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Small-core silica holey fibers: nonlinearity and
confinement loss trade-offs
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Holey fibers with small-core dimensions relative to the optical wavelength and large air-filling fractions offer
tight mode confinement and are therefore attractive for highly nonlinear fiber applications. We investigated
the role of confinement loss in these small-core fibers to optimize the design of practical highly nonlinear fibers.
We found that silica holey fibers can exhibit effective nonlinearities as great as 52 W21 km21 and that the
confinement loss can be less than the losses of standard fiber types. We show that the dispersive properties of
some of the designs are suitable for a range of device applications. © 2003 Optical Society of America

OCIS codes: 060.4370, 060.2280, 060.2400.
1. INTRODUCTION
Nonlinear effects in fiber can be used for a wide range of
optical processing applications in telecommunications
and beyond. Examples include optical regeneration,
wavelength conversion, optical demultiplexing, and Ra-
man amplification. Consequently there is great interest
in the development of fibers with high values of effective
nonlinearity per unit length to reduce device lengths and
the associated optical power requirements for fiber-based
nonlinear optical devices. Even though silica is not in-
trinsically a highly nonlinear material, its nonlinear
properties can be utilized in silica optical fibers if high in-
tensities of light are guided within the core.1

A commonly used measure of the nonlinearity of a fiber
is its effective nonlinearity g,1 given by

g 5
2p

l

n2

Aeff
, (1)

where n2 is the nonlinear coefficient of the material, Aeff
is the effective mode area, and l the optical wavelength.
For example, standard SMF28 fiber has an Aeff of ;90
mm2 at 1550 nm, and, as the n2 of silica is ;2.2
3 10220 m2/W, g is of the order of 1 W21 km21. One
way in which the nonlinearity of conventional silica fibers
can be enhanced is to reduce the effective mode area by
using a smaller core diameter and a higher index contrast
[i.e., a larger numerical aperture (NA)]. Reference 2
showed that, by modifying the composition of a silica fiber
and reducing the core diameter one can achieve values of
g as large as 20 W21 km21. In this example, the addition
of Ge to the fiber core increases n2 to ;5.4
3 10220 m2/W and the NA to 0.37 and so reduces the ef-
fective mode area to ;11 mm2. With this enhanced NA
and n2 , and assuming for simplicity a step-index fiber de-
sign, the largest g that is possible is ;26 W21 km21 (cor-
responding to a core diameter of 2.4 mm and an effective
mode area of ;8 mm2). To our knowledge, this result rep-
resents the largest NA and g reported for a small-core
conventional fiber. When even smaller core diameters
0740-3224/2003/071427-10$15.00 ©
are used, this NA becomes insufficient to confine the
mode, and so the effective mode area increases, leading to
smaller values of g.

Silica holey fibers (HFs) can have significantly larger
NAs than conventional silica fiber types because the clad-
ding region can consist mostly of air. Holey fibers are a
class of microstructured optical fibers in which the light is
guided by means of average-index effects: the effective
refractive index of the cladding region is lower than that
of the solid silica core because of the presence of the holes.
An example of such a fiber is shown in Fig. 1. Making
use of the large NAs that are possible in these fibers, HFs
can offer tighter mode confinement than conventional fi-
bers. Hence HFs are attractive for nonlinear fiber
devices.3 Effective mode areas as small as Aeff
; 2.8 mm2 have been achieved at 1550 nm, correspond-
ing to g ; 35 W21 km21 [Fig. 2(b)].4 This is the best re-
sult in terms of nonlinearity in a silica fiber of which we
are aware. In what follows, we show that pure silica HFs
can be designed to have Aeff at least as small as 1.7 mm2

at 1550 nm. Hence nonlinearities as high as g
; 52 W21 km21, more than 50 times higher than in
standard telecommunications fiber and 2 times higher
than in the large-NA conventional fibers described above,
are practical in these fibers.

Although these results indicate that HFs can dramati-
cally enhance the achievable g, the successful application
of these fibers has been limited to date by loss, which is a
consequence of the fact that these fibers are in an early
stage of development. The losses in HFs occur for a va-
riety of reasons: intrinsic material absorption, addi-
tional losses that arise during fabrication (water contami-
nation, absorption owing to the presence of impurities,
scattering, etc.), and confinement loss.5 Fabrication-
related losses can be reduced by careful optimization of
the fabrication process, as was shown recently by re-
searchers at the Nippon Telegraph & Telephone
Company6 (NTT), who reported a loss of 1 dB/km. This
represents the lowest loss known at this time in a HF.
Confinement loss is an additional form of loss that occurs
in single-material fibers. In single-material HFs the core
2003 Optical Society of America
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has the same refractive index as the material beyond the
finite holey cladding region, so every propagating mode is
therefore intrinsically leaky. It has been proved that in-
creasing the number of rings of air holes that surround
the solid core, and thereby increasing the physical sepa-
ration between the solid core and the external environ-
ment, reduces confinement loss.5 Thus confinement loss
is determined by the geometry of the structure, and we
show that it can contribute significantly to the loss for
these fibers unless care is taken with the fiber design.

