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ABSTRACT

The Dirty Faces game requires players to perform iterative reasoning in order
to arrive at equilibrium play. The game is dominance solvable with a unique
equilibrium when it is correctly specified. The particular payoff structure has
significant implication on whether the reasoning process leads to equilibrium play.
This paper illustrates that the traditional specification - as used by Weber (2001)
- leads to multiple equilibria and the game loses its dominance solvability. We
modify the payoff structure and restore uniqueness. The resulting game, which
is dominance solvable, is implemented in an experiment to test the depth of
iterative reasoning in humans. Our data analysis suggests that some deviation
from equilibrium play is due to limited depth of iteration. Additionally, we find
evidence that the lack of confidence in other players’ iterative abilities also induces
deviations from equilibrium play.

Keywords: Game Theory, Iterative Reasoning, Experimental Economics.
JEL Classification Numbers : C91, C92, C72.
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1. INTRODUCTION

Dominance solvable games are characterised by having a unique equilibrium.

Players may derive their best responses through iterative deletion of strictly

dominated strategies. The reasoning process of iterative deletion for every player

requires the iteration of the following steps:

step 1 A player should delete all strictly dominated strategies from his set of

strategies, as they can never be best responses.

step 2 At the same time, this player knows that other players understand his

reasoning. Therefore, other players only play best responses to his non-

dominated strategies. So this player should delete the dominated strategies

of the other players, given that they do not consider his dominated strate-

gies.

The iteration process may not yet end here. step 1 has reduced the player’s

own strategy space given that the other players might play any strategies. step

2 reduced the other players’ strategy space given that they do not consider him

to play dominated strategies. Now previously undominated strategies can be-

come strictly dominated. Then the iterating process repeated with step 1 and

step 2 on the now smaller strategy space. In a dominance solvable game, this

process goes on until only one strategy profile (a collection of one strategy per

player) remains. This profile is the unique equilibrium of the game. The equi-

librium is reached when every player has behaved rationally by performing the
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required steps of iteration. Therefore, these games are often used in experiments

to examine the depth of iterative reasoning of human subjects.

One of the most influential approaches to measure people’s depth of itera-

tive reasoning is the experimental implementations of the ”‘p-beauty contests”’,

which was first studied experimentally by Nagel (1995). Similar to guessing what

average readers may pick as the most beautiful faces in a page 3 beauty contest

in a tabloid1, players in the p-beauty contest are asked to pick a number such

that it is closest to the average of all players’ numbers multiplied by a fraction p.

In Nagel’s game, players select a number between 0 and 100. The average of

the numbers picked by the players are multiplied by a fraction p ∈ (0, 1). Profits

are paid according to how close the guesses are to this target.2 In the first step

of iteration, the p-average cannot be higher than 100p, since 100 is the largest

number. Therefore, selecting any numbers in (100p, 100] is strictly dominated

by 100p. All players should realise this under the assumption of rationality. It

follows in the second step of iteration that selecting any numbers in (100p2, 100p]

are strictly dominated by 100p2. Similarly, after k-steps of iteration, the players

should deduce that any numbers in (100pk, 100pk−1] are strictly dominated by

100pk. When this iteration process continues infinitely, the Nash Equilibrium is

reached. Everyone selects zero in equilibrium.3 The numbers selected by players

reveal how many steps of iteration have been performed. For example, a number

between (100p2, 100p] indicates the player has performed one step of iteration.

1 The name is called the beauty contests after the famous passage in Keynes (1936) General
Theory of Employment, Interest, and Money. It draws an analogy between picking companies
in the stock market, and guessing the winner in the newspaper beauty contest.

2 There are multiple payout rules, which all lead to the same equilibrium. The closest person
wins a prize, or the payoff is negatively proportional to the distance from the target, are possible
rules.

3 The Nash equilibrium is always 0 for p < 1, and 100 for p > 1.
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Nagel (1995) experiment has used groups of fourteen to sixteen German stu-

dents as subjects. Her results from games with p = 2/3 showed spikes at 33

and 22 (one and two steps of iteration from the midpoint 50, respectively), with

very few picking zero. This was replicated and reported by Ho, Camerer, and

Weigelt (1998). Bosch-Domnech, Montalvo, Nagel, and Satorra (2002) examined

the newspaper contests which drew a larger sample population (over 3000 par-

ticipants in one contest), and there are also spikes at 33, 22, and 0.4 They have

concluded that the typical beauty contest results are robust, as both the lab and

the larger field experiment gave the same picture. Sutter (2005) and Kocher and

Sutter (2006) used the beauty contest to compare individual and group learning

behaviour.

However, there are problems with the use of experimental beauty contests,

as researchers can not discriminate between steps of iteration and focal points.

An example would be 50, which is a midpoint between 0 and 100, but it is also

one step of iteration for p = 1/2. In addition, the results show that the starting

point of iteration seems to be some arbitrary focal points, like 50 in the above-

mentioned papers.

The dirty faces game (Littlewood 1953) provides a different approach. Given

the game has been set up properly, it requires players to perform a precise number

of iterations to reach equilibrium. The number of iterations is necessarily finite,

depends on the parameters of the game and it can therefore be manipulated in

an experiment. The basic story is the following: players know whether other

players’ faces are dirty, and whether there is at least one dirty face in the group.

Their task is to find out as quickly as possible if their own faces are dirty, since

4 The winning numbers were between 13 and 17 in three contests. Playing the equilibrium
strategy is detrimental when other players do not obey dominance. In fact, players who picked
the winning numbers may either have anticipated the irrational responses and therefore deviated
from equilibrium, or they might have just performed a limited number of iterations.



1. Introduction 11

they do not know the state of their own faces. They may need to observe the

reaction of other players in order to find it out.

Depending on how complicated the situation is, more or less steps of iteration

are necessary to find out the condition of their own faces. Particularly, consider

there are unspecified number of players with at least one dirty face among players.

One step of iteration is required for whom has not observed any dirty faces. Two

steps of iteration are required for whom has observed exactly one dirty face. Three

steps of iteration are required for whom has observed two dirty faces. Generally,

n step of iteration is required for the player who has observed n−1 dirty faces. In

addition, the iterative reasoning of the player becomes dependent on the reaction

of other players whenever he has observed any dirty faces.

Weber (2001) implemented the game experimentally. He found that most

subjects can perform the simplest level of iteration. However, the number of

best response plays drops significantly if more than one step of iteration are

necessary. Unfortunately, Weber overlooked that his formulation allowed for

multiple equilibria in weakly dominated strategies. The existence of multiple

equilibria may have been the reason for his results. Additionally, it is not really

possible to talk of steps of iteration if a game has multiple equilibria, as the

deletion of strictly dominated strategies does not necessarily lead to the desired

equilibrium.

The cause of multiple equilibria in Weber’s implementation comes from the

payoff structure. The culprit is the payoffs that are the same at all stages in

the game. So announcing the state of their own faces as soon as possible does

not strictly dominate waiting - it only weakly dominates. Hence, the relatively

poor performance of Weber’s subjects could be due to the fact that the iterated

deletion of dominated strategies breaks down, since dominance is not strict. We
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propose a refinement of the game structure by introducing a waiting cost. The

waiting cost reduces the payoffs progressively with time. Therefore it establishes

strict dominance. Waiting unnecessarily becomes strictly dominated. With this

“refinement”, the previously weakly dominated strategies become strictly domi-

nated and hence they can be deleted iteratively. There remains only one single

surviving strategy for all players. It follows that there is a unique equilibrium.

This makes the game truly dominance solvable.

We have designed a series of experiments that are based on the refined game.

The experiment aims to look at the frequencies of agreement with the theoretical

best responses on the equilibrium path. The experimental results show that

most subjects succeed when one iteration is required. However, the frequencies

of agreement with equilibrium play fall by half when more than one iteration is

required. We look at the factors that may explain the fall in the frequencies of

agreement by employing a linear random-intercept logit model. We find that the

number of players in a cohort, and the required number of iteration are important

factors in explaining the frequencies of agreement. This supports the limited

computation hypothesis, which may be seen as a kind of bounded rationality.

Human subjects make decisions under the constraints of limited computational

ability, resources and time. However, these constraints are largely ignored under

our assumptions in our theoretical analysis. We also find support that some

deviation from equilibrium play originates from the subjects’ doubts about the

rationality of the other players.

We discuss the background of the dirty faces game and some related literature

in chapter 2. The notation and settings are stated formally for the dirty faces

game in chapter 3. In the subsequent two chapters, we will show the existence

of multiple best responses and hence multiple equilibria in the dirty faces game.
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We will then propose a refinement to the payoff structure, which makes the

game dominance solvable. After that, we discuss the design and the results

of our experiment. Finally, we conclude this paper with suggestions for future

experiment.



2. THE DIRTY FACES GAME

The dirty faces game is a logical problem involving iterative reasoning. It was

described by Littlewood (1953):

”Three ladies, A, B, C, in a railway carriage all have dirty faces and

are all laughing. It suddenly flashes on A: why doesn’t B realize C

is laughing at her? Heavens! I must be laughable. (Formally: If I,

A, am not laughable, B will be arguing: If I, B, am not laughable,

C has nothing to laugh at. Since B does not so argue, I, A, must be

laughable.)”

