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Abstract

A random variable that is defined as the absorption time of an evanescent finite-

state continuous-time Markov chain is said to have a phase-type distribution. A

phase-type distribution is said to have a representation (α,T ) where α is the initial

state probability distribution and T is the infinitesimal generator of the Markov

chain. The distribution function of a phase-type distribution can be expressed in

terms of this representation. The wider class of matrix-exponential distributions

have distribution functions of the same form as phase-type distributions, but their

representations do not need to have a simple probabilistic interpretation. This

class can be equivalently defined as the class of all distributions that have rational

Laplace-Stieltjes transform. There exists a one-to-one correspondence between the

Laplace-Stieltjes transform of a matrix-exponential distribution and a representation

(β,S) for it where S is a companion matrix.

In order to use matrix-exponential distributions to fit data or approximate prob-

ability distributions the following question needs to be answered:

“Given a rational Laplace-Stieltjes transform, or a pair (β,S) where S

is a companion matrix, when do they correspond to a matrix-exponential

distribution?”

In this thesis we address this problem and demonstrate how its solution can be

applied to the abovementioned fitting or approximation problem.

ix



Chapter 1

Introduction

This thesis is concerned with the problem of fitting data and approximating prob-

ability distributions with phase-type and matrix-exponential distributions. A ran-

dom variable that is defined as the absorption time of an evanescent finite-state

continuous-time Markov chain is said to have a phase-type (PH ) distribution. The

distribution and density functions of a PH distribution can be expressed in terms

of the 1× p initial state distribution vector α and the p× p infinitesimal generator

matrix T of the underlying Markov chain. The pair (α,T ) is known as a representa-

tion of order p of the PH distribution. The wider class of matrix-exponential (ME )

distributions have distribution functions of the same form as PH distributions but

their representations do not need to have a simple probabilistic interpretation.

PH distributions and their point process counterparts, Markovian arrival pro-

cesses (MAPs), are integral to the branch of computational probability known as

matrix-analytic methods. Computational probability was described by Neuts [101] as

“ . . . the study of stochastic models with a genuine added concern for

algorithmic feasibility over a wide, realistic range of parameter values.”

Matrix-analytic methods deals with the analysis of stochastic models, particularly

queueing systems, using a matrix formalism to develop algorithmically tractable

solutions. The ever-increasing ability of computers to perform numerical calculations

has supported the growing interest in this area.

1
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Although ME distributions do not strictly belong to the realm of matrix-analytic

methods some of what has been achieved with PH distributions carries over to ME

distributions, see Asmussen and Bladt [10], and Bean and Nielson [19]. Stochastic

models that use ME distributions in place of PH distributions have greater flexibility

and generality but at the expense of simple probabilistic interpretations.

Before the advent of fast computers, problems in stochastic modelling, partic-

ularly queueing theory, relied on the Laplace-Stieltjes transform and the methods

of complex analysis for their solution, see, for example, Cohen [37]. Often, ana-

lytical expressions for the performance measures of stochastic models were given in

closed form and could not readily be implemented in algorithms. Not only this, but

frequently such expressions gave little qualitative or probabilistic insight into the

systems being analysed.

Since the building blocks of matrix-analytic methods, PH distributions and

MAPs, are defined in terms of Markov chains, highly versatile stochastic models

that exhibit an underlying Markov structure can be analysed. Quantities of inter-

est can very often be given a meaningful probabilistic interpretation. In addition,

since the matrices that represent PH distributions and MAPs consist entirely of real

entries, performance measures, which are expressed in terms of these matrices and

their exponentials, can be implemented in algorithms relatively easily. The field of

computational probability and its progeny matrix-analytic methods have redefined

the meaning of a solution to a problem in stochastic modelling: an implementable

algorithm that adds insight into the system being analysed. The number of such

systems that can now be modelled stochastically has increased significantly.

Over the last two decades there has been a phenomenal increase in the theory

and application of matrix-analytic methods. The complexity of the stochastic mod-

els that can be analysed has grown alongside the improvement in computing power.

Areas of application have included scheduling (Squillante [134], and Sethuraman

and Squillante [128]), insurance risk (Asmussen and Rolski [14], Møller [98], and

Asmussen [9]), machine maintenance (Green, Metcalfe, and Swailes [64]), survival
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analysis (Aalen [1]), reliability theory (Bobbio, Cumani, Premoli, and Saracco [26],

and Chakravarthy [33]), and drug kinetics (Faddy [49] and [50]). The greatest re-

search activity, however, given the explosion in data traffic that we have witnessed

over the last few years, has undoubtedly been in the performance analysis of telecom-

munications systems. The telecommunications and electronic engineering literature

is awash with applications of matrix-analytic methods. For recent advances in the

theory and application of matrix-analytic methods we refer the reader to the pro-

ceedings of the discipline’s four conferences Chakravarthy and Alfa [34], Alfa and

Chakravarthy [4], and Latouche and Taylor [83] and [84], and the references therein,

and to Neuts [102] which contains an extensive bibliography on the subject.

Despite the remarkable growth in the theory and application of matrix-analytic

methods, one area that has been considerably under-explored is that of statistical

fitting and approximation. In order to use PH distributions and MAPs in stochastic

modelling their parameters need to be selected so that they best describe, in some

sense, the processes they are modelling.

Moment matching algorithms for fitting mixtures of Erlang distributions (which

are particular PH distributions) to independent and identically distributed data

have been developed by Johnson [73] and Schmickler [124]. Bobbio and Cumani

[24], and Horváth and Telek [72] used maximum likelihood methods to fit data,

and approximate probability distributions, respectively, with Coxian distributions

(PH distributions whose generator matrix T has only real eigenvalues). Asmussen,

Nerman, and Olsson [15] developed an expectation-maximization (EM ) algorithm

to fit general PH distributions to data.

Fitting with MAPs is more difficult because the data from an arrival stream

are not necessarily independent and identically distributed. A number of moment

matching methods for fitting Markov-modulated Poisson processes (MMPPs - a sub-

class of MAPs) have been developed and were briefly discussed in Rydén [123]. These

methods, however, were restricted to MMPPs of order two or a specific structure.

Meier-Hellstern [96] gave a method based on maximum likelihood for MMPPs of
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order two but the parameter estimators were asymptotically biased. Rydén [118]

proved the consistency of the maximum likelihood estimators for MMPPs of arbi-

trary order. He also compared the performance of three algorithms used to find

the maximum likelihood estimates when an order two MMPP was fitted to some

simulated data. The consistency and asymptotic normality of an estimator closely

related to the maximum likelihood estimator for MMPPs was shown in Rydén [119].

In Rydén [121] an EM algorithm for MMPPs was developed and compared with a

number of other algorithms. Diamond and Alfa [47] gave a method for approximat-

ing a MAP of arbitrary order with an order two MAP by matching the autocorre-

lation decay parameter and the first two or three moments. Breuer [29] developed

a maximum likelihood-based method for estimating the parameters of a particu-

lar class of batch Markovian arrival processes (BMAPs - MAPs which allow batch

arrivals), and the ideas were extended to general BMAPs in Breuer and Gilbert [30].

In Chapter 2 PH distributions are formally defined and their properties, repre-

sentation, and characterization are discussed.

Chapter 3 contains a more detailed discussion of some of the existing methods

developed for fitting data and approximating distributions with PH distributions

and the problems associated with them. The main difficulties, according to Lang

and Arthur [82], are that

1 the fitting or approximation problem is highly nonlinear,

2 the number of parameters to be estimated or selected is often large,

3 PH representations are typically not unique, and

4 the relationship between the parameters and the shape of a PH distribution

is generally nontrivial.

Most algorithms developed used Coxian distributions (or particular subclasses of

them) to circumvent the second and third difficulties. A Coxian representation of
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order p is parameterized by only 2p parameters instead of the general PH represen-

tation’s p2 + p parameters. Also, a unique canonical representation can be given for

Coxian distributions. It is not clear, however, whether this restricted class is ade-

quate, in general, for statistical fitting and approximation although some authors,

for example Horváth and Telek [72], believe that it is.

In order to avoid the second difficulty, and possibly the first and third ones, we

propose in Chapter 4 that the fitting or approximation with general PH distribu-

tions be carried out in the Laplace-Stieltjes transform (LST ) domain. The LST of

a PH distribution with a representation of order p (which is a rational function)

has 2p parameters. A number of authors have used the idea of transform fitting

or approximation but we discuss in detail two related methods given in Harris and

Marchal [66] because they specifically use rational LST s. Their methods are very

simple to implement because they only require the solution of a system of linear

equations. The procedure, however, has two major drawbacks. First, there is no

guarantee that the final LST corresponds to a probability distribution, PH or other-

wise. Harris and Marchal [66] gave no means for determining whether or not a given

rational LST corresponds to a PH distribution. Second, if the LST does happen

to correspond to a PH distribution it is not clear how to find a PH representation

for it.

In Chapter 5, in order to tackle the two problems posed at the end of Chapter

4, the class of ME distributions is introduced. The second problem, with respect to

ME distributions, is solved by using a ME representation theorem from Asmussen

and Bladt [10]. The representation (α,T ) they gave is such that α is the vector of

coefficients of the rational LST ’s numerator polynomial, and T is the companion

matrix of the denominator polynomial. This (one-to-one) correspondence between

the LST of a ME distribution and a representation of this form means that any

statement about one will also be true for the other. If we define the vectors a and b

to be the coefficients of the numerator and denominator polynomials, respectively,

then the first problem can be stated as follows:
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“When do a pair of vectors a, b ∈ R
p correspond to a ME distribution?”

This problem, although easy to state, is very difficult to solve. A necessary condition

is that the polynomial defined by b must have a zero of maximal real part that is

real and negative. Given a suitable vector b we define a set (or region) in terms of an

uncountably infinite number of linear constraints that contains all vectors (thought

of as points) a that correspond to ME distributions.

In Chapter 6 we derive a complete analytical description of the region when the

order of the ME distribution is three. Some discussion is devoted to the case when

the order is greater than three but a complete description has not yet been found.

We present in Chapter 7 an algorithm, based on an approach due to Dehon and

Latouche [45], that determines whether or not a given vector a is contained in the

region determined by a suitable vector b. Since the algorithm, however, requires the

global minimization of a single variable function over the nonnegative real line, it is

potentially computer intensive especially when the ME distribution has high order.

In addition, because of the relative simplicity of the order three case, we give an

alternative analytical description of the region in that case.

In Chapter 8 we present a semi-infinite programming algorithm to determine

if a given vector a is contained in the region defined by a suitable vector b. The

problem becomes one of minimizing a convex objective function over a (convex)

feasible region which is defined by an infinite number of constraints.

The real merit in the semi-infinite programming approach, however, is not in the

ME identification problem, but in using ME distributions to fit data or approximat-

ing probability distributions. This is discussed in Chapter 9. Given a suitable vector

b, a unique vector a can be found that maximizes the (convex) loglikelihood function

over the feasible region. Combining this algorithm with the Nelder-Mead flexible

polyhedron search (which updates the vector b) we have a method for finding max-

imum likelihood parameter estimates when fitting ME distributions to data. The

algorithm can be used to approximate distributions by choosing appropriate sample

points. The chapter concludes with two examples that illustrate the algorithm.
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Chapter 10 concludes the thesis and proposes some directions for future research.



Chapter 2

Phase-type Distributions

2.1 Introduction

Since their introduction by Neuts [100] in 1975, phase-type (PH ) distributions have

been used in a wide range of stochastic modelling applications in areas as diverse

as telecommunications, teletraffic modelling, biostatistics, queueing theory, drug

kinetics, reliability theory, and survival analysis. Asmussen and Olsson [13] stated

that

“. . . there has been a rapidly growing realization of PH (phase-type) dis-

tributions as a main computational vehicle of applied probability.”

PH distributions have enjoyed such popularity because they constitute a very versa-

tile class of distributions defined on the nonnegative real numbers that lead to models

which are algorithmically tractable. Their formulation also allows the Markov struc-

ture of stochastic models to be retained when they replace the familiar exponential

distribution.

Erlang [48], in 1917, was the first person to extend the familiar exponential

distribution with his “method of stages”. He defined a nonnegative random variable

as the time taken to move through a fixed number of stages (or states), spending an

exponential amount of time with a fixed positive rate in each one. Nowadays we refer

to distributions defined in this manner as Erlang distributions. In 1955 Cox [41]

8
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(see also Cox [40]) generalized Erlang’s notion by allowing complex “rates”. This

construction, despite often having no simple probabilistic interpretation, defines the

class of distributions with rational Laplace-Stieltjes transform, of which the class of

PH distributions is a proper subset. These distributions are nowadays also known

as matrix-exponential distributions which shall be discussed in detail in Chapter 5.

Neuts [100] generalized Erlang’s method of stages in a different direction. He defined

a phase-type random variable as the time taken to progress through the states of

a finite-state evanescent continuous-time Markov chain, spending an exponential

amount of time with a positive rate in each one, until absorption. The class of

PH distributions is hence a very flexible class of distributions that have a simple

probabilistic interpretation.

PH distributions are indeed a versatile class of distributions. First, they are

dense in the class of all distributions defined on the nonnegative real numbers.

However, as remarked by Neuts [101, page 79], there are a number of simple dis-

tributions (for example the delayed exponential distribution) where a reasonable

approximation by a PH distribution would require a prohibitive number of states.

On the other hand, because of the flexibility of the parameters of the continuous-

time Markov chain that define the PH distribution, they can potentially exhibit

quite versatile behaviour. For example, as mentioned in O’Cinneide [108], it is

known that tri-modal PH distributions of order five exist.

Second, the use of PH distributions in stochastic models often enables algorith-

mically tractable solutions to be found. Quantities of interest, such as the distribu-

tion and density functions, the Laplace-Stieltjes transform, and the moments of PH

distributions are expressed simply in terms of the initial phase distribution α and the

exponential or powers of the infinitesimal generator T of the defining Markov chain.

Since α and T consist of only real entries many of the quantitative performance mea-

sures required when using PH distributions in stochastic modelling (for example the

waiting time distributions and mean queue lengths in queues) can be computed rel-

atively easily given a suitable software package (for example MATLAB r©). Also,
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qualitative performance measures can be established in stochastic models where PH

distributions are used. For example, Takahashi [138] showed that the tail of the

waiting time distribution for the PH/PH/c queue is exponential. See Shaked and

Shanthikumar [129, pages 713–714] for a list of further examples.

Third, stochastic models, particularly where the exponential distribution is used

to model quantities (for example interarrival times, service times, or lifetimes) be-

cause of its simplicity, can now be extended by using PH distributions with little

extra complication. Often the exponential distribution can simply be replaced with

a PH distribution while preserving the underlying Markov structure of the model.

For example, the M/M/1 queue can be generalized to the PH/PH/1 queue which

can be analyzed in an analogous manner.

Finally, since the class of PH distributions is closed under a variety of operations

(for example finite mixture and convolution, see Section 2.5) systems with PH inputs

often have PH outputs. For example, the stationary waiting time distribution in a

M/PH/1 queue is PH, see Neuts [101, page 21]. Also, Asmussen [7] showed that

the waiting time distribution in a GI/PH/1 queue is PH. Refer to Shaked and

Shanthikumar [129, pages 713–714] for more examples. It seems, however, that it is

not always the case that PH inputs produce PH outputs. For example, Olivier and

Walrand [109] conjectured that the departure process of MAP/PH/1 queue is not a

MAP unless the queue is a stationary M/M/1 queue. Therefore, it is possible that

the departure process of a PH/PH/1 queue is not a PH renewal process (which

is a particular type of MAP). Bean, Green, and Taylor [20] gave an example of a

PH/M/1 queue where it could not be established that the departure process is a

MAP.

In Section 2.2 we define PH distributions, their representation, and order, list

some of their important properties, and give some examples. Section 2.3 is an anal-

ogous section on discrete PH distributions. In Section 2.4 we address the problem

of characterizing (continuous) PH distributions by asking the two questions: when
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does a function of the form

f(u) =
n

∑

i=1

qi(u)e
−λiu,

where the qi’s are polynomials, correspond to the density function of a PH distri-

bution; and if it does, what is a minimal representation for it? Section 2.5 contains

a discussion on the closure properties of the class of PH distributions. Some con-

cluding remarks are made in Section 2.6.

For a comprehensive treatment of PH distributions see Neuts [101, Chapter 2].

Latouche and Ramaswami [85, Chapter 2] is a very readable introduction to the

topic. The literature on the theory and applications of PH distributions is vast and

both of the abovementioned books provide extensive bibliographies. The two entries

in the Encyclopedia of Statistical Science on PH distributions, Shaked and Shan-

thikumar [129], and Asmussen and Olsson [13], also provide excellent introductions

to the subject.

2.2 Continuous Phase-type Distributions

Consider an evanescent continuous-time Markov chain {Yu}, with u ≥ 0, on a finite

phase (state) space S = {0, 1, 2, . . . , p} where phase 0 is absorbing. Let the initial

phase probability distribution be (α0,α) = (α0, α1, . . . , αp) (with

p
∑

i=0

αi = 1) and

the infinitesimal generator be Q. The random variable X, defined as the time to

absorption, is said to have a continuous phase-type (PH ) distribution.

