u = u, we see 

Now 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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CYCl.(4&J 4u (u3) - sob, &$42) - 4d 
RI g1 I&. s,W) 

=(~~~~,~~~g~l-~~~~,~~~l)(~3)+t~~~~3~~~g,~-~~~g3,~,l)(~2)+(~~~g~~~~61l-~~~~~,B3l)(uI) 

= 
4og,>wg21- %, 9 L?zl(u3) + * * * 

= 6 17(g,,g*.l(u3)+ &(g).&Z)+ 4r(g*,g3)(~1) 

=[uk,rg*L U3lfr.Ukf3X*), u21+[u(g*d3)? u*l. 

Observe [u, , W(g, ,g3)] = - [ u(g2 ,g3), u ,I, so substituting into J and cancelling 

J=Cycl.{[u,, &I 
82 

(u3)- 4d 
83 

(uz)l+ &$u29 u31)) 

= 
CU,? 4og2b3) - &g3(U2)l+ [u3 3 &g,b2)- sogpI)I+b2. 40 

83 
(u1)- s,,,b3~1 

+&pz? ~31~+60gp43. utl)+&$u1. u21)=0 

using &b,([u2y ~31) = [Lg,(u2)9 ~31 + [u2, & (u3)l. 

(ii) Clearly v : &-+Der ./B is linear, so we needs;0 show that 

4[gl@ult g2@u21)=[4gl@u1), Q2@u*)I. 

rhs=[4g,@uuL 4g2@u2)1(A) 

=v(g~~u,)vtg2~~2)tA)-~tg2~~2)~(g~~~~)(A) 

=[uI, v(g2~u2)(A)I+Wg,(~(g2~u2)(A))-[u2, v(sl~u,)(A)1-WgZ(V(gl~u2)(A)) 

=[uI, [it29 All+[u,, ~g2b4)I+~g,(b2, 4)+~,,h,z(A))-C~2~ IIul, All 

-1~~2, w&W-Qh Al)-~g2(~g,(A)) 

=[[u, 7 1421, Al+PLg,b42). Al-[Lg2(u& Al+b,,,~g21(A). 

In this step we used the Jacobi identity and 

~,(CWW=[&~~)~ Al+[ut w,(A)1 

which we prove as follows: recall that any u E Fran be written u = ud+ $d for some d E A, where 

t,bd E %? Thus 

+i% Al)=Qbd, Al)=tqd)W 

= bg 7 dl(A)+WQ(A) 

=b[og, d], A]+[Ud, Q41 

=[&,(ud), Al+[u, w,(A)1 

=[&,W, Al+[u, Q41. 

So, returning to the main calculation: 

r~~s=iIu~9 ~PI+~~~,~~z)-~~~~(~I). Al+~(gl,g2)(A)+W[g,,gZ~(A). 
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So since a(gt ,g2)(A)=[u(gt ,gz), Al=[W(gt ¶g2)9 AIT 

= v([gl~u,,gz~u21)tA)=lhs. 

Thus we interpret a nontrivial 3-cocycle K as an obstruction to the construction of this extension 
M and its action on ..A as above. (Observe that when K is nontrivial, we cannot define W hence the 

bracket of %; is undefined.) 

111. PARTICLE IN A MAGNETIC FIELD 

One of the first examples of the appearance of a 3-cocycle in a physical context arose from the 
Dirac monopole. From a mathematical viewpoint this example is somewhat artificial: a precise 

analysis of a quantum mechanical particle in the field of a point monopole can be devised which 

avoids any discussion of 3-cocycles.‘7”8 

However one special case of the monopole situation (a magnetic field B on W3 with V.B#O) 

does fit into our framework. We include this example to explain the main ideas on 3-cocycles in 
a simple context. 

So the situation we are considering is that of a particle moving in R3 in a magnetic field with 

nonvanishing divergence. The quantization of such a system leads immediately to difficulties. For 
example one would like to write for the velocity generators (setting Planck’s constant equal to 

one), 

(3.1) 

where VXA=B even though a smooth A does not exist unless the magnetic field is divergence 

free. Proceeding formally from (3.1) implies that one should expect anomalous commutators. Let 
{‘Yj,pilj=1,2,3} be real and define 

