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Summary

This thesis develops a general strategy for factorial linear model analysis for experi-

mental and observational studies. It satisfactorily deals with a number of issues that

have previously caused problems in such analyses. The strategy developed here is an

iterative, four-stage, model comparison procedure as described in Brien (1989); it is

a generalization of the approach of Nelder (1965a,b).

The approach is applicable to studies characterized as being structure-balanced,

multitiered and based on Tjur structures unless the structure involves variation fac-

tors when it must be a regular Tjur structure. It covers a wide range of experiments

including multiple-error, change-over, two-phase, superimposed and unbalanced ex-

periments. Examples illustrating this are presented. Inference from the approach is

based on linear expectation and variation models and employs an analysis of variance.

The sources included in the analysis of variance table is based on the division of the

factors, on the basis of the randomization employed in the study, into sets called tiers.

The factors are also subdivided into expectation factors and variation factors. From

this subdivision models appropriate to the study can be formulated and the expected

mean squares based on these models obtained. The terms in the expectation model

may be nonorthogonal and the terms in the variation model may exhibit a certain

kind of nonorthogonal variation structure. Rules are derived for obtaining the sums

of squares, degrees of freedom and expected mean squares for the class of studies

covered.

The models used in the approach make it clear that the expected mean squares

depend on the subdivision into expectation and variation factors. The approach

clari�es the appropriate mean square comparisons for model selection. The analysis

of variance table produced with the approach has the advantage that it will re
ect

all the relevant physical features of the study. A consequence of this is that studies,

in which the randomization is such that their confounding patterns di�er, will have

di�erent analysis of variance tables.
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1

Chapter 1

Factorial linear model analysis: a

review

1.1 Introduction

This thesis is concerned with factorial linear model analysis such as is associated

with the statistical analysis of designed experiments and surveys. That is, it deals

with models in which the independent-variables (X) matrix involves only indicator

variables derived from qualitative or quantitative factors or combinations of such

factors. Thus, multiple regression models and analysis of covariance models, in which

the observed values of the variables are placed in the independent-variable matrix,

are excluded from consideration. However, as in the latter situations, the �tting of

factorial linear models is achieved using least squares.

In this chapter, the literature on factorial linear model analysis published up until

approximately the end of 1984 is reviewed. The review will be conducted by consid-

ering the following classes of models in turn:

1) Randomization models

Linear models in which the stochastic elements are provided by the physical act

of randomization:

1.1 Neyman/Wilk/Kempthorne formulation | linear models with stochastic
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indicator variables whose properties are based on randomization;

1.2 Nelder/White/Bailey formulation | covariances derived under randomiza-

tion and linear contrasts speci�ed for treatment comparisons;

2) General linear models

Linear models for the expectation and variation of the response are speci�ed:

2.1 Fixed e�ects linear models | linear expectation model and variance known

up to a scale factor;

2.2 Mixed linear models | linear expectation and variation model.

1.2 Existing analyses

Central to linear model analysis is the analysis of variance table that is used to

summarize the analysis. As Kempthorne (1975a, 1976b) suggests, the analysis of

variance can be formulated as an orthogonal decomposition of the data vector such

that the Total variance is partitioned into components attributable to identi�able

causes. That is, an analysis of variance can be obtained from a linear model whose

terms have no stochastic properties. Indeed, the analysis of variance can be derived

without reference to a model at all; James (1957) describes the derivation of the

analysis based on relationship matrices which form an algebra. The work of Nelder

(1965a,b) can also be viewed in these terms in that his complete set of binary matrices

corresponds to the mutually orthogonal idempotents that generate the ideals of this

algebra.

However, in order to interpret the results of an analysis one needs to ascribe stochas-

tic properties to at least some of the terms in the model. That is, the e�ects for some

terms must be able to be regarded as random variables with a �nite variance. Two

alternative bases for doing this in experiments are the randomization employed in the

experiment and hypothesis.
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1.2.1 Randomization models

The randomization argument as a basis for statistical inference was �rst propounded

by Fisher (1935b, 1966) when he developed the randomization test as a means of test-

ing hypotheses without making the assumption of normality. However, Sche��e (1959)

cites Neyman (1923) as having formulated randomization models for the completely

randomized design. Also, Neyman, Iwaskiewicz and Kolodzieczyk (1935) formulated

such models for the randomized complete block design.

Since then randomization models of two basic kinds have been developed as a basis

for inference in designed experiments. The models of the �rst kind were developed

directly from Neyman et al.'s randomization models by Wilk, Kempthorne, Zyskind

and White of the Iowa school and by Ogawa and others. Models of the second kind

were developed by Nelder (1965a,b) with White (1975) and Bailey (1981) outlining

related approaches. This latter kind of model is based on the identi�cation of `block'

and `treatment' factors and on derivation of the associated null randomization distri-

bution.

1.2.1.1 Neyman/Wilk/Kempthorne formulation

As mentioned above, Sche��e (1959) cites Neyman (1923) as having used randomiza-

tion models for the completely randomized design. However, the �rst widely available

usage was by Neyman et al. (1935) in considering hypotheses about treatment di�er-

ences for randomized complete block and Latin square experiments; they introduced

models for the true yield and considered their properties under randomization. Eden

and Yates (1933), Welch (1937), Pitman (1938) and McCarthy (1939) used these

concepts but mainly with reference to signi�cance tests for the Latin square and ran-

domized complete block experiments. Kempthorne (1952) formulated models for a

wide range of experiments incorporating design random variables that take only the

values 0 or 1 and whose stochastic properties are directly based on the randomization

employed in the experiment.

Wilk (1955) used a randomization model for the generalized randomized complete

block design (each treatment replicated r times in each block) to investigate the in-
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ferential properties of randomization models for this design. Wilk and Kempthorne

(1955, 1956) did this for factorial experiments. Wilk and Kempthorne (1955) in-

corporated the e�ect of complete/incomplete sampling into the models; Wilk and

Kempthorne (1956) introduced the idea of expressing the expected mean squares in

terms of �s, the estimable quantities in the analysis. Wilk and Kempthorne (1957)

carried out the same exercise for the Latin square and corrected the results of Neyman

et al. (1935) on the e�ect of unit-treatment nonadditivity.

Zyskind (1962a) extended the results of Wilk and Kempthorne to regular structures

in which, for every term in the structure, the replication of the levels combinations of

that term are equal. Rao (1959) and Zyskind (1963) applied randomization models

to the balanced incomplete block design, although Rao did not incorporate com-

plete/incomplete sampling considerations. Ogawa has also investigated the inferences

under randomization models which are Neyman randomization models, but with the

addition of unit-treatment additivity assumptions (Ogawa, 1980).

The approach of these authors will be illustrated using the work of Wilk and

Kempthorne (1955, 1956) and Zyskind (1962a) since it represents the most general

treatment, the other authors cited above having considered special cases. To illus-

trate the approach we consider the analysis of the randomized complete block design.

Suppose there are B blocks, P plots per block and T treatments available in total and

that b blocks, p (= t) plots per block and t treatments are selected for observation.

Let

Yijk (i = 1; 2; : : : ; B; j = 1; 2; : : : ; P ; k = 1; 2; : : : ; T )

be the true response of the jth plot in the ith block when it receives the kth treat-

ment. Then the population identity, which gives the sum of a number of population

components that is identically equal to the true response, for this design would be as

follows:

Yijk = Y ::: + (Y i:: � Y :::) + (Y ij: � Y i::) + (Y ::k � Y :::)

+ (Y i:k � Y i:: � Y ::k + Y :::) + (Yijk � Y ij: � Y i:k + Y i::)

= �+ �i + �ij + �k + (��)ik + (��)ijk
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where

the dot subscript denotes summation over that subscript.

De�ne population components of variation for each term in this model. That is,
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2
�, �

2
� , �

2
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2
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�2� =
BX
i=1

(Y i:: � Y :::)
2 / (B � 1)

These components of variation are merely measures of dispersion for the population

quantities on which they are de�ned. Wilk and Kempthorne (1956, 1957) point out

that they are not to be confused with components of variance, the latter being the

variances of random variables.

Now only bt values, of the BPT in the population, are observed. Let

yi?k? (i? = 1; 2; : : : ; b; k? = 1; 2; : : : ; t)

be the observation for the k?th treatment in the i?th block. Then the statistical

model, that is, the model for the observations, is:
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where

Si
?

i =

8>>>><>>>>:
1 if the i?th selected block is the ith block in the popu-

lation,

0 otherwise

Sk
?

k =

8>>>><>>>>:
1 if the k?th selected treatment is the kth treatment in

the population,

0 otherwise
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Si
?j?

i?j =

8>>>>>>><>>>>>>>:

1 if the j?th selected plot in the i? selected block is the

jth plot in the population of plots in the i?th selected

block,

0 otherwise

Dk?

i?j? =

8>>>><>>>>:
1 if the k?th selected treatment is applied to the j?th

selected plot in the i?th selected block,

0 otherwise

The Si
?

i , S
k?

k and Si
?j?

i?j are termed selection variables in that the values they take

re
ect the population selection, whereas Dk?

i?j? is a design variable in that the values

it takes re
ect the application of treatments to units (Wilk and Kempthorne, 1955).

Their distributional properties can be established by considering the probabilities with

which they take the values 0 and 1; for example,

E
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�
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?

i S
i?
0

i0

�
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1

B(B � 1)
for i 6= i0; i? 6= i?

0

:

It can be shown that these variables are all groupwise independent.

Corresponding to this model is an analysis of variance based on the following sample

identity:

yi?k? = y:: + (yi?: � y::) + (y:k? � y::) + (yi?k? � yi?: � y:k? + y::):

By making use of the properties of the random variables in the statistical model

the expected mean squares for the analysis of variance can be obtained and are as

given in table 1.1 (Zyskind, 1962a).

1.2.1.2 Nelder/White/Bailey formulation

The Nelder (1965a,b) formulation is based on the null randomization distribution and

the division of the factors in an experiment into `block' and `treatment' factors. White

(1975) and Bailey (1981) outline a slightly di�erent approach from that of Nelder

(1965a,b) but one which achieves the same results; White (1975) di�ers from Bailey
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Table 1.1: Analysis of variance table with expected mean squares using

the Neyman/Wilk/Kempthorne formulation.

SOURCE DF EXPECTED MEAN SQUARESy

Blocks b� 1 ��� + �� + ��� + t��

Treatments t� 1 ��� + �� + ��� + b��

Residual (b� 1)(t� 1) ��� + �� + ���

yThe \cap" sigmas, �s, are the following functions of the population components of variation, �2s:

��� = �2�� ;

�� = �2� �
1

T
�2�� ;

��� = �2�� �
1

P
�2�� ;

�� = �2� �
1

P
�2� �

1

T
�2�� +

1

P

1

T
�2�� ; and

�� = �2� �
1

B
�2�� :

(1981) and Nelder (1965a,b) in including a component for technical error, although

Bailey's (1981) approach can accommodate such a component.

According to Nelder (1965a), the concept of the null randomization distribution

appears to have originated with Anscombe (1948). On the other hand, the earliest

published record of a block/treatment dichotomization appears to be in the comments

made by Fisher (1935a) during the discussion of a paper by Yates, this discussion

being cited in this context by Wilk and Kempthorne (1956). Fisher proposed a `topo-

graphical' analysis corresponding to `blocks' and a `factorial' analysis corresponding

to `treatments'. Wilk and Kempthorne (1956) assert that the dichotomy is used intu-

itively by many statisticians and several other writers have emphasized its necessity

(Wilk and Kempthorne, 1957; Yates, 1975; Bailey, 1981, 1982a; Preece, 1982; Mead

and Curnow, 1983, section 14.1). Yates (1975) suggests that the failure to distinguish
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between treatment components and block and other local control components [leads]

to a confused hotch-potch of interactions. In the same vein, Kempthorne (1955) notes

that there is often not a distinction made between the analysis of randomized blocks

and the two-way classi�cation. That this still occurs is evident from Graybill (1976,

chapter 14).

However, the criteria used for classifying factors into block and treatment have not

usually been spelt out explicitly by these authors. Although it may be intuitively

obvious how to divide the factors into these two classes in many standard agricultural

�eld experiments, this is not so in other areas of experimentation, such as animal, psy-

chological and industrial experiments. In the literature this problem typically arises

in the form Is Sex a block or a treatment factor? (for example, Preece, 1982, section

6.2). It would appear that Nelder (1965a,b; 1977) intended that the distinction cor-

respond to what will be referred to as the unrandomized/randomized dichotomy of

the factors. The unrandomized factors are those factors that would index the obser-

vational units if no randomization had been performed, whereas randomized factors

are those that are associated with a particular observational unit by a randomization

procedure (Brien, 1983). That this correspondence is what Nelder intended is evident

from his statement (Nelder, 1977, section 7) that the treatment structure is imposed

on an existing block structure (by randomization). Bailey (1981, 1982a) follows this

line as well. That is, as Fisher began pointing out, the analysis must re
ect what was

actually done in the experiment, or at least what was intended to be done.

Again, to illustrate the formulation, and to compare it to that of the previous

section, the randomized complete block design will be considered. First, the analysis

ignoring the fact that treatments have been applied is determined by examining the

structure of the observational units under these circumstances. This can be done

by identifying the unrandomized factors and the relationships (crossed and nested)

between them. The unrandomized factors for the randomized complete block design

are Blocks and Plots, say, and Plots are nested within Blocks which is written as

Block/Plots. Let yij be the observed value for the jth plot in the ith block and y

be the vector of these observations ordered lexicographically on Blocks then Plots.
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Corresponding to this structure is the observation identity

yij = y:: + (yi: � y::) + (yij � yi:)

with which can be associated a null analysis of variance. Now any permutation of the

values of the suÆxes i and j, provided that all the plots in the same block end up

with block suÆxes being equal, will not alter the sums of squares in this analysis. The

population of vectors produced by all permissible permutations of the sample vector

de�nes a multivariate distribution which Nelder (1965a) terms the null randomization

distribution. The variance matrix, Var[Y ], of this distribution, for the randomized

complete block design, is:

V = 
Grand MeanK
 J+ 
BlocksI
K+ 
Blocks:PlotsI
 I

where


Grand Mean, 
Blocks and 
Blocks:Plots are the covariances under randomization

of observations in di�erent blocks, for di�erent plots in the same

block, and the same plot, respectively,


 denotes the direct product operator with A
B = faijBg,

I and J are the unit matrix and the matrix of ones, respectively,

K = J� I, and

the two matrices in each direct product are of order b and t, respectively.

The variance matrix can be re-expressed as follows:

V = �Grand MeanJ
 J+ �BlocksI
 J+ �Blocks:PlotsI
 I

= �Grand MeanG
G+ �Blocks(I�G)
G+ �Blocks:PlotsI
 (I�G)

where

�Grand Mean, �Blocks, and �Blocks:Plots are the canonical covariance compo-

nents measuring, respectively, the basic covariance of `unrelated'

observations, the excess covariance over the basic of observations

for di�erent plots in the same block, and the excess of the covariance

of same plot over that of observations in the same block,
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�Grand Mean, �Blocks, and �Blocks:Plots are the spectral components corre-

sponding to the expected mean squares in the analysis of variance,

and

G = J=m where m is the order of J.

Next, the randomized factors and their relationships are considered. In the case of

our example, this is trivial as there is just the one randomized factor, Treatments,

say. Thus,

E[Y ] = Xt = Xt?

where

X is the bt � t design matrix with rows corresponding to block-plot

combinations of the elements of the sample vector and columns to

treatments. All its elements will be zero except that, in each row,

there will be a one in the column corresponding to the treatment

applied to that block-plot combination,

t has elements tk, tk being the e�ect of the kth treatment, and

t? = [G + (I�G)]t and so has elements t: + (tk � t:).

In general, the analysis of variance is constructed from an investigation of the least

squares �t given the expectation and variance presented above. It depends on the

relationship between the Xt and the matrices of the spectral form of the variance

matrix. For the example, only for �Blocks:Plots is the product of the corresponding

matrix and Xt nonzero; that is,

I
 (I�G)Xt 6= 0:

This is summarized in the analysis of variance set out as table 1.2.

The sums of squares for this table can be computed using the algorithm described by

Wilkinson (1970) and Payne and Wilkinson (1977) and which has been implemented

in GENSTAT 4 (Alvey et al., 1977).

Assuming no technical error, Bailey's (1981) and White's (1975) model for the

example would be:
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Table 1.2: Analysis of variance table with expected mean squares using

the Nelder formulation.

EXPECTED MEAN SQUARES
SOURCE DF

Variation contribution

Blocks b� 1 �BP + t�B

Blocks.Plots b(t� 1)
Treatments t� 1 �BP
Residual (b� 1)(t� 1) �BP

where �BP = 
BP and

�B = 
B � 
BP :

yij = tk + �ij

where

tk are constants, E[�] = 0 and Var[�] = V.

The properties of this model are derived directly from the assumption of unit-

treatment additivity and the stochastic properties induced by the randomization

(White, 1975; Bailey, 1981). The results outlined in this section apply to this model

also.

1.2.1.3 Discussion

Following Neyman et al. (1935), Wilk (1955) and Wilk and Kempthorne (1957), we

would conclude from table 1.1 that in general the test for �2t = 0 is biased; it will

be unbiased if there is no block-treatment interaction or B ! 1. However, a test

for �� = 0 is always available. Cox (1958), Rao (1959) and Nelder (1977) argue that

it is the latter hypothesis that is of interest. The Cox hypothesis `is equivalent to
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saying that the treatments do not vary by more than the variation implied by the

interaction' (Nelder, 1977). A test of this hypothesis is provided by the ratio of the

Treatment and Residual mean squares.

The appropriate test for treatment di�erences, according to table 1.2, is also pro-

vided by the ratio of the Treatment and Residual mean squares. That is, the two

formulations result in the same mean square comparisons, provided the hypotheses

of interest can be expressed in terms of the �s or, equivalently, the �s. However, the

underlying models are quite di�erent, with that of the Neyman/Wilk/Kempthorne

formulation incorporating complete/incomplete sampling and unit-treatment interac-

tions, whereas those of the Nelder/White/Bailey formulation do not.

Further, the second order parameters associated with the Neyman/Wilk/Kemp-

thorne models are components of variation as discussed above. The second order pa-

rameters associated with the Nelder/White/Bailey model are the covariances induced

by the randomization. Also, the form of the analysis of variance table is di�erent for

the two formulations.

1.2.2 General linear models

Underpinning general linear models is the classi�cation of factors as either �xed or

random. Jackson (1939), according to Sche��e (1956), was the �rst to distinguish

explicitly between �xed and random e�ects in writing down a model. Jackson distin-

guished between e�ects for which constancy of performance is expected and those for

which variation in performance is expected. Crump (1946) also made this distinction

on essentially the same basis, warning that for random terms it has to be assumed

that the e�ects are a random sample from an in�nite population. Eisenhart (1947)

introduced the terms �xed and random e�ects and made explicit the distinction be-

tween them on the basis of the sampling mechanism employed. Thus, if the levels of

a factor are randomly sampled then it is said to be a random factor, whereas the

levels of �xed factors are chosen; consequently the appropriate range of inference

di�ers between the two types of factors.

Fisher (1935b, 1966, section 65), in discussing the analysis of varietal trials in a
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randomly selected set of locations, added to section 65 in the sixth edition (1951) of

The Design of Experiments a discussion of de�nite and inde�nite factors. The

distinction between these two types of factor is essentially the same as that made

between �xed and random e�ects by Jackson (1939) and Crump (1946). Bennett

and Franklin (1954) use the same basis as Eisenhart (1947). Wilk and Kempthorne

(1955), Corn�eld and Tukey (1956), Searle (1971b), Kempthorne (1975a), Nelder

(1977) and many other authors use an equivalent basis, namely incomplete versus

complete sampling. Eisenhart (1947) also suggests that a parallel basis is whether or

not the set of entities (animals, plots or temperatures) associated with the levels of a

factor in the current experiment remains unchanged in a repetition of the experiment.

Sche��e (1959), Steel and Torrie (1980) and Snedecor and Cochran (1980) also use this

prescription. There appears to be universal agreement that �xed terms in a linear

model, terms composed only of �xed factors, contribute to the expectation; random

terms, terms comprised of at least one random factor, contribute to the variation.

Another direction from which general linear models can be approached, in the

context of analysing designed experiments, is given by Nelder (1965a,b), Bailey (1981)

and Houtman and Speed (1983). In this approach, one �rst classi�es the factors as

either block or treatment factors, as discussed in the Nelder/White/Bailey subsection

above. The block factors might then be assumed to contribute to the variation, as for

random factors, and the treatment factors assumed to contribute to the expectation,

as for �xed factors. Even though Houtman and Speed (1983) de�ne the distinction

between block/treatment factors in terms of the variation/expectation assumption,

and in many agricultural experiments it is the case, it must be emphasized that there

is no intrinsic reason for the two classi�cations to be directly linked.

1.2.2.1 Fixed e�ects linear models

The analysis to investigate an expectation model for a study, as is done in �xed

e�ects linear model analysis, has developed from least squares regression as used by

Gauss from 1795 and formulated independently by Legendre in 1806, Adrain in 1808,

and Gauss in 1809 (Seal, 1967; Plackett, 1972; Harter, 1974; Sheynin, 1978). Its
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development in the context of factorial linear model analysis derives from Fisher's

(1918) introduction of the analysis of variance. However, while Fisher in a note

to `Student' (Gossett, 1923) formulated an additive linear model and Fisher and

Mackenzie (1923) formulated a multiplicative model, both to be �tted by least squares,

Fisher often discussed the analysis of variance for a study without reference to a linear

model. Thus Urquhart, Weeks and Henderson (1973) attribute the introduction of

the linear models associated with analysis of variance to Fisher's colleagues.

Allan and Wishart (1930) supplied the �rst stage by writing a simple model for

the randomized complete block design and Irwin (1931) wrote down models of the

kind that would be used today for this design, including an error term. Yates (1933a

and 1934) is credited with introducing the generally applicable method of `�tting

constants' (Kempthorne, 1955) but Yates (1975) himself recognizes that Fisher had

used the �tting of constants in the letter to Gossett (1923), a letter Yates had not

seen at the time of writing his 1933 paper. However, Irwin (1934) was the �rst to give

explicit expressions for the elements of the design matrix for the randomized complete

block and Latin square designs. Cochran (1934) gave a general presentation based on

matrix algebra.

Gauss in 1821 gave an alternative development of the least squares method in which

he showed that it leads to what are now called minimum variance linear unbiased

estimators (Eisenhart, 1964). A number of authors have subsequently provided proofs

of this result; Markov is one whose name became associated with it because, according

to Seal (1967), of Neyman's (1934) mistaken attribution of originality. It would appear

that the next important development after Gauss was Aitken's (1934) extension of the

theorem to cover the case of a nonsingular variance matrix known up to a scale factor.

More recent work with a possibly singular variance matrix seems to start with Zyskind

(1962b, 1967) on whose work was based the results of Zyskind and Martin (1969),

Seely (1970) and Seely and Zyskind (1971). Goldman and Zelen (1964) and Mitra

and Rao (1968) have also contributed. A uni�ed and complete theory for estimation

and testing under the general Gauss model was developed by Rao (1971, 1972, 1973a)

and Rao and Mitra (1971). The theory is outlined by Rao (1973b, chapter 4) and

Rao (1978). Kempthorne (1976a) gives an elementary account of the derivation of
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the results. The general Gauss model is as follows:

y = X� + �

where

y is the vector of n observations,

X is a known n� p matrix of rank r (r � p),

� is a vector of p unknown parameters, and

� is vector of n errors with E[�] = 0, E[��0 ] = Var[y ] = V = �2D, and

D is a known arbitrary, possibly singular, n� n matrix.

Thus the �xed-e�ects linear model consists of an expectation with multiple

parameters, speci�ed by X�, and a single error term �. Rao (1973b), and other

authors, have called this model the Gauss-Markov setup when the variance matrix

is nonsingular and the general Gauss-Markov setup when it can also be singular. In

view of the above discussion I shall not include Markov when discussing these models.

Of course, the estimation problem here is to �nd an estimator of �. However,

in the context of factorial linear models we are often interested in linear functions

of � and further, as r < p usually, only some linear functions are invariant to the

particular estimate of �; these are termed the estimable functions of � [a term

Sche��e (1959) ascribes to Bose (1944)]. It can be shown that a function q0� is

estimable if q0� = t0E[y ] for some t0. The best linear unbiased estimator (BLUE)

of an estimable function, q0�, has been shown (Rao, 1973b) to be q0�̂ where �̂ is a

stationary value of (y �X�)0M(y �X�) if and only if M = (D +XZX0)� for any

symmetric g-inverse and where Z is any symmetric matrix such that rank(VjX) =

rank(V +XZX0). [(VjX) is a partitioned matrix.]

Rao (1974) and Rao and Yanai (1979) express these results in terms of projection

operators.

In terms of the use of these results in �xed e�ects models, it is usual to assume that

D = I, in which case somewhat simpli�ed results apply. In particular, it has been

proved that q0� is estimable and has BLUE q0�̂ if and only if q0 2 C(X), the column

space of X; that is, there exists some t0 such that q0 = t0X (Searle, 1971b, section

5.4). It can be shown that
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� the elements of � are not estimable, in general, and

� any linear function of X� or X0X� is estimable (Searle, 1971b, section 5.4).

Complementing the concept of estimable functions is that of testable hypotheses,

these being hypotheses that can be expressed in terms of estimable functions. A

testable hypothesis H: K0� = � is taken as one where

K0� = fk0i�g for i = 1; 2; : : : ; s

such that k0i� is estimable for all i.

For example, consider an experiment involving two crossed factors, Y and Z say,

for which there are possibly several observations for each combination of the levels of

Y and Z. The usual model for this experiment would be

yijk = �+  i + �j + ( �)ij + �ijk

where E[�ijk ] = 0, Var[�ijk ] = �2, and Cov[�ijk; �i0j0k0 ] = 0 for (i; j; k) 6= (i0; j 0; k0).

Further, because the model is not of full rank, constraints are often placed on either

or both the parameters and the estimates in order to obtain a solution. For the model

above, commonly employed constraints are:

X
i

 i =
X
j

�j =
X
i

( �)ij =
X
j

( �)ij = 0:

If constraints are not placed on the parameters, the individual �,  is, �js and ( �)ijs

in the model are not estimable; however, the (� +  i + �j + ( �)ij)s, and linear

combinations of them, are estimable. Note that, in this circumstance,  i �  i0 is not

estimable.

An alternative parametrization of this model is in terms of a cell mean model,

namely

yijk = �ij + �ijk:

This model is a full rank model and the �ijs are the basic underlying estimable

quantities in that they, and any linear combination of them, are estimable. Thus

hypotheses involving linear combinations of the �ijs are testable.
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Analyses based on these two models have been termed, respectively, the model

comparison and parametric interpretation approaches by Burdick and Herr

(1980). In the model comparison approach a series of models is �tted and the sim-

plest model not contradicted by the data is selected. In the parametric interpretation

approach a single maximal model is �tted and the pattern in the data investigated

by testing hypotheses speci�ed in terms of linear parametric functions.

The �rst approach consists of comparing a sequence of models. It appears that

there is agreement that the models should observe the marginality (Nelder, 1977 and

1982) or containment (Goodnight, 1980) relationships between terms in the study (see

for example Burdick and Herr, 1980). However, there is much divergence of opinion

surrounding the sequencing and parametrization of models. There is still debate over

whether main e�ects should be tested in the presence of interaction (Appelbaum and

Cramer, 1974; Nelder, 1977 and 1982; Aitkin, 1978; and Hocking, Speed and Coleman,

1980). In terms of parametrization, should one use

� models not of full rank with nonestimable constraints to obtain a solution (Speed

and Hocking, 1976), or

� full rank models reparametrized using restrictions placed on parameters (Speed

and Hocking, 1976; Aitkin, 1978; and Searle, Speed and Henderson, 1981)?

The advantages of the model comparison approach are that one can produce an or-

thogonal analysis of variance and that it can be used for studies involving more than

one random term. A disadvantage is that the issues of sequencing and parametrization

outlined above arise. A number of authors also assert that a further disadvantage is

that the hypotheses to be tested involve the observed cell frequencies (see Hocking and

Speed, 1975; Speed and Hocking, 1976; Urquhart and Weeks, 1978; Speed, Hocking

and Hackney, 1978; Burdick and Herr, 1980; Goodnight, 1980; Hocking, Speed and

Coleman, 1980; and Searle, Speed and Henderson, 1981) and so are not readily inter-

pretable (see for example Burdick and Herr, 1980). However, Nelder (1982) suggests

that when seen from an information viewpoint there is no problem; the unequal cell

frequencies just re
ect the di�erences in information available on the various contrasts

of the parameter space.
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The second approach is implicit in the writings of Yates (1934), Eisenhart (1947)

and Elston and Bush (1964). However, it was explicitly reintroduced by Urquhart,

Weeks and Henderson (1973) and Hocking and Speed (1975) and its use advocated

in a host of subsequent papers. Goodnight (1980) gives an equivalent procedure in

which the overparametrized model is �tted and tests based on estimable functions of

the parameters in this model are carried out. The appropriate function (Type III in

his notation) yields the same tests as those of the cell means approach.

Proponents of this method claim that it has the advantage that all linear functions

of the parameters are estimable and the hypotheses being tested are interpretable

as they are analogous to the tests used in the balanced case and do not involve

the observed cell frequencies (see for example Speed, Hocking and Hackney, 1978;

Burdick and Herr, 1980; Goodnight, 1980; and Searle, Speed and Henderson, 1981).

Further, it is asserted that the essence of many studies is the comparison of several

populations, based on random samples from them, and cell means models re
ect this

(Urquhart, Weeks and Henderson, 1973; and Hocking, Speed and Coleman, 1980). A

disadvantage is the nonadditivity of sums of squares for the set of hypotheses (see for

example Burdick and Herr, 1980; Goodnight, 1980; and Hocking, Speed and Coleman,

1980) and this may result in signi�cant e�ects going undetected (Burdick and Herr,

1980). Steinhorst (1982) also draws attention to the inadequacy of the cell means

models for experiments involving more than a single random term (for example the

randomized complete block and split-plot experiments).

1.2.2.2 Mixed linear models

The mixed linear model extends the �xed-e�ects linear model to represent the vari-

ation in the data by including terms in the model that specify random variables

assumed to be independently distributed and to have �nite variance. Thus, whereas

models that have only one such term are called �xed-e�ects linear models and those

composed solely of such terms except for the general mean term are called random

e�ects or variance components models, models involving several of both kinds of

terms are called mixed linear models [see for example Sche��e (1956)].
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Variance component analysis, although �rst used by Airy (1861) and Chauvenet

(1863) (Sche��e, 1956; Anderson, 1979), seems not to have come into general usage

until after Fisher's (1918) development of analysis of variance. It received great im-

petus from Eisenhart's (1947) much cited paper. Tippett (1929) calculated expected

mean squares for variance component models. He was the �rst (Tippett, 1931) to

incorporate them into the analysis of variance table, although Irwin (1960) and An-

derson (1979) credit Daniels (1939) with the introduction of the term component

of variance. Mixed models appear to have been �rst employed, implicitly, by Fisher

(1925, 1970) in developing the split-plot analysis and Fisher (1935b, 1966) in analysing

an experiment involving the testing of varieties at several locations. Yates (1975) de-

scribes this as a major extension of Gaussian least squares, involving as it did multiple

error terms. However, Sche��e (1956) suggests that the �rst explicit mixed model was

given by Jackson (1939); random interaction e�ects were introduced by Crump (1946).

Eisenhart (1947) introduced the terms model I and model II and it was his article

that was highly in
uential in the development of mixed model analysis.

Since then the �eld has been reviewed by Eisenhart (1947), Crump (1951) and

Plackett (1960); recent expository articles are by Harville (1977) and Searle (1968,

1971a, 1974). Sahai (1979) has published an extensive bibliography on variance com-

ponents which is relevant to mixed models also. Searle (1971b) and Graybill (1976)

are textbooks with considerable coverage of mixed models.

Mixed linear models form a subclass of the general linear model, the general linear

model (Graybill, 1976) being:

y = X� + �

where y, X and � are as for the �xed model, and � is such that E[�] = 0 and

Cov[�] = �.

Mixed linear models are then that subclass of models that can be written in the

following form (Hartley and Rao, 1967; Harville, 1977; Smith and Hocking, 1978;

Miller, 1977; Searle and Henderson, 1979; Szatrowski and Miller, 1980):

y =
pX
i=1

xi�i +
mX
j=1

Zj�j
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with E[y ] = X� = (x1x2 : : :xp)(�1�2 : : : �p)
0, Zj being a design matrix for the jth

random term and of order n�mj, mj being the number of e�ects in the jth term, �j

an mj � 1 vector of random e�ects and �j � (0; �jI), and mm = n and Zm = I, so

that Var[y ] = V =
Pm

j=1 �jSj =
Pm

j=1 �jZjZ
0
j.

Nelder (1977), following Smith (1955), has called the �s canonical components of

excess variation, or just canonical components. They correspond to the � quantities

of Wilk and Kempthorne (1956) and Zyskind (1962a) and the �s of Nelder (1965a).

As Nelder (1977) and Harville (1978) discuss, they can be interpreted as classical vari-

ance components (Searle, 1971b, section 9.5a; Searle and Henderson, 1979), variance

components corresponding to the formulations of Graybill (1961) or Sche��e (1959) or

covariances of the observations (Nelder, 1977). As Harville (1978) details, the di�er-

ences between these formulations lie in their parameter spaces and the interpretation

of the random e�ects and their variances. Thus, in terms of classical variance compo-

nents, the random e�ects are uncorrelated and their variances, given by the canonical

components, are nonnegative. In terms of covariances, the e�ects for a particular term

will have equal, possibly negative, covariance and the canonical components measure

excess covariation which may also be negative but restricted so that the variance

matrix remains nonnegative de�nite. The advantages of the canonical components

are that they have the same interpretation in respect of the variance matrix of the

observations for all formulations of the model, albeit with di�erent restrictions on the

parameter spaces, and they are the quantities which will be estimated and tested in

the analysis of variance.

Thus, a mixed model for the two-way experiment described in the previous section

would again be based on the following model:

yijk = �+  i + �j + ( �)ij + �ijk
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In terms of the classical variance components approach, the mixed model might

involve the following conditions and assumptions:

P
i  i = 0;

E[�j ] = E[( �)ij ] = E[�ijk ] = 0;

Var[�j ] = �Z � 0;Var[( �)ij ] = �Y Z � 0;Var[�ijk ] = �� � 0;

Cov[�j; �j0 ] = Cov[( �)ij; ( �)i0j0 ] = Cov[�ijk; �i0j0k0 ] = 0

for i0 6= i; j 0 6= j or k0 6= k; and

Cov[�j; ( �)i0j0 ] = Cov[�j; �i0j0k0 ] = Cov[( �)ij; �ijk ] = 0

for all i; i0; j; j 0; k and k0:

On the other hand, in terms of a covariance interpretation, parallel assumptions

are:

Cov[yijk; yi0j0k0 ] = 
; if j 0 6= j;

Cov[yijk; yi0j0k0 ] = 
Z; if i0 6= i; j 0 = j;

Cov[yijk; yi0j0k0 ] = 
Y Z ; if i0 = i; j 0 = j; k0 6= k; and

Cov[yijk; yi0j0k0 ] = 
�; if i0 = i; j 0 = j; k0 = k:

Then, the quantities �, �j, ( �)ij and �ijk are assumed independent and with vari-

ances �, �Z, �Y Z and ��, respectively, where

� = 
;

�Z = 
Z � 
;

�Y Z = 
Y Z � 
Z; and

�� = 
� � 
Y Z :

For the covariance interpretation in the regular case (i = 1; : : : ; a; j = 1; : : : ; b;

k = 1; : : : ; r), rather than requiring the �s to be nonnegative, the following conditions

on the �s must be satis�ed:
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�� > 0; �Y Z � ���=r; �Z � �(�� + r�Y Z) / (ra); and

� � �(�� + r�Y Z + ra�Z) / (rab):

Clearly, a mixed model involves both an expectation vector and a variance matrix

based on multiple parameters and so does not in general come under the general

Gauss umbrella. However, in some situations mixed models can be transformed so

that they come under the umbrella. This prompts one to ask under what conditions

this will be true.

To answer this question requires an examination of the relationship between the

�xed and random parts of mixed models. This can be reduced to a study of the

relationship between the column space of the �xed-e�ects design matrix, that is C(X),

and the eigenspaces of V. This research was originally begun in the context of linear

regression analysis with an examination of the conditions under which simple least

squares estimators (SLSEs) are BLUEs. That is, when estimators which are a solution

of the simple normal equations X0Xb� = X0y are BLUEs.

Papers on this topic include those by Anderson (1948), Watson (1955, 1967, 1972),

Grenander (1954), Grenander and Rosenblatt (1957), Magness and McGuire (1962),

Zyskind (1962b, 1967), Kruskal (1968), Rao (1967, 1968), Thomas (1968), Mitra

and Rao (1969), Seely and Zyskind (1971), Mitra and Moore (1973) and Szatrowski

(1980). These authors have established a number of equivalent conditions for which

the SLSEs are BLUEs when the variance matrix is arbitrary nonnegative de�nite,

thereby extending the Gauss BLUE property of the simple least squares estimator

from V = �2I to V arbitrary. The generalized condition is that the linear function

w0y is both a SLSE and a BLUE if and only if for every vector w 2 C(X) the vector

Vw 2 C(X) (Zyskind, 1967, 1975); this simpli�es to just w 2 C(X) for V = �2I.

An equivalent general condition is that, if the rank of C(X) is r, then there must

be r eigenvectors of V that form a basis of C(X), or that the column space of each

idempotent, Pi, of the spectral representation of V can be expressed as a direct sum

of a subspace belonging to C(X) and one belonging to C?(X) (Zyskind, 1967). The

implication of this for designed experiments is that the experiment must be orthogonal

for the SLSEs to be BLUEs.



1.2.2 General linear models 23

A number of authors have considered the relationship between C(X) and V specif-

ically in the context of designed experiments. It appears that Box and Muller (1959)

and Muller and Watson (1959) were the �rst to do so, their investigation being for

the randomized complete block design. Morley Jones (1959) carried out a detailed

examination for block designs in general. Subsequent papers in this area then include:

Kurkjian and Zelen (1963); Zelen and Federer (1964); Nelder (1965a,b); James and

Wilkinson (1971); Pearce, Cali�nski and Marshall (1974); Corsten (1976); Houtman

and Speed (1983). Here the concern has not been with establishing the equality of

SLSEs and BLUEs, since for many useful designs (for example, incomplete block de-

signs) orthogonality does not obtain and so simple least squares estimates are not

appropriate. However, some simpli�cation obtains when the model for the variation

structure has orthogonal variation structure (OVS); that is, an analysis based on

an hypothesized variance matrix V can be written as a linear combination of a known

complete set of mutually orthogonal idempotent matrices:

V =
X
i

�iPi;

where

�i � 0 for all i, andP
iPi = I, PiPi0 = Æii0Pi and Æii0 =

(
1 for i = i0

0 for i 6= i0
:

The great majority of experimental designs used in practice have OVS (Nelder,

1965a,b; Bailey, 1982a; Houtman and Speed, 1983). They include any study with

what Bailey (1984) termed an orthogonal block structure and for which all the `block'

factors are assumed to contribute to the variation; thus, they include experiments with

Nelder's (1965a) simple orthogonal block structure, provided all the `block' factors are

assumed to contribute to variation.

As Nelder (1965b) points out, in an analysis based on OVS, one can obtain the

generalized least squares estimators of � by performing a least squares �t for each Pi,

that is, by solving the following set of normal equations:

(X0PiX)b� = X0Piy:
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These can be conveniently reparametrized by letting � = X� and E[y ] = M�,

where M is the projection operator on C(X); the normal equations for a particular

Pi become

MPiMb� =MPiy:

The study of the relationship between C(X) and the eigenspaces of V now becomes

an investigation of the spectral decomposition of MPiM. For suppose the spectral

form of MPiM is given by

MPiM =
X
j

eijQij;

then the solution to the normal equations becomes

b�?
i = (

X
j

e�1ij Qij)MPiy:

This particular solution is obtainable for any experiment satisfying OVS. However,

the eigenspaces corresponding to a particular Qij are not always obvious; in some

cases they will correspond to contrasts of scienti�c interest, while in others they will

not. It is therefore often useful to ask, `Does a particular �xed-e�ect decomposition

correspond to the spectral form of the normal equations?'. If it does, the experiment is

said to be generally balanced with respect to that �xed-e�ect decomposition. That

is, suppose that corresponding to the projection operator M, there is an orthogonal

decomposition
P

jM
?
j = M with M?

jM
?
j0 = Æjj0M

?
j . Then an experiment is generally

balanced with respect to this �xed e�ect decomposition if

MPiM =
X
j

eijM
?
j ; for all i and j

(Nelder, 1965b, 1968).

The Houtman and Speed (1983) de�nition of general balance di�ers from this Nelder

de�nition in as much as, rather than requiring the above condition be met in respect

of a speci�ed �xed-e�ect decomposition, it requires only that some �xed-e�ect decom-

position satisfying the above decomposition can be found. Consequently, Houtman

and Speed (1983) can `assert that all block designs (with equal block sizes, and the

usual dispersion model) satisfy' general balance. On the other hand, whether or not
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partially balanced block designs satisfy Nelder's (1965b, 1968) de�nition of general

balance depends on what decomposition of the treatment subspace is speci�ed. I will

use the term structure balance to mean general balance in the sense de�ned by

Nelder (1965b, 1968)

James and Wilkinson (1971) also refer to generally balanced designs as designs for

which each factor in the �xed-e�ects model has associated with it a single eÆciency

factor. However, this does not require that the �xed-e�ects decomposition is orthog-

onal as is the case for the other de�nitions. To avoid confusion, I will use James and

Wilkinson's (1971) alternative nomenclature and refer to experiments satisfying their

condition as being �rst-order balanced. That is, the set of projection operators

M?
j , withMM?

j =M?
j andM

?
jM

?
j0M

?
j = e?jj0M

?
j for all j and j

0, is �rst-order balanced

if

M?
jPiM

?
j = eijM

?
j ; for all i and j.

Note that �rst-order balance di�ers from structure balance in that the speci�ed

�xed-e�ect decomposition does not have to be orthogonal for �rst-order balance, and

from the Houtman and Speed (1983) de�nition of general balance in that for Houtman

and Speed's (1983) de�nition there merely has to exist some orthogonal �xed-e�ect de-

composition for which the above condition is true. Thus, the set of structure-balanced

designs is a subset of those that are �rst-order balanced and of those satisfying the

Houtman and Speed (1983) de�nition of general balance.

If the design is generally balanced, the normal equations for a particular Pi have

solution

�̂?
i = (

X
j

e�1ij M
?
j)Piy:

The combined BLUE of �, when the �is are known, is the weighted sum of the

individual estimators and is given by

�̂ =
X
i

X
j

eij�
�1
i

 X
i

eij�
�1
i

!�1
e�1ij M

?
jPiy

(Nelder, 1968; Houtman and Speed, 1983).

The diÆculties begin when one turns to examine the situation in which the �is are

unknown; that is, the �is must be estimated from the data. There are several estima-
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tion methods available: analysis of variance (ANOVA), maximum likelihood (ML),

residual maximum likelihood (REML), minimum norm quadratic unbiased estima-

tion (MINQUE) and minimum variance quadratic unbiased estimation (MIVQUE).

ANOVA estimators are those obtained by equating mean squares in an ANOVA table

to their expectations. It is well known that the ANOVA estimators are equivalent

to REML, MINQUE and MIVQUE estimators for orthogonal analyses, provided the

nonnegativity constraints on the variance components do not come into play. They

have the desirable properties that they are location invariant, unbiased, minimum

variance amongst all unbiased quadratic estimators and, under normality, minimum

variance amongst all unbiased estimators (Searle, 1971b, section 9.8a). However, they

may lead to negative parameter estimates which may be outside the parameter space.

In comparison, ML estimators, while biased because they do not take into account

degrees of freedom lost in estimating the model's �xed e�ects and require heavy com-

putations, are always well-de�ned. Furthermore, nonnegativity constraints can be

imposed, if desired. REML estimators, as well as enjoying the advantages of M L

estimators, overcome the ML loss of degrees of freedom problem and, as noted above,

are the same as ANOVA estimators provided the nonnegativity constraints on the

variance components do not come into play. (Harville, 1977).

On the other hand, for nonorthogonal cases, the equivalence between ANOVA and

other estimators does not hold. The only advantage ANOVA(-like) estimators (esti-

mators yielded by Henderson's (1953) methods 1, 2 and 3) retain in this situation,

other than that they are analogous to the procedure for orthogonal analyses, is that

they are location-invariant and quadratic unbiased (Harville, 1977). Thus the dis-

advantages exhibited by ANOVA estimators in nonorthogonal experiments include

that they are not available for terms totally confounded with �xed-e�ects (they are

not well-de�ned) and may not have minimum variance. Harville (1977) suggests that

REML or approximate REML procedures are to be preferred to Henderson estimators.

Searle (1979b) outlines the relationships between REML, MINQUE and MIVQUE

estimators, the details being presented in Searle (1979a). He argues that there are

only two distinctly di�erent methods of maximum likelihood and minimum variance

estimation of variance components: ML and REML. A number of simulation stud-
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ies (Hocking and Kutner, 1975; Corbeil and Searle, 1976; Harville, 1978) comparing

ML and REML estimators have shown that, although ML estimates are biased, they

often have smaller mean-squared-error than REML estimates even in orthogonal ex-

periments. Harville (1977) suggests that there is unlikely to be a `clear-cut winner'

between REML and ML. Thus, the preferred estimator is likely to depend on such

considerations as the importance of bias, the likely values of the variance components,

the size of the experiment and the ease of computation.

In the context of generally balanced experiments, Nelder (1968) and Houtman and

Speed (1983) give an iterative ANOVA-like method for simultaneously estimating the

�xed e�ects and variance components. The estimation of the variance components is

essentially equivalent to REML (Harville, 1977; Houtman and Speed, 1983).

1.2.2.3 Fixed versus random factors

A number of authors believe the �xed/random dichotomy of factors to be unneces-

sary. Yates (1965, 1970, 1975, 1977) has consistently argued that the dichotomy is `a

distinction without a di�erence' (Yates, 1975). Yates (1965, p. 783) argues, as does

Barnard (1960), that

whether the factor levels are a random selection from some de�ned set . . . , or
are deliberately chosen by the experimenter, does not a�ect the logical basis
of the formal analysis of variance . . . . Once the selection or choice has been
made the levels are known, and the two cases are indistinguishable as far as the
actual experiment is concerned.

Notwithstanding this argument, many textbooks make the distinction between �xed

and random factors in their presentation of the analysis of variance. Consequently,

the expected mean squares for a particular analysis depend on the categorization of

the factors in the study into �xed and random factors (for example, Bennett and

Franklin, 1954; Kempthorne and Folks, 1971; Snedecor and Cochran, 1980; Steel

and Torrie, 1980). Yates (1965) argues that the di�erences in mean squares arising

from di�erences in the classi�cation of factors as �xed or random are the result of

imposing constraints on the parameters for �xed terms which are not imposed on

those of random terms. As Nelder (1977) acknowledges, Wilkinson would say `that a
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transfer of variance results from the imposition of constraints'. Also, it appears that

the expected mean squares depend on the proportion of the population sampled (see,

for example, Bennett and Franklin, 1954). However, Nelder (1977) has demonstrated

that, if the expected mean squares are formulated in terms of the canonical covariance

components, they are independent of the proportion of the population sampled (see

table 1.2); that is, they are the same no matter what �xed/random dichotomy is used.

Yates (1970, p.285) asserts:

The real distinction is . . . between factors for which the interaction components
in the model can be speci�ed not too unreasonably as random uncorrelated
values with the same variance . . . and factors for which this assumption is
patently false.

Thus, while the endpoint of some factors contributing to the expectation and others

to the variation would seem to be acceptable, the route by which one reaches this

endpoint is subject to debate.

1.3 Randomization versus general linear models

There is much discussion about the role of randomization vis �a vis general linear

models. The most popular arguments favouring the use of randomization models as

a basis for inference are:

1. the assumptions required are less restrictive than for general linear models and

2. inferences are based on the population actually sampled, that is the given set of

units and the set of possible repetitions under randomization of the experiment

(Kempthorne, 1955, 1966, 1975b; Sche��e, 1959, chapters 4 and 9; Easterling,1975).

The fundamental assumption underlying randomization-based inference is that of

unit-treatment additivity (Kempthorne, 1955, 1966, 1975b; Wilk and Kempthorne,

1957; Nelder, 1965b; White, 1975; Bailey, 1981). This assumption is required so that

constant treatment e�ects can be de�ned and hence ensure that the treatment e�ects

are independent of the particular randomization employed in the experiment.
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Kempthorne (1975b, pp. 314, 323) goes so far as to assert that an approach based on

general linear models, combined with the assumption of normality, is irrelevant in the

context of comparative experiments, except as providing approximations to the ran-

domization distribution. Similarly, Easterling (1975, p. 729) maintains that, for most

experiments, normal model-based analysis only has a role in providing descriptive,

not statistical, inferences and that a serious defect of normal model-based analysis

is that not all the available information is incorporated into the model, namely the

randomization employed. Rubin (1980) quotes Brillinger, Jones and Tukey (1978)

as saying that the appropriate role of general linear models seems to be con�ned to

assistance in selection of a test statistic. However, Wilkinson, Eckert, Hancock and

Mayo (1983, p.205) contend that, even in a randomization-based analysis, general lin-

ear models play an essential role in that they determine the appropriate test statistic

and the relevant reference set of randomized designs.

That general linear models are not essential for determining a test statistic becomes

apparent when it is realized that, as has been described in section 1.2.1 above, a model

can be derived purely on the basis of the randomization employed in the experiment

and some assumptions about the scale, for example additive versus multiplicative

scale, on which the analysis is to be performed. A test statistic can be then determined

on the basis of the randomization model. As for the relevant reference set, this is

de�ned in terms of the target population from which our sample of one is chosen; that

is, it is de�ned by the sampling process employed, which in this case is randomization.

A number of authors, such as Fisher (1935b, 1966, section 21.1), Cox and Hinkley

(1979) and Hinkley (1980) are of the view that the role of the randomization test lies

in establishing the robustness of the tests based on a general linear model. That is,

randomization tests are an adjunct to tests based on an hypothesized model. Fisher

(1935b, 1966) declares that knowledge of the behaviour of the experimental material

should be incorporated into the analysis in the form of an hypothesized model.

Basu (1980) argues even more extremely that (pre)randomization-based inference

must be rejected because it leads to manifestly absurd conclusions in experiments

employing weighted randomization and because the randomized design actually em-

ployed in the experiment becomes an ancillary statistic to be conditioned on in an



1.3 Randomization versus general linear models 30

analysis of the experiment. The �rst point is further exempli�ed by Lindley (1980)

but argued against by Hinkley (1980) and Kempthorne (1980) in the discussion of

Basu's paper. Hinkley (1980) suggests that if one is prepared to use a biased coin

it is likely that `Nature has done the randomization for us' and Kempthorne (1980)

argues that the conclusions are not absurd but a direct consequence of the operating

characteristics of the investigation. The second of Basu's points is similar to Harville's

(1975) argument that `conditional on the realized . . . [randomization], the random-

ization model is no more appropriate if the design were chosen by randomization than

if it were chosen arbitrarily. In respect of determining the relevant reference set, Cox

and Hinkley (1979) state:

we are here [in the randomization test] interpreting data from a given design
by hypothetical repetitions over a set of possible designs. In accordance with
general ideas on conditionality, this interpretation is sensible provided that the
design actually used does not belong to a subset of designs with recognizably
di�erent properties from the whole set.

Thus, it would appear that one is not only to condition on the particular design

employed in the experiment, but on all possible designs containing the same amount

of information as the design used. In an experiment which satis�es OVS and in which

the hypothesized variance matrix is related to the block structure as described in

section 1.2.2, the `design' ancillaries are the block relations.

Rubin (1980) also draws attention to the fact that randomization tests are inade-

quate for complicated questions such as adjusting for covariates and generalizing the

results to other units.

The conclusion to be made here is that, while a model may be necessary to deter-

mine a test statistic, general linear and randomization models are equally suitable.

The close ties between randomization and general linear models noted by Wilkinson

et al. (1983) are related to the fact that the covariance component of the general lin-

ear model is of the same form as that generated by randomization in many instances.

However, since the test statistics and relevant reference sets can be established with-

out recourse to hypothetical models, I do not agree with Wilkinson et al. (1983, p.

205) that an hypothesized model is required to establish the inferential validity of a

randomization test.



1.4 Unresolved problems 31

1.4 Unresolved problems

Steinhorst (1982) outlines a number of unresolved issues associated with analysis of

factorial linear models. These and a number of others arose in the discussion contained

in sections 1.2 and 1.3. Issues that would need to be dealt with adequately if a strategy

for analysing factorial linear models is to be adjudged as satisfactory include:

1. application to as wide a range of studies as possible including multiple-error,

two-phase (McIntyre, 1955, 1956; Curnow, 1959) and unbalanced experiments,

2. the basis for inference as in randomization versus general linear models

3. factor categorizations, such as �xed/random and block/treatment, and the con-

sequences of this for expected mean squares,

4. model composition and the role of constraints on parameters,

5. appropriate mean square comparisons in model selection,

6. the form of the analysis of variance table, and

7. the appropriate partition of the Total sum of squares for a particular study.