The infinitesimal generator for the Markov chain can be written in block-matrix

form as

Q =





0 0

t T



 .

Here, 0 is a 1 × p vector of zeros, t = (t1, t2, . . . , tp)
′ where, for i = 1, 2 . . . p, ti =

Qi0 ≥ 0 is the absorption rate from phase i, and T = [Tij] is a p× p matrix where,



CHAPTER 2. PHASE-TYPE DISTRIBUTIONS 12

for i, j = 1, 2, . . . , p, with i 6= j,

Tij ≥ 0,

and, for i = 1, 2, . . . , p,

Tii < 0 with Tii ≤ −
p

∑

j=1

j 6=i

Tij.

Note that t = −Te where e is a p× 1 vector of ones. The PH distribution is said

to have a representation (α,T ) of order p. The matrix T is referred to as a PH-

generator. The component α0, which is completely determined by α and therefore

does not need to appear in the expression for the representation, is known as the

point mass at zero.

To ensure absorption in a finite time with probability one, we assume that every

nonabsorbing state is transient. This statement is equivalent to T being nonsingular,

see Neuts [101, Lemma 2.2.1, page 45], or Latouche and Ramaswami [85, Theorem

2.4.3, page 43]. An additional requirement on the PH representation (α,T ) is that

there are no superfluous phases. A condition for there to exist no such phases can

be derived as follows. Assume that as soon as absorption takes place in the Markov

chain with parameters α and T , the process is started anew with the same param-

eters. The resulting point process is called a PH-renewal process. The distribution

of interevent times of this process is a PH distribution with representation (α,T ).

There will be no superfluous phases in the process if every nonabsorbing phase can

be reached from every other phase with probability one. This occurs if the matrix

Q∗ = T − (1− α0)
−1Teα,

which is the infinitesimal generator of the PH -renewal process, is irreducible. For

the definition of an irreducible matrix see Seneta [127, Section 1.3 and page 46].

We then say that the representation (α,T ) is irreducible, see Neuts [101, page

48]. If a representation includes some superfluous phases they can be deleted. The

resulting PH -renewal process and its corresponding representation will then both

be irreducible in their respective senses.
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A PH distribution with representation (α,T ) has distribution function, defined

for u ≥ 0, given by

F (u) =







α0, u = 0

1−α exp(Tu)e, u > 0.
(2.2.1)

For a proof see Neuts [101, Lemma 2.2.2, page 45], or Latouche and Ramaswami

[85, Theorem 2.4.1, page 41]. Differentiating (2.2.1) with respect to u gives the

corresponding density function, defined for u > 0,

f(u) = −α exp(Tu)Te.

The Laplace-Stieltjes transform (LST ) of (2.2.1), which is defined for λ ∈ C such

that <(λ) > −δ where δ is a positive number, is given by

φ(λ) =

∫ ∞

0

e−λudF (u)

= −α(λI − T )−1Te + α0. (2.2.2)

The LST φ(λ) can be expressed as the ratio of two irreducible polynomials where

the degree of the numerator is less than or equal to the degree of the denominator.

Following O’Cinneide [104], the algebraic degree of the PH distribution is defined

to be the degree of the denominator. For k = 1, 2, . . ., differentiating (2.2.2) k times

with respect to λ and letting λ = 0 gives the kth noncentral moment

mk = (−1)kk!αT−ke.

We now give some examples of PH distributions.

1. The exponential distribution with density function f(u) = λe−λu has a repre-

sentation

α =
(

1
)

T =
(

−λ
)

.
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2. The hyperexponential distribution with density function

f(u) =

p
∑

i=1

αiλie
−λiu

where, for i = 1, 2, . . . , p, αi > 0 and

p
∑

i=1

αi = 1, has a representation

α =
(

α1 α2 . . . αp

)

T =

















−λ1 0 . . . 0

0 −λ2
. . . 0

...
. . . . . .

...

0 0 . . . −λp

















.

3. The p-phase Erlang distribution with density function

f(u) =
λpup−1e−λu

p!

has a representation

α =
(

1 0 . . . 0
)

T =























−λ λ 0 . . . 0

0 −λ λ . . . 0

0 0 −λ . . . 0
...

...
. . . . . .

...

0 0 0 . . . −λ























.

4. The p-phase Coxian distributions have representations of the form

α =
(

α1 α2 . . . αp

)

T =























−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0

0 0 −λ3
. . . 0

...
...

. . . . . .
...

0 0 0 . . . −λp























,
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where 0 < λ1 ≤ λ2 ≤ . . . ≤ λp.

5. The acyclic, or triangular PH (TPH ), distributions have PH -generators that

are upper triangular matrices.

6. The p-phase unicyclic PH distributions have representations of the form

α =
(

α1 α2 . . . αp

)

T =





























−λ1 λ1 0 . . . 0 0

0 −λ2 λ2 . . . 0 0

0 0 −λ3
. . . 0 0

...
...

. . . . . .
...

...

0 0 0 . . . −λp−1 λp−1

µ1 µ2 µ3 . . . µp−1 −λp





























,

where for i = 1, 2, . . . , p− 1, µi ≥ 0, 0 < λ1 ≤ λ2 ≤ . . . ≤ λp, and λp >

p−1
∑

i=1

µi,

see O’Cinneide [108, Section 7].

In general, representations for PH distributions are not unique. Consider the

following which is derived from an example in Botta, Harris, and Marchal [28]. The

PH distribution with density

f(u) =
2

3
e−2t +

1

3
e−5t

has representations (α,T ), (β,S), and (γ,R) given by

α =
(

1
3

2
3

)

T =





−5 0

0 −2



 ,

β =
(

1
5

4
5

)

S =





−2 2

0 −5



 ,

and

γ =
(

0 1
2

1
2

)

R =











−3 1 1

1 −4 2

1 0 −6











.
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It is apparent from this example that representations for PH distributions do not

necessarily have the same order. In fact, there must be a representation that has

a smallest or minimal order. A representation that has minimal order is called a

minimal representation. The representations (α,T ) and (β,S) above are minimal

representations for the given PH distribution. Our example also shows that minimal

representations are not necessarily unique. The order of a PH distribution is defined

to be the order of any minimal representation.

2.3 Discrete Phase-type Distributions

Even though our discussion almost entirely concerns continuous PH distributions we

present in this section an introduction to their discrete-time counterparts for com-

pleteness. For a more thorough treatment see Neuts [101, Chapter 2], or Latouche

and Ramaswami [85, Section 2.5].

A discrete phase-type (PHd) random variable is defined as the absorption time of

an evanescent discrete-time Markov chain {Yn}, with n = 0, 1, 2, . . ., on a finite phase

space S = {0, 1, 2, . . . , p} where phase 0 is absorbing. As for the continuous-time

case we let the initial phase probability distribution be (α0,α) = (α0, α1, . . . , αp)

(with

p
∑

i=0

αi = 1) and the phase transition probability matrix be Q. In block matrix

form the phase transition probability matrix for the Markov chain can be written as

Q =





1 0

t T



 .

Here, 0 is a 1× p vector of zeros, t = (t1, t2, . . . , tp)
′ where, for i = 1, 2 . . . p, ti = Qi0

is the absorption probability from phase i, and T = [Tij] is a p×p matrix consisting

of the transition probabilities, for i, j = 1, 2, . . . , p, from phase i to j. Note that

t = (I−T )e. The PHd distribution is said to have a representation (α,T ) of order

p. As with continuous PH distributions, to ensure absorption with probability one,

it is assumed that I−T is nonsingular. Also, to ensure that there are no superfluous
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phases, we assume that the matrix

Q∗ = T + (I − T )eα

is irreducible.

A PHd distribution with representation (α,T ) has probability mass function

{pk} given by

p0 = α0

pk = αT k−1(I − T )e, k ≥ 1.

The distribution function, defined for k = 0, 1, 2, . . ., is given by

Fk = 1−αT ke.

The probability generating function, defined for |z| ≤ 1, is given by

G(z) =
∞

∑

k=0

pkz
k

= zα(I − zT )−1(I − T )e + α0, (2.3.1)

which is a rational function. For k = 1, 2, . . . , differentiating (2.3.1) k times with

respect to z and letting z = 1 gives the kth factorial moment

m∗
k = k!α(I − T )−kT k−1e.

Some examples of PHd distributions are the geometric, mixture of geometric,

and negative binomial distributions. Also, any distribution with finite support

{p0, p1, . . . , pm} is a PHd distribution with representation (α,T ) of order m with

α =
(

p1 p2 . . . pm

)

T = O,

where O is a m × m matrix of zeros. Thus, the binomial and hypergeometric

distributions are PHd distributions. The Poisson distribution, however, is not a

PHd distribution since it does not have a rational generating function.
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2.4 Characterization of Phase-type Distributions

In this section we motivate a discussion of the characterization of PH distributions

by addressing the following two problems:

P1. Given a function, defined for u > 0, of the form

f(u) =
n

∑

i=1

qi(u)e
−λiu (2.4.1)

where, for i = 1, 2, . . . , n, qi(u) is a real polynomial of degree ni, and <(λi) > 0,

when does it correspond to the density function of a PH distribution?

P2. If the function defined by (2.4.1) does correspond to the density function of a

PH distribution, what is a minimal representation for it?

Alternatively, the two problems can be stated in terms of LST s:

P1′. Given a function, defined for λ ∈ C such that <(λ) > −δ where δ is a positive

number, of the form

φ(λ) =
apλ

p−1 + ap−1λ
p−2 + . . .+ a1

λp + bpλp−1 + bp−1λp−2 + . . .+ b1
+ α0, (2.4.2)

where a1, a2, . . . , ap, b1, b2, . . . , bp are all real and 0 ≤ α0 < 1, when does it

correspond to the LST of a PH distribution?

P2′. If the function defined by (2.4.2) does correspond to the LST of a PH distri-

bution, what is a minimal representation for it?

Neither of these two problems have been solved in complete generality in the litera-

ture. Generally, progress has only been made for particular classes of PH distribu-

tions such as the Coxian distributions, and then, usually only for small order. For

example, O’Cinneide [107] answered P1 for a particular class of order three Coxian

distributions. Dehon and Latouche [45] answered P1 for the class of all generalized

hyperexponential distributions of algebraic degree three. In Chapter 7 we present an
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algorithm that solves the first problem. The second problem, first posed by Neuts

[101], has proven to be more difficult to solve.

Arguably, the most far-reaching PH characterization result is due to O’Cinneide

[104].

Theorem 2.1 A distribution defined on [0,∞) is a PH distribution if and only if

1 it is the point mass at zero, or

2 it has

(a) a strictly positive density on (0,∞), and

(b) has a rational LST such that there exists a pole of maximal real part −γ
that is real, negative, and such that −γ > <(−ξ) where −ξ is any other

pole.

The proof of the necessity of Theorem 2.1 was relatively elementary compared

to the proof of its sufficiency. The proof of the theorem’s sufficiency relied on

a geometric construction of a PH representation given the conditions (a) and (b).

O’Cinneide [104, Section 4] gave an example of such a construction which also served

to demonstrate that the order of a PH distribution is greater than or equal to its

algebraic degree. The same paper also contained an analogous result to Theorem

2.1 for PHd distributions.

Maier [93] gave an alternative, algebraic proof of Theorem 2.1. He first proved

the discrete version of the theorem and then, by utilizing a change of variable that

transformed generating functions into LST s, showed the result to be true for PH

distributions. Again, the proof was constructive and an example was given in the

appendix.

Thus, given a PH distribution defined by either its density function or LST,

it is possible, via an involved process, to construct a representation for it. This

representation will not necessarily be minimal but would give an upper bound for

the order of the PH distribution.
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Aldous and Shepp [3] showed that the PH distribution of order p that has the

smallest coefficient of variation, or ratio of variance to the square of the mean

c =
m2 −m2

1

m2
1

, (2.4.3)

is the Erlang distribution of order p and rate λ > 0. In this case c = p−1. Conse-

quently, a lower bound for the order of any PH distribution is c−1.

O’Cinneide [105] showed that if the LST of a PH distribution has a pole of

maximal real part −λ1 and complex conjugate poles −λ2 ± iθ with θ > 0, then the

order of the PH distribution p satisfies

p ≥ πθ

λ2 − λ1

. (2.4.4)

As a result, the order of a PH distribution increases without bound as the real part

of a pair of complex conjugate poles approaches the pole of maximal real part from

below. In addition, O’Cinneide [105] conjectured that as the parameters of a PH

distribution are altered so that its density function approaches the horizontal axis

its order increases without bound.

Commault and Chemla [38] completely characterized all PH distributions that

have LST s of the form

φ(λ) =
λ1(λ

2
2 + θ2)

(λ+ λ1)(λ+ λ2 + iθ)(λ+ λ2 − iθ)
. (2.4.5)

They proved that (2.4.5) is the LST of a PH distribution if and only if λ2 > λ1.

Furthermore, they showed that (2.4.5) is the LST of an order three PH distribution

if and only if

θ ≤ λ2 − λ1√
3

.

Commault and Chemla [38] proved a number of other results which stated, or

placed lower bounds on, the order of a PH distribution given its LST. The results,

however, were restricted to specific cases. In particular, they showed that the dif-

ference in degrees between the denominator and the numerator of the LST of a PH
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distribution equals the minimum number of transient states visited before absorp-

tion in the Markov chain governed by α and T . This places a lower bound on the

order of any PH distribution but if the difference is small little can be said about

it.

More recently, Commault and Mocanu [39] showed that any order p PH rep-

resentation of some prespecified structure is a minimal representation for a PH

distribution of algebraic degree p for almost all admissible nonzero parameter values

of the representation. The set of all parameter values giving rise to PH distributions

of algebraic degree less than p therefore has measure zero. Consequently, any PH

distribution that has order greater than its algebraic degree would have arisen not

from a particular structure of higher order representation, but rather from particular

parameter values. To illustrate this, Commault and Mocanu [39] considered the PH

distribution with LST

φ(λ) =
5

(λ+ 1)(λ2 + 4λ+ 5)
,

which has poles λ1 = −2 + i, λ2 = −2 − i, and λ3 = −1. The algebraic degree of

the PH distribution is three, but (2.4.4) implies that its order must be greater than

three. In fact, an order-four representation is

α =
(

1
3

2
3

0 0
)

T =

















−2 2 0 0

0 −2 2 0

0 0 −2 2

1
8

0 0 −2

















,

which has a unicyclic structure. It is these particular parameter values of the rep-

resentation that give an algebraic degree of three for the PH distribution. If the

nonzero parameters are perturbed slightly (keeping the same unicyclic structure) by

letting, for example, for all admissible ε > 0,

α =
(

1
3
− ε 2

3
+ ε 0 0

)

,
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then the PH distribution with such a representation has an algebraic degree of four.

Before stating the characterization theorem equivalent to Theorem 2.1 for Coxian

distributions we state the following rather remarkable result due to Cumani [42], and

Dehon and Latouche [45].

Theorem 2.2 The classes of TPH distributions, Coxian distributions, and mixtures

of convolutions of exponential distributions are identical.

Later, O’Cinneide [103] proved the same result using the concepts of PH -

simplicity and PH -majorization. A PH -generator T is said to be PH-simple if

every PH distribution that has T as its generator has a unique representation of

the form (α,T ). A PH -generator T is said to majorize another PH -generator S

if any PH distribution with generator S has a representation of the form (α,T ).

Both Cumani [42] and O’Cinneide [103] gave an algorithm for finding, from a TPH

representation, a Coxian representation of the same order. Coxian representations

are very useful because they can be defined with only 2p parameters, their genera-

tors are PH -simple, and they are dense in the class of all distributions defined on

the nonnegative real numbers.

The following theorem is due to O’Cinneide [106].

Theorem 2.3 A distribution defined on [0,∞) is a Coxian distribution if and only

if

1 it is the point mass at zero, or

2 it has

(a) a strictly positive density on (0,∞), and

(b) has a rational LST with only real, negative poles.

O’Cinneide [107] defined the triangular order of a Coxian distribution to be the

order of its minimal Coxian representation. The minimal Coxian representation is
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unique because, as remarked above, Coxian generators are PH -simple. The trian-

gular order of a Coxian distribution does not, however, necessarily equal its order as

the following example demonstrates. Botta, Harris, and Marchal [28] showed that

the PH distribution with representation

α =
(

1 0 0
)

T =











−5 0 1
8

4 −4 0

0 1 −1











,

whose LST has only real poles, can only have a Coxian representation of order

greater than three. Thus, in general, all that can be said about a PH distribution

whose LST has only real poles is that it is a Coxian distribution of some order. We

therefore have for Coxian distributions

algebraic degree ≤ order ≤ triangular order.

O’Cinneide [107] completely characterized the class of all Coxian distributions

with density function, defined for u > 0, of the form

f(u) = (c1
u2

2
+ c2u+ c3)e

−µu. (2.4.6)

where µ > 0.

Theorem 2.4 A Coxian distribution with density function of the form (2.4.6) is a

PH distribution if and only if

1 c1 + µc2 + µ2c3 = µ2(1− α0),

2 c1, c3 ≥ 0, and

3 c2 > −
√

2c1c3.