We recently predicted that confinement loss will con-
tribute significantly to the loss of HFs when the core di-
mensions are reduced.7 The losses so far measured in
real small-core HFs are typically of the order 50 dB/km,8

more than an order of magnitude larger than the best loss
achieved at NTT for a larger core design. Figures 2(a)
and 2(b) show two small-core fibers with similar effective
mode areas (Aeff 5 2.6 mm2 and Aeff 5 2.8 mm2 at 1550
nm, respectively). The fiber shown in Fig. 2(a) has a
cladding that comprises two rings of large air holes, and
the measured loss is 1 dB/m at 1550 nm. The fiber in
Fig. 2(b), made by the same fabrication procedure but
with the number of rings of large holes increased to four,
has a measured loss of 0.04 dB/m. Inasmuch as it is rea-

Fig. 1. Typical small-core silica holey fiber with 12 rings of regu-
larly spaced air holes (only the central region is shown).

Fig. 2. Small-core holey fibers with (a) two rings of large air
holes, and (b) four rings of large air holes.
sonable to assume that both fibers suffer similar absorp-
tion and scattering losses, we conclude that increasing
the number of rings in the small-core regime has served
to reduce the fiber loss by improving the confinement of
the mode. Thus confinement loss can significantly con-
tribute to the total loss for these fibers. Note that the
structural irregularities do not contribute significantly to
the loss for the fibers shown here.

To make the fiber fabrication process practical, we ide-
ally wish to limit the number of rings that are required.
It is therefore important to be able to calculate reliably
the confinement loss characteristics for these HFs. In
this paper we identify the fiber designs that produce low-
loss highly nonlinear fibers. Note that although fiber
loss limits the effective length of any nonlinear device, for
highly nonlinear fibers, short lengths (,10 m) are typi-
cally required, so loss values of the order of 1 dB/km can
be readily tolerated.

2. MODEL
Using the multipole method developed in Refs. 5 and 9
has allowed us to calculate the confinement loss within a
variety of structures. This technique was applied to two
classes of microstructured optical fiber, both index-
guiding HFs5 and photonic bandgap fibers.9 The multi-
pole method is a scattering technique, implemented as a
full-vector modal approach so it can accurately represent
the large refractive-index contrast that is present in mi-
crostructured optical fibers. Here we outline the basics
of the approach only; for a more detailed explanation of
the method, see Ref. 9. The method can be applied to any
microstructured optical fiber with a cladding region de-
fined by a finite number (Nc) of circular holes of arbitrary
refractive index (here we consider air holes only) that are
embedded in a uniform material (here taken to be silica
glass). The cladding region is enclosed within a circular
jacket of arbitrary refractive index. Here an absorbing
jacket is used; the real part of the refractive index is
taken to be that of silica, and the imaginary part is taken
to be small. According to the multipole approach, the
boundary of each hole in the microstructured optical fiber
is effectively a source of radiating fields that is due to
fields transmitted through the boundary from sources be-
yond it and to fields reflected from the boundary itself.

The jacket was introduced for a number of reasons.
Mathematically, it ensures the square integrability of the
fields on the transverse plane. In addition, using a com-
plex refractive index for the jacket allows the confinement
loss to be estimated because the jacket absorbs the por-
tion of the mode that leaks. Note that the result of the
calculation is insensitive to the choice of jacket radius and
to its imaginary refractive index. In what follows, r
5 (r, u) is the polar coordinate system of the jacket.

Given the circular geometry of the holes, cylindrical
harmonic functions centered on each hole can be used to
describe the field. In the proximity of the lth air hole, we
express the longitudinal electric field in terms of Bessel
(Jm) and Hankel @Hm

(1)# functions, using the local cylin-
drical coordinate centered at cl (position of the hole), re-
sulting in the following local expansion9:
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Ez~r, z ! 5 (
m52`

`

@Am
ElJm~k'

e ur 2 clu! 1 Bm
ElHm

~1 !~k'
e ur

2 clu!#exp$im@arg~r 2 cl!#%exp~ibz !, (2)

where k'
e is the transverse wave-vector component in the

host glass material and the superscript El of coefficients
Am and Bm corresponds to the electric field of the lth hole.
The Jm terms are bounded everywhere and represent the
part of field Ez incident upon a cylinder that comes from
all the other cylinders, whereas the diverging Hm

(1) terms
represent the part of the field that is propagating away
from the cylinder boundary. A similar expansion can be
written for the jacket, with superscript 0 instead of l.
The local expansion [Eq. (2)] for each hole is valid in an
annular region centered on the hole and extending to the
perimeter of the nearest air hole.

To describe the field throughout the host material we
need to introduce a global expansion. According to
Wijngaard,10 the field at any point within a material can
be represented as superposition of outgoing waves from
all source bodies within the material9:

Ez~r, z ! 5 (
l51

Nc

(
m52`

`

Bm
ElHm

~1 !~k'
e ur 2 clu!

3 exp$im@arg~r 2 cl!#%exp~ibz !

1 (
m52`

`

Am
E0Jm~k'

e r !exp~ imu!exp~ibz !.

(3)

This global expansion is valid throughout the host mate-
rial. Expansion (3) contains outgoing waves from each
cylinder (l) and a standing-wave term generated at the
jacket boundary (superscript 0). The longitudinal compo-
nent of the magnetic field is expanded by use of the same
approach as for the electric field but with different expan-
sion coefficients (superscript H instead of E).

For consistency, the local expansion for the field in the
vicinity of each cylinder needs to be equated with the glo-
bal expansion. The resultant equation involves terms re-
lated to the transforms between the local and the global
coordinate systems and can be solved by use of Graf ’s ad-
dition theorem.11 This theorem can readily be applied to
any arbitrary nonoverlapping arrangement of circular
holes.