The ladies know the state of others’ faces, but not their own. The state of

their own faces may be revealed through others’ reactions. In this case, someone

must have a dirty face for others to laugh at. If each lady has an incentive to take

a different action (like stop laughing and go to the restroom) once she is certain

that her face is dirty, others will be able to deduce the state of their own faces from

the observation of other faces and actions. We will later explain this reasoning in

more detail. Note that the deduction relies on everyone knowing that there is at

least one dirty face. In addition, the chain of reasoning breaks down if one of the

ladies does not draw the correct inferences from what she is seeing. The lady who

keeps laughing in all situations spoils the day for the other ladies, as other ladies

might draw the wrong conclusions from her indifferent behaviour. It is because

other ladies cannot make sense of the behaviour of this lady. There needs to be
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common knowledge of the incentives and rationality for the deduction to work.

Everyone has to understand the appropriate behaviour for given situations, and

must also believe that others behave in the same manner.

In what follows we will model the dirty faces situation in extensive form,

similar to Weber (2001). Formally, the dirty faces game consists of n rational

players. Players are assigned one of the two types randomly: O for the clean

face, or X for the dirty face, with the priors for each type being p and 1 − p

respectively. The assignments are distributed identically and independently for

all players. Each player can observe the other players’ types, but not his own.

This is followed by an announcement about whether there is at least one dirty

face among the players.

After all players have been provided with this information, they start choosing

actions in stages, with the maximum of n stages in an n-player game. We define

the actions available to players as up and down - up is claiming ignorance (maybe

keep laughing), whereas down is claiming to have a dirty face. The game ends

either when any player has chosen down, or after n stages have already passed.

The payoff for players is solely dependent on their actions at the end of the

game and their types: Claiming ignorance by choosing up always gets zero for

any types; On the other hand, claiming to have a dirty face by choosing down is

rewarded differently for different types. Correctly claiming to have a dirty face

receives a positive payoff, while a false claim leads to a negative payoff. The payoff

structure is a crucial part for allowing players to properly interpret the meaning

of one another’s types and actions. The payoff structure should provide incentives

to claim having a dirty face immediately, once this can be established from the

types of other players and from past plays. When this is true, the players will be

able to correctly find out their types in equilibrium. Behaviourally, it is necessary
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that players are able to iterate far enough and believe that the other players can

do the same. If the game and its payoffs are properly specified, then this game

can be used in the laboratory to test a) if humans can iterate far enough and b)

if they believe that the others can do the same. We will define and analyse this

game in the next three chapters.

We will show that in the original setting, as used by Weber, the payoff struc-

ture does not provide an incentive such that anyone wants to reveal the state of

his face through his action immediately once he knows it. Therefore, besides the

equilibrium where everybody can learn his type, there are equilibria where this

is not true. So we conclude that Weber’s experimental setting is not appropriate

for testing iteration depth and rationality. We will provide a payoff “refinement”,

which establishes the uniqueness of equilibrium. This refined game can then be

used to answer the question originally posed by Weber.



3. SETTINGS AND NOTATION

In this section we will define the game more precisely and introduce our notation.

The n-player dirty faces game proceeds as follow:

1. There are n players, i = 1 . . . n. Player −i denotes the partner(s) of player

i. We call the collection of all players, ∀i ∈ {1, . . . , n}, a cohort in a game.

2. Nature draws types θi, i = 1 . . . n, from the distribution that is identical for

and independent between all players. There are two possible types, O and

X, with the prior probabilities of 1− p and p, respectively.

3. An announcement takes place, which provides common knowledge among

the players if there is at least one type X player in the cohort. The an-

nouncement is denoted by the boolean variable ρ, and declares whether:

(a) no one has drawn type X, ρ = false, or

(b) there is at least one type X player, ρ = true.

4. Players observe the types of their partners θ−i, but cannot observe their

own type θi.

5. Players make decisions and these are evaluated in the following sequence:

Stage counter: Starting with t = 1.

Decision stage: Each player chooses an action, either up or down.
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Evaluation stage: The game ends if either

(a) any players has chosen down, or

(b) n stages have passed, i.e. when t = n.

Otherwise, the game continues with players returning to the decision

stage. The stage counter t is advanced by one and the players learn

the actions taken by all players in the previous stage.

6. Payoffs are realised.

The payoffs ui (ai, θi) are dependent on the action and the type of the player.

When down has been chosen, a type X player receives α, and a type O player

receives −β:

ui (down,X) = α

ui (down, O) = −β

On the other hand, the player receives zero payoff whenever choosing up,

regardless of his type:

ui (up, θi) = 0

The payoffs are significant in determining whether we have multiple equilibria.

Weber (2001) chose payoffs such that:

pα − (1− p)β < 0 (3.1)

This condition ensures the expected payoff to be negative when players choose

down, given that they hold the prior beliefs. It follows that playing down is

strictly dominated by playing up when the prior beliefs are held. However, this

is not sufficient to render the game dominant solvable, as it will be shown in the
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Tab. 3.1: Payoff matrix table for dirty faces game
Own Type
X O

Own up 0 0
Actions down α −β

following chapter.

Overall, the payoffs for different actions given a particular type are shown in

Table 3.1.

In the decision stage, the basis on which players choose a particular action

is their beliefs. The belief of player i, µi, is his believed probability of being

type X, or having a dirty face in the original language. Obviously, µi has all the

properties of a standard probability measure.

The action and the belief of the player i at stage t, given the observation

of the partners’ types and the announcement, are denoted by a
(t)
i (θ−i, ρ) and

µ
(t)
i (θ−i, ρ), respectively. The relevant history of play from the previous stages

is invariant given that the game is still going, since all players must have played

up in previous stages in order to advance the game or the game must be in stage

one. Therefore we do not need to carry the history in the notation. For example,

a
(2)
i (θ−i, ρ) contains the fact that all players ∀i ∈ {1 . . . n} must have played

a
(1)
i (θ−i, ρ) = up.

A pure strategy is a profile of actions at every information set. Thus a pure

strategy is expressed by an action vector a. In an equilibrium, we also need a

belief vector µ which assigns a believed probability at every information set.

ai (θ−i, ρ) =
(
a

(1)
i (θ−i, ρ) , · · · , a

(n)
i (θ−i, ρ)

)
µi (θ−i, ρ) =

(
µ

(1)
i (θ−i, ρ) , · · · , µ

(n)
i (θ−i, ρ)

)
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The dirty faces game is a Bayesian game. The actions and the beliefs of

players form parts of the equilibrium solution.



4. BEST RESPONSES

The following derivation will focus on the two-player game, n = 2. The logic

easily extends to more players. In a later section, we will generalise our findings

to more players. Players are assumed to be rational in maximising their expected

payoffs and to be risk-neutral.1 These assumptions are common knowledge among

players within a cohort.

When a player observes θ−i, the type of his partner, the uncertainty for this

player is reduced from all permutations of two player types to only being uncer-

tain of his own type. So initially, the probability of being type X is the prior

probability. Each player is in an information set containing two histories. This

happens for all players in the cohort. More importantly, every player knows this

is true for his partner and himself, and every player knows his partner knows

that this is true for his partner and himself, and so on. This common knowledge

allows players to find the best response, given the beliefs are updated using all

information rationally. Common knowledge also allows each player to foresee the

best response of their partner on the equilibrium path, which reveals additional

information that can be used for updating his belief.

Nevertheless, the first additional information for players is the announcement.

Following the observation, the announcement allows players to reassess their be-

liefs.

1 The choice of payoffs is sufficient to ensure that guessing is dominated, as long as players
are not overly risk-loving.
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We can group the observation of partner’s type and the announcement into

three disjoint observable events2 that players will encounter:

• ρ = false

• θ−i = O ∧ ρ = true

• θ−i = X ∧ ρ = true

4.1 No dirty face (ρ = false)

The trivial case ρ = false provides certainty that everyone has drawn type O.

This reduces the information set to a singleton node. Choosing down at any

stages yields a certain negative payoff −β. This action is strictly dominated by

choosing up. Therefore the best response3 is

a∗i (false) = (up, up) (4.1)

µ∗
i (false) = (0, 0)

4.2 At least one dirty face and I see none (θ−i = O ∧ ρ = true)

ρ = true is the more interesting case. The usefulness of this information depends

on what type of partner that player i has observed. For player i having observed

a type O partner must lead to the belief of having drawn type X with certainty.

Correct updating should go like this: “There is at least one dirty face and my

parnter does not have it. So I must have it.” The information set is reduced to

2 There are 2n− 1 observable events for an n-player game.
3 We have omitted θ−i in the argument when ρ = false in order to simplify the notation, since

θ−i = O is effectively declared by the announcement. We have already impose the equilibrium
requirement that players do not make mistakes while updating their beliefs.
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a singleton. Therefore, it is a best response to choose down immediately in the

first stage, end the game and receive the positive payoff α.

a
(1)∗
i (O, true) = down (4.2)

µ
(1)∗
i (O, true) = 1 (4.3)

Had the game advanced to the second stage, the best response would be

a
(2)∗
i (O, true) = down (4.4)

µ
(2)∗
i (O, true) = 1 (4.5)

Only one step of iterative reasoning is required in this scenario. Hence, player

i can determine that he has drawn type X with certainty in the first stage.