Furthermore, if c2 ≥ 0 then the triangular order p of the distribution is three, oth-

erwise it is given by

p = 3 +
⌈ c22
2c1c3 − c22

⌉

,



CHAPTER 2. PHASE-TYPE DISTRIBUTIONS 24

where dxe denotes the least integer greater than or equal to x.

As a corollary to Theorem 2.4, O’Cinneide [107] showed that the Coxian distribution

with density function given by

f(u) =
((u− a)2 + ε)e−u

a2 − 2a+ 2 + ε
,

where a, ε > 0, has triangular order

p = 3 +
⌈a2

ε

⌉

,

which increases without bound as ε→ 0. In this example we have, as the parameter

ε approaches zero, the density function approaching the horizontal axis and the

triangular order of the PH distribution becoming arbitrarily large.

2.5 Closure Properties of Phase-type Distribu-

tions

To complete our introduction to PH distributions in this section we discuss the

closure properties of the class of PH distributions.

Theorem 2.5 Suppose that F and G are PH distributions with representations

(α,T ) of order p, and (β,S) of order q, respectively. Then we have the follow-

ing.

1. The convolution F ∗ G is a PH distribution with a representation (γ,R) of

order p+ q where

γ =
(

α α0β

)

R =





T −Teβ

0 S



 ,

and 0 is a p× q matrix of zeros.
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2. The mixture θF + (1 − θ)G, where 0 ≤ θ ≤ 1, is a PH distribution with a

representation (γ,R) of order p+ q where

γ =
(

θα (1− θ)β
)

R =





T 0

0 S



 ,

and 0 is the matrix of zeros of appropriate dimension.

3. If F ∗k denotes the k-fold convolution of F and {pk} is a PHd distribution with

a representation (δ,N ) of order n, the infinite mixture of convolutions

H ≡
∞

∑

k=0

pkF
∗k

is a PH distribution with a representation (γ,R) of order pn where

γ = α⊗ δ(I − α0N )−1 (2.5.1)

R = T ⊗ I − Teα⊗ (I − α0N )−1N . (2.5.2)

Here, I is the n × n identity and ⊗ denotes the Kronecker product which is

defined in Steeb [135, page 55].

Proof. See Neuts [101].

The proof in Neuts [101] is a formal one. Latouche and Ramaswami [85, Section

2.6] gave a more intuitive proof for the discrete case by considering the distribution

of the absorption time of the underlying Markov chain associated with each of the

three operations defined in Theorem 2.5. The proof of the continuous case was

not given but is similar. Statement 3 in Theorem 2.5 is not necessarily true if the

discrete distribution is not PHd. Latouche and Ramaswami [85, page 56] provided

an example where F is the exponential distribution and the discrete distribution is

defined, for k = 1, 2, . . ., by

pk =
1

k
− 1

k + 1
.
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The resultant distribution is not PH and does not even have a rational LST.

Assaf and Langberg [16] showed that any PH (Coxian) distribution is a proper

mixture (that is, 0 < θ < 1 in Statement 2 of Theorem 2.5) of two distinct PH

(respectively, Coxian) distributions. Thus, the class of all PH (Coxian) distributions

contains no extreme distributions.

Maier and O’Cinneide [94] proved the following PH characterization result:

Theorem 2.6 The class of all PH distributions is the smallest class of distributions

defined on [0,∞) that

1 contains the point mass at zero and all exponential distributions,

2 is closed under the operations of finite convolution and mixture, and

3 is closed under the operation

H ≡
∞

∑

k=0

(1− ξ)kξF ∗(k+1), (2.5.3)

where F ∗l denotes the l-fold convolution of the PH distribution F and 0 < ξ ≤
1.

Maier and O’Cinneide [94] also proved an analogous result for PHd distributions.

Assaf and Levikson [17] proved the corresponding result to Theorem 2.6 for

Coxian distributions:

Theorem 2.7 The class of all Coxian distributions is the smallest class of distri-

butions defined on [0,∞) that

1 contains the point mass at zero and all exponential distributions, and

2 is closed under the operations of finite convolution and mixture.

Starting with the point mass at zero and the set of all exponential distributions

any Coxian distribution can be constructed from a finite sequence of convolution

and mixture operations. In order to construct a PH distribution that is not Coxian
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we must also include operations of the type (2.5.3) in the sequence. Consider the

following. Let (α,T ) be a Coxian representation of order p. That is,

α =
(

α1 α2 . . . αp

)

T =























−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0

0 0 −λ3
. . . 0

...
...

. . . . . .
...

0 0 0 . . . −λp























where 0 < λ1 ≤ λ2 ≤ . . . ≤ λp. Let (δ,N ) be the minimal PHd representation for

the geometric distribution, that is, δ = (1 − ξ) and N = (1 − ξ) where 0 < ξ ≤ 1.

Applying the operation defined by (2.5.3) with (α,T ) and (δ,N ) gives, using (2.5.1)

and (2.5.2), a unicyclic PH representation (γ,R) with

γ = (1− ξ)(1− α0(1− ξ))−1α

R = T − (1− ξ)(1− α0(1− ξ))−1Teα

=





























−λ1 λ1 0 . . . 0 0

0 −λ2 λ2 . . . 0 0

0 0 −λ3
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0 . . . −λp−1 λp−1

ζλpα1 ζλpα2 ζλpα3 . . . ζλpαp−1 −λp(1− ζαp)





























,

where ζ = (1− ξ)(1− α0(1− ξ))−1. The representation (γ,R) requires only 2p+ 1

parameters. It is also a minimal representation since every phase in the underlying

Markov chain is used in contributing to the total absorption time.

O’Cinneide [108, Conjecture 4] conjectured that every PH distribution of order

p has a unicyclic representation of the same order. So far this conjecture has been

established only for PH distributions of order three.
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A final result in this line was proved by Mocanu and Commault [97]. They

showed that every PH distribution is a mixture of monocyclic generalized Erlang

distributions. Monocyclic generalized Erlang distributions are constructed from con-

volutions of Erlang and feedback Erlang distributions. A feedback Erlang distribu-

tion has a representation (γ,R), where for λ > 0 and 0 < z < 1,

γ =
(

α1 α2 . . . αp

)

R =





























−λ λ 0 . . . 0 0

0 −λ λ . . . 0 0

0 0 −λ . . . 0 0
...

...
. . . . . .

...
...

0 0 0 . . . −λ λ

zλ 0 0 . . . 0 −λ





























.

2.6 Concluding Remarks

In this chapter we have introduced and discussed PH distributions, a versatile class

of distributions defined on the nonnegative real numbers that add flexibility to

stochastic modelling in many different areas. We have also seen that even though

much has already been achieved in characterizing PH distributions there is still a lot

more to be done. O’Cinneide [108] gave a survey of PH distributions and presented

some open PH characterization problems. In fact, one of the problems, Conjecture

3, the “steepest increase conjecture” has already been proved by Yao [149]. The

conjecture, now a theorem, is stated as follows:

“For any PH distribution of order p, with density function f(u),
f(u)
up−1 is

nonincreasing for u > 0.”

In the next chapter we look at the problem of selecting the parameters of PH dis-

tributions when they are used to fit data or approximate probability distributions.

As we shall see this important area is also under-explored and there are still many

avenues to be investigated.



Chapter 3

Parameter Estimation and

Distribution Approximation with

Phase-type Distributions

3.1 Introduction

In this chapter we present a review of the literature concerned with the problem

of using PH distributions to either fit empirical data or approximate probabil-

ity distributions. In the first case it is assumed that the empirical data set, say,

{z1, z2, . . . , zn}, is a collection of n independent realizations from a PH distribution

with representation (α,T ). The aim of the fitting procedure is to estimate the pa-

rameters α and T so that they best fit the data in some sense. In approximating

a probability distribution with a PH distribution, the parameters α and T need

to be selected so that a predetermined function of the approximated distribution

and the approximating PH distribution is minimized. Such a function measures the

“distance” between the two distributions in some sense.

To date, the most common techniques used in estimating or selecting the param-

eters of PH distributions have been the methods of maximum likelihood, moment

29
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matching, and least squares. For a description of these methods see Rice [117],

Wackerly, Mendenhall, and Scheaffer [145], or any other elementary text on mathe-

matical statistics. Two particularly good references on the method of least squares

are Spiegel [132] and the Open University study guide on Least-Squares Approxi-

mation [141].

When using PH distributions for modelling, the phases can be thought of in two

different ways. First, they can be viewed as purely fictitious, in which case the class

of PH distributions provide a versatile, dense, and algorithmically tractable class of

distributions defined on the nonnegative real numbers. Second, the phases, or blocks

of phases, can represent something physical. In this case the model often determines

the structure of the PH representation to be used. For example, Faddy [49] rep-

resented the time spent in a compartmental model, where a “particle” or “token”

moves through a system of compartments, with a Coxian distribution. Compart-

mental models are used in drug kinetics where each compartment represents a body

organ or system. The model used in Faddy [49] allowed for Erlang residency times in

each compartment which could represent the amount of time it took a drug to clear

the organ or system. An example was given where a two-compartment system was

used to model the outflow of labelled red blood cells injected into a rat liver. The

flexibility of PH distributions, however, allows for more complex models. In Faddy

[51] a slightly more complex compartmental arrangement which allowed for some

cycling was used to model diffusion and clearance of a drug in body organs. Faddy

[52] also used a compartmental model to describe the failure and repair times of a

power station’s coal pulveriser. Each phase in the fitted Coxian distribution could

be interpreted as a stage in the life of the machine or its repair process. Here we

have an example where the phases are really fictitious but can be given a physical

interpretation, see also Faddy and McClean [55]. Aalen [1] also presented a number

of compartmental models used in survival analysis.

In order to standardize the performance evaluation of PH parameter estimation

and distribution approximation algorithms the Aalborg benchmark was developed.
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This benchmark originated at an international workshop on fitting PH distributions,

held in Aalborg, Denmark, in February 1991, and was extended in Bobbio and Telek

[25]. The extended benchmark consisted of nine distributions: two Weibull, three

lognormal, and two uniform distributions, as well as a shifted exponential, and a

matrix-exponential distribution. Five goodness of fit measures were also included:

the area distance between the densities, the negative of the cross entropy, and the

relative errors in the mean, standard deviation, and coefficient of skewness. For a

description of the extended benchmark see Bobbio and Telek [25], or Horvath and

Telek [72].

In Section 3.2 we describe some of the methods for PH parameter estimation and

distribution approximation found in the literature. Section 3.3 contains a discussion

on the problems encountered when using the current algorithms. We also discuss

the work of Lang and Arthur [82] where two moment matching and two maximum

likelihood algorithms were compared. We conclude the chapter in Section 3.4 and

propose that some of the problems with PH fitting and approximation methods can

be overcome by performing the estimation or approximation in the Laplace-Stieltjes

transform domain.

3.2 Parameter Estimation and Distribution Ap-

proximation Methods for Phase-type Distri-

butions

This section contains a brief description of some PH parameter estimation and

distribution approximation methods. The survey is by no means complete and we

refer the reader to the comprehensive reference lists given in Bobbio and Cumani

[24], Johnson [73], and Asmussen, Nerman, and Olsson [15].

Asmussen, Nerman, and Olsson [15] (see also Asmussen [8]) developed an

expectation-maximization (EM ) algorithm (named EMPHT) to calculate maximum
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likelihood parameter estimates for general PH distributions when fitted to empirical

data. They adapted the algorithm so that it could also be used for distribution ap-

proximation with PH distributions. In a companion paper Olsson [110] extended the

algorithm so that it could be used with right-censored and interval-censored data.

The original and extended algorithms are available as the downloadable package

EMpht1, which is written in C.

The EM algorithm, explained in full generality in the seminal paper by Demp-

ster, Laird, and Rubin [46], is an iterative scheme that finds maximum likelihood

parameter estimates when there are incomplete data. The maximum likelihood es-

timation problem is formulated in such a way, that if the data were complete, then

the calculation of the parameter estimates that maximize the loglikelihood (M -step)

would be possible. But since the data are incomplete the sufficient statistics for the

parameter estimates are replaced with their expected values (E-step). Starting with

some initial values for the sufficient statistics the iterations alternate between the

two steps until convergence, defined through some stopping criterion, is reached. For

a comprehensive treatment of the EM algorithm and its applications see McLachlan

and Krishnan [95].

Asmussen, Nerman, and Olsson [15] considered the whole sample path in an

evanescent continuous-time Markov chain as a complete realization or observation

of the process. Such an observation keeps a record of each state visited, in order,

and the sojourn times in each one, until absorption. Each element of the empirical

data set, however, is only the time to absorption of the process and is hence an

incomplete observation. Given a set of complete observations it is relatively simple

to derive the sufficient statistics needed to estimate α and T . These are

1 the total number of observations starting in each phase,

2 the total time spent in each phase, and

3 the total number of jumps from one phase to another.

1http://www.maths.lth.se/matstat/staff/asmus/pspapers.html
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From these sufficient statistics the maximum likelihood estimates for the PH pa-

rameters α and T (M -step) can be calculated relatively easily. Calculating the

expected values of the sufficient statistics (E-step) in order to perform the M -step

proved to be much more involved and required the solution of a complicated set

of differential equations. Their numerical solution needed the implementation of

a Runge-Kutta method of fourth order, see Kreyszig [81, pages 947–949], or Ten-

embaum and Pollard [139, pages 653–658]. The related distribution approximation

algorithm minimized the relative entropy between the approximated density and the

approximating PH density. The implementation was similar to that of the data fit-

ting algorithm. A number of examples where densities from the Aalborg benchmark

were approximated with PH distributions of varying orders was given, as well as a

number of examples of fits to empirical data. Plots of the approximating (or fitted)

densities against the approximated density (respectively, histogram) were given for

each example but no performance evaluation using the benchmark’s goodness of fit

measures was done.

Bobbio and Cumani [24] developed an algorithm to calculate maximum likeli-

hood parameter estimates. They chose to restrict themselves to the class of Coxian

distributions because

1 their representations are unique,

2 the number of parameters that need to be estimated is only 2p− 1 where p is

the order of the representation (they assumed that there was no point mass

at zero), and

3 the partial derivatives of the loglikelihood function, with respect to the distri-

bution’s parameters, are able to be calculated easily.

In order to choose the parameters that maximized the loglikelihood function the

resulting nonlinear program was solved by combining a linear program with a line

search at each iteration. The algorithm was developed to fit Coxian distributions
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to empirical data with the option of including right-censored data. Continuous dis-

tribution functions could also be approximated by choosing suitable sample points.

The package, written in FORTRAN, was named MLAPH. Bobbio and Telek [25]

evaluated MLAPH against the extended Aalborg benchmark. They gave plots of

each approximated density with accompanying approximating PH densities of or-

ders 2, 4, and 8. The five performance measures mentioned in Section 3.1 were

tabulated for each case and the results discussed.

Horvath and Telek [72] developed a method which separately approximated the

main part and the tail of an arbitrary distribution defined on the nonnegative real

numbers with a PH distribution. The main part of the distribution was approxi-

mated with a Coxian distribution by minimizing any distance (goal) function of the

approximated and approximating densities. A nonlinear programming procedure

similar to that of Bobbio and Cumani [24] was used to perform the minimization.

The authors also stated that their method could be used with general PH distri-

butions but they believed that Coxian distributions were just as flexible in practice

and much easier to compute with (refer to points 1–3 in the previous paragraph).

The tail was approximated with a hyperexponential distribution using a method

proposed by Feldman and Whitt [58]. The algorithm was tested by using three sep-

arate distance functions against the extended Aalborg benchmark and two Pareto

density functions. The three distance functions chosen were

1 the relative entropy,

2 the L1 distance, and

3 the relative area distance

between the main part of the approximated density and the approximating Coxian

density. Both Pareto distributions, and a uniform and a Weibull distribution from

the Aalborg benchmark, were evaluated graphically. The performance measures for

all of the distribution approximations were tabulated in the appendix and discussed.
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They also gave two examples that compared the queue length distribution for the

M/G/1 queue with that of the approximating M/PH/1 queue. The service time

distributions used were the two abovementioned Pareto distributions.

Faddy [51], [52], and [53], Faddy and McClean [55], and Hampel [65] used max-

imum likelihood estimation to fit Coxian distributions to real data. They used

existing MATLAB r© or S-PLUS r© routines (for example the Nelder-Mead algorithm

in MATLAB r©) to perform the required parameter estimation. Harris and Sykes

[67] developed an algorithm to fit empirical data with generalized hyperexponential

distributions using maximum likelihood estimation.