Next, it is necessary to combine the contributions from
all the cylinders. To build up a consistent description of
the electric and magnetic fields from the local description
related to the different cylinders, we apply both the
boundary conditions and the Rayleigh identity.12 The
boundary conditions require the continuity of the tangen-
tial electric and magnetic field components at the bound-
ary of each cylinder and of the jacket. They can conve-
niently be written in terms of reflection coefficients,
producing a reflection matrixR for all the cylinders and
R̃0 for the jacket.9 The Rayleigh identity requires that
the Jm (incident) parts of the field near cylinder l (AEl

5 @Am
El#) be due to the Hm

(1) fields radiated (BEi

5 @Bm
Ei#) from all the other cylinders (i Þ l). This field

radiated from the other cylinders can arrive either di-
rectly on cylinder l or by backreflection with the jacket
(AE0 5 @Am

E0#). This relation is again determined by use
of Graf ’s addition theorem.

Following this procedure, we can consistently relate
initial field expansions (2) and (3), resulting in a unique
field identity that depends only on the coefficients Bm

El

and Bm
Kl . These unknown coefficients can be written as a

vector B 5 @B̃l#, where B̃l 5 @BElT
BKlT

#T and the super-
script T denotes the transpose. After some
manipulations,9 the field identity becomes the following
infinite homogeneous linear system of algebraic equa-
tions:

MB [ @I 2 R~H̃ 1 J̃ B0R̃0J̃ 0B!#B 5 0, (4)

where I is the identity matrix and H̃, J̃ 0B, and J̃ B0 are
translation matrices that express the change of basis
transformations considered above. Note that the H̃
term in M describes direct cylinder-to-cylinder interac-
tions, whereas J̃ B0R̃0J̃ 0B describes all indirect interac-
tions between cylinders that take place by means of re-
flections (R̃0) at the jacket boundary.

For a given geometry, matrixM contains just one un-
known, the mode propagation constant b. The propaga-
tion constant is related to the effective index of the propa-
gating mode neff by b 5 (2p/l)neff . By inspection, Eq.
(4) indicates that nontrivial solutions occur when the de-
terminant of matrixM is zero (i.e., whenM is singular).
This method yields the complex effective index, and thus
the confinement losses can be calculated as follows:

confinement loss @dB/m# 5
20 3 106

ln 10

2p

l @mm#
Im~neff!.

(5)

The use of a polar coordinate system centered in every
hole allows the symmetry properties of the structure to be
accurately described. The idealized structures consid-
ered within this paper consist of hexagonally packed rings
of holes. According to group theory,13 this kind of struc-
ture belongs to the C6v symmetry group (6-fold rotational
symmetry with at least one reflection plane) and so sup-
ports nondegenerate and 2-fold degenerate modes only.
In addition, idealized 6-fold symmetric fiber profiles are
not birefringent.14 All these fiber characteristics are pre-
served by the model.14 Moreover, the use of local polar
coordinate systems makes this approach efficient.5

After finding values of b that result inM being singu-
lar, we evaluate the null space vector(s) B corresponding
to this solution by performing a singular value decompo-
sition. Note that not all solutions correspond to physical
solutions for the fiber modes. Inasmuch as the mode can
be only nondegenerate or 2-fold degenerate, the singular
value decomposition should produce one singular value
(for nondegenerate modes) or two singular values (for
2-fold degenerate modes) that are significantly smaller
than the others. The null space vector(s) B of physical
solutions corresponds to a propagating solution for b and
characterizes the associated longitudinal electric and
magnetic fields. Transverse field components (Et and
Ht) can be calculated from the longitudinal components
by use of Maxwell’s equations.15
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Once we have a solution for b for a given mode, we use
the transverse field components to calculate several use-
ful physical quantities. The Poynting vector is defined as

Sz 5 1/2~ErHu* 2 EuHr* !, (6)

where the subscripts r and u denote the field transversal
components and * denotes the complex conjugate. The
effective mode area (Aeff) is defined from the transverse
electric field profile, and the usual definition is given in
Ref. 1. However, in what follows (Subsection 3.B below),
we introduce a modified definition for the effective mode
area that is suitable for calculating the nonlinear proper-
ties of fibers that comprise different material inclusions.
We also calculate the dispersion (D) of the mode, defined
as in Ref. 1, from our predictions for the effective index
neff over a range of wavelengths. Note that using the
Sellmeier equation1 for the refractive index of silica al-
lows the material dispersion to be included in the calcu-
lation of the effective index of the mode from the outset.
Unless otherwise stated, all calculations were performed
for the fundamental mode at a wavelength of 1550 nm.

3. RESULTS
After validating the method against the previous results
given in Ref. 5, we tested the method for the low-loss HF
presented by scientists from NTT in Ref. 6. The fiber
cladding contains 60 air holes, hexagonally packed into 4
rings. The hole diameter d was 1.7 mm, and the hole-to-
hole spacing L was 2.8 mm (and so d/L ; 0.6). The mul-
tipole method predicts an effective mode index neff of
1.422361568456178 1 i2.9 3 10214. The predicted ef-
fective mode area is ;9 mm2. Note that this value is
comparable with the smallest effective mode area
achieved in conventional fiber (;11 mm2). We found that
the predicted confinement loss for the fundamental mode
at 1550 nm is ;1023 dB/km, consistent with, and signifi-
cantly smaller than, the total measured loss of 1 dB/km
reported in Ref. 6. Hence, even though the fabrication
and material-related losses have been reduced dramati-
cally in this fiber, they still dominate the confinement loss
here.