Actions (4.2) and (4.4) form a viable strategy for this subgame with beliefs (4.3)

and (4.5):

a∗i (O, true) = (down, down) (4.6)

µ∗
i (O, true) = (1, 1)

However, it is possible that player i intentionally chooses up in the first stage,

and waits to choose down in the second stage, with the same set of beliefs:

a∗i (O, true) = (up, down) (4.7)

µ∗
i (O, true) = (1, 1)

Playing the strategy (4.6) ensures player i receives α with certainty. With

the strategy (4.7), on the other hand, the payoff for player i becomes dependent
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on what action his partner has chosen in the first stage. The payoff is zero if

his partner chooses down, and the payoff is α if his partner chooses up. There-

fore, strategy (4.7) is weakly dominated by strategy (4.6). However, if player

i is certain that his partner will choose up, then playing (up, down) is also a

best response. Then strategies (4.6) and (4.7) are payoff equivalent for player i.

Therefore, both strategies are part of the best responses in this subgame, given

player i is certain that his partner must choose up in the first stage. We will show

in the next section that choosing up is the unique best response of his partner

in this situation. So both strategies are potential equilibrium strategies for this

realisation of types.

In this subgame, we shall refer to player i employing the separating strategy

if his best response is (4.6), and the pooling strategy if his best response is (4.7).

As we will see in the following section, the unique best response for θ−i = X∧ρ =

true is choosing up in the first stage. In case of strategy (4.6), player i would

choose different actions for different observations in the first stage, hence the term

separating strategy. In the other case, strategy (4.7) would see player i chooses

up in the first stage regardless of his observation, hence the pooling strategy.

4.3 At least one dirty face and I see one (θ−i = X ∧ ρ = true)

The information “there is at least one dirty face” contains no additional informa-

tion if the player has already seen one dirty face. Therefore, player i must still

hold the prior belief about himself being type X. This means player i is still in

an information set with two histories.

For the continuation in this situation4, the choice of payoffs ensures that

4 Player i is in an information set that contains two histories: nature may either have drawn
OX or XX - where the second X is his partner’s type. It cannot be called a subgame as he is
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choosing down yields an expected negative payoff and is therefore not sequentially

rational5. Regardless of the strategy of his partner, the best response in the first

stage in this situation is given by

a
(1)∗
i (X, true) = up (4.8)

µ
(1)∗
i (X, true) = p (4.9)

If the game proceeds to the second stage, player i must have observed his

partner’s action as a
(1)
−i = up. This may signal the private information of his

partner, namely θi = X, which would have forced his partner to play up. However,

this signaling depends on whether his partner employs a separating strategy or

the pooling strategy.

Suppose his partner has employed a separating strategy, then observing a
(1)
−i =

up leads player i to the updated belief to be type X with certainty. This is because

the separating strategy provides a unique signal for different types. Hence, player

i will be able to update his belief. Since advancing to the second stage implies

his partner must have played up, this indicates his partner must have observed

θi = X. Therefore, player i may conclude that he has drawn type X and choosing

down is the best response in the second stage.

a
(2)∗
i (X, true) = down (4.10)

µ
(2)∗
i (X, true) = 1 (4.11)

not in a singleton node in this decision period.
5 The action taken by the player at an information set must be optimal, given his belief at

that information set and the other players’ strategies in the continuation game. If this is true
for this player at each information set, then his strategy is sequentially rational.
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Tab. 4.1: Best Responses and Classification
Event (θ−i, ρ) Best Response ai Belief µi Characterisation
O, false (up, up) (0, 0) Trivial
O, true (down, down) (1, 1) Separating
O, true (up, down) (1, 1) Pooling
X, true (up, down) (p, 1) Response to Separating
X, true (up, up) (p, p) Response to Pooling

On the other hand, the pooling strategy does not signal any useful informa-

tion. The belief of player i remains unchanged, and the best response is playing

up in the second stage:

a
(2)∗
i (X, true) = up (4.12)

µ
(2)∗
i (X, true) = p (4.13)

The best responses with consistent beliefs for all the continuation games are

summarized in Table 4.1.



5. EQUILIBRIUM

The dirty faces game can be modeled as a Bayesian extensive game with observ-

able actions. The only uncertainty is the assignment of types O and X in our

game, which is the initial move of chance. A candidate for an equilibrium consists

of a pair: i) a profile of behavioral strategies1 and ii) a probability measure called

a belief on one’s own type2 for every player. The solution concept we use is a

perfect Bayesian equilibrium, which is defined as:

Sequential rationality The behavioral strategy chosen at a given decision node

should give an expected payoff that is at least as good as all other possible

strategies in the continuation game. In short, the chosen strategy cannot

be strictly stochastically dominated.

Correct initial belief The beliefs for players are determined by the priors ini-

tially. In the two-player game, this means players should form the fol-

lowing initial beliefs accordingly before they make their first move in the

game: a) µ
(1)
i (ρ = false) = 0; b) µ

(1)
i (θ−i = O ∧ ρ = true) = 1; and c)

µ
(1)
i (θ−i = X ∧ ρ = true) = p.

Action-determined beliefs There are two parts in this requirement. Firstly, play-

ers’ beliefs on any partners’ private information should remain unchanged

if that partner has not moved at that history. Secondly, the observable

1 This degenerates to pure strategies if players do not randomise.
2 Recall that the belief is defined as the assessed probability of being of type X oneself.
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actions from different partners influence the update of players’ beliefs on

different partners’ privately held information independently.

Bayesian updating Players’ beliefs should be derived via Bayes’ rule upon their

observations of others’ actions. On top of the consideration of any new in-

formation, the new belief must also be consistent with priors and previously

held beliefs.

See Osborne and Rubinstein (1994) for a more formal treatment on the

Bayesian extensive game with observable actions and the definition of the perfect

Bayesian equilibrium.

Strategies si (ai, µi| θ−i, ρ) may be constructed by using the best responses

for the proper subgames and the sequential rational continuation if there are

no proper subgames. Both were developed in the previous chapter. After our

analysis in the previous chapter there remain only four pure strategies which are

potential best responses for the whole game.

S1 =

 (up, up) (0, 0) |ρ = false
(down, down) (1, 1) |θ−i = O
(up, down) (p, 1) |θ−i = X

 S2 =

 (up, up) (0, 0) |ρ = false
(up, down) (1, 1) |θ−i = O
(up, down) (p, 1) |θ−i = X



S3 =

 (up, up) (0, 0) |ρ = false
(down, down) (1, 1) |θ−i = O

(up, up) (p, p) |θ−i = X

 S4 =

 (up, up) (0, 0) |ρ = false
(up, down) (1, 1) |θ−i = O
(up, up) (p, p) |θ−i = X



S1 and S3 are separating strategies, since the player differentiates his actions

for different observed θ−i. S2 and S4 are pooling strategies as the player chooses

up in the first round regardless of his observation.

Another characterisation of the strategies is through the response in the con-

tinuation game after θ−i = X and ρ = true. S1 and S2 are best responses if the

partner plays the separating strategy, while S3 and S4 are best responses if the

partner plays a pooling strategies.
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5.1 Pure strategy equilibria

There are sixteen permutations of pure strategy pairs when the two players choose

one of these four remaining strategies each. However, not every strategy pair

satisfies the requirements for equilibrium. For example, the pair (S2, S4) cannot

be an equilibrium; player 1’s response to θ2 = X yields a negative expected

playoff since player 2 is playing the pooling strategy. Player 1 can improve his

expected payoff by deviating to S4.

Only four of these permutations having consistent beliefs and actions which

are sequentially rational given the beliefs. It is easy to check that we have two

symmetric pure strategy equilibria, (S1, S1) and (S4, S4), and two asymmetric

pure strategy equilibria, (S2, S3) and (S3, S2). We don’t elaborate on these

equilibria, as they can be obtained as limiting cases of equilibria in partially

mixed strategies, which are developed in the following section.

5.2 Hybrid strategy equilibria

For player i who has observed ρ = true and θ−i = O, it is possible to mix between

the subgame perfect continuations characterised in (4.6) and (4.7).3 Suppose

player i randomises between the strategy S1 and S2 with probabilities 1−σi and

σi respectively, σi ∈ [0, 1]. In other words, when he sees a type O partner (given

ρ = true) in stage one, he chooses up with probability Pr
(
a

(1)∗
i = up|θ−i = O

)
=

σi
4. His sequentially rational partner must choose up in the first stage. The game

3 The resulting mixed strategy is weakly dominated by the strategy (4.6).
4 This can be seen as being identical to the behavioural strategy, as player i chooses the same

continuation action (down) in the second stage in both pure strategies.
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will advance to the second stage. His partner updates his belief using Bayes’ rule:

µ
(2)∗
−i = Pr (X|up) =

Pr(up|X)Pr(X)

Pr(up)
,

where:

• Pr(up|X) = 1 since playing down is strictly dominated for the prior.

• Pr(X) = p is the prior probability.