Johnson [73] (see also Johnson and Taaffe [74], [75], and [76] for the underlying

theory) developed an algorithm MEFIT, written in FORTRAN, that matched the

first three moments of a mixture of Erlang distributions to the respective moments

of empirical data or a distribution. The fit or approximation could be improved

by also matching up to six moments, up to 10 values of either the distribution or

density functions, or up to 10 values of the Laplace transform. The nonlinear op-

timization program, which resulted from the parameter estimation or distribution

approximation technique, was solved using the sequential quadratic programming

package NPSOL, see Gill, Murray, Saunders, and Wright [60]. To illustrate the

algorithm several examples where distributions were approximated with mixtures

of Erlang distributions were given. The selection of examples were not from the

Aalborg benchmark (probably due to the fact that most of the work was done prior

to 1991) but included a lognormal and a uniform distribution, two Weibull distribu-

tions, and a mixture of two lognormal distributions. Each example was assessed with

a plot of the approximated and approximating density functions (and corresponding

distribution functions), and a quantile-quantile plot. Three performance measures,

the area between the density functions, the area between the distribution functions,

and the maximum deviation between the distribution functions, were also used in

the evaluation. In addition, the GI/M/1 queue, with each of the abovementioned

approximated distributions used as the interarrival-time distribution, was compared



CHAPTER 3. PH PARAMETER ESTIMATION/DISTRIBUTION APPROX. 36

with the respective approximating PH/M/1 queue. The performance measure used

in the comparison was the steady-state mean queue length. Results for traffic in-

tensities of 0.5 and 0.7 were given.

Schmickler [124] also developed a moment matching algorithm where the first

three moments of a mixture of two or more Erlang distributions were matched

exactly to the respective moments of an empirical distribution function. Higher order

moments were matched approximately by minimizing the difference in area between

the empirical and fitting distributions. This algorithm, unlike those discussed so

far where the user needed to preselect the order of the fitting or approximating

PH distribution, had the added feature of being able to determine the order of

the fitting PH distribution. The Flexible Polyhedron Search method (that is, the

Nelder-Mead algorithm) was used to solve the resulting nonlinear program. The

fitting package, written in PASCAL, was named MEDA. Some examples of fits to

empirical distributions were given.

Bux and Herzog [32] developed an algorithm that fitted Coxian distributions

with a uniform rate to empirical data. They matched the first two moments and

minimized the deviation between the fitting Coxian distribution function and the

empirical cumulative distribution function at the data points. The authors noted

that while their algorithm was efficient, the number of phases required for a close

fit could be very large.

Faddy [49] and [50] used least squares to fit Coxian distributions to real sample

data in order to estimate the parameters for compartmental models used in drug

kinetics.
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3.3 Problems with Phase-type Parameter Es-

timation and Distribution Approximation

Methods

In this section we discuss some of the problems encountered when estimating or

selecting the parameters of PH distributions using the various methods described

in the previous section.

The literature concerned with comparing the performance evaluation of PH pa-

rameter estimation and distribution approximation algorithms is scant. Khosh-

goftaar and Perros [78] compared three methods (maximum likelihood, moment

matching, and minimizing a distance measure) to find the parameters of an order

two Coxian distribution when approximating a distribution with coefficient of vari-

ation greater than one. They found that the moment matching method worked

best for this particular problem, but when the technique was used to fit empirical

data the other two methods performed better. Madsen and Nielsen [92] fitted PH

distributions to two empirical data sets of holding times for traffic streams from the

Danish packet-switched network PAXNET. They fitted mixtures of Erlang distri-

butions using MEDA, Coxian distributions using a method due to Bobbio, Cumani,

Premoli, and Saracco [26] (the precursor to MLAPH), and mixtures of Erlang dis-

tributions with identical rates by minimizing the sum of the deviations between the

empirical and fitting distributions. They evaluated the distribution function fits

graphically and with five performance measures: the sum of the deviations, the sum

of the deviations squared, the maximum deviation, the area between the empirical

and fitting distributions, and the first two moments. Another notable advance in

the area of evaluating the performance of PH parameter estimation and distribution

approximation methods is the work of Lang and Arthur [82].

Lang and Arthur [82] conducted a comprehensive evaluation of the programs

EMPHT, MLAPH, MEFIT, and MEDA by comparing their performance when used
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to approximate the distributions in the extended Aalborg benchmark. For each

package they plotted the approximated densities of the Aalborg benchmark with

approximating PH densities of varying orders. They evaluated each algorithm using

the benchmark’s five performance measures and gave detailed tables of results. In

addition, the algorithms were assessed by using some qualitative measures. These

were:

1. Generality - How well the algorithm coped with a variety of distribution ap-

proximation problems.

2. Reliability - Whether the algorithm worked properly or not.

3. Stability - Whether slightly altered starting values adversely affected the pa-

rameter estimates.

4. Accuracy - Whether errors were introduced due to rounding and/or iterations

terminating.

5. Efficiency - How long the algorithm took to run.

They found that no particular PH parameter estimation or distribution approxi-

mation algorithm performed better than any other in all tested cases except that

EMPHT took a lot longer to converge than any of the other algorithms. All of the

methods approximated distributions that exhibited PH behaviour relatively well

with PH distributions of low order. However, no method fitted non-PH distribu-

tions well even using PH distributions of high order.

Lang and Arthur [82] stated four main problems with using PH distributions to

fit data or approximate distributions. These were:

1. The fitting or approximation problem is highly nonlinear.

2. The number of parameters that need to be estimated or selected is often large.

3. Representations of PH distributions are typically not unique.
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4. The relationship between the parameters and the shape of a PH distribution

is generally nontrivial.

The first problem is evident because the algorithms MLAPH, MEFIT, and

MEDA all required complicated nonlinear programming routines to solve the result-

ing likelihood or moment equations. Also, EMPHT required a computer intensive

E-step which used a Runge-Kutta method of fourth order.

The second problem is well known in the literature. Not only is the number of

parameters to be estimated large for PH distributions even of modest order, their

representations are generally overparameterized. The LST of a general PH distri-

bution of order p has, in general, 2p parameters. Since every PH distribution has

a unique LST (see Feller [59, page 430]) a general PH distribution of order p can

be parameterized with 2p parameters. Asmussen [8] also demonstrated this fact

with an argument using moments. Since the general PH representation (α,T ) of

order p has p2 + p parameters, general PH distributions are considerably overpa-

rameterized. This problem has implications for general PH fitting methods, such as

EMPHT, which need to fit a higher number of parameters than is necessary. All of

the other authors mentioned in Section 3.2 bypassed the problem of overparameter-

ization by restricting themselves to Coxian distributions, or in the case of the tail

approximation in Horvath and Telek [72], to hyper-exponential distributions whose

representations also require only 2p parameters.

To complicate matters, given the LST of a PH distribution that has algebraic

degree p, it is unknown, in all except the simplest cases, how to determine a PH

representation (α,T ) of minimal order for it. In fact, the PH distribution’s order

may be greater than p but still depend on only 2p parameters. In Section 2.4 we

saw for Coxian distributions that

algebraic degree ≤ order ≤ triangular order,

and that the example immediately following Theorem 2.4 gave a family of Coxian

distributions that have algebraic degree three but arbitrary triangular order. It is
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not known what happens to the order of such a family of Coxian distributions as the

triangular order increases, except that it cannot exceed the triangular order. These

facts suggest, albeit rather weakly, that a fitted general PH distribution may do

just as well as, if not better than, a Coxian distribution of higher order. This ties in

with the third problem, the nonuniqueness of PH representations, which is not well

understood. Two distinct PH representations can be identified by simply comparing

their Laplace-Stieltjes transforms. However, given a PH distribution in terms of its

density function, Laplace-Stieltjes transform, or representation, it is not possible,

in general, to determine a minimal representation for the distribution. A method

that could fit general PH distributions of algebraic degree p (by estimating only 2p

parameters) would be desirable, especially if in addition the PH representation of

minimal order (with order greater than or equal to p) could be constructed from the

2p estimated parameters.

Faddy [51] and [53], and Hampel [65] found that there is even overparametriza-

tion when fitting Coxian distributions to data using maximum likelihood estimation,

but in a different, practical sense. This overparameterization occurred when Coxian

distributions with a number of free parameters were fitted to data using maximum

likelihood estimation and then compared with Coxian fits that had fewer free pa-

rameters (but defined on the same parameter space).

Consider the following. Suppose a distribution, defined on the m-dimensional

parameter space Θ, is fitted to a data set {z1, z2, . . . , zn} which consists of n realiza-

tions of the independent and identically distributed random variables Z1, Z2, . . . , Zn.

Write Z = (Z1, Z2, . . . , Zn). Let θ ∈ Θ and L(θ,Z) be the loglikelihood function.

Suppose that Θ0 ⊂ Θ1 are subsets of Θ with respective dimensions m0 and m1 with

m0 < m1 ≤ m. We say that Θ0 is a submodel of Θ1. The likelihood ratio statistic,

which tests the null hypothesis H0: θ ∈ Θ0 versus the alternative hypothesis H1:

θ ∈ Θ1\Θ0, is defined as

λ(Z) =

max
θ ∈ Θ0 L(θ,Z)
max
θ ∈ Θ1 L(θ,Z)

.
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Wilks [147] showed that under H0, −2 log λ(Z) has a χ2
m1−m0

distribution, see also

Strawderman [136].

In Faddy [51], when Coxian distributions were fitted to data using maximum like-

lihood estimation, it was found that some of the estimated parameters were nearly

identical and others nearly equal to zero. Upon fitting a Coxian distribution with a

structure that constrained these parameter values accordingly (the submodel), the

loglikelihood did not decrease appreciably. For example, when an order three Coxian

distribution with five free parameters was fitted to a particular data set the loglike-

lihood was −496.96. The Coxian fit where two of the parameters were constrained

to be equal (a 4-parameter model) gave a loglikelihood of −497.15. Hampel [65]

fitted the same data set with an order three 5-parameter Coxian distribution and

then proceeded to look for parameter redundancies. He then fitted a number of 4-

parameter submodels, and after performing an hypothesis test for each one, selected

the model with the largest p-value (from the appropriate χ2 distribution). After

repeating the process another two times an order three 2-parameter fit with a log-

likelihood of −497.36 was achieved. This compared with an order two 3-parameter

fit with a loglikelihood of −497.52. Although this difference may not be signifi-

cant, it suggests that more flexibility in fitting Coxian and PH distributions may

be achieved by increasing the order of the representation rather than its number of

free parameters.

Faddy [53] further illustrated this last point by fitting a Coxian distribution

to a data set that contained the inter-eruption times of the Old Faithful geyser

in Yellowstone National Park (see Silverman [130] for the data), which according

to Asmussen, Nerman, and Olsson [15] “. . . is a notoriously difficult example in

density estimation . . .”. The fitted Coxian distribution had an order of 397 but with

only four free parameters! The loglikelihood was −100.1937. The fit was visually

very good. More recently Faddy [56] achieved a fit to the same data set with a

mixture of three Erlang distributions of total order 482 and five free parameters.

The loglikelihood was slightly less than −100.1937. In fact, in this case a mixture
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of three gamma distributions were fitted to the data (loglikelihood −100.0717) and

the “a” parameters were rounded to give the number of phases in each Erlang

distribution.

This particular type of overparameterization, so far, has only been investigated

experimentally in the literature, and then in a limited way. Realizing this inherent

parameter redundancy Faddy [54] developed a penalized maximum likelihood fitting

method which penalized Coxian distributions that had disparate eigenvalues. Some

examples using the technique with varying penalty parameters were used to fit real

data with Coxian distributions.

The only PH parameter estimation or density approximation algorithm de-

scribed in Section 3.2 that estimated the order of the PH distribution was MEDA.

The other algorithms relied on the user to preselect the PH distribution’s order.

The literature addressing this problem is meagre. Rydén [122] developed a method

to estimate the order of a PH distribution when fitted to data. His approach used a

penalized likelihood method such as the Akaike information criterion (see Akaike [2])

or the Bayesian information criterion (see Schwarz [126]). He found that asymptot-

ically the procedure never underestimated the order. A similar technique was also

developed for Markov-modulated Poisson processes in the same paper. The work re-

lied on an earlier paper by Rydén [120] where a similar penalized likelihood method

was developed to estimate the order of hidden Markov models.

There is scant literature addressing Problem 4, the relationship between the

parameters and the shape of the PH distribution. One notable exception, however,

is Johnson and Taaffe [75]. They considered the four classes of PH distributions:

1. Mixtures of Erlangs of common order.

2. Mixtures of Erlangs.

3. Coxian.

4. General PH.
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They applied the moment matching techniques developed in Johnson and Taaffe

[74] and [76] to investigate how the order and class affected the shape of the PH

density function. The aim of their investigation was to explore the flexibility of each

class of PH distribution. They found that the first two classes exhibited sufficient

flexibility to be on a par with the other two classes, but with fewer parameters.

3.4 Concluding Remarks

In this chapter we have given a survey of the methods used to estimate or select the

parameters for PH distributions and discussed some of the shortcomings associated

with them, in particular the problem of overparameterization.

In order to solve some of the problems when using PH distributions to fit empir-

ical data or approximate probability distributions we propose that the estimation or

approximation be carried out in the Laplace-Stieltjes transform (LST ) domain. As

mentioned in Section 3.3 PH distributions of algebraic degree p are parameterized

by only 2p parameters. In order to overcome the overparameterization problem,

at least in the representation sense, parameter estimation or distribution approxi-

mation in the LST domain may be a viable option. Also, since the LST of a PH

distribution is a rational function, a technique that is linear may be able to be de-

veloped. The problem of determining a PH representation from the estimated or

approximated LST still remains. However, the fitting or approximation problem,

and the representation problem have been separated into two stages and can there-

fore be expected to be simpler. In the next chapter we shall explore the possibility

of PH parameter estimation and distribution approximation in the LST domain.



Chapter 4

Parameter Estimation and

Distribution Approximation in the

Laplace-Stieltjes Transform

Domain

4.1 Introduction

When using PH distributions to fit data or approximate distributions we proposed

at the end of Chapter 3 that the estimation or approximation be carried out in

the Laplace-Stieltjes transform (LST ) domain. The motivation for this proposal is

twofold. First, the number of parameters required to completely define the LST of

a PH distribution (and hence any representation for the distribution) is 2p where p

is its order. Thus, the problem of the first type of overparameterization discussed

in Section 3.3 is avoided. Second, since the LST of a PH distribution is a rational

function, a method for finding the parameters is likely to require only the solution

of linear equations and hence be relatively easy to implement. In this chapter, after

a brief literature review, we explain in detail two LST parameter estimation, or

44



CHAPTER 4. LST PARAMETER ESTIMATION/DISTRIBUTION APPROX.45

distribution approximation, methods found in Harris and Marchal [66] and discuss

some of the problems associated with them.

The idea of parameter estimation and distribution approximation in the trans-

form (including the LST ) domain is not new. Often such techniques have been

employed when standard methods are intractable, or at least difficult to implement,

in some manner. Bar-Lev, Barkan, and Langberg [18] stated that there are essen-

tially two approaches to take when finding transform parameters:

“In one approach, the estimator for the unknown parameter is chosen to

minimize a certain distance measure between the theoretical and empirical

transforms. In the second approach, the estimator is taken to be the

solution of an equation obtained by equating the theoretical transform

with its empirical counterpart.”

The first approach is akin to the methods of maximum likelihood and least squares,

whereas the second approach is similar to the method of moment matching. In fact,

moment matching is essentially a transform estimation or approximation technique

because the LST or characteristic function of a probability distribution is closely

related to its moment generating function. Bar-Lev, Barkan, and Langberg [18]

also realized that the success of transform estimation methods based on the second

approach rely on the sample size and the transform variables at which the empirical

and theoretical transforms are equated.

The literature on LST and general transform estimation and approximation is

sizable, and the brief selection presented here is by no means complete. The majority

of the papers cited contain their own literature reviews and should be consulted for

a thorough treatment of the topic.

Paulson, Holcomb, and Leitch [112] estimated the parameters for the stable laws,

given a randomly generated sample, by minimizing a weighted L2 distance between

the empirical and theoretical characteristic functions. The approach was extended in

Heathcote [69] where some properties of the parameter estimators were established.

Bryant and Paulson [31] also used a weighted L2 distance between the characteristic
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functions to estimate mixing proportions. Titterington, Smith, and Makov [142,

Section 4.6] gave a detailed discussion on fitting various transforms to empirical

transforms using a weighted least squares distance function. Their particular area

of interest was in fitting mixtures of distributions to data. They also gave some

asymptotic results for the transform estimators. There are a number of other refer-

ences that address parameter estimation using the abovementioned “first” approach

with transforms, particularly with characteristic functions, see Titterington, Smith,

and Makov [142], Bar-Lev, Barkan, and Langberg [18], or Yao and Morgan [148] for

comprehensive reference lists.

It appears that in the literature the second approach is used mostly with parame-

ter estimation procedures that use the Laplace transform rather than the character-

istic function. Schuh and Tweedie [125] developed three methods where the Laplace

transform of a time-evolving model was used to estimate the model’s parameters.