We then applied the method to a smaller-core HF that
also contained 60 air holes. The fiber is shown in Fig. 3
and in the following study is designated fiber A. The
hole-to-hole spacing (L) and the hole diameter (d) are 1.2
and 1.08 mm, respectively (d/L 5 0.9). Using these
smaller-scale core dimensions reduces the predicted effec-
tive mode area to ;1.8 mm2 (equivalent to g
; 50 W21 km21). The mode in Fig. 3 is well confined to
the core region, and at these small scales an increased
mode–air overlap occurs, which is reflected in the signifi-
cantly lower real part of neff (neff 5 1.295844234615065
1 i3.6475 3 10211). The predicted confinement loss for
fiber A is ;1 dB/km, comparable with the total measured
loss for the larger core NTT fiber. Despite this, it is sig-
nificantly lower than losses typically reported to date in
small-core HFs.

Next, we applied the multipole method to the study
of small-core (highly nonlinear) HFs. The structures in
the study contain 1 to 5 rings of hexagonally packed
holes. We consider fibers with hole-to-hole spacings in
the range 0.8 mm , L , 1.8 mm and hole diameters in
the range 0.6L , d , 0.9L, and thus the air-filling frac-
tion of the cladding is 33% , FF , 74%, where FF
5 @p/(2A3)#(d/L)2. Some examples of such fibers are
shown in Figs. 4(a) and 4(b). Note from Figs. 1 and 2
that this range of large air-filling fractions can be pro-
duced in practice. Within this study we also consider the
extreme (theoretical) limit in which the air-filling fraction
is 1, and this jacketed air-suspended rod (JASR) is shown
in Fig. 4(c).

Our aim in this study is to optimize the design of highly
nonlinear HFs without compromising the fiber perfor-
mance in terms of confinement loss. We first present the
results related to confinement loss only (Subsection 3.A)
and then move on to explore the connection between loss
and effective mode area (Subsection 3.B) and between ef-
fective mode area and dispersion (Subsection 3.C).

A. Confinement Losses
We calculated the confinement loss at 1550 nm for a
range of fiber profiles. Consider typical HFs such as
those shown in Figs. 4(a) and 4(b). We wish to under-
stand what happens to the confinement loss as the struc-
ture dimensions are reduced. Two competing effects
might be expected to occur. Scaling down the structure
reduces the thickness of the silica bridges between the
holes; if these bridges are small relative to the wave-
length, this might be expected to decrease the leakage.
Alternatively, reducing the scale decreases the distance
between the core and the solid region beyond the clad-
ding, which can cause the mode to be poorly confined.

Figure 5 (left) shows the confinement loss as a function
of the hole-to-hole spacing (L) for different d/L ratios
when four rings of hexagonally arranged holes are
present. Regardless of the air-filling fraction, observe
that confinement loss increases for the smallest-scale
structures. In addition, using a bigger d/L (i.e., larger
air holes) always reduces the loss for all values of L.
This result is not surprising because the mode is always
more tightly confined for larger air-filling fractions. Note

Fig. 3. Fundamental mode (2-fold degenerate) of Fiber A at
1550 nm: calculated Poynting vector (contours spaced by 2 dB).
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Fig. 4. Typical structures considered in this study (dark regions are silica, n 5 1.444; white regions are air, n 5 1.0).
that, for the smallest hole-to-hole spacings considered,
the degree of improvement that results from using larger
d/L is reduced.

To understand this trend, consider a structure in which
the cladding is completely full of air, such as in Fig. 4(c).
Note that the core is surrounded by a silica jacket placed
a distance (Nr 1 1/2)L from the center (where Nr is the
number of rings of the HF structure with which we wish
to make a comparison). Here the extent of the air region
is chosen to be equivalent to a structure with four rings of
holes (i.e., Nr 5 4). This JASR corresponds to the limit
of large air-filling fractions and thus represents the best
case in terms of loss for a HF with a given hole-to-hole
spacing and number of rings. The dashed line in Fig. 5
represents the loss as a function of rod size for a range of
JASRs. Observe that the confinement loss in the JASR
is significantly larger at small rod sizes. When the JASR
is scaled to small dimensions, the physical extent of the
cladding region is correspondingly reduced. Hence at
these small scales the benefit that one can obtain by in-
creasing the air-filling fraction is limited because the
mode can see over the finite cladding structure.

Figure 5 (right) again shows confinement loss as a func-
tion of hole-to-hole spacing (L), now for different numbers
of rings and for a fixed air-filling fraction (d/L 5 0.9).
Regardless of the number of rings, as the core size is re-
duced, the loss increases. Again, not surprisingly, in-
creasing the number of rings also always decreases the

Fig. 5. Confinement loss for (left) several air-filling fractions
and (right) various numbers of rings of air holes as functions of
hole-to-hole spacing L. The dashed line at the left corresponds
to JASR as defined in Fig. 4(c). Dotted horizontal line, loss of
conventional fibers (0.2 dB/km). Two fibers (A and B) are la-
beled for reference.
loss because the holey cladding extends over a larger re-
gion. Hence we conclude that in this regime, where the
features that define the cladding are subwavelength, the
main contribution to loss is due to the finite extent of the
cladding structure rather than to leakage between the
holes.