• Pr(up) is the joint probability of playing up in two disjoint events5:

Pr(up) = Pr(up,X) + Pr(up,O)

= Pr(up|X)Pr(X) + Pr(up|O)Pr(O)

= p + (1− p)σi

Therefore µ
(2)∗
−i = p/(p+(1−p)σi). The best response for player −i to the mixed

strategy σi is a
(2)∗
−i (X, true) = down if and only if µ

(2)∗
−i α ≥ (1− µ

(2)∗
−i )β, or iff

σi ≤
pα

(1− p)β
(5.1)

Otherwise, player −i should play up. Therefore we have the following hybrid

strategy equilibria
(
S∗

i , S
∗
−i

)
, where σi ∈ [0, 1], a

(2)∗
−i = down if (5.1) holds and

a
(2)∗
−i = up:

S∗
i =

 (up, up) (0, 0) |ρ = false
(σi, down) (1, 1) |θ−i = O
(up, down) (p, 1) |θ−i = X

 S∗
−i =

 (up, up) (0, 0) |ρ = false
(down, down) (1, 1) |θi = O

(up, a
(2)∗
−i ) (p, µ

(2)∗
−i ) |θi = X



and

5 The case ρ = false does not have to be considered since Pr(X|up) = 0 when both players
are told that they have drawn type O.
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S∗
i =

 (up, up) (0, 0) |ρ = false
(σi, down) (1, 1) |θ−i = O
(up, up) (p, p) |θ−i = X

 S∗
−i =

 (up, up) (0, 0) |ρ = false
(up, down) (1, 1) |θi = O

(up, a
(2)∗
−i ) (p, µ

(2)∗
−i ) |θi = X



The two forms of equilibria differ in what strategy the non-mixing partner

plays in the other subgame where θi = O ∧ ρ = true; one plays separating and

the other plays pooling strategies. It follows that the best responses are different

for player i in order to be sequentially rational given the correct beliefs.

By symmetry, we can obtain the following mixed strategy equilibria when

both players use mixed strategies:

S∗
i =

 (up, up) (0, 0) |ρ = false
(σi, down) (1, 1) |θ−i = O

(up, a
(2)∗
i ) (p, µ

(2)∗
i ) |θ−i = X

 S∗
−i =

 (up, up) (0, 0) |ρ = false
(σ−i, down) (1, 1) |θi = O

(up, a
(2)∗
−i ) (p, µ

(2)∗
−i ) |θi = X



where a
(2)∗
−i and a

(2)∗
i are determined by σi and σ−i, respectively.

Since these equilibria are true ∀σi, σ−i ∈ [0, 1], so there are in fact an infinite

number of mixed equilibria. The limiting cases gives rise to the four pure strategy

equilibria6, as discussed in the previous section.

If we take all equilibria in the 2-player version, we see that observing the

second-period play of a player who observed X after (up, up) does not help to

determine the level of iteration, as both up or down can be on the equilibrium

path. The multiplicity of equilibria renders this version of the dirty faces game

inappropriate for empirical testing.

5.3 Generalisation

It can be shown that there are also multiple equilibria in the three player game.

Suppose the cohort has drawn XOO, the first player i has observed θ−i = OO

6 (S1, S1) for σi, σ−i = 0; (S4, S4) for σi, σ−i = 1; (S2, S3) for σi = 1, σ−i = 0; and (S3, S2)
for σi = 0, σ−i = 1. In addition, if one of the σ′s takes on 0 or 1 while the other σ ∈∈ (0, 1),
we have the hybrid strategies.
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and ρ = true. This player can immediately infer being type X. He can choose

down to end the game, and claim the payoff immediately. This action is similar

to the separating strategy S1 in the two player game. Specifically, this strategy is

ai = (down, down, down) with µi = (1, 1, 1), and it signals clearly to his partners

that he chooses down as soon as he knows his own type and plays up when he

does not. This signaling provides useful information for his partners to deduce

their own types.

Yet player i can also wait by choosing up in the first stage, then chooses down

at either one of the latter stages to claim the same payoff, since his partners

must choose up given that they hold the prior belief. Such pooling strategies

as (up, up, down) and (up, down, down) with the belief (1,1,1) are also best re-

sponses. Choosing up by this player does not indicate to his partners whether he

has worked out his own type already. His partners are unable to iterate further.

Another case is a draw of XXO where the best responses in the first stage for

all players is up with prior belief p. Remember that two type X players, called

player 1 and player 2, must have observed θ−i = XO; another player, 3, who is

type O must have observed θ−i = XX. For player 1, a best response in the second

stage is a
(2)∗
1 (XO) = down with µ

(2)∗
1 (XO) = 1, as long as he believes player 2 to

play the separating strategy (down, down, down) whenever µ2 = (1, 1, 1). This

is because player 1 knows that player 2 would have played down, had player 2

observed θ−i = OO. Since player 2 has played up, however, player 1 can infer

that player 2 holds the belief µ
(1)∗
2 = p and playing up is sequentially rational.

The uncertainty arising from having observed a type X player remains. Since

player 1 can observe player 3 being of type O, he can infer that he must be type

X. This is dependent on player 1 believes that player 2 would end the game if

player 2 knows himself to be type X. On the other hand, if player 1 believes
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player 2 to play the pooling strategy (up, down, down) if µ2 = (1, 1, 1), player 2’s

action of up does not signal to player 1 whether µ
(1)∗
2 = 1 or µ

(1)∗
2 = p. Hence,

the best response for player 1 has become a
(2)∗
1 (XO) = up with µ

(2)∗
1 (XO) = p.

The argument is along the same line for player 2.

We see that the same problem of multiple equilibria remains in the three-

player version. Moreover, there are many situations when more than just one

player have to rely on the signals of other players. This reduces the discriminatory

power of the game for empirical tests even further. It is easy to see how the same

logic applies to games with more than 3 players. Basically, the only observable

behaviour (given ρ = true), which cannot be part of an equilibrium is for a player

choosing down in any period t, if the number of type X partners is larger than

t.7 Everything else can be equilibrium play.

5.4 Week dominance and separation

We can see a common thread: actions of a player signal his belief clearly to other

players, if the player chooses down as soon as he is certain of being type X. This

signals to other players that he chooses up if and only if he is uncertain of his type.

This is crucial for other players to update their beliefs. Formally, all players must

match their actions to their beliefs on a one on one basis: a
(t)∗
i = up for µ

(t)∗
i = p,

and a
(t)∗
i = down for µ

(t)∗
i = 1 in order to achieve separation. Separation works

in this game when players delete (do not play) weakly dominated strategies.

Table 5.1 shows the expected payoffs for correct beliefs and strategies after a

draw of OX. Player X may delete all strategies which are weakly dominated by

(down, •). This yields the separating strategy to be the equilibrium strategy.

7 In other words, suppose k ∈ [0, n] is the number of type X partner that player i has
observed, then a

(t)
i (θ = ”k” ∧ ρ = true) = down is always a strictly dominated action ∀k > t.
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Tab. 5.1: Strategic Interaction if OX is drawn
Player X†

(up, down) (down, •)
(up, up) (0, α) (0, α)

Player O § (up, down) (−, α) (0, α)
(down, •) (−, 0) (−, α)

† (up, up) is strictly dominated for Player X, not shown.
§ - means negative expected payoff for player O.

In contrast, we get another picture if player O starts the deletion ahead of

player X. Choosing down in the first round is strictly dominated ex ante for

θ−i = X. Deleting (down, •) from player O’s strategy sets results in player X

being indifferent in his strategic choices. It follows that a
(t)∗
i = up for µ

(t)∗
i = 1

is also a best response. It destroys the one-to-one relationship between actions

and beliefs, hence preventing others from interpreting the observed actions. This

gives rise to multiple equilibria, as then there are many best responses. We have

encountered the general problem that the outcome from iterated deletion of weakly

dominated strategies is order-dependent.

This result can be further generalised for an n-player game. When ρ = true

and a player has observed that all his partners have drawn type O, he can immedi-

ately deduce his type to be X. It follows that there are (n−1) pooling strategies,

and one separating strategy which are mutual best responses. These strategies

form parts of the different equilibria. This gives rise to multiple equilibria in the

traditional dirty faces game analysed and experimentally implemented by Weber

(2001). Consequently, this setting is not appropriate for measuring the depth of

iteration and testing for consistent believes of human subjects. In what follows

we slightly refine the payoffs of the game, such that the separating equilibrium

becomes unique. This allows for a proper experimental study of the depth of

iteration and the consistency of beliefs.



6. A REFINED VERSION OF THE DIRTY FACES GAME

The classical formulation of the dirty faces game cannot be used to measure the

level of iterative reasoning due to multiple equilibria. This arises from equal

payoffs for different strategies in the subgame, following a player observing the

event ρ = true ∧ θ−i = O at stage one. Iterative deletion cannot eliminate

the weakly dominated strategy from the set of strategies. This casts doubt on

results obtained from experiments, which use designs based on the classical game

specification.

In the following, we introduce a discount factor δ to remedy the existence of

multiple equilibria in the game. The payoffs for all players are discounted by

this factor whenever the game advances to a later stage. The payoff matrix for

a two-player game is shown in Table 6.1. The effect of this waiting cost turns

the pooling strategies from being weakly dominated to being strictly dominated.

This allows players to delete the pooling strategies from the set of best responses

iteratively. The separating strategy will be the sole surviving strategy at the end

of the iterative deletion process.

Tab. 6.1: Payoff table for the dirty faces game with discount in the kth stage
Own Type
X O

Actions up 0 0
down αδk−1 −βδk−1
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It is easy to derive the equilibrium in the refined game. It is unique and

separating. We show how the process of iterated deletion works in the two-player

example. It certainly generalises to games with more players.

• When player i observes ρ = false, his best response is a∗i = (up, up) with

µ∗
i = (0, 0) - this is the same as in the game without discounting.