They gave a number of examples to illustrate their approach including a numerical

example where a time-evolving model was used to describe the lifetime of a sheep

parasite. Feigin, Tweedie, and Belyea [57] further developed the Laplace transform

estimation procedure to incorporate weighted Laplace transforms. The procedure

was named weighted area estimation. The two particular weight functions they chose

resulted in the Laplace transform estimators of Schuh and Tweedie [125], and mo-

ment estimators. Examples of parameter estimation for multi-stage time-evolving

models were given including the previously mentioned sheep parasite case. Also, the

asymptotic efficiency of weighted area estimation was shown to compare favourably

with maximum likelihood estimation. In Tweedie, Zhu, and Choy [143] the weighted

area technique was used to estimate the interarrival and service rates in a transient

M/M/1 queue by only observing the queue length at fixed times. Hoeting and

Tweedie [71] developed estimators for the parameter variances when weighted area

estimation was used in multi-stage developmental models. The problem of select-

ing the transform variables at which to perform the weighted area estimation was

addressed in Laurence and Morgan [86]. Yao and Morgan [148] applied the tech-
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nique to estimate the parameters for indexed stochastic models. Bar-Lev, Barkan,

and Langberg [18] used the second approach to develop a moment estimator for an

exponential family defined on the real numbers.

In this chapter we will focus on two Laplace transform estimation or approx-

imation procedures due to Harris and Marchal [66] because they specifically use

rational LST s. It is interesting to note, however, that Harris and Marchal [66] did

not cite any of the abovementioned references on transform estimation in their bibli-

ography. They preferred to draw upon the literature concerned with PH parameter

estimation and distribution approximation (see Chapter 3), and fitting sums of ex-

ponential functions to data, see, for example, Parsons [111], Yeramian and Claverie

[150], and Kammler [77]. In Section 4.2 we define the terminology needed for the

rest of the chapter. Sections 4.3 and 4.4 detail Harris and Marchal’s two methods,

and a discussion of some of the associated problems appears in Section 4.5.

4.2 Preliminaries

In this section we define the various LST s required for the subsequent sections of

this chapter and make some observations.

The LST, defined for λ ∈ C with <(λ) > −δ where δ is a positive number, of a

nonnegative random variable X that has distribution function F (u), is given by

φ(λ) = E[e−λX ]

=

∫ ∞

0

e−λudF (u)

=
∞

∑

k=0

(−1)k

k!
mkλ

k, (4.2.1)

where E denotes the expectation operator, m0 is defined to be one, and for k =

1, 2, . . ., mk is the kth noncentral moment of X. For k = 1, 2, . . ., the kth noncentral

moment can be calculated from the kth derivative of φ(λ) evaluated at λ = 0. That
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is,

mk = (−1)kφ(k)(0).

If the random variable X has a PH distribution then the LST can be expressed

as the ratio of two irreducible polynomials. That is,

φ(λ) =
1 + c1λ+ c2λ

2 + . . .+ cNλ
N−1

1 + d1λ+ d2λ2 + . . .+ dNλN
, (4.2.2)

where the numerator and denominator have no factors in common, N is a positive

integer, and dN 6= 0. The constant terms in the numerator and denominator are

both one to ensure that the corresponding distribution is not defective. Equation

(4.2.2) is equivalent to (2.4.2) with the point mass at zero α0 equal to 0, which we

assume to be the case throughout this chapter. Consequently, we will refer to (4.2.2)

as a rational Laplace transform (RLT ). If a positive point mass at zero is required

the two parameter estimation or distribution approximation methods described in

this chapter can be easily adapted. This form for the RLT of a PH distribution has

been chosen because it is the one used in Harris and Marchal [66]. As in Chapter 2

we refer to N as the algebraic degree of the RLT.

Not every RLT of the form (4.2.2) corresponds to a distribution, PH or other-

wise. In addition to the conditions stated immediately after (4.2.2) we also require

that

1 there exists a pole of maximal real part that is real and negative, and

2 the corresponding density function f(u) is nonnegative for u > 0,

see Zemanian [151]. Also, Condition 2 implies, for λ ≥ 0, that

φ(λ) =

∫ ∞

0

e−λuf(u)du > 0.

The inequality is strict because f(u) > 0 for some u > 0 as

∫ ∞

0

f(u)du = 1. Also,

every RLT of the form (4.2.2) that corresponds to a distribution does not necessarily

correspond to a PH distribution. For PH distributions we also require that
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1 there exists a pole of maximal real part −γ that is real, negative, and such

that −γ > <(−ξ) where −ξ is any other pole, and

2 the corresponding density function f(u) is positive for u > 0,

see Theorem 2.1. Consequently, we will be performing the parameter estimation

or distribution approximation within the class of distributions that have rational

Laplace transform (see Cox [41]) rather than within the class of PH distributions.

Of course the fitted or approximated density may be PH but this will not necessarily

be the case.

The empirical cumulative distribution function of a data set {z1, z2, . . . , zn}, de-

fined for u ≥ 0, is given by

G(u) =
1

n
#{zi|zi ≤ u},

where # denotes the cardinality of the given set. The empirical cumulative dis-

tribution function is a right continuous step function that gives the proportion of

data that are less than or equal to u ≥ 0. The empirical Laplace-Stieltjes transform

(ELST ) of G(u), defined for λ ∈ C such that λ > −δ where δ is a positive number,

is given by

ψ(λ) =

∫ ∞

0

e−λudG(u)

=
n

∑

i=1

e−λzi(G(zi)−G( lim
u→z−i

u))

=
1

n

n
∑

i=1

e−λzi . (4.2.3)

4.3 Harris and Marchal’s Method 1

In this section we describe Method 1 of Harris and Marchal [66], discuss an example,

and highlight some problems with the method.



CHAPTER 4. LST PARAMETER ESTIMATION/DISTRIBUTION APPROX.50

In order to find the parameters of a RLT of the form (4.2.2) when fitting the

ELST of a data set or approximating the LST of a probability distribution, we

first calculate, for k = 1, 2, . . . , 2N − 1, the kth noncentral moment mk. Next, we

truncate (4.2.1) after 2N terms and equate it to (4.2.2). That is,

2N−1
∑

k=0

(−1)k

k!
mkλ

k =

N−1
∑

k=0

ckλ
k

N
∑

k=0

dkλ
k

. (4.3.1)

Note that c0 = d0 = 1. Upon multiplying (4.3.1) through by the denominator

of the right hand side, expanding, and equating the coefficients of λ, λ2, . . . , λ2N−1

(equating the constant terms just gives 1 = 1), we get a system of 2N − 1 linear

equations in the 2N − 1 unknowns c1, c2, . . . , cN−1, d1, d2, . . . , dN . The terms with

λ2N , λ2N+1, . . . , λ3N−1 are ignored since only 2N − 1 equations are required to find

the 2N − 1 parameters. Now, for i = 0, 1, . . . , N − 1,

N−1
∑

j=0

(−1)j+i

(j + i)!
mj+idN−j = −(−1)N+i

(N + i)!
mN+i, (4.3.2)

and for i = 1, 2, . . . , N − 1,

ci =
i

∑

j=0

(−1)j

j!
mjdi−j. (4.3.3)

For k = 1, 2, . . . , 2N − 1, differentiating the left hand side of (4.3.1) k times

and letting λ = 0 gives mk. Thus, Method 1 matches the first 2N − 1 moments of

the empirical data or distribution with the first 2N − 1 derivatives of the fitting or

approximating RLT evaluated at zero. Harris and Marchal [66] did not address the

possibility of (4.3.2) and (4.3.3) not having a unique solution but altering N ought

to remedy the problem in most cases.

In order to determine the minimum algebraic degree N of the RLT used to

achieve a reasonable fit or approximation to the target LST, Harris and Marchal

[66] proposed that N be increased until there is no appreciable gain in the algebraic
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degree of the fitting or approximating RLT. This would be determined by either the

cancellation of factors in the numerator and denominator or by the coefficient dN

becoming close to zero.

To illustrate Method 1, Harris and Marchal [66] approximated the truncated

LST s of two gamma distributions with RLT s. The two approximations were as-

sessed graphically and both looked quite good. Despite this, one of the approximat-

ing RLT s did not correspond to a distribution - the pole of maximal real part was

not real. This problem will be further highlighted in the next example.

In order to demonstrate Method 1 when used for fitting data we fitted a sample

consisting of 100 randomly generated realizations from the PH distribution with

representation

α =
(

0.6 0.2 0.2
)

T =











−5 5 0

0 −3 2

1 0 −2











,

with a RLT of algebraic degree five. The LST for the PH distribution is

φ(λ) =
1 + 11

25
λ+ 1

50
λ2

1 + 31
20
λ+ 1

2
λ2 + 1

20
λ3
,

which has zeros at −19.426 and −2.5739, and poles at −0.8663 and −4.5669 ±
1.4938i. A histogram of the data is shown in Figure 4.3.1 and the empirical cumu-

lative distribution is shown in Figure 4.3.2.

The RLT fitted by Method 1 was

φ(λ) =
1 + 0.1455λ+ 0.0166λ2 − 0.1335λ3 − 0.0027λ4

1 + 1.2585λ+ 0.4273λ2 − 0.1386λ3 − 0.1366λ4 − 0.0294λ5

The RLT has zeros at 2.1532,−49.9833, and −1.0240 ± 1.5566i, and poles at

2.1543,−1.5060 ± 1.3777i, and −1.8924 ± 0.4523i. Positive poles are disallowed

but in this case the nearly identical factors, (λ−2.1532) and (λ−2.1543), in the nu-

merator and denominator, respectively, can be cancelled. The occurrence of nearly
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Figure 4.3.1: Histogram of the PH data
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Figure 4.3.2: Empirical cumulative distribution of the PH data
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identical factors seems to occur frequently in the examples given in Harris and Mar-

chal [66] but the authors only state, without justification, that “Should the poles

be found in the positive half-plane, because of analyticity they will be matched by

roots in the positive half-plane, and each factor can be divided out of the numerator

and denominator . . . ”. After cancelling the factors and dividing the numerator and

denominator through by their respective constant terms (to ensure that m0 = 1)

the resultant RLT of algebraic degree four is

φ(λ) =
1 + 0.6099λ+ 0.2999λ2 + 0.0058λ3

1 + 1.7227λ+ 1.2270λ2 + 0.4309λ3 + 0.0634λ4
. (4.3.4)

Figure 4.3.3 shows the fitted RLT plotted with the ELST of the PH data. The fit

looks very good. However, since the pole of maximal real part of the RLT is not

real it cannot correspond to a distribution, PH or otherwise.
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Figure 4.3.3: ELST of the PH data and fitted RLT

Harris and Marchal [66] recognized the problem of having fitting or approximat-

ing RLT s that do not correspond to distributions and detailed a method to resolve

the difficulty. We will explain the method with the same example that they used.
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Consider the RLT

φ(λ) =
1 + 7

6
λ+ 5

6
λ2

1 + 11
6
λ+ λ2 + 1

6
λ3

(4.3.5)

which has poles −1,−2, and −3. Since the pole of maximal real part is real it

is possible that the RLT corresponds to a distribution. However, upon inverting

(4.3.5) we get the function, defined for u ≥ 0,

g(u) = 2e−u − 6(2e−2u) + 5(3e−3u)

which is negative when 0.5739 ≤ u ≤ 1.4410. In order to adjust g(u) so that it

is nonnegative Harris and Marchal [66] stated “ . . . first find the value u∗, which

minimizes . . . g(u), and then change the value of the largest damping factor so that

g(u∗) = 0.” (We have replaced their t∗ with u∗ to be consistent with our notation).

This approach, as stated, is unlikely to work unless g′(u∗) = 0, also. This is unlikely

to occur in practice. If, however, the procedure is repeated iteratively until both

g(u∗) = 0 and g′(u∗) = 0 (u∗ will be updated at each iteration) the function can

be adjusted so that it is nonnegative, at least around the new value of u∗. After

applying the procedure four times the resolved density is

g(u) = 2e−u − 6(2e−2u) + 5(2.7279e−2.7279u)

which has a minimum at u∗ = 0.9278 where g(u∗) = 2.22×10−16. Harris and Marchal

[66] gave a value of 2.7283 for the adjusted damping factor but this inaccuracy was

probably due to rounding errors. Given a RLT it is not clear, though, how it

could be determined whether or not its inverse is negative for some u > 0 unless a

graphical or numerical procedure is used. Harris and Marchal [66] did not address

this problem. In the above example if the new, resolved g(u) is still negative for

some other values of u > 0, Harris and Marchal [66] suggested that the procedure

be repeated by adjusting the next highest damping factor. No justification as to

whether the adjusted density is still a good fit or approximation was given. The

whole procedure is rather ad hoc!
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If complex conjugate poles result from the RLT fitting or approximation process,

as is the case with our example, Harris and Marchal [66] suggested, again without

justification, that either the imaginary parts of all complex zeros and poles are

dropped, or they are replaced with a real number of the same modulus. The resultant

RLT can then be made positive, if necessary, using the abovementioned procedure.

In our case, upon inverting the fitted RLT (4.3.4), we get

f(u) = (0.5326 + 1.1904i)e−(1.5060−1.3777i)u + (0.5326− 1.1904i)e−(1.5060+1.3777i)u

− (0.4871 + 7.9074i)e−(1.8924+−0.4523i)u − (0.4871 + 7.9074i)e−(1.8924+0.4523i)u.

Dropping the imaginary parts of all complex numbers gives

g(u) = 1.0652e−1.5060u − 0.9742e−1.8924u.

Dividing through by
∫ ∞

0

g(u)du = 0.1925

gives the function

h(u) = 3.6742(1.5060)e−1.5060u − 2.6742(1.8924e−1.8924u),

which is nonnegative for u ≥ 0 and is hence a density function.

The LST fit is illustrated in Figure 4.3.4, and the corresponding density and

distribution fits are shown in Figures 4.3.5 and 4.3.6, respectively. This fit does not

look very good.

4.4 Harris and Marchal’s Method 2

Harris and Marchal described a second LST fitting or approximation method which

allowed for more flexibility. Let ψ(λ) be either

1 the LST of a distribution to be approximated, or

2 the ELST (4.2.3) of some empirical data.
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Figure 4.3.4: Adjusted transform fit
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Figure 4.3.5: Adjusted density fit
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Figure 4.3.6: Adjusted distribution fit

Next, select 2N−1 Chebyshev-spaced interpolation points λ1, λ2, . . . , λ2N−1 and sub-

stitute them into (4.3.1). After some rearrangement we get the system of 2N − 1

linear equations, for j = 1, 2, . . . , 2N − 1,

N−1
∑

k=0

ckλ
k
j − ψ(λj)

N
∑

k=0

dkλ
k
j = 0, (4.4.1)

in the 2N−1 unknowns c1, c2, . . . , cN , d1, d2, . . . , dN , see the Open University’s study

guide on Chebyshev Approximation [140]. Harris and Marchal [66] did not say how

the Chebyshev-spaced interpolation points could be chosen and selection of the

2N −1 points seemed to be arbitrary. With this method if more than 2N −1 points

are chosen an overdetermined (more equations than unknowns) system of equations

is likely to result. Even though, in general, no solution exists for such a system of

equations the least squares solution can be found using, for example, MATLAB r©.

In order to illustrate Method 2 we fitted the ELST of the same PH data set as

before with a RLT of algebraic degree five using the nine points {1, 2, . . . , 9}. The
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fitted RLT was

φ(λ) =
1 + 1.9884λ− 0.1871λ2 + 0.0217λ3 − 0.0006λ4

1 + 3.0711λ+ 2.3797λ2 + 0.0931λ3 + 0.0048λ4 + 0.0021λ5
.

A plot of the fitted RLT and ELST is shown in Figure 4.4.1. The fit looks very good.

However, since φ(λ) < 0 when λ & 33, it does not correspond to a density. Choosing

the set of matching points to be {1, 2, . . . , 100} gave a similar result. Again, Harris

and Marchal [66] suggested using the same procedure explained in Section 4.3 to

overcome the problem of having the inverted Laplace transform negative for some

values of u.
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Figure 4.4.1: ELST of the PH data and fitted RLT

Harris and Marchal [66] used the first of their two methods to approximate

the densities in the extended Aalborg benchmark. Most of the approximations

were graphically quite good. However, in only two out of four cases where the

approximating density function was plotted with the approximated density could

it be established that it was actually a probability density. In the next section we
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discuss in more detail the problems associated with finding the parameters of RLT s

when used to fit or approximate the LST s of empirical or probability distributions.

4.5 Problems With Parameter Estimation and

Distribution Approximation in the Laplace-

Stieltjes Transform Domain

The main problem with the two parameter estimation or density approximation

methods described in Sections 4.3 and 4.4 was that the fitted or approximating

RLT did not necessarily correspond to a distribution. The reason for this is that

there is nothing inherent in the RLT (4.2.2) which ensures that it corresponds to a

distribution apart from the constant terms in the numerator and denominator being

equal to one. Both methods fitted or approximated the LST of a distribution with

a RLT that did not necessarily correspond to a distribution. It ought then to come

as no surprise that the fits to the two LST s we got (see Figures 4.3.3 and 4.4.1)

were good, but that their corresponding RLT s did not correspond to distributions.

It was precisely this problem that necessitated the ad hoc procedure, described

in Section 4.3, that was used to adjust the “density” so that it was nonnegative. It

was also unclear how to determine whether or not an inverted RLT corresponded

to a distribution. If conditions on the parameters of the fitted or approximating

RLT could be determined so that it does correspond to a distribution then these

difficulties can be overcome. It is this problem that we address in the next four

chapters.