Note that with careful design the confinement loss can
be reduced to values comparable with, or less than, the
loss of conventional fibers (0.2 dB/km), which is repre-
sented by the dotted line at the bottom of each part of Fig.
5. Note that adding one extra ring to fiber A is sufficient
to lower the loss below this level, from 1 to 0.01 dB/km.

B. Effective Nonlinear Mode Area
Here we identify the range of fiber profiles that lead to
small effective mode areas and hence to high effective
nonlinearities. The mode propagating in a HF interacts
both with glass and with the air in the holes. However,
air has a low nonlinearity @n2 ; 3 3 10223 m2/W (Ref.
16)], which is 3 orders of magnitude smaller than that of
silica. The nonlinear effects in HFs are induced by the
portion of the field located in the glass. To account prop-
erly for the overlap of the field with materials with differ-
ent nonlinear characteristics we modified the usual defi-
nition of the effective nonlinear mode area Aeff given in
Ref. 1 to give

Aeff 5

n2F E E Et~x, y ! • Et* ~x, y !dxdy G2

EE ñ2~x, y !@Et~x, y ! • Et* ~x, y !#2dxdy

, (7)

where ñ2(x, y) is the nonlinear-index coefficient of the
material at position (x, y). This expression eliminates
the contribution of any field located in the holes to the
predicted mode area and hence to the effective nonlinear-
ity. All the results given in this paper use this modified
definition of effective mode area.

To ascertain the range of effective mode areas that can
be achieved in a given glass material we begin by model-
ing the extreme case of a silica rod of diameter L sur-
rounded by air [as shown in Fig. 4(c)]. As the diameter of
the rod is reduced, the mode becomes increasingly more
confined and the effective mode area decreases, as shown
by the dashed curve in Fig. 6. Once the core size becomes
significantly smaller than the optical wavelength, the rod
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becomes too small to confine the light well, and the mode
rapidly broadens again. Hence, as shown in the figure,
there is a minimum effective mode area that, for a given
optical wavelength, depends on the refractive index of the
rod only. For silica, this minimum effective mode area is
;1.48 mm2, and it occurs for a rod diameter L of ;1.2 mm.

Figure 6 also shows the effective mode area as a func-
tion of hole-to-hole spacing for a range of HFs with differ-
ent air-filling fractions. These HF structures also exhibit
a minimum effective mode area that is due to the same
mechanism described above for the JASR. Not surpris-
ingly, the smallest effective mode area is achieved by use
of the largest air-filling fraction (d/L 5 0.9). When
d/L 5 0.9, the minimum effective mode area value is
;1.7 mm2, only slightly larger than for the air-suspended
rod. This minimum value occurs when the hole-to-hole
spacing L is ;1 mm. Observe that for smaller air-filling
fractions the minimum point is shifted to larger core di-
mensions, which reflects the fact that for smaller air-
filling fractions the index contrast between core and clad-
ding is reduced. Note that the JASR curve crosses the
HF curves at the left in Fig. 6 because the mode in the
HFs can be confined somewhat by the silica bridges near
the core.

Next we explore whether it is possible to design fibers
with small effective mode areas and reasonably low val-
ues of confinement loss. Figure 7 shows predictions for
the loss as a function of the effective mode area for struc-
tures with a fixed hole-to-hole spacing L of 1.2 mm and
different d/L ratios. We chose this hole-to-hole spacing
because it results in an effective mode area that is close to
optimum (see Fig. 6) and the loss can be reduced below
the standard fiber value by use of just five rings of air
holes (see Fig. 5). Each curve in Fig. 7 corresponds to a
different number of rings. Note that, for a given value of
d/L, as the number of rings is increased, the loss de-
creases, as was shown above. However, observe that the
effective mode area remains remarkably constant regard-
less of the number of rings used. Effectively, although
the tails of the mode significantly influence the mode’s
confinement loss, their effect on the effective mode area is
minimal. Indeed, when just one ring of holes is consid-
ered, the effective mode area is only slightly larger than
when two or more rings are present because the mode is
not well confined. For this hole-to-hole spacing (1.2 mm),

Fig. 6. Predicted effective mode area as a function of hole-to-
hole spacing L. Dashed curve, silica JASR of diameter L as de-
fined in Fig. 4(c).
increasing the air-filling fraction is always advantageous
in terms of achieving both small effective mode areas and
low confinement losses, regardless of the number of rings.

To gain an understanding of how the trade-offs between
confinement loss and effective mode area depend on the
core dimensions, we begin by considering structures with
two rings of holes only. The curves in Fig. 8 (left) show
the loss as a function of the effective mode area for four
values of the hole-to-hole spacing. In Fig. 8 the vertical
lines represent the theoretical minimum effective mode
area that can be achieved in an air-suspended structure
(JASR with Nr 5 `). The smallest hole-to-hole spacings
are not plotted for smaller air-filling fractions because
they correspond to high loss values except when many
rings of holes are used. For all hole-to-hole spacings,
larger air-filling fractions not only reduce the loss but also
decrease the effective mode area. The filled symbols in
Fig. 8 correspond to the extreme case of a JASR, which
represents the theoretical limit for both the loss and area
improvements that one can obtain by moving to larger
air-filling fractions. The entire shaded region at the left
in Fig. 8 therefore represents combinations of effective
mode area and confinement loss that cannot be achieved
unless more rings of holes are added, as is confirmed in
the right-hand part of Fig. 8, which shows the effect of
adding two more rings of holes.