It is the purpose of this thesis to develop an approach to factorial linear model analysis

which satisfactorily treats these issues.
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Chapter 2

The elements of the approach to

linear model analysis

2.1 Introduction

This chapter summarizes for the purposes of this thesis an approach to linear model

analysis that has been published elsewhere by the author (Brien, 1983 and 1989); the

full texts of these publications have been incorporated into the thesis as appendices B

and C. The purpose of this approach is to provide a paradigm for linear model analysis

that facilitates the formulation of the analysis and which is applicable to as wide a

range of situations as possible. As outlined in Brien (1989), the overall analysis is a

four-stage process in which the three stages of model identi�cation, model �tting and

model testing, jointly referred to as model selection, are repeated until the simplest

model not contradicted by the data is selected. In the �nal stage the selected model

is used for prediction. In this thesis, I concentrate on model identi�cation.

The essential steps in applying the model selection component of the approach are:

Observational unit and factors: Identify the unit on which individual mea-

surements are taken (Federer, 1975) and specify the factors in the study.

Tiers: Divide the factors into disjoint, randomization-based sets, called tiers.

Expectation and variation factors Also divide the factors into expectation
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and variation factors.

Structure set: Determine the structure set for the study based on the tiers.

Analysis of variance table: Derive the analysis table for the study from the

structure set (table 2.1) and compute the degrees of freedom (table 2.2),

sums of squares (table 2.3) and mean squares.

Expectation and variation models: Categorize the terms derived from the

structure set, as summarized in the analysis table, as expectation or varia-

tion. Form maximal expectation and variation models (table 2.5) and the

lattices of expectation and variation models.

Expected mean squares: Compute expected mean square for each source in

the analysis table for the maximal expectation and variation models (ta-

ble 2.8).

Model �tting/testing: In model �tting, the currently model is �tted to the

data to yield the �tted values for the expectation model and their estimated

variances. Then, based on the expected mean squares, carry out model

testing to see if the expectation and variation models can be reduced to

simpler models not contradicted by the data. If it can, repeat the model

selection cycle.

All of these steps, except the last, are concerned with model identi�cation.

The approach to be proposed is closely allied to that advocated by Fisher (1935),

Wilk and Kempthorne (1957), Nelder (1965a,b), Yates (1975), Bailey (1981, 1982a),

and Preece (1982). Their approach has been described in section 1.2.1.2; it involves

dividing the factors in the experiment into `block' and `treatment' factors. White

(1975) has made a similar proposal in which the `design units' (`treatment' factors)

and the `experimental units' (`block' factors) are determined. The proposed approach

also has features in common with the approach of Tjur (1984). However, Tjur's (1984)

approach only covers orthogonal studies and the analysis is speci�ed using a single

structure.

The novel features of the approach are that:
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� more than two randomization-based categories, or tiers, of factors are possible;

� terms involving factors from di�erent tiers are allowed;

� while the factors are classi�ed into tiers on the basis of their randomization,

inference utilizes general linear models rather than randomization models;

� the designation of factors as expectation/variation factors is independent of their

classi�cation into tiers;

� for any one of a study's expectation models, the model does not contain terms

marginal to others in the model; this is not the case for the variation models.

It is candidly acknowledged that a satisfactory analysis for many studies can be

formulated without utilizing the proposed paradigm. However, there are experiments

(section 5.2.4) whose full analysis can only be achieved with it. In addition, as the

advocates of related approaches suggest, the employment of the paradigm will assist

in the formulation of analyses of variance, particularly for complex experiments (see

chapters 4, 5 and 6). In particular, the division of the factors into tiers ensures that

all relevant sources are included in the analysis and that the analysis re
ects, through

its display of the confounding relationships, the design and purpose of the study (see

section 6.6).

2.2 The elements of the approach

An experiment is now introduced which will be used throughout this section to illus-

trate the approach.

Example 2.1: The experiment (adapted from Steel and Torrie, 1980, section
16.3) was conducted to investigate the yields of 4 varieties of oats and the e�ect
on yield of the treatment of seeds either by spraying them or leaving them
unsprayed. The seeds were sown according to a split-plot design. The seeds
from the varieties were assigned to whole plots according to a Latin square
design by choosing a square at random from those given in Cochran and Cox
(1957, plan 4.1) and the rows and columns of the selected square randomized.
The assignment of seed treatments to the subplots was randomized. The �eld
layout and yields are given in �gure 2.1. [To be continued.]
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Figure 2.1: Field layout and yields of oats for split-plot experiment

U S S U S U S U

V1 CL V2 BR

42.9 53.8 63.4 62.3 57.6 53.3 70.3 75.4

U S U S U S S U

CL BR V1 V2

58.5 50.4 65.6 67.3 41.6 58.5 69.6 69.6

U S U S U S U S

V2 V1 BR CL

45.4 42.4 28.9 43.9 54.0 57.6 44.6 45.0

U S U S S U S U

BR V2 CL V1

52.7 58.5 35.1 51.9 46.7 50.3 46.3 30.8

2.2.1 Observational unit and factors

The �rst step in obtaining the quantities required in an analysis-of-variance-based

linear model analysis is to identify the observational unit, this being the unit on

which individual measurements are taken (Federer, 1975).

Also the factors in the study have to be speci�ed. A factor is a variable observed

for each observational unit and corresponding to a possible source of di�erences in

the response variable between observational units. Unlike a term (see section 2.2.4),

a single factor may not represent a meaningful partition of the observational units.

The levels of the factor are the values the factor takes.

Example 2.1 (cont'd): The observational unit is a subplot. The factors are
Rows, Columns, Subplots, Varieties and Treatments. [To be continued.]
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2.2.2 Tiers

The factors identi�ed in the �rst step of the approach are now divided into tiers on

the basis of the randomization employed in the study.

In the following discussion, the term levels combination will be used. A levels

combination of a set of factors is the combination of one level from each of the factors

in the set; that is, an element from the set of observed combinations of the levels of

the factors in a set.

A tier is a set of factors having the same randomization status; a particular factor

can occur in one and only one tier. The �rst tier will consist of unrandomized

factors, or, in other words factors innate to the observational unit; these factors

will uniquely index the observational units. The second tier consists of the factors

whose levels combinations are randomized to those of the factors in the �rst tier, and

subsequent tiers the factors whose levels combinations are randomized to those of the

factors in a previous, in the great majority of cases the immediately preceding, tier.

A further property of the factors in di�erent tiers is that it is physically impossible

to assign simultaneously more than one of the levels combinations of the factors in

one tier to one of the levels combinations of the factors in a lower tier.

These properties result in the tiers being unique for a particular situation. Provided

that the levels combinations of factors are randomized to those of the factors in the

immediately preceding tier, the properties also uniquely de�ne the order of the tiers.

The only examples in this thesis where they are not are the superimposed experiments

in section 5.3 and the animal experiment in section 5.4.2. However, the order of the

tiers is clear-cut in the case of the superimposed experiments, but not for the animal

experiment.

The essential distinction between unrandomized and randomized factors is that the

latter have to be allocated to observational units whereas the former are innate. Of

course, randomization is only one method of achieving this allocation. However, as

discussed in section 6.2, good experimental technique dictates that randomization be

used in allocating the factors; it has the advantage that it provides insurance against

bias in the allocation process. Because of this, the use of randomization is almost
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universal and we will restrict our attention to studies in which it is the method of

allocation. That is not to say that the approach cannot be applied to studies involving

nonrandom allocation. Clearly, the factors can be divided into tiers based on their

allocation status; however, the advantage mentioned above may not apply.

A randomization is to be distinguished from randomization in the sense of the act

of randomizing (Bailey, 1981). A randomization is a random permutation of the

factors in a tier that respects the structure derived from that tier. Randomization

is the allocation of levels combinations of factors in one tier to those of the factors in

a previous, usually the immediately preceding, tier. That is, while the unrandomized

factors may be permuted to achieve the randomization, it is the randomized factors

whose levels are being allocated at random. Of course, applying a randomization is

not the only way of randomizing; another method is the random selection from a set

of plans (Preece, Bailey and Patterson, 1978).

Example 2.1 (cont'd): Of the factors speci�ed for the example, Rows, Columns

and Subplots are innate to the subplots (the observational units). Hence, they
are the unrandomized factors and would be called `block' factors by Nelder
(1965a) and Alvey et al. (1977). They are then the set of factors comprising
the bottom tier. It is the only possible set of factors for the bottom tier for this
experiment.
The levels combinations of the set of factors Varieties and Treatments were

randomized to the levels combinations of the unrandomized factors. Further,
only one combination of Varieties and Treatments is physically observable with
each levels combination of the unrandomized factors, that is on each subplot.
Thus, Varieties and Treatments are the randomized factors and are called `treat-
ment' factors by Nelder (1965b) and Alvey et al. (1977). Again, they form the
only possible set of factors for the second tier. [To be continued.]

The term tier has been chosen to re
ect the building up of the sets, one on another

in an order de�ned by the randomization; it is intended to be distinct from any terms

previously used in the literature. In particular, it is not a substitute for stratum

which is a particular type of source in an analysis of variance table. There is no

restriction placed on the number of tiers that can occur in an experiment, although in

practice it would be extremely unusual for there to be more than three. An experiment

requiring more than two tiers will be referred to as a multitiered experiment. A

sample survey involves only one tier as no randomization is involved.
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2.2.3 Expectation and variation factors

Classi�cation of factors as expectation or variation factors is based on both the type

of inference it is desired to draw about the factors and the anticipated behaviour of

the factors. Factors are designated as expectation factors when it is considered

most appropriate or desirable to make inferences about the relative performance of

individual levels. Variation factors are more relevant when the performance of the

set of levels as a whole is potentially informative; in such cases, the performance

of a particular level is inferentially uninformative. Hence, for expectation factors,

inference would be based on location summary measures (`means') and, for variation

factors, on dispersion summary measures (`variances' and `covariances'). Alternative

names for this dichotomy are systematic/random and location/dispersion.

A point to be borne in mind when categorizing factors as expectation/variation

factors is that, for a factor to be classi�ed as a variation factor, an assumption of

symmetry must have some justi�cation whereas this is not required of expectation

factors. This symmetry has to do with the property that labelling of the levels of

variation factors is inferentially inconsequential because arbitrary permutations of

the levels of a factor do not a�ect the inferences to be drawn. This implies that, as

Yates (1965; 1970, p. 283-285) recognized, the levels of a variation factor must not

be able to be partitioned into inferentially meaningful subclasses on the basis of the

anticipated performance of the observational units. For example, if in a �eld trial it is

expected that there will be gradients in a particular direction across the experimental

material, the homogeneity required for Blocks to be regarded as a variation factor

would not obtain and it should be designated as an expectation factor. Another

situation in which it would be inappropriate to classify Blocks as a variation factor

is where it is expected that an identi�able group of the blocks will be low yielding

while another group will be high yielding. One consequence of the di�erence in the

symmetry properties of expectation and variation factors is that inferences about the

e�ects of an expectation factor will necessarily be restricted to the levels observed in

a study.
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We here note that it is not uncommon for the division of the factors into expec-

tation/variation classes to yield exactly the same sets of factors as the tiers. This is

the usual case for �eld trials where all the unrandomized factors (that is, �rst tier

factors) are often categorized as variation factors and all the randomized factors (that

is, second tier factors) as expectation factors. However, it is not always the case that

the two dichotomies are equivalent as is discussed in more detail in section 6.3.

Example 2.1 (cont'd): It is likely that the expectation/variation classes will
correspond to the tiers in this example. That is, Rows, Columns and Sub-

plots will be categorized as variation factors and Varieties and Treatments as
expectation factors.
However, this is not the only possible classi�cation for the example. For

example, one can envisage situations where it would be appropriate to classify
Varieties as a variation factor and/or Rows as an expectation factor. [To be
continued.]

2.2.4 Structure set

The structure set for a study consists of a set of structures, usually only one for

each tier of factors, ordered in the same way as the tiers. Each structure summarizes

the relationships between the factors in a tier and, perhaps, between the factors in a

tier and those from lower tiers; it may include pseudofactors. A structure is labelled

according to the tier from which it is primarily derived in that it is the relationships

between all the factors in that tier that are speci�ed in the structure. Clearly, the set

of factors in a structure may not be the same as the set of factors in a tier as the set

of factors in a structure may include factors from more than one tier.

The structure set for a study is derived from the tiers by:

1. determining the relationships between the factors in the �rst tier, expressing

them in notation of Wilkinson and Rogers (1973); and

2. for each of the remaining tiers determine the structure by specifying the rela-

tionships, possibly including pseudofactor relationships,

(a) between all factors in a tier, and

(b) between factors from a tier and from the tiers below it.
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In the notation of Wilkinson and Rogers (1973) the crossed relationship is denoted

by an asterisk (�), the nested relationship by a slash (=), the additive operator by a

plus (+) and the compound operator by a dot (:); the pseudofactor operator is denoted

by two slashes (==) (Alvey et al., 1977). A pseudofactor is a factor included in a

structure for the study which has no scienti�c meaning but which aids in the analysis

(Wilkinson and Rogers, 1973).

In addition to containing the factors and their relationships, the order of each factor

will precede the factor's name in the lowest structure in which it appears. However,

to be able to de�ne the order of a factor, de�nitions are required of the properties of

terms; the terms are derived, as outlined in section 2.2.5, from the structures in the

structure set. The associated de�nitions are illustrated by example in that section.

A term is a set of factors which might contribute, in combination, to di�erences

between observational units. Note that pseudofactors lead to pseudoterms, a pseu-

doterm being a term whose factors include at least one pseudofactor. As for pseud-

ofactors, pseudoterms are included only to aid in the analysis; for example, their

inclusion may result in a structure-balanced study as in the case of the example 3.1

presented in chapter 3.

A term is written as a list of factors or letters, separated by full stops. The list of

letters for a term is formed by taking one letter, usually the �rst, from each factor's

name; on occasion, to economize on space, the full stops will be omitted from the list

of letters. A term is, in some ways, equivalent to a factor as de�ned by Tjur (1984)

and Bailey (1984). It obviously is when the term consists of only one of the factors

from the original set of factors making up the tiers; when a term involves more than

one factor from the original set, it can be thought of as de�ning a new factor whose

levels correspond to the levels combinations of the original factors. However, I reserve

the name factor for those in the original set.

The summation matrix for a term is the n�nmatrix whose elements are ones and

zeros with an element equal to one if the observation corresponding to the row of the

matrix has the same levels combinations of the factors in the term as the observation

corresponding to the column (James, 1957, 1982; Speed, 1986). The model space

of a term is the subspace of the observation space, Rn, which is the range of the
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summation matrix for the term. One term is said to be marginal to another if its

model space is a subspace of the model space of another term from the same structure,

this being the case because of the innate relationship between the levels combinations

of the two terms and being independent of the replication of the levels combination

of the two terms (Nelder, 1977). The marginality relationships between terms are

displayed in Hasse diagrams of term marginalities as described in section 2.2.5. One

term (A) is said to be immediately marginal to another (B) if A is marginal to B

but not marginal to any other term marginal to B. A nesting term for a nested

factor is a term that does not contain the nested factor but which is immediately

marginal to a term that does. An observational-unit subset for a term is a subset

consisting of all those observational units that have the same levels combination of

the factors in the term. The replication of a levels combination for the factors

in a term is the number of elements in the corresponding observational-unit subset.

The order of a factor, that is not nested within another factor, is its number of

levels; the order of a nested factor is the maximum number of di�erent levels of the

factor that occurs in the observational-unit subsets of the nesting term(s) from the

structure for the tier to which the factor belongs.

The crossing and nesting relationships between factors are usually thought of as

being innate to the observational units (Nelder, 1965a; Millman and Glass, 1967;

White, 1975). However, it is desirable that the particular relationships which are

�nally used in the structure set for a study depend upon the randomization employed.

To illustrate, consider a �eld trial in which the plots are actually arranged in a rect-

angular array. The plots could be indexed by two factors, one (Rows) corresponding

to the rows and the other (Position) to the position of the plots along the rows. The

two factors are clearly crossed since plots in di�erent rows but in the same position

along the row are connected by being in the same position. However, suppose a ran-

domized complete block design is to be superimposed on the plots, with treatments

being randomized to the plots within each row. Because of this randomization, it is

no longer feasible to estimate both overall Position and Treatment e�ects as they are

not orthogonal. Thus, rather than giving the relationship as crossed (the relationship

innate to the observational units), it is usual to regard Rows as nesting Position. The
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decision to randomize, without restriction, the treatments to plots within each row

makes it impractical to estimate the e�ects of Position.

Thus the structure set for a particular study depends on the innate physical struc-

ture and the randomization employed. It is clear that a structure so based incorporates

the procedures used in setting up the study. Because of this, one might be tempted to

conclude that, like the division of the factors into tiers, the structures in the structure

set for the study are �xed. However, a further in
uence on the structure set for a

study is the subjective assumptions made about the occurrence (or not) of terms. For

example, as in the analyses presented in chapters 4 and 5, we may or may not decide

to assume that there is intertier additivity. Thus, in general there is not a unique

analysis to be employed for a particular study.

When writing out the structure, relationships between factors within a tier should

usually be speci�ed before the intertier relationships. This is because a structure

formula is read from left to right and �tted in this order when a sequential �tting

procedure is used. As terms arising in the current tier are confounded with terms

from lower tiers, rule 5 of table 2.1 may result in terms being incorrectly deleted if

intratier terms are not �tted �rst.

The rules for deriving the structure set for a study and associated analysis of vari-

ance table, given in this section and table 2.1, apply to a very wide range of studies.

However, the steps that will be given for computing the degrees of freedom, the sums

of squares and expected mean squares apply to a restricted class of studies. In partic-

ular, structure sets for studies that are covered by the approach put forward in this

thesis may be comprised of a combination of simple orthogonal, regular (or balanced)

Tjur and Tjur structures.

Before giving the conditions to be met by structures of these types, de�nitions are

provided of terms used in these conditions. A simple factor is one that is not nested

in any other factor or a nested factor for which the same number of di�erent levels of

the factor occurs in the observational-unit subsets of its nesting term(s); this number is

the order of the factor. A regular term is a term for which there is the same number

of elements in the subsets of the observational units, a subset being formed by taking

all those observational units with the same levels combinations of the factors in the
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term. The minimum of a set of terms is the term whose model space corresponds

to the intersection of the model spaces of the terms. Two terms are orthogonal if,

in their model spaces, the orthogonal complements of their intersection subspace are

orthogonal (Wilkinson, 1970; Tjur, 1984, section 3.2).

A simple orthogonal structure (Nelder, 1965a) is one for which:

1. all the factors are simple;

2. all relationships between factors are speci�ed to be either crossed or nested; and

3. either the product of the order of the factors in the structure equals the number

of observational units or the replications of the levels combinations of the factors

in the structure are equal.

A Tjur structure (Tjur, 1984, section 4.1; Bailey, 1984) is one for which:

1. there is a term derived from the structure that is equivalent to the term derived

by combining all the factors in the structure, or there is a maximal term

derived from the structure to which all other terms derived from the structure

are marginal;

2. any two terms from the structure are orthogonal; and

3. the set of terms in the structure is closed under the formation of minima.

A regular Tjur structure is a Tjur structure in which all the terms are regular.

Thus, a Tjur structure can involve, in addition to the nesting and crossing operators,

operators such as the additive and pseudofactor operators, described by Wilkinson

and Rogers (1973). Further, the terms do not have to be regular; however, as outlined

by Tjur (1984, section 3.2), to ensure that terms are orthogonal, the terms from a

structure do have to meet a proportionality condition in respect of the replications of

levels combinations of terms.

As Bailey (1984) has outlined, simple orthogonal structures are a subset of regular

Tjur structures which, in turn, are a subset of Tjur structures. Note that all the terms

derived from a simple orthogonal structure are regular.
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Example 2.1 (cont'd): The structure set is:

Tier Structure

1 (v Rows�v Columns)=t Subplots

2 v Varieties�t Treatments

That Rows and Columns are crossed and Subplots nested within these two
factors in the bottom tier structure is a consequence of the randomization that
was employed; that is, these relationships are appropriate because a Latin
square design was employed in assigning whole-plot treatments and subplot
treatments were randomized within each whole plot.
The structures in both sets are simple orthogonal structures:

1. all the factors are simple;

2. in any structure, the only relationships are crossing and nesting relation-
ships; and

3. the product of the orders of the factors in the �rst structure is v2t which
equals the number of observational units and the replication of the levels
combinations of Varieties and Treatments is v for all combinations.

[To be continued.]

2.2.5 Analysis of variance table

In this step, the analysis table for the study is derived from the structure set (table 2.1)

and the degrees of freedom (table 2.2), sums of squares (table 2.3) and mean squares

are computed.

To obtain the analysis of variance table, the structure set for a study has to be

combined with the layout. The conventions for doing this are given in table 2.1.

From rule 1 we obtain a set of terms for each structure and from these derive the sets

of sources for the analysis of variance table. Each source is a subspace of the sample

space, the whole of which is identi�ed as arising from a particular set of terms. A

source will either correspond to a term (called the de�ning term) or be a residual

source, the latter being the remainder for a source once terms confounded with it have

been removed. A residual source takes its de�ning term from the highest nonresidual

source with which it is confounded, highest meaning from the highest structure. The

sources with which a source is confounded are not cited speci�cally if no ambiguity
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Table 2.1: Rules for deriving the analysis of variance table from the

structure set

Rule 1: Having determined the structure set as described in section 2.2.4, ex-
pand each structure, using the rules described in Wilkinson and Rogers
(1973), to obtain a set of terms including a grand mean term (G) and,
perhaps, some pseudoterms for each structure.

Rule 2: All the terms from the structure for the bottom tier will have a source
in the table and these sources will all begin in the same column.

Rule 3: Sources for terms from higher structures will be included in the table
under the source(s) from the structures below, with which they are con-
founded. They will be indented so that sources from the same structure
all start in the same column, there being a di�erent starting column for
each structure.

Rule 4: Terms that occur in the sets derived from two consecutive structures
will not have a source entered for the higher of the structures.

Rule 5: Terms totally aliased with terms occurring previously in the same struc-
ture will not be included in the table. A note of such terms will be made
underneath the table.

Rule 6: For a source which has other terms from higher structures confounded
with it, a residual source is included along with sources for other terms
from the closest, usually the next, structure if there is any information
in excess of these latter terms.

will result. A confounded source is one whose de�ning term is in a higher structure

than that of the source with which it is confounded and the subspaces for the two

sources are not orthogonal. This is in contrast to a marginal source which is a

source whose de�ning term is marginal to that for the other source. An aliased

source is a source that is neither orthogonal nor marginal to sources and whose

de�ning terms arise from the same structure as its own. The aliasing may be partial

or total, depending on whether a part or none of the information is available for the

aliased source; for partial aliasing, the eÆciency factor for the aliased source is strictly

between zero and one whereas, for total aliasing, the eÆciency factor is zero. Also,

the confounding may be either partial or total depending on whether only part or

all of the information about a confounded term is estimable from a single source; that
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is, for partial confounding, the eÆciency factor for the confounded term is strictly

between zero and one whereas, for total confounding, it is one.

The form of the analysis of variance table produced as described in this section is the

same as the table produced by GENSTAT 4 (Alvey et al., 1977). The interpretation

of the sources in the analysis is described by Wilkinson and Rogers (1973). Central

to determining this table are the marginality, aliasing and confounding inherent in a

study. These three phenomena are similar in that they all refer to cases in which the

model subspaces for two di�erent sources from a study are nonorthogonal. However,

the circumstances leading to their being nonorthogonal are di�erent in each case.

Marginality, as de�ned above, is an innate relationship between the model spaces

of di�erent terms, being independent of the actual levels combinations included in

the study and the manner in which they are replicated. This relationship extends to

sources in that a source is marginal to another if its de�ning term is marginal to that

of the other source.

For example, for a study involving two factors A and B which are crossed, the

model subspace for A is marginal to that for A:B in that the model subspace for

A is a subspace of that for A:B. This is true irrespective of which combinations of

the levels of A and B are included and how they are replicated. Thus, sources with

de�ning term A are marginal to those with de�ning term A:B.

On the other hand, aliasing arises when it is decided to replicate disproportion-

ately the levels combinations of at least some factors, possibly excluding some levels

combinations altogether. That is, the complete set of levels combinations is theoreti-

cally observable in equal numbers but one chooses to observe them disproportionately.

Thus, aliasing occurs in connection with the fractional and nonorthogonal factorial

designs but not the balanced incomplete block designs.

Confounding occurs as a result of the need to associate one and only one levels

combination of one set of factors with a levels combination of a set of factors from a

lower tier. This is necessary because it is impossible to observe more than one levels

combination from the �rst set with a levels combination from the second set.

For example, in a completely randomized experiment we wish to associate one and

only one of the t treatments with each of the p plots. The underlying conceptual
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population is the set of pt observations that would be obtained if all t treatments

were observed on each of the p plots (see Kempthorne, 1952, section 7.5; Nelder,

1977, sections 7.1 and 7.2)). It is clearly impossible to observe all treatment-plot

combinations; we observe only a fraction. Consequently, the model subspace for the

Treatments source is a subspace of that for the Plots source.

A major di�erence between aliasing and confounding is that all randomized experi-

ments necessarily involve confounding but often do not involve aliasing. Further, with

total aliasing, it is usually assumed that the term associated with the totally aliased

source does not contribute to di�erences between the observational units while with

confounding it is recognized that the associated terms will both contribute to such dif-

ferences. Thus a totally aliased source is redundant and is omitted from the analysis

while a confounded source remains relevant and should be retained in the analysis.

The steps for computing the degrees of freedom and sums of squares for the sources

in this analysis table are given in tables 2.2 and 2.3. These steps rely on identifying

marginal terms and obtaining means and e�ects vectors. The marginality relation-

ships between terms are displayed in a Hasse diagram of term marginalities

by linking, with descending lines,terms that are immediately marginal; the marginal

term is placed above the term to which it is marginal. This diagram is called the

Hasse diagram for ancestral subsets by Bailey (1982a, 1984) and the factor structure

diagram by Tjur (1984). The means vector for a particular term is obtained by

computing the mean for each observational unit from all observations with the same

levels combination of the factors in the term as the unit for which the mean is being

calculated; this is denoted by y subscripted with the name of the term. The e�ects

vector for a particular term is a linear form in the means vectors for terms marginal

to that term.

The steps given in tables 2.2 and 2.3 apply to studies in which the structure set

is comprised of Tjur structures and the relationship between terms from di�erent

structures is such that the analysis for the study is orthogonal. However, more general

expressions for the degrees of freedom and sums of squares, in terms of projection

operators, are given in theorems 3.14 and 3.15 of section 3.3.1. Further, conditions

under which the steps for computing the expected mean squares, given in table 2.8,
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Table 2.2: Steps for computing the degrees of freedom for the analysis

of variance

Step 1: First, for each simple orthogonal structure in the structure set, obtain
the degrees of freedom for the terms in the structure. De�ne the com-
ponent for each factor in a term to be the factor's order minus one if the
factor does not nest other factors in the term, otherwise the component
is the order. The degrees of freedom of the term is the product of this
set of components.
More generally, the degrees of freedom for the terms in a Tjur struc-

ture can be obtained using the Hasse diagram of term marginalities
(Tjur, 1984). Each term in the Hasse diagram has to its left the num-
ber of levels combinations of the factors comprising that term for which
there are observations. To the right of the term is the degrees of freedom
which is computed by taking the di�erence between the number to the
left of that term and the sum of the degrees of freedom to the right of
all terms marginal to that term.

Step 2: Compute the degrees of freedom for each source in the analysis table.
They will be either the degrees of freedom computed for the term or,
for residual sources, they will be computed as the di�erence between
the degrees of freedom of the term for which it is the residual and the
sum of the degrees of freedom of all sources confounded with that term
which have no sources confounded with them.

can be applied will a�ect the range of studies covered by the approach being outlined.

Overall, the approach can be applied to studies for which:

1. a structure involving only expectation factors is a Tjur structure;

2. a structure involving variation factors is a regular Tjur structure;

3. the maximal term for Tier 1 is a unit term; that is, a term for which each of

its levels combinations is associated with one and only one observational unit;

4. expectation and variation factors are randomized only to variation factors; and

5. all terms in the analysis display structure balance as outlined in section 3.3.1.

The structure-balance condition above can be relaxed to become: the terms in the

study must exhibit structure balance after those involving only expectation factors
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Table 2.3: Steps for computing the sums of squares for the analysis of

variance in orthogonal studies

Step 1: Firstly, for each simple orthogonal structure in the structure set, obtain
expressions for the sums of squares. To do this write down the algebraic
expression for the degrees of freedom in terms of the components given
in step 1 of table 2.2; use symbols for the order of the factors, not the
observed numbers. Expand this expression and replace each product
of orders of the factors in this expression by the means vector for the
same set of factors. The e�ects vector for the term is this linear form
in the means vectors. The sum of squares for the term is then the sum
of squares of the elements of the e�ects vector.
More generally, the expressions for the sums of squares for the terms

in a Tjur structure can be obtained using the Hasse diagram of term
marginalities (Tjur, 1984). For each term in the Hasse diagram there
is to the left the mean vector for the set of factors in the term. To the
right of the term is the e�ects vector which, for a term, is computed by
taking the di�erence between the mean vector to the left of that term
and the sum of the e�ects vectors to the right of all terms marginal
to that term. Again the sum of squares for a term is then the sum of
squares of the elements in the e�ects vector.

Step 2: Compute the sum of squares for each source in the analysis table. The
sum of squares for a source in the table, other than a residual source,
will be the sum of squares computed for the term. For residual sources,
the sum of squares will be computed as the di�erence between the sum
of squares of the term for which the source is residual and the sums
of the sums of squares of all sources confounded with that term which
have no sources confounded with them.

have been omitted. Thus, the approach outlined can also be employed with ex-

periments whose expectation terms exhibit �rst-order balance such as the carry-over

experiment of section 4.3.2.4, or those with completely nonorthogonal expectation

models such as the two-factor completely randomized design with unequal replication

presented in section 4.2.2.

Example 2.1 (cont'd): The Hasse diagrams of term marginalities giving
the terms derived from the structure set are shown in �gures 2.2 and 2.3.
In the set of terms derived from the �rst structure, Rows.Columns, but not
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Figure 2.2: Hasse Diagram of term marginalities for a split-plot experi-

ment with degrees of freedom
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Rows, is immediately marginal to Rows.Columns.Subplots; Rows, Columns

and Rows.Columns are the terms immediately marginal to Rows.Columns. G,
denoted by � in �gures 2.2 and 2.3, is the minimum of Rows and Columns;
Rows.Columns is the minimum of Rows.Columns and Rows.Columns.Subplots

. Rows.Columns.Subplots is a unit term. Rows.Columns is the only nesting
term in the structure, being the nesting term for the factor Subplots.
The degrees of freedom of the terms, derived using step 1 of table 2.2, are

given in �gure 2.2; expressions for the e�ects vectors in terms of means vectors,
derived using step 1 of table 2.3, are given in �gure 2.3.
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Figure 2.3: Hasse diagram of term marginalities for a split-plot experi-

ment with e�ects vectors
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The analysis of variance table, derived from the structure set given in sec-
tion 2.2.4 as described in tables 2.1{2.3, is given in table 2.4. The sums of
squares are based on the above e�ects vectors as described in step 2 of table 2.3.
The interpretation of the sources in the analysis of variance table is as follows:

� Rows, which is derived from the �rst structure and so is not confounded
with any other source, represents the overall Rows e�ects;

� Rows.Columns represents the interactions of Rows and Columns;

� Rows.Columns.Subplots represents the di�erences between subplots
within each row-column combination as the sources Rows, Columns and
Rows.Columns have been excluded;

� Varieties, confounded with Rows.Columns, represents the overall Varieties
e�ects; the confounding is epitomised by the indentation of Varieties under
Rows.Columns;
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� Varieties.Treatments, confounded with Rows.Columns.Subplots, repre-
sents the interaction of Varieties and Treatments. in this case, the con-
founding is epitomised by the indentation of Varieties.Treatments under
Rows.Columns.Subplots.

� The Residual sources correspond to the unconfounded Rows.Columns and
Rows.Columns.Subplots subspaces, respectively; they have de�ning terms
Rows.Columns and Rows.Columns.Subplots, respectively.

[To be continued.]

Table 2.4: Analysis of variance table for a split-plot experiment with

main plots in a Latin square design

Source DF MSq

Rows 3 534.43
Columns 3 49.50
Rows.Columns 9
Varieties 3 498.91
Residual 6 40.38

Rows.Columns.Subplots 16
Treatments 1 162.90
Varieties.Treatments 3 106.81
Residual 12 15.34

Total 31
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2.2.6 Expectation and variation models

At this stage, the terms derived from the structure set, as summarized in the analysis

table, are categorized as expectation or variation terms. The maximal expectation

and variation models are derived from these terms (table 2.5).

Then the sets of alternative models that might be considered are obtained with the

aid of Hasse diagrams of models, one each for expectation and variation. These Hasse

diagrams of models di�er from the Hasse diagrams of term marginalities of Bailey

(1982a, 1984) and Tjur (1984) which have been used earlier in this chapter.

2.2.6.1 Generating the maximal expectation and variation models

The steps to be performed in generating the maximal expectation and variationmodels

are given in table 2.5.

In order to specify the maximal expectation and variation models, one begins by

nominating which of the terms, obtained from the structure set for a study, in
uences

each aspect. These terms, together with their interrelationships, have been conve-

niently summarized in an analysis of variance table, derived from the structure set for

a study as described in section 2.2.5. Determination of which terms contribute to the

expectation model and which to the variation model utilizes the expectation/varia-

tion dichotomy of the factors. As detailed in table 2.5, expectation terms are those

that include only expectation factors; variation terms are those that include at least

one variation factor. A consequence of this is that a factor nested within a variation

factor must also be capable of being regarded as a variation factor; this is because

any term involving the nested factor will also involving the nesting factor and hence

will be a variation term.

Having classi�ed the terms on which the analysis of variance table is based, our next

aim is to de�ne the maximal expectation model. A model'sminimal set of marginal

terms for a particular set of expectation terms is the smallest set whose model space

is the same as that of the full set; that is, the set obtained after all marginal terms

(section 2.2.5) have been deleted. The maximal expectation model is the sum of

terms in the minimal set of marginal terms for the full set of expectation terms.
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Table 2.5: Steps for determining the maximal expectation and variation

models

Step 1: Classify as expectation factors those factors for which inference is to be
based on location summary measures and as variation factors those for
which it is to be based on dispersion summary measures.

Step 2: Designate as expectation terms those terms consisting of only expec-
tation factors and as variation terms those comprising at least one
variation factor.

Step 3: The maximal expectation model is the sum of terms in the minimal set
of marginal terms for the full set of expectation terms (see page 53 for
more detailed description). The maximal variation model is the sum
of several variance matrices, one for each structure in the study. Each
variance matrix is the linear combination of the summation matrices for
the variation terms from the structure; the coeÆcient of a summation
matrix in the linear combination is the canonical covariance compo-
nents for the corresponding variation term. The variation model can be
expressed symbolically as the sum of the variation terms for the study.

The maximal expectation model represents the most complex model for the mech-

anism by which the expectation factors might a�ect the expectation of the response

variable. We note that other parametrizations of the expectation are possible. The

parametrization of the expectation is not unique (see section 6.4). It could in fact be

expressed in terms of polynomial functions on the levels of quantitative factors with

appropriate deviations and interactions with qualitative factors; or a set of orthogo-

nal subspaces on the levels of factors might be speci�ed. For the initial cycle, such

alternative parametrizations must cover the same model space as the saturated model

described above, since this will ensure that the estimates of variation model parame-

ters are uncontaminated by expectation parameters. As the di�erences between these

parametrizations are inconsequential in the present context, we will consider explicitly

only the parametrization based on the minimal set of marginal terms for the full set of

expectation terms. It has the advantage that it relates directly to the mechanism by

which the expectation factors might a�ect the expectation of the response variable.
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The maximal variation model represents an hypothesized structure for the vari-

ance matrix of the observations. As outlined in table 2.5, the variance matrix is

expressed as the sum of several variance matrices, one for each structure in the study.

Each of these matrices is the linear combination of the summation matrices for the

variation terms from the structure. For experiments in which the variation factors

occur in only simple orthogonal structures, the summation matrices are the direct

product of I (the unit matrix) and J (the matrix of ones) matrices, premultiplied by

the permutation matrix for the structure and postmultiplied by its transpose; the per-

mutation matrix for a structure speci�es the association between the observed

levels combinations of the factors in the structure and the observational units (see

section 3.2). The coeÆcients of the terms in the linear combination are canonical

covariance components which measure the covariation, between the observational

units, contributed by a particular term in excess of that of marginal terms (Nelder,

1965a and 1977). That is, of possible interpretations outlined in section 1.2.2.2, I

will use the covariance interpretation so that estimates of the canonical components

may be negative. The canonical covariance components are the quantities that will

be estimated and tested for in the analysis.

Example 2.1 (cont'd): Given the terms obtained by expanding the structures
and contained in the analysis of variance table given in table 2.4, the maximal
expectation model is E

�
Y
�
= V:T ; that is, an element of � is:

E
h
y(ij)klm

i
= (��)ij

where

y(ij)klm is an observation with klm indicating the levels of the fac-
tors Rows, Columns, and Subplots, respectively, for that
observation, and

(��)ij is the expected response when the response depends on the
combination of Variety and Treatment with ij being the
levels combination of the respective factors which is as-
sociated with observation klm.
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The maximal model for the variation is

Var[Y ] = G+R+ C +R:C +R:C:S

and the variance matrix for this model is given by the following expression
(Nelder, 1965a),

Var[y ] = V

= �GJ
 J
 J+ �RI
 J
 J+ �CJ
 I
 J

+ �RCI
 I
 J+ �RCSI
 I
 I

where

�j is the canonical covariance component arising from the factor
combination of the factor set j, and

the three matrices in the direct products correspond to Rows, Col-
umns and Subplots, respectively, and so are of orders v, v and
t.

The canonical covariance component �G is the basic covariance of observa-
tions in the study, �R (or �C) is the excess covariance of observations in the
same row (or column) over the basic, �RC is the excess covariance of observa-
tions in the same row-column combination over that of those in the same row
or the same column, and �RCS is the excess covariance of identical observations
over that of those in the same row-column combination. [To be continued.]

2.2.6.2 Generating the lattices of expectation and variation models

The expectation and variation lattices, which contains all possible expectation and

variation models, are constructed as described in table 2.6. Models in such lattices are

either mutually exclusive or marginal to each other. A model is marginal to another

if the terms in the �rst model are either contained in, or marginal (section 2.2.5) to,

those in the second model.

The expectation models correspond to alternative hypotheses concerning the mech-

anisms by which the expectation factors might operate, and are based on the terms

derived from the structure set for the study. However, we do not follow the tradi-

tional practice of parametrizing our models so that the parameters in a model are

either a subset or superset of those in another model, for reasons discussed in sec-

tion 6.4. Hence, the expectation lattice is based on the marginality relationships

between terms in the di�erent models.

In the case of the variation models, it is prescribed that the unit terms are always

included as there is usually variation between individual observations. Similarly with
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the grand mean term G, because we are unable to distinguish between variation

models with and without the term; except in the unusual circumstance that the

expectation is hypothesized to be zero, the expected mean square for the source

associated with G will involve both a variation and an expectation contribution.

The variation lattice is based on the inclusion relationships between the sets of

terms in the models for the variation. The models themselves correspond to alterna-

tive hypotheses concerning the origin of variation in the study; that is, the models

correspond to alternative models for the variance matrix.

Table 2.6: Generating the expectation and variation lattices of models

Step 1: Form all possible minimal sets of marginal terms from the expectation
terms. The expectation model corresponds to the sum of the terms in
one of these sets.

Step 2: To construct the Hasse diagram of the expectation model lattice we
must determine the relationships between the expectation models. A
model's minimal set of marginal models is obtained by listing all models
marginal to it and deleting those models marginal to another model in
the list. Two models in the lattice are linked if one is in the minimal
set of marginal models of the other; the marginal model is placed above
the other model.

Step 3: The Hasse diagram of the variation lattice is constructed by taking the
sums of all possible combinations of variation terms in the study, subject
to the restriction that the unit term(s) and the term G are included.
Again, the Hasse diagram of the variation model lattice is obtained by
drawing downwards links to a model from the models in its minimal set
of marginal models.
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Figure 2.4: Lattices of models for a split-plot experiment in which the

main plots are arranged in a Latin square design
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Example 2.1 (cont'd): The Hasse diagram of expectation models is shown
in �gure 2.4. The details of these models are as follows:

E
�
Y
�
= V:T This is the maximal model for the expectation since fV:Tg is

the smallest set of terms that has the same model space as the
full set of terms. The formal expression for this model, given in
section 2.2.6.1, is E

�
y(ij)klm

�
= (��)ij which in vector notation

is written � = �V T . The underlying mechanism for this model
is that the e�ect of V depends on the level of T .

E
�
Y
�
= V + T The formal expressions are E

�
y(ij)klm

�
= �i + �j and, in vector

notation, � = �V+T = �V +�T . This model, which is imme-
diately marginal to E

�
Y
�
= V:T , corresponds to a mechanism

in which the two factors are (additively) independent.

E
�
Y
�
= V The formal expressions are E

�
y(ij)klm

�
= �i and, in vector no-

tation, � = �V . This model corresponds to V only having an



2.2.6 Expectation and variation models 59

e�ect. It is immediately marginal to E
�
Y
�
= V + T and mutu-

ally exclusive to E
�
Y
�
= T .

E
�
Y
�
= T The formal expressions are E

�
y(ij)klm

�
= �j and, in vector no-

tation, � = �T . This model corresponds to T only having an
e�ect. It is immediately marginal to E

�
Y
�
= V + T and mutu-

ally exclusive to E
�
Y
�
= V .

E
�
Y
�
= G The formal expressions are E

�
y(ij)klm

�
= � and, in vector no-

tation, � = �G. This model is the constant expectation model
and is immediately marginal to both the models E

�
Y
�
= V and

E
�
Y
�
= T .

E
�
Y
�
= � A formal expression is E

�
y(ij)klm

�
= 0. It is the zero model and

is immediately marginal to the model E
�
Y
�
= G.

That the models are distinct is established by considering the estimators for
each model. For example, the estimators under the model E

�
Y
�
= V + T are

yV + yT � yG and under E
�
Y
�
= V are yV where ys are vectors of means for the

levels combinations of the subscripted factors.
The set of variation models is derived by taking the highest order variation

term, R:C:S, and the term G in combination with all possible subsets of the
other terms. The Hasse diagram of the variation model is shown in �gure 2.4
and the covariance-based interpretation of these variation models is given in
table 2.7. The model involving the highest order term, R:C:S, and G is now
the simplest model, other than the no variation model (�) which is included
only for completeness. [To be continued.]
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Table 2.7: Interpretation of variation models for a split-plot experiment

with main plots in a Latin square design

Model Interpretation

G +R:C:S All observations have the same covariance.

G+R +R:C:S Observations from the same row are more alike than
observations from di�erent rows.

G+R+C +R:C:S A pair of observations from di�erent columns are more
alike if they are from the same row.

G +R:C +R:C:S Observations from the same row-column combination
are more alike than those from di�erent row-column
combinations.
Observations from di�erent row-column combinations
are equally alike irrespective of the row-column com-
binations involved

G+R +R:C +R:C:S Observations from di�erent row-column combinations
are more alike if they come from the same row.

G+R+C +R:C +R:C:S Observations from either the same row or the same
column are more similar than observations that di�er
in both their row and column.
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2.2.7 Expected mean squares

The expected mean squares, based on the maximal expectation and variation models,

are computed for the sources in the analysis table as outlined in table 2.8. In or-

der for these steps to be applied the study should satisfy the conditions outlined in

section 2.2.5. Having computed the expected mean squares, one should then pool

pseudoterms, if any, with the term(s) to which they are linked. If only pseudoterms,

and not the term(s) to which they are linked, are confounded with a particular source,

then pseudoterms linked to the same term should be pooled together and labelled with

the name of that term (see example 3.1 in section 3.1).

Table 2.8: Steps for determining the expected mean squares for the

maximal expectation and variation models

Step 1: Write down a canonical covariance component for each variation term
that is not a pseudoterm;

Step 2: Determine the coeÆcient for each canonical covariance component. For
a particular component, provided the term corresponding to it is regular,
it is the replication for its term; for a simple orthogonal structure, it is
the product of the orders of the factors not in its term.

Step 3: For each canonical covariance component, write the product of the com-
ponent with its coeÆcient against any source in the table that:

� has a de�ning term marginal to the component's term;

� is confounded with, and hence indented under, a source marginal
to the component's term;

In the expression for the expected mean square for any source which
is nonorthogonal but structure-balanced, multiply the coeÆcients of all
components arising in the same structure as it by its eÆciency factor
That is, multiply the coeÆcients of all variation terms to which it is
marginal.

Step 4: For each source in the table that corresponds to an expectation term,
include an expectation component which is the same quadratic form, in
the expectation of the variable, as is the mean square, in the observa-
tions (Searle, 1971b).
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Example 2.1 (cont'd) The expected mean squares have been derived, using
the steps given in table 2.8 thereby extending table 2.4 to table 2.9. [To be
continued.]

Table 2.9: Analysis of variance table for a split-plot experiment with

main plots in a Latin square design.

EXPECTED MEAN SQUARES
Variation Contribution Expectation Contributiony

SOURCE DF - CoeÆcients of - function of �
�R:C:S �RC �R �C

Rows 3 1 2 8
Columns 3 1 2 8
Rows.Columns 9
V 3 1 2 fV (�)
Residual 6 1 2

Rows.Columns.Subplots 16
T 1 1 fT (�)
V.T 3 1 fV T (�)
Residual 12 1

Total 31

yThe functions giving the expectation contribution under the maximal expectation model are as

follows:

fV (�) = 8�((�� )i: � (�� )::)
2=3;

fT (�) = 16�((�� ):j � (�� )::)
2;

fV T (�) = 4��((��)ij � (�� )i: � (�� ):j + (�� )::)
2=3;

where the dot subscript denotes summation over that subscript.
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2.2.8 Model �tting/testing

Model testing and �tting, based on the analysis of variance method, have been dis-

cussed by Brien (1989). The purpose of model testing is to see if the expectation and

variation models can be reduced to more parsimonious models that still adequately

describe the data. The purpose of model �tting is to obtain the �tted values, and

their variances, for a particular expectation model.

Basic to model testing and �tting are the stratum components. A stratum is a

source in an analysis of variance table whose expected mean square includes canonical

covariance components but not functions of the expectation vector. That is, a source

whose de�ning term is a variation term. The stratum component is then the

covariance associated with a stratum which is expressible as the linear combination

of canonical covariance components corresponding to the expected mean square for

the stratum. This usage of stratum di�ers from that of Nelder (1965a,b) who uses it

to mean a source in the null analysis of variance; that is, an analysis for two-tiered

experiments involving only unrandomized factors.

In carrying out model �tting and testing, estimates of the stratum components are

obtained by calculating mean squares from the data. The expectation parameters

are estimated from linear contrasts on the data and their variances from the stratum

components.

To determine if a model can be reduced, testing is carried out in steps such that

the current model, initially the maximal model, is compared to a reduced model im-

mediately above it in the lattice of models for the study. The models are compared,

following traditional practice, by taking the ratio of two (linear combinations of)

mean squares. The mean squares involved are such that the di�erence between the

expected values of the numerator and the denominator is a function only of param-

eters for the terms by which the two models di�er. Expected mean squares under

reduced models are obtained by setting the omitted canonical covariance components

to zero and deriving the formula for the quadratic form in the expectation vector for a

reduced expectation model. One way in which the proposed model selection method

di�ers from traditional practice arises when such ratios are used to test hypotheses
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about canonical covariance components; when the canonical covariance components

are being interpreted as covariances, as in this thesis, the tests will be two-sided to

allow for negative components (as in Smith and Murray, 1984).

For the purposes of the thesis, we will perform model testing without the pooling of

nonsigni�cant mean squares. This is because, as Cox (1984) suggests, there is likely

to be little di�erence in the conclusions from tests with and without pooling when

there are suÆcient degrees of freedom. Further the occurrence of Type II errors will

lead to biased estimates of stratum components. However, estimation will be based

on the selected model and, as discussed in section 3.4, will employ generalized linear

models.

Variation model selection precedes expectation model selection because, in the

choice between variation models, the expected mean squares will involve only canon-

ical covariance components. On the other hand, in choosing between expectation

models, the expected mean squares will include a single expectation component and

one or more variation terms. This is because, for orthogonal studies at least, the vari-

ation contribution to the expected mean square for a particular source in the analysis

involves only the source's and confounded sources' de�ning terms and terms marginal

to these de�ning terms; any term which has a variation term marginal to it is also

a variation term and it is desirable that any term that has another term confounded

with it be a variation term.

2.2.8.1 Selecting the variation model

As there is to be no pooling in selecting the variation model, the order of testing is of

no consequence. One merely carries out the signi�cance tests for all terms based on

the expected mean squares under the maximal variation model.

Example 2.1 (cont'd): The F-ratios, when there is to be no pooling, are
given in table 2.10. Based on two-sided tests, the selected variation model is

Var[Y ] = G+R+R:C:S.

The estimated canonical covariance components, obtained using generalized
linear models as described in section 3.4, are

�R = 63:4 and �RCS = 27:4.
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Table 2.10: Analysis of variance table for a split-plot experiment with

main plots in a Latin square design.

EXPECTED MEAN SQUARES
Variation Contribution Expectation Contributiony under Models

SOURCE DF { CoeÆcients of MSq F

�R:C:S �RC �R �C V T V + T V:T

Rows 3 1 2 8 534.43 13.24

Columns 3 1 2 8 49.50 1.23

Rows.Columns 9

V 3 1 2 fV (�V ) { fV (�V ) fV (�V T ) 498.91

Residual 6 1 2 40.38 2.63

Rows.Columns.Subplots 16

T 1 1 { fT (�T ) fT (�T ) fT (�V T ) 162.90

V.T 3 1 { { { fV T (�V T ) 106.81 6.96

Residual 12 1 15.34

Total 31

yThe functions given in the expectation contribution are as follows:

fV (�V T ) = 8�((�� )i: � (�� )::)
2=3; fV (�V ) = 8�(�i � � :)

2=3;

fT (�V T ) = 16�((�� ):j � (�� )::)
2; fT (�T ) = 16�(�j � � :)

2;

fV T (�V T ) = 4��((��)ij � (�� )i: � (�� ):j + (�� )::)
2=3;

where the dot subscript denotes summation over that subscript.

These are exactly the same as obtained by pooling nonsigni�cant mean squares.
The estimated canonical covariance components, without pooling, are

�R = (534:43 � 40:38)=8 = 61:76 and �RCS = 15:34.

That is, there is a substantial di�erence between the two estimates for �RCS .
[To be continued.]



2.2.8 Model fitting/testing 66

2.2.8.2 Selecting the expectation model

Having settled on an appropriate variation model, one then chooses the expectation

model. However, there is a marked contrast between variation and expectation model

selection in the treatment of terms that are marginal to signi�cant terms. For variation

models the marginal terms are considered, whereas for expectation models they are

ignored. To examine main e�ects which are marginal to signi�cant interactions is, in

the context of the proposed approach, seen to be inappropriate; to do so would be

to attempt to �t two di�erent models to the same data. The situation here parallels

that when choosing between linear and quadratic models where, once signi�cance

of the quadratic term is established, the test for a linear term is inappropriate; the

linear term should always be included in the model. Thus, for orthogonal expectation

factors, model selection simply means testing the mean squares for expectation terms,

provided they are not marginal to signi�cant expectation terms. This is a consequence

of employing a backward elimination procedure.

Because of this di�erence in the treatment of expectation and variation terms,

signi�cance testing may depend on the division of the factors into expectation/varia-

tion classes.

Example 2.1 (cont'd): To choose between the models

E
�
Y
�
= V:T and E

�
Y
�
= V + T ,

the V:T mean square is appropriate since it is the only mean square whose
expectation does not involve models marginal to E

�
Y
�
= V:T (table 2.10); to

obtain the expectation contribution under reduced models one merely applies
step 3 of table 2.8 to the expectation vector for the reduced model. The V:T

mean square is compared to the Rows.Columns.Subplots Residual mean square.
If E

�
Y
�
= V:T is selected as the appropriate model then there is no need to

go further at this stage. We have determined our expectation model.
If E

�
Y
�
= V:T is rejected, then choosing between the models

E
�
Y
�
= G, E

�
Y
�
= V , E

�
Y
�
= T and E

�
Y
�
= V + T

is based on the V and T mean squares. The appropriate denominator for testing
the T mean square, when nonsigni�cant terms are not pooled, would be the
Rows.Columns.Subplots Residual mean square; the Rows.Columns Residual

mean square would be used to test the V mean square.
If both the V and T mean squares are signi�cant, the model E

�
Y
�
= V + T

is appropriate. If only one of V or T is signi�cant, a model involving the



2.2.8 Model fitting/testing 67

signi�cant term is suÆcient. Otherwise, if neither is signi�cant, E
�
Y
�
= G is

the appropriate model.
If V and T had been designated as variation factors then the tests about

terms involving these factors would di�er from those just described. A test for
T would be performed irrespective of whether V:T was signi�cant and, further,
would have V:T as the denominator rather than the Rows.Columns.Subplots

Residual source.
In fact, V and T are clearly expectation factors and the V:T term is signi�cant

so that the interaction model is required to describe the data adequately. The
estimates of the expectation parameters are the means given in table 2.11. An
examination of this table reveals the di�erential response of Vicland (1) and
the other varieties to the treatments.

Table 2.11: Estimates of expectation parameters for a split-plot experi-

ment with main plots in a Latin square design.