Even if we were able to characterize the parameters of a RLT so that it did

correspond to a distribution there still remains the problem of how good a fit or

approximation we can achieve. Two LST s may be “close” but their inverted coun-

terparts may not be. To clarify this point suppose that φ = L(f) and ψ = L(g) are
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two LST s such that for a large, positive value of λ,

φ(λ)− ψ(λ) =

∫ ∞

0

e−λu(f(u)− g(u))du

is small. It may be, however, that for particular values of u, |f(u) − g(u)| is large.

Consequently, a good fit or approximation in the LST domain does not necessarily

guarantee that the fit or approximation is a good one in the distribution domain.

Paulson, Holcomb, and Leitch [112] recognised this problem when estimating the

parameters for the stable laws using characteristic functions and proposed a method

which standardized the empirical data to overcome it. Longman [91] addressed this

problem for Laplace transforms. He developed a method for approximating an arbi-

trary square integrable function with a sum of exponential functions by considering

the approximation in the transform domain.

In the next chapter we ask the question: Given the rational LST of the form

(4.2.2) when does it correspond to a distribution, PH or otherwise? As we shall see,

the answer is not that simple!



Chapter 5

Matrix-exponential Distributions

5.1 Introduction

The Laplace transform estimation or approximation methods described in Chap-

ter 4 had two major drawbacks. First, the estimated or approximated LST did

not necessarily correspond to a probability distribution. Second, if the LST did

happen to correspond to a PH distribution, it was not clear how to obtain a PH

representation, whether minimal or not, for it.

In order to tackle these two problems we consider the wider class of matrix-

exponential (ME ) distributions which have already been mentioned, as the class of

all distributions with rational LST, in Section 4.2. ME distributions have distribu-

tion functions of the same form as PH distributions but their representations do not

need to have a simple probabilistic interpretation. Given a rational LST that corre-

sponds to a distribution a ME representation of minimal order can be easily found.

Thus, the second problem mentioned above, with respect to ME distributions, is

not present. The first problem, that of recognizing whether or not a particular ratio-

nal LST corresponds to a ME distribution, is addressed in this and the next three

chapters.

The problem of characterizing ME distributions has been addressed in two dif-

61
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ferent ways in the literature. In the first approach it was presupposed that the

ME distribution was already defined by a distribution or density function, LST,

or moments, and a minimal representation (see Section 5.3 for the definition) was

found. Lipsky and Ramaswami [89] characterized ME distributions by finding a

minimal representation given the distribution function or the LST. Asmussen and

Bladt [10] determined a representation with only real parameters given the LST. Van

de Liefvoort [144] developed an algorithm for finding a minimal ME representation

given the distribution’s moments. These works, particularly that of Asmussen and

Bladt [10], will help us to solve the second problem stated in the opening paragraph

of this section.

In the second approach particular classes of ME distributions were characterized

by determining necessary and/or sufficient conditions on the zeros and poles of their

LST s. Zemanian [151] and [152] developed some sufficient conditions for the class

of all bounded, nondecreasing functions (which can be normalized to obtain ME

distribution functions) whose LST has the number of real poles greater than or

equal to the total number of complex poles and zeros. Sumita and Masuda [137]

gave some necessary and sufficient conditions for the class of all ME distributions

whose LST has real zeros and poles. Harris, Marchal and Botta [68] restricted

themselves to the class of generalized hyperexponential distributions and gave some

sufficient conditions.

Dehon and Latouche [45] approached the problem of characterizing the class

of generalized hyperexponential distributions geometrically. They considered each

hyperexponential distribution as a mixture (not necessarily convex) of exponential

distributions, and determined the set of all permissible mixing coefficients for hy-

perexponential distributions of order three. It is an approach similar to this that we

will use to characterize ME distributions in Chapter 7.

In Section 5.2 we define ME distributions and their representations, state some

analytical characteristics, and give some examples. Section 5.3 contains the descrip-

tions of two physical interpretations for ME distributions: one due to Bladt and
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Neuts [23], the other due to Asmussen and Bladt [11]. A discussion about the non-

uniqueness of ME representations, including a useful representation theorem proved

in Asmussen and Bladt [10], is given in Section 5.4. In Section 5.5, by considering

the definition of a probability distribution function, we determine some necessary

and sufficient conditions on rational LST s so that they correspond to ME distri-

butions. In Section 5.6, by adopting a geometric point of view, we discuss the ME

characterization problem in more detail.

5.2 Matrix-exponential Distributions

In this section we introduce the class of matrix-exponential (ME ) distributions. For

a excellent discussion of the topic see Lipsky [90, Chapter 3], and Asmussen and

O’Cinneide [12].

A nonnegative random variable X is distributed according to a ME distribution

if its distribution function, defined for u ≥ 0, has the form

F (u) =







α0, u = 0

1 + α exp(Tu)T −1t, u > 0
(5.2.1)

where, for p ≥ 1, α is a 1×p row vector, T is a p×p matrix, and t is a p×1 column

vector, all possibly with complex entries. It is immediately clear that 0 ≤ α0 ≤ 1. A

further stipulation on the parameters α, T , and α0 is that the distribution function

(5.2.1) is right-continuous for u = 0. That is,

lim
u→0+

(1 + α exp(Tu)T −1t) = α0. (5.2.2)

The parameter α0 is known as the point mass at zero. We will not consider the case

when α0 = 1 as this gives the trivial distribution function. The distribution is said

to have a representation (α,T , t) of order p. The corresponding density function,

defined for u > 0, is given by

f(u) = α exp(Tu)t.
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The Laplace-Stieltjes transform (LST ) of (5.2.1), defined for λ ∈ C such that <(λ) >

−δ where δ is a positive number, is given by

φ(λ) =

∫ ∞

0

e−λudF (u)

= α(λI − T )−1t + α0. (5.2.3)

Differentiating (5.2.3) k times with respect to λ and letting λ = 0 gives, for k =

1, 2, . . ., the kth noncentral moment

mk = (−1)k+1k!αT−(k+1)t.

Lipsky and Ramaswami [89], and Asmussen and Bladt [10] (see also Lipsky and

Fang [88]), showed that the class of all distributions with rational LST is the same

as the class of all ME distributions. Thus, as for PH distributions, the LST of a

ME distribution can be expressed as a rational function of the form

φ(λ) =
apλ

p−1 + ap−1λ
p−2 + . . .+ a1

λp + bpλp−1 + bp−1λp−2 . . .+ b1
+ α0

where a1, a2, . . . , ap, b1, b2, . . . , bp are all real. We refer to the polynomials a(λ) =

apλ
p−1+ap−1λ

p−2+. . .+a1 and b(λ) = λp+bpλ
p−1+bp−1λ

p−2 . . .+b1 as the numerator

and the denominator of the LST, respectively. We define the zeros of the LST to be

the zeros of a(λ) and the poles of the LST to be the zeros of b(λ). We remark here

that for the remainder of the thesis we adopt the ordering <(λ1) ≥ <(λ2) ≥ . . . ≥
<(λp) > 0 for the poles of φ(λ) (equivalently the eigenvalues of T , see the second

remark after Theorem 5.1), which is the same as that found in Dehon and Latouche

[45].

Below are some examples of ME distributions.

1. Phase-type (PH ) distributions. Every PH distribution has a ME representa-

tion (α,T ,−Te) where α is the initial state probability vector and T is the

infinitesimal generator of an evanescent finite-state continuous-time Markov

chain.
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2. Generalized hyperexponential (GH ) distributions, see Botta and Harris [27],

and Botta, Harris, and Marchal [28]. They have distribution functions, defined

for u ≥ 0, of the form

F (u) =

p
∑

i=1

ai(1− e−λiu)

where a1, a2, . . . , ap, are all real with

p
∑

i=1

ai = 1, and λ1 > λ2 > . . . > λp > 0.

Every GH distribution has a ME representation (α,T , t), where

α =
(

a1 a2 . . . ap

)

T =

















−λ1 0 . . . 0

0 −λ2 . . . 0
...

...
. . .

...

0 0 . . . −λp

















t =

















λ1

λ2

...

λp

















.

3. Distributions whose LST is the reciprocal of a polynomial. These distribu-

tions, introduced by Smith [131], have rational LST by definition and are

therefore ME distributions. Since they are defined in terms of their LST it is

not immediately clear how to determine a ME representation for them.

5.3 The Physical Interpretation of Matrix-

exponential Distributions

PH distributions have a simple probabilistic interpretation in that they are defined

as the absorption time of an evanescent finite-state continuous-time Markov chain.



CHAPTER 5. MATRIX-EXPONENTIAL DISTRIBUTIONS 66

A physical interpretation is not so straightforward, in general, for ME distributions.

However, physical interpretations can be given to them. In this section we discuss

two such interpretations for ME distributions. The first, due to Bladt and Neuts [23],

uses random stopping times of deterministic flows. The second, due to Asmussen

and Bladt [11], considers piecewise deterministic Markov processes.

Asmussen and Bladt [10] showed that any ME distribution has a representation

of the form (β,S,−Se). It is also true, although not explicitly stated in their paper,

that such a representation has βe = 1. It is this representation that Bladt and Neuts

[23] used in their physical interpretation of ME distributions.

Consider p containers that may hold any positive, negative, or zero amount of

fluid. The fluid is allowed to flow deterministically from container to container. For

i = 1, 2, . . . , p, let the initial amount of fluid in container i be βi ∈ R. We also have

a zeroth container which initially contains an amount of fluid β0 where 0 ≤ β0 < 1.

Assume that β0 +β1 + . . .+βp = 1. For i, j = 1, 2, . . . , p, with i 6= j fluid flows from

container i to container j with constant rate Sij ∈ R. For i = 1, 2, . . . , p, fluid flows

into container 0 with constant rate si ∈ R. Define, for i = 1, 2, . . . , p,

Sii = −
p

∑

j=1

j 6=i

Sij − si.

We let β = (β1, β2, . . . , βp) and S = [Sij]. Observe that si is the ith component of

−Se.

Bladt and Neuts [23] defined a valid flow with parameters (β,S) as one where

the amount of fluid in Container 0 does not decrease over time and where eventually

all of the fluid flows into this container. More precisely, if, for t ≥ 0, v0(t) is the

amount of fluid in Container 0 at time t, v0(t) is a nondecreasing function of t and

lim
t→∞

v0(t) = 1. Bladt and Neuts [23] remarked that there exist parameters (β,S)

which generate valid flows. Moreover, the parameters of any valid flow correspond

to a ME distribution. The most important result they proved was that any ME

random variable, with a representation (β,S) with βe = 1, is distributed as the

random stopping time of a valid flow with parameters (β,S). That is, the time taken
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for v0(t) to reach a level U where U is a uniformly distributed random variable on

[0, 1), is distributed as a ME distribution with representation (β,S) with βe = 1.

Bladt and Neuts [23] re-proved a number of established results from ME renewal

theory and a new one in risk theory, by considering ME distributions as the random

stopping times of valid deterministic flows. Their physical interpretation of ME

distributions, like that of PH distributions, is appealing and ought to lead to a

deeper understanding of systems that are modelled with ME distributions. However,

unlike that for PH distributions, it is not easily possible to determine whether a

given flow with parameters (β,S) is valid or not. This problem is the main focus of

the present and next three chapters.

Asmussen and Bladt [11] developed a physical interpretation for ME distribu-

tions in the wider context of rational arrival processes (RAPs). In the same way that

ME distributions are an extension of PH distributions by relaxing the probabilis-

tic constraints on α and T , RAPs are an extension of Markovian arrival processes

(MAPs). A MAP is a Markovian point process defined on a finite phase space where

transitions between phases without an arrival or event occurring are governed by a

generator matrix C, and transitions with an arrival or event occurring are governed

by another matrix D. If α is the initial phase probability distribution then the triple

(α,C,D) is a representation of the MAP. For a comprehensive treatment of MAPs

refer to Neuts [101], or Latouche and Ramaswami [85], and the references therein. A

RAP is a point processes that has a joint density function of the same form as that

of a MAP but without the probabilistic constraints on the representation (α,C,D).

Asmussen and Bladt [11] gave some necessary conditions on (α,C,D) so that it

corresponds to a RAP.

The motivation for the physical interpretation of RAPs came from the charac-

terization of ME distributions due to O’Cinneide [104]. Consider the following. Let

a random variable X defined on the nonnegative real numbers have distribution

function F . For t ≥ 0, let Ft(x) = F (x + t) − F (x) be the (defective) distribution

of the residual life X − t. If span(F ) denotes the vector space of signed measures
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consisting of all linear combinations of Ft, where t ≥ 0, then we have (Proposition

1.1 in Asmussen and Bladt [11]) that

“a distribution F is a ME distribution if and only if span(F ) is finite-

dimensional.”

It was this finite-dimensionality property that led Asmussen and Bladt [11] to

represent a RAP as a p-dimensional piecewise deterministic Markov process (PDMP)

A(t) = (A1(t), A2(t), . . . , Ap(t)), where t ≥ 0, see Davis [43]. A PDMP evolves de-

terministically according to a multidimensional differential equation and at random

time points it changes state. The state space is the set of all possible vectors A(t)

where t ≥ 0. In between jumps the PDMP that represents the RAP evolves accord-

ing to the differential equation

d

dt
(a(t)) = a(t)C − (a(t)Ce)a(t), (5.3.1)

where a(t) = (a1(t), a2(t), . . . , ap(t)) is the state of the process at time t ≥ 0 with

a(t)e = 1. The solution to the differential equation (5.3.1), which is defined for

t ≥ 0, is given by

a(t) =
a(0) exp(Ct)

a(0) exp(Ct)e
.

When the piecewise deterministic Markov process is in state a(t), a random

jump occurs with intensity a(t)D. If this jump occurs when t = t∗ the process that

evolves deterministically according to (5.3.1) then starts anew with
a(t∗)D
a(t∗)De

as its

initial state. Asmussen and Bladt [11] represented the evolution of a RAP with an

orbit representation, that is, as a trajectory on the (p − 1)-dimensional subspace

x1 + x2 + . . .+ xp = 1 of R
p governed by the parametric equation x(t) = A(t). The

entire trajectory x(t), for t ≥ 0, is a succession of orbits on which the vector x(t)

satisfies (5.3.1). When a jump occurs the trajectory changes to another orbit. If the

RAP is a renewal process the trajectory will restart on the same orbit at the same

starting point immediately after each jump.

As with MAPs the state of a RAP at a particular time gives knowledge about its

future evolution. In a MAP if the phase of the process is known at a particular time
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t, its future evolution is independent of its past history. The same is true for RAPs.

If the state of the process at time t, that is, a(t) is known, its future evolution is

independent of its past.

When the RAP is a MAP a(t) = (a1(t), a2(t), . . . , ap(t)) can be thought of as

giving the probabilities of being in each phase of the underlying Markov chain at

time t given that no jump has occurred. If the RAP is a PH -renewal process

with parameters α and T , we would have jumps occurring at intensity f(t) =

−α exp(T t)Te which is the density function for the PH interarrival times. Also,

the piecewise deterministic Markov process would restart in state α immediately

after each jump. If the RAP is a ME -renewal process with parameters α and T

where αe = 1 the jump intensity and restart state would be given by the same

expressions as for the PH renewal process. In this case a(t) can be thought of as

being the amount of fluid in each container as discussed above.

Bean and Nielsen [19] used this physical interpretation to develop and analyse

quasi-birth-and-death processes with RAP components, the RAP equivalent to the

traditional quasi-birth-and-death processes. As an example, they compared the

“traditional” Markov chain physical interpretation of the G matrix for the M/PH/1

queue with the PDMP physical interpretation of the G matrix for the M/ME/1

queue.

5.4 Matrix-exponential Representations

In general, representations for ME distributions are not unique. For example, con-

sider the ME distribution with density

f(u) = 2e−u − 6e−2u + 6e−3u,

and LST

φ(λ) =
2λ2 + 4λ+ 6

λ3 + 6λ2 + 11λ+ 6
.
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This distribution has the following three distinct representations (α,T , t), (β,S, s)

and (γ,R, r) given by

α =
(

−1 1 −1
)

T =











−4 0 −1

2 −1 0

2 0 −1











t =











0

−4

−6











,

β =
(

6 4 2
)

S =











0 1 0

0 0 1

−6 −11 −6











s =











0

0

1











,

and

γ =
(

1
2

0 0 1
2

)

R =

















−1 1 0 0

0 −2 2 0

0 0 −3 3

0 0 0 −4

















r =

















0

0

0

1

















.

This example, as with PH distributions, illustrates the fact that representations for

ME distributions do not necessarily have the same order. A representation that

has minimal order will be called a minimal representation. As we shall see, The-

orem 5.3 asserts that the representations (α,T , t) and (β,S, s) are both minimal.

Therefore, minimal representations are not necessarily unique. The order of the ME

distribution is defined to be the order of any minimal representation. If the LST of

the ME distribution is expressed as the ratio of two irreducible polynomials then

the degree of the denominator is called the algebraic degree of the ME distribution.