Fig. 7. Predictions of confinement loss versus effective mode
area for fixed hole-to-hole spacing L 5 1.2 mm for several num-
bers of rings and air-filling fractions. Dotted horizontal line,
loss of conventional fibers (0.2 dB/km).

Fig. 8. Predictions of confinement loss versus effective mode
area for a range of L and d/L with a fixed number of rings.
Filled symbols, values for JASRs. Dotted horizontal line, loss of
conventional fibers (0.2 dB/km). Shaded regions represent com-
binations of effective area and confinement loss that cannot be
achieved with the specified number of rings.
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Consider the fiber shown in Fig. 8 with the relatively
small air-filling fraction d/L 5 0.6 in combination with a
large core size L 5 1.8 mm. The guided mode of this fi-
ber is filamented in shape along the silica bridges. This
is the reason why the fiber has a large effective mode area
compared with the other fibers considered in Fig. 8
(right). The modes of the other fibers are more nearly
circular in shape.

Consider now in Fig. 8 (right) the case of a fixed hole-
to-hole spacing L 5 1 mm. Observe that increasing the
air-filling fraction beyond d/L 5 0.9 does not substan-
tially reduce the achievable effective mode area in this
case. This can also be seen from Fig. 6, because when
L 5 1 mm the curves for the JASR and the d/L 5 0.9 fi-
ber cross. This occurs because, as we have already men-
tioned, the presence of silica bridges near the core can
help to confine the mode in this extreme regime.

Observe from Fig. 8 that, regardless of the air-filling
fraction, as one moves toward smaller core dimensions
there is a clear trade-off between achieving small effective
mode area and low confinement loss. Such representa-
tion provide a useful practical design tool. Given an ef-
fective mode area required for a certain device and the
magnitude of loss that can be tolerated (for a given device
length), we can use this representation to choose a struc-
ture that minimizes the fabrication difficulties (i.e., limits
the number of rings).

C. Dispersion
In Subsection 3.B we showed that it is possible to design
fibers that have high effective nonlinearity and low con-
finement loss. We show here that by modifying the fiber
profile it is possible to tailor both the magnitude and the
sign of the dispersion at 1550 nm to suit a range of device
applications. For example, small-core fibers with (low)
normal dispersion are advantageous for optical threshold-
ing devices (because normal dispersion reduces the im-
pact of coherence degradation17), whereas anomalous dis-
persion allows soliton-based devices to be realized.

We calculated the dispersion for some of the structures
considered in our study, concentrating on those identified
in Subsection 3.B as having the most desirable properties
in terms of nonlinearity and loss. In Fig. 9 the dispersion
is plotted as a function of hole-to-hole spacing L for a fixed
large air-filling fraction (d/L 5 0.9). The dispersion
curves for one, two, three, and five rings of holes are
shown in the figure. Observe from Fig. 9 that the disper-
sion for a one-ring structure differs significantly from that
of a structure with two rings of holes, particularly for
small hole-to-hole spacings. In addition, observe that
structures with two or more rings of holes have effectively
identical dispersion values. Recall from above that the
mode area is similarly independent of the number of rings
of holes. We conclude that once at least two rings are
used, the mode is well confined to the core, and adding
further rings does not significantly affect the central part
of the mode. Of course, adding further rings reduces the
confinement loss, as discussed above, by acting to reduce
the power in the tails of the mode distribution beyond the
cladding region. Note that the difference in dispersion as
a second ring is added is more marked for small hole-to-
hole spacings because these structures have dimensions
less than the wavelength of light, so the one-ring fiber
provides relatively poorer confinement in this regime.
The effective mode area as a function of the hole-to-hole
spacing for two or more rings of holes and d/L 5 0.9 is
superimposed in Fig. 9 from Fig. 6 for reference purposes.

For this fixed air-filling fraction (d/L 5 0.9, FF
5 74%), the zero-dispersion point for all curves is lo-
cated near L ; 1.2 mm, whereas the minimum effective
mode area point occurs for smaller structures, near L
; 1.05 mm. Figure 9 shows that we predict large nor-
mal values of dispersion for structures with L
, 1.05 mm.

For many nonlinear devices, low dispersion values are
desirable, so we now concentrate on structures near the
zero-dispersion wavelength. We consider one example on
either side of the zero-dispersion wavelength. Fiber A
(which was introduced above) and fiber B both have d/L
5 0.9 and four rings of air holes. Fiber A has a hole-to-
hole spacing of 1.2 mm, whereas B has a slightly smaller
hole-to-hole spacing of 1.17 mm. Fiber A has an anoma-
lous dispersion of 114 ps/nm/km, whereas fiber B has a
normal dispersion of 214 ps/nm/km. These structures
both exhibit effective mode areas of approximately ;1.75
mm2, only slightly larger than the smallest achievable
mode area. Fibers A and B have similar confinement
losses (of the order of ;1 dB/km). As was already stated,
the addition of another ring of air holes reduces the loss to
below the loss level of conventional fibers, but for the
short fiber lengths typically required for nonlinear de-
vices the four-ring loss level is tolerable. Thus small-core
HF can be used to produce efficient, highly nonlinear de-
vices characterized by near-zero, both normal and anoma-
lous, values of dispersion.

