

 Copyright © 2005 IEEE. Reprinted from
International Symposium on Object-Oriented Real-Time Distributed

Computing (8th : 2005 : Seattle, Washington)

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

Placement Solutions for Multiple Versions of A Multimedia Object ∗

Keqiu Li, Hong Shen

Graduate School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan

Francis Y. L. Chin

Department of Computer Science and Information Systems
University of Hong Kong

Pokfulam Road, Hong Kong

Abstract

Transcoding is an important technology which
adapts the same multimedia object to diverse mo-
bile appliances; thus, users’ requests for a speci-
fied version of a multimedia object could be served
by a more detailed version cached according to
transcoding. Therefore, it is of particularly theoret-
ical and practical necessity to determine the proper
versions to be cached at a node such that the speci-
fied objective is achieved. In this paper, we address
the problem of multimedia object placement. The
performance objective is to minimize the total ac-
cess cost by considering both transmission cost and
transcoding cost. We present an optimal dynamic
programming-based solution for this problem. The
performance of the proposed solutions is evaluated
with a set of carefully designed simulation experi-
ments for various performance metrics over a wide
range of system parameters. The simulation results
show that our solution consistently and significantly

∗This work was supported by Japan Society for the Promo-
tion of Science (JSPS) under its General Research Scheme B
Grant No. 14380139).

outperforms comparison solutions in terms of all the
performance metrics considered.

Key words: Web caching, multimedia, object
placement, transcoding, transparent data access, op-
timization.

1 Introduction

The World Wide Web has become the most success-
ful application on the Internet since it provides a
simple way to access a wide range of information
and services. However, due to the dramatic growth
in demand, considerable access latency is often ex-
perienced in retrieving web objects from the Inter-
net, and popular web sites are suffering from over-
load. An efficient way to overcome such deficien-
cies is web caching, by which multiple copies of the
same object are stored in geographically dispersed
caches. An overview of web caching can be found
in [3,7]. As many mobile appliances are divergent in
size, weight, I/O capabilities, network connectivity,
and computing power, differentiated devices should
be employed to satisfy their diverse requirements.

1

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

In addition, different presentation preferences from
users make this problem more serious. Transcoding,
used to transform a multimedia object from one form
to another, frequently through trading off object fi-
delity for size, is a technology that can meet these
needs [1, 4–6].

Due to the limited cache capacity, it is impossi-
ble to store all the versions of a multimedia object
at a node. This, it is significant to determine what
versions should be cached if the number versions is
given so that the total access cost is minimized. In
this paper, we address the problem of multimedia
object placement, i.e., determining exactly what ver-
sions should be cached at a node such that the total
access cost is minimized. The main contributions of
this paper are summarized as follows.

• We present a model for the problem of multi-
media object placement, formulated as an op-
timization problem. In our model, multimedia
object placement decisions are made based on
both transcoding and transmission cost.

• We propose an optimal dynamic programming-
based solution to compute the optimal versions
to be cached at a node.

• We give an extensive and detailed analysis on
the proposed solution and show that our solu-
tion is optimal and low-cost.

The rest of this paper is organized as follows. Sec-
tion 2 introduces web object transcoding. Section 3
presents an optimal solution for the problem of mul-
timedia object placement. Section 4 summarizes our
work and concludes the paper.

2 Web Object Transcoding

Transcoding is used to transform a multimedia ob-
ject from one form to another, frequently trading off

object fidelity for size for the prevailing operating
environments. The relationship among different ver-
sions of a multimedia object can be expressed by
a weighted transcoding graph [2]. An example of
such a graph is shown in Fig. 1. In Fig. 1, we can

Figure 1: A Weighted Transcoding Graph

see that the original version A1 can be transcoded to
each of the less detailed versions A2, A3, A4, and
A5. It should be noted that not every Ai can be
transcoded to Aj since it is possible that Ai does not
contain enough content information for the transcod-
ing from Ai to Aj . In the example, transcoding can
not be executed between A4 and A5 due to insuffi-
cient content information. The transcoding cost of
a multimedia object from Ai to Aj is denoted by
t(Ai, Aj). Obviously, t(Ai, Ai) = 0. The num-
ber beside each edge in Fig. 1 is the transcod-
ing cost from one version to another. For example,
t(A1, A2) = 6, and t(A3, A4) = 8. If a version
cannot be transcoded from another version, we con-
sider the transcoding cost as infinity. For instance,
t(A2, A1) = ∞, and t(A4, A5) = ∞. If version Aj