The terminology used here is due to O’Cinneide [104].

In the introduction to this chapter we mentioned that given a rational LST that

corresponds to a PH distribution, it is difficult to find a minimal PH representation,

or even any PH representation, for it. This problem, first posed by Neuts [101], is

still unsolved. A discussion of the problem was given in Section 2.4 of this thesis.

The situation, however, is somewhat simpler for ME distributions. Given a rational

LST that corresponds to a ME distribution we can easily find a ME representation
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for it. The following theorem, which is a paraphrased version of Proposition 2.3 in

Asmussen and Bladt [10], gives such a ME representation.

Theorem 5.1 If the LST of a ME distribution is expressed as

φ(λ) =
apλ

p−1 + ap−1λ
p−2 + . . .+ a1

λp + bpλp−1 + bp−1λp−2 . . .+ b1
+ α0 (5.4.1)

where p ≥ 1, a1, a2, . . . , ap, b1, b2, . . . , bp are all real, and 0 ≤ α0 < 1, then the ME

distribution has a representation (α,T , t) where

α =
(

a1 a2 . . . ap

)

(5.4.2)

T =





























0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

−b1 −b2 −b3 . . . −bp−1 −bp





























(5.4.3)

t =























0

0
...

0

1























= ep. (5.4.4)

Note that this representation is not necessarily minimal.

Since T is known as a companion matrix we shall refer to this form of ME repre-

sentation as a companion form representation.

Theorem 5.1 is important for a number of reasons. First, it shows that a repre-

sentation with only real parameters can be found for any ME distribution. Second,

because the characteristic equation of a matrix of the form (5.4.3) is

λp + bpλ
p−1 + bp−1λ

p−2 . . .+ b1 = 0,
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the eigenvalues of T are identical to the poles of the LST. Third, and most im-

portantly, there is a direct one-to-one correspondence between the LST of a ME

distribution and a minimal representation of the form (5.4.2)–(5.4.4) for it. The

following lemma is required before we prove this fact.

Lemma 5.2 If the LST of the form (5.4.1) corresponds to a ME distribution then

α0 = 1− a1

b1
. (5.4.5)

Proof.

It can be shown that

T−1 =





























−b2
b1
−b3
b1
−b4
b1

. . . −bp
b1
− 1
b1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 0

0 0 0 . . . 1 0

,





























.

By (5.2.2), (5.4.2), and (5.4.4) we have that

α0 = lim
u→0+

F (u)

= 1 + αT−1ep (5.4.6)

= 1− a1

b1
.

�

Theorem 5.3 Every ME distribution has a unique minimal representation of the

form (5.4.2) – (5.4.4).

Proof.

Consider a ME distribution. Suppose that its LST is expressed in the form

(5.4.1) where a(λ) and b(λ) have no factors in common. The LST of this form is
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unique since every (ME ) distribution has a unique LST, see Feller [59, page 430].

The companion form representation for the given ME distribution (5.4.2) – (5.4.4)

is minimal because the algebraic degree of the LST, which cannot be any smaller, is

equal to the dimension of T , that is, the order of the representation. Using (5.4.5)

it can be seen that every parameter set that defines the LST (5.4.1) also defines the

ME representation (5.4.2) – (5.4.4). Therefore, there is a one-to-one correspondence

between the LST s of ME distributions and their companion form representations.

�

The representation (β,S, s) for the ME distribution given at the beginning of

this section is an example of a companion form representation.

Theorem 5.3 asserts that any conditions on the poles of the LST (5.4.1) are

equivalent to conditions on the eigenvalues of T given by (5.4.3), and that any

conditions on the numerator of (5.4.1) are equivalent to conditions on α given by

(5.4.2). For the remainder of the thesis we state our results in terms of conditions

on the vectors a and b where

a =
(

a1 a2 . . . ap

)

(5.4.7)

and

b =
(

b1 b2 . . . bp

)

. (5.4.8)

Due to the above correspondence, a and b apply equally well to LST s and companion

form representations.

We now have a solution to the second problem posed in the opening paragraph

of this chapter, at least if we are prepared to accept minimal ME representations

in preference to minimal PH representations. In the next section we will begin to

address the first problem. That is, given a pair of vectors a and b when do they

correspond to a ME (or PH ) distribution?
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5.5 Distribution Functions

In this section, by considering the criteria for a function to be the distribution func-

tion of a nonnegative random variable, we determine some necessary and sufficient

conditions on the vectors a and b so that they correspond to a ME distribution.

For the following definition refer to Moran [99, Section 5.1].

Definition 5.4 A function F is the distribution function of a nonnegative random

variable X if

1. F (u) is nonnegative and nondecreasing for u ≥ 0,

2. F (u) is right-continuous. That is, for u ≥ 0, lim
h→0+

F (u+ h) = F (u), and

3. lim
u→∞

F (u) = 1.

The following lemma will simplify the proof of the characterization theorem for

ME distributions, Theorem 5.6.

Lemma 5.5 Let a and b be defined by (5.4.7) and (5.4.8), respectively. Let

b(λ) = λp + bpλ
p−1 + bp−1λ

p−2 + . . .+ b1

and

B =





























0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

−b1 −b2 −b3 . . . −bp−1 −bp





























. (5.5.1)

If, for u > 0,

f(u) = a exp(Bu)ep ≥ 0 (5.5.2)

and
∫ ∞

0

f(u)du < ∞, (5.5.3)

then there exists a zero of b(λ) of maximal real part that is real and negative.
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Proof.

Let the distinct zeros of b(λ) be ξ1, ξ2, . . . , ξq, with respective multiplicities

n1, n2, . . . , nq. We assume, without loss of generality, that <(ξ1) ≤ <(ξ2) ≤ . . . ≤
<(ξq).

Suppose that there exists no zero of b(λ) of maximal real part that is real. Then

there will be r, with 1 ≤ r ≤
⌊q
2

⌋

(bxc denotes the greatest integer less than or

equal to x), complex conjugate pairs that are the zeros of maximal real part. They

are, for j = q − 2r + 1, q − 2r + 2, . . . , q, given by

ξj = γ + iβj,

where γ and βj 6= 0 are real. Note that, for j = q − 2r + 1, q − 2r + 3, . . . , q − 1,

βj = −βj+1 > 0 without loss of generality, and that all of the βj’s are distinct. The

remaining zeros, ξ1, ξ2, . . . , ξq−2r, all have real part less than γ.

Since the zeros of b(λ) are identically the eigenvalues of B we have that

f(u) =

q
∑

j=q−2r+1

Pj(u)e
(γ+iβj)u +

q−2r
∑

j=1

Pj(u)e
ξju,

where for j = 1, 2, . . . , q, Pj(u) is a possibly complex polynomial of degree nj − 1.

Let n = max(nq−2r+1, nq−2r+2, . . . , nq)− 1. Consider

u−ne−γuf(u) =

q
∑

j=q−2r+1

u−nPj(u)e
iβju +

q−2r
∑

j=1

u−nPj(u)e
−(γ−ξj)u.

Now, for any ε1 > 0, there exists a K1 > 0 such that, for u > K1,

∣

∣

∣

q−2r
∑

j=1

u−nPj(u)e
−(γ−ξj)u

∣

∣

∣ < ε1, (5.5.4)

since, for j = 1, 2, . . . , q− 2r, γ > <(ξj). Also, for any ε2 > 0, there exists a K2 > 0

such that, for u > K2,

∣

∣

∣

q
∑

j=q−2r+1

u−nPj(u)e
iβju −

q
∑

j=q−2r+1

Aje
iβju

∣

∣

∣
< ε2, (5.5.5)
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where, for j = q− 2r+ 1, q− 2r+ 2, . . . , q, Aj is the (possibly zero) coefficient of un

in Pj(u). Now, consider

q
∑

j=q−2r+1

Aje
iβju =

q−1
∑

j=q−2r+1

steps of 2

Bj cos βju+ Cj sin βju, (5.5.6)

where, for j = q − 2r + 1, q − 2r + 3, . . . , q − 1, Bj and Cj are real. Consider the

situation when for j = q − 2r + 1, q − 2r + 3, . . . , q − 1, βj is rational, that is,

βj =
rj

sj

where rj and sj are integers. Now, for any u1 > max(K1, K2), there exists a u2 > u1

such that
∫ u2

u1

(

q
∑

j=q−2r+1

steps of 2

Bj cos βju+ Cj sin βju
)

du = 0 (5.5.7)

as the integrand is periodic. Choosing

u2 = u1 + sq−2r+1sq−2r+3 . . . sq−1 × 2π

is sufficient. Since (5.5.6) is not identically zero for u1 < u < u2 (the trigonometric

functions are all linearly independent because the βj’s are all distinct and at least one

of the Bj’s and Cj’s is nonzero) there exists some u > max(K1, K2) with u1 < u < u2

and ε3 > 0 such that

q
∑

j=q−2r+1

steps of 2

Bj cos βju+ Cj sin βju < −ε3. (5.5.8)

If any βj is an irrational number approximating it arbitrarily closely by a rational

number will still give (5.5.8).

We now choose ε1 and ε2 so that ε1+ε2 < ε3. This can be achieved because (5.5.7)

holds for any u1 > max(K1, K2). We now have that there exists a u > max(K1, K2),
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with u1 < u < u2, such that

u−ne−γuf(u) =

q
∑

j=q−2r+1

u−nPj(u)e
iβju +

q−2r
∑

j=1

u−nPj(u)e
−(γ−ξj)u

<

q
∑

j=q−2r+1

Aje
iβju + ε2 + ε1

< −ε3 + ε2 + ε1

< 0.

The first inequality holds because of (5.5.4) and (5.5.5), and the second because of

(5.5.8). Thus, there exists a u > 0 such that f(u) < 0. This contradicts (5.5.2),

therefore, there exists a zero of b(λ) of maximal real part that is real.

Suppose that there exists a zero of b(λ) of maximal real part that is real and

nonnegative. Without loss of generality, let this zero be ξq = σ ≥ 0. The polynomial

b(λ) may have a number of zeros that occur in complex conjugate pairs whose real

part equals σ. Let the number of such conjugate pairs that are distinct be s, where

0 ≤ s ≤
⌊q − 1

2

⌋

. That is, for j = q − 2s, q − 2s+ 1, . . . , q − 1,

ξj = σ + iηj,

where ηj 6= 0 is real. Note that, for j = q− 2s, q− 2s+ 2, . . . , q− 2, ηj = −ηj+1 > 0

without loss of generality. The remaining zeros, ξ1, ξ2, . . . , ξq−2s−1, all have real parts

less than σ. We have

g(u) = Qq(u)e
σu +

q−1
∑

j=q−2s

Qj(u)e
(σ+ηji)u +

q−2s−1
∑

j=1

Qj(u)e
ξju, (5.5.9)

where for j = 1, 2, . . . , q, Qj(u) is a possibly complex polynomial of degree nj − 1.

If σ > 0 then (5.5.9) diverges as u → ∞. If σ = 0 then (5.5.9) either diverges,

oscillates, or approaches a nonzero constant as u → ∞. In any case (5.5.3) is not

satisfied. This is a contradiction and therefore any zero of b(λ) of maximal real part

must also be negative. �
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Theorem 5.6 Let f(u), defined by (5.5.2), be such that (5.5.3) holds. The vectors

a and b correspond to a nontrivial ME distribution if and only if

1 f(u) ≥ 0 for u > 0,

2 0 <
a1

b1
≤ 1, and

3 there exists a zero of b(λ) of maximal real part that is both real and negative.

Proof.

Suppose that the vectors a and b correspond to a nontrivial ME distribution. If

B is defined by (5.5.1) then the distribution has a representation (a,B). The cor-

responding distribution function F (u), which satisfies Conditions 1–3 of Definition

5.4, is of the form (5.2.1). We also have that

F (u) =

∫ u

0

f(t)dt+ α0 (5.5.10)

where 0 ≤ α0 < 1. Now, since F (u) is nondecreasing for u ≥ 0, f(u) ≥ 0 for u > 0

and Statement 1 holds. Lemmas 5.2 and 5.5 give Statements 2 and 3, respectively.

Suppose that 1 and 2 in the statement of the theorem hold. We need to show

that F (u), defined by (5.5.10), satisfies Conditions 1–3 in Definition 5.4.

1. Since, for u > 0, f(u) ≥ 0, F (u) is nondecreasing for u ≥ 0. Also, as F (0) =

α0 = 1− a1
b1
≥ 0, by Lemma 5.2 and Statement 2, F (u) is also nonnegative.

2. F (u) is a continuous function for u > 0 and is hence right-continuous for u > 0.

Since, from (5.5.10), lim
u→0+

F (u) = α0 = F (0), F (u) is also right-continuous at

u = 0.

3. Since F (u) is of the form (5.2.1) its LST is given by

φ(λ) = a(λI −B)−1ep + α0.
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As (5.5.3) holds, by the Final Value Theorem (see Debnath [44, Section 3.8]),

and (5.4.6), we have that

lim
u→∞

F (u) = lim
λ→0+

φ(λ)

= −aB−1ep + α0

= 1.

�

Lemma 5.5 asserts that Statement 3 in Theorem 5.6 is a redundant condition.

However, it is included because it is a condition entirely on the vector b. The

condition f(u) ≥ 0 for u > 0 then becomes a condition entirely on the vector

a. It is this two-tiered checking procedure that forms the basis for our method of

determining whether or not the vectors a and b correspond to a ME distribution.

The corresponding theorem for PH distributions is due to O’Cinneide [104].

Theorem 5.7 Let f(u) be defined by (5.5.2). The vectors a and b correspond to a

nontrivial PH distribution if and only if

1 f(u) > 0 for u > 0,

2 0 < a1
b1
≤ 1, and

3 the zero of b(λ) of maximal real part −ζ is real, negative, and such that −ζ >
<(−ξ) where −ξ is any other zero.

In contrast to Theorem 5.6 where, as we have shown in Lemma 5.5, Condition

3 is a consequence of Condition 1, for vectors a and b to correspond to a nontrivial

PH distribution both Conditions 1 and 3 are required. Consider the following two

examples.

1. The distribution with density function

f(u) = 2e−u − e−u cos u− e−u sinu,
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and LST

φ(λ) =
λ2 + λ+ 2

λ3 + 3λ2 + 4λ+ 2
,

(that is, a = (2, 1, 1) and b = (2, 4, 3)) has f(u) = e−u(2−
√

2 sin(u+ π
4 )) > 0

for u > 0. The function f(u), however, does not correspond to a PH distri-

bution because the zeros of the polynomial b(λ) are −1,−1± i.

2. The distribution with density function

g(u) = (
1

2
u2 − 2u+ 2)e−u,

and LST

ψ(λ) =
2λ2 + 2λ+ 1

(λ+ 1)3
,

(that is, a = (1, 2, 2) and b = (1, 3, 3)) has the zero of maximal real part of

b(λ), that is λ = −1, being real, negative, and with real part greater than the

real part of any other zero (there are none). The function g(u), in this case,

does not correspond to a PH distribution because g(2) = 0.

Given vectors a and b that correspond to a rational LST of the form (5.4.1),

or a companion form representation (5.4.2)–(5.4.4), it is relatively simple to check

Conditions 2 and 3 in Theorems 5.6 and 5.7. Checking the first condition is much

more difficult. The remainder of this chapter and Chapters 6, 7, and 8 are devoted

to the solution of this problem.

5.6 Characterization of Matrix-exponential Dis-

tributions

Suppose that the vectors a and b given by (5.4.7) and (5.4.8), respectively, satisfy

Conditions 2 and 3 of Theorem 5.6. Since these conditions depend only on a1 and

b, in order to satisfy Condition 1 we need to find constraints on a2, a3, . . . , ap−1.



CHAPTER 5. MATRIX-EXPONENTIAL DISTRIBUTIONS 81

Let T be given by (5.4.3). At this stage we define the density function f(u) at

u = 0 as

f(0) = lim
u→0+

a exp(Tu)ep (5.6.1)

= aep

= ap,

because it will make some of our subsequent results slightly simpler. Now, Condition

1 of Theorem 5.6 requires that, for u ≥ 0,

f(u) = a exp(Tu)ep ≥ 0. (5.6.2)

Let

exp(Tu)ep =

















f1(u)

f2(u)
...

fp(u)

















(5.6.3)

be a p × 1 column vector of functions depending on u. The inequality (5.6.2) can

be written, for u ≥ 0, as

f(u) = a1f1(u) + a2f2(u) + . . .+ apfp(u) ≥ 0. (5.6.4)

Since a1 = b1(1 − α0) by Lemma 5.2, there will be a different family of constraints

for each α0 where 0 ≤ α0 < 1. The situation can be simplified by dividing (5.6.4)

through by 1− α0 (which is positive), and letting, for i = 1, 2, . . . , p− 1,

xi =
ai+1

1− α0

, (5.6.5)

obtaining, for u ≥ 0,

b1f1(u) + x1f2(u) + . . .+ xp−1fp(u) ≥ 0. (5.6.6)

In order to satisfy Condition 1 of Theorem 5.6 we need to find constraints on

x1, x2, . . . , xp−1 so that (5.6.6) holds for u ≥ 0.
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Consider the (p− 1)-tuple x = (x1, x2, . . . , xp−1). Each x ∈ R
p−1 corresponds to

a function, defined for u ≥ 0, of the form

g(x, u) = b1f1(u) + x1f2(u) + . . .+ xp−1fp(u). (5.6.7)

Since we require that g(x, u) ≥ 0 for u ≥ 0, we need to find all x ∈ R
p−1 such that

(5.6.6) holds for u ≥ 0. Consequently, this defines a region in R
p−1,

Ωp =
⋂

u≥0

{ x ∈ R
p−1 | b1f1(u) +

p−1
∑

i=1

xifi+1(u) ≥ 0}.