Treatment
Variety Check Ceresan M

Vicland (1) 36.0 50.6
Vicland (2) 50.8 55.4
Clinton 53.9 51.5
Branch 61.9 63.4
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Chapter 3

Analysis of variance quantities

3.1 Introduction

In chapter 2 a method of linear model analysis based on comparing alternative models

was outlined. Central to this method is computation of an analysis of variance table

which guides the comparison of mean squares based on their expectation under the

various models.

It is the purpose of this chapter to provide the justi�cation of the rules given in

chapter 2 for obtaining the important quantities in such tables, namely the degrees of

freedom, sums of squares and expected mean squares. The rules will be established for

the maximal models from multitiered studies (section 2.2.2; Brien, 1983) in which the

structures, derived from the tiers that contain variation factors, are regular. Further,

attention is restricted to structure-balanced experiments in a sense similar to that

described in section 1.2.2.2 and elucidated in section 3.3.1. Results for this class of

experiments have not been supplied previously.

The rules given in chapter 2 rely on the degrees of freedom, sums of squares and ex-

pected mean squares for a single structure. Thus, we shall �rst outline, in section 3.2,

the algebraic analysis of a single structure. This will provide a basis from which the

results for a whole analysis of variance for a multitiered study can be assembled in

section 3.3.
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The derivation of the expressions for quantities for a single structure is achieved

via an analysis of the algebra generated by the summation matrices for a structure

(James, 1957, 1982; Speed and Bailey, 1982). This analysis involves establishing the

connection between the three types of matrices fundamental to an analysis of vari-

ance (Speed and Bailey, 1982; Brien, Venables, James and Mayo, 1984; Tjur, 1984;

Speed, 1986), namely incidence matrices (W), summation/relationship matrices (S)

and orthogonal idempotent operators (E). The role for the incidence matrices is to

provide a basis for the speci�cation of the variation model in terms of the covariance

components (
s), that, in some circumstances, are the covariances between pairs of

observations. Three roles for the summation matrices are to specify the relationships

between the observations and so provide a basis for the relationship algebra for a

structure (James, 1957, 1982; Speed and Bailey, 1982), to obtain expressions for the

sums of squares that are convenient for calculation purposes and to provide a basis

for specifying the model for the variance matrix in terms of the canonical covariance

components (�s) (Nelder, 1965a and 1977). The idempotents are the mutually or-

thogonal idempotents of the relationship algebra, the matrices of the sums-of-squares

quadratic forms, and a basis for specifying the model for the variance matrix in terms

of the spectral components (�s). Expressions for the expected mean squares, in terms

of these latter quantities, are particularly simple as we shall see.

Having separately obtained the quantities for the structures in the study, the results

are merged to produce the �nal analysis. This is done by identifying for a structure,

the ith say, a set of projection operators that specify an orthogonal decomposition of

the sample space taking into account the terms in the �rst i structures. The ith set of

projection operators is obtained by taking the projection operators from the (i� 1)th

structure and the set of terms from the ith structure. The set of projection operators

from the (i � 1)th structure that have terms from the ith structure estimated from

their range will be partitioned to yield the projection operators for the ith structure.

A term will be estimated from the range of a projection operator from the (i � 1)th

structure if the term is confounded with the source corresponding to the projection

operator.

The confounding relationships between sources will be illustrated using a decom-
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position tree, this tree also depicting the analysis of variance decomposition. Its

root is the sample space or uncorrected Total source. Connected directly to the root

are the sources arising from the �rst structure. The sources arising from the second

structure are connected to the sources from the �rst structure with which they are

confounded; sources from the third structure, if any, are similarly connected to sources

from the second and so on. For examples, see �gures 3.3, 3.6 and 3.5.

Before proceeding to the derivation of the expressions, we introduce a simple

nonorthogonal example to be used, as a supplement to the orthogonal experiment

presented in chapter 2, in demonstrating the application of the results.

Figure 3.1: Field layout and yields for a simple lattice experiment

Replicates
I II

Block 1 2 3 1 2 3
1 5 3 1 5 9

1
18 19 21 23 21 17
4 2 6 2 4 8

Plot 2
13 18 22 25 23 20
7 8 9 3 6 7

3
11 14 26 27 25 17

Example 3.1: In an experiment, di�erent lines of a plant are randomized ac-
cording to a simple lattice design (Cochran and Cox, 1957, section 10.21). This
involves the association of two pseudofactors (Wilkinson and Rogers, 1973), C
and D say, with the levels of Lines. The levels of one of the Lines pseudofactors,
C say, is randomized within the blocks of the �rst replicate and between the
blocks of the second replicate; the complementary between-block and within-
block randomizations are performed for the other pseudofactor, D. The factors
in the �rst tier are Reps, Blocks, and Plots and the factors in the second tier are
Lines. The �eld layout and yields (from Wilkinson, 1970) are given in �gure 3.1.
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Figure 3.2: Hasse diagram of term marginalities for a simple lattice

experiment
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The structure set is as follows:

Tier Structure

1 2 Reps=3 Blocks=3 Plots

2 9 Lines==(3 C+3 D)

It is necessary to include the pseudofactors C and D in the structure derived
from tier 2 to obtain a set of structure-balanced terms.
The Hasse diagrams of term marginalities, giving the terms and their degrees

of freedom, are shown in �gure 3.2 and the decomposition tree is given in
�gure 3.3.
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Figure 3.3: Decomposition tree for a simple lattice experiment
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If the factors in both tiers of the experiment are classi�ed as being varia-
tion factors, then the maximal expectation and variation models are expressed
symbolically as follows:

E[y ] = G and Var[y ] = G+R+R:B +R:B:P + L:

The analysis table and expected mean squares for the experiment are shown
in table 3.1; general expressions for the contents of this table are given in ta-
ble 3.4. In testing for Lines, the pseudoterms and Lines sources confounded with
the same source are usually pooled as the individual terms are of no scienti�c
interest per se. [To be continued.]

Table 3.1: Analysis of variance table for a simple lattice experiment

EXPECTED MEAN SQUARES Pooled
SOURCE DF CoeÆcients of MSq MSq F

�RBP �RB �R �L

Reps 1 1 3 9 72.0 72.0

Reps.Blocks 4
Cy 2 1 3 1

2
2 39.0

Dy 2 1 3 1
2
2 63.0

Linesz 4 1 3 1
2
2 51.0

Reps.Blocks.Plots 12
Cy 2 1 1

2
2 3.0

Dy 2 1 1
2
2 3.0

Lines 4 1 2 2.0
Linesz 8 1 3

2
2.5 0.18

Residual 4 1 14.0 14.0

yThese sources are partially confounded with eÆciency 1
2 .

zThese lines are obtained by pooling the C, D and Lines sources confounded with the same source.



3.2 The algebraic analysis of a single structure 74

3.2 The algebraic analysis of a single structure

We outline useful results obtained from the analysis of the relationship algebra gen-

erated by the set of terms derived from the factors in a Tjur structure (Tjur, 1984,

section 4.1; Bailey, 1984), although results for the special case of a simple orthogo-

nal structure (Nelder (1965a) will also be given. The results for simple orthogonal

structures are contained in the papers by Nelder (1965a), Haberman (1975), Khuri

(1982), Speed and Bailey (1982), Tjur (1984), Speed (1986) and Speed and Bailey

(1987); the results for a Tjur structure are obtained from Tjur (1984) and Bailey

(1984). In deriving results from Tjur (1984), in particular, one should bear in mind

that Tjur's factors and nestedness of factors correspond to my terms and marginality

of terms, respectively. Also, my minima of terms and intersection of model subspaces

correspond to Tjur's minima of factors. Further, it is important to note that, whereas

the presentations of some of these authors are intimately bound up with the models

for the data, in this section we consider only properties that derive solely from the

structure and layout as summarized in the summation/relationship matrices.

A feature of the class of structures presented in this thesis is that, while there has to

be a maximal term derived from the structure to which all other terms derived from

the structure are marginal, there does not have to be a unit term derived from the

structure. But, to derive the results given in this section, if the number of observed

levels combinations for the factors in the structure is not equal to the number of

observational units, n, a dummy factor is introduced to provide a unit term. This

factor is nested within all the other factors in the structure. However, it will become

apparent that the theorems given in this section for Tjur structures will produce

the correct results for the original factors in a structure even if the dummy factor is

omitted.

Any structure summarizes the relationships between a set of factors, Fi = ftih; h =

1; : : : ; fig with the order of factor tih being ntih . Levels of these factors are observed for

each observational unit and so can be indexed by the index set for the observational

units, I which has n elements. The set of terms in a structure, Ti = fTiv; v =

1; : : : ; tig, is obtained by expanding the formula for the structure according to the rules
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given by Wilkinson and Rogers (1973). Of course, a term Tiv 2 Ti either corresponds to

one of the factors tih from the original set of factors Fi or can be thought of as de�ning

a new factor whose levels correspond to the levels combinations of the original factors

(Tjur, 1984). However, I reserve the name factor for those in the original set. Terms

will be either one of these factors or be composed of several factors. A term usually

represents a meaningful partition of the observational units into subsets formed by

placing in a subset those observational units that have the same levels combination

of the factors in the term. The subsets formed in this way have been referred to as

the term's observational-unit subsets. A term Tiv is marginal to Tiw (Tiv � Tiw) if

the model space of Tiv is a subspace of the model space of Tiw, this being the case

because of the innate relationship between the levels combinations of the two terms

and being independent of the replication of the levels combination of the two terms.

This will occur if the factors comprising Tiv are a subset of those comprising Tiw, i.e.

Tiv � Tiw.

For a simple orthogonal structure, the factors are simple and either crossed or nested

and n = ri
Qfi
h=1 ntih .

Further, associated with any structure will be the sets of incidence matrices, Wi =

fWTiv ; v = 1; : : : ; tig, summation matrices, Si = fSTiv ; v = 1; : : : ; tig, and mutually

orthogonal idempotent operators, Ei = fETiv ; i = v; : : : ; tig. The matrices making up

these sets are of order n. The elements of these sets are, for Tjur structures, speci�ed

by de�nitions 3.2 and 3.3 and theorem 3.5; for simple orthogonal structures, they are

speci�ed by theorems 3.6{3.8.

Example 3.2: Consider a study with rcsu observational units and a single tier
consisting of three factors, Rows (R) with r levels, Columns (C) with c levels
and Subplots (S) with s levels. Further suppose that the structure for the study
is (R � C)=S. As the levels combinations of the factors in the structure do not
uniquely index the observational units, a dummy factor Units (U) with u levels
has to be included in the structure; it is nested within the other factors in the
structure so that the modi�ed structure is (R � C)=S=U .
For this modi�ed structure,

n = rcsu;

f1 = 4

F1 = fRows, Columns, Subplots, Unitsg,
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nR = r; nC = c; nS = s and nU = u;

t1 = 6;

T1 = fG;R;C;R:C;R:C:S;R:C:S:Ug;

W1 = fWG;WR;WC ;WR:C ;WR:C:S ;WR:C:S:Ug;

S1 = fSG;SR;SC ;SR:C ;SR:C:S ;SR:C:S:Ug; and

E1 = fEG;ER;EC ;ER:C ;ER:C:S ;ER:C:S:Ug:

[To be continued.]

Before proceeding to establish the results of the analysis of the relationship algebra

for a single structure, some mathematical de�nitions and results are provided; they

have been taken from Gr�atzer (1971).

De�nition 3.1 A partially ordered set or poset hP ;�i is a set P of elements

a; b; c; : : : with a binary relation, denoted by `�', which satisfy the following properties:

i) a � a, (Re
exive)
ii) If a � b and b � c, then a � c, (Transitive)
iii) If a � b and b � a, then a = b (Antisymmetric)

Clearly, a relation satisfying these properties establishes an ordering between the

elements of P . Note also that a � b can be written b � a and that we write a < b (or

b > a) if a � b and a 6= b.

If hP ;�i is a poset, a; b 2 P , then a and b are comparable if a � b or b � a.

Otherwise, a and b are incomparable, in notation akb.

Let H � P , a 2 P . Then a is a lower bound of H if a � h for all h 2 H. A lower

bound a of H is the unique greatest lower bound of H if, for any lower bound b of

H, b � a. We shall write a =
V
H. For two elements c; d 2 P , we will denote their

greatest lower bound by c ^ d where ^ is called the meet. A meet-semilattice is a

poset for which any two elements have a greatest lower bound.

An upper bound and a least upper bound are similarly de�ned. A least upper

bound for two elements c; d 2 P will be denoted by c_ d where _ is called the join. A

join-semilattice is a poset for which any two elements have a least upper bound.

A lattice is a set P of elements a; b; c; : : : with two binary operations _ and ^ which

satisfy the following properties:
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i) a _ a = a ^ a = a; (Idempotent)
ii) a _ b = b _ a;

a ^ b = b ^ a; (Commutative)
iii) a _ (b _ c) = (a _ b) _ c;

a ^ (b ^ c) = (a ^ b) ^ c; (Associative)
iv) a _ (a ^ b) = a ^ (a _ b) = a (Absorption)

A poset P is a lattice if and only if it is a join-semilattice and a meet-semilattice. A

distributive lattice, in addition to satisfying the properties for a lattice, satis�es

the following distributive property:

(a ^ b) _ (a ^ c) = a _ (b ^ c):

Suppose the poset P possesses unique minimal and maximal elements. The Zeta

function of the poset signi�es which elements of the poset satisfy its order relation;

that is

�(a; c) =

8<: 1 if a � c

0 otherwise.

The inverse of this function, in the incidence algebra, is known as the M�obius

function of the poset which, for a; c 2 P , is given by

�(a; a) = 1

�(a; c) = �
X

a�b<c

�(a; b) = �
X

a<b�c

�(b; c); a < c

(for more detail see Aigner, 1979; Speed and Bailey, 1987).

Note that the Zeta function of a poset can be represented as a matrix whose elements

are the Zeta function for a pair of elements of the poset. The M�obius function is then

represented by the inverse of this matrix.

The use of the Zeta and M�obius functions of the poset in the present context has

been advocated by Speed and Bailey (1982), Tjur (1984) and Speed and Bailey (1987).

The interest in the Zeta function of a poset P arises from the fact that we will be

concerned with sums of real-valued functions, u(c) and v(a) say, the sums being of

the following forms:

u(c) =
X
a2P

�(a; c)v(a) or u(c) =
X
a2P

�(c; a)v(a):
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To then obtain expressions for v(c) in terms of u(a) involves M�obius inversion as

speci�ed by the following theorem:

Theorem 3.1 (M�obius inversion) Let P be a �nite poset, and u(a) and v(a) be

real-valued functions de�ned for a 2 P . Then,

(i) inversion from below is given by

u(c) =
X
a�c

v(a);=
X
a2P

�(a; c)v(a); c 2 P , v(c) =
X
a�c

u(a)�(a; c); c 2 P ;

(ii) inversion from above is given by

u(c) =
X
a�c

v(a) =
X
a2P

�(c; a)v(a); c 2 P , v(c) =
X
a�c

u(a)�(c; a); c 2 P:

Proof: Theorem 4.18 from Aigner (1979, IV.2) speci�es that the above formulae

for inversion apply to locally �nite posets with all principal ideals and �lters �nite;

also, the maps must be to an integral domain containing the rationals.

Let the principal ideal Lc for c 2 P be the set fa j a 2 P; a � cg and the

principal �lter Gc for c 2 P be the set fa j a 2 P; a � cg. All principal ideals

and principal �lters of a �nite poset P are �nite as they are subsets of a �nite set.

Clearly, the theorem is a specialised version of theorem 4.18 from Aigner (1979,

IV.2).

The following theorem will be useful in calculating the M�obius function for the

posets with which we will be dealing.

Theorem 3.2 Let hP ;�i be a meet-semilattice and de�ne the set of immediate de-

scendants of c to be the set

fb j b 2 P; b � c; there exists no d such that b < d < cg:

Let Dc be the set of all a 2 P that are the meets of immediate descendants of c.

If a < c and a 62 Dc, then �(a; c) = 0.
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If hP ;�i is a �nite distributive lattice, then

�(a; c) =

8<: = (�1)k if a 2 Dc;

0 otherwise

where

k is the number of distinct immediate descendants of c whose meet is a.

Proof: The result for a meet-semilattice is derived by application of the dual-

ity principle for posets (see Gr�atzer, 1971, p.3) to the theorem of P. Hall given by

Berge (1971, p.88). The dual result for a �nite distributive lattice is given by Rota

(1964).

The applicability of the above theorem is evident upon noting that the terms from

a Tjur structure form a meet-semilattice where the relation is that of marginality

between terms. This is because the minima (`meet') of two terms is their greatest

lower bound and the terms from Tjur structures are closed under the formation of

minima. Also note that a term is immediately marginal to another if it is an immediate

descendant of the other. Further, the terms from a simple orthogonal structure form

a �nite distributive lattice (Bailey, 1981; Speed and Bailey, 1982; Speed and Bailey,

1987).

Next we establish the form of the three matrix types fundamental to our analysis.

De�nition 3.2 WTiw is the n� n symmetric incidence matrix with element

wgh =

8>>>>>>>>>>><>>>>>>>>>>>:

1 if observational units g and h, g; h 2 I, have the same levels

combination of the factors in Tiw and there is no term Tiv >

Tiw such that observational units g and h have the same

levels combination of the factors in Tiv,

0 otherwise:

Corollary 3.3 The maximum of terms is the term that is the union of the factors

from the terms for which it is the maximum. If the terms in Ti are closed under the

formation of maxima, then X
Tiw2Ti

WTiw = J:
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Proof: As the grand mean term G is always included in the set of terms there

must be, for every pair of observational units, someWTiw ; Tiw 2 Ti which has wgh = 1,

g; h 2 I. Further there can be only one such matrix. Suppose there were two matrices,

corresponding to terms Tiw and Tiv, for which wgh = 1. However, the terms must be

incomparable, otherwise, if one is marginal to the other, the element would be zero

for the term to which the other is marginal. But the terms are closed under the

formation of maxima. So there exists a term whose levels combinations will be equal

only for units for which the levels combinations of both incomparable terms are equal.

The two terms are marginal to this term, their maximum. Hence, the elements of the

incidence matrices corresponding to the two incomparable terms must be zero. That

is, there cannot be two terms for which wgh = 1 and the condition given in the

corollary follows.

De�nition 3.3 STiw is the n� n symmetric summation matrix with element

sgh =

8>>>><>>>>:
1 if observational units g and h, g; h 2 I, have the same levels

combination of the factors in Tiw,

0 otherwise:

Corollary 3.4

STiw =
X

Tiv�Tiw

WTiv :

This corollary is obvious upon comparison of de�nition 3.2 with 3.3.

Theorem 3.5 For each term Tiw from a Tjur structure, there exists an n � n sym-

metric idempotent matrix, ETiw , that is given by

ETiw =
X

Tiv2fTiwg[DTiw

�(Tiv; Tiw)R
�1
Tiv
STiv with

X
Tiw2Ti

ETiw = I

where
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DTiw is the set of terms in the ith structure that are the minima of terms

immediately marginal to the term Tiw, and

RTiv is the diagonal replications matrix of order n. A particular diag-

onal element is the replication of the levels combination of the

factors in term Tiv for the observational unit corresponding to

that element. For a regular term, RTiv = rTivI.

Proof: From theorem 1 of Tjur (1984), we have that the sample space can be

written as the direct sum of a set of orthogonal subspaces, one subspace for each

Tiw 2 Ti. Then, denoting by ETiw the orthogonal idempotent that projects on the

model space for Tiw, we have X
Tiw2Ti

ETiw = I:

Further, from theorem 1 of Tjur (1984), we have that

R�1
Tiw
STiw =

X
Tiv�Tiw

ETiv

=
X

Tiv2Ti

�(Tiv; Tiw)ETiv :

Next, this last expression is to be inverted. Consider a pair of corresponding elements

from the matrices R�1
Tiw
STiw and ETiv . We have two real-valued functions, a particular

function mapping an element of Ti to an element of its matrix. Also the set Ti is

�nite. Hence, by M�obius inversion (theorem 3.1),

ETiw =
X

Tiv2Ti

�(Tiv; Tiw)R
�1
Tiv
STiv :

But from theorem 3.2, �(Tiv; Tiw) 6= 0 only for Tiw and for Tiv 2 DTiw and so

ETiw =
X

Tiv2fTiwg[DTiw

�(Tiv; Tiw)R
�1
Tiv
STiv :

Theorems 3.6{3.8 specify the form of the incidence matrices, summation matrices and

idempotent operators for a simple orthogonal structure. These theorems are given
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without proof as the results are available in, for example, Nelder (1965a). The forms

are given in terms of I or unit matrices, J or matrices of ones, K (= J� I) matrices

and G (= m�1J where m is the order of J) matrices. The forms given apply only if

the observational units are arranged in lexicographical order according to the factors

in the structure. While this can be easily arranged for the �rst structure, it cannot be

arranged concomitantly for the other structure(s). However, the form for structures

other than the �rst can be obtained by premultiplying the matrices derived according

to theorems 3.6{3.8 with a permutation matrix and postmultiplying by its transpose.

The permutation matrix for a structure, Ui, speci�es the association between the

observed levels combinations of the factors in the structure and the observational

units. As noted above, if the number of observed levels combinations of the factors

in the structure is not equal to the number of observational units, a dummy factor is

included so that the factors in the structure uniquely index the observational units.

Note that, except for theorems 3.6{3.8, the remainder of the theorems given in this

section are independent of the ordering of the levels combinations of the factors in a

structure.

A particular incidence matrix, WTiw 2 Wi, for each term from a simple orthogonal

structure can be expressed as the direct product of I, J and K matrices, premultiplied

byUi and postmultiplied byU
0
i. The direct product is given by the following theorem:

Theorem 3.6 The direct product for an incidence matrix will contain an I, J or K

matrix of order ntih for each factor in the structure. In determining the incidence

matrix for a particular term, Tiw, use: an I matrix for a factor tih if tih 2 Tiw; a J

matrix for a factor tih if there exists a factor that nests tih, tih 62 Tiw and (tih[Tiw) 2

Ti; and a K matrix otherwise.

A particular summation matrix, STiw 2 Si, can be expressed as the direct product of

J and I matrices, premultiplied by Ui and postmultiplied by U0
i. The direct product

is given by the following theorem:

Theorem 3.7 The direct product for a summation matrix will contain an I or J

matrix of order ntih for each factor in the structure. In determining the summation
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matrix for a particular term, use an I matrix if the factor is in the term (tih 2 Tiw)

and a J otherwise.

A particular idempotent matrix, ETiw 2 Ei, can be expressed as the direct product

of I,G and I�G matrices, premultiplied by Ui and postmultiplied by U
0
i. The direct

product is given by the following theorem:

Theorem 3.8 The direct product for an idempotent matrix will contain an I, G or

I � G matrix of order ntih for each factor in the structure. Let NTiw be the set of

factors in Tiw that nest other factors in Tiw. In determining the idempotent for a

particular term, I�G is included in the direct product for each of the factors in the

term provided that they do not nest factors in the current term (tih 2 (Tiw \ NTiw)),

in which case an I matrix is included (tih 2 NTiw). G is included for factors not in

the current term (tih 62 Tiw).

Example 3.2 (cont'd): Application of theorems 3.6{3.8 to the example yields
the expressions for the incidence, summation and idempotent matrices given in
table 3.2. In this case U1 = I and so is not included in the table. [To be
continued.]

De�nitions 3.2 and 3.3 and theorem 3.5 establish the form of the three fundamental

matrix types for Tjur structures; theorems 3.6 to 3.8 do the same for simple orthogonal

structures. In general, we will be concerned with linear combinations of these matrices

and changing from a linear combination based on one type of matrix to an equivalent

linear combination based on another type. That is, suppose we have a matrix Z, then

we are interested in the following linear forms in the three matrix types:

Z = c0iwi

= f 0
isi

= l0iei with 10ei = I:

In order to be able to convert the basis of a linear form from one of the three matrix

types to another, we establish below the form of the following set of six transformation

matrices: Twisi , Tsiwi
, Tsiei , Teisi, Twiei and Teiwi

. The matrix Taibi is the
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Table 3.2: Direct product expressions for the incidence, summation and

idempotent matrices for (R �C)=S=U y

Incidence Summation

Factor R C S U R C S U

Term

G K 
K 
 J 
 J J 
 J 
 J 
 J

R I 
K 
 J 
 J I 
 J 
 J 
 J

C K 
 I 
 J 
 J J 
 I 
 J 
 J

R:C I 
 I 
K 
 J I 
 I 
 J 
 J

R:C:S I 
 I 
 I 
K I 
 I 
 I 
 J

R:C:S:U I 
 I 
 I 
 I I 
 I 
 I 
 I

Idempotent

Factor R C S U

Term

G G 
 G 
 G 
 G

R (I�G) 
 G 
 G 
 G

C G 
 (I�G) 
 G 
 G

R:C (I�G) 
 (I�G) 
 G 
 G

R:C:S I 
 I 
 (I�G) 
 G

R:C:S:U I 
 I 
 I 
 (I�G)

yThe matrices in each direct product are of order r, c, s and u, respectively.
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matrix that transforms the set of matrices in the symbolic ti-vector bi to the set of

matrices in the symbolic ti-vector ai; that is, ai = Taibibi.

For incidence matrices, we will be interested in linear combinations of the form:

Z = c0iwi

where

wi is the ti-vector of incidence matrices for the ith structure.

Example 3.2 (cont'd): The elements of c01 and w
0
1 are:

c01 =
h
cG cR cC cR:C cR:C:S cR:C:S:U

i
; and

w0
1 =

h
WG WR WC WR:C WR:C:S WR:C:S:U

i
:

Whence,

Z = cGWG + cRWR + cCWC + cR:CWR:C + cR:C:SWR:C:S

+cR:C:S:UWR:C:S:U :

[To be continued.]

We can re-express this linear combination Z in terms of the elements of the set, Si,

of summation matrices using the following relationship:

wi = Twisisi

where

si is the ti-vector of summation matrices for the ith structure.

Clearly,

Z = c0iTwisisi

= f 0
isi

so that

fi = T0
wisici

Similarly,

si = Tsiwi
wi
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so that

ci = T0
siwi

fi

The elements of T0
siwi

, which provide expressions for the elements of ci in terms of

the elements of fi for Tjur structures, is given by the following theorem (Speed and

Bailey, 1982; Tjur, 1984; Speed, 1986):

Theorem 3.9 The element cTiw of ci is the sum of elements fTiv of fi, a particular

element being in the sum if Tiv � Tiw.

Proof: From corollary 3.4, element (w; v) of Tsiwi
is 1 if Tiv � Tiw, 0 otherwise.

Hence, element (w; v) of T0
siwi

is 1 if Tiv � Tiw, 0 otherwise.

The elements of T0
wisi , which provide expressions for the elements of fi in terms of

the elements of ci for simple orthogonal and Tjur structures, is given by the following

theorem:

Theorem 3.10 The element fTiw of fi is a linear function of cTiw and the elements

cTiv of ci for which Tiv is:

1. marginal to Tiw; and

2. the minimum of a set of terms immediately marginal to Tiw.

That is, Tiv 2 fTiwg[DTiw . The coeÆcient of cTiv in the linear function is �(Tiv; Tiw).

For a simple orthogonal structure, the coeÆcient of cTiv is (�1)
k where k is the number

of terms immediately marginal to Tiw whose intersection is required to obtain Tiv.

Alternatively, use the Hasse diagram of term marginalities to obtain the expressions.

To the left of each term in the Hasse diagram is the cTiv for that term. To the right

of a term is the expression for the fTiw as a function of the cTiv which, for a term, is

computed by taking the di�erence between the cTiv for that term and the sum of the

fTiws of all terms marginal to that term.

Proof: To obtain the linear function of the elements of ci requires inversion of the

expressions in theorem 3.9. That is, we have

STiw =
X

Tiv�Tiw

WTiv



3.2 The algebraic analysis of a single structure 87

Hence, by M�obius inversion from above (theorem 3.1),

WTiw =
X

Tiv�Tiw

�(Tiv; Tiw)STiv :

That is, element (w; v) of Twisi is �(Tiv; Tiw) if Tiv � Tiw, 0 otherwise. Hence,

element (w; v) of T0
wisi is �(Tiv; Tiw) if Tiv � Tiw, 0 otherwise.

The terms Tiv � Tiw for which the M�obius function has to be calculated are speci�ed

in theorem 3.2; clearly, Tiv 2 fTiwg [ DTiw . The expression for simple orthogonal

structures is also given by theorem 3.2 since, as previously noted, the terms from a

simple orthogonal block structure form a �nite distributive lattice.

That the Hasse diagram of term marginalities can be used to obtain the expressions

derives from the fact that it provides a diagrammatic representation of equations

involving the Zeta function. The algorithm described amounts to a procedure for

recursively inverting these equations. In this instance, it is clear from theorem 3.9

that the equations we need to invert are:

cTiw =
X

Tiv2Ti

�(Tiv; Tiw)fTiv ; for all Tiw 2 Ti

Example 3.2 (cont'd): The elements of f 0
1 and s

0
1 are:

f 0
1 =

h
fG fR fC fR:C fR:C:S fR:C:S:U

i
; and

s01 =
h
SG SR SC SR:C SR:C:S SR:C:S:U

i
:

Whence,

Z = fGSG + fRSR + fCSC + fR:CSR:C + fR:C:SSR:C:S + fR:C:S:USR:C:S:U :

Also,266666664

cG
cR
cC
cR:C
cR:C:S
cR:C:S:U

377777775
=

266666664

fG
fG + fR
fG + fC
fG + fR + fC + fR:C
fG + fR + fC + fR:C + fR:C:S
fG + fR + fC + fR:C + fR:C:S + fR:C:S:U

377777775
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so that

Ts1w1 =

266666664

1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

377777775
and its inverse is

Tw1s1 =

266666664

1 �1 �1 1 0 0
0 1 0 �1 0 0
0 0 1 �1 0 0
0 0 0 1 �1 0
0 0 0 0 1 �1
0 0 0 0 0 1

377777775
The second matrix, obtained by matrix inversion, gives us the expressions of

the fTiws in terms of the cTiws. However, as outlined in theorem 3.10, these can
also be obtained using the Hasse diagram of term marginalities as illustrated in
�gure 3.4. In addition, they can be derived by evaluating the M�obius function.
To do this we require the sets of all possible minima of terms immediately
marginal to the terms in the structure:

DG = fGg; DR = fGg; DC = fGg;
DR:C = fG;R;Cg; DR:C:S = fR:Cg; DR:C:S:U = fR:C:Sg:

As this structure is a simple orthogonal structure, the coeÆcients in the linear
combination can be calculated using the expression based on (�1)k given in
theorem 3.10. [To be continued.]

Further, the matrix Z can be written as a linear combination of the elements of the

set, Ei, of mutually orthogonal idempotents of the relationship algebra. We can use

either of the relationships:

wi = T0
wieiei or si = T0

sieiei:

where

ei is the ti-vector of mutually orthogonal idempotent matrices for the ith

structure.

Thus,

Z = l0iei with 10ei = I:
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Figure 3.4: Hasse diagram of term marginalities, including fTiws, for the

(R �C)=S=U example

�
�

�
�

�
�

�
�

'

&

$

%

�
�

�
�

�
�

�
�

�
�

�
�

S
S
S
So

�
�
�
�7

�
�
�
�7

S
S
S
So

6

6

�
cG cG

C
cC cC�cG

R
cR cR�cG

R.C
cR:C cR:C�cR

�cC+cG

R.C.S
cR:C:S cR:C:S�cR:C

R.C.S.U
cR:C:S:U cR:C:S:U�cR:C:S

The elements of T0
siei , which provide expressions for the elements of li in terms

of those of fi for simple orthogonal and Tjur structures, are given by the following

theorem (Tjur, 1984; Bailey, 1984):
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Theorem 3.11 The element lTiw is a linear combination of the elements fTiv of fi, a

particular element having a nonzero coeÆcient if Tiw � Tiv. For a simple orthogonal

structure, any nonzero coeÆcient is the product of the order of the factors not in the

term Tiv, i.e.
Q
tih 62Tiv ntih. For a regular Tjur structure, any nonzero coeÆcient is the

replication of the term Tiv, rTiv .

Proof: In the proof of theorem 3.5 it was noted, that from theorem 1 of Tjur

(1984), we have

R�1
Tiw
STiw =

X
Tiv�Tiw

ETiv

=
X

Tiv2Ti

�(Tiv; Tiw)ETiv

Hence, for a regular structure,

STiw =
X

Tiv�Tiw

rTiwETiv

The element (w; v) of the transformation matrix Tsiei is thus rTiw if Tiv � Tiw, 0

otherwise.

But it is the transpose of this transformation matrix that converts fTivs to lTiws.

That is, element (w; v) of the transpose is rTiv if Tiv � Tiw, 0 otherwise.

For simple orthogonal structures ni =
Q
tih2Ti ntih so that

rTiv =
niQ

tih2Tiv ntih

=
Y

tih 62Tiv

ntih

The �nal transformation matrices can be obtained from those already given in that

Twiei = TwisiTsiei and Teiwi
= TeisiTsiwi

:
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Example 3.2 (cont'd): The expressions for the elements of li in terms of fi
are as follows:

266666664

lG
lR
lC
lR:C
lR:C:S
lR:C:S:U

377777775
=

266666664

rcsufG + csufR + rsufC + sufRC + ufRCS + fRCSU
csufR + sufRC + ufRCS + fRCSU

rsufC + sufRC + ufRCS + fRCSU
sufRC + ufRCS + fRCSU

ufRCS + fRCSU
fRCSU

377777775
so that

Ts1e1 =

266666664

rcsu 0 0 0 0 0
csu csu 0 0 0 0
rsu 0 rsu 0 0 0
su su su su 0 0
u u u u u 0
1 1 1 1 1 1

377777775
and its inverse is

Te1s1 =

26666666664

1
rcsu 0 0 0 0 0
�1
rcsu

1
csu 0 0 0 0

�1
rcsu 0 1

rsu 0 0 0
1

rcsu
�1
csu

�1
rsu

1
su 0 0

0 0 0 �1
su

1
u 0

0 0 0 0 �1
u 1

37777777775
Thus

Tw1e1 =

266666664

su(rc� c� r + 1) �su(c� 1) �su(r � 1) �su 0 0
su(c� 1) su(c� 1) �su �su 0 0
su(r � 1) �su su(r � 1) �su 0 0
u(s� 1) u(s� 1) u(s� 1) u(s� 1) �u 0
u� 1 u� 1 u� 1 u� 1 u� 1 �1
1 1 1 1 1 1

377777775
and its inverse is

Te1w1 =

26666666664

1
rcsu

1
rcsu

1
rcsu

1
rcsu

1
rcsu

1
rcsu

�1
rcsu

r�1
rcsu

�1
rcsu

r�1
rcsu

r�1
rcsu

r�1
rcsu

�1
rcsu

�1
rcsu

c�1
rcsu

c�1
rcsu

c�1
rcsu

c�1
rcsu

1
rcsu

�(r�1)
rcsu

�(c�1)
rcsu

�(rc�r�c+1)
rcsu

�(rc�r�c+1)
rcsu

�(rc�r�c+1)
rcsu

0 0 0 �1
su

s�1
su

s�1
su

0 0 0 0 �1
u

u�1
u

37777777775
[To be continued.]
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In summary, theorem 3.9 speci�es Tsiwi
, theorem 3.10 speci�es Twisi , theorem 3.11

speci�es Tsiei , Teisi is obtained by inversion of Tsiei , and Twiei and Teiwi
are

obtained as the product of two of the �rst four matrices. These results will be utilised

in section 3.3.1

Next expressions for the degrees of freedom of terms from a single structure are

provided.

Theorem 3.12 The degrees of freedom of a term from a simple orthogonal structure

is given by:

�Tiw =
Y

tih2NTiw

ntih
Y

tih2(Tiw\NTiw
)

(ntih � 1):

More generally, for a Tjur structure, use the Hasse diagram of term marginalities

to obtain the degrees of freedom for the terms derived from the structure. Each term

in the Hasse diagram has to its left the number of levels combinations of the factors

comprising that term for which there are observations. To the right of the term is the

degrees of freedom which is computed by taking the di�erence between the number to

the left of that term and the sum of the degrees of freedom to the right of all terms

marginal to that term.

Proof: To derive the expression for simple orthogonal structures note that, for I

and G of order ntih ,

tr(I) = ntih ; tr(G) = 1; tr(I�G) = ntih � 1;

and

tr(B
C) = tr(B) tr(C) :

Now

�Tiw = tr(ETiw ) :

But from theorem 3.8, ETiw is the direct product of matrices, premultiplied by Ui

and postmultiplied by U0
i; there is one matrix in the direct product for each factor in

the structure. As Ui is orthogonal, U
0
i = U�1

i , tr(UiDU
0
i ) = tr(DUiU

0
i ) = tr(D).

Hence, the permutation matrix can be ignored in obtaining tr(ETiw ). Now, an I�G



3.2 The algebraic analysis of a single structure 93

matrix is included in the direct product for factors tih 2 (Tiw \NTiw), an I matrix for

tih 2 NTiw , and a G matrix for tih 62 Tiw.

Clearly, the degrees of freedom for a simple orthogonal structure are as stated in

the theorem.

Tjur (1984, section 5) outlines the use of the Hasse diagram, based on the marginal-

ity relationships between the terms to obtain the degrees of freedom for a Tjur struc-

ture. To derive this procedure, note that from theorem 3.5 we have that

tr(ETiw ) =
X

Tiv2fTiwg[DTiw

�(Tiv; Tiw)tr
�
R�1

Tiv
STiv

�
with

tr
�
R�1

Tiv
STiv

�
= nTiv :

A similar argument to that given in the proof of theorem 3.10, about the use of the

Hasse diagram, yields the procedure outlined by Tjur for using the Hasse diagram to

compute the degrees of freedom.

Example 3.2 (cont'd): Using the expression for simple orthogonal structures,
we have that the degrees of freedom of R:C is (r � 1)(c � 1) and of R:C:S is
rc(s� 1). [To be continued.]

Expressions for the sums of squares of the terms from simple orthogonal and Tjur

structures are given in the following theorem:

Theorem 3.13 For a simple orthogonal structure, write down the algebraic expres-

sion for the degrees of freedom in terms of the components given in theorem 3.12; use

symbols for the order of the factors, not the observed orders. Expand this expression

and replace each product of orders of the factors in this expression by the means vector

for the same set of factors. The e�ects vector for the term is this linear form in the

means vectors. The sum of squares for the term is then the sum of squares of the

elements of the e�ects vector.

That is, the sum of squares is given by:

y0ETiwy = d0TiwdTiw

where
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y is the observation n-vector which we assume is arranged in lexico-

graphical order with respect to the factors indexing the �rst tier,

dTiw =
P

Tiv2fTiwg[DTiw
(�1)kyTiv is the e�ects n-vector for term Tiw, and

yTiv is the means n-vector containing, for each observational unit, the

mean of the elements of y corresponding to that unit's levels com-

bination of the factors in term Tiv.

More generally, for a Tjur structure, use the Hasse diagram of term marginalities

to obtain the expression for the e�ects vector in terms of the mean vectors. For each

term in the Hasse diagram there is to the left the mean vector for the set of factors in

the term. To the right of the term is the e�ects vector which is computed by taking the

di�erence between the mean vector to the left of that term and the sum of the e�ects

vectors to the right of all terms marginal to that term. Again the sum of squares for

a term is then the sum of squares of the elements in the e�ects vector.

Proof: For simple orthogonal structures Nelder (1965a) gives the algorithm out-

lined above. To show that

dTiw =
X

Tiv2fTiwg[DTiw

(�1)kyTiv

note that, from theorem 3.5,

y0ETiwy =
X

Tiv2fTiwg[DTiw

�(Tiv; Tiw)y
0R�1

Tiv
STivy

=
X

Tiv2fTiwg[DTiw

�(Tiv; Tiw)y
0
Tiv
yTiv :

The expression for �(Tiv; Tiw), in the case of simple orthogonal structures, follows from

the fact that terms from such structures form a distributive lattice and theorem 3.2.

For Tjur structures, Tjur (1984) gives the method.

Example 3.2 (cont'd): As the example is a simple orthogonal structure, the
expanded expression for the degrees of freedom can be used to obtain the e�ects
vector. For example, for the term R:C, the expanded expression for the degrees
of freedom is rc � r � c + 1 so that the e�ects vector from which the sum of
squares for R:C is calculated is the following linear form in the means vectors:

yR:C � yR � yC + yG:
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The expanded expression for the degrees of freedom for R:C:S is rcs�rc and
the e�ects vector for R:C:S is:

yR:C:S � yR:C :

As indicated at the outset, a dummy factor may have to be included in a structure

to ensure that there is a unit term derived from the structure and that the results of

previous authors are applicable. However, it is evident that the modi�cations to be

made, to theorems 3.9{3.13 so that they can be applied to the original structure, can

be determined by setting the coeÆcients of the unit term to zero. It is clear that all

the theorems except theorem 3.11 can be applied as stated to the original structure.

In the case of this theorem, only the part speci�c to a simple orthogonal structure

does not apply to the original structure.

3.3 Derivation of rules for analysis of variance quan-

tities

In this section we derive expressions for the mean squares that constitute the analysis

of variance for the study, consider the form of the linear models that can be used to

describe the study and obtain expressions for the expected mean squares on which

testing and estimation for the study will be based.

3.3.1 Analysis of variance for the study

The analysis of variance for a study provides a partition of the sample variance into

a set of mean squares, each of which is based on e�ects that are homogeneous in

that they are in
uenced by di�erences between the levels combinations of the same

term(s). We require expressions for this set of mean squares, which must take into

account the s structures in the structure set for the study. We will obtain the required

expressions by separately �nding expressions for the sums of squares and degrees of

freedom of the mean squares.

In order to �nd expressions for the sums of squares, we �rst consider the set of

mutually orthogonal idempotents derived from the �rst structure for the study; these
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will be the elements P1k of the set, P1, of projection operators for the �rst structure.

As the factors in the �rst tier will uniquely index the observational units, these idem-

potents will sum to I and a partition of the Total variance will be obtained. This

partition is given by

y0y =
X
k

y0P1ky:

After this we successively partition the Total variation by obtaining the set, Pi, of

projection operators that specify the decomposition of the sample space into a set of

orthogonal subspaces corresponding to the terms from the �rst i structures. This is

done by determining the relationship of each matrix ETiw to the projection matrices

of the previous structure; that is, to the matrices in the set Pi�1 (see theorem 3.14).

The elements, Pik (k = 1; : : : ; pi), of the set Pi have the property that

X
k

Pik = I:

That this holds for the �rst structure follows directly from the results presented in

section 3.2. For subsequent structures it follows from the hierarchical decomposition

of projection operators from the previous structure given in theorem 3.14.

The corresponding partition of the Total sum of squares is given by

y0y =
X
k

y0Piky:

The set of sums of squares, and hence mean squares, derived from the set, Ps,

of projection operators for structure s constitutes the full analysis of variance for

the study in that it results in a decomposition of the sample variance that takes

into account all terms included in the model for the study. This decomposition of the

sample space can be represented in a decomposition tree with each node corresponding

to the subspace of a projectorPik such that the descendants of any node are orthogonal

subspaces of that node.
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Figure 3.5: Decomposition tree for a four-tiered experiment with 5,8,5,

and 3 terms arising from each of structures 1{4, respectivelyy
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yThe term Tiw is the wth term from the ith structure and R is the Residual corresponding to a
source from a lower structure.
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Example 3.3: The decomposition tree given in �gure 3.5 is for a hypothetical
example illustrating a wide range of potential situations that can arise in such
a tree. Ultimately, the sample space is divided into 22 orthogonal subspaces
so that there will be 22 Ps corresponding to structure 4. There would be 22
sources, derived from various structures, to be considered in the analysis of
variance table.

Further examples of decomposition trees are given in �gures 3.3 and 3.6.

In this thesis we consider only structure-balanced experiments. That is we re-

strict our attention to those experiments for which the relationship between mutually

orthogonal idempotent matrices, ETiw , and a projection matrix from a previous struc-

ture, P(i�1)c, is as speci�ed in the following de�nition:

De�nition 3.4 An experiment is said to exhibit structure balance if, with r = i�1,

there exist scalars ecTiw such that

ETiwPrcETiv =

8<: ecTiwETiw ; for all w = v; Tiw 2 Ti; i = 2; : : : ; s; c = 1; : : : ; pr

0 otherwise

where

ecTiw is the eÆciency factor for term Tiw when it is estimated from the

range of the cth projection operator for the (i� 1)th structure; for

orthogonal terms ecTiw = 1; and

Prc is the cth projection operator of order n from the rth structure.

That is, as discussed in section 1.2.2.2, the terms generated from a single structure

are orthogonal and terms from di�erent structures display �rst-order balance. This

de�nition is just Nelder's (1965b, 1968) de�nition of general balance applied to all

structures. Experiments satisfying this condition are generally balanced under the

Houtman and Speed (1983) de�nition. As Houtman and Speed point out,

0 � ecTiw � 1 and
X
c

ecTiw = 1:

This condition does not apply to �rst-order balanced experiments as the projection-

operator product is not required to be zero for w 6= v. Consequently, the ecTiws do not

necessarily sum to one.
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Theorem 3.14 Denote by qik the sum of squares y0Piky for the kth projection op-

erator from the ith structure and by Tjw; j � i, the de�ning term for the source

corresponding to Pik. Then, the form of Pik is:

Pik =

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

ET1w ; i = j = 1

Pjq; j < i, for a source from the jth structure

having no terms from structure (j+1) through

to the ith structure confounded with it,

PrcE
c
Tiw
Prc; j = i > 1; r = i � 1, for sources whose

de�ning term arises in the ith structure (=

ETiw for an orthogonal term),

Pjq �
P

j<g�i

P
u2Ugi

jq
Pgu; j < i, for residual sources,

where

Ec
Tiw

= (ecTiw)
�1ETiw is the adjusted idempotent matrix for term Tiw when

term Tiw is estimated from the cth source in the (i� 1)th struc-

ture; for an orthogonal term Ec
Tiw

= ETiw ;

ecTiw is the eÆciency factor corresponding to term Tiw when it is es-

timated from the cth source of the (i � 1)th structure; for an

orthogonal term ecTiw = 1;

Prc is the cth projection operator from the rth structure; and

Ugi
jq is the set of indices specifying the projection operators that corre-

spond to the sources in the gth structure which:

�are confounded with the source corresponding to the qth pro-

jection operator from the jth structure; and

�have no terms from structure (j + 1) through to the ith

structure confounded with them.

That is, the projection operators such that, for u 2 Ugi
jq ,

PjqPgu = Pgu; and

EThzPgu = 0; for all Thz 2 Th; g < h � i:
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Proof: For the purposes of this proof, the four forms of projection operator given

in the theorem will be referred to as:

(i) pivotal projection operator from �rst structure;

(ii) previous-structure projection operator;

(iii) pivotal projection operator; and

(iv) residual projection operator, respectively.

Note that, except for those of type (ii), any projection operator is said to correspond

to a source in that it is the projection operator for the source associated with the

structure from which the source arises.

(i) Pivotal projection operator from �rst structure. The form of Pik for i = 1, that

is of a pivotal projection operator from the �rst structure, follows immediately from

the results presented in section 3.2.

(ii) Previous-structure projection operator. There is nothing to prove when sources

from a previous structure have no terms from the ith structure confounded with them.

(iii) Pivotal projection operator. For sources corresponding to terms from the ith

structure, consider the idempotent operator ETiw for de�ning term Tiw. Let Prc be

a projection operator such that ETiwPrc 6= 0 for r = i � 1. Then, by lemma 1 of

theorem 1 and the associated discussion of James and Wilkinson (1971),

R(Prc) = R(PrcETiwPrc)�R(Prc) \R(PrcETiwPrc)
?

where

R(B) denotes the range of B.

That is, in e�ecting the decomposition corresponding to the ith structure, a sub-

space from a previous structure will be partitioned into two orthogonal subspaces.

The projection operator whose range is R(PrcETiwPrc) is a pivotal projection opera-

tor and has been denoted as Pik. We next derive the expressions given in theorem 3.14

for this projection operator; the projection operator for the other subspace, a residual

projection operator, will be considered below.
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Note that for a structure-balanced experiment there is only one nonzero eigenvalue,

ecTiw when Tiw is estimated from the range of the cth projection operator for structure

(i� 1). Thus, R(PrcETiwPrc) will be the eigenspace of PrcETiwPrc corresponding to

the nonzero eigenvalue and Pik the projection operator onto this eigenspace.

Also, let E?
Tiw

be the projection operator on the single eigenspace of ETiwPrcETiw

with a nonzero eigenvalue.

Also, from de�nition 3.4, we have that ETiwPrcETiw = ecTiwETiw so that ETiw is the

projection operator on the single eigenspace of ETiwPrcETiw with nonzero eigenvalue.

Now, by corollary 2 of theorem 1 of James and Wilkinson (1971),

PrcETiwPrc = ecTiwPik:

Hence,

Pik = (ecTiw)
�1PrcETiwPrc

= PrcE
c
Tiw
Prc as Ec

Tiw
= (ecTiw)

�1ETiw

For orthogonal experiments, ETiwPrcETiw = ETiw and ETiw andPrc commute. Thus,

PrcE
c
Tiw
Prc = ETiw .

(iv) Residual projection operator. The residual projection operator after a single term

has been eliminated from a source is the projection on R(Prc)\R(PrcETiwPrc)
? and,

by corollary 2 of theorem 1 of James and Wilkinson (1971), this is given by

Prc �Pik = Prc �PrcE
c
Tiw
Prc

= Prc(I�Ec
Tiw

)Prc

= Prc � ETiw for orthogonal experiments:

More generally, the residual source derived from Prc will be obtained after all the

terms confounded with the source corresponding to Prc have been eliminated. That

is the projection operator for this residual source is given by

Prc �
X
u2U ii

rc

Piu

where
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U ii
rc is the set of indices specifying the projection operators that corre-

spond to the sources in the ith structure confounded with the cth

source from the rth structure.

That this is the case derives from the fact thatPrcPiu = Piu and that, for u; v 2 U
ii
rc,

PiuPiv = 0. The latter fact is a consequence of de�nition 3.4. That is, the range of

the cth projection operator for the rth structure is partitioned into the direct sum

of the orthogonal subspaces corresponding to the set of terms from the ith structure

estimated from it, and the subspace orthogonal to these.

However, in general, the de�ning term for a residual source may not arise in the

immediately preceding, that is rth, structure (see �gure 3.5 in which a Residual source

for T14 is associated with the third structure). Thus, the expression for a residual

source given above may not involve the de�ning term for the source. To derive a

general expression for a residual source that involves its de�ning term, one must start

with the projection operator from the jth structure corresponding to the de�ning

term for this source; to obtain the projection operator for the residual source one has

to subtract the projection operators for all sources confounded with it, but which do

not have sources confounded with them. Hence, the general expression for a residual

source is

Pik = Pjq �
X

j<g�i

X
u2Ugi

jq

Pgu; j < i:

Wood, Williams and Speed (1988) have independently derived similar expressions

for the projection operators, but for a more restricted class of experiments. The steps

given in table 2.3 for the sums of squares can be deduced from the results given in

this theorem.

To complement the expressions for the sums of squares, we also require expressions

for the degrees of freedom. They are given by the following theorem.
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Theorem 3.15 Denote by �ik the degrees of freedom for qik the sum of squares for the

kth projection operator from the ith structure; that is, �ik is rank(Pik). Let Tjw; j � i,

be the de�ning term for the source corresponding to the kth projection operator from

the ith structure. Then,

�ik =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

tr
�
ETjw

�
; j � i; if sources with de�n-

ing term Tjw have

no terms confounded

with them

tr(Pjq )�
P

j<g�i

P
u2Ugi

jq
tr(Pgu ) ; j < i; for residual sources

where

tr
�
ETjw

�
=
Q
tjh2(Tjw\NTjw

) ntjh
Q
tjh2(Tjw\NTjw

)(ntjh � 1), for simple or-

thogonal structures,

tr(Pjq ) = tr
�
ETjw

�
; j < i, and

tr(Pgu ) is a linear form in tr(Es).

Proof: From theorem 3.14, we have that Pik is idempotent, so that

�ik = rank(Pik) = tr(Pik ) :

Trivially, for a pivotal projection operator from the �rst structure,

tr(P1k ) = tr(ET1u )

A projection operator from the previous structure will be either a pivotal or a

residual projection operator and so its degrees of freedom can be computed using the

expression for whichever of these is appropriate; however, one has to take into account

that the de�ning term is from a structure below the ith structure.

For a pivotal projection operator from other than the �rst structure,

tr(Pik ) = tr
�
PrcE

c
Tjw
Prc

�
; j � i; r = j � 1

= tr
�
Ec
Tjw
Prc

�
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= (ecTjw)
�1tr

�
ETjwPrc

�
= (ecTjw)

�1tr
�
ETjwPrcETjw

�
= ecTjwtr

�
Ec
Tjw
PrcE

c
Tjw

�
= ecTjwtr

�
Ec
Tjw

�
= tr

�
ETjw

�
The expression for �ik for a residual projection operator, follows immediately from

the expression for it given in theorem 3.14.

The expression for tr
�
ETjw

�
is given by theorem 3.12. That for tr(Pjq ) follows

from the fact that it is a pivotal projection operator corresponding to the source with

de�ning term Tjw. The comments on the tr(Pgu ) follow from the fact that it may be

either a pivotal or a residual projection operator.

The steps given in table 2.2 for the degrees of freedom can be deduced from the

results given in this theorem.
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Example 2.1: Consider again the split-plot experiment presented in sec-
tion 2.2; the structure set for the study has been given in section 2.2.4 and the
analysis of variance table in table 2.4. The Hasse diagrams of term marginalities
for this kind of experiment, giving the terms derived from the structure set for
the study and their degrees of freedom, are shown in �gure 2.2; the decompo-
sition tree is given in �gure 3.6. The analysis table, incorporating expressions
for the projection operators, is given in table 3.3. [To be continued.]