can be transcoded from version Ai through version

2

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Ak with i < k < j, then t(Ai, Aj) ≤ t(Ai, Ak) +
t(Ak, Aj) (triangularity property) because version
Ak is always an option if the transcoding cost
t(Ai, Aj) is too large. For example, t(A1, A4) <
min{t(A1, A2)+t(A2, A4), t(A1, A3)+t(A3, A4)}.
Φ(Ai) is the set of all the versions that can be
transcoded from Ai, including Ai. For exam-
ple, Φ(A1) = {A1, A2, A3, A4, A5}, Φ(A2) =
{A2, A4, A5}, and Φ(A4) = {A4}.

3 Dynamic Programming-Based
Solution

For a multimedia object O, we assume that it has m
versions: A1, A2, · · · , Am. For each version of ob-
ject O, we associate the link from the client to the
server a nonnegative cost L, which is defined as the
cost of sending a request for version Ak and the rel-
evant response over this link. Let fj be access fre-
quency of version Aj from the node.

Before we formulate the problem, we can make
the following assumptions.

• Assumption 1. The transcoding graph is a linear
array and the transcoding cost between any two
adjacent versions is constant, i.e., t(Ai, Aj) =
j−1∑
k=i

t(Ak, Ak+1) = (j − i)+T , where x+ = x

if x ≥ 0 else x+ = ∞.

• Assumption 2. (δ − 1)T ≤ L, and δT > L for
some positive integer δ.

If there does not exist δ such that Assumption 3
can be satisfied, i.e., L � T or T � L. Obviously,
these are two special cases. If L � T , then version
Ad1 should be cached so that no transmission cost
is not necessary to incur, where d1 = min{j|fj >
0, 1 ≤ j ≤ m}. If T � L, then version Ad2 should
be cached, where d2 = max{j|fj > 0, 1 ≤ j ≤ m}.

First, we begin by computing the access cost of
caching only one version Ak at node v with 1 ≤ k ≤
m. Intuitively, all the requests for version Ai with
i < k will be handled by server v0, while some of
the requests for Ai with i ≥ k, depending on the
transcoding cost and the transmission cost, will be
taken care of by transcoding from version Ak. Thus,
the total access cost of caching only version Ak at
node v is computed as follows:

C(Ak) =
k−1∑
i=1

f1,iL+
m∑

i=k

f1,i min{(i−k)T, L} (1)

Since version Ak is cached at node v, we can see
(with Assumption 2) that δ is such a parameter that
the request for version Ai will be served by the local
node if 0 < i−k < δ, and the request for version Ai

will be served by the server if i − k ≥ δ.

Based on Equation (1), C(Ak) can be further de-
fined as follows:

C(Ak) =




k−1∑
i=1

f1,iL +
k+δ−1∑

i=k

f1,i(i − k)T

+
m∑

i=k+δ

f1,iL if k + δ ≤ m

k−1∑
i=1

f1,iL +
m∑

i=k

f1,i(i − k)T if k + δ > m

(2)

It is easy to see that C(A1) can be calculated in

3

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

O(m) time. As

C(Ak+1) =




C(Ak) + f1,kL −
k+δ−1∑
i=k+1

f1,iT

+f1,k+δ((δ − 1)T − L)
if k + δ ≤ m

C(Ak) + f1,kL −
m∑

i=k+1

f1,iT

if k + δ > m

= C(Ak) + E(k)

where

E(k) =




f1,kL −
k+δ−1∑
i=k+1

f1,iT + f1,k+δ((δ − 1)T − L)

if k + δ ≤ m

f1,kL −
m∑

i=k+1

f1,iT if k + δ > m

and

E(k + 1) =




E(k) − f1,kL + f1,k+1(L + T)
−f1,k+δ(δT − L) + f1,k+δ+1(δ − 1)T
−f1,k+δ+1L if k + δ < m

E(k) − f1,kL + f1,k+1(L + T)
−f1,k+δ(δT − L) if k + δ = m

E(k) − f1,kL + f1,k+1(L + T)
if k + δ > m

Thus, each C(A2), C(A3), · · · , C(Am) can be
done in constant time; Therefore, the MOP problem
can be solved in O(m) time. Regarding to the time
complexity of solving the MOP problem, we have
the following theorem.

Theorem 1 Based on the cost function as
given in Equation (1), the MOP problem for
{A1, A2, · · · , Am} by caching only one version
(i.e., n = 1) can be solved in O(m) time.