• When player i observes ρ = true∧θ−i = O, the player should choose down,

end the game and claim the payoff α immediately. Claiming the payoff at

latter stages results in receiving a lower payoff due to discounting. Hence

the best response in this case is a∗i = (down, down) with µ∗
i = (1, 1).

• When player i observes ρ = true∧ θ−i = X, the best response at stage one

is choosing the action a
(1)∗
i (X, true) = up with the belief µ

(1)∗
i (X, true) = p.

The game may advance to stage two if and only if his partner has also chosen

up at stage one. This can only mean that his partner must have formed

the belief µ
(1)∗
−i = p after observing θi = X, as choosing up after observing

θi = O is now strictly dominated and can be deleted. He therefore knows

his partner would have chosen down to end the game at stage one if θi = O

after forming the belief µ
(1)∗
−i = 1. It follows that the best response at stage

two is a
(2)∗
i (X, true) = down.

In summary, the sole surviving strategy for the refined dirty faces game is

simply the strategy S1.1 Given symmetry, the pure-strategy Perfect Bayesian

equilibrium is (S1, S1), ∀θ−i ∈ {O,X} and ∀ρ ∈ {true, false}.
1 This strategy can be summarized for an n-player game as keep choosing up as many times

as many X-type partners you have seen, and after that, choose down immediately if the game
still continues. When the game ends with type X players play down, those who plays up should
realise that they are type O.
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Hybrid strategies are also never part of any equilibrium, as they are all strictly

dominated by the pure strategy S1, too. Any mixed strategy will involve pooling

strategies which have lower payoffs due to discounting when delaying playing

down under certainty.

Therefore we conclude that S1 is the strategy that survives iterated elimina-

tion of strictly dominanted strategies for every player in the refined dirty faces

game. We have a unique Perfect Bayesian Equilibrium (S1, S1).

This result can be extended to an n-player game. Any delay in claiming the

positive payoff incurs a waiting cost, when certainty is established, i.e. θi = X

and µi = 1 for player i. This effectively renders all pooling strategies strictly

dominated by the separating strategy. In turn, players’ responses signal useful

information for others to perform iterative reasoning. Introducing the waiting

cost does not only resolve the issue of multiple equilibria, but it also dismisses

any hybrid strategies as equilibrium candidates by strict dominance.



7. EXPERIMENT

This paper is motivated by the experiments in Weber (2001). The procedural

design and session parameters in our experiment are the same as in those exper-

iments. The only difference is the introduction of the discount factor on delayed

payoffs. Our aim is to see how removing the multiple equilibria may affect the

experimental outcomes. This purpose leaves little room for design choices, since

we would like to compare the results with those from Weber’s experiment. In

particular, we stick with the use of the neutral language labeling types O and X,

instead of using framed language like “clean” and “dirty faces”.

There are - as in Weber’s paper - two treatments with cohort sizes of n = 2

and n = 3. So the necessary level of iterated reasoning for equilibrium play

is relatively low. The prior probabilities for drawing type O and type X are

1/3 and 2/3, respectively. These priors reduce the occurrence of the trivial case

of ρ = false sufficiently. The payoff parameters are α = 100 and β = 400

points, which together with the prior probabilities should prevent gambling. The

expected return is -67 points when subjects choose down if they hold the prior

beliefs. Meanwhile, choosing up at the end of the game always yields zero. The

parameters are in line with one of the treatments in Weber’s experiments.

The points earned during the experiment are converted to cash at the end of

the game. The conversion ratio is one cent per point, or AUD 1 for every 100

points. An endowment of 900 points, or AUD 9, is provided to every subject at
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the beginning of the session. The main purpose of the endowment is to prevent

early bankruptcy in the session. An injection of points (treated like a loan) will

be provided to the subject when bankruptcy occurs.1

The discount factor is set at δ = 0.8. The reduction in the payoff is noticeable

as each stage passes, but not so significant that gambling behaviour at latter

stages might be induced. The incentive condition against gambling is maintained

throughout the game, since the discounting is applied to all payoffs.

Each treatment consists of fourteen playing periods. Each period consists of

a single dirty faces game that is independent from other periods, i.e. the types

drawn in the earlier period have no influence on the types drawn in latter periods.

The profits are tallied at the end of each period, and payments are paid at the

end of the session. Subjects are matched together for all periods of the session;

we use a partner treatment.2

Each game starts with the computer randomly and independently assigning

types to subjects according to the priors. An announcement is made on the

screen whether there is at least one type X player in the cohort. It is followed

by revealing the types of partners - in the 3-player case, the two partners are

identified as Left and Right. Subjects enter the first stage and are asked to

simultaneously choose their actions - either up or down. After everyone in the

cohort has chosen his action, the actions chosen by their partners are revealed. If

1 The average/median profits after fourteen periods are AUD 11.74/12.4 in the 2-player
treatment, and AUD 7.98/9 in the 3-player treatment. The number of people who make losses
(negative profit) are 1(out of 42 subjects) in the 2-player game and 8(out of 48) in the 3-player
game.

2 A partner treatment matches a subset of players from the subject pool for the entire
session in a multi-period experiment. This contrasts a stranger treatment when all players
are re-matched randomly within the subject pool in different periods within a session. The
different of these two type of treatment is in the statiscal interpretation of the data. In partner
treatments, each match up is considered as one independent observation. On the other hand,
the entire subject pool is a single independent observation in the stranger treatment. This is
because any interaction between players creates a correlation in data generation.
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the game advances to the next stage, subjects are asked to choose actions again.

The game continues until someone has chosen down or n stages have passed. The

period payoff is displayed at the end of the period, but subjects are never told

their own type at the end of the game.

The sessions were conducted in a computer lab at the University of Adelaide.

The subjects were recruited from a pool of students. The experimental sessions

were programmed and run using the software z-tree (Fischbacher 1999). Commu-

nication among subjects were controlled for, as they were seated in self-contained

booths. The seating order was randomly assigned. No communication was al-

lowed during the session. Subjects received all the relevant information in written

instructions and interactively on screen. The instructions for the 2-player game

can be found in the appendix A.



8. RESULTS

There were two sessions for each treatment, 2-player and 3-player games. The

experimental sessions were conducted in October, 2004. The sessions provided a

total of 1260 observations from 90 subjects who played in 14 periods - 42 subjects

formed 21 groups in the 2-player game, and the other 48 subjects formed 16 groups

in the 3-player game. Subjects were primarily undergraduate students from the

University of Adelaide. The distribution of students from various disciplines is

shown in table 8.1.

8.1 Descriptive Statistics

Table 8.2 reports the individual level data over the 14 playing periods. For

a given event, each entry states the number of subjects choosing an action in

agreement with the predicted best response. The percentage of these subjects

Tab. 8.1: Distribution of courses enrolled by the student subjects
course number percent

Arts 4 4.44
Commerce 17 18.89
Economics 30 33.33

Engineering 24 26.67
Finance 4 4.44
Sciences 9 10.00
Others 2 2.22
Total 90 100.00



8. Results 42

T
ab

.
8.

2:
In

di
vi

du
al

R
at

io
na

lit
y

ac
ro

ss
pe

ri
od

s
fo

r
2

pl
ay

er
ga

m
e

N
u
m

b
er

of
p
la

ye
rs

2
3

O
b
s.

ρ
=

f
a
ls

e
O

X
ρ

=
f
a
ls

e
O

O
X

O
X

X
p
re

d
.a

U
U

D
U

D
T
ot

al
U

U
U

D
U

D
U

U
D

T
ot

al
P
er

io
d

A
gr

ee
m

en
ts

:n
(f

re
q
.)

1
2(

1.
00

)
11

(0
.9

2)
17

(0
.6

1)
30

(0
.7

1)
2(

0.
67

)
8(

0.
44

)
12

(0
.4

4)
22

(0
.4

6)
2

5(
0.

83
)

7(
0.

88
)

15
(0

.5
4)

27
(0

.6
4)

2(
1.

00
)

13
(0

.5
9)

15
(0

.6
3)

30
(0

.6
3)

3
5(

0.
83

)
8(

0.
89

)
15

(0
.5

6)
28

(0
.6

7)
5(

0.
83

)
5(

0.
83

)
11

(0
.5

5)
10

(0
.6

3)
31

(0
.6

5)
4

8(
1.

00
)

10
(1

.0
0)

16
(0

.6
7)

34
(0

.8
1)

3(
0.

75
)

9(
0.

50
)

12
(0

.4
6)

24
(0

.5
0)

5
6(

1.
00

)
8(

1.
00

)
14

(0
.5

0)
28

(0
.6

7)
5(

0.
83

)
1(

1.
00

)
8(

0.
57

)
15

(0
.5

6)
29

(0
.6

0)
6

2(
1.

00
)

10
(0

.8
3)

19
(0

.6
8)

31
(0

.7
4)

4(
1.

00
)

10
(0

.4
2)

11
(0

.5
5)

25
(0

.5
2)

7
2(

1.
00

)
9(

1.
00

)
20

(0
.6

5)
31

(0
.7

4)
7(

1.
00

)
15

(0
.5

8)
8(

0.
53

)
30

(0
.6

3)
8

6(
1.

00
)

10
(1

.0
0)

17
(0

.6
5)

33
(0

.7
9)

2(
1.

00
)

7(
0.