Moving toward smaller core dimensions increases the
normal dispersion; hence fiber structures within this
range can be used for dispersion compensation. For ex-
ample, as Fig. 9 indicates, to compensate for the disper-
sion of 1 km of standard SMF28 fiber @D
5 117 ps/nm/km#, just 2.8 m of a HF structure with a
hole-to-hole spacing of L ; 0.9 mm @D 5 2600 ps/nm/
km# is required. Even when five rings of holes are used,
the loss for this fiber is of the order of 1 dB/m, signifi-
cantly larger than for the near-zero dispersion examples
given above. At least three more rings of holes are nec-
essary to reduce the HF loss below the loss value of stan-

Fig. 9. Dispersion and effective mode area at a wavelength of
1550 nm as a function of hole-to-hole spacing L for different
numbers of rings for large air-filling fraction HFs.
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dard fibers. Moreover, the effective mode area for this
HF is ;1.86 mm2. Such small mode areas are undesir-
able for a dispersion compensation device because nonlin-
ear effects would limit the bandwidth of the data stream
that can be compensated for.

The specific value of the air-filling fraction (d/L
5 0.9) considered here was chosen for these first investi-
gations of dispersion in small-core HFs because large air-
filling fractions yield the highest effective nonlinearities.
Further studies could determine whether the same trade-
offs among loss, nonlinearity, and dispersion apply to
structures that contain less air (i.e., d/L , 0.9).

4. DISCUSSION AND CONCLUSIONS
Using the multipole technique, we performed a detailed
numerical study of small-core microstructured silica fi-
bers to optimize their design for operation at 1550 nm.
Structures with large air-filling fractions (and hence
small effective mode areas) were considered. We found
that single-material silica structures can have an effec-
tive nonlinearity more than 50 times larger than that of
standard telecommunications fiber. However, the simu-
lations indicate that these highly nonlinear fibers can suf-
fer from significant confinement loss unless certain rules
are followed when one is designing the fiber profile, as
summarized here. Utilizing these rules, we can reduce
the confinement loss of small-core HFs below the loss of
standard fibers.

As shown in Fig. 6, the hole-to-hole spacing (L) can be
chosen to minimize the value of the effective area of the
fundamental mode (Aeff), and this is true regardless of the
air-filling fraction. However, our loss calculations indi-
cate that it is not always desirable to use the structures
with the smallest effective mode areas because they typi-
cally exhibit higher confinement losses. A relatively
modest increase in the structure scale in this small-core
regime can lead to dramatic improvements in the confine-
ment of the mode without compromising the achievable
effective nonlinearity significantly. Note that one can al-
ways reduce the loss by adding more rings of holes to the
fiber cladding. In the limit of core dimensions that are
much smaller than the wavelength guided by the fiber, it
requires many rings (.6) to ensure low-loss operation, a
requirement that increases the complexity of the fabrica-
tion process.

The coupling of light into HFs with small mode areas is
practically challenging compared with coupling into fibers
with larger mode areas. To achieve good coupling effi-
ciency by using free-space coupling, we require lasers
with high spatial quality beams (to achieve small spot
sizes) and high-NA optics. In addition, without the use of
tapers or couplers the direct splicing of conventional fiber
types to these fibers becomes impractical because of mode
mismatch. Note that these issues are also important for
highly nonlinear conventional fibers, but, because HFs
can achieve smaller mode areas than conventional fiber
types, the coupling of light in HF types can be more chal-
lenging.

For a complete understanding of these HF structures it
is also necessary to consider the polarization properties
for this range of fiber designs. Our preliminary studies
indicate that, not surprisingly, polarization effects can be
extreme in the small core regime. Of particular interest,
the polarization extinction ratio degrades significantly
when the core dimension is subwavelength, which can
have a major effect on device performance. However, for
the sake of brevity this issue is not discussed further
here; we intend to address it in a subsequent paper.

In this study we considered only the properties of the
fundamental modes of these HFs. To estimate which of
the fibers in our study are single mode, we calculated the
V number for a silica JASR. We found that these struc-
tures are single mode when the core diameter is smaller
than ;1.2 mm and are at most few-moded for the largest
dimensions considered here. HFs have an effective clad-
ding refractive index that is always larger than 1 and so
will be single mode for core sizes somewhat larger than
1.2 mm. Thus for all the device applications identified in
this paper the fibers are single mode.

We also analyzed the dispersive properties of the struc-
tures to determine which designs provide the most suit-
able dispersion for a range of fiber device applications.
We found that when the air-filling fraction is large (d/L
5 0.9; FF 5 74%), the zero-dispersion wavelength lies
close to 1550 nm (within the third telecommunications
window) for structures that have an effective mode area
just 3% larger than the minimum achievable area. Con-
veniently, this promises the development of devices with
low dispersion values (both anomalous and normal) with
near-optimum effective nonlinearity and reasonably low
confinement loss (,1 dB/km). Structures that yield the
minimum effective mode area exhibit a large normal dis-
persion, of the order of 2300 ps/nm/km. Decreasing the
scale further results in even larger values of normal dis-
persion. As described in Subsection 3.C, such structures
are of potential interest for dispersion compensation.
However, as mentioned above, penalties in terms of loss
occur in this regime, so making a practical device will re-
quire many rings of holes.