Figure 3.6: Decomposition tree for a split-plot experiment
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Table 3.3: Analysis of variance table, including projection operators, for

a split-plot experiment

PROJECTION
SOURCE DF OPERATORS

Rows v � 1 P11 = P21 = ER

Columns v � 1 P12 = P22 = EC

Rows.Columns (v � 1)2 P13 = ERC

Varieties v � 1 P23 = EV

Residual (v � 1)(v � 2) P24 = P13 �P23

Rows.Columns.Subplots (t� 1)v2 P14 = ERCS

Treatments t� 1 P25 = ET

Varieties.Treatments (v � 1)(t� 1) P26 = EV T

Residual (v � 1)(t� 1)v P27 = P14 �P25 �P26
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Example 3.1 (cont'd): The Hasse diagrams of term marginalities for the
simple lattice experiment, giving the terms derived from the structure set for the
study and their degrees of freedom, are shown in �gure 3.2; the decomposition
tree is given in �gure 3.3 and the analysis table and projection operators for
this experiment are given in table 3.4. [To be continued.]

Table 3.4: Analysis of variance table, including projection operators, for

a simple lattice experiment

PROJECTION
SOURCE DF OPERATORS

Reps 1 P11 = P21 = ER

Reps.Blocks 2(b� 1) P12 = ERB

C b� 1 P22 = (e2C)
�1EC

D b� 1 P23 = (e2D)
�1ED

Reps.Blocks.Plots 2b(b� 1) P13 = ERBP

C b� 1 P24 = (e3C)
�1EC

D b� 1 P25 = (e3D)
�1ED

Lines (b� 1)2 P26 = EL

Residual (b� 1)2 P27 = P13 �P24 �P25 �P26



3.3.1 Analysis of variance for the study 108

3.3.1.1 Recursive algorithm for the analysis of variance

The computation of the analysis of variance can be achieved using a generalization of

Wilkinson's algorithm (Wilkinson, 1970; Payne and Wilkinson, 1977). This algorithm

is the natural method of implementing what Yates (1975) has described as Fisher's

`major extension of Gaussian least square theory' to incorporate the analysis of mul-

tiple errors. The essence of what is required in this situation is estimation of a term

from those sources with which it is confounded; for example, in analysing a split-plot

experiment, the treatment contrasts confounded with main plots are to be estimated

from the main-plot source.

Wilkinson's algorithm applies to two-tiered experiments and involves performing

a two-stage series of sweeps. For each sweep, the means for a prescribed factor

combination are calculated from the input vector, initially the data vector. The

resulting (e�ective) means, divided by an eÆciency factor if appropriate, are then

subtracted from the input vector to form a residual vector. Either the residual vector,

for a residual sweep, or the (e�ective) means, for a pivotal sweep, produced from

one sweep will become the input for subsequent sweeps. Subsequent sweeps may

involve backsweeps for previously �tted terms nonorthogonal to the current source.

Of course, a two-stage decomposition could also be achieved using matrix inversion

techniques to perform the sweeps.

To cover multitiered studies, the algorithm must be generalized to e�ect a mul-

tistage decomposition of the sample space such as that depicted in �gure 3.5 for a

four-tiered experiment. The stages correspond to the structures in the structure set

for the study. In the �rst stage, the components of the data vector are obtained for

the subspaces corresponding to the terms derived from the �rst structure; this can

be achieved by applying recursively the appropriate sequence of residual sweeps. In

subsequent stages, each of the subspaces formed in the previous stage is decomposed

to obtain the components of the data vector in the subspaces corresponding to terms

arising from the current structure. To achieve this requires the application of pivotal

sweeps, together with appropriate backsweeps, for each subspace of the previous stage

that contains a subspace of a term arising from the current structure. To the vectors
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produced by the pivotal sweeps, one recursively applies a sequence of (adjusted) resid-

ual idempotent operators corresponding to the sources arising in the current structure.

The sweep sequences for examples involving nonorthogonal three-tiered experiments

are presented in sections 5.2.2, 5.2.3 and 5.2.4.

That the additive decomposition y =
Ppi

k=1Piky can be achieved by recursive

application of adjusted idempotent operators, Ec
Tiw

, and adjusted residual idempotent

operators, (I � Ec
Tiw

), derives from the general form of projection operators as given

in theorem 3.14 using an inductive argument.

The decomposition corresponding to the �rst structure is given by

y =
X

T1z2T1

ET1zy

where

T1z is the de�ning term for the source corresponding to P1k.

Suppose that, in general, the projection operators, Pik; k = 1; : : : ; pi, are ordered so

that marginal terms occur before terms to which they are marginal and that �tting

is being done in the same order as the projection operators. Then it is easy to show

that

P1my = ET1wy

= ET1w

m�1Y
k=1

(I�P1k)y

where

T1w is the de�ning term for the source corresponding to P1m.

That is, take the residuals after �tting the �rst (m� 1) sources and apply the idem-

potent operator for the mth source to them. The result of this operation will then

be subtracted from the input residuals to form the residuals after �tting the �rst m

sources.

Now we assume that the e�ects Prky are obtained by recursive application of idem-

potent and residual idempotent operators. So that we need to demonstrate that e�ects

Pimy; i = r+ 1, can be obtained from Prky by the same type of recursive procedure.
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For the ith structure and with r = i� 1, projection operators, Pims can be of the

following forms (theorem 3.14):

(i) previous-structure projection operator, Prk;

(ii) pivotal projection operator, PrkE
c
Tiw
Prk; and

(iii) residual projection operator,

Prk �
X

u2U ii
rk

Piu = Prk �
X

u2U ii
rk

PrkE
c
Tiz
Prk

where

Tiz is the de�ning term for the source corresponding to Piu; and

U ii
rk is the set of indices specifying the projection operators corre-

sponding to the sources in the ith structure which are esti-

mated from the range of the kth projection operator from the

rth structure.

So, if a projection operator from the ith structure is a previous-structure projection

operator, there is no term from the ith structure confounded with it; we have assumed

that its �tting has been achieved, using a recursive procedure, in the decomposition for

the previous structures. For pivotal projection operators, the �tting can be achieved

by

1. taking the e�ects Prky and applying the adjusted idempotent operator to them

to form Ec
Tiw
Prky;

2. subtracting the result of the previous step from its input to yield (I�Ec
Tiw

)Prky;

and

3. applying, to the results of the two previous steps, the assumed recursive sequence

corresponding to Prk; this is called backsweeping and results in the formation

of Pimy and associated residuals.

For residual projection operators from the ith structure, it can be shown that

Pimy = (Prk �
X

u2U ii
rk

PrkE
c
Tiz
Prk)y
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=
Y

u2U ii
rk

Prk(I�Ec
Tiz
)Prky

To derive the last result note that

PiuPiu0 = 0; u 6= u0 and

Prk(I� Ec
Tiz
)Prk(I�Ec

Tiz0
)Prk = Prk �PrkE

c
Tiz
Prk �PrkE

c
Tiz0
Prk

where

Tiz is the de�ning term for the source corresponding to Piu, and

Tiz0 is the de�ning term for the source corresponding to Piu0.

Clearly, the �tting of terms from the ith structure to yield the projection operators

for the ith structure can be achieved by recursive application of adjusted idempo-

tent and adjusted residual idempotent operators to the e�ects corresponding to the

projection operator from which it is estimated; that is, to Prky.

Hence, by induction, the �tting can be achieved by recursive application of the

appropriate sequence of adjusted idempotent and adjusted residual idempotent oper-

ators.

Further, averaging operators ATiw can be substituted for the idempotent op-

erators ETiw in this procedure so that adjusted idempotent operators Ec
Tiw

can be

replaced by the operators (ecTiw)
�1ATiw . That this is the case rests on the fact that an

idempotent for a particular term is a linear combination of the summation matrices

for terms marginal to the idempotent's term; this result follows from theorem 3.11.

Thus, if Py is the residual vector after sweeping out sources for which Tiv < Tiw, then

Ec
Tiw
Py = (ecTiw)

�1ATiwPy

where

ATiw = R�1
Tiw
STiw :

The pivotal operator is a substantial innovation of the Wilkinson algorithm. How-

ever, whereas Wilkinson (1970) regards a pivotal operator as having been de�ned by

a sequence of residual operators, the pivotal operator used herein will, in general, be
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de�ned by a sequence of residual and pivotal operators. While Wilkinson's form is suf-

�cient for two-tiered experiments, the more general form is required for experiments

consisting of more than two tiers.

3.3.2 Linear models for the study

So far in section 3.3 we have not mentioned linear models; the analysis of variance has

been derived solely from the structure set for the study and factor incidences (Brien,

1983; Tjur, 1984). The analysis of variance provides us with invaluable information

for the next step in the analysis process: the formulation and/or selection of linear

models. It can be used to assist in determining the models to be considered, with

estimation and hypothesis testing being most straightforward for those models whose

subspaces correspond to the decomposition of the sample space on which the analysis

of variance is based.

As outlined in section 2.2.6, the linear models for a study consist of sets of alter-

native models for the expectation and variation. In determining these models, one

has �rst to classify the factors as either expectation or variation factors as described

in section 2.2.3. Then the terms derived from a structure can be similarly classi�ed;

the expectation terms contain only expectation factors and variation terms contain at

least one variation factor. Thus, the maximum of two expectation terms, if it exists,

will be an expectation term; for a structure closed under the formation of maxima,

such as a simple orthogonal structure, the highest order expectation term will be com-

prised of all the expectation factors in that structure. Further, any term to which a

variation term is marginal must also be a variation term. Thus, if there is a variation

term in a structure, the maximal term for that structure will be a variation term.

De�nition 3.5 The general form of the maximal expectation model is as follows:

E[y ] = � =
X

�i

=
X
i

X
Tiw2T�i

�Tiw

where
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�i is the n-vector of parameters corresponding to the terms from the

ith structure that have been included in the maximal expectation

model expectation model for the ith structure. The parameters are

arranged in the vector in a manner consistent with the ordering

of the summation matrices for the structure. The vector contains

only zeros if there is no expectation factor in the structure, or

if a structure contains the same set of expectation factors as a

previous structure;

T�i
is the set of terms from the ith structure that have been included in

the maximal expectation model; and

�Tiw is the n-vector of expectation parameters for an expectation term

Tiw. A particular element of the vector corresponds to a partic-

ular observational unit and will be the parameter for the levels

combination of the term Tiw observed for that observational unit;

there will be nTiw unique elements in the vector.

The maximal expectation model can be written symbolically as

E[Y ] =
X
i

X
Tiw2T�i

Tiw

De�nition 3.6 The general form of the maximal variation model is as follows:

Var[y ] = V =
X
i

Vi =
X
i

�0
isi =

X
i


 0iwi =
X
i

�0
iei

where
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�i, 
i and �i are the ti-vectors of canonical covariance, covariance and

spectral parameters, respectively; that is, there is an

element in the vector for each term in the ith structure;

elements of �i will be set to zero if they correspond to:

�expectation terms, or

�terms that also arise from lower structures;

the elements of 
i and �i will be modi�ed to re
ect this;


i = T0
siwi

�i; and

�i = T0
siei�i.

Symbolically, the variation model can be written

Var[Y ] =
X
i

X
Tiw2TVi

Tiw

where

TVi
is the set of terms from the ith structure that have been included in

the maximal variation model; that is, terms corresponding to the

nonzero elements of �i.

In as much as there can be variation terms in more than one structure and that the

terms from the di�erent structures need only exhibit structure balance, these variation

models represent a class exhibiting nonorthogonal variation structure.

The handling of pseudoterms (Alvey et al., 1977) merits special note. When pseu-

doterms are included they result in a decomposition of the subspace corresponding

to the term to which they are linked; thus they a�ect the set Ei for the structure

in which they arise, and hence the sets Pi; : : : ; Ps of projection operators. However,

for the purpose of determining the expected mean squares, pseudoterms should be

excluded from both the expectation and variation models.

While we have provided expressions for the variance matrices in terms of canonical

covariance, covariance and spectral components for each structure, the relationship

between these components needs clari�cation. We begin by specifying the component

of the variance matrix corresponding to the ith structure in terms of the canonical
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covariance components (�Tiws), which may well be a subset of the coeÆcients of the

summation matrices (fTiws). However, expressions for the covariance components

(
Tiws) in terms of the canonical covariance components are still given by theorem 3.9

with all covariance components being nonzero if the canonical component for G is

always included. The 
s will be actual covariances when variation terms arise from

the �rst structure only and the set of variation terms is closed under the formation

of both minima and maxima of terms. The expressions for the �Tiws in terms of the


Tiws can be obtained using the M�obius function as described by Tjur (1984) on the

subset of the Hasse diagram of term marginalities that involves only the terms for

which there is a nonzero �Tiw ; however, the values of the M�obius function may no

longer be given by theorem 3.10. The expressions for the �Tiws can also be obtained

by using theorem 3.10 to obtain the fTiws in terms of the cTiws and setting to zero the

fTiws for which �Tiw is zero; the implication of this is that particular linear functions

of cTiws are zero and expressions for the nonzero fTiws, in terms of the cTiws, will

have to be adjusted to re
ect this. It is also clear that expressions for the spectral

components (�Tiws) in terms of the canonical covariance components (�Tiws) are still

given by theorem 3.11, provided that the structure involved is regular. Note that

it is not necessary to require, as does Tjur (1984), that the terms from a structure

contributing to the variation model be closed under the formation of minima. It is

only necessary that, as speci�ed in section 2.2.4, the full set of terms in the structure

is closed under the formation of minima.

Example 2.1 (cont'd): If the factors in the �rst tier of a split-plot experiment
of the kind presented in section 2.2 are classi�ed as being variation factors and
those in the second tier as expectation factors, then the maximal expectation
and variation models, previously given in section 2.2.6.1, are:

� = �V T with E[yklm ] = (��)ij ; and

V = �GSG + �RSR + �CSC + �RCSRC + �RCSSRCS :

The symbolic expressions for these models, also previously given in sec-
tion 2.2.6.1, are:

E[Y ] = V:T and Var[Y ] = G+R+C +R:C +R:C:S:

[To be continued.]
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Example 3.1 (cont'd): If the factors in both tiers of a simple lattice experi-
ment are classi�ed as being variation factors, then the maximal expectation
model is:

� = �G with E[yklm ] = �

where

yklm is an observation with klm indicating the levels of the factors
Reps, Blocks, and Plots, respectively, for that observation.

The maximal variation model is:

V = V1 +V2

where

V1 = �GSG + �RSR + �RBSRB + �RBPSRBP
= �GJ
 J
 J+ �RI
 J
 J+ �RBI
 I
 J

+ �RBP I
 I
 I;

V2 = �LSL
= �LU2(I
 J)U0

2,
�j is the canonical covariance component arising from the factor

combination of the factor set j;

the three matrices in the direct products for V1 correspond to Reps,
Blocks and Plots, respectively, and so are of orders 2, b and
b, respectively;

the two matrices in the direct product for V2 correspond to Lines

and a dummy factor Units, respectively, and so are of orders
b2 and 2, respectively; and

U2 is the permutation matrix of order n giving the assignment of
the levels combinations of Lines and Units, from the second
tier to the observational units; it is assumed that the obser-
vational units are ordered lexicographically according to the
factors in the �rst tier.

The symbolic expressions for these models, previously given in section 3.1,
are:

E[Y ] = G and Var[Y ] = G+R+R:B +R:B:P + L:

[To be continued.]
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3.3.3 Expectation and distribution of mean squares for the

study

We are interested in �nding the expectation and distribution of mean squares of the

form

y0Psky=�sk:

Firstly, in determining the expectation of the mean squares we have, using Searle

(1971b, section 2.5a, theorem 1),

E[y0Psky ] = �0Psk�+ tr(PskV):

Thus we can consider the contribution of expectation and variation terms sepa-

rately. Theorems 3.16 and 3.18, given below, provide expressions for each of these

contributions.

Theorem 3.16 The contribution to the expected mean squares from the expectation

factors is given by X
i

X
j

�0
iPsk�j=�sk:

For a study in which expectation factors are either unrandomized or randomized

only to variation factors, the contribution to the kth source from structure s reduces

to

�0
iPsk�i=�sk

where

i is the structure in which the de�ning term for the kth source from the

sth structure arises.

Proof: The result is obtained straightforwardly by substituting the general form

of the expectation model, given in de�nition 3.5, into �0Psk�.

That is, in general, the contribution to the expected mean squares by the expec-

tation factors will be quadratic and bilinear forms in the expectation parameters,
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these forms parallelling those for the sums of squares. For studies in which expec-

tation factors are either unrandomized or randomized only to variation factors, the

usual situation, this reduces to quadratic forms in the expectation vector. The ma-

trix of one of these quadratic forms is the same as that for the corresponding sum of

squares and hence the step given in table 2.8 for determining the contribution of the

expectation terms to an expected mean square.

In order to obtain the contribution of the variation terms to the expected mean

squares, we �rst derive, using the following lemmas, an expression for V in terms of

the Psks.

Lemma 3.1 PimETiw = 0 unless Pim is a pivotal projection operator with de�ning

term Tiw.

Proof: As outlined in theorem 3.14, Pim may be one of four possible general forms.

We derive the results for each of these four forms.

(i) Pivotal projection operator from �rst structure. In this case, i = 1. Suppose that

Tiv is the de�ning term for Pim. Then, P1m = ET1v and it follows immediately from

the results presented in section 3.2 that

P1mET1w = ET1vET1w = ÆwvET1w :

(ii) Previous-structure projection operator. That is, Pim = Prc, r = i � 1. Being

a previous-structure operator, it must be that no term from the ith structure is

confounded with it and so PimETiw = PrcETiw = 0.

(iii) Pivotal projection operator. Suppose that the de�ning term for Pim is Tiv and

that Prc, r = i� 1, is the projection operator such that

Pim = (ecTiv)
�1PrcETivPrc:

Now,

PimETiw = (ecTiv)
�1PrcETivPrcETiw

= ÆwvPrcETiw ; by de�nition 3.4:
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(iv) Residual projection operator. In this case, there exists Prc, r = i� 1 such that

Pim = Prc �
X
u2U ii

rc

Piu; r = i� 1:

where

U ii
rc is the set of indices specifying the projection operators that corre-

spond to the sources in the ith structure confounded with the cth

source from the rth structure.

First, suppose that PrcETiw 6= 0. Let ETiv be the de�ning term for Piu so that

Piu = (ecTiv)
�1PrcETivPrc:

Now,

PimETiw = PrcETiw �
X
u2U ii

rc

PiuETiw

= PrcETiw �
X
u2U ii

rc

(ecTiv)
�1PrcETivPrcETiw

= PrcETiw �PrcETiw ; by de�nition 3.4

= 0:

Second, if PrcETiw = 0,

PiuPrcETiw = PiuETiw = 0

and so

PimETiw = 0:

Examination of the results for the four forms reveals that the lemma is true.
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Lemma 3.2 Denote by Psk the kth projection operator from the sth structure. Let

Psk be the set of pivotal projection operators for which

PskPim = PimPsk = Psk; Pim 2 Psk and i = 1; : : : ; s:

Let Tiw be the de�ning term for Pim and Prc be the projection operator from the

rth structure, where r = i � 1, corresponding to the source from which the source

corresponding to Pim is estimated.

Then,

PskETiwPsk0 =

8>>>>>><>>>>>>:

ecTiwPsk when k = k0 and Tiw is the de�ning term for a

Pim 2 Psk

0 otherwise

where

ecTiw is the eÆciency factor for Tiw when it is estimated from the range

of the cth projection operator from the (i� 1)th structure.

Proof: Firstly note that there will be one projection operator for each i such that

PimPsk = PskPim = Psk, i = 1 : : : s. The operator may not be a pivotal projection

operator.

PskETiw = PskPimETiw ; for the Pim such that PskPim = Psk

= 0 unless Tiw is the de�ning term for Pim 2 Psk (by lemma 3.1).

Secondly, on also noting that, for Pim0ETiw = 0, (Pim0ETiw)
0 = ETiwPim0 = 0,

ETiwPsk0 = ETiwPim0Psk0 for the Pim0 such thatPim0Psk0 = Psk0

= 0 unless Tiw is the de�ning term for Pim0 2 Psk0 (by lemma 3.1).

Hence, PskETiwPsk0 = 0 unless Tiw is the de�ning term for Pim 2 Psk \ Psk0.

If Tiw is the de�ning term for Pim 2 Psk \ Psk0,

Pim = (ecTiw)
�1PrcE

c
Tiw
Prc
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so that

PskPimPsk0 = (ecTiw)
�1PskPrcE

c
Tiw
PrcPsk0

and

PskPsk0 = (ecTiw)
�1PskE

c
Tiw
Psk0;

as R(Psk) � R(Pim) � R(Prc).

Now PskPsk0 = 0 for k 6= k0 and the lemma follows straightforwardly.

Theorem 3.17 The variance matrix can be written

V =
X
k

X
Pim2Psk

ecTiw�TiwPsk

where

�Tiw is the spectral component for term Tiw.

Proof:

V =
sX

j=1

X
Tjz2Tj

�TjzETjz ; (from de�nition 3.6)

=
tsX
k=1

Psk

0@ sX
j=1

X
Tjz2Tj

�TjzETjz

1A tsX
k0=1

Psk0

=
tsX
k=1

tsX
k0=1

sX
j=1

X
Tjz2Tj

�TjzPskETjzPsk0

=
X
k

X
Pim2Psk

ecTiw�TiwPsk; (by lemma 3.2).

Theorem 3.18 Denote by �sk the contribution of the variation to the expected mean

square for the source corresponding to the kth projection operator from the sth struc-

ture, Psk. Then, provided that the structures giving rise to the de�ning terms, Tiw, of

the elements of Psk are regular Tjur structures,

�sk =
X

Pim2Psk

ecTiw
X

Tiv�Tiw

Tiv2TVi

rTiv�Tiv

where
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ecTiw is the eÆciency factor for term Tiw when it is estimated from the

range of the cth projection operator for the (i� 1)th structure;

rTiv is the replication of regular term Tiv which, for simple orthogonal

structures, is given by n
Q
tih2Tiv n

�1
tih = ri

Q
tih 62Tiv ntih; and

�Tiv is the canonical covariance component for the term Tiv.

Proof: Now,

�sk = tr(PskV) =�sk

= tr

0@Psk

X
k0

X
Pim2Psk0

ecTiw�TiwPsk0

1A =�sk; (by theorem 3.17)

= tr

0@ X
Pim2Psk

ecTiw�TiwPsk

1A =�sk
=

X
Pim2Psk

ecTiw�Tiwtr(Psk ) =�sk

=
X

Pim2Psk

ecTiw�Tiw

=
X

Pim2Psk

ecTiw
X

Tiv�Tiw

Tiv2Ti

rTiv�Tiv ; (by theorem 3.11)

=
X

Pim2Psk

ecTiw
X

Tiv�Tiw

Tiv2TVi

rTiv�Tiv ; as for Tiv 62 TVi
, �Tiv = 0:

As mentioned previously, pseudoterms are not included in the models for the study.

Hence, a variation pseudoterm will have the element of the vector �i corresponding

to it set to zero. In e�ect, this is no di�erent to including a component for it initially

and setting this to zero after the expected mean squares have been determined.

Of course for a valid analysis of variance we require that the �sks are strictly positive.

In particular, note that V =
P

k �skPsk so that, if the �sks are strictly positive, V will

be nonsingular with V�1 =
P

k �
�1
sk Psk. The �sks will be strictly positive if

� the canonical covariance components for unit terms, which are also the spectral

components for these terms, are strictly positive, and
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� the spectral components for other than unit terms is nonnegative.

Of course, this allows canonical covariance components to be negative.

The results contained in theorem 3.18 justify the steps given in table 2.8 for ob-

taining the contribution of the variation terms to the expected mean squares.

Further, if the F distribution is to be used in performing hypothesis tests based on

ratios of mean squares, we require that the mean squares are independently distributed

as �2s. The following theorem provides the necessary results.

Theorem 3.19 When y is normally distributed with mean � and variance V, then

(�sk�sk)
�1y0Psky is distributed as a �2 with degrees of freedom �sk and noncentrality

parameter (2�sk�sk)
�1�0Psk�.

Also, (�sk0�sk0)
�1y0Psk0y is distributed independently of (�sk�sk)

�1y0Psky for k 6= k0.

Proof: From Searle (1971b, section 2.5a, theorem 2), (�sk�sk)
�1y0Psky will be dis-

tributed as speci�ed if (�sk�sk)
�1PskV is idempotent.

Further, from Searle (1971b, section 2.5a, theorem 4), (�sk0�sk0)
�1y0Psk0y is dis-

tributed independently of (�sk�sk)
�1y0Psky for k 6= k0 if (�sk�sk�sk0�sk0)

�1PskVPsk0 =

0.

Now,

(�sk�sk)
�1PskV = (�sk�sk)

�1Psk:

As Psk is idempotent, (�sk�sk)
�1PskV is idempotent.

Also, as PskPsk0 = 0 for k 6= k0, (�sk�sk�sk0�sk0)
�1PskVPsk0 = 0 for k 6= k0.

Example 2.1 (cont'd): The analysis table, including projection operators, for
split-plot experiments of the kind presented in section 2.2 is shown in table 3.5.

Example 3.1 (cont'd): The analysis table, including projection operators,
for the simple lattice experiment is shown in table 3.6.
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Table 3.5: Analysis of variance table, including projection operators, for

a split-plot experiment

EXPECTED

PROJECTION MEAN SQUARES

SOURCE DF OPERATORS CoeÆcients of

�RCS �RC �R �C �V T

Rows v�1 P11 = P21 = ER 1 t vt

Columns v�1 P12 = P22 = EC 1 t vt

Rows.Columns (v�1)2 P13 = ERC

Varieties v�1 P23 = EV 1 t fV (�V T )
y

Residual (v�1)(v�2) P24 = P13�P23 1 t

Rows.Columns.Subplots (t�1)v2 P14 = ERCS

Treatments t�1 P25 = ET 1 fT (�V T )
y

Varieties.Treatments (v�1)(t�1) P26 = EV T 1 fV T (�V T )
y

Residual (v�1)(t�1)v P27 = P14�P25�P26 1

yThe functions for the expectation contribution are as follows:

fV (�V T ) = vt
X

((��)i: � (��)::)
2=(v � 1);

fT (�V T ) = v2
X

((��):j � (��)::)
2=(t � 1);

fV T (�V T ) = v
X

((��)ij � (��)i: � (��):j + (��)::)
2=(v � 1)(t � 1);

where the dot subscript denotes summation over that subscript.

3.4 Discussion

A summary of the conditions to be met by an study if it is to be covered by this

approach is given in sections 2.2.5 and 6.1. It is also noted that, in some circumstances,

the structure balance condition can be relaxed in part at least.

The basis for inference outlined here is the `analysis of variance method'. That
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Table 3.6: Analysis of variance table, including projection operators, for

a simple lattice experiment

EXPECTED

PROJECTION MEAN SQUARES

SOURCE DF OPERATORS CoeÆcients of

�RBP �RB �R �L

Reps 1 P11 = P21 = ER 1 b b2

Reps.Blocks 2(b� 1) P12 = ERB

C b� 1 P22 = (e2C)
�1
EC 1 b e2C2

D b� 1 P23 = (e2D)
�1
ED 1 b e2D2

Reps.Blocks.Plots 2b(b� 1) P13 = ERBP

C b� 1 P24 = (e3C)
�1
EC 1 e3C2

D b� 1 P25 = (e3D)
�1
ED 1 e3D2

Lines (b� 1)2 P26 = EL 1 2

Residual (b� 1)2 P27 = P13 �P24 �P25 �P26 1

is, having established an analysis of variance and a model, we use them to produce

expected mean squares. One method of obtaining estimates of canonical covariance

components is to use a generalized linear model for the stratum mean squares; in

�tting this model to the stratum mean squares, one would specify a gamma error

distribution, a linear link and weights which are the degrees of freedom of the mean

squares divided by two (McCullagh and Nelder, 1983, section 7.3.5). In situations

where there are the same number of canonical components as there are strata and the

stratum components are linearly independent, as is often the case, estimation of the

canonical components is merely a matter of solving the moment equations.

Estimates of the expectation e�ects confounded with a particular source are ob-

tained straightforwardly. Further, when an expectation term is confounded with

more than one source, the combination of information about that term can be ac-

complished provided suitable estimates of the canonical covariance components are
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available. However, it remains to establish the properties of the resulting estimators.

For example, are they generalized least squares estimators? To establish whether or

not this is the case would involve the simpli�cation of the normal equations providing

the BLUEs of �. These are

MV�1M� =MV�1y

where

M =
P

i

P
Tiw2T�i

R(ATiw)

is the projection operator onto the subspace of the sample space cor-
responding to the expectation model.

As discussed in section 1.2.2.2, Houtman and Speed (1983) provide expressions for

the case in which the study exhibits orthogonal variation structure. Wood, Williams

and Speed (1988) give expressions for a class exhibiting nonorthogonal variation struc-

ture; in particular, they cover three-tiered experiments in which:

1. the factors in tiers 1 and 2 are classi�ed as variation factors and those in tier 3

as expectation factors;

2. the terms derived from structure 1 are orthogonal to those from structure 2;

and

3. the sources derived from structure 2 are generally balanced with respect to those

derived from structure 3.

However, their results are not generally applicable to the class of studies discussed

here as we place no restriction on the number of structures that can occur and we do

not impose the �rst two of their conditions.

In this chapter, two relatively straightforward examples have been presented. Fur-

ther examples will be treated in chapter 4.
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Chapter 4

Analysis of two-tiered experiments

4.1 Introduction

In this chapter a number of examples are presented which either demonstrate the

application of the approach or in which the use of the approach clari�es aspects

of the analysis. Attention here is restricted to two-tiered experiments; the factors

from the �rst tier will be referred to as unrandomized factors and those from the

second tier as randomized factors. The structure sets for the orthogonal examples will

accordingly correspond to those obtained using Nelder's (1965a,b) method. However,

a detailed examination of the structure set for the range of experiments considered

here is currently not available in the literature.

For all experiments, it will be assumed that the analyses discussed will only be

applied to data that conform to the assumptions necessary for them to be valid. In

particular, homogeneity of variance and correlation assumptions have to be made.

This requires a particular form for the expected variance matrix of the observations

(see, for example, Huynh and Feldt, 1970; Rouanet and L�epine, 1970).
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4.2 Application of the approach to two-tiered ex-

periments

4.2.1 A two-tiered sensory experiment

In this section we outline the analysis of a two-tiered sensory experiment whose anal-

ysis has been presented previously by Brien (1989). An experiment was conducted

in which wine was made from 3 randomly selected batches of fruit from each of 4

areas speci�cally of interest to the investigator. The 12 wines were then presented for

sensory evaluation to 2 evaluators selected from a group of experienced evaluators.

For each evaluator, 12 glasses were positioned in a row on a bench and each wine

poured into a glass selected at random. Each evaluator scored the wine from the

12 glasses starting with the �rst position and continuing to the twelfth. The whole

process was repeated on a second occasion with the same evaluators. The scores from

the experiment are given in appendix A.1.

The observational unit for this experiment is a glass in a particular position to

be evaluated by an evaluator on an occasion. The structure set for the experiment,

derived using the method described in sections 2.2.1{2.2.4, is as follows:

Tier Structure

1 (2 Occasion�2 Evaluator)=12 Position [or (O � E)=P ]

2 (4 Area=3 Batch)�Occasion�Evaluator [or (A=B) �O � E]

That is, the factors Occasion, Evaluator and Position are unrandomized factors;

Area and Batch are randomized factors. Evaluator is included in the Tier 2 structure

since it is likely that interactions between it and the randomized factors Area and

Batch will arise. The Hasse diagram of term marginalities, used to compute the

degrees of freedom as described in table 2.2, is given in �gure 4.1.

The analysis of variance table derived from the structure set for a study, as pre-

scribed in table 2.1, is given in table 4.1.
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Figure 4.1: Hasse diagram of term marginalities for a two-tiered sensory

experiment
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Table 4.1: Analysis of variance table for a two-tiered sensory experiment.

(O = Occasion; E = Evaluator; P = Position; A = Area; B = Batch)

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of MSq Fy

�OEP �O �AOE �ABO �AB �

�OE �ABOE �ABE �AO

O 1 1 12 24 1 3 2 6 .19 .28ns

E 1 1 12 1 3 2 fE(�)
z 33.33 9.01ns

OE 1 1 12 1 3 1.69 4.12ns

O:E:P 44

A 3 1 1 3 2 2 6 4 fA(�)
z 14.83 .98ns

A:B 8 1 1 2 2 4 15.78 3.20ns

A:O 3 1 1 3 2 6 .41 .52ns

A:E 3 1 1 3 2 fAE(�)
z 2.06 .54ns

A:B:O 8 1 1 2 1.01 3.13ns

A:B:E 8 1 1 2 4.03 12.48���

A:O:E 3 1 1 3 .41 1.27ns

A:B:O:E 8 1 1 .32

Total 47

yThe F values that are the ratios of combinations of mean squares are speci�ed below, together with
approximate degrees of freedom calculated according to Satterthwaite's (1946) approximation.

Source Numerator Denominator �1 �2

O O +A:O:E O:E +A:O 3.91 1.51

E E +A:O:E O:E +A:E 1.02 3.29

A A+A:B:O A:B +A:O 3.42 8.41

A:B A:B +A:B:O:E A:B:O +A:B:E 8.33 11.77

A:O A:O +A:B:O:E A:B:O +A:O:E 7.78 10.99

A:E A:E +A:B:O:E A:B:E +A:O:E 3.98 9.45

zThe functions fA, fE and fAE of � are similar in form to those given in table 2.10.



4.2.1 A two-tiered sensory experiment 131

In order to determine the models for the experiment, the factors Occasion, Position

and Batch are categorized as variation factors because particular occasions, positions

or batches are of no special interest and will be assumed to have homogeneous vari-

ation. Evaluator, on the other hand, is categorized as an expectation factor because

it is thought that performance of the evaluators is likely to be more heterogeneous

than is appropriate for a variation factor (Jill's assessments of the wines are likely to

be quite di�erent from Jane's). Area is categorized as an expectation factor because

there is interest in comparing the performance of di�erent areas.

The maximal expectation model for the example, derived using the steps contained

in table 2.5, is A:E which can be expressed formally as

E[yjkl ] = (��)il

where

yjkl is an observation with jkl indicating the levels of the factors Occa-

sion, Position, and Evaluator, respectively, for that observation,

and

(��)il is the expected response when the response depends on the combi-

nation of Area and Evaluator with il being the levels combina-

tion of the respective factors which is associated with observation

jkl.

The maximal variation model, also derived as prescribed in table 2.5, is

G+O +O:E +O:E:P + A:B + A:O + A:B:O + A:B:E + A:O:E + A:B:O:E;

which corresponds to the following variance matrix for the observations, assuming the

data are lexicographically ordered on Occasion, Evaluator and Position,

V = V1 +V2

where
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V1 = �GJ
 J
 J+ �OI
 J
 J+ �OEI
 I
 J+ �OEP I
 I
 I;

V2 = U2(�ABI
 I
 J
 J+ �AOI
 J
 I
 J+ �ABOI
 I
 I
 J

+ �ABEI
 I
 J
 I+ �AOEI
 J
 I
 I

+ �ABOEI
 I
 I
 I)U0
2; and

U2 is the permutation matrix of order 48 specifying the assigning of the

levels combinations of Area and Batch to position of presentation

for each evaluator on each occasion.

The expected mean squares for the maximal expectation and variation models,

presented in table 4.1, are obtained using the steps outlined in table 2.8. The canonical

covariance components are arranged in columns in table 4.1 so that for all sources

the components in the �rst three columns of the expected mean squares arise from

unrandomized factors, while those in columns four to nine arise from randomized

factors. The contribution of the expectation terms is shown in the last column of the

expected mean squares in table 4.1.

As outlined in section 2.2.8, subsequent model selection utilizes the expectation

and variation lattices of models which are derived as described in table 2.6. The

expectation lattice for this example is essentially the same as that given in �gure 2.4.

The full variation lattice for this experiment is rather large; however, it is possible

to consider sublattices in which the di�erences between models involve terms all of

the same order. The variation sublattices showing models that di�er in either third

or second order terms are shown in �gure 4.2, the unit terms A:B:O:E and O:E:P

and the term G being included in every model; the corresponding sublattice for �rst

order terms is not included as it is trivial since there is only the one term, O, to be

considered.

The results of the tests associated with model selection, without pooling, are also

given in table 4.1. The selected model for expectation is G and that for variation

O:E:P + A:B:O:E + A:B:E + G. The tests performed in selecting these models,

in most instances, involved the use of Satterthwaite's (1946) approximation to the

distribution of a linear combination of mean squares. For example, the F statistic for
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Figure 4.2: Sublattices of variation models for second and third order

model selection in a sensory experiment
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Area is calculated as
14:8333 + 1:0104

15:7812 + 0:4097
= 0:9786

and the degrees of freedom are given by

�1 =
(14:8333 + 1:0104)2

14:83332=3 + 1:01042=8
= 4:42; �2 =

(15:7812 + 0:4097)2

15:78122=8 + 0:40972=3
= 8:41

This is not the only F statistic for Area; an alternative F statistic is

14:8333

15:7812 + 0:4097� 1:0104
= 0:9771

However, Snedecor and Cochran (1980, section 16.14) point out that the latter

statistic, while it has more power, has the disadvantage that Satterthwaite's approx-

imation to the degrees of freedom of its denominator is not so good.

The signi�cance of the A:B:E source indicates that evaluators contribute to the

variability in the evaluation of the batch of wine made from an area in that evaluations

of that wine performed by the same evaluator di�er in their covariance (and hence

correlation) than those that are not. The canonical covariance component for A:B:E

is clearly positive so that evaluations by the same evaluator exhibit greater, rather

than less, covariance than those that are not. If the source had not been signi�cant

it would indicate that scores for a wine from the same evaluator exhibited the same

covariance as scores from di�erent evaluators; in this case, it would be concluded

that evaluators do not contribute to the variability in the evaluation of the individual

wines. Of course, the reason for the signi�cant interaction needs to be investigated

and may suggest reanalysis such as a separate analysis of each evaluator's scores.

4.2.1.1 Split-plot analysis of a two-tiered sensory experiment

Kempthorne (1952, section 28.3), among others, suggests that sensory experiments

be analysed using a split-plot analysis. The experimental structure underlying the

split-plot analysis of the two-tiered sensory experiment presently being discussed is

as follows:

Tier Structure

1 4 Area:3 Batch=2 Occasion:2 Evaluator

2 Area�Occasion�Evaluator
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The analysis derived from this structure is presented in table 4.2. The essential

di�erences in determining this analysis, as compared to the analysis in table 4.1, are

that:

1. Evaluator and Occasion are regarded as being nested within Area.Batch in the

structure in which they occur together; and

2. following Kempthorne (1952, section 28.3), Evaluator is designated a variation

factor.

As a result, the estimate of individual score variability from the analysis in table 4.2,

Error(b), is greater than that from table 4.1, A:B:O:E, because A:B:O, A:B:E and

A:B:O:E from table 4.1 have been pooled into Error(b) from table 4.2. Consequently,

the two analyses lead to di�erent conclusions. The analysis in table 4.2 leads one to

conclude that A:B is (highly) signi�cant, whereas the analysis in table 4.1 suggests

it is not signi�cant. Thus, one of the scienti�cally important conclusions is reversed

according to the form of the analysis used. The analysis presented in table 4.1 was

derived according to the method proposed in this thesis and is the more appropriate

analysis as it separates out terms incorrectly pooled in that presented in table 4.2.

This example demonstrates the advantage of the proposed method which is based on

the careful consideration of the appropriate structure set for a study and the derivation

of the analysis of variance table from that structure set.

4.2.2 Nonorthogonal two-factor experiment

To illustrate the process of selecting an expectation model for nonorthogonal experi-

ments, consider a two-factor completely randomized design with unequal replication

of the combinations of the levels of the two factors and with all combinations be-

ing replicated at least once. This example does not satisfy the conditions set out

in section 2.2.5 as the terms arising from the randomized factors are not orthogo-

nal; however, much of the approach remains applicable if the randomized factors are

designated as expectation factors.

The structure set for a study, determined as described in section 2.2.4, is given in



4.2.2 Nonorthogonal two-factor experiment 136

Table 4.2: Split-plot analysis of variance table for a two-tiered sensory

experiment

(O = Occasion; E = Evaluator; P = Position; A = Area; B = Batch)

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of MSq Fy

� �AOE �AE �AO �OE �O �E �AB �

A:B
A 3 1 3 6 6 4 fA(�)

z 14.83 0.93ns

Error(a) 8 1 4 15.78 8.82���

A:B:O:E
O 1 1 3 6 12 24 0.19 0.29ns

E 1 1 3 6 12 24 33.33 9.01�

O:E 1 1 3 12 1.69 4.12ns

A:O 3 1 3 6 0.41 1.00ns

A:E 3 1 3 6 2.06 5.02ns

A:O:E 3 1 3 0.41 0.23ns

Error(b) 24 1 1.79

Total 47

yF ratios for A, O and E are ratios of combinations of mean squares which, together with degrees of
freedom calculated according to Satterthwaite's (1946) approximation, are shown below.

Source Numerator Denominator �1 �2

A A+A:O:E + Error(b) Error(a)+ A:O +A:E 3.94 10.21

O O +A:O:E A:O +O:E 3.91 1.51

E E +A:O:E A:E +O:E 1.02 3.29

yfA(�) = 12�(�i � �:)
2=3 where �i is the expectation for the ith Area, and �: is the mean of the

�is.
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table 4.3. The Hasse diagrams of term marginalities, used in determining the degrees

of freedom as described in table 2.2, are given in �gure 4.3. The analysis of variance

table, derived from the structure set for a study as prescribed in table 2.1, is given

in table 4.3. The lattices of models, for unrandomized factors regarded as variation

factors and randomized factors as expectation factors, are shown in �gure 4.4; these

are obtained using the steps given in table 2.6.

Figure 4.3: Hasse Diagram of term marginalities for a nonorthogonal

two-factor completely randomized design
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In this example, the variation lattice is trivial and interest is centred on the ex-

pectation lattice. The expectation lattice is the same as that given in �gure 2.4 and

so the form of the expectation models is the same as for the example discussed in

section 2.2.6.2. In this case, the steps given in table 2.8 cannot be used to derive

the expected mean squares; they are computed using the expression given by Searle

(1971b, section 2.5a) which is presented in section 3.3.3.
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Table 4.3: The structure set and analysis of variance for a nonorthogonal

two-factor completely randomized design

STRUCTURE SET

Tier Structure

1 n Plots

2 aA � bB

ANALYSIS OF VARIANCE TABLE

SOURCE DF SSq

Plots n� 1
PPP

(yijk � y:::)
2

A a� 1
P
ri:(yi:: � y:::)

2

B b� 1 r0C�1ry

A.B (a� 1)(b� 1)
PP

rijyij: � r0C�1r �
P
ri:yi::

Residual n� ab
PPP

(yijk � yij:)
2

Total n� 1

ySearle (1971b, section 7.2d) gives the general expression for this source. For the 2�2 case it reduces
to:

f r11r12
r1:

(y11: � y12:) +
r21r22
r2:

(y21: � y22:)g
2

r11r12
r1:

+ r21r22
r2:

where
rij is the number of observations for the jth level of B and the ith level of A, and

the dot subscript denotes summation over that subscript.
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Figure 4.4: Lattices of models for the two-factor completely randomized

design
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Choosing between mutually exclusive models will involve, in this nonorthogonal

situation, two hierarchical �tting sequences corresponding to the two orders in which

the terms A and B can be added to the set of �tted terms (Aitkin, 1978). This

involves a set of model comparisons equivalent to that outlined by Appelbaum and

Cramer (1974); the strategy is outlined in �gure 4.5. The necessity for this procedure

is evident upon examination of table 4.4 which contains, for each model, the expected

mean squares for the hierarchical sequence in which A is �tted before B. To choose

between the models A:B and A + B, the A:B mean square is appropriate since it is

the only mean square whose expectation does not involve models marginal to A:B. If

A:B is selected as the appropriate model then, contrary to the suggestion of Hocking,

Speed and Coleman (1980), there is no need to go further at this stage. In these

circumstances, to examine main e�ects is seen to be irrelevant; to do so would be to

attempt to �t two di�erent models to the same data (as noted in section 2.2.8.2).

Table 4.4: Contribution to the expected mean squares from the expec-

tation factors for the two-factor experiment under alternative modelsy

MODEL
SOURCE A B A +B A:B

A fA(�A) fA(�B) fA(�A+B) fA(�A:B)
B { fB(�B) fB(�B) fB(�A:B)
A:B { { { fA:B(�A:B)
Residual { { { {

yIn all cases the contribution arising from the variation factors is �P , the variance of the plots.
The functions fA(), fB() and fA:B() are functions of the parameters contained in the expectation
vector �; expressions for the functions are obtained by replacing the observations by their expectation
in the expressions for the sums of squares given in table 4.3.

If A:B is rejected, then to choose between A and A + B, the B (adjusted for A)

mean square is appropriate. In the event that B is to be retained in the model, there

is no source in the sequence underlying table 4.4 for testing between B and A + B,
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Figure 4.5: Strategy for expectation model selection for a nonorthogonal

two-factor completely randomized design
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as there is no source that involves A + B but not the marginal model B. The A

mean square in the sequence where B is �tted �rst will provide this test. However, as

Aitkin (1978) and Nelder (1982) warn, if A (or B) is to be excluded from the model

A+B, the need for the model B (or A) should be tested using the analysis in which

the term B (or A) is �tted �rst in the sequence.

4.2.3 Nested treatments

Usually, if the treatments involve more than one factor, they involve a set of crossed

factors. However, as outlined by Baxter and Wilkinson (1970), Bailey (1985) and

Payne and 13 other authors (1987), the treatment di�erences in some experiments can

best be examined by employing nested relationships between some factors. Examples

are given in this section and it is demonstrated that employing the proposed approach

clari�es model selection for these experiments.

4.2.3.1 Treated-versus-control

Cochran and Cox (1957, section 3.2) present the results of an experiment examining

the e�ects of soil fumigants on the number of eelworms. There were four di�erent

fumigants each applied in both single and double dose rates as well as a control

treatment in which no fumigant was applied. The experiment was laid out as a

randomized complete block design with 4 blocks each containing 12 plots; in each

block, the 8 treatment combinations were each applied once and the control treatment

four times and the 12 treatments randomly allocated to plots. The number of eelworm

cysts in 400g samples of soil from each plot was determined.

The experimental structure for this experiment is as follows:

Tier Structure

1 4 Blocks=12 Plots

2 2 Control=(4 Type�2 Dose)

The Hasse diagrams of term marginalities, used in determining the degrees of free-

dom of terms derived from the structure set for the study as described in table 2.2, are
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given in �gure 4.6. The manner in which the three factors index the nine treatment

combinations is evident from the table of treatment means presented in table 4.6. The

entries to the left of the Tier 2 terms in �gure 4.6 are the number of nonempty cells

for that factor combination.

Figure 4.6: Hasse diagram of term marginalities for the treated-versus-

control experiment
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The analysis of variance table, which can be obtained from the structure set for the

study using the rules given in table 2.1, has been derived from Payne et al. (1987); it

is given in table 4.5.
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Table 4.5: Analysis of variance table for the treated-versus-control ex-

periment

EXPECTED MEAN SQUARES

SOURCE DF CoeÆcients of MSq F

�BP �B �

Blocks 3 1 12 1.34

Blocks.Plots 43(1)y

Control 1 1 fC(�)
z 0.69 3.73

Control.Type 3 1 fCT (�)
z 0.06 0.35

Control.Dose 1 1 fCD(�)
z 0.22 1.20

Control.Type.Dose 3 1 fCTD(�)
z 0.04 0.22

Residual 35(1)y 1 0.19

Total 46

yThe bracketed one indicates that these sources have had their degrees of freedom reduced by one
to adjust for a single missing value.
zThe functions for the expectation contribution under the maximal model are as follows:

fC(�) = 16((��� )1:: � (��� ):::)
2 + 32((��� )2:: � (��� ):::)

2

fCT (�) = 8
X

((��� )2j: � (��� )2::)
2=3

fCD(�) = 16
X

((��� )2:k � (��� )2::)
2

fCTD(�) = 4
XX

((���)2jk � (��� )2j: � (��� )2:k + (��� )2::)
2=3

where
E
�
ylm

�
= (���)ijk is the maximal expectation model;

ylm is the observation from the mth plot in the lth block;
(���)ijk is the expected response when the response depends on the combination of

Control, Type and Dose with ijk being the levels combination of the
respective factors which is associated with observation lm; and

the dot subscript denotes summation over that subscript.
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Table 4.6: Table of means for the treated-versus-control experiment

Control Not Fumigated Fumigated
Type Not Fumigated CN CS CM CK

Dose

Not Fumigated 5.79
Single 5.48 5.28 5.82 5.37
Double 5.58 5.46 5.71 5.57

The maximal expectation and variation models, generated using the steps given in

table 2.5, are:

E[Y ] = Control.Type.Dose, and

Var[Y ] = G+ Blocks + Blocks.Plots:

Since the set of variation factors comprises all the factors in the �rst tier and the

structure from this tier is regular, the steps given in table 2.8 can be used to obtain

the expected mean squares; they are given in table 4.5.

As outlined in section 2.2.5, the alternative models to be considered for the experi-

ment can be conveniently summarized in the Hasse diagrams of the lattices of models.

The lattices of models for this experiment, derived using the steps given in table 2.6,

are given in �gure 4.7. Of particular interest in this example is the expectation lattice

of models because the investigation of expectation models is independent of which

variation model is selected. As discussed in section 2.2.8, testing begins with deciding

whether or not the maximal model can be reduced. In this case, can the model in

which the response depends on the combination of Type and Dose be reduced to one

in which Type and Dose are additively independent. If it cannot be reduced then test-

ing ceases and the maximal model is retained. In particular, in these circumstances

it makes no sense to test the one-degree-of-freedom contrast involving the compari-

son of the mean of the nonfumigated or control treatment plots versus the mean of
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Figure 4.7: Lattices of models for the treated-versus-control experiment
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all fumigated plots | eminent commonsense. Indeed, only if all models involving

di�erences between the type and dose of fumigant are rejected, is a model involving

the comparison of the nonfumigated plots to the overall mean of the fumigated plots

permissible.

As it turns out, the analysis presented in table 4.5 indicates that the model can

be reduced to E[y ] = Control. Hence one concludes that there is no di�erence

between fumigated plots, but that nonfumigated plots (mean of 5.79) are di�erent

from fumigated plots (mean of 5.33).

4.2.3.2 Sprayer experiment

A further example of nested treatments is provided by an experiment to investigate the

e�ects of tractor speed and spray pressure on the quality of dried sultanas (Clingele�er,

Trayford, May and Brien, 1977). The aspect of quality on which we shall concentrate

is the lightness of the dried sultanas which is measured using a Hunterlab D25 L

colour di�erence meter. Lighter sultanas are considered to be of better quality and

these will have a higher lightness measurement (L). There were four tractor speeds

and three spray pressures resulting in 12 treatment combinations which were applied

to 12 plots, each consisting of 12 vines, using a randomized complete block design.

However, these 12 treatment combinations resulted in only 6 rates of spray application

as indicated in table 4.7.

The structure set for this experiment is given as follows:

Tier Structure

1 3 Blocks=12 Plots

2 6 Rates=(2 Rate2+3 Rate3+3 Rate4+2 Rate5)

Note that there is a factor, Rates, for di�erences between treatments having di�er-

ent rates and factors Rate2, Rate3, Rate4 and Rate5 for di�erences between treat-

ments having the same rate but di�erent speed-pressure combinations. Each of these

latter factors has one level assigned to all observations except those at the rate whose

di�erences it indexes; for this rate, the factor has di�erent levels for each of the speed-

pressure combinations that produce the rate (see table 4.7). The order of one of these
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Table 4.7: Table of application rates and factor levels for the sprayer

experiment

FLOW RATES

Tractor
Speed 3.6 2.6 1.8 1.3

(km hour�1)

140 2090 2930 4120 5770
Pressure 330 2930 4120 5770 8100
(kPa) 550 4120 5770 8100 11340

LEVELS OF RATE2, RATE3, RATE4 AND RATE5

Rate factor
Rate2 Rate3 Rate4 Rate5

Tractor
Speed 3.6 2.6 1.8 1.3 3.6 2.6 1.8 1.3 3.6 2.6 1.8 1.3 3.6 2.6 1.8 1.3

(km hour�1)

140 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1
Pressure 330 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 2
(kPa) 550 1 1 1 1 4 1 1 1 1 4 1 1 1 1 3 1

latter factors is then the number of di�erent speed-pressure combinations at their

rate.

The Hasse diagrams of term marginalities, used in determining the degrees of free-

dom of terms derived from the structure set for the study as described in table 2.2,

are given in �gure 4.8. As for the treated-versus-control experiment presented in sec-

tion 4.2.3.1, the entries to the left of the Tier 2 terms are the number of nonempty
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cells for that factor combination. Further, a term (Pressure.Speed) whose model space

corresponds to the union of the model spaces of all the factors in the experiment is

included to satisfy the �rst condition for a Tjur structure (see section 2.2.4). This

term is shown to be redundant in that it has no degrees of freedom.

Figure 4.8: Hasse diagram of term marginalities for the sprayer experi-

ment
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The analysis of variance table is generated using the rules given in table 2.1. The

analysis, for a set of generated data (appendix A.2) with the same lightness (L) means

as those presented in Clingele�er et al. (1977), is given in table 4.8; the full table of

means is given in table 4.9.
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The maximal expectation and variation models, generated using the steps given in

table 2.5, are:

Var[Y ] = G+ Blocks + Blocks.Plots, and

E[Y ] = Rates.Rate2 + Rates.Rate3 + Rates.Rate4 + Rates.Rate5.