(3.2) 

where B,, l= 1,2,3, are the components of B and (=elm*. The right-hand side of (3.2) is what 
one gets by formal calculation of the commutators ( -i)[ZZ,j/?iui, Ckykuk] from (3.1). NOW in 
order for the Jacobi identity for the commutators of the velocity generators to hold it is necessary 

for o to satisfy a 2-cocycle identity [this is shown for example in Ref. 14 where a formal 
calculation from (3.1) yields the right-hand side of (3.8) below when one checks the Jacobi 
identity]. But with V.B#O, (+ is not a 2-cocycle and so (3.2) cannot be used to define a Lie 
bracket. However, this line of argument is suspect as we cannot assume that (3.1) with singular A 
defines an essentially self-adjoint operator on an invariant dense domain of the Hilbert space of 
states. Indeed one usually expects that one has to choose some self-adjoint extension by imposing 

boundary conditions (in Ref. 8 these additional conditions are found to lead to the Dirac quanti- 
zation condition). Nevertheless the framework of Ref. 3 and the previous section may be used to 

give a consistent interpretation of (3.2). 

To use this framework we construct some Lie algebras. Introduce 
(i) the Abelian Lie algebra A of smooth real-valued functions of the generators of space 

translations modulo constants: that is, let A be all smooth functions from R3 to W where we 

identify d t and d2 if d t - d2 is constant and we indicate the equivalence class of d by 2; 
(ii) the Abelian Lie algebra of velocity generators: R=W3 with basis {u , ,u2 ,u3}. 

J. Math. Phys., Vol. 36, No. 6, June 1995 
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Next one regards u as a function from nXfi to A [that is to take the right-hand side of (3.2) 

as a smooth function on W3 modulo constants]. To avoid confusion we denote this function by &. 

Second we assume B satisfies 

V.B=constant=:c#O. 

There is an obvious way to construct a solution to this equation by requiring B to depend linearly 

on the a23 variables. All other solutions differ from this one by a solution of the homogeneous 

equation V.B,=O. Such fields do not give rise to a 3-cocycle and so we shall not consider them. 
Thus we make the global restriction that we consider only B which are linear functions. Hence- 

forth fix such a B to make cr well defined. 

Next we assume that R acts on f~ A in the usual way by 

uiw= -g. I (3.3) 

We now observe that 5~ R X R + A satisfies the 2-cocycle identity. To see this rewrite the fl action 

on A as 

Sp(d)=P(d)=C Pjuj(d) for P=C PjujE~, deA. 

i j 

So the 2-cocycle relation is (where Cycl.{.} denotes sum over cyclic permutations of 1,2,3) 

and with notation ,f3.= Z ./3!i)u . I JJ J’ 

(dG)(‘, ,,B~,,B~)=CYCI. C p~“~j(5~k’~pjr*‘pl~‘Bn) = 5 CYC~. 2 p~1’,k’np~2’p13’uj(B.). 

I i I j,k,l,n 

(3.4) 

We want this to be proportional to V.B (which is zero under -). 

Now coefficients of the mixed terms are zero; for example, we check the coefficient of 

u ,(B,): 

p~,‘(p1,2’p’13’--p(1*)p:3)) + P’~*)(P~~)P(~~)-P(~~)P:‘)) + p’13)(&)&)- @‘@‘) =o. 

Others are zero by symmetry. So 

By writing out each coefficient of u,(B,), we find they are equal, and the common value is 

5Ek’“P:‘)P1*‘P113’=~.P,~\P2~\P3. so 

taa)(P1,P2,P3)=5(P1~\P2/\P3)‘C ui(Bi)=O (3.5) 

J. Math. Phys., Vol. 36, No. 6, June 1995 

Downloaded 06 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



2614 Carey et a/.: Realizing 3-cocycles as obstructions 

when V.B=O and if V-B=c as assumed here, then under - (i.e., identifying the constants with 

zero) the right-hand side of (3.5) is zero in A. Having verified that (+ is a 2-cocycle on 0 with 

values in A one can form the corresponding extension of Lie algebras: 

l-= 

with commutators 

(3.6) 

where from (3.3) we have 

P(li’)=C Pi $3 
1 I 

and we have linearity: 

The key observation is to note that, when we take a representation of the algebra of smooth 

functions on W3 by operators on a Hilbert space and then let them act on operators on this space 
by taking commutators, the scalars act trivially. Thus one really has an action of A. Thus it is 
possible to have an action of the Lie algebra I’ as derivations on the algebra & of observables (say 
by commutators). In particular we can define the action of 5 as a derivation by using the com- 
mutator with the function (T where the latter is regarded as an operator on the Hilbert space of 

states. This means that from the viewpoint of algebraic quantum theory we may use (3.2) to define 
the commutator between derivations. A problem arises only if one now wants to represent the 

velocities ui’s by operators on a Hilbert space rather than by derivations on an algebra. 
To prepare this situation for an application of Sec. I, we restrict our attention to the subalgebra 