35
)

15
(0

.5
8)

24
(0

.5
0)

9
9(

0.
90

)
6(

0.
86

)
14

(0
.5

6)
29

(0
.6

9)
1(

0.
50

)
9(

0.
50

)
19

(0
.6

8)
29

(0
.6

0)
10

7(
0.

88
)

9(
0.

90
)

16
(0

.6
7)

32
(0

.7
6)

3(
1.

00
)

3(
1.

00
)

9(
0.

56
)

16
(0

.6
2)

31
(0

.6
5)

11
8(

1.
00

)
9(

1.
00

)
17

(0
.6

8)
34

(0
.8

1)
2(

1.
00

)
12

(0
.5

5)
13

(0
.5

4)
27

(0
.5

6)
12

4(
1.

00
)

7(
1.

00
)

19
(0

.6
1)

30
(0

.7
1)

2(
0.

67
)

2(
1.

00
)

9(
0.

45
)

11
(0

.4
8)

24
(0

.5
0)

13
2(

1.
00

)
7(

1.
00

)
23

(0
.7

0)
32

(0
.7

6)
5(

0.
83

)
6(

1.
00

)
15

(0
.6

3)
7(

0.
58

)
33

(0
.6

9)
14

4(
1.

00
)

5(
1.

00
)

22
(0

.6
7)

31
(0

.7
4)

4(
1.

00
)

10
(0

.5
6)

12
(0

.4
6)

26
(0

.5
4)

A
gg

.
70

(0
.9

5)
11

6(
0.

94
)

24
4(

0.
62

)
43

0(
0.

73
)

20
(0

.8
3)

44
(0

.9
2)

14
5(

0.
52

)
17

6(
0.

55
)

38
5(

0.
57

)

a
U

m
ea

ns
u
p

an
d

D
m

ea
ns

d
ow

n
.



8. Results 43

out of all subjects who were in the same situation is stated in the parentheses. For

example, 9 subjects chose the predicted best response down in the tenth period

of the 2-player game. This is 90% (or 0.90) of the 10 subjects (not stated) who

have observed a type O partner.

There is clearly a high frequency of agreement with predicted responses in

the events where the required number of iterations is low. These are cases where

one level of iteration is required when subjects have observed ρ = true and all

partners are type O - θ−i = O for n = 2 or θ−i = OO for n = 3. Beyond that,

the frequency of agreement with the predicted response gets much lower as the

required level of iteration increases.

Holding the required number of iteration constant, it seems more players are

able to perform two levels of iteration in the 2-player game (observed X, 0.62)

than in the 3-player game (observed OX, 0.52). This might suggest that a higher

number of players in a cohort complicates the matters further for subjects and

hinders their iterative process.

In the 3-player game, there does not seem to be any significant difference in

the frequency of agreement with the predicted responses between the two highest

levels of iteration. The frequencies are 0.52 for two levels of iteration (observed

OX) and 0.55 for three levels of iteration (observed XX). It is reasonable to

assume that if subjects are unable to perform two levels of iteration then they

should be unable to perform any higher levels of iteration. A typical picture for

such an assertion would have been a higher frequency of agreement in the simpler

case. However, the closeness of the two frequencies may also suggest that once

subjects are able to perform two levels of iteration, they can also perform a higher

level of iteration. They might slide down the slippery slope of iteration and go

all the way.
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The following should be kept in mind when looking at these summary statis-

tics:

1. We consider players in the following occasions as rational, even though

their chosen actions have led to losses. Suppose the cohort has drawn OX

in the 2-player game. The player with type O has observed a player of

type X as partner. The best responses are up for the player of type O

and down for the player of type X in the first stage. The game should

have ended there. However, if partner X has chosen the strictly dominated

action up in the first stage, player O should choose down in the second

stage. Player O logically believes that his partner should only have chosen

up if he had observed a type X player. Nevertheless, player O is wrong

by logically playing down and suffers losses. His mistake is due to the

irrational signaling from his partner. Similar situations may occur in the

3-player game. In these situations, we consider player O as rational, even

though his play led to losses due to relying on wrong signals.

2. Players play the dominant strategy when they believe their partners play the

dominant strategy, i.e. they believe their partners are rational. However, if

they believe that their partners are not rational, i.e. not playing dominant

strategies, they might themselves deviate from the equilibrium strategy

and play a “rationalizable” strategy,1 such as S4 in the 2-player game. A

rationalizable strategy is a strategy that is a best response to some strategies

of the opponent, but not necessarily to the equilibrium strategy. So a player

who does not believe in his partner behaving rationally may consider the

signaling from this partner as useless, since following the signal will lead

to losses, as in the situations mentioned above. Nevertheless, we consider

1 Bernheim (1984); also Pearce (1984)
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their rationalizable actions as irrational, even though that the deviation

from equilibrium can be rational if they believe that the other player(s) in

the cohort are not rational.

3. Consider a cohort that has drawn XX in the 2-player game. A risk averse

player in this game will play the strategy (up, up) if he is not able to make

two steps of iteration2, whereas a rational player will play the best re-

sponse (up, down). However, the partners may have chosen down before-

hand, which ended the game in the first stage. Then we will not observe

the actions in the second stage. Moreover, we are not able to distinguish a

totally rational player and a risk-averse player with limited iterative ability

if other players make mistakes. So we don’t know if the player is able to do

the second step of iteration.

Our results are not too different from Weber’s finding in the 2-player treat-

ment, in which 87% made rational response in the XO condition, and 53% in the

second round of the XX condition. In our experiments, the results are 86% (211

from 246 occasions)and 56% (149 from 268) respectively. It seems to suggest that

removing the multiple equilibria had no influence.3

8.2 Influence of Cohort Sizes

Differences in group size may have an influence on how often subjects actually

choose the best response regardless of the the level of iteration needed. This is

2 This risk averse player is rational by playing this strategy, in the sense that choosing up
yields zero return comparing to an expected return of -67 with choosing down. However, he is
not entirely rational, since he cannot iterate correctly.

3 Subjects in Weber’s study were either UCLA or Caltech graduate and undergraduate stu-
dents. We expected them ceteris paribus to do better than our students, as admission in these
universities should be more selective. So our prior that removing the multiple equilibria should
lead to a better performance might still be true.
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Tab. 8.3: Influence of group sizes on individual rationality
Situations by Levels of Iteration

1: No type X observed 2: One type X observed
n obs ranksum expected obs ranksum expected
2 123 10656 10578 391 137188.5 131376
3 48 4050 4128 280 88267.5 94080

total 171 14706 14706 671 225456 225456
p-value 0.528 0.006

because the theoretical best responses require the rationality of all players and

the common knowledge. This really means that all players understand how to

play the game and know the best responses, and they also know and believe that

the other players also understand how to play the game, and so on. The common

knowledge argument breaks down when there is even a slight hint of doubt among

any one of the players. Under this circumstance, players believe that the signaling

from partners does not provide any new information. This leads players to play

rationalizable strategies instead of the equilibrium strategies. So we believe that

when more players are in the cohort, the common knowledge assumption is more

likely to break down.

A two-sample Wilcoxon rank-sum (Mann-Whitney) test is used to examine

the cases, where one and two steps of iteration are required4. The null hypothesis

is the frequency of best responses for given steps of iteration are the same for

different cohort sizes n.

The results are tabulated in table 8.3. They show that cohort sizes have an

influence on subjects ability to choose best responses. In cases when one step of

iteration is required (only type O’s are observed), subjects are able to deduce the

actual situation and form beliefs without requiring any signals from others. This

4 Given ρ = true, one step of iteration is needed for subjects who have observed only type O
partners - i.e. θ−i = O for n = 2 and θ−i = OO for n = 3. Two steps of iteration are required
after having observed exactly one type X partner, i.e. θ−i = X for n = 2 and θ−i = OX for
n = 3.
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is consistent with our hypothesis that the number of players makes no difference.

On the other hand, subjects become dependent on the signals from partners in

order to deduce their own types if they observe one other player being of type X.

The signaling complicates the matters because players must also decide how to

interpret the signals. Players choose the predicted responses on the equilibrium

path if they believe others will choose the predicted responses on the equilibrium

path by obeying dominance. Moreover, players will also have to believe that

others do know that they obey dominance themselves, and so on. Only then can

the signals be interpreted as predicted in a Perfect Bayesian Equilibrium. This

chain of reasonings about whether one can believe that others play the predicted

responses and obeying dominance does not allow any doubts. However, subjects

may be cautious and may not believe others to obey dominance, or they do not

believe others to believe them to obey dominance, and so on. Even believing

others to be cautious, and so on, may be a sufficient cause for deviating from

the equilibrium path. Worse still, only one player is required for causing this

deviation. Under these circumstances, rational players may play rationalizable

strategies instead.5 So if the suspicion that others will get it wrong is a strong

driving force for equilibrium deviation, then we should expect that deviation hap-

pens more often when more players are involved. This is because players should

have a higher believed probability that at least one of the other players does

not behave according to dominance. Our statistical test confirms this intuition.

The number of correct deductions is greater in the treatment with two players

(p− value = 0.006).

In summary, it seems reasonable to suggest that subjects choose the best

responses consistently over different cohort sizes when signaling is not required

5 The strategy S1, S2, S3 & S4, and the hybrid strategies σi are all rationalizable.
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Fig. 8.1: Nested Factors of the Dirty Faces Game

from partners for them to deduce their own types. However, once signaling is

involved, increasing the number of players in the cohort increases the likelihood

of subjects deviating from the equilibrium path.