Interestingly, when at least two rings of holes are
present, both the effective mode area and the dispersive
properties of the structure are essentially independent of
the number of rings. These attributes are useful because
they permit quick (but remarkably accurate) calculations
of the modal properties of any structure to be performed
considering just two rings of holes. Once the basic prop-
erties have been calculated in this way, the confinement
loss can always be reduced by addition of more holes, and
indeed the loss decays exponentially with the number of
rings of holes. By exploiting this fact it is possible to ex-
trapolate the loss calculations for structures with one,
two, and three rings of holes to predict the confinement
loss for structures with more rings whose direct calcula-
tion by the multipole method is computationally inten-
sive.

Our calculations indicate that the effective nonlinearity
(g) achievable in pure-silica HFs can be as high as 52 W21

km21. One way to enhance the nonlinearity further is by
doping the solid core. Doping with Ge, for example, can
increase the value of n2 by a factor of ;2. This technique
was previously exploited for conventional fibers,2 as dis-
cussed in Section 1. The preforms of most HFs fabri-
cated to date have been made by stacking silica capillary
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tubes about a solid silica rod, which ultimately forms the
core. HFs with doped cores can be fabricated by replace-
ment of the silica rod with a doped rod, and both Yb31-
(Ref. 18) and Ge- (Ref. 19) doped HFs have been reported.

For glasses with higher refractive indices than silica it
is possible to reach material nonlinearities that are or-
ders of magnitude larger than that of silica. For ex-
ample, the chalcogenide glass As2S3 has a refractive in-
dex of ;2.4 at 1550 nm and is 100 times more nonlinear
than silica glass @n2(As2S3) ; 2 3 10218 m2/W#.20

Schott SF57 lead glass has a refractive index of 1.8 at
1550 nm and is 20 times more nonlinear than silica
@n2(SF57) ; 4 3 10219 m2/W#.21 Recall that for silica
the theoretical lower bound for the effective mode area is
;1.45 mm2. For the higher-index SF57 glass the mini-
mum effective mode area is reduced to ;0.75 mm2.
Hence high-nonlinearity glasses also offer improvements
in terms of mode confinement relative to silica. Note
that we showed above that the minimum Aeff value
achievable in realistic silica HFs (;1.7 mm2) is only
slightly larger than the theoretical limit, and similarly we
expect that the theoretical limit will provide a useful
guide to the mode areas possible in other glasses.

Conventional fibers made from As2S3 have been used to
reduce the power levels and fiber lengths required for all-
optical switching.20 Further improvements are possible
when such highly nonlinear glass is combined with the
tight mode confinement offered by a HF structure. Re-
cently, with SF57 glass, HFs with a measured effective
nonlinearity g of 550 W21 km21 were produced,22,23 which
is more than 500 times larger than standard silica fibers
and 10 times larger than the theoretical limit for pure-
silica HF structures. For this SF57 fiber the material
nonlinearity (n2) increases the value of g by a factor of 20
relative to that of silica, whereas the small mode area
(Aeff ; 3 mm2) provides a factor-of-;28 improvement. A
further factor-of-4 enhancement in nonlinearity should be
achievable by use of designs that reduce the effective
mode area.

We expect that the findings presented here will also fa-
cilitate the development of low-loss fibers in these glasses.
Such fibers promise a route toward record effective fiber
nonlinearities, paving the way to developing nonlinear fi-
ber devices with unprecedentedly low operating powers
(1–10 mW) and remarkably short device lengths (0.1–1
m).

Although in this study we have considered only pure-
silica index-guiding HFs, microstructured optical fibers
with periodically arranged cladding features can also
guide light by making use of photonic bandgap effects.
In these structures the core is formed by a defect, typi-
cally a larger air hole, in the otherwise perfect air hole
lattice. In the case of an air defect, the mode can be lo-
cated mostly in air. Given the low nonlinearity of air, at
first sight these fibers are not particularly suitable for
nonlinear applications. However, one could potentially
increase the nonlinearity of this class of structure by fill-
ing the air core with a nonlinear material. The same ap-
proach could also be applied to small-core index-guiding
HFs, because these fibers can have a considerable overlap
between the guided mode and the air holes. For both fi-
ber types it is important to study the effect of the refrac-
tive index of the nonlinear material that fills the holes on
the guidance properties of the fiber (which could also be
done with the multipole method). Here we have consid-
ered only index-guiding HFs because this technology is
more mature than that of photonic bandgap fibers and be-
cause these designs naturally lead to high fiber nonlin-
earities.

In conclusion, index-guiding holey fibers can exhibit ef-
fective nonlinearities as high as 52 W21 km21, 50 times
higher than conventional fibers. We have identified the
range of HF designs that lead to optimal performance in
terms of mode confinement. These designs also exhibit
interesting dispersive properties that make them suitable
for a range of fiber device applications. However, our
simulations reveal that these small-core single-material
fiber designs can suffer from significant confinement loss.
In this regime, confinement loss can dominate the mate-
rial and processing losses, which can limit the practical
application of these fibers. It is always possible to reduce
the effect of this additional form of loss by introducing
more air holes into the cladding region. We have shown
that it is possible to envisage HFs with g values as high
as 45 W21 km21, which also exhibit reasonable confine-
ment loss levels (,0.2 dB/km) by using just four rings of
holes.
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