PC l? generated by fix Aa where 

Aa:=lin span{djlj=1,2,3}CA 

and dj,“3’W are the functions dj(X)=Xj, j= 1,2,3, i.e., the position observables. SO as a linear 
space lY= 0 X A0 and the bracket (3.6) restricts on f to 

Km w~~)l=@?c+(P~P’)) (3.6’) g 

using the fact that p( $ = 0 since “6is linear and constants are factored out of A,, . Note that ?r takes 
its values in A0 by assumption of linear B. This provides us with the short exact sequence 

O+A.,+f+&+O, 

which will play the role of the horizontal exact sequence in Sec. I. We also have a section 
o: R-+ f given by the canonical identification of fi in f= fi X Aa, with associated cocycle ?r 

given by (3.6’). 

Next we need to construct the vertical exact sequence: 

Assume there is a representation u of A, as self-adjoint operators on a common dense invariant 

domain D, and let ? be the set of operators: lin span {Wl,u( $1 “SE Ae}, so the commutators in FJ 
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are all identically zero. Assume further that the field algebra ..a is irreducibly represented on D, so 

that Ker(adl, ,)=Cl, hence adl, ,(@‘)=A,,, and this identifies A, as derivations on -/A. So with the 

map from ‘7’” to A0 in the exact sequence given by adl. 1’, we find w=Rl. In the terminology of 

Sec. I the original representation u defines a section u: A,--&? wi!h 2-cocycle p=O. 

The data we need to apply Sec. I is completed by a map X:TX A,+R satisfying (2.1) and 

defined by 

A((P,Y)vY’)=; c PkYL 
k 

(3.7) 

(this choice of A will be physically motivated below). 

Conditions (2.la), (2.2b) and (2.2d) are obviously satisfied-all expressions are zero. We 

check (2. lc) [omitting expressions Scarj(p( .))=O]: 

lhs=X((O,c?(P,P’)),r”)=O by (3.7), 

Hence X defines a 3-cocycle K as in (2.2). Now using the identifications above: 

KtP,B,x)=X((P,O),~(B,x))+~((~,O),~tx,P))+~((x~O),~tP,~)) 

= t 2 {Pk((+( &x))k+ ek(a(x,P))k+XkG(~.(P,e))k}, 

k 

where 3 0,x) = x,(6( 8,X))&, SO ($8,X&= (a/&,>$ 6,x) and Using (3.2), 

((+( &x>)k= & 
jnl dB1 

@jxn z? 

hence 

K(P,e,X)=; c 
dBI 

k 

@{ ejxdk + XjPn ok + fij &Xk} G. 

This is exactly of the same form as (3.4), hence 

K(P,e,x)=; (P~e~x)(V-W. (3.8) 

On setting p= u , , 8= v 2, x= v3, this agrees with the 3-cocycle in Ref. 14. 

This obstruction cannot be avoided once we fix (3.7) because the cohomology of fi (an 
Abelian Lie algebra) with values in W is given by totally skew multilinear functionals on a, so it 
follows that (3.8) determines a nontrivial cohomology class. 

We can read off from Theorem 2.2 that K is indeed an obstruction in the usual sense. 

Finally, to justify the choice (3.7) for h, recall that X corresponds to an action S:I’-+Der P” 

such that A@,4 = 8Jud) - ulg, dl, g Er, deh. In this case [(p,“s), (O,$)]=(O,?r(p,O))=O, 

so 
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Now on identifying dj E A0 with the position variables and Uj E fi with generators of velocities, 

we expect to obtain the canonical commutation relations in any representation. This forces a 

choice of action S:T--+Der 7 as follows. First, since a representation v :A,,--+Op(D) is already 
given, we will have 

[The ( - i) is due to the fact that we require the u ( y)s to be self-adjoint.] Second, we assume we 
have self-adjoint operators {~( Vj)lj= 1,2,3} on X’ preserving D such that 

(3.9) 

the canonical commutation relations. Then for 

P=C PjVjEfi, fG’=C YjdkEA, 

i k 

we find 

= C PjYLa(vj ,O)(V(dk)): 

i,k 

=C PjYJ(-i)[u(Vj>,v(dk)I= i C PkYL 

j,k k 

using (3.9), and this is exactly (3.7). This justification is necessarily loose because of the following 
lemma, in which we make precise the earlier comment that there is no (twisted) representation of 

lY in which S is implemented. 
Lemma 3.1: Given the structures above, there is no second vertical exact sequence as in Sec. 