8.3 Serial Correlation

Standard regression modeling usually assumes that the errors have zero means

and are mutually independent. However, we would expect residuals of the data

collected from the experiment for individuals and cohorts to be correlated. This

is inherent in our experimental settings - Individuals generated data over 14

playing periods, while they also interacted with other players within their cohorts.

Instead of treating this as a nuisance, we can extract more information from

the data by using a linear random intercept model (Rabe-Hesketh and Skrondal

2006).

Note that each data point in the experiment is generated by individual j

from cohort k in the period i. The data can be classified in a nested hierarchical

structure as shown in figure 8.1: starting with occasions (or playing periods) at

level 1, individuals at level 2, and cohorts at level 3. In the random intercept

model, we assume that each level has its own noise that is independent from
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other levels, but serial correlation exists for data points within the levels. This

serial correlation is model by level specific random effects. This suggests a model

with three error terms: the within-subject noises for each observation εijk, the

between-subject noises ζ
(2)
jk , and the between-cohort noises ζ

(3)
k .

8.4 GLLAMM Modeling

We are interested in the likelihood of subjects making decisions that match our

theoretical rational responses. Our proposed linear predictor uses logit as the

link function with m covariates. We estimate the following equation:

logit {Pr(y = 1|xijk)} = β0 + β1x1ijk + · · ·+ βmxmijk + ζ
(2)
jk + ζ

(3)
k + εijk

We have obtained some individual characteristics of the participating subjects

through a questionnaire at the end of the experimental sessions. The question-

naire asked for gender, age group, and courses attended at university. We incor-

porate these information as covariates in our analysis. The regression includes

the following dependent and independent variables.

IR is a dichotomous dependent variable that denotes whether subjects have

played the rational response for the information they have received. It

should be noted that a response is considered as rational as long as the

subjects act according to what they have observed of others’ actions, even

if these actions are not rational.

n is the number of players in the cohort. This variable is ordinal, hence we treat

this as a dummy variable with the baseline being n = 2.
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steps is the number of iteration required to work out one’s own type. This

parameter is also ordinal in nature. We do not want to impose any specific

functional relationship with a dependent variable. Therefore we use a set

of dummy variables to represent different number of iteration. The more

iterations the problem requires, the higher is the order of the problem.

In the regression, the variables are step1, step2 and step3, with step0

(when ρ = false) being the baseline case. Although the variable step3 is

perfectly correlated with n = 3, it does not bias the estimators.

courses are a set of dummy variables for different courses enrolled by subjects.

There were eight choices for subjects to choose from in the questionaire:

Arts, Commerce, Economics, Engineering, Finance, Science, Others,

and N/A. Most subjects were recruited from these schools and hence the

questionaire was designed accordingly. In the regression, we have treated

Other and N/A as one group and is the baseline.

gender is a dummy variable represents the sex of the subject. The baseline is

female.

maturity is a dummy variable showing whether the subject is over 25.6,7 The

baseline is under 25.

The regression results are shown in table 8.4. A detailed regression output

can be found in the appendix.

6 The insurance underwriters and car rental companies seem to have realised something long
ago. They require drivers under 25 to pay excess and higher premium.

7 The first half of Gruber and Yurgelun-Todd (2006) documents the psychology literatures
related to maturation. While physical development seems to complete at around 18, frontal-
lobe development may continue well into the third decade of life (Sowell et al. 1999). Centers
for Disease Control (CDC) define adolescence from age 10 to 24 (Virginia Department of Health
- Office of Family Health Service 2006).
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Tab. 8.4: regression results
IR Coef. Std. Err. z P > |z| [ 95% Conf. Interval]
n -.845 .367 -2.30 0.021 -1.564 -.126
step1 .177 .527 0.34 0.737 -.857 1.210
step2 -2.572 .423 -6.08 0.000 -3.401 -1.743
step3 -2.276 .444 -5.13 0.000 -3.146 -1.407
Arts 1.795 .821 2.19 0.029 .186 3.403
Commerce 1.318 .746 1.77 0.077 -.144 2.780
Economics 1.437 .689 2.09 0.037 .087 2.788
Engineering 2.282 .744 3.07 0.002 .824 3.741
Finance .607 1.519 0.40 0.690 -2.371 3.584
Science 2.167 .753 2.88 0.004 .690 3.643
male .094 .345 0.27 0.784 -.581 .770
maturity -.405 .565 -0.72 0.473 -1.513 .702
cons 1.712 .830 2.06 0.039 .084 3.340

n is a significant factor as we have discussed in the previous section. More

players in a cohort increases the likelihood for a breakdown of the rationality

and the common knowledge chain. Thus, subjects are more likely to play other

rationalizable strategies and less likely to choose the equilibrium actions if the

number of players increases.

step1 is not statistically significantly different from the baseline case. It

seems that subjects have found the one step of iteration problem as simple as

the trivial announcement. Beyond that, the difficulty has jumped, as step2 and

step3 have negatively impacted on subjects in choosing the rational responses.

A Wald test rejects the null hypothesis that step1 and step2 are equal. The

increased complexity of the problem is one of the main reasons. In addition, the

break down in rationality and common knowledge may again be a reason. This

follows from subjects requiring signals from partners in order to solve multi-step

problems.

One of the interesting observations is the proximity in the size of the estima-

tors for step2 and the step3. It seems to suggest that higher order problems

do not poise additional difficulties to players. The Wald test cannot reject the
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null hypothesis that they are equal. A simple explanation is that subjects cannot

solve a three step problem if they cannot solve a two step problem. However, it

does not explain the closeness of the two estimates. An alternative explanation is

that once subjects have worked out any methods for the two-step problem, these

methods of logical deduction or these rules of thumb8 can also be applied for the

higher order problems.

In regard to the influence of courses, it seems Engineering and Science are

the standouts, followed by Arts, Economics and Commerce students. We have also

run the regression with the baseline being the Engineering students. The results

suggest that Engineering, Science and Arts students perform similarly. Our

results certainly does not settle the rivalry claims of being smarter between the

Engineering students and Arts students. Nevertheless, the interpretation should

only focus on courses that have larger sample sizes (see table 8.1). Although

subjects from some disciplines seem to be more adaptive to this game than others,

it is difficult to tell whether it is due to training in university courses or the self-

selection bias of students enrolling into these courses.

The sign of the male dummy is positive but far away from being statistically

significant. The “battle of the sexes” stays undecided. Also maturity seems to

play no role in the dirty faces game.

The constant term is significantly different from zero. This is reasonable, since

our baseline scenario has included the trivial announcement when most players

can easily choose the theoretical best response.

8 The rule of thumb has been explained in the footnote 1 from chapter 6.
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In this paper, we have shown that the dirty faces game studied by Weber (2001)

has multiple equilibria, because of the payoffs being constant for all stages. The

multiple equilibria consist of permutations of a separating strategy, and n − 1

pure pooling strategies for an n-player game. Additionally, there is a continuum

of semi-separating equilibria. We cannot rule out the pooling and hybrid strate-

gies, as they are only weakly dominated. This is because players, who are certain

to be of type X before they make their first choice, are indifferent between im-

mediately securing a positive payoff and delaying. Since there are more than one

sequentially rational strategy for some players to choose from, we cannot use this

version of the dirty faces game to measure the level of iterative reasoning. So we

refined the payoffs of the original game. By introducing a waiting cost through a

discount factor, the (partially) pooling strategies become strictly dominated by

the separating strategy. There remains a single strategy that survives deletion of

strictly dominated strategies.

By establishing that players have only one strictly dominant strategy, the

dirty faces game with discounting can be used as a measurement of the level of

iterative reasoning in experiments. So we implemented our refined dirty-faces

game in the laboratory. Our experimental results have found that majority of

players are able to deduce at the simplest level. The frequencies of agreement with

predicted response falls to about half, once correct signaling from other players
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and correct interpretation of these signals are required for deduction. However,

these results are not very different from those in Weber’s experiments. So the

existence of multiple equilibria does not seem to explain the decline in the number

of subjects playing the theoretical best responses once the number of necessary

iterations increases.

We further examined the data by using a linear multilevel random intercept

model of the logit family. The results agree with the explanations of limited

computational ability of the subjects. There seems to be a threshold level of

iterative reasoning where the frequency of best responses drops. However, players

are able to perform higher level of iterative reasoning once they have passed that

threshold. This is probably due to the similar nature of the reasoning process for

all levels of iteration.

The number of players in the cohort is another important factor influencing

the frequency of best responses. This may be explained by the limited compu-

tation, since the level of iterative reasoning increases in some situations. Players

may also be more likely to play rationalizable strategies, as larger cohort size

increases doubt on other players obeying dominance. So additionally to limited

computational ability, the fear of other player’s inability plays an important role

in explaining the drop of equilibrium play.

Besides the insights gained, our results also give some direction for the de-

sign of future experiments. Firstly, one might introduce framing to see if this will

increase the frequency of equilibrium play by assisting players to visualise the na-

ture of the problem. The neutral language used in the experiment may have been

confusing, as players may find it hard to logically connect the actions and the

types in the game. Secondly, it might be worthwhile to introduce computer part-

ners who will always obey dominance. This should eliminate the non-equilibrium
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rationalizable strategies that arise from the fear of other players behaving irra-

tionally. Finally, the cohort size may be increased beyond three players. One

could see whether the frequency of best responses still remains constant if more

than two steps of iterations are needed.
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A. INSTRUCTION FOR THE 2-PLAYER GAME

INSTRUCTIONS

Welcome to our experiment. Please read these instructions carefully. Under-
standing the instructions is crucial for earning money.