Table 4.8: Analysis of variance table for the sprayer experiment

EXPECTED MEAN SQUARES

SOURCE DF CoeÆcients of MSq F

�BP �B �

Blocks 2 1 12 2.5011

Blocks.Plots 33
Rates 5 1 fR(�)

y 1.2447 7.78
Rates.Rate2 1 1 fR2(�)

y 1.9267 12.05
Rates.Rate3 2 1 fR3(�)

y 1.7144 10.72
Rates.Rate4 2 1 fR4(�)

y 0.2678 1.67
Rates.Rate5 1 1 fR5(�)

y 0.0817 0.51
Residual 22 1 0.1599

yThe functions fR, fR2, fR3, fR4 and fR5 of � for the maximal model are similar, in form, to those
given in table 4.5.

Again, since the variation factors are all those in the �rst tier and the structure

derived from this tier is regular, the steps given in table 2.8 can be used to obtain the

expected mean squares. They are given in table 4.8.

The alternative models to be considered are derived as described in table 2.6. The

variation lattice will be the same as that presented in �gure 4.7 and again the investi-

gation of expectation models is independent of which variation model is selected. The

expectation lattice consists of the models G, Rates and models consisting of all possi-

ble combinations of the terms Rates.Rate2, Rates.Rate3, Rates.Rate4, Rates.Rate5.
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Table 4.9: Table of means for the sprayer experiment

FULL TABLE OF MEANS

(P = Pressure; L = Lightness)

Tractor Speed
3.6 2.6 1.8 1.3 Mean

P L P L P L P L

Rates
2090 140 18.7
2930 330 20.4 140 19.2 19.80
4120 550 20.5 330 20.2 140 19.1 19.96
5770 550 19.6 330 19.1 140 19.6 19.44
8100 550 19.9 330 19.7 19.82
11340 550 20.5

FITTED TABLE OF MEANS

(P = Pressure; L = Lightness)

Tractor Speed
3.6 2.6 1.8 1.3 Mean

P L P L P L P L

Rates
2090 140 18.7
2930 330 20.4 140 19.2
4120 550 20.5 330 20.2 140 19.1
5770 19.44
8100 19.82
11340 550 20.5
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Thus, model selection �rstly involves deciding which, if any, of the terms Rate2,

Rate3, Rate4 and Rate5 need to be included in the model. If none are required

because there are no di�erences within Rates, one next determines if the term Rates

should be included. In the example, only Rate2 and Rate3 are signi�cant so that the

model for the expectation should be:

E[Y ] = Rates.Rate2 + Rates.Rate3:

The �tted values for this model are given in table 4.9.

4.3 Clarifying the analysis of complex two-tiered

experiments

The application of the method described in chapter 2 to more complicated two-tiered

experiments will be described with some simple steps left implicit for brevity. Further,

to obtain expected mean squares, unless otherwise stated, the unrandomized factors

will be taken to be variation factors and the randomized factors to be expectation

factors.

The experiments covered include split-plot experiments, series of experiments, re-

peated measurements experiments and change-over experiments. In all but one of

these experiments, the expectation terms are confounded with di�erent sources from

the �rst structure and the stratum components used in estimation and testing di�er

between them. Consequently, most of them would normally be analysed within the

framework of the split-plot analysis, this being the classic analysis in which expec-

tation terms are confounded with di�erent sources. It is therefore not uncommon

to �nd experiments with procedures quite di�erent from the split-plot experiment

being treated as if they were split-plot experiments. The use of the structure set in

specifying the analysis of variance table for such experiments will be found to be espe-

cially illuminating, di�erences in the experimental population and procedures being

faithfully reproduced in the analysis table.
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4.3.1 Split-plot designs

Most generally the split-plot principle can be de�ned as the randomizing of two or

more factors so that the randomized factors di�er in the experimental unit to which

they are randomized. By modifying the restrictions on the randomization of treat-

ments and di�erent aggregations of observational units into experimental units, a

wide range of designs can be obtained, all of which conform to the general de�nitions

given above (see, for example, Cochran and Cox, 1957; Federer, 1975). A feature of

these, and many textbook designs, is that they involve only a single class of replica-

tion factors. Replication factors are those whose primary function is to provide a

range of conditions, resulting from uncontrolled variation, under which the treatments

are observed. The classes of replication factors that commonly occur include factors

indexing plots, animals, subjects and production runs.

The analysis for the 'standard' split-plot is presented here, while a more diÆcult,

three-tiered example involving row-and-column designs is discussed in section 5.4.3.

The usual textbook example of a split-plot experiment (Federer, 1975, p.11) in-

volves two treatment factors, C and D say, one of which (C) has been randomized to

main plots according to a randomized complete block design. The main plots are fur-

ther subdivided into subplots and the set of treatments corresponding to the factor D

randomized to the subplots within each main plot. Clearly, the Block, Plots and Sub-

plots are the unrandomized factors, while C and D are the randomized factors. Plots

are nested within Blocks and Subplots are nested within Plots, primarily because of

the randomization. The structure set and analysis of variance table appropriate in

this situation are shown in table 4.10. The symbolic forms of the maximal models for

this experiment, derived according to the rules given in table 2.5, are as follows:

E[Y ] = C.D

Var[Y ] = G+ Blocks + Blocks.Plots+ Blocks.Plots.Subplots

The expected mean squares under these models are given in table 4.10.

The layout of the analysis table derived from the structure set parallels that usually

presented in textbooks. It di�ers in that the error sources (residuals) are not viewed as

interactions (or pooled interactions), but as residual information about nested terms
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arising in the bottom tier. That is, the error sources are seen to be of a di�erent type

of variability (see section 6.6.2) from that usually implied.

Table 4.10: Structure set and analysis of variance table for the standard

split-plot experiment

STRUCTURE SET

Tier Structure

1 b Blocks=c Plots=d Subplots

2 c C�d D

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�BPS �BP �B �

Blocks (b� 1) 1 d cd

Blocks.Plots b(c� 1)
C (c� 1) 1 d fC(�)
Residual (b� 1)(c� 1) 1 d

Blocks.Plots.Subplots bc(d� 1)
D (d� 1) 1 fD(�)
C.D (c� 1)(d� 1) 1 fCD(�)
Residual c(d� 1)(b� 1) 1

The structure set and table for the situation in which it is thought to be appropriate

to isolate the D.Blocks term are shown in table 4.11. The symbolic forms of the

maximal models for this experiment, derived according to the rules given in table 2.5,



4.3.1 Split-plot designs 155

are as follows:

E[Y ] = C.D

Var[Y ] = G+ Blocks + Blocks.Plots+ Blocks.Plots.Subplots+D.Blocks

Table 4.11: Structure set and analysis of variance table for the standard

split-plot experiment, modi�ed to include the D.Blocks interaction

STRUCTURE SET

Tier Structure

1 b Blocks=c Plots=d Subplots

2 d D�(c C+Blocks)

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�BPS �BP �DB �B �

Blocks (b� 1) 1 d c cd

Blocks.Plots b(c� 1)
C (c� 1) 1 d fC(�)
Residual (b� 1)(c� 1) 1 d

Blocks.Plots.Subplots bc(d� 1)
D (d� 1) 1 c fD(�)
C.D (c� 1)(d� 1) 1 fCD(�)
D.Blocks (b� 1)(d� 1) 1 c
Residual (c� 1)(d� 1)(b� 1) 1

The inclusion of this term means that the conditions laid down in section 2.2.5 are

no longer satis�ed; the set of terms from the second tier do not include a term to

which all other terms in the tier are marginal. However, this can be overcome by
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making Blocks crossed with both C and D; having determined the expected mean

squares with the additional terms C.Blocks and C.D.Blocks included, �CB and �CDB

are set to zero and the additional terms removed from the analysis. Although, leaving

them in would make no substantial di�erence to the analysis.

A number of authors, including Anderson and Bancroft (1952), Federer (1955 and

1975), Harter (1961) and Yates (1965), have discussed the advisability of isolating the

D.Blocks term. Federer (1955, p.274) asserts that, while it is arithmetically possible

to partition out the D.Blocks interaction ( his replicate �B interaction), this should

not be done as it is `confounded' with C.D.Blocks interaction (his replicates �A�B

interaction). The other authors and Federer (1975) suggest that it should be isolated

in certain circumstances. In fact, it is the Blocks.Subplots term (an unrandomized

term) which cannot be isolated as it is nonorthogonal to the D e�ects, since the levels

of D are not balanced across the levels of Subplots. On the other hand, in contrast

to Federer (1955), I assert that the D.Blocks term (being an intertier interaction

which is a generalized term for block-treatment or unit-treatment interaction) can be

partitioned out if this is desirable.

4.3.2 Experiments with two or more classes of replication

factors

This group of experiments includes series-of-experiments (Kempthorne, 1952, chapter

28; Federer, 1955, chapter X, section 1.4.4; Cochran and Cox, 1957, chapter 14),

repeated measurements (Winer, 1971 chapters 4 and 7) and change-over experiments

(Cochran and Cox, 1957, section 4.6a; John and Quenouille, 1977, section 11.4). They

all involve at least two classes of replication factors, for example, �eld and time.

The experiments will be subdivided into those that have only one class of replication

factors in the bottom tier and those that have two or more such classes. Experiments

with two or more classes of replication in the bottom tier are further subdivided

into three categories on the basis of the randomization of factors to the classes of

replication factors in the bottom tier.

These experiments, while they exhibit many similarities, di�er from each other in an
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analogous way to the three experiments discussed in section 6.6.1 and in other ways.

These di�erences have not always been taken into account in the analyses performed

but are brought to the fore when the proposed approach is employed.

4.3.2.1 Single class in bottom tier

Because there is more than one class of replication factors in the experiments of this

category but only one class can occur in the bottom tier, replication factors must

be randomized to those in the bottom tier. This type of experiment is typi�ed by

the series-of-experiments experiment mentioned above. A series-of experiments

experiment is one that involves repetition, usually in time and/or space, and which

involves a di�erent set of experimental units at each repetition (Cochran and Cox,

1957, chapter 14). That is, replication factors, such as Times, are randomized to the

levels combinations of factors in the bottom tier. Their analysis is the same as for a

split-plot experiment.

Times randomized. Suppose an agronomist wishes to investigate the e�ect on

crop yield of di�erent amounts of nitrogen fertilizer and the way in which these e�ects

vary over time. An experiment is set up in which the nitrogen treatments are arranged

in a randomized complete block design. The whole plots are subdivided into subplots

and one subplot from each whole plot is randomly selected to be harvested at one

time, harvesting being performed on several occasions. For this experiment, Levels of

nitrogen and Times of harvesting are the randomized factors. The analysis of the ex-

periment would follow the analysis of the standard split-plot experiment (table 4.10),

Levels of nitrogen corresponding to factor C and Times of harvesting to factor D.

This is not a repeated measurements experiment as only one measurement is made

on each physical unit, that is, on each subplot. However, it involves two classes of

replication factors, �eld and time factors.

Times randomized and sites unrandomized. The classic experiment of this

type is the one analysed by Yates and Cochran (1938). It involves a randomized

complete block design of three blocks and �ve varieties, replicated at each of six sites.

Observations were recorded in two successive years, the experiment being performed
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on di�erent tracts of land within each site each year. The overall analysis of variance

table given by Yates and Cochran (1938) is reproduced, in essentially the same form,

in table 4.12; the Residual mean square is di�erent from the Experimental error of

Yates and Cochran as it is based on just the �ve varieties analysed, rather than the

ten for which data were available.

Table 4.12: Yates and Cochran (1938) analysis of variance table for an

experiment involving sites and years

SOURCE DF MSq
General Example

Sites (s� 1) 5 1414.73
Years (y � 1) 1 1266.17
Sites.Years (s� 1)(y � 1) 5 459.59
Varieties (v � 1) 4 442.50
Varieties.Sites (v � 1)(s� 1) 20 73.88
Varieties.Years (v � 1)(y � 1) 4 24.32
Varieties.Sites.Years (v � 1)(s� 1)(y � 1) 20 46.40
Blocks.Sites.Years sy(b� 1) 24 72.28
Residual sy(b� 1)(v � 1) 96 23.90

However, the unrandomized factors are Sites, Tracts, Blocks and Plots; Varieties

and Years are the randomized factors, the Varieties being randomized to Plots and the

Years to Tracts. The structure set for the experiment, which includes the interaction

of the randomized factors with Sites, is shown in table 4.13.

The structure set is identical to that for a split-split-plot experiment in which some

of the intertier interactions are of interest. As for the last example, this experiment

is not a repeated measurements experiment, although it involves the two classes of

replication factors, �eld factors and time factors. The classi�cation of Sites as a

variation factor and Years as an expectation factor in this experiment is not a foregone

conclusion. However, experience shows that it is unlikely that results from di�erent

sites and di�erent years would exhibit the necessary symmetry for them to be regarded
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Table 4.13: Structure set and analysis of variance table for an experiment

involving sites and years

STRUCTURE SET

Tier Structure

1 s Sites=y Tracts=b Blocks=v Plots

2 v Varieties�Sites�y Years

ANALYSIS OF VARIANCE TABLE

EXPECTED

MEAN SQUARES

SOURCE DF CoeÆcients of MSq F

General Example �STBP �STB �ST �

Sites (s� 1) 5 1 v bv fS(�) 1414.73

Sites.Tracts s(y � 1) 6

Years (y � 1) 1 1 v bv fY (�) 1266.17

Sites.Years (s� 1)(y � 1) 5 1 v bv fSY (�) 459.59

Sites.Tracts.Blocks sy(b� 1) 24 1 v 72.28 3.02

Sites.Tracts.Blocks.Plots syb(v � 1) 144

Varieties (v � 1) 4 1 fV (�) 442.50 18.51

Varieties.Sites (v � 1)(s� 1) 20 1 fV S(�) 73.88 3.09

Varieties.Years (v � 1)(y � 1) 4 1 fV Y (�) 24.32 1.02

Varieties.Sites.Years (v � 1)(s� 1)(y � 1) 20 1 fV SY (�) 46.40 1.94

Residual sy(b� 1)(v � 1) 96 1 23.90
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as variation factors. The expected mean squares will be based on treating Sites and

Years as expectation factors. The symbolic forms of the maximal models for this

experiment, derived according to the rules given in table 2.5, are as follows:

E[Y ] = Varieties.Sites.Years

Var[Y ] = G+ Sites.Tracts + Sites.Tracts.Blocks + Sites.Tracts.Blocks.Plots

Table 4.13 also gives the analysis of variance table derived from the structure for the

study. The decomposition of the Total sum of squares for this analysis is equivalent

to that of Yates and Cochran, but the modi�ed analysis re
ects more accurately the

types of variability (section 6.6.2) contributing to each subspace. Sites.Years is totally

and exhaustively confounded (section 6.3) with Sites.Tracts and so assumptions are

required to test the signi�cance of the Sites.Years term. This has not been recognized

previously.

4.3.2.2 Two or more classes in bottom tier, factors randomized to only

one

Many repeated measurements experiments are included in the category investigated

in this section. Repeated measurements experiments are ones in which obser-

vations are repeated over several times, with Times being an unrandomized factor

(Winer, 1971).

Repetitions in time. Consider a randomized complete block experiment in which

several clones of some perennial crop are to be compared. The yield for each plot is

measured in successive years without any change in the experimental layout. Gener-

ated data for such an experiment are given in appendix A.3.

This type of experiment is often referred to as a split-plot-in-time, the years being

regarded as a split-plot treatment randomized to hypothetical subplots (Bliss, 1967,

p.392). Thus the analysis of variance often used to analyse such experiments is the

standard split-plot analysis (table 4.10). This analysis for the generated set of data

is presented in table 4.14. Again, Years is taken to be an expectation factor as in the

times-randomized-and-sites-unrandomized experiment of section 4.3.2.1. From this

analysis we conclude that there is no interaction between Clones and Years and no
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overall di�erences between the Years but that there are overall di�erences between

the Clones.

Table 4.14: Analysis of variance table for the split-plot analysis of a

repeated measurements experiment involving only repetitions in time

EXPECTED

MEAN SQUARES

SOURCE DF CoeÆcients of MSq F

General Example �BPY �BP �B �

Blocks (b� 1) 4 1 d cd 75.38

Blocks.Plots b(c� 1) 10

Clones (c� 1) 2 1 d fC(�) 490.52 8.77

Residual (b� 1)(b� 1) 8 1 d 55.96

Blocks.Plots.Subplots bc(y � 1) 45

Years (y � 1) 3 1 fY (�) 105.57 2.84

Clones.Years (c� 1)(y � 1) 6 1 fCY (�) 48.52 1.30

Residual c(b� 1)(y � 1) 36 1 37.22

However, the set of factors actually involved is Blocks, Plots, Years and Clones. An

observational unit is a plot during a particular year. Clones is the only randomized

factor, it being randomized to the Plots within Blocks. Thus, the structure set is

as shown in table 4.15. It di�ers from the structure set for the standard split-plot

experiment in that

1. Years arises in the bottom tier (being innate to an observational unit),

2. there are no hypothetical subplots, and

3. the Clones.Years interaction is seen to be an intertier interaction.

The analysis of variance table corresponding to the revised structure set is also

given in table 4.15. The symbolic forms of the maximal models for this experiment,
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Table 4.15: Structure set and analysis of variance table for a repeated

measurements experiment involving only repetitions in time

STRUCTURE SET

Tier Structure

1 (b Blocks=c Plots)�y Years

2 c Clones�Years

ANALYSIS OF VARIANCE TABLE

EXPECTED

MEAN SQUARES

SOURCE DF CoeÆcients of MSq F

General Example �BPY �BP �BY �B �

Blocks (b� 1) 4 1 y c cy 75.38

Blocks.Plots b(c� 1) 10

Clones (c� 1) 2 1 y fC(�) 490.52

Residual (b� 1)(b� 1) 8 1 y 55.96 14.77

Years (y � 1) 3 1 c fY (�) 105.57

Blocks.Years (b� 1)(y � 1) 12 1 c 104.07 27.47

Years.Blocks.Plots b(c� 1)(y � 1) 30

Clones.Years (c� 1)(y � 1) 6 1 fCY (�) 48.52 12.80

Residual (b� 1)(c� 1)(y � 1) 24 1 3.79
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derived according to the rules given in table 2.5, are as follows:

E[Y ] = Clones.Years

Var[Y ] = G + Blocks+ Blocks.Plots+ Blocks.Years + Blocks.Plots.Years

The analysis of variance table includes a source for Blocks.Years, about the inclusion

of which there has been some confusion in the literature. The usual justi�cation has

been that this interaction often occurs (see, for example, Anderson and Bancroft,

1952; Steel and Torrie, 1980). However, it is seen to be generally appropriate, in the

light of the structure set, to partition it out; to omit it, in any particular instance,

requires one to argue that it will not occur. Indeed, the analysis presented in table 4.15

reveals that for the generated data, Blocks.Years is a signi�cant source of variation.

As a result, the conclusions from the analysis given in table 4.15 di�er markedly from

those in table 4.14 in that a rather large interaction between Clones and Years has

been detected. This interaction was not detected in the split-plot analysis because

the Subplot Residual was in
ated by the Blocks.Years component included in it.

Repetitions in time and space. Suppose that the experiment described in the

previous example was repeated at each of several sites. At �rst sight, one might be

tempted to think one had an experiment of the type described by Yates and Cochran

(see section 4.3.2.1) and, for an overall analysis of the data, to use that given in

table 4.13. However, the unrandomized factors in the experiment are Sites, Reps,

Plots and Years (that is, Years has not been randomized to Tracts of ground as in

the Yates-Cochran experiment). Clones is the only randomized factor. The structure

set for the experiment, a re
ection of the experimental population and procedures,

and including a number of intertier interactions, is shown in table 4.16. Again, Sites

and Years are taken to be expectation factors as in the times-randomized-and-sites-

unrandomized experiment of section 4.3.2.1. The symbolic forms of the maximal

models for this experiment, derived according to the rules given in table 2.5, are as

follows:

E[Y ] = Clones.Sites.Years

Var[Y ] = G+ Sites.Blocks+ Sites.Blocks.Plots + Sites.Blocks.Years

+ Sites.Blocks.Plots.Years
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Table 4.16: Structure set and analysis of variance table for an experiment

involving repetitions in time and space

STRUCTURE SET

Tier Structure

1 (s Sites=b Blocks=c Plots)�y Years

2 c Clones�Sites�Years

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES

SOURCE DF CoeÆcients of

�SBPY �SBP �SBY �SB �CSY

Sites (s� 1) 1 y c cy fS(�CSY )

Sites.Blocks s(b� 1) 1 y c cy

Sites.Blocks.Plots sb(c� 1)
Clones (c� 1) 1 y fC(�CSY )
Clones.Sites (c� 1)(s� 1) 1 y fCS(�CSY )
Residual s(b� 1)(c� 1) 1 y

Years (y � 1) 1 c fY (�CSY )

Sites.Years (s� 1)(y � 1) 1 c fSY (�CSY )

Sites.Blocks.Years (s� 1)(b� 1)(y � 1) 1 c

Sites.Blocks.Plots.Years sb(c� 1)(y � 1)
Clones.Years (c� 1)(y � 1) 1 fCY (�CSY )
Clones.Sites.Years (c� 1)(s� 1)(y � 1) 1 fCSY (�CSY )
Residual s(b� 1)(c� 1)(y � 1) 1
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The analysis of variance table for this experiment (also given in table 4.16) is

di�erent from the table given in table 4.13 in that the Residual of the latter has been

partitioned into two Residuals for the former. Thus the terms used for testing the

various hypotheses are di�erent for the two analyses.

Table 4.17: Experimental layout for a repeated measurements experi-

ment involving split plots and split blocks (Federer, 1975)y

Development Stage
Block Herbicide

3 1 2
I 7 6 3 5 2 1 4 1 4 6 2 7 3 5 5 6 3 1 7 2 4

A II 7 6 3 5 2 1 4 1 4 6 2 7 3 5 5 6 3 1 7 2 4

III 7 6 3 5 2 1 4 1 4 6 2 7 3 5 5 6 3 1 7 2 4

3 2 1
III 3 2 1 6 4 5 7 5 4 2 3 7 6 1 6 2 4 3 7 5 1

B I 3 2 1 6 4 5 7 5 4 2 3 7 6 1 6 2 4 3 7 5 1

II 3 2 1 6 4 5 7 5 4 2 3 7 6 1 6 2 4 3 7 5 1

1 2 3
III 3 6 2 5 1 4 7 6 3 7 5 4 2 1 1 2 6 4 7 3 5

C II 3 6 2 5 1 4 7 6 3 7 5 4 2 1 1 2 6 4 7 3 5

I 3 6 2 5 1 4 7 6 3 7 5 4 2 1 1 2 6 4 7 3 5

1 3 2
II 7 2 3 5 1 4 6 7 6 3 2 4 1 5 1 4 5 6 3 2 7

D III 7 2 3 5 1 4 6 7 6 3 2 4 1 5 1 4 5 6 3 2 7

I 7 2 3 5 1 4 6 7 6 3 2 4 1 5 1 4 5 6 3 2 7

yThe levels of T are given inside the boxes.

Measurement of the several parts of a pasture. Federer (1975, example 7.4)

discusses a repeated measurements experiment involving repetitions in time and space

and for which the basic design is obtained by combining split-block and split-plot
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design principles. There are three whole plot herbicide preconditioning treatments

(H) arranged in a randomized complete block design of four blocks each with three

rows. The blocks are further subdivided into three columns and the three levels of

a development stage factor (D) randomized to the columns within a block. Each

column is subdivided into seven subplots and a third factor (T ) randomized to them.

The experimental layout is shown in table 4.17. The produce of each of the 63 plots in

the experiment is divided into three parts (grass, legumes and weeds) and the weight

of each part for each plot recorded, giving 189 measurements.

The structure set for this experiment is as follows:

Tier Structure

1 (4 Blocks=(3 Rows�(3 Cols=7 Subplots)))�3 Parts

2 3 H�3 D�7 T�Parts
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Table 4.18: Analysis of variance table for a repeated measurements ex-

periment involving split plots and split blocks

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�BRCSP �BCSP �BRP �BRCS �BCS �BR

�BRCP �BCP �BP �BRC �BC �B

Blocks 3 1 7 3 21 21 63 3 21 9 63 63 108

Blocks.Rows 8

H 2 1 7 21 3 21 63

Residual 6 1 7 21 3 21 63

Blocks.Cols 8

D 2 1 7 3 21 3 21 9 63

Residual 6 1 7 3 21 3 21 9 63

Blocks.Cols.Subplots 72

T 6 1 3 3 9

D.T 12 1 3 3 9

Residual 54 1 3 3 9

Blocks.Rows.Cols 16

H.D 4 1 7 3 21

Residual 12 1 7 3 21

Blocks.Rows.Cols.Subplots 144

H.T 12 1 3

H.D.T 24 1 3

Residual 108 1 3

Parts 2 1 7 3 21 21 63

Parts.Blocks 6 1 7 3 21 21 63

Parts.Blocks.Rows 16

Parts.H 4 1 7 21

Residual 12 1 7 21

Parts.Blocks.Cols 16

Parts.D 4 1 7 3 21

Residual 12 1 7 3 21

Parts.Blocks.Cols.Subplots 144

Parts.T 12 1 3

Parts.D.T 24 1 3

Residual 108 1 3

Parts.Blocks.Rows.Cols 32

Parts.H.D 8 1 7

Residual 24 1 7

Parts.Blocks.Rows.Cols.Subplots 288

Parts.H.T 24 1

Parts.H.D.T 48 1

Residual 216 1

yVariation contribution only to expected mean squares.
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The analysis of variance is given in table 4.18.

In this experiment the unrandomized factor Parts is clearly an expectation factor.

The symbolic forms of the maximal models for this experiment, derived according to

the rules given in table 2.5, are as follows:

E[Y ] = Parts.H.D.T

Var[Y ] = G + Blocks+ Blocks.Rows + Blocks.Columns

+ Blocks.Columns.Subplots+ Blocks.Rows.Columns

+ Blocks.Rows.Columns.Subplots

+ Blocks.Parts + Blocks.Rows.Parts + Blocks.Columns.Parts

+ Blocks.Columns.Subplots.Parts + Blocks.Rows.Columns.Parts

+ Blocks.Rows.Columns.Subplots.Parts

The analysis given by Federer (1975) is given in table 4.19.

There are two major di�erences between the two analyses. First, the sources des-

ignated `error (HT)' and `error (HDT)' by Federer are not separated in the analysis

given in table 4.18; they are combined in the Residual source for Blocks.Rows.Cols.-

Subplots. Because of the sampling employed, their separation is not justi�ed. Second,

the source `error (Parts)' of Federer (1975, section 7.4), has been partitioned into the

Residual sources for the interactions involving Parts.Blocks in table 4.18. The analy-

sis presented in table 4.18 is quite di�erent from that obtained within the conventional

split-plot framework by Federer.
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Table 4.19: Federer (1975) Analysis of variance table for a repeated

measurements experiment involving split plots and split blocks

SOURCE DF

Blocks 3
H 2
Blocks.H = error (H) 6
D 2
Blocks.D = error(D) 6
T 6
D.T 12
Blocks.T.S = error(T) 54
H.D 4
Blocks.H.D = error(HD) 12
H.T 12
Blocks.H.T = error(HT) 36
H.D.T 24
Blocks.H.D.T = error(HDT) 72
Parts 2
Parts.H 4
Parts.D 4
Parts.T 12
Parts.D.T 24
Parts.H.D 8
Parts.H.T 24
Parts.H.D.T 48
Blocks.Parts.H.D.T = error (Parts) 378
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4.3.2.3 Factors randomized to two or more classes in bottom tier, no

carry-over

Subjects with repetitions in time. In a psychological experiment four subjects

of each sex participated in three blocks of four trials. In each block the subjects

were given two pairs of synonyms and two pairs of words unrelated in meaning. One

word of the pair was played through a headphone to the left ear and the other to the

right ear. The experimenter used three di�erent interstimulus intervals; that is, three

di�erent times between when the �rst word was played to the left ear and when the

second word was played. These were randomly assigned to the blocks of trials for each

subject. The order of the four word pairs used in the experiment was randomized and

this order used for all the interstimulus intervals and subjects. The subjects were

asked to press one of two buttons if the two words were synonyms and the other

button if they were unrelated. Two subjects of each sex chosen at random were asked

to use their left hand and the others to use their right hand (all subjects were right-

handed). The time taken from when the second word was played to when the buzzer

was pressed (the reaction time) was measured.

The unrandomized factors in this experiment are Sex, Subjects, Blocks and Trials;

the randomized factors are Hand, ISI (interstimulus interval), Relation and Pairs.

The structure set for the experiment is as follows:

Tier Structure

1 (2 Sex=4 Subjects=3 Blocks)�4 Trials

2 2 Hand�3 ISI�(2 Relation=2 Pairs)�Sex

The resulting analysis table is given in table 4.20. The symbolic forms of the

maximal models for this experiment, derived according to the rules given in table 2.5,

are as follows:

E[Y ] = Relations.Pairs.Hand.ISI.Sex

Var[Y ] = G+ Sex.Subjects + Sex.Subjects.Blocks + Trials

+ Sex.Trials+ Sex.Subjects.Trials

+ Sex.Subjects.Blocks.Trials
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Table 4.20: Analysis of variance table for a repeated measurements ex-

periment with factors randomized to two classes of replication factors, no

carry-over e�ects

EXPECTED MEAN SQUARESy

SOURCE DF CoeÆcients of
�XSBT �XST �XT �T �XSB �XS

Sex 1 1 3 12 4 12
Sex.Subjects 6
Hand 1 1 3 4 12
Hand.Sex 1 1 3 4 12
Residual 4 1 3 4 12

Sex.Subjects.Blocks 16
ISI 2 1 4
ISI.Sex 2 1 4
Hand.ISI 2 1 4
Hand.ISI.Sex 2 1 4
Residual 8 1 4

Trials 3
Relation 1 1 3 12 24
Relation.Pairs 2 1 3 12 24

Sex.Trials 3
Relation.Sex 1 1 3 12
Relation.Pairs.Sex 2 1 3 12

Sex.Subjects.Trials 18
Relation.Hand 1 1 3
Relation.Hand.Sex 2 1 3
Relation.Pairs.Hand 1 1 3
Relation.Pairs.Hand.Sex 2 1 3
Residual 12 1 3

Sex.Subjects.Blocks.Trials 48
Relation.ISI 2 1
Relation.ISI.Sex 2 1
Relation.Hand.ISI 2 1
Relation.Hand.ISI.Sex 2 1
Relation.Pairs.ISI 4 1
Relation.Pairs.ISI.Sex 4 1
Relation.Pairs.Hand.ISI 4 1
Relation.Pairs.Hand.ISI.Sex 4 1
Residual 24 1

yVariation contribution only to the expected mean squares.
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In the analysis, the intertier interactions between Sex and the other randomized

factors are to be partitioned out. Also, the factor Blocks, which is intrinsically crossed

with the other factors in the bottom tier, is nested within Subjects and Sex because

the order in which the interstimulus intervals were used was randomized for each

subject. However, Trials remains crossed with the other factors because the order of

presentation of the four word pairs was the same for all blocks and subjects.

The analysis given in table 4.20 di�ers from what would be obtained by analogy with

those given by Winer (1971) in that i) the randomized and unrandomized factors (for

example, Sex and Hand respectively) are distinguished, ii) the structure in the time

factors (Blocks and Trials) is fully recognized and iii) intertier interactions between

Subjects and ISI , Relation and Pairs are not included. Clearly, the randomization

procedures are re
ected in the confounding pattern evident in the analysis table in

table 4.20.

4.3.2.4 Factors randomized to two or more classes in bottom tier, carry-

over

The experiments in this category are based on the change-over design, which is

a design in which measurements on experimental units are repeated and the treat-

ments are changed between measurements in such a way that the carry-over e�ects

of treatments can be estimated (Cochran and Cox, 1957, section 4.6a; John and Que-

nouille, 1977, section 11.4). The analysis described in this section is based on joint

work with W.B. Hall; this involved discussions during which the analysis for experi-

ments without preperiod, such as the animals-with-repetitions-in-time experiment,

was formulated. It was available in a manuscript submitted for publication in 1979

but Payne and Dixon (1983) have since indicated how the analysis can be performed

with GENSTAT 4.

Animals with repetitions in time. Cochran and Cox (1957, sections 4.61a and

4.62a) analyse the results from part of an experiment on feeding dairy cows. They

analysed the milk yield from a 6-week period for six cows that were fed a di�erent

diet in each of three periods. The order of the diets for each cow was obtained by
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using two 3� 3 Latin square designs. The original experiment involved 18 cows and

utilized 6 squares; the 18 cows were divided into 6 sets so that the 3 cows in each set

were as similar as possible in respect to milk yielding ability (Cochran, Autrey and

Cannon, 1941). The pair of Latin squares used in the part of the experiment analysed

allows one to estimate the carry-over (or residual e�ects) of treatments in the period

immediately after they are applied. However, because there is no preperiod, carry-over

e�ects are not estimated from the �rst period.

Cochran and Cox point out that, in change-over experiments based on sets of Latin

squares, treatments are to be randomized to letters and rows and columns of the

squares are randomized. The experimenter has to decide whether to remove period

e�ects separately in each square, as is best if period e�ects are likely to di�er from

square to square; on the other hand, the experimenter might elect to remove overall

period e�ects. In the former case the squares are kept separate and the rows and

columns randomized separately in each square; in the latter, all columns are random-

ized and the rows are randomized across squares.

However, randomization of the rows of a single square can only be used when the

residual e�ects are balanced across a single square, as may be the case for an even

number of treatments. In the example from Cochran and Cox, a pair of squares

is required to achieve balance so that rows must be randomized across this pair of

squares.

The unrandomized factors are Sets, Cows and Periods. The structure for the

randomized factors is complicated by the fact that carry-over e�ects cannot occur

in measurements taken in the �rst period. This is overcome by introducing a factor

for no carry-over e�ect versus carry-over e�ect. That is, a factor (First) which is 1 for

the �rst period and 2 for other periods. The factor for carry-over e�ects (Carry) then

has four levels: 1 for no carry-over and 2, 3 and 4 for carry-over of the �rst, second

and third diets, respectively; however, the order of this factor is 3. The structure set

for the experiment is as follows:

Tier Structure

1 (2 Sets=3 Cows)�3 Periods

2 2 First=3 Carry+3 Direct
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Table 4.21: Analysis of variance table for the change-over experiment

from Cochran and Cox (1957, section 4.62a)

EXPECTED
MEAN SQUARESy

SOURCE DF CoeÆcients of MSq F
�SCP �SP �P �SC �S

Sets 1 1 3 3 9 18.00

Sets.Cows 4
First.Carryz 2 1 3 2112.06 2.74
Residual 2 1 3 769.50

Periods 2
First 1 1 3 6 8311.36 2.62
Residual 1 1 3 6 3168.75

Sets.Periods 2 1 3 4.50

Sets.Cows.Periods 8
First.Carryx 2 1 19.21 0.39
Direct{ 2 1 1427.28 28.65
Residual 4 1 49.81

yVariation contribution only to the expected mean squares.
zFirst.Carry is partially confounded with the Sets.Cows with eÆciency 0.167.
xFirst.Carry is partially confounded with Sets.Cows.Periods with eÆciency 0.833.
{Direct is partially aliased with First.Carry with eÆciency 0.800.

The relationship between First and Carry must be nested as it is impossible to have

no carry-over (level 1 of First) with carry-over from a dietary treatment (levels 2, 3

and 4 of Carry). The relationship between the carry-over factors and Direct (dietary

e�ect) must be independent because of the combinations of one diet following another.

This example does not ful�l the conditions given in section 2.2.5; there is no term
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derived from the structure from the second tier to which all other terms from that

tier are marginal and, as Direct is not orthogonal to First.Carry , the experiment

is not structure balanced. However, with randomized factors being designated as

expectation factors, it is possible to use the approach to formulate an analysis, albeit

not a unique analysis. The symbolic forms of the maximal models for this experiment,

derived according to the rules given in table 2.5, are as follows:

E[Y ] = First.Carry + Direct

Var[Y ] = G + Sets + Sets.Cows + Periods + Sets.Periods

+ Sets.Cows.Periods

The analysis of variance table is given in table 4.21; it di�ers from that speci�ed

by Payne and Dixon (1983), and from that given by Cochran and Cox (1957), in

that here Periods is crossed with all �rst tier factors.. The First.Carry source in the

analysis table gives the di�erences between carry-over e�ects as it is orthogonal to

First. The analysis of variance was performed in GENSTAT 4 (Alvey et al., 1977).

Because the algorithm used to perform the analysis in GENSTAT 4 is sequential in

nature, the e�ect of having First and Carry before Direct in the structure is that

Direct is adjusted for First.Carry but not vice versa. By repeating the analysis with

Direct �rst in the formula, the analysis in which First.Carry is adjusted for Direct

will be obtained.

Experiment with preperiod. Kunert (1983) gives examples of change-over ex-

periments in which there is a preperiod so that residual e�ects are estimated from all

periods of the experiment. Such experiments have a somewhat simpler analysis than

those without preperiod, such as the animals-with-repetitions-in-time experiment just

discussed. For example, consider Kunert's (1983) example 4.7. The layout for this

experiment is given in table 4.22.

The unrandomized factors for this experiment are Units and Periods and the ran-

domized factors are Direct and Carry . The structure set is as follows:

Tier Structure

1 4 Units�12 Periods

2 3 Carry+3 Direct
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Table 4.22: Experimental layout for a change-over experiment with pre-

period(Kunert, 1983)

Periods
Preperiod 1 2 3 4 5 6 7 8 9 10 11 12

1 3 1 2 3 1 2 3 1 2 3 1 2 3
2 2 1 2 3 3 2 1 1 1 3 3 2 2

Units 3 3 2 3 1 1 3 2 2 2 1 1 3 3
4 1 3 1 2 2 1 3 3 3 2 2 1 1

The analysis of variance table is given in table 4.23. Again, this example does not

ful�l the conditions given in section 2.2.5; as for the previous example, there is no

term derived from the structure for the second tier to which all other terms derived

from that tier are marginal and, as Direct is not orthogonal to Carry , the experiment

is not structure balanced. But, with randomized factors again being designated as

expectation factors, it has been possible to use the approach to formulate a nonunique

analysis. The symbolic forms of the maximal models for this experiment, derived

according to the rules given in table 2.5, are as follows:

E[Y ] = Carry + Direct

Var[Y ] = G+ Units+ Periods+ Units.Periods
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Table 4.23: Analysis of variance table for the change-over experiment

with preperiod from Kunert (1983)

EXPECTED
MEAN SQUARESy

SOURCE DF CoeÆcients of
�UP �P �U

Units 3 1 12

Periods 11
Carryz 2 1 4
Residual 9 1 4

Units.Periods 33
Carryx 2 1
Direct{ 2 1
Residual 29 1

yVariation contribution only to the expected mean squares.
zCarry is partially confounded with the Periods with eÆciency 0.062.
xCarry is partially confounded with Units.Periods with eÆciency 0.938.
{Direct is partially aliased with Carry with eÆciency 0.938.



178

Chapter 5

Analysis of three-tiered

experiments

5.1 Introduction

In this chapter the analysis of three-tiered experiments is examined to illustrate how

the method described in chapter 2 facilitates their analysis. As is candidly acknowl-

edged in section 2.1, a satisfactory analysis for many studies can be formulated without

utilizing the proposed paradigm. However, it was suggested that the analysis of com-

plex experiments would be assisted if the approach is employed. This is particularly

the case for multitiered experiments; indeed, the full analysis of the experiment pre-

sented in section 5.2.4 can only be achieved with it. The analyses presented herein

di�er from those produced by other published methods so that, in some cases, I put

forward analyses that more closely follow generally accepted principles for the analysis

of designed experiments. Again, it will be assumed that the analyses discussed will

only be applied to data that conform to the assumptions necessary for them to be

valid.
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5.2 Two-phase experiments

Two-phase experiments were introduced by McIntyre (1955). They are commonly

used in the evaluation of wine (Ewart, Brien, Soderlund and Smart, 1985; Brien, May

and Mayo, 1987).

5.2.1 A sensory experiment

To introduce the analysis of two-phase experiments using the method presented herein,

the analysis of an orthogonal two-phase experiment is given in this section; the analysis

has been previously discussed by Brien (1983).

Consider an experiment to evaluate a set of wines made from the produce of a �eld

trial in order to test the e�ects of several viticultural treatments. Suppose that, in the

�eld trial, the treatments are assigned to plots according to a randomized complete

block design. The produce from each plot was separately made into wine which was

evaluated at a tasting in which several judges are given the wines over a number of

sittings. One wine is presented for scoring to each judge at a sitting and each wine is

presented only once to a judge. The order of presentation of the wines is randomized

for each judge. This experiment is then a two-phase experiment. In the �rst phase

the �eld trial is conducted, and in the second phase the wine made from the produce

of each plot in the �eld trial is evaluated by several judges.

The factors in the experiment are Blocks, Plots and Treatments from the �eld phase

of the experiment, and Judges and Sittings from the tasting phase. An observational

unit (of which there are jbt) is the wine given to a judge at a particular sitting.

The structure set is derived as described in section 2.2.4. Judges and Sittings are

the factors that would index the observational unit if no randomization had occurred,

and so these form the bottom tier of unrandomized factors. The �eld units, and

hence the wines, are uniquely identi�ed by the factors Blocks and Plots and they

would do so even if no randomization had been carried out in the �eld phase. As

the combinations of these factors were randomized to the sittings for each judge, they

form the second tier. The levels of Treatments were randomized to the plots within
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each block and so Treatments forms the third or top tier. The structure set, assuming

no intertier interaction, is as follows:

Tier Structure

1 j Judges=bt Sittings

2 b Blocks=t Plots

3 t Treatments

The degrees of freedom of terms derived from the structure for a tier are computed,

as outlined in table 2.2, using the Hasse diagrams of term marginalities; the diagrams

for this example are given in �gure 5.1

Figure 5.1: Hasse diagram of term marginalities for a sensory experiment
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The analysis of variance table for this example, derived according to the rules given

in table 2.1, is given in table 5.1. The indentation of the Treatments source indicates
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that Treatments is confounded with Blocks.Plots. The Residual source immediately

below the Treatments source corresponds to the unconfounded Blocks.Plots subspace,

that is, the unconfounded di�erences between plots within a block. Similarly, the

Blocks and Blocks.Plots sources are confounded with the Judges.Sittings source and

the second Residual source provides the unconfounded Judges.Sittings subspace.

Table 5.1: Analysis of variance table for a two-phase wine-evaluation

experiment

EXPECTED MEAN SQUARES

SOURCE DF CoeÆcients of
�JS �J �BP �B �T

Judges j � 1 1 bt

Judges.Sittings j(bt� 1)
Blocks (b� 1) 1 j jt
Blocks.Plots b(t� 1)
Treatments (t� 1) 1 j f(�T )
Residual (b� 1)(t� 1) 1 j

Residual (j � 1)(bt� 1) 1

Total jbt� 1

For the purpose of determining the maximal expectation and variation models, all

factors, except for Treatments, are assumed to contribute to variation. The maximal

models for this experiment are derived as described in table 2.5 and, assuming the

data are lexicographically ordered on Judges and Sittings, are as follows:

E[y ] = �T

Var[y ] = V1 +V2

where
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V1 = �GJ
 J+ �JI
 J + �JS I
 I,

V2 = U2(�BI
 J
 J+ �BP I
 I
 J)U0
2, and

U2 is the permutation matrix of order jbt re
ecting the assigning of levels

combinations of Blocks and Plots to the sittings in which they were

presented to each judge.

The expected mean squares under this model, derived as described in table 2.8, are

also as given in table 5.1.

Figure 5.2: Minimal sweep sequence for a two-phase sensory experimenty
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yLines originating below a term signify a residual sweep and lines originating alongside a term signify
a pivotal sweep (section 3.3.1.1).
zResidual does not involve a sweep but merely serves to indicate the origin of the residuals for a
residual source.

The minimal sweep sequence for performing the analysis as prescribed in sec-

tion 3.3.1.1 is given in �gure 5.2.
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Table 5.2: Analysis of variance table, including intertier interactions, for

a two-phase wine-evaluation experiment

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�JS �J �BPJ �BJ �BP �B �TJ �T

Judges j�1 1 bt 1 t b

Judges:Sittings j(bt�1)

Blocks (b�1) 1 1 t j jt

Blocks:P lots b(t�1)

Treatments (t�1) 1 1 j b f(�T )

Residual (b�1)(t�1) 1 1 j

Blocks:Judges (b�1)(j�1) 1 1 t

Blocks:P lots:Judges b(t�1)(j�1)

Treatments:Judges (t�1)(j�1) 1 1 b

Residual (b�1)(t�1)(j�1) 1 1

Total jbt� 1

It might be considered desirable to modify the structure set for the example to

include intertier interactions likely to arise. For this purpose, factors from lower tiers

have to be included in the structures for some higher tiers. An alternative structure

set for the example, involving such intertier interaction, is as follows:

Tier Structure

1 j Judges=bt Sittings

2 (b Blocks=t Plots)�Judges

3 t Treatments�Judges

The analysis derived from this structure set is given in table 5.2. This analysis is

quite di�erent from that presented in table 5.1; in particular, the test for Treatments

now involves a ratio of linear combinations of mean squares, whereas only a ratio



5.2.2 McIntyre's experiment 184

of mean squares is involved in table 5.1. Thus, it is possible that quite di�erent

conclusions will be reached depending on which analysis is performed.

5.2.2 McIntyre's experiment

In this section the method presented herein is applied to the nonorthogonal, but

structure-balanced, three-tiered experiment presented by McIntyre (1955). This illus-

trates the application to a more complicated experiment which results in an analysis

of variance table that is more informative than previously presented analysis tables

in that it re
ects the randomization employed in the experiment. Further, there is

some clari�cation of which terms should be included in the analysis.

The object of the experiment was to investigate the e�ects of four light intensity

treatments on the synthesis of tobacco mosaic virus in the leaves of Nicotiana tabacum.

In the �rst phase of the experiment, Nicotiana leaves, inoculated with virus, were

subjected to the four di�erent light intensities. The experimental arrangement for

the �rst phase was obtained using two 4 � 4 Latin square designs, the rows and

columns of these squares corresponding to Nicotiana plants and position of the leaves

on these plants; the two Latin squares corresponded to di�erent sets of Nicotiana

plants. The layout is illustrated in �gure 5.3.

In the second phase sap from each of the leaves of the �rst phase was injected

into a half-leaf of the assay plant, Datura stramonium. The assignment of �rst-phase

leaves to the half-leaves of the assay plants was accomplished using four Graeco-Latin

squares; the rows and columns of the squares corresponded to Datura plants and

position of the leaf on the assay plants, respectively. Within a Graeco-Latin square,

the four leaves from one Nicotiana plant from each set were assigned to the half-leaves

of the assay plant using the one alphabet for each plant. The layout is illustrated in

�gure 5.4.
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Figure 5.3: Layout for the �rst phase of McIntyre's (1955) experimenty

Nicotiana Plants
1 2 3 4 1 2 3 4

Leaf Leaf
Position Position

a b c d a b c d
1 1

1 5 9 13 17 21 25 29
b a d c c d a b

2 2
2 6 10 14 18 22 26 30
c d a b d c b a

3 3
3 7 11 15 19 23 27 31
d c b a b a d c

4 4
4 8 12 16 20 24 28 32

yThe letter in each cell refers to the light intensity to be applied to the unit and the number to the
unit.
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Figure 5.4: Layout for the second phase of McIntyre's (1955) experimenty

Datura Plants
1 2 3 4 5 6 7 8

Assay Leaf Assay Leaf
Position Position

1 2 3 4 5 6 7 8
1 1

17 20 18 19 23 22 24 21
2 1 4 3 8 7 6 5

2 2
18 19 17 20 22 23 21 24
3 4 1 2 7 8 5 6

3 3
19 18 20 17 21 24 22 23
4 3 2 1 6 5 8 7

4 4
20 17 19 18 24 21 23 22

Datura Plants
9 10 11 12 13 14 15 16

Assay Leaf Assay Leaf
Position Position

9 10 11 12 13 14 15 16
1 1

28 25 27 26 30 31 29 32
10 9 12 11 16 15 14 13

2 2
27 26 28 25 31 30 32 29
11 12 9 10 15 16 13 14

3 3
26 27 25 28 32 29 31 30
12 11 10 9 14 13 16 15

4 4
25 28 26 27 29 32 30 31

yThe numbers in the cell refer to the units from the �rst phase to be assigned to the two half-leaves
of the assay plant.
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The observational unit is a half leaf of an assay plant and the factors in the experi-

ment are Reps, Datura, APosition, Halves, Sets, Nicotiana, Position and Treatments.

The structure set for this experiment, derived using the steps given in section 2.2.4,

is as follows:

Tier Structure

1 ((4 Reps=4 Datura)�4 APosition)=2 Halves

2 (2 Sets=4 Nicotiana)==Nicotiana

+(Sets/Nicotiana)�4 Position

3 4 Treatments

The structures derived from the factors in tiers two and three correspond to the

structure set for the �rst phase of the experiment, while the structure derived from

bottom tier factors corresponds to the structure of the units from the second phase.

Note that Nicotiana has to be included as a pseudoterm to Sets.Nicotiana for the

correct degrees of freedom to be obtained using the method described in table 2.2.

The pseudofactor indexes which Nicotiana plants from the �rst phase were assigned

to the same Datura plant in the second phase.

The analysis of variance for the experiment, obtained using the rules given in ta-

ble 2.1, is given in table 5.3. The Hasse diagrams of term marginalities, used in

obtaining the degrees of freedom of the terms in the analysis table as prescribed in

table 2.2, are presented in �gure 5.5.

For the purpose of deriving the maximal expectation and variation models for the

experiment, it is likely that all factors in the experiment, other than Treatments, will

be classi�ed as variation factors. Thus, the application of the steps given in table 2.5

yields the following models for the experiment, assuming the data are lexicographically

ordered on Reps, Datura, APosition, and Halves:

E[y ] = �T

Var[y ] = V1 +V2

where
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Figure 5.5: Hasse diagram of term marginalities for McIntyre's experi-

ment
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Table 5.3: Analysis of variance table for McIntyre's two-phase experi-

ment

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of MSq F

�RADH �RDA �RA �A �RD �R �SNP �SN �SP �S �P �T

Reps 3

Sets.Nicotiana 3 1 2 8 8 32 4 16 182.58

Reps.Datura 12 1 2 8 75.12 6.37

APosition 3 1 2 8 32 119.07 14.87

Reps.APosition 9 1 2 8 8.01 0.68

Reps.Datura.APosition 36

Positiony 3 1 2 2 8 16 36.95 0.91

Sets.Positiony 3 1 2 2 8 40.47 1.30

Sets.Nicotiana.Positiony 18

Treatmentsy 3 1 2 2 f(�T ) 74.12 2.38

Residual 15 1 2 2 31.14 2.64

Residual 12 1 2 11.80

Reps.Datura.APosition.Halves 64

Sets 1 1 4 16 16 64 41.40

Sets.Nicotianaz 3 1 4 16 10.30

Positiony 3 1 2 8 16 23.38 0.54

Sets.Positiony 3 1 2 8 43.31 4.31

Sets.Nicotiana.Positiony 18

Treatmentsy 3 1 2 f 0(�T ) 31.23 3.11

Residual 15 1 2 10.04

Residual 36 1 7.60

Total 127

yThese sources are partially confounded with eÆciency 0.50.
zThe restrictions placed on randomization result in the subspace of Sets.Nicotiana confounded with
Reps being orthogonal to that confounded with Reps.Datura.APosition.Halves. Sets.Nicotiana is
thus orthogonal to all �rst tier sources.
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V1 = �GJ
 J
 J
 J+ �RI
 J
 J
 J+ �RDI
 I
 J
 J

+�AJ
 J
 I
 J+ �RAI
 J
 I
 J+ �RDAI
 I
 I
 J

+�RDAHI
 I
 I
 I,

V2 = U2(�PJ
 J
 I
 J + �SI
 J
 J
 J+ �SP I
 J
 I
 J

+�SNI
 I
 J
 J+ �SNP I
 I
 I
 J)U0
2, and

U2 is a permutation matrix of order 128 re
ecting the assignment of the

levels combinations of Set, Nicotiana and Position to the halves.

Based on these models, the expected mean squares, which are also given in table 5.3,

are derived using the steps given in table 2.8.

The analysis di�ers from that given by Curnow (1959) only in its layout and in

that the Reps.APosition interaction has been isolated. The advantage of the lay-

out of the analysis table presented in table 5.3 is that the confounding between

sources in the table is obvious. For example, Treatments has been confounded with

Sets.Nicotiana.Position which, in turn, is confounded with both Reps.Datura.APosi-

tion and Reps.Datura.APosition.Halves. In respect, of the Reps.APosition interaction,

Curnow (1959) has combined this source with the Reps.Datura.APosition Residual

source in the `Residual (2)' of his Sums analysis. Also, the Reps.APosition interaction

is not `of the character of a treatment and block interaction' as suggested by Curnow,

but is a source contributing to variation that can be separated from the Residual.