I. 

4. J 
o+p1--t,g* f+o 

with section G: ?+y coinciding with v on A0 such that 

Proof Assume the contrary. Then by Remark (1) below Theorem 2.1 we have 

c*> 

where @ is the 2-cocycle ,&:r*+W associated with 6. Check the cocycle relation for ,L: 
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= Cycl. 

! 

; c Pk6:(P’$‘))k by (3.7)=K(P,P’$“) 
k I 

and from (3.8) we know this cannot be zero. Thus fi is not a 2-cocycle, and v^ cannot be a section 

as assumed. q 

The proof of this lemma is essentially the standard calculation in Ref. 14, and shows in what 

sense K is an obstruction to implementing the Lie algebra of derivations by operators. 

Remark: In the analysis above it is essential that the algebras we are considering consist of 

unbounded operators. Proposition 2.6.4 of Ref. 19 shows that there can be no nontrivial 3-cocycle 

for Lie algebras of bounded derivations on algebras of bounded operators. 

IV. SUMMARY OF JO’S CALCULATION 

Probably the most interesting example of a 3-cocycle arises in the calculation of the 

Schwinger term for currents in QCD. We begin by reminding the reader of the standard calculation 

following Jo*’ (which, for our purposes, is the most useful treatment). 

Jo considers chiral fermions in (3+ 1) dimensions coupled to a Yang-Mills gauge field. He 

defines an equal-time algebra starting with 

3 

A=x c A;(x)P dx”, 

i=l a 

the Yang-Mills field “operator” at fixed time t = 0. Here T” are the generators of the Lie algebra, 
g, of the gauge group. Jo finds that the CCR become anomalous. Defining the equal-time com- 
mutators of the operators by the BJL method (see Ref. 14 for a discussion), Jo finds the following: 

[A:(x), A;(y)l=O, 

[E;(x), Ef(y)]=iaPk tr[(TaTb+TbTa)TC]Ai(x)S3(x-y) 

(here eijk is the antisymmetric tensor as usual, tr(.) is the trace in g, Q is a constant, A,=Z,AiT” 

and g is n-dimensional and the E’s are the fields which in the classical Lagrangian method are 

conjugate to the A’s). 

For our purposes it is convenient to rewrite this as follows. 

Let Y denote the smooth functions of fast decrease on R3 with values in R3XR”, and denote 
the components of f~7 by E(x). Then 

A(f): = i i /R34WflW3x 
i=l a=1 

(4.1) 
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and similarly we smear Ecf> over E The commutation relations are 

[ACf), A(g)l=O, (4.2a) 

[Et.f)t A&II= -& ii 1 f+)s;(x)d3(x)= 
j=l a=1 

:-i(f,g (4.2b) 

[E(f), &)l=i~ACf@g), 

where 

(fog);(x): = i &jkfl(x)g;(x)t.$(T=Tb+ TbT”)T]. 

ah 

(4.2~) 

(4.3) 

The right-hand side of (4.2~) is not a 2-cocycle, only a 2-cochain with values in the Lie algebra 

generated by the A(f). Comparing the equations (4.2) with (3.9) and (3.2) we note the similarity 
with the situation in Sec. III. One can now try to verify the Jacobi identity. Let 

Then 

J(ECf),E(g),Eth))=Cycl.[E(f), [E(g), E(h)ll. 

J(ECf),Etg),E(h))=Cycl.[E(f),iaA(gOh)] 

= a Cycl.Cf,g@z) 

= a Cycl. c 
I 

eijkg~(x)h~(x)f”k(x)trf(PTb+TbP)TC]d3x 

a,b,c 

=3cYc 
I 

E’jkgf(X)h;(X)fCk(X)tlf( pTb+ TbTa)F]d3x, (4.4) 
a.b,c 

where Cycl. denotes summation over cyclic permutations of f,g,h. 
At this point the view expounded in the literature is to regard the Jacobi identity as failing. So 

one has to conclude that the E(f)s are not operators on a common dense invariant domain. In fact, 

of course, it is not clear where the contradiction lies since one is effectively assuming that the 
Eu)s are such operators in order to define the anomalous commutators (4.2) and so perhaps the 
BJL formalism used to calculate them is the cause of the problem. We observe in Sec. V that the 

anomalous commutators (4.2) can be interpreted as specifying the commutation relations between 
derivations. This is consistent with the observation that a quadratic form may well define a 
derivation on the algebra of space-time smeared fields without necessarily defining an operator. 
Thus (4.2) has a meaning in field theory independent of perturbation theory as does the 3-cocycle 

(4.4). 