This is an experiment in decision-making. You will be paid for your par-
ticipation. The exact amount you will receive will be determined during the
experiment and will depend on your decisions. This amount will be paid to you
in cash after the conclusion of the experiment. If you have any questions during
the experiment, raise your hand and the experimenter will assist you. It is strictly
forbidden to talk, exclaim or to communicate with other participants during the
experiment. It is very important for us that you obey these rules. Otherwise the
data generated in this session are useless.

In this experiment, you will play a series of 14 identical games in which you
can earn or lose money based on your choices. You start with an endowment of
AUD 9. Wins and losses during the 14 games will be added to or deducted from
this endowment. At the end of the experiment you will be paid the resulting
amount in cash.

You are paired with one other participant (called partner) throughout all the
14 games. You will not know the identity of this other person, either during or
after the experiment, just the other person does not know your identity.

Types

At the start of each of the 14 games, the computer will randomly draw a type
for you and a type for the person you are paired with. The possible types are
”X” and ”O”. The computer always draws from an urn with two balls of type
”X” and one ball of type ”O”. So the probability that you are of type ”X” is 2/3
while the probability that you are of type ”O” is 1/3. Note that the draw for
each person will be from a different urn. This means that the likelihood of you
being of a certain type does not depend on what type the other person is.

Information

Each participant will only be told the type of the partner, but no his/her own
type. So you will know the type of the person you are paired with, but not your
own type. Your partner will know your type, but not his/her own. Additionally,
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you will be told if at least one person (you or/and your partners) is of type ”X”.
Below you have an example of how the information you will get may look like.
In this case you see that at least one person is of type ”X” and that your partner
is of type ”O”.

Decisions (maximum of two rounds per game)

Round 1
After you have seen the type of the other player in your group and the information
whether at least one player (you and/or your partner) is of type ”X” you are asked
to choose one of two actions: ”Up” or ”Down”. The combination of your type
and your decision will determine how much money you earn. Note that your
payoff does only depend on your type and not on the type of your partner. The
money you earn or lose is determined in the following table:

Your Type
”X” ”O”

Your ”up” 0 0
choice ”down” win 100 cents lose 400 cents

1. If you choose ”Up” your current earnings will not change.
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2. If you choose ”Down” and your type is ”X” one dollar is added to your
earnings.

3. If you choose ”Down” and your type is ”O” then four dollars will be de-
ducted from your account.

Note again that the type that determines the payoffs is your type and not the
type of your partner. An example of a decision screen is shown below. The
payoffs in the table below are given in cents.

After you made your decision the following happens: If either you or your
partner has chosen ”Down” the current game ends. Your payoff will be calculated
and shown on the screen. Then a new game begins with a new draw of the types.
However, if both you and your partner have decided to play ”Up” the game enters
a second round.

Round 2 (only if both players chose ”Up” in round 1)
Round two of the game practically works the same way as round one does. Note
that you and your partner keep the types that were drawn before decision round
1.

The only difference in round two is that the payoffs for choosing down are
multiplied by a factor of 0.8. The payoffs in round two are the following:
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Your Type
”X” ”O”

Your ”up” 0 0
choice ”down” win 80 cents lose 320 cents

So now you win 80 cents (instead of 1 Dollar in round 1) if you are of type ”X”
and you choose ”Down”. If you choose ”Down” and it turns out that you are of
type ”O” you lose 320 cents (instead of 4 Dollars in round 1). Choose ”Up” once
again does not cause any gains or losses regardless of your type.

An example of the decision screen is given below:

After round 2 the game ends no matter of the actions previously taken. Your
payoff will be calculated and shown on the screen. Then a new game starts with
a new draw of types (as explained above).

In total you will play 14 of these games. At the end of the experiment (after
14 games) you will be given a little questionnaire where you have to fill in your
details. The questionnaire is only used to make sure that you get the money you
have earned.

Thank you very much for your participation.
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. xi: gllamm IR n i.steps Arts Commerce Economics Engineering Finance

> Science male maturity, family(binomial) link(logit) i(subject group)

i.steps _Isteps_0-3 (naturally coded; _Isteps_0 omitted)

Iteration 0: log likelihood = -674.43401

Iteration 1: log likelihood = -647.34639

Iteration 2: log likelihood = -646.73987

Iteration 3: log likelihood = -646.57504

Iteration 4: log likelihood = -646.51678

Iteration 5: log likelihood = -646.51591

Iteration 6: log likelihood = -646.5159

number of level 1 units = 1260

number of level 2 units = 90

number of level 3 units = 37

Condition Number = 23.719967

gllamm model

log likelihood = -646.5159

------------------------------------------------------------------------------

IR | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

n | -.8448701 .3670312 -2.30 0.021 -1.564238 -.1255021

_Isteps_1 | .176697 .527176 0.34 0.737 -.8565489 1.209943

_Isteps_2 | -2.572258 .4229972 -6.08 0.000 -3.401317 -1.743198

_Isteps_3 | -2.276276 .4436332 -5.13 0.000 -3.145781 -1.406771

Arts | 1.794869 .8206749 2.19 0.029 .1863761 3.403362

Commerce | 1.317823 .7460061 1.77 0.077 -.1443224 2.779968

Economics | 1.43732 .6889629 2.09 0.037 .0869775 2.787663

Engineering | 2.28248 .7439945 3.07 0.002 .8242772 3.740682

Finance | .6067253 1.519068 0.40 0.690 -2.370594 3.584045

Science | 2.166613 .7531743 2.88 0.004 .6904186 3.642808

male | .0944371 .3445848 0.27 0.784 -.5809367 .7698108

maturity | -.4053203 .5651966 -0.72 0.473 -1.513085 .7024447

_cons | 1.711725 .8303512 2.06 0.039 .0842661 3.339183

------------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------------

***level 2 (subject)

var(1): 2.0055548 (.48605149)

***level 3 (group)

var(1): 3.251e-17 (2.465e-09)

------------------------------------------------------------------------------

. test _Isteps_1==_Isteps_2 //Check how big a jump it was



B. Regression Outputs 64

( 1) [IR]_Isteps_1 - [IR]_Isteps_2 = 0

chi2( 1) = 59.12

Prob > chi2 = 0.0000

. test _Isteps_2==_Isteps_3

( 1) [IR]_Isteps_2 - [IR]_Isteps_3 = 0

chi2( 1) = 2.35

Prob > chi2 = 0.1252
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. xi: gllamm IR n i.steps Arts Commerce Economics Finance Science miscstudy male

> maturity, family(binomial) link(logit) i(subject group)

i.steps _Isteps_0-3 (naturally coded; _Isteps_0 omitted)

Iteration 0: log likelihood = -674.43401

Iteration 1: log likelihood = -647.34984

Iteration 2: log likelihood = -646.78204

Iteration 3: log likelihood = -646.67599

Iteration 4: log likelihood = -646.53877

Iteration 5: log likelihood = -646.51609

Iteration 6: log likelihood = -646.5159

Iteration 7: log likelihood = -646.5159

number of level 1 units = 1260

number of level 2 units = 90

number of level 3 units = 37

Condition Number = 19.207853

gllamm model

log likelihood = -646.5159

------------------------------------------------------------------------------

IR | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

n | -.8448512 .3670746 -2.30 0.021 -1.564304 -.1253982

_Isteps_1 | .1766994 .5271761 0.34 0.737 -.8565468 1.209946

_Isteps_2 | -2.572252 .4229986 -6.08 0.000 -3.401314 -1.74319

_Isteps_3 | -2.276272 .4436333 -5.13 0.000 -3.145778 -1.406767

Arts | -.487609 .6189338 -0.79 0.431 -1.700697 .725479

Commerce | -.9646519 .4970924 -1.94 0.052 -1.938935 .0096313

Economics | -.8451514 .4342355 -1.95 0.052 -1.696237 .0059345

Finance | -1.67558 1.448232 -1.16 0.247 -4.514062 1.162902

Science | -.115863 .5061963 -0.23 0.819 -1.10799 .8762635

miscstudy | -2.282471 .7440584 -3.07 0.002 -3.740799 -.8241434

male | .0944573 .3446336 0.27 0.784 -.5810122 .7699267

maturity | -.4053227 .5651984 -0.72 0.473 -1.513091 .7024457

_cons | 3.994168 .6736466 5.93 0.000 2.673845 5.314491

------------------------------------------------------------------------------

Variances and covariances of random effects

------------------------------------------------------------------------------

***level 2 (subject)

var(1): 2.0055407 (.48603886)

***level 3 (group)

var(1): 1.061e-18 (4.454e-10)

------------------------------------------------------------------------------

. test _Isteps_1==_Isteps_2 //Check how big a jump it was

( 1) [IR]_Isteps_1 - [IR]_Isteps_2 = 0

chi2( 1) = 59.12

Prob > chi2 = 0.0000

. test _Isteps_2==_Isteps_3

( 1) [IR]_Isteps_2 - [IR]_Isteps_3 = 0

chi2( 1) = 2.35

Prob > chi2 = 0.1252
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