The sums of squares were computed using the sweep sequence presented in �g-

ure 5.6. The directly nonorthogonal terms in the experiment are Positions, Sets.Po-

sitions and Sets.Nicotiana.Positions and these terms are structure balanced. In addi-

tion, the nonorthogonality of the last term induces nonorthogonality in the Treatments

term which must be taken into account in the analysis sequence. Since most terms

are orthogonal, most backsweeps are redundant and the sequence shown in �gure 5.6

is the minimal sequence.
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Figure 5.6: Minimal sweep sequence for McIntyre's two-phase

experimenty
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yLines originating below a term signify a residual sweep and lines originating alongside a term signify a pivotal sweep (section 3.3.1.1).
Terms placed in dashed boxes signify a backsweep (section 3.3.1.1).
zResidual does not involve a sweep but merely serves to indicate the origin of the residuals for a residual source.
xFor these sources e�ective means are calculated by dividing computed means by an eÆciency factor of 0.5.
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5.2.3 Taste-testing experiment from Wood, Williams and

Speed (1988)

Wood, Williams and Speed (1988) in their discussion of two-phase experiments claim

that they provide an analysis of variance table which is very similar to that put

forward by Brien (1983). In this section, I illustrate how the analysis of variance

table produced using the method outlined herein di�ers from that presented by Wood

et al. (1988). As a result, it will become clear that their partition of the Total sum

of squares may not be correct and that a more informative analysis of variance table

can be produced. Also, from the discussion of this example, it will be evident how

di�erences in the layout of an experiment might a�ect the analysis and, hence, be

re
ected in the analysis of variance table. The analyses presented in this section are

all structure balanced.

The Wood et al. (1988) experiment with which we are concerned is their second

example, a taste-testing experiment the purpose of which was to investigate the e�ects

of six storage treatments on milk drinks. The experiment was a two-phase experiment;

in the �rst or storage phase, the milk drinks were subjected to the storage treatments,

whilst in the second or tasting phase, tasters scored the produce from the storage

phase. The storage treatments were the six combinations of two types of container

(plastic, glass) and three temperatures (-20ÆC, 1ÆC, 30ÆC).

A problem encountered at the outset in deriving the analysis for this semiconstruct-

ed example, is that, as I shall elaborate later in this section, the design used in the

�rst phase could not have been as described by Wood et al. (1988). However, the fol-

lowing scenario does �t with the Wood et al. (1988) description in that a randomized

complete block design is utilized in the assignment of treatment combinations in the

�rst phase.

Suppose that the �rst phase of the experiment involved treating milk rather than

storing it. In each of two periods six runs were performed; at each run the milk was

treated at one of the three temperatures mentioned above while contained in either

the plastic or glass container. After processing, six samples, corresponding to the six

type-temperature combinations, were randomly presented to 8 judges in each of two
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sessions. This experiment will be referred to as the Wood, Williams and Speed (1988)

processing experiment. The data from the experiment are presented in table 5.4.

Table 5.4: Scores from the Wood, Williams and Speed (1988) processing

experimenty

Session 1 2
Type Plastic Glass Plastic Glass
Temperature -20 1 30 -20 1 30 -20 1 30 -20 1 30

Judge

1 4 5 5 6 3 5 5 6 7 7 4 7
2 6 6 7 5 6 7 4 7 6 5 6 6
3 4 7 8 8 2 8 2 8 3 8 7 7
4 6 6 7 5 3 4 2 5 1 6 2 3
5 7 7 7 7 7 7 7 7 8 7 8 8
6 7 8 8 6 5 7 8 6 7 7 8 8
7 7 7 7 6 6 6 6 6 6 8 8 6
8 7 7 7 6 6 6 6 6 6 8 8 6

yThe bolded scores are from the second period

The observational unit for this experiment is a unit scored by a judge in a session.

The factors are Judge, Session, Unit, Period, Run, Type and Temperature. The

factors that would index the observational unit if no randomization had occurred are

Judge, Session and Unit so these form the bottom or unrandomized tier. The factors

Period and Run index uniquely the �rst-phase units and would index the �rst-phase

units if no randomization had occurred in that phase. Hence, these factors form

the second tier of factors. The third tier is comprised of Type and Temperature as

these were assigned randomly to runs within each period. The structure set derived

from these tiers is as follows, it being necessary to include pseudofactors to obtain a

structure-balanced set of terms:
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Tier Structure

1 (8 Judge�2 Session)=6 Unit

2 (2 Period=6 Run)==(2 Pseudo*Temperature)

3 2 Type�3 Temperature

The pseudofactor Pseudo is a factor of two levels. Observations that take level

1 of Pseudo are those with the levels combinations 1,1 and 2,2 of Period and Type,

otherwise an observation takes level 2 of Pseudo. The pseudoterms identify the various

subspaces of Period.Run that have the same eÆciency factors relative to the tier 1

structure (see table 5.5).

The degrees of freedom of terms derived from the structure for a tier are computed,

as outlined in table 2.2, using the Hasse diagrams of term marginalities; the diagrams

for this example are given in �gure 5.7. The analysis of variance table for this example,

derived according to the rules given in table 2.1, is given in table 5.5.

Assume all factors in the experiment, except Type and Temperature, are to be

designated as variation factors. The symbolic form of the maximal models for this

experiment, derived according to the rules given in table 2.5, is as follows:

E[Y ] = Type.Temperature

Var[Y ] = G+ Judge + Session+ Judge.Session + Judge.Session.Unit

+ Period+ Period.Run

Note that it may not be appropriate to designate Judge as a variation factor. This

is because judges evaluate in an individualistic manner and it will be important to

compare one judge's evaluation with another's; this is certainly the case with wine

evaluation (Brien, May and Mayo, 1987). However, in order to conform with Wood

et al. (1988), Judge will remain a variation factor.

The expected mean squares based on the above model are also given in table 5.5.

In computing these, one had �rst to derive the expectation for each of the mean

squares that would have been obtained if terms arising from pseudoterms had not

been combined. The expectation of a combined mean square was then obtained

as the weighted average of the expectation of the mean squares comprising it, the

weights being the degrees of freedom of the mean squares. Thus, the expectation of
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Figure 5.7: Hasse diagram of term marginalities for the Wood, Williams

and Speed (1988) processing experiment
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Table 5.5: Analysis of variance table for Wood, Williams and Speed

(1988) processing experiment

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES

SOURCE DF CoeÆcients of MSq
�JSU �JS �S �J �PR �P

Judge 7 1 6 12 12.213

Session 1 1 6 48 0.010

Judge.Session 7
Period.Run 3 1 6 8

3
3.066

Residual 4 1 6 2.719

Judge.Session.Unit 80
Period 1 1 8 48 1.260
Period.Run 10
Type 1 1 8 0.094
Temperature 2 1 8 0.667
Type.Temperature 2 1 8 8.000
Residual 5 1 32

5
0.909

Residual 69 1 1.735

Total 95

INFORMATION SUMMARY

Model term EÆciency

Judge.Session
Pseudo 1

3

Pseudo.Temp 1
3

Judge.Session.Unit
Pseudo 2

3

Pseudo.Temp 2
3



5.2.3 Taste-testing experiment from Wood, Williams and Speed (1988) 197

Figure 5.8: Minimal sweep sequence for Wood, Williams and Speed

(1988) processing experimenty
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yLines originating below a term signify a residual sweep and lines originating alongside a term signify a pivotal sweep
(section 3.3.1.1). Where there are multiple inputs, the original e�ects are added together to form the input for the
sweep to be performed at the destination. Terms placed in dashed boxes signify a backsweep (section 3.3.1.1).
zResidual does not involve a sweep but merely serves to indicate the origin of the residuals for a residual source.
xFor this source e�ective means are calculated by dividing computed means by an eÆciency factor which is given in
table 5.5.
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the Period.Run Residual mean square is

2(�JSU + 8�PR) + 3(�JSU + 16
3
�PR)

2 + 3
= �JSU +

32

5
�PR

The sums of squares were computed using the sweep sequence presented in �g-

ure 5.8.

As I mentioned earlier in this section, the actual physical conduct of the experiment

will mean that it is unlikely that the assignment of treatment combinations in the

�rst phase could have been achieved using a randomized complete block design with

replicates corresponding to the blocks. This is because it was a storage experiment,

with the milk being stored in either plastic or glass containers; thus, there would

have to have been several containers of each type (3 if there were no replicates or 6

otherwise) and types could not have been randomly assigned to containers. On the

other hand, Temperatures would have been randomized to the di�erent containers

which may or may not have been blocked into two replicates. We will presume that

they were blocked and refer to this experiment as the Wood, Williams and Speed

(1988) storage experiment.

The factors are Judge, Session, Unit, Rep, Type, Container and Temperature.

The factors that would index the observational unit if no randomization had been

performed are Judge, Session and Unit so these form the bottom or unrandomized

tier. The factors Rep, Type and Container index uniquely the �rst-phase units and

would index the �rst-phase units if no randomization had been performed in that

phase. Hence, these factors form the second tier of factors. The third tier is comprised

of Temperature as this was assigned randomly to containers within each rep-type

combination. The structure set derived from these tiers is as follows, it again being

necessary to include the pseudoterms to obtain a balanced analysis:

Tier Structure

1 (8 Judge�2 Session)=6 Unit

2 (2 Rep�2 Type)==2 Pseudo=6 Container)==(Pseudo*Temperature)

3 Type�3 Temperature
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Table 5.6: Analysis of variance table for the Wood, Williams and Speed

(1988) storage experiment

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of MSq

�JSU �JS �S �J �RTC �RT �R

Judge 7 1 6 12 12.213

Session 1 1 6 48 0.010

Judge.Session 7
Rep.Type 1 1 6 8

3
24
3

6.420
Rep.Type.Container 2 1 6 8

3
1.389

Residual 4 1 6 2.719

Judge.Session.Unit 80
Rep 1 1 8 24 48 1.260
Type 1 1 8 24 0.094
Rep.Type 1 1 16

3
48
3

2.778
Rep.Type.Container 8
Temperature 2 1 8 0.667
Type.Temperature 2 1 8 8.000
Residual 4 1 20

3
0.441

Residual 69 1 1.735

Total 95

INFORMATION SUMMARY

Model term EÆciency

Judge.Session
Pseudo 1

3
Pseudo.Temp 1

3

Judge.Session.Unit
Pseudo 2

3
Pseudo.Temp 2

3
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Figure 5.9: Minimal sweep sequence for the Wood, Williams and Speed

(1988) storage experimenty
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yLines originating below a term signify a residual sweep and lines originating alongside a term signify a pivotal sweep
(section 3.3.1.1). Where there are multiple inputs, the original e�ects are added together to form the input for the
sweep to be performed at the destination. Terms placed in dashed boxes signify a backsweep (section 3.3.1.1).
zResidual does not involve a sweep but merely serves to indicate the origin of the residuals for a residual source.
xFor this source e�ective means are calculated by dividing computed means by an eÆciency factor which is given in
table 5.6.
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The analysis of variance table for this example, derived according to the rules given

in table 2.1, is given in table 5.6.

Again, assume all factors in the experiment, except Type and Temperature, are to

be designated as variation factors. The symbolic form of the maximal models for the

storage experiment, derived according to the rules given in table 2.5, is as follows:

E[Y ] = Type.Temperature

Var[Y ] = G+ Judge + Session+ Judge.Session + Judge.Session.Unit

+ Rep + Rep.Type + Rep.Type.Container

The expected mean squares based on the above model are also given in table 5.6.

Again, the expectation of the Rep.Type.Container Residual mean square had to be

obtained as the weighted average of the expectations of the mean squares of which it

is comprised. It is calculated as follows:

2(�JSU + 8�RTC) + 2(�JSU + 16
3
)

2 + 2
= �JSU +

20

3
�RTC

The sums of squares were computed using the sweep sequence presented in �g-

ure 5.9.

Comparison of the tables that I have produced (tables 5.5 and 5.6) with that pre-

sented by Wood et al. (1988) (see table 5.7) reveals a number of di�erences.

Firstly, their table gives no indication of the �rst phase units to which the types and

temperatures were randomized. Consequently, the term with which Type, Tempera-

ture and Type.Temperature is confounded has been omitted from each of the tables,

whereas in table 5.5 it is clear that these terms are confounded with Period.Run and,

in table 5.6, that the last two terms are confounded with Rep.Type.Container.

Secondly, there is no suggestion in the Wood et al. (1988) table of the Replicate

interactions with Type and Temperature being intertier interactions, which they are,

except for Rep.Type in the storage experiment. However, it is usual to assume there

are not such interactions and, if required to facilitate the analysis, they are only

included as pseudoterms or terms with no scienti�c interpretation. Further, as Brien

(1983) suggests the intertier interactions of Type and Temperature with Judge are

more likely to be important in taste-testing experiments. But, if it is thought that the
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Table 5.7: Analysis of variance table after that presented by Wood,

Williams and Speed (1988) for a taste-testing experiment

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
STRATUM DF CoeÆcients of MSq

�JSU �JS �S �J �RTyTe �RTy �RTe �R

Judge 7 1 6 12 12.213

Session 1 1 6 48 0.010

Judge.Session
replicate.type 1 1 6 8

3
24
3

6.420
replicate.type.temperature 2 1 6 8

3
1.389

residual 4 1 6 2.719

Judge.Session.Unit
replicate 1 1 8 24 16 48 1.260
type 1 1 8 24 0.094
temperature 2 1 8 16 0.667
type.temperature 2 1 8 8.000
replicate.type 1 1 16

3
48
3

2.778
replicate.temperature 2 1 8 16 0.542
replicate.type.temperature 2 1 16

3
0.340

residual 69 1 1.753

INFORMATION SUMMARY

Model term EÆciency factor

Judge.Session stratum
replicate.type 1

3
replicate.type.temperature 1

3

Judge.Session.Unit stratum
replicate.type 2

3
replicate.type.temperature 2

3
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Replicate interactions might occur, one can include them, in addition to Period.Run

or Rep.Type.Container. Wood et al. (1988) provide no such rationale and it would

seem that they included them as full terms merely as a device to obtain a balanced

analysis. In these circumstances, they are more correctly designated as pseudoterms.

An important consequence of not including the Replicate interactions is that the

partition of the Total sum of squares di�ers so that divisors for F-test and estimates

of standard errors will di�er. In particular, the Period.Run Residual mean square

from the storage experiment can be obtained by pooling the replicate.type, repli-

cate.temperature and replicate.type.temperature mean squares from the Wood et al.

(1988). The Rep.Type.Container Residual mean square from the processing experi-

ment can be obtained by pooling the replicate.temperature and replicate.type.tem-

perature mean squares from the Wood et al. (1988) analysis.

Finally, Wood et al. (1988) assert that a problem in using the analysis-of-variance

method to obtain estimates of the canonical covariance components is that there are

usually more equations than parameters to estimate. This is not the case for this

example, nor for any of the other examples presented in the thesis.

In summary, of the analyses I have presented, the one most like that of Wood et al.

(1988) is surprisingly not that for the experiment employing the same design as theirs,

that is, the processing experiment based on a randomized complete block design in

the �rst phase. Rather, it is most like the storage experiment. Table 5.6 contains

almost the same set of mean squares as those in the Wood et al. (1988) table. The

di�erences are that the Rep.Type.Container Residual mean square consists of two

mean squares from the Wood et al. (1988) analysis and that the mean squares are

labelled di�erently to those in the Wood et al. (1988) table so that the types of

variability (section 6.6.2) contributing to the subspace are more accurately portrayed.

I believe this example demonstrates the advantage of employing the paradigm I have

proposed in the case of complex experiments. It provides a framework for deciding

which terms to include in the analysis that has to do with the behaviour expected

in the data rather than basing the decision on which terms are required to achieve a

balanced analysis.
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5.2.4 Three structures required

In this section, a constructed structure-balanced example is presented, the experiment

being one that requires three structures for a complete analysis.

Consider a two-phase experiment (McIntyre, 1955) consisting of �eld and wine

evaluation phases. Suppose that the �eld phase involved a viticultural experiment to

investigate di�erences between four types of trellising and two methods of pruning.

The design consisted of two adjacent Youden squares of three rows and four columns,

the plots of which were each split into two subplots (or halfplots). Trellis was assigned

to main plots as shown in table 5.8 and methods of pruning were assigned at random

independently to the two halfplots within each main plot.

Table 5.8: Assignment of the trellis treatment to the main plots in the

�eld phase of the experiment.

Squares
1 2

Columns 1 2 3 4 1 2 3 4

Rows
1 4 1 2 3 2 1 4 3
2 1 2 3 4 3 2 1 4
3 2 3 4 1 4 3 2 1

For the evaluation phase, there were six judges all of whom took part in 24 sittings.

In the �rst 12 of these sittings the wines made from the halfplots of one square were

evaluated; the �nal 12 sittings were to evaluate the wines from the other square. At

each sitting, each judge assessed two glasses of wine from each of the two halfplots

of one of the main plots. The main plots allocated to the judges at each sitting

are shown in table 5.9, and were determined as follows. For the allocation of rows,

each occasion was subdivided into 3 intervals of 4 consecutive sittings. During each

interval, each judge examined plots from one particular row, these being determined
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Table 5.9: Assignment of the main plots (Row and Column combinations)

from the �eld experiment to the judges at each sitting in the evaluation

phase.

Occasion 1
Intervals 1 2 3
Sittings 1 2 3 4 1 2 3 4 1 2 3 4

Judges
1 13 12 11 14 31 34 32 33 22 23 24 21
2 23 22 21 24 11 14 12 13 32 33 34 31
3 33 32 31 34 21 24 22 23 12 13 14 11
4 31 34 33 32 22 23 21 24 13 12 11 14
5 11 14 13 12 32 33 31 34 23 22 21 24
6 21 24 23 22 12 13 11 14 33 32 31 34

Occasion 2
Intervals 1 2 3
Sittings 1 2 3 4 1 2 3 4 1 2 3 4

Judges
1 24 21 22 23 31 33 32 34 11 13 12 14
2 14 11 12 13 21 23 22 24 31 33 32 34
3 34 31 32 33 11 13 12 14 21 23 22 24
4 33 32 31 34 13 11 14 12 24 22 23 21
5 23 22 21 24 33 31 34 32 14 12 13 11
6 13 12 11 14 23 21 24 22 34 32 33 31
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using two 3 � 3 Latin square designs, one for judges 1{3 and the other for judges

4{6. Thus, for example, judge 1 examined plots from row 1 during interval 1 of the

�rst occasion, plots from row 3 during interval 2, and from row 2 during interval 3.

As a result, di�erences between judges and intervals could be eliminated from row

di�erences. At each sitting judges 1{3 examined wines from one particular column

and judges 4{6 examined wines from another column. Taking the 12 sittings from

each occasion, the ordered pairs of columns allocated to the two sets of judges were

chosen to ensure, �rstly, that each possible ordered combination of two out of four

columns occurred exactly once, and, secondly, that each judge examined a plot from

every column during each interval. Thus, judge di�erences could be eliminated from

column and row-column comparisons, and hence trellis di�erences; also, the amount

of information on row-column comparisons, and hence trellis di�erences, remaining

after sitting di�erences are eliminated is maximized. For clarity, table 5.9 shows the

plan in unrandomized order; in reality there would be a random permutation of the

numberings of the intervals within each occasion, the sittings within each interval,

and the judges on each occasion. Likewise, for each judge-sitting combination, the

positions (on the table) of the four glasses containing the two replicate wines from the

two halfplots were also randomized. Appendix A.4 contains such a randomized plan

together with a set of computer-generated scores. These scores are based on sum of a

set of e�ects, each of which is generated from a normal distribution; the sum was then

rounded to the nearest multiple of 0.5. This produces scores that take similar values

to those that would be obtained in practice. It is presumed that their distribution

is suÆciently close to being normal so that the analysis of variance is approximately

valid.

The observational unit for the experiment is a glass of wine in a position at a

sitting to be evaluated by an evaluator. The factors in the experiment are Occasions,

Intervals, Sittings, Judges, Positions, Rows, Squares, Columns, Halfplots, Trellis and

Method.

The structure set is derived as described in section 2.2.4. Three tiers are required

for this experiment and the structure set based on these is as follows:
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Tier Structure

1 ((2 Occasions=3 Intervals=4 Sittings)�6 Judges)=4 Positions

2 (3 Rows�(2 Squares=4 Columns))=2 Halfplots

3 4 Trellis�2 Method

The structure derived from the factors in the �rst tier describes the underlying

structure of the units (glasses of wine) of the evaluation phase and re
ects the per-

mutations to be employed (for example, intervals within occasions). The second gives

the inherent structure of the units (halfplots) of the �eld phase and the third de�nes

the structure of treatments applied in the �eld.

Assuming that the necessary assumptions hold for a joint analysis of the scores

produced by the judges, the analysis of variance for the experiment, obtained using

the rules given in section 2.2.4, would be as shown in table 5.10. The Hasse diagrams

of term marginalities, used in obtaining the degrees of freedom of the terms in the

analysis table as prescribed in table 2.2, are presented in �gure 5.10.

A crucial aspect of this experiment is that, in both phases, it involves the random-

ization of factors such that terms derived from the same tier are confounded with

di�erent terms from lower tiers. The second crucial aspect is that a term derived

from the third tier is nonorthogonal to terms from the second tier which are them-

selves nonorthogonal to terms derived from the �rst tier; eÆciency factors for the

nonorthogonal terms are given in table 5.11. The full decomposition for this example

cannot be achieved with less than three structures.
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Figure 5.10: Hasse diagram of term marginalities for an experiment

requiring three tiers
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Table 5.10: Analysis of variance table for an experiment requiring three

tiers

VARIATION CONTRIBUTION TO EXPECTED MEAN SQUARES

CoeÆcients of

SOURCE DF �OISJP �OIJ �J �OI �RQCH �RQ �Q MSq F �
y

1
�
y
c

�OISJ �OJ �OIS �O �RQC �QC �R

Occ 1

Sqr 1 1 4 16 48 24 96 288 12 24 96 72 288 1.0851 0.32 19.3 12.6

Occ.Int 4 1 4 16 24 96 3.8585 1.94 4.7 10.1

Occ.Int.Sit 18

Sqr.Col 6

Trel 3 1 4 24 4 8 24 1.1450

Residual 3 1 4 24 4 8 24 1.2300 2.88 3.6 18.4

Residual 12 1 4 24 0.3524 1.07

Jud 5 1 4 16 48 96 4.5924 0.43

Occ.Jud 5 1 4 16 48 10.7549 5.97

Occ.Int.Jud 20

Row 2 1 4 16 12 24 96 192 16.7192 19.68

Row.Sqr 2 1 4 16 12 24 96 0.8494 0.55 3.8 9.9

Residual 16 1 4 16 1.8002 5.49

Occ.Int.Sit.Jud 90

Sqr.Col 6

Trel 3 1 4 8 16 48 0.7037

Residual 3 1 4 8 16 48 0.3867 1.15 3.0 19.3

Row.Sqr.Col 12

Trel 3 1 4 12 24 4.5600

Residual 9 1 4 12 24 0.3386 0.93 40.9 51.6

Residual 72 1 4 0.3280 0.83

Occ.Int.Sit.Jud.Pos 432

Row.Sqr.Col.Half 24

Meth 1 1 12 0.1111

Trel.Meth 3 1 12 2.3323 5.10

Residual 20 1 12 0.4571 1.16

Residual 408 1 0.3943

Total 575

yThe numerator and denominator degrees of freedom, �1 and �2 respectively, for the F-ratios for which the degrees
of freedom have to be computed using Satterthwaite's (1946) approximation as the F-ratios are the ratios of linear
combinations of mean squares.
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Table 5.11: Information summary for an experiment requiring three tiers

Sources EÆciency

Occ.Int.Sit

Sqr.Col 1
3

Trel 1
27

Occ.Int.Sit.Jud

Sqr.Col 2
3

Trel 2
27

Row.Sqr.Col

Trel 8
9
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Assuming all factors in the experiment, except Trellis and Method, are to be desig-

nated as variation factors, the maximal models for this experiment, derived according

to the rules given in table 2.5 and presuming the data are lexicographically ordered

on Occasions, Intervals, Sittings, Judges and Positions, is as follows:

E[y ] = �TM

Var[y ] = V1 +V2

where

V1 = �GJ
 J
 J
 J
 J+ �OI
 J
 J
 J
 J

+ �OII
 I
 J
 J
 J+ �OISI
 I
 I
 J
 J

+ �JJ
 J
 J
 I
 J+ �OJI
 J
 J
 I
 J

+ �OIJI
 I
 J
 I
 J+ �OISJI
 I
 I
 I
 J

+ �OISJP I
 I
 I
 I
 I,

V2 = U2(�RI
 J
 J
 J
 J+ �QJ
 I
 J
 J
 J

+ �QCJ
 I
 I
 J
 J+ �RQI
 I
 J
 J
 J

+ �RQCI
 I
 I
 J
 J+ �RQCHI
 I
 I
 I
 J)U0
2, and

U2 is the permutation matrix of order 576 re
ecting the assigning of the

levels combinations of Rows, Squares, Columns and Halfplots to

positions in which they were presented to each judge at each sitting

in each interval on an occasion.

The steps set out in table 2.8 are used to obtain the contribution of this variation

model to the expected mean squares which are given in table 5.10.

The minimal sweep sequence for performing the analysis is given in �gure 5.11.

The analysis presented in table 5.10 indicates that the signi�cant canonical covari-

ance components are those for the termsOccasions.Judges, Occasions.Intervals.Judges

and Rows and that there is an interaction between the factors Trellis and Method;

because this interaction is signi�cant no F-ratios for the main e�ects of Trellis and

Method are presented.
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Figure 5.11: Minimal sweep sequence for an experiment requiring three

tiersy
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yLines originating below a term signify a residual sweep and lines originating alongside a term signify a pivotal sweep (section 3.3.1.1).
Terms placed in dashed boxes signify a backsweep (section 3.3.1.1).
zResidual does not involve a sweep but merely serves to indicate the origin of the residuals for a residual source.
xFor this source e�ective means are calculated by dividing computed means by an eÆciency factor which is given in table 5.11.
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5.3 Superimposed experiments

Superimposed experiments are those in which an initial experiment is to be ex-

tended to include one or more extra randomized factors. They provide another type

of experiment whose analysis is elucidated when the proposed method is utilized.

However, the utilization of the steps given in chapter 2 will be left implicit.

Superimposed experiments provide further examples of experiments in which the

division of the factors into two classes based on their randomization is inadequate.

This is the case for superimposed experiments that involve a second randomization

requiring knowledge of the results of the �rst randomization, such as those described

by Preece, Bailey and Patterson (1978).

5.3.1 Conversion of a completely randomized design

One method of superimposing a new set of treatments on a completely randomized

design (Preece et al., 1978) is to randomize the new set of treatments within those

plots receiving the same original treatment. The observational unit in this experiment

is a plot. The factors are Plots and Ftreats from the original experiment and Streats

from the modi�ed experiment. The structure set and analysis of variance for such an

experiment are given in table 5.12. It is most likely that Plots would be designated

a variation factor and Ftreats and Streats expectation factors. Hence, the symbolic

form of the maximal models for this experiment, derived according to the rules given

in table 2.5, is as follows:

E[Y ] = Ftreats + Streats

Var[Y ] = G+ Plots

The expected mean squares under these models are given in table 5.12.

To obtain this analysis does not require the device of `regarding the �rst set of

treatments as a block factor' as is done by Preece et al. (1978). Furthermore, the

analysis more accurately portrays the randomization that has occurred in the experi-

ment. That Streats is indented under the Residual source for Ftreats indicates that,
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Table 5.12: Structure set and analysis of variance table for a superim-

posed experiment based on a completely randomized design

STRUCTURE SET

Tier Structure

1 rt Plots

2 t Ftreats

3 r Streats

ANALYSIS OF VARIANCE TABLE

EXPECTED
SOURCE DF MEAN SQUARES

Plots rt� 1
Ftreats t� 1 �P + fF (�)
Residual t(r � 1)
Streats r � 1 �P + fS(�)
Residual (r � 1)(t� 1) �P

Total rt� 1

in the second experiment, Streats was randomized to plots such that it is orthogonal

to Ftreats.

5.3.2 Conversion of a randomized complete block design

To superimpose a new set of treatments on a randomized complete block design with

t treatments in t blocks, take a t� t Latin square and label its rows with the Blocks

labels of the �rst experiment and its columns using the original treatment labels

(Preece et al., 1978). The observational unit in this experiment is a plot. The factors

are Blocks, Plots and Ftreats from the original experiment and Streats in the modi�ed
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Table 5.13: Structure set and analysis of variance table for a superim-

posed experiment based on a randomized complete block design

STRUCTURE SET

Tier Structure

1 t Blocks=t Plots

2 t Ftreats

3 t Streats

ANALYSIS OF VARIANCE TABLE

EXPECTED
MEAN SQUARES

SOURCE DF CoeÆcients of
�BP �B �

Blocks t� 1 1 t

Blocks.Plots t(t� 1)
Ftreats t� 1 1 fF (�)
Residual (t� 1)2

Streats t� 1 1 fS(�)
Residual (t� 1)(t� 2) 1

Total t2 � 1

experiment. The structure set and analysis of variance for such an experiment are

given in table 5.13. Blocks and Plots will be classi�ed as variation factors and Ftreats

and Streats as expectation factors. Hence, the symbolic form of the maximal models

for this experiment, derived according to the rules given in table 2.5, is as follows:

E[Y ] = Ftreats + Streats

Var[Y ] = G+ Blocks + Blocks.Plots
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The expected mean squares under these models are given in table 5.13.

Comments similar to those made in the case of the superimposed experiment based

on a completely randomized design apply here also. In particular, that Streats is

indented under both Blocks.Plots and the Residual source for Ftreats indicates that,

in the second experiment:

1. Streats was randomized to plots so that it is orthogonal to Blocks and Ftreats,

and

2. Streats was confounded with Blocks.Plots.

5.3.3 Conversion of Latin square designs

Preece et al. (1978, section 5) give three methods of superimposing a new set of t

treatments on a t� t Latin square. They are:

1. simultaneously randomize the �rst and second experiments by choosing any

Graeco-Latin square and randomly permuting its rows and its columns;

2. take any Latin square orthogonal to that in the original experiment; permute

the rows and columns of the second square in such a way that the original Latin

square remains unchanged apart from a possible permutation of the letters; and

3. provided that the original Latin square is one of a complete set of mutually

orthogonal Latin squares, choose at random any other member of the set; ran-

domly allocate the second set of treatments to the letters of the second square.

In the �rst method, the two sets of treatments are randomized simultaneously, while

in the last two they are randomized separately.

The analysis for a superimposed experiment, in which the treatments are ran-

domized simultaneously, would follow that for a standard Graeco-Latin square. The

observational unit for such an experiment is a row-column combination. The factors

are Rows, Columns, Ftreats and Streats. The structure set and analysis of variance

are given in table 5.14A.
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Table 5.14: Structure set and analysis of variance table for superimposed

experiments based on Latin square designs

A) SIMULTANEOUS B) SEPARATE
RANDOMIZATION RANDOMIZATION

STRUCTURE SETS

Tier Structure

1 t Rows�t Columns

2 t Ftreats + t Streats

Tier Structure

1 t Rows�t Columns

2 t Ftreats

3 t Streats

ANALYSIS OF VARIANCE TABLES

EXPECTED EXPECTED

MEAN SQUARES MEAN SQUARES

SOURCE DF CoeÆcients of SOURCE DF CoeÆcients of

�RC �C �R � �RC �C �R �

Rows t� 1 1 t Rows t� 1 1 t

Columns t� 1 1 t Columns t� 1 1 t

Rows.Columns (t� 1)2 Rows.Columns (t� 1)2

Ftreats t� 1 1 fF (�) Ftreats t� 1 1 fF (�)

Streats t� 1 1 fS(�) Residual (t� 1)(t� 2)

Residual (t� 1)(t� 3) 1 Streats t� 1 1 fS(�)

Residual (t� 1)(t� 3) 1

Total t2 � 1 Total t2 � 1
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The model-based analysis of superimposed experiments, in which the treatments

are randomized separately, is the same irrespective of the method used. The obser-

vational unit for such an experiment is a row-column combination. The factors are

Rows, Columns and Ftreats from the original experiment and Streats in the modi-

�ed experiment. The structure set and analysis of variance for such an experiment

are given in table 5.14B. This is di�erent to the situation for a randomization-based

analysis where the appropriate analysis may be di�erent for the two methods (Preece

et al., 1978 and Bailey, 1991).

For all methods of randomization, the Rows and Columns will be classi�ed as

variation factors and Ftreats and Streats as expectation factors. Hence, the symbolic

form of the maximal models for this experiment, derived according to the rules given

in table 2.5, is as follows:

E[Y ] = Ftreats + Streats

Var[Y ] = G+ Rows + Columns+ Rows.Columns

The expected mean squares under these models are given in table 5.14.

The analysis for the experiments involving separate randomization is similar to

that for the other such superimposed experiments in that Streats is confounded with

a Residual source, namely that for Rows.Columns. From this, it is concluded that:

1. Streats was randomized to row-column combinations so that it is orthogonal to

Rows, Columns and Ftreats, and

2. Streats is confounded with Rows.Columns.

5.4 Single-stage experiments

Both two-phase (section 5.2) and superimposed (section 5.3) experiments involve two

stages in their experimentation and it might therefore be supposed that multiple stages

characterize multitiered experiments. However, this is not so and in this section

we present examples of single-stage experiments that are three-tiered. Again, the

utilization of the steps presented in chapter 2 will be left implicit.
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5.4.1 Plant experiments

Suppose an experiment has been conducted to investigate di�erences in �rst-year

growth between six Eucalyptus species when the plots on which they have been

planted are prepared using three di�erent methods. There are �ve blocks of land

available for the experiment and each block of land has 18 plots. Thus there are

three plants of each species in a block. The three methods of plot preparation are

assigned at random to the three plots containing the same species. All told, there are

15 plants of each species used in the experiment and these are allocated, one to a plot,

at random. The observational unit is a plot and the factors in the experiment are

Blocks, Plots, Species, Plants, and Methods. The factors Blocks, Plots and Plants

will be designated variation factors and Species and Methods expectation factors.

In respect of the tiers, Blocks and Plots are the factors that would index the

observational units if no randomization had been performed and so they form the

bottom tier of unrandomized factors. Next, the factors Species and Plants were

randomized to the observational units and these form the second tier. As Methods

is randomized to the plants within a blocks-species combination, the species on a

particular plot must be known prior to randomizing Methods. As a result, Methods

must be in the third tier.

The structure set, derived from the tiers as described in section 2.2.4, is given in

table 5.15. To obtain the correct degrees of freedom for all terms, it is necessary to

specify that Sets is a pseudoterm to Species.Plants. This re
ects the assignment of

di�erent sets of plants to the di�erent blocks. Also, Species is included in the third

tier because of the interest in its interaction with Methods.

The analysis of variance table, derived as described in table 2.1, is given in ta-

ble 5.15. This table makes it clear that Species and Methods are both confounded

with Blocks.Plots.

It is likely that Blocks, Plots and Plants will be classi�ed as variation factors

and Species and Methods as expectation factors. Hence, the symbolic forms of the

maximal models for this experiment, derived according to the rules given in table 2.5,
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Table 5.15: Structure set and analysis of variance table for a three-tiered

plant experiment

STRUCTURE SET

Tier Structure

1 5 Blocks=18 Plots

2 (6 Species=15 Plants)==5 Sets

3 3 Methods�Species

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�BP �B �SP �

Blocks
Species.Plants 4 1 18 1

Blocks.Plots 85
Species 5 1 1 fS(�)
Species.Plants 80
Methods 3 1 1 fM(�)
Methods.Species 15 1 1 fMS(�)
Residual 62 1 1

Total 89

are as follows:

E[Y ] = Methods.Species

Var[Y ] = G+ Blocks + Blocks.Plots+ Species.Plants

The expected mean squares under these models are given in table 5.15.

A point that arises in connection with this experiment is the inclusion of the factor

Plants which is nested within Species. It is required to fully describe the randomiza-
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tion that occurred in this experiment. However, in many experiments such as this,

this factor is ignored. Most often, the levels combinations of the factors Species and

Methods would be randomized to the levels combinations of Plots within Blocks;

there would be no speci�c allocation of plants of di�erent species. However, the dis-

advantage of this is thatMethods di�erences are not protected by randomization from

systematic di�erences between Plants of the same species. Further, from the analysis

table presented in table 5.15, it is evident that the sources Blocks and Species.Plants

confounded with Blocks are associated with the same subspace of the sample space.

Thus there are two type of variability, namely experimental unit variability and treat-

ment error (section 6.6.2), contributing to this subspace.

5.4.2 Animal experiments

Animal experiments, although not two-phase experiments, represent a group of com-

monly occurring three-tiered experiments. This is because they typically involve ani-

mals, units to which animals are assigned and treatments.

For example, consider a sheep experiment conducted to investigate the e�ects of

four levels of pasture availability and four stocking rates on the intake of herbage.

[This example is a simpli�ed version of an experiment reported by Whittaker (1965).]

These treatment combinations were randomized according to a randomized complete

block design to the 16 plots in each of four blocks. The size of the plots was adjusted

so that the correct stocking rate would be obtained if four sheep were assigned to the

plot. Thus, there were altogether 256 sheep required for the experiment and these

were divided into 4 groups of 64 according to body weight; 64 
ocks of four sheep were

then formed by selecting four sheep from the same body weight class, the four sheep

from a body weight class being selected so that the di�erent 
ocks from the same

body weight class had as similar weights as possible. The 
ocks were then assigned

at random to the plots so that all 
ocks from the same body weight class were in the

same block. The weight gain of each sheep over the period of the experiment was

determined, as was the pasture production of each plot. The latter was measured as

the dry weight of clippings produced in an enclosed area.
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Table 5.16: Structure set and analysis of variance table for a grazing

experiment

STRUCTURE SET

Tier Structure

1 4 Classes=16 Flocks=4 Sheep

2 4 Blocks=16 Plots

3 4 Avail�4 Rate

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�CFS �CF + �BP �B �

Classes 3
Blocks 3 1 4 64 fC(�)

Classes.Flocks 60
Blocks.Plots 60
Avail 3 1 4 fA(�)
Rate 3 1 4 fR(�)
Avail.Rate 9 1 4 fAR(�)
Residual 45 1 4

Classes.Flocks.Sheep 192 1

Total 255
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The observational unit in respect of the weight gain measurements is a sheep. The

factors in the experiment are Classes, Sheep, Flocks, Blocks, Plots, Avail and Rate.

In determining the structure set for this study, it will be assumed that Classes is

independent of Avail and Rate; it is necessary to assume at least that the three factor

interaction between them is zero, otherwise there would be no Blocks.Plots Residual.

The structure set for the study and analysis of variance table are shown in table 5.16.

The factors Sheep, Flocks, Blocks and Plots will be designated variation factors

and Classes, Avail and Rate expectation factors. Hence, the symbolic forms of the

maximal models for this experiment, derived according to the rules given in table 2.5,

are as follows:

E[Y ] = Classes + Avail.Rate

Var[Y ] = G+ Blocks+ Blocks.Plots+ Classes.Flocks + Classes.Flocks.Sheep

The expected mean squares under these models are given in table 5.16.

A particular problem that arises in these experiments is that one often has insuf-

�cient animals to enable one to replicate the treatments as described in the above

experiment (Conni�e, 1976; Blight and Pepper, 1984). Thus we may have several


ocks of sheep assigned to plots to which treatments are also assigned. The revised

experimental structure set and analysis of variance table would then be as given in

table 5.17. The revised models are:

E[Y ] = Avail.Rate

Var[Y ] = G+ Plots+ Flocks+ Flocks.Sheep

The expected mean squares under these models are given in table 5.17.

It is clear from this table that there is no test available for Availability and Rate

di�erences without assuming that both Flocks and Plots canonical covariance com-

ponents are zero; that is, that the covariance of observations with the same Flocks

(Plots) level is now the same as the covariance of observations with di�erent Flocks

(Plots) levels. The use of the proposed method displays the problem in such a manner

that its essence is readily appreciated. The problem of determining the experimental

unit, which greatly perplexed Blight and Pepper (1984), is avoided. The application
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Table 5.17: Structure set and analysis of variance table for the revised

grazing experiment

STRUCTURE SET

Tier Structure

1 16 Flocks=4 Sheep

2 16 Plots

3 4 Avail�4 Rate

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�FS �F + �P �

Flocks 15
Plots 15
Avail 3 1 4 fA(�)
Rate 3 1 4 fR(�)
Avail.Rate 9 1 4 fAR(�)

Flocks.Sheep 48 1

Total 63

of the method, which is based on determining the observational unit, will reveal the

confounding relationships between sources.

The analyses I have described are for the weight gain of the individual sheep; that

is, the observational unit is a sheep. If one wanted to analyse measurements taken

on the plots in the original experiment, pasture production for example, then the

structure set for the study would be as follows:
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Tier Structure

1 4 Blocks=16 Plots

2 4 Classes=16 Flocks

3 4 Avail�4 Rate

While there is no doubt about the composition of the three tiers given above, there

is uncertainty about the order of the tiers I have nominated as the second and third

tiers. This is because the levels combinations of the factors in both the second and

third tiers were randomized to the levels combinations of the factors in the �rst tier.

The order given seems reasonable on the grounds that:

1. together Classes and Flocks uniquely index the observational units, whereas

Avail and Rate do not; and

2. Avail and Rate have been designated expectation factors whereas Flocks has

been designated a variation factor.

Further examples of three-tiered animal experiments are provided by the chick ex-

periment described by John and Quenouille (1977, section 4.9) and the pig experiment

described by Free (1977). Both of these experiments involve assigning animals and

treatments to cages/pens. The second experiment described in section 6.6.1 is also a

three-tiered animal experiment.

5.4.3 Split plots in a row-and-column design

Federer (1975, example 5.1) presents an experiment in which the split plots are ar-

ranged in a row-and-column design. It is another example that requires three tiers to

adequately represent its randomization. The experiment consists of three whole plot

treatments (C) arranged in a randomized complete block design having �ve blocks.

There are four split-plot treatments (D) arranged in a four-row by �ve-column de-

sign. Di�erent rectangles are used for each whole-plot treatment. For each rectangle,

the columns are randomized to blocks and the rows of the rectangle randomized to

the rows of the subplots for each C treatment. The experimental layout is shown in
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table 5.18. The experiment is unusual in that the subplot treatments are randomized

within the levels of the whole-plot treatments.

Table 5.18: Experimental layout for a split-plot experiment with split

plots arranged in a row-and-column design (Federer, 1975)

c2 c1 c3 c1 c3 c2 c2 c3 c1 c2 c1 c3 c3 c2 c1

d2 d3 d1 d4 d1 d3 d4 d4 d1 d1 d1 d2 d3 d1 d2
d4 d4 d3 d1 d2 d2 d1 d2 d2 d4 d4 d4 d1 d3 d3
d3 d2 d4 d3 d3 d1 d2 d1 d4 d3 d3 d3 d2 d4 d1
d1 d1 d2 d2 d4 d4 d3 d3 d3 d2 d2 d1 d4 d2 d4

The observational unit for the experiment is a row within a plot. The unrandomized

factors in the experiment are Blocks, Plots and Rows; C and D are the randomized

factors. However, the levels of C must be known, before the levels ofD can be assigned

to the observational units. That is, there are two classes of randomized factors, and

hence three classes or tiers for the experiment. The tiers are: fBlock, Plots, Rowsg,

fCg and fDg. The structure set for the study is given below and the analysis table is

given in table 5.19. Note that the structure for the second tier involves both Blocks

and Rows as these two factors were taken into account in randomizing D.

Because the rows of the row-and-column design are randomized within each whole-

plot treatment, it is not appropriate to include the Rows and Rows.Blocks terms in

the speci�cation. Any meaningful connection between rows within a block is nulli�ed

by the randomization. However,subplots must, in actual fact, be connected across

whole plots because all the subplots in a single row have the same chance of being

included in the row of subplots within any one whole plot treatment. The restrictions

on randomization have made it possible to estimate the C.Rows term (Rows nested

within C), which will eliminate any overall Rows e�ects.

To determine the maximal expectation and variation models for the experiment, it

will be assumed that Blocks, Plots andRows contribute to the variation and that C
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Table 5.19: Structure set and analysis of variance table for a split-plot

experiment with split plots arranged in a row-and-column design (Federer,

1975)

STRUCTURE SET

Tier Structure

1 5 Blocks=3 Plots=4 Rows

2 Blocks*(3 C=Rows)

3 C�4 D

ANALYSIS OF VARIANCE TABLE

EXPECTED MEAN SQUARES
SOURCE DF CoeÆcients of

�BPR �BP �B �BCR �CR �BC �

Blocks 4 1 4 12 1

Blocks.Plots 10
C 2 1 4 1 5 4 fC(�)
Blocks.C 8 1 4 1 4

Blocks.Plots.Rows 45
C.Rows 9
Dy 3 1 1 5 f 1D(�)
C.Dy 6 1 1 5 f 1CD(�)

Blocks.C.Rows 36
Dy 3 1 1 f 2D(�)
C.Dy 6 1 1 f 2CD(�)
Residual 27 1

yThe nonorthogonal terms D and C:D are confounded with C.Rows with eÆciency 0.04 and with
Blocks.C.Rows with eÆciency 0.96.
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Table 5.20: Information summary for a split-plot experiment with split

plots arranged in a row-and-column design (Federer, 1975)

Sources EÆciency

C.Rows

D 0:04

C.D 0:04

Blocks.C.Rows

D 0:96

C.D 0:96

and D contribute to the expectation. Thus, the symbolic form of the maximal models

for this experiment, derived according to the rules given in table 2.5, is as follows:

E[Y ] = C.D

Var[Y ] = G+ Blocks + Blocks.Plots+ Blocks.Plots.Rows

+ Blocks.C + C.Rows + Blocks.C.Rows

The expected mean squares under this model, derived as described in table 2.8, are

also as given in table 5.19. The analysis presented in table 5.19 is the same as that

presented by Federer (1975) except that D and C:D are estimated from two sources

and that it is seen that the expected mean square for C involves �CR so that tests

will have to involve C.Rows.
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Chapter 6

Problems resolved by the present

approach

In section 1.4, I speci�ed a number of issues that would need to be dealt with ade-

quately if a strategy for factorial linear model analysis is to be adjudged as satisfactory.

In this chapter, I address the manner in which the method presented in this thesis

deals with each of these issues. An earlier version of much of this material is contained

in Brien (1989) which is reproduced in appendix C. I believe that the insights outlined

below demonstrate that the view of analysis of variance provided by the approach is

useful. It provides a paradigm for the analysis of a wide range of studies and clari�es

a number of issues.

6.1 Extent of the method

As prescribed in section 2.2.5 and provided the assumptions underlying the analysis

are met, the approach as outlined in this thesis is applicable to randomized experi-

ments and unrandomized studies | unrandomized experiments, purely observational

studies and sample surveys (Cox and Snell, 1981) | in which:

1. there is a term in each structure, the maximal term for the structure, to which

every other term in that structure is marginal,
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2. any two terms from the same structure are orthogonal in the sense that the

orthogonal complements, in their model spaces, of their intersection subspace

are orthogonal (Wilkinson, 1970; Tjur, 1984, section 3.2);

3. the set of terms in each structure is closed under the formation of minima;

4. the structures in which there are variation terms are regular;

5. the maximal term for Tier 1 uniquely indexes the observational units;

6. expectation and variation factors are randomized only to variation factors; and

7. terms in the analysis satisfy the requirements for structure balance as outlined

in section 3.3.1.

All structures in the study must satisfy the �rst three of the above conditions and

hence must be Tjur structures; some of the structures must also satisfy some of the

other conditions.

It is clear that the proposed framework covers multiple-error experiments, includ-

ing multitiered experiments, and may include intertier interactions. The structure-

balance condition above can be relaxed to become: the terms in the study must

exhibit structure balance after those involving only expectation factors have been

omitted. Thus, the approach outlined can also be employed with experiments whose

expectation terms exhibit �rst-order balance such as the carry-over experiment of

section 4.3.2.4, or those with completely nonorthogonal expectation models such as

the two-factor completely randomized design with unequal replication presented in

section 4.2.2.

While nonorthogonal expectation factors can be dealt with, the ability to deal with

nonorthogonality between variation factors is limited to situations in which the terms

derived from the structures from di�erent tiers are at least structure balanced. The

limitations presented here, such as the inability to deal with nonorthogonality between

variation terms arising in the same tier and irregular variation terms, would appear

to be limitations of this calculus, rather than of the approach's broad philosophy.

Chapters 2 and 3 contain a set of rules that provides a calculus for obtaining the

expected mean squares, given the division of the factors into tiers and the expecta-
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tion/variation dichotomy, for the entire range of studies outlined here.

6.2 The basis for inference

The approach put forward in this thesis is a model comparison approach to linear

model analysis; inference is via the analysis-of-variance method and so is a least

squares procedure. The terms in the models are those found in the accompanying

analysis of variance table, these having been derived from the randomization-based

tiers.

The use of model-based versus randomization-based inference is discussed in sec-

tion 1.3. Our emphasis on general linear models derives from the philosophy pro-

pounded by Fisher (1935, 1966, section 21.1; 1956) and Yates (1965). They suggest

that the aim of the analysis should be to use one's knowledge of the situation to

formulate a realistic, parsimonious model. As a result the analysis will be more eÆ-

cient because it incorporates more of the investigator's knowledge. Their view, with

which we have much sympathy, is that the role of the randomization test is secondary

to model-based tests. It is used to con�rm the robustness of model-based tests to

departures from normality.

Further motivation for using model-based analysis is that, not uncommonly, sit-

uations arise in which scienti�cally interesting questions cannot be addressed by a

randomization test. Some examples are tests to determine the relative magnitudes

of various canonical covariance components, tests involving randomized variation fac-

tors, and tests to determine whether certain intertier interactions have to be taken

into account in inferences from the experiment (section 6.7). Another example is

that described by Yates (1965) and Harville (1975) where supplementary information

becomes available and needs to be taken into account by, for example, analysis of

covariance.

In particular, it is often asserted that in using the analysis of variance to analyse

experiments one must make the assumption of intertier additivity. This will clearly

be the case if randomization analysis is being employed as this assumption is essential

to it. However, there are situations in which it is desirable, where possible, to include
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intertier interactions in models. The sensory experiment (section 4.2.1) provides an

example in which an intertier interaction should be included in the maximal variation

model as one of them (A:B:E) is signi�cant; others (A:E) may have been. Nearly

all the examples in section 4.3.2 provide further instances where intertier interactions

are involved.

While randomization does provide support for the robustness of model-based tests,

this is not its primary role in the proposed approach. Here, its major roles are:

� to hold the investigator's view of the material under investigation; this is used

at the model identi�cation stage to assist in determining the models, and hence

the form of the analysis of variance table; and

� to provide insurance against bias in the allocation process and, hence, against

the formulation of an inadequate model.

As far as determining the models is concerned, the aspects of the randomization that

are relevant are the sets of factors involved in the randomization and the restrictions

placed on randomization. These aspects contain important information about how

the experimenter viewed the factors in the experiment. In particular, which terms are

likely to contribute to di�erences between the observational units. Thus, if one wishes

to ensure that the relevant physical features of the study are taken into account in the

models used for it, then the models should re
ect the randomization that was carried

out. The proposed paradigm ensures that the models re
ect it by deriving the models

from the randomization-based tiers. The manner in which it does this is summarized

in the analysis of variance table, in the form of the particular sources that end up

being included and the confounding relationships between them.

As suggested above, a second role for randomization is in providing insurance

against bias in the allocation process. In particular, it a�ords some justi�cation for

concluding that di�erences associated with terms consisting only of randomized fac-

tors are not the result of the terms to which they are randomized. Thus, while Harville

(1975) explains how randomization can be dispensed with, I agree with Kempthorne

(1977) that it is useful as an insurance against model inadequacy. An investigation

of the analysis of unrandomized studies illustrates this point.
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Consider an observational study planned to investigate the e�ect of treatment on

blood cholesterol by observing patients and recording whether they smoke tobacco

and measuring their blood cholesterol. A general feature of such studies, relevant to

model identi�cation, is that all the factors will be unrandomized so that only a single

structure is required to describe the study. Thus, the only dichotomy required for

this stage is the expectation/variation dichotomy. In the example, the unrandomized

structure, determined as described in section 2.2.4, is 2 Smoking=p Patients. Further,

suppose Smoking is designated to be an expectation factor and Patients a variation

factor. The analysis of variance table, based on this grouping of factors and derived

as prescribed in chapter 2, is given in table 6.1A. Model selection is trivial for this

example.

Table 6.1: Analysis of variance for an observational study

A) UNRANDOMIZED ANALYSIS B) QUASIRANDOMIZED ANALYSIS

EXPECTED EXPECTED
SOURCE MEAN SQUARES SOURCE MEAN SQUARES

Smoking �SP + fS(�) Patients
Smoking �P + fS(�)

y

Smoking.Patients �SP Residual �P

yf(�S) = p(�1 � �2)
2=2 where �i is the expectation for the ith Smoking level.

If, on the other hand, smoking was to be regarded as having been randomized to

patients, the structure set would be:

Tier Structure

1 2p Patients

2 2 Smoking
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The analysis of variance table, based on this structure set and the expectation/-

variation dichotomy as before, is given in table 6.1. The sum of squares for the

Residual in this analysis is the same as that for Smoking.Patients from the previous

analysis and the Smoking sums of squares in the two analyses are equal. The essential

di�erence between the two analyses is that, in the unrandomized analysis, Smoking

is marginal to Smoking.Patients, whereas, in the quasirandomized analysis, Smoking

is confounded with Patients.

The form of the analysis for the unrandomized example symbolizes the fact that

grouping of the patients according to smoking behaviour cannot be considered arbi-

trary as there is a substantial probability of systematic di�erences between groups

irrespective of the e�ects of smoking. That is, patients are nested within smoking

and there are recognizable subsets of patients. A comparison, at model testing, of

the Smoking and Smoking.Patients mean squares from this analysis investigates the

question `Are di�erences between patients from di�erent smoking groups greater than

within group di�erences?'. That is, the question does not address the cause of the

di�erence between the groups, which, as has already been recognized, may not be due

to smoking di�erences.