V. THE CGRS FRAMEWORK 

To use our framework we need to identify an exact sequence of Lie algebras 

O+A-+r-&+O 

with A an Abelian Lie algebra and r an Abelian extension of A by a. 

(5.1) 
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To obtain this sequence, we will think of the “operators” .Ew and A(g) as derivations on 

some field algebra ..745, in which case scalars are factored out of the commutation relations (4.2). 

Let A be the Abelian Lie algebra, identical with the test function space Pas a linear space [its 

elements are thought of as the A cf> s]. Let CE be another copy of Y as an Abelian Lie algebra [but 

now its elements are thought of as the E(f)s without the right-hand side of (4.2c)]. 

The action of KI on A is taken to be trivial, i.e., S@(d) = 0 for all pen, d E A [this is justified 

by (4.2b), factoring out constants]. Then the map u :a* -+A, which is defined by aCf,g): = af@g 
(using the identification of 0 and A with Y’), is a 2-cocycle because 

(aa)OE,g,h>=Cycl.{Sf(atg,h))+cTCf,[g, hII)= 

for all f ,g,h E a. So we form the corresponding extension of Lie algebras: 

r=fl@A with bracket cf@g, h@k]=O@cT(f,h) (5.2) 

as in (3.6). Now the horizontal exact sequence (5.1) is specified, and we identify the section 
w:fhr by e~~=f@O, SO 

b-+ qJ=O@c+Cf,h), 

and of corresponds to Ecf), now satisfying (4.2~). 
For the vertical exact sequence 

4. d 
O-+W+P’-+ A+0 

assume there is a representation v of A as self-adjoint operators on a common dense invariant 
domain D in a Hilbert space & on which the field algebra is also irreducibly represented and 
such that v implements A as derivations on A. Let P be the linear space of operators spanned by 

{Rl,udld E A}, which is an Abelian Lie algebra. Then W=Rl, ad].JP)=A, and the original 
representation v :A+Y is a section with 2-cocycle p=O. 

To “guess” an appropriate map X:TXA+R satisfying (2.1), we calculate the action 

S:r--+Der FP which would have been appropriate if (4.2b) were true. Identify A(f) with vf, 

f E A ~7’. Suppose there are operators uf , f E R =Y, preserving D [identified with E(j)] satis- 
fying the equal-time commutation relations 

bf, v/J=Kf,h) 

and providing the action S :&-+Der i*r by Sf( vh) = ( - i) [ uf, vh] . So S :T--+Der Y will be 

+x&4 = +~o(v/t) + ~o&d= +eotvd = U-h) 

and thus A:T’XA--+R is given by 

Vf@g,h)= +T&J~)-u~~B~, oatI= &&d=tfrh). (5.3) 

Since this A was obtained by fallacious reasoning, we need to verify that it does indeed satisfy the 

conditions (2.1). Again, (2.la), (2.lb), and (2.ld) are obviously true. As for (2.1~) 

X(lf@g, h@k],m)=X(f@g,[h@k, O@m])-A(h@k,v@g, O@m]), 

lhs=A(O@a(f,h),m)=O, 

rhs=A(ffBg,O)-A(h@k,O)=O. 
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Hence the A given by (5.3) satisfies Eq. (2.1), hence defines a 3-cocycle K:fi3-+R: 

Ktf,g,~)=X~~O,cr(g,h))+X(g~O,~(~,f))+~(~~O,a(f,g)) 

=Cf,a(g,h))+(g,c+(h,f))+ h-ex))= GJ cYaf,gO~) (5.4) 

which is exactly the same 3-cocycle as the one obtained in Sec. 3 from Jo’s calculation. Observe 
firstly that K determines a nontrivial cohomology class as the cohomology group in degree n with 

real coefficients of an Abelian Lie algebra is given by the space of totally skew n-multilinear 
maps. Hence we can now proceed to prove the analogue of Lemma 3.1, which shows that the Lie 

algebra r cannot be represented in such a way that the action 8 associated to A is implemented. 
Moreover K will also be an obstruction to the existence of the extension of Theorem 2.2. 

We conclude that the 3-cocycle is an obstruction to finding a representation of the Lie algebra 

r for which the canonical relations (3.1) hold. From the viewpoint of rigorous quantum field 
theory one should regard this result as further evidence that the canonical equal-time formalism is 

probably not appropriate in 3+ 1 dimensions: a fact which is not all that surprising. 
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