Proof Since the cost function as given in Equa-
tion (2) is equivalent to the cost function as given
in Equation (1) and the MOP problem based on the
cost function as given in Equation (2) can be solved
in O(m) time, the MOP problem based on the cost
function as given in Equation (1) can also be solved
in O(m) time. Hence, the theorem is proven. �

The second step is to extend the above solution to
compute the optimal solution for caching two ver-
sions, Ak1 and Ak2 , at the same time at node v.

Suppose that Ak1 and Ak2 are the two optimal
versions to be cached. The key observation here is
that Ak1 is also an optimal solution for the prob-
lem with {A1, A2, · · · , Ak2−1} if k1 < k2, because
the requests for {Ak2 , Ak2+1, · · · , Am} can only be
served by Ak2 . Regarding to this observation, we
have the following lemma.

Lemma 1 Assume that Abp and Abq are the opti-
mal solutions for the problem of caching only one
version from the set of {A1, A2, · · · , Ap−1} and
{A1, A2, · · · , Aq−1} respectively, then we have bp ≤
bq if p < q.

Proof Without loss of generality, it is suffi-
cient for us to prove that bp ≤ bp+1 where
1 ≤ bp ≤ p − 1 and 1 ≤ bp+1 ≤ p. The
proof is by contradiction. Assume that we have
bp > bp+1. As Abp is the optimal version to
be cached, we have C1,p(Abp) < C1,p(Abp+1).
Let C1,p(Ai) denote the access cost of caching Ai

for the MOP problem with {A1, A2, · · · , Ap−1}.
From the definition of the access cost function C1,p

as given in Equation (1), adding Ap to the set
{A1, A2, · · · , Ap−1} will increase both C1,p(Abp)
and C1,p(Abp+1) by f1,p min{(p − bp)T, L} and
f1,p min{(p − bp+1)T,L} respectively. The in-
crease to C1,p(Abp+1) is no less than that to
C1,p(Abp) because bp > bp+1. So we have

4

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Figure 2: Relationship between C(Ak) and C(Ak+1)

C1,p+1(Abp) < C1,p+1(Abp+1), which contradicts
the fact that C1,p+1(Abp+1) is the minimum ac-
cess cost of caching Abp+1 for the problem with
{A1, A2, · · · , Ap−1, Ap}. Hence the lemma is
proven. �

Based on Lemma 1, we can see that the feasi-
ble range of the optimal solution for the problem
with {A1, A2, · · · , Aq} can be reduced if the optimal
version for the problem with {A1, A2, · · · , Ap} has
been obtained. So is the other case when the optimal
solution for the problem with {A1, A2, · · · , Aq} is
known, the feasible range of the optimal solution for
the problem with {A1, A2, · · · , Ap} is also reduced.
Therefore, we can find Abp and compute C1,p(Ap)
by divide and conquer.

Let D
(k)
p,q denote the minimum access cost of

caching k versions for the MOP problem with q − p
versions, i.e., Ap, Ap+1, · · · , Aq−1, where 1 ≤ p <

q ≤ m. Thus, D
(1)
1,p = C1,p(Abp) and D

(1)
1,m+1 =

min
1≤k≤m

{C1,m+1(Ak)}. Based on Lemma 1, we have

the following theorem on the time complexity of
computing D

(1)
1,p for 1 < p ≤ m.

Theorem 2 All the p MOP problems for
{A1, A2, · · · , Ap} where 1 ≤ p ≤ m, i.e., D

(1)
1,p for

1 < p ≤ m, can be computed in O(m log m) time.

Proof Assume that there exists an integer θ such
that m = 2θ. Based on Theorem 1, we can com-
pute D

(1)

1, 1
2
m

in O(m) time. Assume that Ab m
2

is

the optimal solution for the problem of caching only
one version with {A1, A2, · · · , Am

2
−1}, then we can

find the optimal solution for the problem of caching
only one version for {A1, A2, · · · , Am

4
} in O(m)

time. Similarly, D
(1)

1, 3m
4

can also be computed by

solving the problem of caching only one version
with {A1, A2, · · · , A 3m

4
−1}. As we have already

computed C1, m
2
(Ay) where y = min(bm

2
, m

2 − 1),
we can base on this result to compute C1, 3m

4
(Ay)

for {A1, A2, · · · , A 3m
4

−1} (by adding at most
m
4 terms to C1, m

2
(Am

2
−1). We then compute

C1, 3m
4

(Ay), C1, 3m
4

(Ay+1), · · · , C1, 3m
4

(A 3m
4

−1) in at

most O(3m
4 − y) time. So it takes at most

O(m) time to compute D
(1)
1, m

4
and D

(1)