However, it is conceivable that there is interest in regarding smoking as having

been randomized to patients, which amounts to regarding groupings of the patients

according to smoking as arbitrary. The form of the analysis in this case incorporates

the assumption of arbitrary grouping of patients according to Smoking as there is no

factor nesting Patients.

Associated with the di�erence in arbitrariness, and hence forms of the analyses, is

a di�erence between the questions examined by equivalent mean square comparisons

from the two analyses. A comparison of the Smoking and Residual mean squares

in the second analysis, where groupings are arbitrary, examines the question `Has

smoking caused di�erences greater than can be expected from patient di�erences?'.

Clearly, the crucial di�erence is that one is able to draw causal inferences when group-

ings according to smoking can be regarded as arbitrary.

It is a matter for those expert in the subject area in which the study is set as to

whether or not groupings can be considered arbitrary and, hence, which analysis is
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appropriate. However, to regard them as arbitrary in this instance is somewhat more

dangerous than in randomized experiments. In randomized experiments, randomiza-

tion provides an objective mechanism which makes it more likely (and, indeed, it is

routinely assumed) that groupings based on randomized factors are arbitrary. Thus,

in the sensory example (section 4.2.1), inferences about batches are unlikely to be

a�ected by systematic position di�erences.

So randomization does have a role, albeit restricted, to play in model-based analysis

and it is important that the full details of the randomization employed are accurately

recorded when the study is reported.

6.3 Factor categorizations

It has been asserted herein that the division of the factors into tiers and the ex-

pectation/variation dichotomy are the factor categorizations fundamental to model

identi�cation. The division of the factors into tiers generates a structure set for a

study which, as Brien (1983) argues, is based on the factor relationships and inci-

dences arising from the design used in the study and the assumptions made about

the occurrence of terms (section 2.2.4). As such it leads to an inventory of the iden-

ti�able, physical features of the study that might a�ect the response, just what is

required given the class of models under consideration. The expectation/variation di-

chotomy speci�es the parameters of the distribution through which the factors a�ect

the response. In this it is driven by subject matter considerations, namely, the type of

inference desired and the parameters thought best to re
ect the anticipated behaviour

of the factors. The predictive/standardizing dichotomy is central to prediction.

Other commonly used dichotomies are the �xed/random and block/treatment di-

chotomies. It is argued below that the �xed/random dichotomy has no role to play

in linear model analysis, although it should be considered in determining the relevant

population for inferences. Further, it will be suggested that the division of the factors

into tiers, and the accompanying unrandomized/randomized dichotomy, is a more

satisfactory nomenclature than block/treatment dichotomy.
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From the discussion in section 1.2.2, it would appear that the consensus among

authors is that �xed factors are those for which the levels of the factor represent a

complete sample of the levels about which inferences are to be drawn. Random fac-

tors are those which represent an incomplete sample of the levels of interest. The

terms �xed/random are often taken to be identical to expectation/variation, possibly

because it is usual to parametrize e�ects arising from only �xed factors in terms of

expectation and those involving random factors in terms of variation. That is, the

di�erence between expectation/variation factors in parametrization parallels the dif-

ference between �xed/random. However, as outlined here, there is clearly a distinction

between the bases of the two dichotomies.

The �xed/random dichotomy is synonymous with complete/incomplete sampling.

Thus, for the sensory example presented in section 4.2.1, the random factors are

Occasion, Evaluator and Batch; the �xed factors are Area and Position. This grouping

of the factors is di�erent to that given in section 4.2.1 for the expectation/variation

dichotomy. The implication of this is that the maximal expectation and variation

models will di�er between the two groupings.

The basis of the expectation/variation dichotomy is whether or not the terms aris-

ing from a factor display symmetry but this is not the basis of the �xed/random

dichotomy. While some statisticians may base the �xed/random dichotomy on this

distinction and the �xed/random dichotomy could be suitably rede�ned on this basis,

I advocate the adoption of the expectation/variation dichotomy to avoid the poten-

tial double-usage inherent in rede�nition. In any case as Yates (1965) points out, the

�xed/random dichotomy, as de�ned here, does have a role to play in considering `the

relevant population for inferences'. It needs to be retained for this purpose. However,

as suggested in section 1.2.2.3, it has no part to play in determining models where

the variation is parametrized in terms of canonical covariance components; that is, it

is super
uous in determining the analysis table and the expected mean squares based

on canonical components. These are determined by the division of the factors into

tiers and the expectation/variation dichotomy.

As discussed in section 1.2.1.2, the distinction between block and treatment factors

is considered by many statisticians to be fundamental to determining the appropriate
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analysis of variance for a particular experiment. However, it was also pointed out that

the basis for classifying the factors has not usually been spelt out as it is taken to

be intuitively obvious. It was suggested that this is not always the case, especially in

animal, psychological and industrial experiments, and that in the literature this prob-

lem typically arises in the form `Is Sex a block or a treatment factor?' (for example,

Preece, 1982, section 6.2). The sensory example presented in section 4.2.1 provides

a further instance of the problem in that some confusion is likely to surround the

classi�cation of the factor Batch; the issue also arises in connection with experiments

involving a Time factor such as those discussed in section 4.3.2 involving the factor

Years.

Further, there has been some divergence between authors in their usage of the

terms. As argued in section 1.2.1.2, it would appear that Nelder (1965a, 1977) and

Bailey (1981, 1982a) intended that the distinction corresponds to the unrandomized/-

randomized dichotomy (see also Bailey, 1985). Thus, these authors would see block

factors as corresponding to what I have called unrandomized factors. On the other

hand, Houtman and Speed (1983) and Tjur (1984) seem to regard the distinction as

corresponding to the expectation/variation dichotomy, with block factors correspond-

ing to variation factors.

In the context of randomization analysis, the unrandomized/randomized and ex-

pectation/variation (under randomization) dichotomies are equivalent for two-tiered

experiments and it is irrelevant to consider to which dichotomy the block/treatment

dichotomy is equivalent. All three dichotomies are equivalent.

However, in linear model-based analysis of two-tiered experiments, the expecta-

tion/variation and unrandomized/randomized dichotomies are not always equivalent;

they are not in the sensory example presented in section 4.2.1 nor are they in situ-

ations described by Nelder (1977, section 2.3). To equate the expectation/variation

dichotomy to the unrandomized/randomized dichotomy will, in such instances, result

in inappropriate tests of hypotheses or estimates of standard errors since, as we shall

see, these depend on the former dichotomy. To dispense with the unrandomized/ran-

domized dichotomy, and generate separate structures for the expectation and variation

factors, is to shift the focus away from the central issue of identifying the physical
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sources of di�erences taken into account by the investigator. The result of this will be

an inaccurate description of the pertinent physical features of the study and there is

a risk that not all relevant sources will be identi�ed. That is, as Fisher (1935, 1966)

began pointing out, the analysis must re
ect what was actually done in the study, or

at least what was intended to be done. A more detailed examination of this matter is

not possible here, but some insight can be gained by considering the problems which

arise in generating the structure set for the sensory example (section 4.2.1) from its

expectation/variation partition.

In linear model-based analysis for two-tiered experiments, it seems that the block/-

treatment dichotomy most naturally corresponds to the unrandomized/randomized

dichotomy; indeed, it could be argued that the usage of the terms block/treatment,

suitably de�ned, be substituted for unrandomized/randomized. I recommend against

this as the latter terms embody the operational basis of the distinction between the

two types of factors. The failure of the former terms to do this has perhaps led to the

divergence of usage in the literature mentioned above and is likely to be perpetuated

if continued. For example, calling Batch a treatment factor appears incongruous;

however, it is a randomized factor and so, as outlined in section 6.2, there is some

justi�cation for assuming that there are no systematic position di�erences a�ecting

di�erences between batches.

Neither nomenclature is entirely adequate for three-tiered experiments (chapter 5;

Brien, 1983), such as the two-phase experiments of McIntyre (1955), and to refer to

the sets of factors as tiers 1, 2 and 3 avoids the problem. Although the sets might be

referred to as unrandomized2/unrandomized1/randomized for two-phase experiments,

with the subscripts referring to the phase (section 5.2), there are experiments for which

the appropriate designation would appear to be unrandomized/randomized2/random-

ized1 (sections 5.3 and 5.4).

In respect of the question `Is Sex a block or treatment factor?', the answer is clearly

that there is no universal prescription; it will be a randomized factor when individuals

of di�erent sexes are randomized to the observational units and an unrandomized fac-

tor when the observational units consist of individuals of di�erent sexes. In the latter

case, it is likely that there would be interest in interactions between the unrandom-
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ized factor Sex and the randomized factors (as in the example of section 4.3.2.3). The

examples discussed in section 4.3.2 also demonstrate that a factor may in one instance

be a randomized factor, yet in a super�cially similar experiment be an unrandomized

factor; compare the times-randomized (-and-sites-unrandomized) experiments (sec-

tion 4.3.2.1) with the repetitions-in-time (-and-space) experiments (section 4.3.2.2).

The use of the structure set for determining the analysis in these cases results in anal-

yses that re
ect di�erences in the procedures employed in them (section 6.6.1) and as

a result di�er, at least in type of variability (section 6.6.2) involved and perhaps in

the partitioning of the Total sum of squares.

6.4 Model composition and the role of parameter

constraints

In respect of expectation model selection, the proposed approach is a model compar-

ison, rather than a parametric interpretation, approach (see section 1.2.2). However,

it di�ers from the usual model comparison treatment in its parametrization of an ex-

pectation model. Here an expectation model is based on the minimal set of marginal

terms for that model rather than consisting of all terms, including all marginal terms,

appropriate to the model being considered. The proposed approach is in agreement

with that advocated by Nelder (1977) to the extent that it does not necessarily involve

the imposition of constraints on the parameters of the expectation model. However,

whereas Nelder holds that it is undesirable to place constraints on the parameters,

here the imposition of constraints leads to an inconsequential reparametrization of the

model. For example, consider the dependence and additive independence models for

the two factors V and T in the split-plot experiment used as an example in section 2.2

(see section 2.2.6.2).
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Two alternative parametrizations of the additive independence model are:

E[yklm ] = �i + �j, and

E[yklm ] = �0 + � 0i + � 0j

where

�0 = � : + � :;

� 0i = �i � � :, and

� 0j = �j � � ::

Two alternative parametrizations of the dependence model are:

E[yklm ] = (��)ij, and

E[yklm ] = �? + �?i + � ?j + (��)?ij

where

�? = (��)::;

�?i = (��)i: � (��)::;

� ?j = (��):j � (��)::, and

(��)?ij = (��)ij � (��)i: � (��):j + (��):::

For each model, the alternative parametrizations are mathematically equivalent

and it has been the usual practice to use the second parametrization in each case,

although without the quali�ers I have included. As a result the dependence model

is often regarded as being the same as the additive model except for the interaction

term. However, super�cially similar terms, such as � 0i and �
?
i , are quite di�erent: �

0
i is

the e�ect of V independent of the level of T , whereas �?i is the average response of V

over the levels of T . This distinction is especially important in unbalanced studies,

since whereas � 0i = �?i in orthogonal studies, this is not the case in unbalanced studies.

Of the parametrizations given above, the most natural is that involving the mini-

mal set of marginal terms since it relates directly to the mechanism hypothesized to

generate the data. The second parametrization in each case would seem most useful

for obtaining an expression for the interaction that measures the di�erence between

these two models (Darroch, 1984). The use of the saturated parametrization of the
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models also has the advantage that the sequence of testing models cannot ignore

the marginality between expectation models (for example, testing for V will not be

attempted given V:T has been accepted).

In employing the approach to analyse experiments with nonorthogonal expectation

models, such as the two-factor completely randomized design with unequal replica-

tion, the hypotheses tested will depend on the observed cell frequencies. However,

Nelder (1982) points out that from an information-theoretic viewpoint this is appro-

priate. It re
ects the di�erences in information among the various contrasts in the

parameter space. The advantage of the approach presented here, over that relying

on parametric functions of cell means, is that the possible nondetection of signi�cant

results is avoided (Burdick and Herr, 1980).

Clearly, expectation model selection involves the comparison of a series of distinct

models, rather than choosing between terms to include in a model. On the other

hand, comparison of models in variation model selection is equivalent to deciding

which terms are to be included in the model.

6.5 Appropriate mean square comparisons

A major consequence of the approach outlined here is that the uniformity of mean

squares hoped for by Nelder (1977) unfortunately does not obtain. Nelder (1977)

obtains uniformity by modelling all terms as random variables uncorrelated with each

other; I believe this strategy is 
awed as the homogeneity properties associated with

random variables may not always be appropriate. Instead, I designate some terms

as contributing to expectation, for which homogeneity assumptions are not required,

and the others to variation. The expected mean squares for a study, and hence mean

square comparisons and hypotheses tested (or, equivalently, standard errors), depend

on the expectation/variation classi�cation of the factors, parallelling the e�ect of the

�xed/random classi�cation of mixed model analysis. For example, in the sensory

experiment (section 4.2.1), it would not be relevant to consider the hypothesis that

area di�erences are greater than could be expected from A:B and A:E variability

combined, even if A:E is signi�cant. This is because A:E has not been hypothesized
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to be a source of variation in the experiment. If it were, then the hypothesis would

be relevant. The aforementioned dependence is not the result of imposing constraints

on the parameters as is sometimes argued. Rather, it is the result of the fundamental

di�erences between expectation and variation models in respect of the behaviour of

marginal terms. In expectation models, the inclusion of a marginal term amounts to

an alternative parametrization of the same model (section 6.4), whereas for a variation

model a similar inclusion adds to the complexity of the variance matrix model.

There is considerable discussion on the testing of main e�ects in the presence of

interaction in the literature (see for example Nelder (1977) and accompanying discus-

sion). The approach presented here makes it explicit that the testing of expectation

main e�ects in the presence of expectation interaction is seen to be illogical, at the

model identi�cation stage (section 6.4); it involves an attempt to use two di�erent

models to describe the same data. Of course, in situations such as those described by

Elston and Bush (1964) and Tukey (1977), estimates of main e�ects for expectation

factors may be required at the prediction stage even if the �tted model involves inter-

actions to which they are marginal. As Kempthorne (1975a) states, the desirability

of estimating main e�ects in these circumstances depends on `a forcing speci�cation

of the target population'. However, the situation in respect of variation terms di�ers

from that for expectation terms; it is appropriate to test variation terms whether

or not terms to which they are marginal are signi�cant. The sensory example (sec-

tion 4.2.1) provides a case in point. In this example, it is necessary to test a variation

term (A:B) which is marginal to signi�cant variation terms with the result that A:B is

judged to be not signi�cant. Hence, the covariance of wine scores from the same A:B

combination is the same as that of scores from di�erent A:B combinations; that is,

Area.Batches does not contribute to the variability of the scores. The di�erence be-

tween expectation and variation terms, essentially recognized by Fisher (1935, 1966)

in a section added to the sixth edition (1951, section 65), is a consequence of the

di�erent nature of the models noted in section 6.3.

Also, Nelder (1977, section 2.3) suggests that sources corresponding to `random'

(variation) terms should occur only in the numerator of F-ratios when they are ran-

domized terms and only in the denominator when they are unrandomized. However,
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the sensory example (section 4.2.1) provides a case in which it is relevant to use a

source corresponding to a randomized variation term in the denominator. As the A:E

interaction is not signi�cant, the randomized main e�ect A is to be tested and this

involves using the randomized variation interaction A:B. The A main e�ect is not

signi�cant, indicating that the di�erence between the wines from di�erent areas is no

greater than could be expected between those from two di�erent batches in the same

area.

6.6 Form of the analysis of variance table

The method described in chapter 2 involves the speci�cation of the models for a study

from the terms derived from the structure sets formed from the randomization-based

tiers. Accompanying this model will be an analysis of variance table incorporating

the same set of terms as the model and summarizing the confounding relationships

between the terms. That is not to say that the analysis of variance table is derived

from the models; rather they have a common origin: the structure sets. However,

as Cox (1984) suggests, the analysis of variance table is in many cases easier to

assimilate than the bare linear model as the analysis table incorporates information

not contained in the model. In my view, this is particularly so if it is of the form

advocated in this thesis.

The form of the analysis of variance tables for the two-tiered experiments presented

herein will be the same as those produced from the statistical programming language

GENSTAT 4 (Alvey et al., 1977), that implements Nelder's (1965a,b) approach to

deriving the structure sets for an experiment. This will be the case for the many

standard two-tiered designs such as randomized complete block, balanced and par-

tially balanced incomplete block, lattice, confounded factorial and split-plot designs.

The structure sets for many of these are discussed by Nelder (1965a,b) and Alvey et

al. (1977). The form of the analysis of variance table for multitiered experiments,

presented in Brien (1983), is an extension of that for the two-tiered experiments.

In sections 6.6.1{6.6.3, we investigate the bene�ts that lead one to recommend the

use of the particular form of analysis of variance table advocated herein.
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One of these bene�ts is that it results in models and analysis of variance tables that

re
ect the randomization employed in the study. As a result it di�erentiates between

studies which, although they involve di�erent randomization procedures, traditionally

have the same model and analysis of variance applied to them.

A second bene�t is that the types of variability contributing to various subspaces

are portrayed in the analysis of variance table. One is able to determine readily which

combination of experimental unit variability, variability separated from experimental

error, treatment error, sampling error and intertier interaction is contributing to a

subspace.

A third bene�t is that, when the inadequate replication underlying what I have

termed total and exhaustive confounding occurs, it is evident in tables derived using

the method.

6.6.1 Analyses re
ecting the randomization

Structure sets have been used by a number of authors as a basis for specifying the

analysis of variance table appropriate to a study (Bennett and Franklin, 1954; Schultz,

1955; Zyskind, 1962a; Nelder, 1965a,b; Alvey et al., 1977; Brien, 1983, 1989). A

particular issue about which these authors di�er is the number of structures necessary

to obtain the analysis of variance table and specify the linear model.

As an example, authors such as Bennett and Franklin (1954) and Schultz (1955)

would use the single structure Blocks�Treatments to specify the analysis for a ran-

domized complete block design. This would generate the analysis of variance given in

table 6.2A. However, this formulation does not properly represent the way in which

the design was set up, with Plots nested within Blocks, and Treatments randomized

independently onto Plots within a Block. Consequently, Nelder (1965), Wilkinson

and Rogers (1973), Brien (1983, 1989) and Payne et al. (1987) prefer to specify the

inherent structure of the design separately from the treatments imposed on it, and

would thus use the two structures Blocks=Plots and Treatments. The analysis of

variance tables generated by these structures is shown in table 6.2B. Of course, both

formulations lead ultimately to an equivalent partition of the Total sum of squares and
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hence analysis. However, only the second table portrays the randomization employed

in the experiment by exhibiting the confounding relationships between terms.

Table 6.2: Randomized complete block design analysis of variance tables

for two alternative structure sets

A) SINGLE FORMULA B) TWO FORMUL�

SOURCE DF SOURCE DF

Blocks b� 1 Blocks b� 1

Treatments t� 1 Blocks.Plots b(t� 1)
Treatments t� 1

Blocks.Treatments (b� 1)(t� 1) Residual (b� 1)(t� 1)

It has also been demonstrated herein that three tiers are necessary to portray the

randomization that has occurred in some experiments. However, it is clear that for the

example presented in section 5.2.1, for example, the correct sample variance partition

can be obtained by replacing Plots in the second tier with Treatments, in a manner

analogous to the randomized complete block design. The structure set for obtaining

the analysis then becomes:

Tier Structure

1 j Judges=bt Sittings

2 b Blocks�t Treatments

But again this table will not adequately portray the randomization performed.

Another shortcut sometimes employed in the speci�cation of experiments is to re-

place a factor in a tier by factors from higher tiers; for example, for a randomized

complete block experiment, the structure set could be speci�ed as follows:
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Tier Structure

1 Blocks=Treatments

2 Treatments

While this may be more eÆcient from the viewpoint of computer storage, the struc-

ture set no longer adequately re
ects the way in which the experiment was carried out.

Hence, the analysis table may no longer exhibit the confounding relationships between

terms. The same e�ect is produced by a rule followed in GENSTAT 4, namely that

terms included in both unrandomized (`block') and randomized (`treatment') models

will be deleted from the block model. This also contradicts rule 4 of table 2.1. These

departures from tables based on structure sets can be particularly confusing in more

complicated experiments.

So an important feature of the proposed approach is that it results in di�erent

analysis of variance tables for studies that vary in their randomization procedures. It

seems desirable that this occur. For example, Kempthorne (1955) and Anderson and

Maclean (1974) suggest there should be a distinction made between the randomized

complete block design and the two-factor completely randomized design with no in-

teraction. Wilk and Kempthorne (1957) also mention the Latin square design and the

super�cially similar (1=t)th fraction of a t3 factorial experiment (where the fraction

is chosen using a Latin square arrangement). In general, as outlined in section 6.2,

there can be substantive di�erences in the inferences applicable to experiments that

di�er in their randomization.

To investigate in more detail the manner in which the proposed method results

in di�erent analysis of variance tables for studies that di�er in their layout, I apply

the proposed method to the three experiments discussed by White (1975) and to a

multistage survey; a similar exercise carried out for the `two-factor' studies described

by Graybill (1976, section 14.9) would provide similar insights.

For White's (1975) �rst experiment:

Each of two new therapies requires special training and equipment, so that a
physician can be trained and equipped for only one of them. Ten physicians
are randomly divided into two groups of �ve, to be trained and equipped for
the two therapies. Then each physician treats six of his patients and rates the
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six results. The data consists of 60 such results, for the purpose of comparing
the two therapies.

The observational unit in this experiment is a patient and the factors are Physi-

cians, Patients and Therapies. The unrandomized or �rst-tier factors (that is, those

factors that index the units prior to randomization) are Physicians and Patients; the

randomized factor (that is, that factor to be associated with the units by randomiza-

tion) is Therapies. Further, let us suppose that Therapies is an expectation factor and

that the others are variation factors. The structure sets and variation model for the

study are then as given in table 6.3; the expectation model is just E[y ] = �Therapies.

For the second experiment:

At least 60 laboratory animals that respond to some stimulus are available for
the testing of drugs that may alter the response to that stimulus. They are
randomly divided among ten test days, six animals/day. The days are divided
into two random groups of �ve and a drug assigned to each group. The six
animals in a day-group are treated with the drug assigned to that day. The
data consist of 60 animal responses, for the purpose of comparing the two drugs.

The observational unit in this experiment is an animal and the factors are Animals,

Days and Drugs. The unrandomized or �rst-tier factor is Animals. The Days are

associated randomly with the animals and so is a second-tier factor. The Drugs are

randomly associated with the days and so is a third-tier factor. Let us assume Drugs

to be the only expectation factor. The structure sets and variation model for the

study are then as given in table 6.3; the expectation model is just E[y ] = �Drugs.

For the third experiment:

Sixty cars arriving at a car-wash emporium are randomly assigned to ten car-
wash units, six cars/unit. The ten units are �ve of each of two types. The data
consist of 60 \cleanliness scores", for the purpose of comparing the two types.

The observational unit in this experiment is a car and the factors are Cars,Machines

and Types. The unrandomized factor is Cars and the randomized factors areMachines

and Types. In this case, suppose Types is the only expectation factor. The structure

sets and variation model for the study are then as given in table 6.3; the expectation

model is just E[y ] = �Types.
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Table 6.3: Structure sets and models for the three experiments discussed

by White (1975) and a multistage survey

STRUCTURE SETS

Experiment

Tier 1 2 3

1 10 Physicians=6 Patients 60 Animals 60 Cars

2 2 Therapies 10 Days 2 Types=5 Machines

3 2Drugs

Multistage

1 2 Sections=5 Trees=6 Leaves

VARIATION MODELS

Experi-
ment Model

1 G + Physicians(P) + Physicians.Patients(PI)
= �GJ10 
 J6 + �P I10 
 J6 + �PII10 
 I6

2 G + Days(D) + Animals(A)
= �GJ60 + U2(�DI10 
 J6)U

0
2 + �AI60

3 G + Types.Machines(TM) + Cars(C)
= �GJ60 +U2(�TMI2 
 I5 
 J6)U

0
2+ �CI60

multi- G + Sections.Trees(ST) +Sections.Trees.Leaves(STL)
stage =�GJ2 
 J5 
 J6+ �ST I2 
 I5 
 J6 + �STLI2 
 I5 
 I6
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In addition, consider a multistage survey of leaf size of citrus trees in an orchard

divided into two sections in each of which �ve trees are randomly sampled. Six leaves

are randomly sampled from each tree. The data consist of 60 leaf area measurements.

The observational unit for this survey is a leaf and the factors are Sections, Trees and

Leaves. All three factors are unrandomized and so there is only one tier. Sections will

be taken to be the only expectation factor. The structure set and variation model for

the study are then as given in table 6.3; the expectation model is just E[y ] = �Sections.

The structure sets obtained for the three experiments are the same as those de-

scribed by White (1975) except for the second experiment, which is a multitiered

experiment. The variation models di�er only in that some include permutation ma-

trices to account for the randomization employed in the studies.

The appropriate analysis of variance tables, obtained according to the rules given

in section 2.2.5, are given in table 6.4. The tables are of the same form as those

produced by GENSTAT 4 (Alvey et al., 1977). The four tables are similar to the

extent that the estimated e�ects and the sums of squares for each of the last three

sources are computationally equivalent in all four cases. Also, the expected mean

squares are shown in table 6.4. The expected mean squares are essentially the same

for all of the studies, so that the `eight degrees-of-freedom-source' will be used to test

the `one degree-of-freedom-source' in all cases.

As White says for the three experiments, traditionally the same linear model, and

hence the same analysis of variance, would be applied to all four examples: the hier-

archical analysis as exempli�ed by the analysis for the multistage survey in table 6.4.

Thus, the application of the method of chapter 2 leads to di�erent models and

analysis of variance tables for situations that have previously had the same models

and tables applied to them. The basis of the di�erence between the traditional and

the approach proposed herein is that the latter utilizes prerandomization, rather than

postrandomization, factors. For example, in experiment 1, it is only postrandomiza-

tion that one can group physicians on the basis of the therapy they are to administer,

as is required for the hierarchical analysis; prior to randomization they are viewed as

a single unpartitioned set.
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Table 6.4: Analysis of variance tables for the three experiments described

by White (1975) and a multistage survey

EXPERIMENT 1 EXPERIMENT 2

EXPECTED EXPECTED

SOURCE DF MEAN SQUARES SOURCE DF MEAN SQUARES

Physicians 9 Animals 59

Therapies 1 �PI+6�P+fT (�)y Days 9

Residual 8 �PI+6�P Drugs 1 �A+6�D+fM (�)y

Residual 8 �A+6�D

Physicians.Patients 50 �PI Residual 50 �A

EXPERIMENT 3 MULTISTAGE SURVEY

EXPECTED EXPECTED

SOURCE DF MEAN SQUARES SOURCE DF MEAN SQUARES

Cars 59 Sections 1 �STL+6�ST+fS(�)y

Types 1 �C+6�TM+fT (�)y

Types.Machines 8 �C+6�TM Sections.Trees 8 �STL+6�ST

Residual 50 �C

Sections.Trees.Leaves 50 �STL

yfX(�) = 30�(�i � �:)
2 where �i is the expectation of the ith level of factor X, and �: is the mean

of the �is.
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It is evident, upon examination of the analysis tables in table 6.4, that the studies

are quite di�erent in respect of the structures of their prerandomization populations

(for example, we have Patients nested within Physicians in experiment 1, whereas we

have an unpartitioned set of Animals in experiment 2). As a result the studies di�er

in the following respects:

1. Marginality relationships between sources in the analysis tables (for example,

Physicians is marginal to Physicians.Patients in experiment 1, whereas Animals

and Days are independent in experiment 2).

2. Population sampling procedures (for example, in experiment 1, physicians are

randomly selected and patients of each physician randomly selected; in experi-

ment 2, animals and days are independently and randomly selected). Conse-

quently, the orders of equivalent factors di�er (for example, 6 Patients from each

physician versus 60 Animals).

3. Randomization procedures which are manifested in the di�erent confounding

arrangements evident in the analysis tables in table 6.4 (for example, in ex-

periment 1, Therapies is confounded with Physicians; in experiment 2, Drugs

is confounded with both Animals and Days). Consequently, equivalent terms

from di�erent experiments are protected from systematic di�erences between

sets of terms which are not equivalent (for example, in experiment 1, Therapies

is protected from systematic Physicians di�erences; in experiment 2, Drugs is

protected from both systematic Animals and Days di�erences).

4. Di�erences in the form of assumptions (for example, in experiment 1, the Pa-

tients groups are assumed to be homogeneous in their covariance; in experiment

2, intertier additivity is assumed in that the e�ects of Days and Animals are

assumed to be additive). That is, although essentially equivalent assumptions

are required, the form in which they are expressed di�ers.

Thus, the structure of the prerandomization population and randomization proce-

dures are exhibited in the table in the form of the set of sources included and their
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and confounding relationships. The analysis of variance table provides a convenient

representation of these aspects of a study.

However, it is not true that any di�erence in randomization will result in di�erent

analysis of variance tables. For example, consider the case of the two methods of su-

perimposing, by separate randomization, a second set of treatments to a �rst set that

had been assigned using a Latin square (section 5.3.3). In contrast to randomization-

based analysis (Preece et al., 1978 and Bailey, 1991), the analysis of variance table for

a model-based analysis (table 5.14) is the same for both methods of randomization.

This is because tables only re
ect the sources produced by the allocation process in

that they re
ect the way in which the terms in one tier are assigned to those in a lower

tier. That is, they re
ect the terms to which they were assigned and the restrictions

placed on the assignment. Hence, any method of allocating Streats in the superim-

posed experiment that assigns its levels to the combinations of Rows and Columns

and keeps it orthogonal to Rows, Columns and Ftreats would have the same analysis

of variance table as that presented in table 5.14; as pointed out in section 2.2.2 this

includes systematic allocation.

6.6.2 Types of variability

The method of deriving analysis of variance tables given in sections 2.2.1{2.2.5 allows

one to associate more than one source with a particular subspace of the sample space.

A major advantage of this, as will be outlined in this section, is that it is possible to

have several types of variability identi�ed as contributing to the subspace.

Addelman (1970) recognizes a number of types of variability that may give rise to

response variable di�erences associated with the sources in the analysis of variance

table commonly designated `experimental error'. These are:

(a) variability that arises in the measuring or recording of responses of ex-
perimental units, (b) variability due to the inability to reproduce treatments
exactly, (c) inherent variability in experimental units ..., (d) the interaction
e�ect of treatments and experimental units, and (e) variability due to factors
that are unknown to or beyond the control of the experimenter.

The most natural assumption to make about measurement error is that it is inde-
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pendent between observations and that it has the same expectation and variance for all

observations. Such an assumption implies that the measurement error will a�ect the

whole sample space in a homogeneous manner and so cannot be separated from vari-

ability between individual observational units which, as indicated in section 2.2.6.2,

is always incorporated in the variation model by virtue of the compulsory inclusion of

the unit terms; hence, a speci�c term will not be included for measurement error. No

allowance can be made in the structure set for (e) variability due to factors unknown

to the experimenter.

In addition to the types of variability that might give rise to `experimental error',

one can envisage several other types of variability. For the purposes of this thesis, the

types of variability that will be entertained include:

1. treatments;

2. treatment error;

3. experimental unit variability;

4. variability to be separated from experimental unit variability (often this is vari-

ability arising from blocking factors not having treatments applied to them);

5. sampling error; and

6. intertier interaction.

Of these types of variability, all but the last can be identi�ed as arising from in-

tratier di�erences or di�erences for a term which involves only factors from the

same tier. The di�erences are between sets of observational units, a set being com-

prised of those units which have the same levels combination of the factors in the

term.

For a particular term, and hence source, one can identify the one type of variability

associated with that term. The type of variability associated with a term is the type

that would generate the di�erences between the levels combinations for the term, if

it was the only term contributing to the di�erences.

As an example, consider the randomized complete block design. The structure set

and analysis of variance table, under the assumptions of intertier additivity and no
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treatment error, are given in table 6.5A.

Presented, in table 6.5B, are the structure set and analysis table for the case in

which the interaction of Blocks and Treatments is to be included in the analysis. The

fact that the Treatments and the Treatments.Blocks are the only sources appearing

under the Blocks.Plots source in the analysis table indicates that the subspace for

the Blocks.Plots source orthogonal to that for the Treatments source is the same as

the subspace for the Treatments.Blocks source. The �rst of these sources would be

classi�ed as deriving from experimental unit variability and the latter from intertier

interaction.

Suppose that the treatments were in fact clones of a certain vine species and that

the experimenter thought that the individual vines of a clone could vary, even when all

other things are kept equal. As a result the experimenter randomly assigns individual

vines of a clone to the replicates of the corresponding treatment. Now the factors in

the experiment are Blocks, Plots, Treatments and Vines, with Blocks and Plots still

being the unrandomized factors. The structure set, under the assumption of intertier

additivity, and the corresponding analysis table, are shown in table 6.5C. The form

of the analysis table indicates that the subspace for the Treatments.Vines source

(treatment error) is a subspace of that for the Blocks.Plots source (experimental unit

variability).

The structure set and analysis table with both of the above situations combined,

that is when both intertier interaction and treatment error are thought to occur,

are shown in table 6.6A. As the Treatments.Blocks term is totally aliased with Tier

2 terms that precede it, a source for it is not included in the table. If one wants

to include such a source and the associated canonical covariance component in the

table, then an extra structure for the intertier interactions will have to be given.

The structure set, and associated analysis table, are also shown in table 6.6B. An

examination of this table reveals that the subspace for the Treatments.Blocks source

(intertier interaction) is the same as that for the Treatments.Vines source (treatment

error) which is a subspace of that for the Blocks.Plots source (experimental unit

variability).

The point to be made about the types of variability arising from intratier di�erences
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Table 6.5: Structure sets and analysis of variance tables for the ran-

domized complete block design assuming either a) intertier additivity, b)

intertier interaction, or c) treatment error

A) INTERTIER ADDITIVITY B) INTERTIER INTERACTION

STRUCTURE SET

Tier Structure

1 b Blocks=t Plots

2 t Treatments

Tier Structure

1 b Blocks=t Plots

2 t Treatments�Blocks

ANALYSIS OF VARIANCE TABLE

EXPECTED EXPECTED
SOURCE DF MEAN SQUARES SOURCE DF MEAN SQUARES

Blocks b�1 �BP+t�B Blocks b�1 �BP+�BT+t�B

Blocks.Plots b(t�1) Blocks.Plots b(t�1)
Treatments t�1 �BP+fT (�) Treatments t�1 �BP+�BT+f(T�)
Residual (b�1)(t�1) �BP Treatments.Blocks (b�1)(t�1) �BP+�BT

C) TREATMENT ERROR

STRUCTURE SET

Tier Structure

1 b Blocks=t Plots

2 t Treatments=b Vines

ANALYSIS OF VARIANCE TABLE

EXPECTED
SOURCE DF MEAN SQUARES

Blocks b�1 �BP+�TV +t�B

Blocks.Plots b(t�1)
Treatments t�1 �BP+�TV +fT (�)
Treatments.Vines (b�1)(t�1) �BP+�TV
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Table 6.6: Structure sets and analysis of variance tables for the ran-

domized complete block design assuming both intertier interaction and

treatment error

A) SINGLE FORMULA B) TWO FORMUL�

STRUCTURE SET

Tier Structure

1 b Blocks=t Plots

2 t Treatments=b Vines

+ Treatments�Blocks

Tier Structure

1 b Blocks= t Plots

2a t Treatments=b Vines

2b Treatments�Blocks

ANALYSIS OF VARIANCE TABLE

EXPECTED EXPECTED

SOURCE DF MEAN SQUARES SOURCE DF MEAN SQUARES

�BP �TV �B � �BP�TV �BT�B �

Blocks b� 1 1 1 t Blocks b � 1 1 1 1 t

Blocks.Plots b(t� 1) Blocks.Plots b(t� 1)

Treatments t� 1 1 1 fT (�) Treatments t� 1 1 1 1 fT (�)

Treatments.Vines (b� 1)(t� 1) 1 1 Treatments.Vines (b � 1)(t� 1) 1 1 1

Treatments.Blocks (b� 1)(t� 1) 1 1 1

Terms totally aliased:

Treatments.Blocks

is that their principal e�ect in the analysis is on the precision of conclusions drawn

from the experiment. This is in contrast to intertier interactions which one would

usually want to assume do not occur in the experiment since, if they do, they may

limit the conclusions one is able to make about intratier terms marginal to the in-

tertier interaction. For example, a signi�cant Area.Evaluator interaction, an intertier

interaction, in the two-tiered sensory experiment described in section 4.2.1 would have
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meant overall conclusions about Area di�erences were not appropriate. For further

discussion see section 6.7.

6.6.3 Highlighting inadequate replication

Inadequate replication is manifested as total and exhaustive confounding where an

exhaustively confounded term is one for which all the sources for which it is

a de�ning term have terms confounded with them. The occurrence of total and

exhaustive confounding is a phenomenon that has previously worried statisticians

(Addelman, 1970; Anderson, 1970) and which is illuminated by using the method of

chapter 2. Consider an experiment intended to measure the e�ect of 3 light intensities

on seedling growth. A batch of 60 seedlings is taken and seedlings are selected at

random to be placed in one of three controlled environment growth cabinets. Suppose

that the seedlings are kept in the same position in their respective growth cabinets

and that the positions are equivalent across growth cabinets. The structure set and

the analysis of variance, derived as prescribed in sections 2.2.1{2.2.5, are shown in

table 6.7.

In this experiment, Intensities is totally confounded with Cabinets in that this

is the only source with which Intensities is confounded. Further, the confounding

between Intensities and Cabinets is such that there is no part of the subspace of the

Cabinets source that is unconfounded with that for the Intensities source; that is,

the Cabinet term is exhaustively confounded. Consequently we have no measure of

Cabinet variability with which to test Intensities di�erences. This is also re
ected

in the expected mean squares. However, if we can `neglect' the covariance within

cabinets, then the Cabinets.Positions source can be used to test the Intensities source.

That is, an assumption (�C = 0) is required to make this test and this is revealed in

the analysis of variance table.

The problems discussed by Addelman (1970) are also of the type just described.

The structure sets and analysis tables for the original and revised experiments of

his example 1, derived as prescribed in sections 2.2.1{2.2.5, are shown in table 6.8.

Clearly, in the original experiment Methods is totally and exhaustively confounded
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Table 6.7: Structure set and analysis of variance table for a growth

cabinet experiment

STRUCTURE SET

Tier Structure

1 60 Seedlings

2 3 Cabinets�20 Positions

3 3 Intensities

ANALYSIS OF VARIANCE TABLE

SOURCE DF EXPECTED MEAN SQUARES

Seedlings 59
Cabinets 2
Intensities 2 �S + �CP + 20�C + fI(�)

y

Positions 19 �S + �CP + 3�P
Cabinets.Positions 38 �S + �CP

yfI(�) = 20�(�i � �:)
2=2 where �i is the expectation for the ith Intensity , and �: is the mean of

the �is.

with Teachers while in the revised experiment it is not; this di�erence is immediately

obvious from the analysis of variance table given here. For this type of experiment it is

not likely that the di�erences between Teachers are negligible and so a test ofMethods

is not possible in the original experiment. The revised experiment is essentially the

same as experiment 2 of table 6.4.

The valve-type experiment presented by Anderson (1970) is also of the type dis-

cussed in this section; the lack of replication of valve types parallels the lack of repli-

cation of Cabinets in the experiment discussed above. The revised animal experiment
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Table 6.8: Structure sets and analysis of variance tables for Addelman's

(1970) experiments

STRUCTURE SET

A) ORIGINAL EXPERIMENT B) REVISED EXPERIMENT

Tier Structure

1 ms Students

2 m Teachers

3 m Methods

Tier Structure

1 mgs Students

2 mg Teachers

3 m Methods

ANALYSIS OF VARIANCE TABLE

EXPECTED EXPECTED

SOURCE DF MEAN SQUARES SOURCE DF MEAN SQUARES

Students ms�1 Students mgs�1

Teachers m�1 Teachers mg�1

Methods m�1 �S+s�T+fM (�)y Methods m�1 �S+s�T+fM (�)z

Residual m(s�1) �S Residual m(g�1) �S+s�T

Residual mg(s�1) �S

yfM (�) = s�(�i � �:)
2=(m� 1) where �i is the expectation for the ith Method, and �: is the mean

of the �is.
zfM (�) = gs�(�i � �:)

2=(m� 1) where �i is the expectation for the ith Method, and �: is the mean
of the �is.

discussed in section 5.4.2 also exhibits the same problem, as does the experiment

reported by Hale and Brien (1978).

It has been my experience as a consultant that, in situations such as these but

with no test possible, clients accept the explanation that the e�ects of two terms are

inseparable or indistinguishable. The alternative explanation that there is a lack of

replication in the experiment is commonly not appreciated by the client who usually

responds `But I have included several seedlings in each cabinet'.
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6.7 Partition of the Total sum of squares

It has been argued in section 6.6.1 that if the proposed approach is employed, the

randomization employed in the study will be incorporated in the analysis. However,

in cases presented in that section, it had little bearing on the partition of the sample

variance. One might think that this was generally the case and question the need for

more than one structure formula, at least as far as partitioning the sample variance is

concerned. Note that there can be no question as to the number of classes of factors or

number of tiers that can be identi�ed for a particular experiment; the issue is whether

these are all needed to produce the analysis of variance.

However, the example presented in section 5.2.4 is one in which the correct decom-

position cannot be obtained with less than the three tiers involved in the experiment.

As outlined in section 5.2.4, the crucial aspects of this experiment are that it involves

confounding of terms arising from the same structure with di�erent terms from lower

structures and that terms from both structures are nonorthogonal. Thus, it is clear

that the strategy of transferring terms from the structure for a higher to that for lower

tiers, as used above to analyse the randomized complete block design with a single

formula, will not work here. Alternatively, for some designs it is possible to obtain

a partial analysis using less than one structure for each tier: for example, the intra-

block analysis of a balanced incomplete block design can be obtained with the single

structure used in table 6.2A for the randomized complete block design. However, this

also is impossible for our example, and three structures are required to achieve any

valid analysis; thus, the least squares �t must be accomplished using a three-stage

decomposition of the sample space as prescribed in section 3.3.1.1.

A �nal point about the example is that the �eld phase uses a two-tiered design that

cannot be analysed with a single structure: suppose that data, such as the yields of

the vines, had been collected from the �eld experiment; their analysis would require

two structures and an algorithm for a two-stage decomposition of the sample space,

like that of Wilkinson (1970) or Payne and Wilkinson (1977).

While the number of tiers of factors may be characteristic of a study and cannot be

reduced in some experiments if the correct partition of the Total sum of squares is to
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be obtained, the partition of the Total sum of squares for a study is not unique. The

analysis will vary with the assumptions made about which terms need to be included;

for example, as discussed below, one may or may not decide to include certain intertier

interactions.

An important advantage, to the user, of basing analysis of variance tables on the

structure for a study is that it removes the need to rely on a series of standard analysis

tables (from a textbook on experimental design). Often, the randomization employed

in an experiment is limited by practical considerations, leading to experiments not

previously described in textbooks. The analysis of such experiments is commonly

accomplished by using the table corresponding to the experiment that, of all the

experiments described in a textbook, most closely resembles the experiment to be

analysed. In contrast, the procedure described herein is based on the randomization

procedures which are thereby incorporated into the analysis of variance table for the

experiment. It is a well-de�ned procedure relying less on intuition than has previously

been the case. As a result there should be more consistency in the formulation of an

analysis for a particular experiment.

Further, it has been my experience that in many instances the structure set for many

of the complex experiments presented in this thesis is misspeci�ed, largely because the

approach taken to the speci�cation is to derive the structure set corresponding to an

analysis determined as just described. Determination of the analysis for an experiment

in this way (for example, by analogy with the split-plot experiment) can lead to its

underanalysis (see a two-tiered sensory experiment (section 4.2.1), repetitions-in-time-

and-space (section 4.3.2.2) compared to times-randomized-and-sites-unrandomized

experiments (section 4.3.2.1) and the measurement-of-several-parts-of-a-pasture ex-

periment (section 4.3.2.2)). The danger is that incorrect conclusions may be drawn if

the wrong analysis is performed, as in the split-plot analysis of a two-tiered sensory

experiment (section 4.2.1).

A particular issue that the use of the approach elucidates is the problem of whether

to partition the `Error (b)' source in the analysis of the standard split-plot experiment

(see section 4.3.1) which has been shown to involve a decision about the occurrence of

an intertier (`block-treatment') interaction (namely D.Blocks), rather than of intratier
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di�erences. It is normal practice to assume that intertier interactions do not occur,

particularly as their presence cannot usually be tested for (for example, as is clear

from section 6.6.2, the presence of a Block.Treatment interaction cannot be tested

for in a randomized complete block design). Further, the assumption of additivity is

necessary if extensive inferences about the overall e�ects of randomized factors are to

be made from the experiment. However, as Yates (1965), comments it may not always

be advisable to pool intertier interactions (depending on experimental conditions)

as they can be used as a partial check for nonadditivity in the experiment. For

example, in sensory experiments, such as those discussed in sections 4.2.1 and 5.2.1,

it is desirable to include intertier interactions as these are likely to arise in this area

of experimentation. Thus, it is undesirable to give any strict rule, to be implemented

rigidly, for the isolation of intertier interactions. For a detailed discussion of the

pooling of these terms when they are not signi�cant see Brien (1989).

On the other hand, intratier di�erences are usually isolated, initially at least. Thus,

the Blocks.Years interaction in the repetitions-in-time experiment (see table 4.15),

which is often thought to be analogous to the intertier interaction D.Blocks of the

standard split-plot experiment, actually arises from intratier di�erences; it is variabil-

ity to be separated from experimental unit variability. So that, whereas the isolation

of the D.Blocks term is variable, the inclusion of the Blocks.Years term should be

routine. Indeed, the analyses presented in section 4.3.2.2 indicate that, if this source

is signi�cant, incorrect conclusions will be drawn when the term is not included. Also,

in this experiment, some of the terms of interest are shown to be intertier interactions

(for example, Clones.Years from table 4.15), a hitherto unrecognized fact.

The method is of pedagogical interest as one has only to teach students the set of

rules to be applied to all studies and then provide suitable experience in the use of the

technique. This seems more satisfactory than teaching a series of analyses that cover

only the range of studies discussed. Of course, for the structure set to be determined

correctly, it is critical that one has identi�ed all the (prerandomization) factors in the

study and correctly speci�ed the relationships between these factors.
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Chapter 7

Conclusions

In this thesis, a paradigm is presented for factorial linear model analysis for experi-

mental and observational studies. As outlined in Brien (1989), the overall analysis is a

four-stage process in which the three stages of model identi�cation, model �tting and

model testing, jointly referred to as model selection, are repeated until the simplest

model not contradicted by the data is selected. In the �nal stage the selected model

is used for prediction. Model �tting �ts proposed expectation and variation models,

the terms to be included in the model having been derived from the structure sets

formed from the randomization-based tiers in the model identi�cation stage. The

use of the paradigm is advocated on the grounds that, while the analysis of stud-

ies can be achieved with other methods, the present approach greatly facilitates the

determination of the analysis. In particular, it ensures that the terms thought impor-

tant in designing the study are included in the analysis. I have demonstrated that

the conclusions from analyses derived using the proposed approach can di�er from

those that have been presented previously; when there is a di�erence, this is usu-

ally because previously presented methods omit important terms from the analysis or

produce di�erent expected mean squares. I suggest that the proposed approach clar-

i�es the analyses of many studies and that the general employment of the approach

should reduce the incidence of errors in the speci�cation of linear models at the model

identi�cation stage.
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In respect of the issues addressed in section 1.4, I believe the proposed approach

deals with them satisfactorily. First, I have presented many examples illustrating the

approach and so have demonstrated that it is applicable to a wide range of studies.

These include multiple-error, change-over, two-phase, superimposed and nonorthogo-

nal factorial experiments. While there is no restriction placed on the nonorthogonality

between terms in the expectation model, the variation model may exhibit only some

forms of nonorthogonal variation structure. The proposed approach is especially illu-

minating in analysis of multitiered experiments as is demonstrated in chapter 5.

I have chosen general linear models, rather than randomization models, as the

primary basis for inference. This is because the randomization analysis cannot answer

some scienti�cally interesting questions such as the signi�cance of variation terms and

intertier interactions. The major role of randomization in our linear model analysis is

that it contains valuable information about how the investigator views the material

under investigation; this information should, in turn, be taken into account at the

model identi�cation stage of the analysis. A secondary role for randomization is

to provide insurance against bias in the allocation process and, hence, against the

formulation of an inadequate model.

I contend that the relevant factor categorizations are the division of the factors

into tiers and the classi�cation of the factors as expectation or variation factors. An

analysis based on the subdivision of the factors into tiers will result in a model that

includes all the pertinent physical sources of di�erences in the study and so will

re
ect what was done in the study. The categorization of the factors as expectation

or variation factors is based on the type of inference relevant to the study, not on

whether or not the factor levels are a complete sample of the levels in the population

of interest. It is demonstrated that diÆculties in classifying factors, such as with the

factor Sex, are resolved.

The form of the models used in the approach results in it being clear that the

expected mean squares depend on the separation of the factors in a study into ex-

pectation and variation factors, this arising from di�erences between expectation and

variation terms in respect of the treatment of terms marginal to signi�cant terms.

The approach clari�es the appropriate comparisons of mean squares for model se-
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lection. Thus it is clear that it is irrelevant, in model selection, to test any expectation

e�ect that is marginal to a signi�cant expectation e�ect. However, it can be necessary

to test an e�ect marginal to a signi�cant variation term so that this variation term

will be in the denominator of the F-ratio; the signi�cant variation term may be a

randomized term.

The analysis of variance table summarizes the linear model employed. Its form

when derived using the proposed approach has the advantage that it re
ects the

relevant physical features of the study. Consequences of this include: studies with

di�erent randomizations of the factors will have di�erent analysis of variance tables;

one obtains a more accurate portrayal of the types of variability that obtain; total

and exhaustive confounding, when it occurs, is evident.