1, 3m
4

. Ac-

5

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Figure 3: Decomposition Process of Theorem

cording to the similar decomposition, D
(1)
1, m

8
,

D
(1)

1, 3m
8

, D
(1)

1, 5m
8

, and D
(1)

1, 7m
8

can all be solved in

O(m) time. To be precise, let Az1 , Az2 , Az3

be the optimal versions for {A1, A2, · · · , Am
4
−1},

{A1, A2, · · · , Am
2
−1}, and {A1, A2, · · · , A 3m

4
−1}

respectively. The first step is to compute C1, m
8
(A1),

and then C1, 3m
8

(Az1), C1, 5m
8

(Az2), and C1, 7m
8

(Az3)
from C1, m

4
(Az1), C1, m

2
(Az2), and C1, 3m

4
(Az3) re-

spectively. As the computation of each item takes
O(m

8) time, this step takes O(m) time in to-
tal. Then we can search the optimal solutions
for {A1, A2, · · · , Am

8
−1}, {A1, A2, · · · , A 3m

8
−1},

{A1, A2, · · · , A 5m
8

−1}, {A1, A2, · · · , A 7m
8

−1} in

the ranges (1,min{z1,
m
8 − 1}), (z1, min{z2,

3m
8 −

1}), (z2,min{z3,
5m
8 −1}), and (z3,

7m
8 −1) respec-

tively. Since each step takes constant time, all these
searches take no more than O(m) time in total. Af-
ter repeating this process log m times, we can finish
computing D

(1)
1,p for 1 < p ≤ m. This process can be

viewed from Figure 3. Hence, the theorem is proven.
�

Now we can accomplish the problem of caching
two versions in the following three steps.

• Step 1: Evaluate D
(1)
1,p for 1 < p ≤ m,

6

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

where D
(1)
1,p denotes the minimum access cost

of caching only one version for the MOP prob-
lem with p−1 versions, i.e., A1, A2, · · · , Ap−1.

In particular, D
(1)
1,m+1 = min

1≤k≤m
{C1,m+1(Ak)}.

• Step 2: Evaluate Dp for 2 ≤ p ≤ m,
where Dp is the access cost for versions
Ap, Ap+1, · · · , Am if Ap is cached at node v.
Dp is defined as follows:

Dp =




p+δ−1∑
i=p

f1,i(i − p)T +
m∑

i=p+δ

f1,iL

if p + δ ≤ m
m∑

i=p

f1,i(i − p)T if p + δ > m

• Step 3: Compute D
(2)
1,m, where D

(2)
1,m is the min-

imum access cost of caching two versions for
the problem with {A1, A2, · · · , Am}. D

(2)
1,m is

calculated as follows:

D
(2)
1,m = min

2≤p≤m
{D(1)

1,p + Dp)}

The following theorem shows that D
(2)
1,m is the

minimum access cost of caching two versions the
MOP problem.

Theorem 3 D
(2)
1,m is the minimum access cost of

caching two versions for the MOP problem.

Proof Assume that D
(2)
1,m = D

(1)
1,p∗ + Dp∗ =

min
2≤p≤m

{D(1)
1,p + Dp)}. It is obvious from the compu-

tation of D
(2)
1,m that bp∗ and Ap∗ are the two versions

which achieve the minimum access cost of caching
two versions, where D

(1)
1,p∗ = C1,p∗(bp∗). Hence, the

theorem is proven. �
The following theorem shows the time complexity

of computing D
(2)
1,m.

Theorem 4 D
(2)
1,m can be computed in O(m log m)

time.

Proof Since Step 1 can be computed in O(m log m)
time (Theorem 2) and Steps 2 and 3 both take
O(m) time, the total time for computing D

(2)
1,m is

O(m log m). Hence, the theorem is proven. �

After we have calculated D
(1)
1,p for 1 ≤ p ≤ m

in Step 1, we can obtain D
(2)
1,p for all 2 ≤ p ≤ m

in another O(m log m) time by divide and conquer,

where D
(2)
1,p is the minimum access cost of caching

only two versions for the problem with p−1 versions,
i.e., A1, A2, · · · , Ap−1. The main idea is similar to

Lemma 1 in the finding of D
(1)
1,p. Assume that Abp1

and Abp2
with 1 ≤ bp1 < bp2 < p are the two optimal

versions cached in node v for A1, A2, · · · , Ap−1 to

achieve the optimal access cost D
(2)
1,p. Similarly, Abq1

and Abq2
with 1 ≤ bq1 < bq2 < q are the two opti-

mal versions cached in node v for A1, A2, · · · , Aq−1

to achieve the optimal access cost D
(2)
1,q . We can

show with a similar argument with Lemma 1 that
bp2 ≤ bq2 if p < q and this property limits the range
of searching for the optimal solutions. As in The-
orem 2, the two optimal solutions in D

(2)
1, m

2
can be

found in O(m) time after knowing the optimal ver-

sions of D
(1)
1,p for 1 < p ≤ m; then D

(2)
1, m

4
and D

(2)

1, 3m
4

in another O(m) time; then D
(2)
2, m

8
, D

(2)

1, 3m
8

,D(2)

1, 5m
8

,

and D
(2)

1, 7m
8

in another O(m) time until D
(2)
1,p for

2 < p ≤ m are found after log m times. There-
fore, the minimum access cost of caching three ver-
sions, denoted by D

(3)
1,m, can be computed similarly,

i.e., D
(3)
1,m = min

3≤p≤m
{D(2)

1,p + Dp)}, with at most

O(m log m) time (similar to Theorem 5). Using the
same idea, we can solve the problem of caching K
versions in O(Km log m) time.

7

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

Let D
(K)
1,m denote the minimum access cost

of caching K versions from m versions, i.e.,
A1, A2, · · · , Am, then we have the following theo-
rem on the time complexity of computing D

(K)
1,m .

Theorem 5 D
(K)
1,m can be computed in

O(Km log m) time.

Proof Based on the above analysis, we have
D

(K)
1,m = min

K≤p≤m
{D(K−1)

1,p + Dp)}. Since Dp can

all be computed in O(m) time and we have showed

that D
(1)
1,p can be computed in O(m log m) time,

we can easily prove that D
(K)
1,m can be computed in

O(Km log m) time by induction. Note that in the

induction step, D
(K−1)
1,p for K − 1 < p ≤ m is com-

puted in O((K − 1)m log m) time. Hence, the theo-
rem is proven. �

4 Conclusion

Transcoding is attracting increasing research inter-
est in the environment of mobile appliances. In this
paper, we addressed the problem of multimedia ob-
ject placement. We studied this problem with the ob-
jective of minimizing total access cost by combining
both transmission cost and transcoding cost.

References

[1] S. Chandra, C. Ellis, and A. Vahdat. Application-
Level Differentiated Multimedia Web Services
Using Quality Aware Transcoding. IEEE Jour-
nal on Selected Areas in Communications, Vol.
18, No. 12, pp. 2544-2565, December 2000.

[2] C. Chang and M. Chen. On Exploring Aggre-
gate Effect for Efficient Cache Replacement in

Transcoding Proxies. IEEE Transactions on Par-
allel and Distributed Systems, Vol. 14, No. 6, pp.
611-624, June 2003.

[3] B. D. Davison. A Web Caching Primer. IEEE In-
ternet Computing, Vol. 5, No. 4, pp. 38-45, 2001.

[4] R. Han, P. Bhagwat, R. LaMaire, T. Mummert,
V. Perret, and J. Rubas. Dynamic Adaptation
in An Image Transcoding Proxy for Mobile Web
Browsing. IEEE Personal Communications, Vol.
5, No. 6, pp. 8-17, December 1998.

[5] B. Shen, S.-J. Lee, and S. Basu. Caching Strate-
gies in Transcoding-Enabled Proxy Systems for
Streaming Media Distribution Networks. IEEE
Transactions on Multemidia, Vol. 6, No. 2, pp.
375-386, April 2004.

[6] A. Vetro, C. Christopoulos, and H. Sun. Video
Transcoding Architectures and Techniques: An
Overview. IEEE Signal Processing Magazine,
Vol. 20, No. 2, pp. 18-29, March 2003.

[7] J. Wang. A Survey of Web Caching Schemes for
the Internet. ACM Computer Communication
Review, Vol. 29, No. 5, pp. 36-46, 1999.

8

Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’05)
0-7695-2356-0/05 $ 20.00 IEEE

	36940.pdf
	hdl_36940