A further advantage of the proposed, and other similar, approaches is that the linear

model for a particular study is derived from a set of basic principles rather than by

analogy with a limited catalogue of standard analyses. This promotes the inclusion

of all the appropriate sources in the analysis. Even so, it has been shown that similar

approaches are easily misapplied to two-tiered experiments, particularly in the case of

multiple-error experiments; examples have been presented in which this would lead to

incorrect conclusions. The proposed approach uniquely allows for three or more tiers,

these being required to describe the randomization employed in the study and hence

to ensure the inclusion of all appropriate sources. It has been demonstrated that there

are three-tiered experiments whose analysis cannot be achieved with less than three

tiers and so are not satisfactorily analysable by the approaches of other authors. In

other cases, such as superimposed and single-stage experiments, the recognition that

they are three-tiered greatly elucidates their analyses.
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A.1 Data for two-tiered sensory experiment of sec-

tion 4.2.1

Table A.1: Scores for the two-tiered sensory experiment of section 4.2.1

Evaluator 1 2
Occasion 1 2 1 2

Area Batch
1 1 15.5 14.0 12.0 12.0

2 18.0 16.0 17.0 16.5
3 16.0 17.0 11.0 14.0

2 1 18.0 16.0 16.5 16.5
2 16.5 15.5 12.0 11.5
3 17.5 17.5 15.5 16.0

3 1 14.5 13.5 11.5 12.0
2 16.5 17.5 17.0 16.5
3 17.5 16.5 15.0 14.0

4 1 14.5 13.5 10.0 11.0
2 10.0 11.0 12.0 12.5
3 15.5 16.0 16.0 16.0
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A.2 Data for the sprayer experiment of section

4.2.3.2

Table A.2: Lightness readings (L) and assignment of Pressure-Speed com-

binations (PS)y for the sprayer experiment of section 4.2.3.2

Blocks
1 2 3

PS L PS L PS L
Plots
1 3 18.2 10 20.2 12 20.9
2 12 20.2 7 19.9 8 19.4
3 8 19.2 1 19.4 10 19.8
4 7 18.6 2 19.5 4 20.1
5 11 19.3 4 19.8 2 18.8
6 2 19.4 3 19.6 7 18.8
7 5 20.2 11 20.6 3 19.5
8 9 20.3 6 20.6 11 19.9
9 6 19.5 9 20.3 9 21.0
10 10 18.9 8 20.5 5 20.2
11 4 18.9 12 20.4 6 20.6
12 1 18.0 5 20.7 1 18.7

yThe Pressure-Speed combinations are numbered 1 { 12 across the three rows of the Flow rates
section in table 4.7.
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A.3 Data for repetitions in time experiment of sec-

tion 4.3.2.2

Table A.3: Yields and assignment of Clones for the repetitions in time

experiment of section 4.3.2.2

Plots
1 2 3

Clone Yield Clone Yield Clone Yield
Blocks Years

1 1 1 148.8 2 152.7 3 159.9
2 142.4 142.3 150.6
3 146.9 141.9 157.7
4 155.4 142.9 152.2

2 1 3 159.0 1 152.5 2 151.4
2 158.0 154.4 145.7
3 166.5 162.7 151.6
4 164.0 162.3 147.5

3 1 3 153.2 2 148.5 1 152.1
2 149.1 144.4 158.4
3 157.4 153.6 168.3
4 151.7 144.7 168.2

4 1 1 152.3 3 158.6 2 151.2
2 156.6 157.5 145.1
3 145.6 145.6 135.7
4 165.3 163.1 154.6

5 1 1 160.5 3 160.5 2 156.2
2 162.0 152.1 150.9
3 148.1 136.7 135.0
4 164.4 151.9 149.8



A.4 Data for the three-tiered sensory experiment of section 5.2.4 270

A.4 Data for the three-tiered sensory experiment

of section 5.2.4
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Table A.4: Scores and assignment of factors for Occasion 1, Judges 1{3

from the experiment of section 5.2.4

(R = Rows; C = Columns; T = Trellis; M = Method)

Occasion 1

Sittings 1 2 3 4

R C T M Score R C T M Score R C T M Score R C T M Score

Judges Intervals Positions

1 1 1 3 3 2 1 14.5 3 1 3 1 16.0 3 2 1 2 15.5 3 4 4 2 15.5

2 3 3 2 2 13.5 3 1 3 2 16.0 3 2 1 1 14.5 3 4 4 2 16.0

3 3 3 2 1 14.5 3 1 3 2 15.5 3 2 1 1 16.5 3 4 4 1 15.5

4 3 3 2 2 15.0 3 1 3 1 14.5 3 2 1 2 14.5 3 4 4 1 16.0

2 1 1 3 1 1 14.0 1 4 3 1 15.5 1 2 4 1 15.0 1 1 2 2 15.0

2 1 3 1 1 15.0 1 4 3 1 14.0 1 2 4 2 15.0 1 1 2 1 14.0

3 1 3 1 2 14.5 1 4 3 2 13.5 1 2 4 2 15.0 1 1 2 1 15.0

4 1 3 1 2 15.0 1 4 3 2 15.0 1 2 4 1 14.5 1 1 2 2 15.0

3 1 2 1 4 2 16.0 2 2 2 1 15.0 2 4 1 2 16.5 2 3 3 1 15.5

2 2 1 4 1 15.0 2 2 2 2 14.5 2 4 1 2 16.0 2 3 3 2 15.0

3 2 1 4 2 15.0 2 2 2 1 15.0 2 4 1 1 15.5 2 3 3 1 15.5

4 2 1 4 1 16.0 2 2 2 2 15.0 2 4 1 1 15.0 2 3 3 2 16.5

2 1 1 2 1 4 2 15.5 2 3 3 1 16.0 2 4 1 1 16.5 2 2 2 1 15.5

2 2 1 4 1 16.0 2 3 3 1 16.0 2 4 1 2 15.0 2 2 2 1 17.0

3 2 1 4 2 16.5 2 3 3 2 16.5 2 4 1 2 15.0 2 2 2 2 16.5

4 2 1 4 1 16.5 2 3 3 2 15.0 2 4 1 1 15.5 2 2 2 2 16.0

2 1 3 2 1 1 16.0 3 1 3 2 16.0 3 3 2 1 16.0 3 4 4 2 15.5

2 3 2 1 1 14.0 3 1 3 1 15.5 3 3 2 2 15.5 3 4 4 1 15.5

3 3 2 1 2 15.5 3 1 3 2 16.0 3 3 2 2 14.0 3 4 4 2 15.5

4 3 2 1 2 16.0 3 1 3 1 16.5 3 3 2 1 15.0 3 4 4 1 16.0

3 1 1 2 4 1 16.5 1 1 2 1 16.0 1 3 1 1 16.0 1 4 3 1 16.5

2 1 2 4 2 15.5 1 1 2 1 15.0 1 3 1 2 17.0 1 4 3 1 17.0

3 1 2 4 1 16.0 1 1 2 2 16.0 1 3 1 2 16.5 1 4 3 2 16.5

4 1 2 4 2 16.0 1 1 2 2 15.5 1 3 1 1 15.5 1 4 3 2 16.0

3 1 1 1 1 2 2 14.5 1 3 1 2 15.0 1 4 3 2 16.0 1 2 4 2 16.0

2 1 1 2 1 15.0 1 3 1 2 14.5 1 4 3 2 15.5 1 2 4 1 16.0

3 1 1 2 1 16.5 1 3 1 1 15.0 1 4 3 1 15.0 1 2 4 2 15.0

4 1 1 2 2 16.5 1 3 1 1 16.5 1 4 3 1 15.5 1 2 4 1 14.0

2 1 2 2 2 1 16.5 2 1 4 2 15.5 2 3 3 2 16.0 2 4 1 2 16.5

2 2 2 2 2 14.5 2 1 4 2 15.5 2 3 3 1 16.5 2 4 1 1 15.0

3 2 2 2 1 16.0 2 1 4 1 16.0 2 3 3 2 17.0 2 4 1 2 17.0

4 2 2 2 2 15.5 2 1 4 1 15.5 2 3 3 1 17.0 2 4 1 1 17.5

3 1 3 2 1 2 15.5 3 1 3 2 16.0 3 3 2 2 14.5 3 4 4 2 15.5

2 3 2 1 2 16.5 3 1 3 1 15.5 3 3 2 1 15.5 3 4 4 1 15.5

3 3 2 1 1 15.0 3 1 3 2 14.5 3 3 2 1 16.0 3 4 4 2 15.5

4 3 2 1 1 15.0 3 1 3 1 16.0 3 3 2 2 15.5 3 4 4 1 16.0
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Table A.5: Scores and assignment of factors for Occasion 1, Judges 4{6

from the experiment of section 5.2.4

(R = Rows; C = Columns; T = Trellis; M = Method)

Occasion 1

Sittings 1 2 3 4

R C T M Score R C T M Score R C T M Score R C T M Score

Judges Intervals Positions

4 1 1 3 1 3 2 14.5 3 3 2 1 14.5 3 4 4 2 13.0 3 2 1 2 14.0

2 3 1 3 2 14.0 3 3 2 1 12.5 3 4 4 1 13.5 3 2 1 2 14.0

3 3 1 3 1 14.0 3 3 2 2 12.5 3 4 4 1 13.0 3 2 1 1 13.5

4 3 1 3 1 15.0 3 3 2 2 14.5 3 4 4 2 13.5 3 2 1 1 13.0

2 1 1 2 4 1 14.5 1 1 2 1 15.0 1 3 1 2 14.0 1 4 3 1 14.5

2 1 2 4 2 14.5 1 1 2 2 14.0 1 3 1 1 15.0 1 4 3 2 15.5

3 1 2 4 1 15.0 1 1 2 2 15.0 1 3 1 2 14.5 1 4 3 2 15.0

4 1 2 4 2 15.5 1 1 2 1 14.5 1 3 1 1 14.5 1 4 3 1 15.0

3 1 2 2 2 2 15.0 2 1 4 1 15.5 2 3 3 1 15.5 2 4 1 2 15.5

2 2 2 2 1 15.0 2 1 4 1 14.5 2 3 3 2 15.0 2 4 1 1 16.5

3 2 2 2 1 14.5 2 1 4 2 15.0 2 3 3 1 15.5 2 4 1 2 15.0

4 2 2 2 2 14.5 2 1 4 2 14.5 2 3 3 2 16.0 2 4 1 1 15.5

5 1 1 2 3 3 1 15.5 2 1 4 2 16.0 2 2 2 2 14.5 2 4 1 2 15.5

2 2 3 3 2 16.0 2 1 4 1 15.5 2 2 2 1 16.0 2 4 1 1 14.0

3 2 3 3 1 15.5 2 1 4 1 15.5 2 2 2 2 15.5 2 4 1 2 16.0

4 2 3 3 2 16.0 2 1 4 2 15.5 2 2 2 1 14.5 2 4 1 1 16.5

2 1 3 3 2 2 13.5 3 4 4 1 14.5 3 2 1 2 14.5 3 1 3 2 15.0

2 3 3 2 1 13.5 3 4 4 2 14.0 3 2 1 1 14.5 3 1 3 2 15.0

3 3 3 2 1 14.5 3 4 4 2 14.0 3 2 1 1 13.5 3 1 3 1 15.0

4 3 3 2 2 15.0 3 4 4 1 14.5 3 2 1 2 15.5 3 1 3 1 13.5

3 1 1 1 2 1 14.0 1 2 4 2 15.5 1 4 3 2 15.0 1 3 1 1 15.0

2 1 1 2 1 14.0 1 2 4 2 14.5 1 4 3 1 15.0 1 3 1 2 15.5

3 1 1 2 2 14.5 1 2 4 1 14.5 1 4 3 2 14.5 1 3 1 2 16.0

4 1 1 2 2 14.0 1 2 4 1 16.0 1 4 3 1 15.0 1 3 1 1 15.5

6 1 1 1 3 1 2 14.5 1 1 2 1 14.5 1 2 4 1 15.0 1 4 3 1 15.0

2 1 3 1 1 15.0 1 1 2 2 14.0 1 2 4 1 14.0 1 4 3 2 14.5

3 1 3 1 2 15.0 1 1 2 1 14.5 1 2 4 2 14.5 1 4 3 1 15.0

4 1 3 1 1 15.5 1 1 2 2 13.5 1 2 4 2 13.0 1 4 3 2 14.0

2 1 2 3 3 2 15.0 2 4 1 2 15.0 2 2 2 2 13.5 2 1 4 1 14.0

2 2 3 3 1 15.0 2 4 1 2 14.5 2 2 2 1 15.5 2 1 4 1 13.5

3 2 3 3 2 15.5 2 4 1 1 15.5 2 2 2 1 14.5 2 1 4 2 15.5

4 2 3 3 1 15.5 2 4 1 1 13.5 2 2 2 2 15.5 2 1 4 2 16.0

3 1 3 1 3 2 15.0 3 2 1 2 14.5 3 4 4 2 14.5 3 3 2 2 14.0

2 3 1 3 1 14.0 3 2 1 2 15.0 3 4 4 1 15.0 3 3 2 1 14.5

3 3 1 3 1 14.5 3 2 1 1 15.0 3 4 4 1 14.5 3 3 2 2 13.0

4 3 1 3 2 15.0 3 2 1 1 14.0 3 4 4 2 15.0 3 3 2 1 14.5
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Table A.6: Scores and assignment of factors for Occasion 2, Judges 1{3

from the experiment of section 5.2.4

(R = Rows; C = Columns; T = Trellis; M = Method)

Occasion 2

Sittings 1 2 3 4

R C T M Score R C T M Score R C T M Score R C T M Score

Judges Intervals Positions

1 1 1 3 4 2 2 15.0 3 1 1 2 14.0 3 2 4 1 14.5 3 3 3 1 16.0

2 3 4 2 2 13.5 3 1 1 2 15.5 3 2 4 2 15.0 3 3 3 2 14.0

3 3 4 2 1 13.5 3 1 1 1 14.5 3 2 4 1 15.5 3 3 3 2 15.0

4 3 4 2 1 14.0 3 1 1 1 14.0 3 2 4 2 15.0 3 3 3 1 15.0

2 1 2 4 3 1 15.5 2 1 2 1 15.5 2 3 4 2 15.5 2 2 1 2 16.0

2 2 4 3 2 14.5 2 1 2 2 16.0 2 3 4 2 15.0 2 2 1 1 15.0

3 2 4 3 1 16.5 2 1 2 2 15.0 2 3 4 1 16.0 2 2 1 2 16.0

4 2 4 3 2 17.5 2 1 2 1 16.0 2 3 4 1 16.0 2 2 1 1 15.5

3 1 1 3 2 2 15.0 1 2 3 1 16.0 1 1 4 2 14.5 1 4 1 2 15.5

2 1 3 2 1 15.5 1 2 3 2 15.0 1 1 4 1 14.5 1 4 1 1 14.5

3 1 3 2 1 15.5 1 2 3 2 14.0 1 1 4 1 14.5 1 4 1 2 15.5

4 1 3 2 2 15.0 1 2 3 1 15.0 1 1 4 2 16.0 1 4 1 1 14.5

2 1 1 1 3 2 1 15.0 1 2 3 2 15.0 1 1 4 2 15.0 1 4 1 1 14.5

2 1 3 2 2 15.0 1 2 3 1 15.0 1 1 4 1 14.5 1 4 1 2 15.0

3 1 3 2 1 14.0 1 2 3 1 16.5 1 1 4 1 15.5 1 4 1 1 14.5

4 1 3 2 2 16.0 1 2 3 2 16.0 1 1 4 2 15.5 1 4 1 2 15.0

2 1 3 1 1 1 15.0 3 4 2 2 14.5 3 2 4 2 14.0 3 3 3 1 15.0

2 3 1 1 2 15.0 3 4 2 2 14.0 3 2 4 1 14.5 3 3 3 2 14.0

3 3 1 1 1 14.5 3 4 2 1 14.5 3 2 4 2 15.5 3 3 3 1 15.5

4 3 1 1 2 14.5 3 4 2 1 14.0 3 2 4 1 15.0 3 3 3 2 14.5

3 1 2 1 2 2 14.5 2 4 3 1 15.5 2 3 4 2 15.0 2 2 1 1 14.5

2 2 1 2 1 14.0 2 4 3 2 15.5 2 3 4 1 15.0 2 2 1 2 15.5

3 2 1 2 2 15.5 2 4 3 1 14.0 2 3 4 1 14.0 2 2 1 2 15.0

4 2 1 2 1 15.0 2 4 3 2 14.5 2 3 4 2 15.5 2 2 1 1 14.0

3 1 1 2 3 4 2 14.5 2 2 1 2 15.0 2 1 2 2 14.5 2 4 3 2 16.5

2 2 3 4 2 16.0 2 2 1 1 14.5 2 1 2 1 14.5 2 4 3 1 14.5

3 2 3 4 1 15.0 2 2 1 1 15.0 2 1 2 1 15.5 2 4 3 2 15.5

4 2 3 4 1 14.5 2 2 1 2 15.0 2 1 2 2 14.5 2 4 3 1 15.0

2 1 1 1 4 2 15.5 1 4 1 1 14.5 1 2 3 1 15.0 1 3 2 1 14.0

2 1 1 4 2 15.0 1 4 1 2 15.5 1 2 3 2 14.5 1 3 2 2 14.0

3 1 1 4 1 15.5 1 4 1 2 15.0 1 2 3 2 15.0 1 3 2 2 15.0

4 1 1 4 1 14.5 1 4 1 1 15.0 1 2 3 1 15.0 1 3 2 1 15.5

3 1 3 1 1 1 14.5 3 4 2 1 15.5 3 3 3 1 16.0 3 2 4 1 15.0

2 3 1 1 2 14.0 3 4 2 2 14.5 3 3 3 2 15.0 3 2 4 2 15.0

3 3 1 1 2 14.5 3 4 2 2 15.0 3 3 3 1 14.5 3 2 4 2 14.5

4 3 1 1 1 14.0 3 4 2 1 14.0 3 3 3 2 14.5 3 2 4 1 14.0
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Table A.7: Scores and assignment of factors for Occasion 2, Judges 4{6

from the experiment of section 5.2.4

(R = Rows; C = Columns; T = Trellis; M = Method)

Occasion 2

Sittings 1 2 3 4

R C T M Score R C T M Score R C T M Score R C T M Score

Judges Intervals Positions

4 1 1 3 3 3 2 16.0 3 2 4 1 15.0 3 1 1 1 16.0 3 4 2 1 16.0

2 3 3 3 1 16.0 3 2 4 2 15.5 3 1 1 2 15.0 3 4 2 2 14.0

3 3 3 3 1 14.5 3 2 4 2 15.5 3 1 1 2 15.0 3 4 2 1 15.5

4 3 3 3 2 14.5 3 2 4 1 16.0 3 1 1 1 15.0 3 4 2 2 14.5

2 1 2 1 2 1 15.0 2 4 3 2 17.5 2 2 1 2 16.5 2 3 4 2 15.5

2 2 1 2 1 16.0 2 4 3 1 16.0 2 2 1 1 15.5 2 3 4 2 15.0

3 2 1 2 2 16.0 2 4 3 1 16.5 2 2 1 2 15.5 2 3 4 1 15.5

4 2 1 2 2 15.5 2 4 3 2 17.0 2 2 1 1 15.5 2 3 4 1 15.5

3 1 1 1 4 2 14.5 1 4 1 2 15.5 1 3 2 2 13.5 1 2 3 2 14.0

2 1 1 4 1 14.0 1 4 1 1 14.5 1 3 2 1 14.5 1 2 3 1 14.5

3 1 1 4 2 15.0 1 4 1 2 15.0 1 3 2 1 15.5 1 2 3 1 15.0

4 1 1 4 1 14.5 1 4 1 1 13.5 1 3 2 2 13.0 1 2 3 2 14.5

5 1 1 1 4 1 1 14.0 1 1 4 2 15.0 1 2 3 1 15.0 1 3 2 2 14.5

2 1 4 1 2 15.5 1 1 4 1 15.5 1 2 3 2 15.5 1 3 2 1 13.5

3 1 4 1 1 14.0 1 1 4 2 15.0 1 2 3 1 15.5 1 3 2 1 16.0

4 1 4 1 2 16.0 1 1 4 1 16.5 1 2 3 2 16.0 1 3 2 2 14.5

2 1 3 4 2 2 15.5 3 1 1 2 15.0 3 3 3 2 15.0 3 2 4 2 15.0

2 3 4 2 2 14.5 3 1 1 1 16.0 3 3 3 1 15.0 3 2 4 1 15.0

3 3 4 2 1 16.5 3 1 1 2 15.5 3 3 3 2 15.5 3 2 4 2 16.0

4 3 4 2 1 16.0 3 1 1 1 15.0 3 3 3 1 15.5 3 2 4 1 16.0

3 1 2 3 4 1 15.5 2 2 1 2 15.0 2 1 2 2 14.5 2 4 3 1 16.0

2 2 3 4 2 15.5 2 2 1 2 15.5 2 1 2 1 15.5 2 4 3 1 14.0

3 2 3 4 1 14.0 2 2 1 1 15.0 2 1 2 1 14.0 2 4 3 2 15.0

4 2 3 4 2 15.5 2 2 1 1 14.5 2 1 2 2 14.5 2 4 3 2 16.0

6 1 1 2 4 3 2 15.5 2 1 2 1 16.0 2 2 1 1 15.5 2 3 4 1 15.5

2 2 4 3 1 15.0 2 1 2 2 14.5 2 2 1 2 16.0 2 3 4 1 15.0

3 2 4 3 2 14.0 2 1 2 1 15.0 2 2 1 1 15.5 2 3 4 2 15.5

4 2 4 3 1 15.5 2 1 2 2 16.0 2 2 1 2 16.5 2 3 4 2 16.0

2 1 1 4 1 1 15.0 1 1 4 1 15.0 1 3 2 2 13.5 1 2 3 1 16.0

2 1 4 1 2 16.0 1 1 4 1 15.5 1 3 2 2 15.0 1 2 3 1 15.0

3 1 4 1 2 14.0 1 1 4 2 15.0 1 3 2 1 14.0 1 2 3 2 15.0

4 1 4 1 1 15.0 1 1 4 2 15.5 1 3 2 1 13.5 1 2 3 2 15.5

3 1 3 3 3 2 15.5 3 2 4 1 14.5 3 1 1 1 14.5 3 4 2 1 15.5

2 3 3 3 1 14.0 3 2 4 2 14.5 3 1 1 1 14.5 3 4 2 1 15.5

3 3 3 3 2 15.0 3 2 4 2 15.0 3 1 1 2 14.0 3 4 2 2 14.5

4 3 3 3 1 14.0 3 2 4 1 14.5 3 1 1 2 14.5 3 4 2 2 13.5
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Appendix B

Reprint of Brien (1983). Analysis

of variance tables based on

experimental structure. Biometrics,

39:53{59.
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Appendix C

Reprint of Brien (1989). A model

comparison approach to linear

models. Utilitas Mathematica,

36:225{254.
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Glossary

Aliased source. A source that is neither orthogonal nor marginal to sources whose

de�ning terms arise from the same structure as its own. Aliasing arises when

it is decided to replicate disproportionately the levels combinations of factors,

possibly excluding some levels combinations altogether. Thus, aliasing occurs

in connection with the fractional and nonorthogonal factorial designs but not

the balanced incomplete block designs. (cf. partial aliasing, total aliasing,

and confounded and marginal sources)

Aliased term. A term which is the de�ning term for a source that is not orthogonal

to sources whose de�ning terms arise from the same structure as it but which is

not marginal to their de�ning terms. (cf. aliased sources, partial aliasing,

total aliasing, and confounded and marginal terms)

Analysis of variance table. An analysis of variance table provides a convenient

representation of the structure of the prerandomization population and the ran-

domization procedures employed in a study. These are exhibited in the table in

the form of the set of sources included and their marginality and confounding

relationships. The table may contain some or all of the following columns:

1) SOURCE | (see Source)
2) DF | Degrees of Freedom
3) SSq | Sums of Squares
4) MSq | Mean Squares
5) EMS | Expected Mean Squares
6) F | F-ratios each being the ratio of two (linear com-

binations of) mean squares.
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Backsweep. A sweep for previously �tted terms required to adjust for nonorthogo-

nality between the current term and previously �tted terms (Wilkinson, 1970).

Canonical covariance components. (�Tiw) The components measuring the covari-

ation, between the observational units, contributed by a particular term in excess

of that of marginal terms (Nelder, 1965a and 1977).

Change-over design. A design in which measurements on experimental units are

repeated and the treatments are changed between measurements in such a way

that the carry-over e�ects of treatments can be estimated (Cochran and Cox,

1957, section 4.6a; John and Quenouille, 1977, section 11.4).

Confounded source. A source is said to be confounded with another if the de�ning

term for the �rst source is in a higher structure than that of the second and

the subspaces for the two sources are not orthogonal. (see also Confounded

term)

Confounded term. A term is said to be confounded with another if the �rst term

is in a higher structure and the two terms are the de�ning terms for two sources

whose subspaces are not orthogonal. Confounding arises because of the need to

associate one and only one levels combination of factors with a levels combina-

tion of factors from a lower tier, it being impossible to observe more than one

levels combination from the �rst set with a levels combination from the second

set. (cf. aliased and marginal sources)

Note that this de�nition of confounding represents an extension of the tra-

ditional restricted usage of the expression to situations where terms from a

particular structure are confounded with more than one term from lower struc-

tures, for example, in a blocked experiment, where some treatment terms are

confounded with Blocks and others are not (Kendall and Buckland, 1960; Bailey,

1982b).

Covariance components. (
Tiw) Contribution from the ith structure to the covari-

ance between a pair of observations. A particular covariance component will

contribute if the pair of observations:
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� have the same levels combinations of the factors in the component's term;

and

� do not have the same levels combination of the factors from any term

marginal to the component's term.

The covariance components will be actual covariances when variation terms arise

from the �rst structure only and the set of variation terms is closed under the

formation of both minima and maxima of terms.

Crossed factors in a structure. Two factors are said to be crossed if having the

same level of one factor endows the observational units with a special relation-

ship, even if they have di�erent levels of the other factor. (cf. nested factors

in a structure)

Data vector. The vector containing the original observations for a single response

variable.

Decomposition tree. A diagram depicting the confounding relationships between

sources and so illustrating the analysis of variance decomposition. Its root is the

sample space or uncorrected Total source. Connected directly to the root are

the sources arising from the �rst structure. The sources arising from the second

structure are connected to the sources in the �rst structure with which they

are confounded; sources in the third structure, if any, are similarly connected to

sources in the second and so on.

De�ning term for a source. The term from which the source takes its name or,

for a residual source, the term from the highest nonresidual source with which

it is confounded, highest meaning from the highest structure.

E�ective mean. A mean divided by an eÆciency factor. The eÆciency factor ad-

justs for nonorthogonality between the term to which the mean corresponds and

terms previously �tted (Wilkinson, 1970).

E�ects vector. The vector for a particular term which is a linear form in the means

vectors for terms marginal to that term.
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EÆciency factor. The proportion of information available to estimate a term from

a source with which it is confounded and, in general, taking into account sources

with which it is aliased (Payne et al., 1987). Note, however, that experiments

involving partially aliased terms do not ful�l the conditions required of experi-

ments to be covered by the approach put forward in this thesis. For orthogonal

terms, the eÆciency factor equals one. For nonorthogonal terms, they can be

obtained from a catalogue of plans (if it contains the experiment), by an eige-

nanalysis of the model spaces for the two terms, or using an adaptive analysis

such as described by Wilkinson (1970) and Payne and Wilkinson (1977).

Exhaustively confounded term. A term is said to be exhaustively confounded if

all the sources for which it is a de�ning term have terms confounded with them.

Expectation factor. A factor for which it is considered most appropriate or de-

sirable to make inferences about the relative performance of individual levels.

Hence, inference would be based on location summary measures (`means'). Also

called systematic factors. (cf. variation factor)

Experiment. A study that involves the manipulation of conditions between di�erent

observational units by the experimenter, the particular conditions assigned to a

unit being chosen by randomization.

Experimental error. Variability between observational units which may arise from

experimental unit variability, treatment error, measurement error and intertier

interaction (Addelman, 1970).

Experimental unit. An identi�able physical entity in the experiment corresponding

to a term which has had other terms confounded with it. Thus it may be possible

to identify more than one experimental unit such as in the standard split-plot

experiment where the experimental units are Plots and Subplots. This de�nition

is consistent with that given by Cochran and Cox (1957) and Federer (1975);

it di�ers from that employed by other authors (for example, Tjur, 1984) where

their usage corresponds to what I have termed the observational unit.
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Experimental unit variability. Variability between observational units arising

from experimental units (Addelman, 1970).

Factor. A factor is a variable observed for each observational unit and so is indexed

by the observational units. It corresponds to a possible source of di�erences

in the response variable between observational units (Kendall and Buckland,

1960). A factor's values are called its levels. Factors determined prior to the

conduct of a study are to be included in the structure set for the study. Unlike

a term, it may be that a single factor does not represent a meaningful partition

of the observational units. (see also crossed factor, nested factor, term)

First-order balance in experiments. An experiment is said to exhibit �rst-order

balance when all aliased and confounded terms have a single eÆciency factor for

each source with which they are aliased or confounded (James and Wilkinson,

1971). Note that a statement on whether or not a study is �rst-order balanced

must be quali�ed by the set of terms in respect of which the study is being

assessed. Further, this de�nition is independent of the expectation and variation

models for the study. (cf. structure balance)

First-order balanced terms. Two terms are said to be �rst-order balanced if, in

the context of the analysis being performed, they have a single eÆciency factor

(James and Wilkinson, 1971).

Fixed factor. A factor whose levels are chosen arbitrarily and systematically and

are regarded as a complete sample of the levels of interest to the researcher (see

section 1.2.2). (cf. random factor)

General balance. (see �rst-order balance; structure balance)

Hasse diagram. A diagrammatic representation of a poset. An element is placed

above another if it is `less than' the other and the two elements are linked by a

line.

Hasse diagram of term marginalities. This diagram represents the marginality

relationships between terms by linking, with descending lines, terms that are

immediately marginal; the marginal term is placed above the term to which it
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is marginal. This diagram is called the Hasse diagram for ancestral subsets by

Bailey (1982a, 1984) and the factor structure diagram by Tjur (1984).

Hasse diagram of expectation model marginalities. This diagram represents the

marginality relationships between expectation models by linking, with descend-

ing lines, models that are immediately marginal; the marginal model is placed

above the model to which it is marginal.

Hasse diagram of variation model subsets. This diagram represents the subset

relationships between variation models by linking, with descending lines, models

that are immediately marginal; the marginal model is placed above the model

to which it is marginal.

Idempotent operator. (E) A member of the set of operators that projects orthog-

onally onto the minimal, orthogonal and invariant subspaces of terms from a

Tjur structure (James, 1982; Tjur, 1984).

Immediately marginal model. One model is immediately marginal to another if

it is in the minimal set of marginal models of the other.

Immediately marginal term. One term (A) is said to be immediately marginal to

another (B) if A is marginal to B but not marginal to any other term marginal

to B.

Incidence matrix. (W) A symmetric matrix for a set of factors making up a term.

Its order is equal to the number of observational units. The rows and columns

of the matrix are ordered lexicographically on the factors in the structure for

the �rst tier. The elements are ones and zeros with an element equal to one

if the observation corresponding to the row of the matrix has the same levels

combinations of the factors in the term as the observation corresponding to

the column, but no levels combinations in common for terms marginal to the

term. These matrices correspond to the W matrices of Nelder (1965a) and the

association matrices of Speed (1986).

Index set for study. The set of observational units, I. This index set indexes the

observed values of the response variable.
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Intertier interaction. Interaction for a term which involves factors from di�erent

tiers. In two-tiered experiments, this has been referred to previously as block-

treatment interaction (Addelman, 1970).

Intratier di�erences. Di�erences for a term which involves only factors from the

same tier. The di�erences are between sets of observational units, a set being

comprised of those units which have the same levels combination of the factors

in the term.

Lattice. A set L of elements a; b; c; : : : with two binary operations _ (`join') and ^

(`meet') which satisfy the following properties:

i) a _ a = a ^ a = a; (Idempotent)
ii) a _ b = b _ a;

a ^ b = b ^ a; (Commutative)
iii) a _ (b _ c) = (a _ b) _ c;

a ^ (b ^ c) = (a ^ b) ^ c; (Associative)
iv) a _ (a ^ b) = a ^ (a _ b) = a (Absorption)

(Gr�atzer, 1971). For further information see de�nition 3.1 in section 3.2.

Levels combination of a set of factors. The combination of one level from each

of the factors in the set; that is, an element from the set of observed combinations

of the levels of the factors in a set.

Levels of a factor. The values a factor takes. Alternatively, they can be thought of

as the labels of the classes corresponding to the values of the factor (for example,

1; 2; : : : ; ntih where ntih is the order of the factor)

Marginal model. One model is marginal to another if the terms in the �rst model

are either contained in, or marginal to, those in the second model.

Marginal source. A source is said to be marginal to another if its de�ning term is

marginal to that for the other source.

Marginal term. One term (Tiu) is said to be marginal to another (Tiw) from the

same structure if the model space of Tiu is a subspace of the model space of

Tiw, this being the case because of the innate relationship between the levels

combinations of the two terms and being independent of the replication of the
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levels combination of the two terms (Nelder, 1977). This will occur if the factors

included in Tiu are a subset of those included in Tiw. The marginality relation

between terms or, more precisely, between the models spaces of terms, can be

viewed as a partial order relation between terms so that Tiu � Tiw means that

Tiu is marginal to Tiw and the set of terms forms a poset. (cf. aliased and

confounded sources)

Maximal expectation model. The sum of terms in the minimal set of marginal

terms for the full set of expectation terms. The maximal expectation model

represents the most saturated model for the mechanism by which the expectation

factors might a�ect the response variable.

Maximal term. The term in a structure to which every other term in that structure

is marginal.

Maximal variation model. The model for the variance matrix of the observations

that is the sum of several variance matrices, one for each structure in the study.

Each of these matrices is the linear combination of the summation matrices

for the variation terms from the structure; the coeÆcient of a summation ma-

trix in the linear combination is the canonical covariance components for the

corresponding variation term.

Maximum of terms. The term that is the union of the factors from the terms for

which it is the maximum.

Means vector. The observational-unit-length vector for a particular term obtained

by computing the mean for each unit from all observations with the same levels

combination of the factors in the term as the unit for which the mean is being

calculated.

Measurement error. Variability in the observations arising from inaccuracy in the

taking of measurements per se (Addelman, 1970).

Minimal set of marginal models for a model. This set is obtained by listing all

models marginal to the model and deleting those models marginal to another

model in the list.
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Minimal set of marginal terms for a model. The smallest set of terms whose

model space is the same as that of the full set of terms marginal to those in the

model; that is, the set obtained after all marginal terms have been deleted.

Minimum of terms. The term corresponding to the intersection of the model spaces

of the set of terms. (cf. Tjur's (1984) minimum of factors)

Model comparison approach. An approach to linear model analysis in which a

series of models is �tted and the simplest model not contradicted by the data

is selected (Burdick and Herr, 1980). (cf. parametric interpretation ap-

proach)

Model space of a term. The subspace of the observation space, Rn, which is the

range of the summation matrix for the term.

Multiple-error experiments. Experiments in which there is more than one source

with which terms are confounded.

Multitiered experiments. Experiments that involve more than two tiers of factors.

Nested factors in a structure. A factor is said to be nested within another if there

is no special relationship between the levels of the �rst factor associated with

observational units that have di�erent levels of the second factor (Bailey, 1985).

Particular levels of the nested factor can be identi�ed as `belonging' to one and

only one level of a nesting term. (cf. crossed factors in a structure)

Nesting term for a nested factor. A nesting term for a nested factor is a term

that does not contain the nested factor but which is immediately marginal to a

term that does.

Null analysis of variance. In two-tiered experiments, the analysis of variance de-

rived from unrandomized factors (Nelder, 1965a).

Null randomization distribution. In two-tiered experiments it is the population

of vectors produced by applying to the sample vector all permissible random-

izations of the unrandomized factors (Nelder, 1965a).
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Observational unit. The unit on which individual measurements are taken (Fed-

erer, 1975). The set of observational units can be thought of as a �nite index

set, I, indexing the observed values of the response variable and the factors in

the study.

Observational-unit subset for a term. A subset consisting of all those observa-

tional units that have the same levels combination of the factors in the term.

Order of a factor. The order of a factor, that is not nested within another factor,

is its number of levels; the order of a nested factor is the maximum number of

di�erent levels of the factor that occurs in the observational-unit subsets of the

nesting term(s) from the structure for the tier to which the factor belongs.

Orthogonal terms. Two terms are orthogonal if, in their model spaces, the orthogo-

nal complements of their intersection subspace are orthogonal (Wilkinson, 1970;

Tjur, 1984, section 3.2). Thus, two subspaces, L1 and L2, of R
n are orthogonal

if

L1 \ (L1 [ L2)
? ? L2 \ (L1 [ L2)

?

Orthogonal variation structure. (OVS) The hypothesized variance matrix V for

the study can be written as a linear combination of a complete set of known

mutually orthogonal idempotent matrices where the coeÆcients of the linear

combination are positive.

Parametric interpretation approach. An approach to linear model analysis in

which a single maximal model is �tted and the pattern in the data is investigated

by testing hypotheses speci�ed in terms of linear parametric functions (Burdick

and Herr, 1980). (cf. model comparison approach)

Partial aliasing. A source, or term that is the de�ning term for a source, is partially

aliased if it is aliased and only part of the information is estimable; that is, the

eÆciency factor for the partially aliased source, given the sources with which

it is aliased have been �tted before it, is strictly between zero and one. (see

aliased sources and total aliasing)
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Partial confounding. Confounding in which only part of the information about a

confounded term is estimable from a single source; that is, the eÆciency factor

for the confounded term is strictly between zero and one. (see confounded

source and total confounding

Partially ordered set. A set P of elements a; b; c; : : : with a binary relation, denoted

by `�', which satisfy the following properties:

i) a � a, (Re
exive)
ii) If a � b and b � c, then a � c, (Transitive)
iii) If a � b and b � a, then a = b (Antisymmetric)

(Gr�atzer, 1971). A commonly occurring poset in this thesis is the set of terms

from a structure, the order relation being the marginality relation between

terms. For further information see de�nition 3.1 in section 3.2.

Permutation matrix for a structure. (U) A matrix that speci�es the association

between the observed levels combinations of the factors in the structure and the

observational units.

Pivotal projection operator. An operator that produces the e�ects for �tting a

term to a source. In general, this will involve: a sequence of pivotal and resid-

ual projection operators for �tting the source; the adjusted e�ects operator for

the term; and a repetition of the same sequence of pivotal and residual opera-

tors to adjust for previously �tted sources to which the model space of term is

nonorthogonal.

Pivotal sweep. A sweep in which the vector of (e�ective) means from that sweep is

to be the input for the next sweep (Wilkinson, 1970).

Poset. (see Partially ordered set)

Previous-structure projection operator. A projection operator that has the same

range and de�ning term as a projection operator from a previous structure.

Projection operator. (P) An operator that projects onto the orthogonal subspace

corresponding to a source in the analysis of variance. Three basic types of
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projection operators, all of which are orthogonal projection operators, occur in

this thesis:

(i) previous-structure projection operator;

(ii) pivotal projection operator; and

(iii) residual projection operator.

Note that, except for those of type (i), any projection operator is said to corre-

spond to a source in that it is the projection operator for the source associated

with the structure from which the source arises.

Pseudofactors. Factors included in a structure for the study which have no scienti�c

meaning but which aid in the analysis (Wilkinson and Rogers, 1973). The name

derives from their application to the analysis of the pseudofactorial experiments

introduced by Yates (1936).

Pseudoterms. Terms whose factors include at least one pseudofactor. Such terms

have no scienti�c meaning and are included only as an aid to performing the

analysis; for example, their inclusion may result in a structure-balanced study.

Random factor. A factor whose levels are randomly sampled and represent an in-

complete sample of the levels of the factor of interest to the researcher (see

section 1.2.2). (cf. �xed factor)

Random sampling. The selection of a fraction from a population, the whole of

which is observable, such that each sample has a �xed and determinate proba-

bility of selection (Kendall and Buckland, 1960).

Randomization. (verb) The allocation, at random, of the levels combinations of the

factors in one tier to those of the factors in a previous, usually the immediately

preceding, tier.

Randomization. (noun) A random permutation of the levels combinations of the

factors in a tier, the permutation respecting the structure derived from that tier

(Bailey, 1981).
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Randomized factor. A factor whose levels are associated with a particular obser-

vational unit by randomizing. (cf. unrandomized factor)

Regular term. A term in a structure for which there is the same number of elements

in the observational-unit subsets for the term. Thus regular terms correspond

to Tjur's (1984) balanced factors and Bailey's (1984) regular factors.

Regular structure. A structure in which all terms are regular.

Relationship matrices. (S) (see Summation matrices)

Repeated measurements experiment. An experiment in which observations are

repeated over several times, Times representing an unrandomized factor. This

de�nition is not consistent with that of Koch, Elasho� and Amara (1988), but

is consistent with the traditional de�nition (Winer, 1971).

Replication factors. Factors whose primary function is to provide di�erent con-

ditions, resulting from uncontrolled variation, under which the treatments are

observed. The classes of replication factors that commonly occur include factors

indexing plots, animals, subjects, time periods and production runs.

Replication of a levels combination. The number of observational units with that

levels combinations of the factors in a term or, equivalently, the size of the

observational-unit subset for that levels combination of the factors in a term.

Residual projection operator. An operator that produces the residuals after �t-

ting a term to a source. In general, this will involve: a sequence of pivotal and

residual projection operators for �tting the source; the identity operator minus

the adjusted e�ects operator for the term; and a repetition of the same sequence

of pivotal and residual operators to adjust for previously �tted sources to which

the model space of a term is nonorthogonal. (Wilkinson, 1970).

Residual source. A source in the analysis table for the remainder after all terms

confounded with a particular source, whose de�ning term is in a lower structure

than theirs, have been removed.

Residual sweep. A sweep in which the residual vector of that sweep is to be the

input for the next sweep.
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Series-of-experiments experiment. Experiment involving repetition, usually in

time and/or space, and which involves a di�erent set of experimental units at

each repetition (Cochran and Cox, 1957, chapter 14).

Simple factor. A factor that is not nested in any other factor or a nested fac-

tor for which the same number of di�erent levels of the factor occurs in the

observational-unit subsets of its nesting term(s); this number is the order of the

factor.

Simple orthogonal structure. A structure for which:

1. all the factors are simple;

2. the only relationships between the factors are crossing and nesting; and

3. either the product of the order of the factors in the structure equals the

number of observational units or that the replication of the levels combi-

nations of the factors in the structure is equal.

(Nelder, 1965a). (cf. Tjur structure)

Single-stage experiment. An experiment which cannot be subdivided into one or

more completely self-contained subexperiments from the point of view of both

the design and conduct of the experiment.

Source. A subspace of the sample space, the whole of which is identi�ed as arising

from a particular set of terms. A source will either correspond to a term (called

the de�ning term) or be a residual source, the latter being the remainder

for a source once terms confounded with it have been removed. Each source

is labelled by its de�ning term and, if confounded, the source(s) with which it

is confounded. A residual source takes its de�ning term from the highest non-

residual source with which it is confounded, highest meaning from the highest

structure. The sources with which a source is confounded are not cited speci�-

cally if no ambiguity will result. The analysis of variance gives a measure of the

di�erences arising from the terms associated with each subspace.

Spectral component. (�Tiw) The contribution to the variance associated with a

term in the ith structure by the variation terms in that structure.
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Split-plot principle. The principle of randomizing two or more factors so that the

randomized factors di�er in the experimental unit to which they are randomized

(Kendall and Buckland, 1960).

Standard split-plot experiment. An experiment involving two randomized fac-

tors. One of these factors is applied to main plots according to a randomized

complete block design. The other factor is randomized to the subplots in each

main plot, the number of subplots in each main plot equalling the order of the

factor randomized to it (Federer, 1975).

Stratum. A source in an analysis of variance table whose expected mean square

includes canonical covariance components but not functions of the expectation

vector. That is, a source whose de�ning term is a variation term. This usage

di�ers from that of Nelder (1965a,b) who uses it to mean a source in the null

analysis of variance and hence one whose de�ning term consists of unrandomized

factors only.

Stratum component. (�sk) The covariance associated with a stratum which is ex-

pressible as the linear combination of canonical covariance components corre-

sponding to the expected mean square for the stratum.

Structure. A structure summarizes the relationships between the factors in a tier

and, perhaps, between the factors in a tier and those from lower tiers; it may

include pseudofactors. It is labelled according to the tier from which it is pri-

marily derived in that it is the relationships between all the factors in that tier

that are speci�ed in the structure. However, the set of factors in a structure

may not be the same as the set of factors in a tier as the set of factors in a

structure may include factors from more than one tier. The relationships be-

tween the factors are given in Wilkinson and Rogers (1973) notation. That is,

the crossed relationship is denoted by an asterisk (�), the nested relationship

by a slash (=), the additive operator by a plus (+) and the compound operator

by a dot (:); the pseudofactor operator is denoted by two slashes (==) (Alvey et

al., 1977). In addition, the order of each factor will precede the factor's name

in the lowest structure in which it appears. When writing out the structure,
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relationships between factors within a tier should usually be speci�ed before the

intertier relationships. Each structure has associated with it a set of terms.

Structure balance in experiments. An experiment is said to exhibit structure

balance when all terms from the same structure are orthogonal and there is

a single eÆciency factor between any term and the term(s) with which it is

confounded (Nelder, 1965b, 1968). Note that a statement on whether or not a

study is structure balanced must be quali�ed by the set of terms in respect of

which the study is being assessed. Further, this de�nition is independent of the

expectation and variation models for the study. (cf. �rst-order balance)

Structure set for a study. A set of structures summarizing the relationships be-

tween the factors in a study, these factors having been determined prior to the

conduct of the study. There is usually one structure for each tier of factors

which is labelled with that tier's number and ordered in the same way as the

tiers; each structure will involve the factors in the tier from which it is derived

and, perhaps, factors in lower tiers.

Summation matrices. (S) A symmetric matrix for a set of factors making up a

term. Its order is equal to the number of observational units. The rows and

columns of the matrix are ordered lexicographically on the factors in the struc-

ture for the �rst tier. The elements are ones and zeros with an element equal

to one if the observation corresponding to the row of the matrix has the same

levels combinations of the factors in the term as the observation corresponding

to the column (James, 1957, 1982; Speed, 1986).

Superimposed experiment. An experiment in which an initial experiment is to be

extended to include one or more extra randomized factors (Preece et al., 1978).

Sweep for a term. The means for each levels combination of the factors in the

term are calculated from the input vector to the sweep. The resulting (e�ec-

tive) means, divided by an eÆciency factor if appropriate, are placed in an

observational-unit-length vector such that the mean for a particular unit is the

one with the same levels combination as the unit. This vector is subtracted
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from the input vector to form a residual vector (Wilkinson, 1970).

Term. A set of factors, obtained by expanding a structure, which might contribute,

in combination, to di�erences between observational units. It usually represents

a meaningful partition of the observational units into subsets formed by placing

in a subset those observational units that have the same levels combination of

the factors in the term. The subsets formed in this way will be referred to as

the term's observational-unit subsets.

A term is, in some ways, equivalent to a factor as de�ned by Tjur (1984) and

Bailey (1984). It obviously is when the term consists of only one of the factors

from the original set of factors making up the tiers; when a term involves more

than one factor from the original set, it can be thought of as de�ning a new

factor whose levels correspond to the levels combinations of the original factors.

However, I reserve the name factor for those in the original set. A term is

written as a list of factors or letters, separated by full stops. The list of letters

for a term is formed by taking one letter, usually the �rst, from each factor's

name; on occasion, to economize on space, the full stops will be omitted from

the list of letters.

Tier. A set of factors having the same randomization status; a particular factor can

occur in one and only one tier. The �rst tier will consist of unrandomized factors,

or, in other words factors innate to the observational unit; these factors will

uniquely index the observational units. The second tier consists of the factors

whose levels combinations are randomized to those of the factors in the �rst tier,

and subsequent tiers the factors whose levels combinations are randomized to

those of the factors in a previous, in the great majority of cases the immediately

preceding, tier.

The factors in di�erent tiers are further characterized by the property that it

is physically impossible to assign simultaneously more than one of the levels

combinations of the factors in one tier to one of the levels combinations of the

factors in a lower tier.
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Tjur structure. A structure for which:

1. there is a term derived from the structure that is equivalent to the term

derived by combining all the factors in the structure, or there is a maximal

term derived from the structure to which all other terms derived from the

structure are marginal;

2. any two terms from the structure are orthogonal; and

3. the set of terms in the structure is closed under the formation of minima.

(Tjur, 1984, section 4.1; Bailey, 1984)

Total aliasing. A source, or term that is the de�ning term for a source, is totally

aliased with a set of sources if it is aliased and there is no information available

for it, given the sources with which it is aliased have been �tted before it; that

is, the eÆciency factor for the totally aliased source is zero. A source is totally

aliased if it is a subspace of the subspaces of sources arising from the same

structure. (see aliased source and partial aliasing)

Total confounding. Confounding in which the only information about a confounded

term is estimable from a single term. Cochran and Cox (1957) refer to this as

complete confounding.

Treatment error. Variability arising from an inability to reproduce exactly for each

unit the conditions speci�ed for a particular level of a factor (Addelman, 1970).

Two-phase experiments. Experiments that involve an initial subexperiment that

produces material which is incorporated into a second subexperiment (McIntyre,

1955).

Unit term. A term for which each of its levels combinations is associated with one

and only one observational unit.

Unrandomized factors. The factors in the �rst or bottom (`foundation') tier which

are those that would jointly identify the observational unit if no randomization

had been performed. (cf. randomized factor)
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Variation factor. A factor for which the performance of the set of levels as a whole

is potentially informative; in such cases, the performance of a particular level

is inferentially uninformative. Hence, inference would be based on dispersion

summary measures (`variances' and `covariances'). (cf. expectation factor)
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Notation

Here we detail the notation used throughout the thesis.

Factors are given names which are shortened when necessary, most often to just

the �rst letter and on other occasions to the �rst three letters. In general, tih denotes

a factor from the ith structure.

Scalars

Scalars are denoted by lower-case letters. The following are commonly occurring

scalars:

aTiu The coeÆcient, usually �1, in a linear form of means vectors which make

up an e�ects vector.

eqTiu The eÆciency factor corresponding to term Tiu from the ith structure when

it is estimated from the qth source of the (i� 1)th structure; for orthogonal

terms the eÆciency factor is 1.

fi The number of factors in the ith structure.

n The number of observations in the study.

ntih Order of the factor tih.

nTiu The number of levels combinations of the factors in term Tiu that were

actually observed in the study.

pi The number of projection operators to e�ect the decomposition up to the

ith structure.
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qik The sum of squares for a source in the analysis table.

ri The replication of the levels combinations of the factors in the ith structure,

provided the structure is simple orthogonal; that is, the number of observa-

tional units that have the same levels combination of the factors in the ith

structure.

rTiu The replication for regular term Tiu; that is, the number of observational

units that have the same levels combination of the factors in regular term

Tiu.

s The number of structures in the study.

ti The number of terms in the ith structure.

Æij The Kronecker delta where Æij =

(
1 for i = j

0 for i 6= j
.


Tiu The covariance component for the term Tiu.

�Tiu The canonical covariance component for the term Tiu.

�Tiu The spectral component for the term Tiu, being the contribution, by the

terms in the ith structure, to the expected mean square for the term Tiu.

�ik The degrees of freedom of a source in the analysis table.

�Tiu The degrees of freedom of the term Tiu.

�ik The contribution of the variation to the expected mean square for a partic-

ular source in the analysis.

Vectors

Vectors are denoted by bold lower-case letters. The following are commonly occurring

vectors:

1 The vector of ones.

ci The ti-vector of coeÆcients of the linear combination of the incidence ma-

trices for the ith structure.
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dTiu The e�ects n-vector for term Tiu which is a linear combination of means

n-vectors for terms marginal to Tiu.

ei The symbolic ti-vector of the elements of Ei.

fi The ti-vector of coeÆcients of the linear combination of the summation

matrices for the ith structure.

li The ti-vector of coeÆcients of the linear combination of the mutually or-

thogonal idempotent matrices for the ith structure.

si The symbolic ti-vector of the elements of Si.

wi The symbolic ti-vector of the elements of Wi.

y The n-vector of observations for a single response variable which we assume

is arranged in lexicographical order with respect to the factors indexing the

�rst tier.

yTiu The means n-vector containing, for each observational unit, the mean of the

elements of y corresponding to that unit's levels combination of the factors

in term Tiu.


i The ti-vector of covariance component parameters for the terms in the ith

structure.

�i The ti-vector of canonical covariance component parameters for the terms

in the ith structure (zeroes are included for expectation terms).

�i The ti-vector of spectral component parameters for the terms in the ith

structure.

� The expectation n-vector containing the expectation parameters of the ob-

servations.

�i The n-vector of parameters corresponding to the terms from the ith struc-

ture that have been included in the maximal expectation model; the maxi-

mal expectation model is derived as described in section 2.2.6.1. The param-

eters are arranged in the vector in a manner consistent with the ordering of

the summation matrices for the structure. The vector contains only zeroes
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if there is no expectation factor in the structure, or if a structure contains

the same set of expectation factors as a previous structure.

�Tiu The n-vector of expectation parameters for an expectation term Tiu. A

particular element of the vector corresponds to a particular observational

unit and will be the parameter for the levels combination of the term Tiu

observed for that observational unit; there will be nTiu unique elements in

the vector.

Matrices

Matrices are denoted by bold upper-case letters. The direct product of two matrices,

A and B say, is frequently required. It is denoted by A
B = faijBg. The following

are commonly occurring matrices:

ATiu The averaging operator of order n for term Tiu (= R�1
Tiu
STiu).

ETiu The orthogonal idempotent matrix of order n for term Tiu.

Ek
Tiu

The adjusted idempotent operator of order n for term Tiu when term Tiu is

estimated from the kth source in the (i� 1)th structure.

G The Grand mean operator (= J=m where m is the order of J).

I The identity matrix.

J The matrix of ones.

K The matrix of ones everywhere except the diagonal (= J� I).

M The projection operator onto the subspace of the sample space correspond-

ing to the expectation model.

Pik The kth projection operator of order n from the ith structure. Note that, in

this thesis, the term projection operator will be taken to mean orthogonal

projection operator.

RTiu The diagonal replications matrix of order n. A particular diagonal element

is the replication of the levels combination of the factors in term Tiu for the
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observational unit corresponding to that element. For a regular term, all

diagonal elements are equal to rTiu .

STiu The summation matrix of order n for term Tiu.

Teisi The matrix of order ti that transforms the set of matrices in si to the set of

matrices in ei.

Teiwi
The matrix of order ti that transforms the set of matrices in wi to the set

of matrices in ei.

Tsiei The matrix of order ti that transforms the set of matrices in ei to the set of

matrices in si.

Tsiwi
The matrix of order ti that transforms the set of matrices in wi to the set

of matrices in si.

Twiei The matrix of order ti that transforms the set of matrices in ei to the set of

matrices in wi.

Twisi The matrix of order ti that transforms the set of matrices in si to the set of

matrices in wi.

Ui The permutation matrix of order n for the ith structure that speci�es the

association between the observed levels combinations of the factors in that

structure and the observational units. If the number of observed levels

combinations for the factors in the structure is not equal to the number

of observational units, include a dummy factor nested within all the other

factors in the structure.

V The variance matrix of order n for the observations.

Vi The variation matrix of order n arising from variation terms in the ith

structure.

WTiu The incidence matrix of order n for term Tiu.

X The independent-variables matrix of order n; it speci�es the linear combi-

nation of the expectation parameters of a linear model associated with a

particular observational unit.
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Sets

Sets are denoted by upper-case letters. The following are commonly occurring sets:

DTiu The terms in the ith structure that are the minima of terms immediately

marginal to the term Tiu.

Ei The orthogonal idempotent matrices for the ith structure.

Fi The factors in the ith structure.

I The index set, the elements of which are the observational units, and which

indexes the observed values of the response variable and the factors in the

study.

NTiu The factors in Tiu that nest other factors in Tiu.

Pi The orthogonal projection operators for the ith structure.

Si The summation matrices for the ith structure.

Ti The terms derived from the ith structure.

Tiu A term in the ith structure, consisting of one or more factors in Fi; it is

written as a list of factors, or the list of �rst letters of the factors' names,

separated by full stops; on occasion, to economize on space, the full stops

will be omitted from the list of letters.

TVi
The terms from the ith structure that have been included in the maximal

variation model.

T�i
The terms from the ith structure that have been included in the maximal

expectation model.

Ugi
jq The set of indices specifying the projection operators that correspond to the

sources in the gth structure which:

� are confounded with the source corresponding to the qth projection

operator from the jth structure; and

� have no terms from structure (j + 1) through to the ith structure

confounded with them.
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That is, the projection operators in the gth structure such that, for u 2 Ugi
jq ,

PjqPgu = Pgu; and

EThzPgu = 0; for all Thz 2 Th; g < h � i:

Wi The incidence matrices for the ith structure.
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