Thus, (5.6.6) implies that f(u) = (1 − α0)g(x, u) is the density function of a ME

distribution if and only if x ∈ Ωp.

Concerning Ωp we have the following.

Theorem 5.8 Suppose a1 and b satisfy Conditions 2 and 3 of Theorem 5.6. Then

Ωp is

1 nonempty,

2 contained in the upper half-space xp−1 ≥ 0, and

3 convex.

Proof.

1. Consider the mixture of the point mass at zero and the (defective) exponential

distribution with distribution function

F (u) =







α0, u = 0

1− (1− α0)e
−λpu, u > 0.

(5.6.8)

The LST of (5.6.8) can be expressed as

φ(λ) =
(1− α0)λp

λ+ λp

+ α0 (5.6.9)

=
(1− α0)(λ+ λ1)(λ+ λ2) . . . (λ+ λp−1)λp

(λ+ λ1)(λ+ λ2) . . . (λ+ λp−1)(λ+ λp)
+ α0

=
(1− α0)[x̄p−1λ

p−1 + x̄p−2λ
p−2 + . . .+ x̄1λ+ b1]

λp + bpλp−1 + bp−1λp−2 . . .+ b1
+ α0, (5.6.10)
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where for i = 1, 2, . . . , p − 1, x̄i is the coefficient of λi in the expansion of

(λ+ λ1)(λ+ λ2) . . . (λ+ λp−1)λp. From (5.6.9) the distribution (5.6.8) can be

represented by the vectors a = ((1 − α0)λp) and b = (λp). In this case, from

(5.6.3), f1(u) = e−λpu. From (5.6.10) another pair of vectors that represent

the distribution is ā = (1 − α0)(b1, x̄1, x̄2, . . . , x̄p−1) and b̄ = (b1, b2, . . . , bp).

In this case, for i = 1, 2, . . . , p, fi(u) is given by (5.6.3) where T is given by

(5.4.3). Now, by (5.6.7), we have that, for u ≥ 0,

g(x̄, u) = b1f1(u) + x̄1f2(u) + x̄2f3(u) + . . .+ x̄p−1fp(u)

= λpe
−λpu

> 0.

Thus, x̄ = (x̄1, x̄2, . . . , x̄p−1), which corresponds to the distribution (5.6.8), is

contained in Ωp. Therefore, Ωp is nonempty.

2. Letting u = 0 in (5.6.2) gives ap ≥ 0 which implies that xp−1 ≥ 0 by (5.6.5).

3. See Poritsky [114]. �

A natural question to ask is whether the origin is also contained in Ωp. This is,

in fact, Conjecture 5 in O’Cinneide [108] although the conjecture is stated in terms

of LST s. So far, this conjecture has been established in the affirmative, in general,

only for p = 1, 2, 3, 4, and for particular cases when p = 5, 6, . . .. Before proceeding

we require the following lemma which appears in Commault and Chemla [38] in

relation to PH (rather than ME ) distributions. The proof is almost identical.

Lemma 5.9 The LST

φ(λ) =
µ(α2 + β2)

(λ+ µ)(λ+ α + iβ)(λ+ α− iβ)
,

where µ, α, β > 0, corresponds to a ME distribution if and only if µ ≤ α.

Proof.
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If φ(λ) corresponds to a ME distribution then µ ≤ α by Theorem 5.6.

Suppose that µ ≤ α. Let K =
µ(α2 + β2)

(α− µ)2 + β2 . The inverse LST of φ(λ) is, for

u ≥ 0,

f(u) = K(e−µu − e−αu cos βu− α− µ
β

e−αu sin βu) (5.6.11)

= Ke−µu(1− e(µ−α)u(cos βt+
α− µ
β

sin βu)).

Now since, for u > 0, cos βu ≤ 1, sin βu < βu, and 1 + (α − µ)u ≤ e(α−µ)u we have

that

f(u) ≥ Ke−µu(1− e(µ−α)u(1 + (α− µ)u))

≥ Ke−µu(1− e(µ−α)ue(α−µ)u)

= 0.

Note that the inequalities above are strict if and only if µ < α. �

Theorem 5.10 Let the zeros of

b(λ) = λp + bpλ
p−1 + bp−1λ

p−2 + . . .+ b1,

−λ1,−λ2, . . . ,−λp, be such that <(λ1) ≥ <(λ2) ≥ . . . ≥ <(λp−1) ≥ λp > 0. Suppose

that there are J pairs of zeros that are complex conjugate pairs, where 0 ≤ J ≤
⌊p− 1

2

⌋

. If, for each j = 1, 2, . . . , J , the pair of complex conjugate zeros αj ± iβj

can be paired with a real zero, say µj, such that µj ≤ αj, then the origin is contained

in Ωp.

Proof.

The LST that corresponds to the origin has the form

φ(λ) = (1− α0)
λ1

λ+ λ1

λ2

λ+ λ2

. . .
λp

λ+ λp

+ α0

where 0 ≤ α0 < 1. The LST φ(λ) consists of factors of the form
µ

λ+ µ
and

µ(α2 + β2)
(λ+ α + iβ)(λ+ α− iβ)

which both correspond to ME distributions. The first
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corresponds to the exponential distribution and the second to a distribution of the

form (5.6.11). The LST φ(λ) corresponds to the convolution of such ME distribu-

tions and is hence itself a ME distribution. Therefore, the origin is contained in

Ωp. �

Another natural question to ask is whether Ωp is bounded. In Section 6.1 we show

that Ω3 is bounded by deriving a complete parametric description for its boundary

(Theorems 6.4 and 6.5). Although we believe that Ωp is bounded when p > 3 a proof

has not yet been found. A discussion on the boundedness of Ωp will be postponed

until Section 7.6.

Now, in order to determine whether or not the vectors a and b correspond to a

nontrivial ME distribution we have the following algorithm:

1. If 0 < a1
b1
≤ 1 then goto 2, else goto 6.

2. Calculate the zeros of the polynomial b(λ) = λp + bpλ
p−1 + bp−1λ

p−2 + . . .+ b1.

3. If there exists a zero of maximal real part that is both real and negative then

goto 4, else goto 6.

4. Calculate x = 1
1− α0

(a2, a3, . . . , ap) = b1
a1

(a2, a3, . . . , ap).

5. If x ∈ Ωp then goto 7, else goto 6.

6. The vectors a and b do not correspond to a ME distribution.

7. The vectors a and b correspond to a ME distribution.

Steps 1–4 are relatively simple to carry out. In order to be able to perform

the test at Step 5 we need to be able to express Ωp in such a way that it would

be computationally feasible to determine whether a (p− 1)-tuple x belongs to it or

not. We begin this task by investigating further the functions f1(u), f2(u), . . . , fp(u),

defined by (5.6.3).
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Theorem 5.11 Let T be defined by (5.4.3). For i = 1, 2, . . . , p, and for u ≥ 0,

fi(u) = f
(i−1)
1 (u) (5.6.12)

= e′
i exp(Tu)ep (5.6.13)

= e′
1T

i−1 exp(Tu)ep, (5.6.14)

where for k = 0, 1, 2, . . ., f
(k)
1 (u) is the kth derivative of f1(u), and ei is the p × 1

vector with a one in the ith position and zeros elsewhere. Also, f1(u) is the unique

solution to the differential equation

f
(p)
1 (u) + bpf

(p−1)
1 (u) + . . .+ b1f1(u) = 0, (5.6.15)

with initial conditions

f1(0) = 0, f
(1)
1 (0) = 0, . . . , f

(p−2)
1 (0) = 0, and f

(p−1)
1 (0) = 1. (5.6.16)

The derivatives of f1(u) can be defined at zero in the same way we defined f(0), see

(5.6.1).

Proof.

The solution to the differential equation (5.6.15) with initial conditions (5.6.16)

exists and is unique, see Apostol [6, Theorem 6.3]. For an arbitrary vector a ∈ R
p

we have, for u ≥ 0,

a exp(Tu)ep = a1f1(u) + a2f2(u) + . . .+ apfp(u). (5.6.17)

Differentiating (5.6.17) with respect to u gives, for u ≥ 0,

aT exp(Tu)ep = a1f
(1)
1 (u) + a2f

(1)
2 (u) + . . .+ ap−1f

(1)
p−1(u) + apf

(1)
p (u). (5.6.18)
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Now,

aT exp(Tu)ep = a























0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−b1 −b2 −b3 . . . −bp













































f1(u)

f2(u)
...

fp−1(u)

fp(u)























= a























f2(u)

f3(u)
...

fp(u)

−b1f1(u)− b2f2(u)− . . .− bpfp(u)























= a1f2(u) + a2f3(u) + . . .+ ap−1fp(u)

+ ap(−b1f1(u)− b2f2(u)− . . .− bpfp(u)).

(5.6.19)

Since, for i = 2, 3, . . . , p− 1, ai is arbitrary, equating its coefficients in (5.6.18) and

(5.6.19) gives fi(u) = f
(1)
i−1(u) which leads to (5.6.12). Equating the coefficients of

ap, which likewise is arbitrary, gives

f (1)
p (u) + bpfp(u) + . . . b2f2(u) + b1f1(u) = 0,

and using (5.6.12) gives the differential equation (5.6.15).

Since

f(0) = aep

= ap

= a1f1(0) + a2f2(0) + . . .+ apfp(0)

for all real a1, a2, . . . , ap, the initial conditions are, for i = 1, 2, . . . p− 1,

f
(i−1)
1 (0) = fi(0) = 0,
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and f
(p−1)
1 (0) = fp(0) = 1, giving (5.6.16).

Now, for u ≥ 0,

a1f1(u) + a2f
(1)
1 (u) + . . .+ apf

(p−1)
1 (u) = a exp(Tu)ep

= (a1e
′
1 + a2e

′
2 + . . .+ ape

′
p) exp(Tu)ep.

Equating the coefficients of a1, a2, . . . , ap, we get for i = 1, 2, . . . , p,

f
(i−1)
1 (u) = e′

i exp(Tu)ep, (5.6.20)

which gives (5.6.13). Writing

T =























e′
2

e′
3

...

e′
p

−b1 − b2 . . . − bp























it can be seen that, for i = 1, 2, . . . , p− 1,

e′
i = e′

i−1T

= e′
i−2T

2

...

= e′
1T

i−1 (5.6.21)

Substituting (5.6.21) into (5.6.20) gives (5.6.14). �

In the next chapter we first look at the structure of Ω3 in detail before turning

our attention to the general case.



Chapter 6

The Region Ωp

6.1 The Region Ω3

In this section we explore the structure of the region Ω3 in detail.

Consider the vector b = (b1, b2, b3). Suppose that the zeros of the polynomial

b(λ) = λ3 + b3λ
2 + b2λ+ b1,

−λ1,−λ2, and −λ3, are such that <(λ1) ≥ <(λ2) ≥ λ3 > 0. The region in R
2

defined by the family of linear inequalities (5.6.6) is

Ω3 =
⋂

u≥0

{(x1, x2) ∈ R
2 | b1f1(u) + x1f

(1)
1 (u) + x2f

(2)
1 (u) ≥ 0},

where f1(u) is given by Theorem 5.11. Let ∂Ω3 denote the boundary of Ω3.

We shall first investigate the structure of Ω3 numerically. There are six subcases

which may yield different types of regions. They occur when the zeros of b(λ) are

such that

1. λ1 > λ2 > λ3 > 0.

2. λ1 = λ2 > λ3 > 0.

3. λ1 > λ2 = λ3 > 0.

89
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4. λ1 = λ2 = λ3 > 0.

5. λ1 = α + iβ, λ2 = α− iβ, 0 < λ3 < α, β > 0.

6. λ1 = α + iβ, λ2 = α− iβ, 0 < λ3 = α, β > 0.

Figure 6.1.1 shows the lines

b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) = 0 (6.1.1)

plotted for u ∈ U = {0, 0.01, 0.02, . . . , 1, 1.1, 1.2, . . . , 10} for a particular example of

each subcase.

Some of the lines near the top and right-hand side of each diagram are spaced

further apart than the others because at u = 1 the increment in u changes from 0.01

to 0.1. This choice was made to give the clearest picture of Ω3 possible. Since each

line, for u ≥ 0, actually represents the boundary of a half-space defined by (5.6.6),

Ω3 is the region in the centre of each diagram.

For the four cases where the zeros of b(λ) are all real there appear to be three

components to ∂Ω3: two intersecting line segments, one horizontal (which occurs

when u = 0), and the other with positive slope (which occurs when u = 10), and

a smooth curve joining them together. The lines occurring near u = 10 get closer

together quite rapidly. This suggests that as u → ∞ the lines approach a limiting

line. Also, upon closer inspection of the curved section we see that every line, for

0 < u < 10, is tangent to the curve.

When the zeros of b(λ) are −α± iβ and −λ3 with λ3 < α, there are two compo-

nents to ∂Ω3: a horizontal line segment (which occurs when u = 0) and a smooth

curve joining the two ends of the line segment together. As with the case when all

the zeros are real, some lines are tangent to Ω3, but there are also some lines, partic-

ularly visible in the bottom right-hand corner of the diagram, that are completely

outside the region.

When the zeros of b(λ) are −α± iβ and −λ3 with λ3 = α the boundary consists

only of a closed curve although the horizontal line when u = 0 touches the curve.
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Figure 6.1.1: Plots of Ω3 for various configurations of the zeros of b(λ)
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Every line appears to be tangent to the curve. Also, some of the lines appear in

pairs which would suggest some sort of periodic behaviour.

Theorems 6.4 and 6.5 give an analytical description of ∂Ω3 when the zeros of

b(λ) are all real, and two of the zeros are a complex conjugate pair, respectively.

Lemmas 6.2 and 6.3 below will be required in the proof of Theorem 6.4. We first

require the definition of a Chebyshev System, see Krĕın and Nudel′man [80, pages

31–32 and 173–177].

Definition 6.1 A system of continuous functions {g0(t), g1(t), . . . , gn(t)} defined on

[c,∞), with c ∈ R, that satisfy

gn(t) > 0 (6.1.2)

and

lim
t→∞

gi(t)

gn(t)
= 0 (i = 0, 1, . . . , n− 1), (6.1.3)

is called a Chebyshev System of order n if the function

P (t) =
n

∑

i=0

βigi(t) with
n

∑

i=0

β2
i > 0

has at most n distinct zeros in [c,∞) and, if βn = 0, at most n− 1 distinct zeros.

It can be shown that the above system of continuous functions is a Chebyshev system

if and only if

det

















g0(t0) g1(t0) . . . gn(t0)

g0(t1) g1(t1) . . . gn(t1)
...

...
. . .

...

g0(tn) g1(tn) . . . gn(tn)

















6= 0 (6.1.4)

for any c ≤ t0 < t1 < . . . < tn <∞, see Krĕın and Nudel′man [80].

Lemma 6.2 Let

h(x) = Aeax +Bebx + Cecx,

where A,B, and C are real numbers, not all zero, and a > b > c > 0. If
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1 h(0) > 0,

2 h′(0) = 0,

3 h′′(0) = 0, and

4 lim
x→∞

e−axh(x) = A > 0,

then, for x ≥ 0, h(x) > 0.

Proof.

Suppose h(x) is nonpositive for some x > 0. Then, in order to satisfy Conditions

1 and 4, there exists an x1 > 0 such that h′(x1) = 0. By Conditions 2 and 3 the

system of linear equations,

aA + bB + cC = 0

a2A + b2B + c2C = 0

aeax1A + bebx1B + cecx1C = 0

, (6.1.5)

must be satisfied.

We shall now show that the system of functions {t, t2, tex1t} is a Chebyshev

system of order two. First, we note that (6.1.2) and (6.1.3) are satisfied because

tex1t > 0 when t ≥ c > 0, and

lim
t→∞

t

tex1t = 0 and lim
t→∞

t2

tex1t = 0.

Second, the function

P (t) = β0t+ β1t
2 + β2te

x1t

= t(β0 + β1t+ β2e
x1t)

has at most two distinct zeros on [c,∞) (at most one zero if β2 = 0) since {1, t, ex1t}
is a Chebyshev system, see Krĕın and Nudel′man [80, page 38]. Thus, {t, t2, tex1t}
is a Chebyshev system and by (6.1.4) we have that

det











a a2 aeax1

b b2 bebx1

c c2 cecx1











6= 0
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when a > b > c > 0. This means that A = B = C = 0 in (6.1.5) which contradicts

the fact that A, B, and C are not all zero. Therefore, h(x) > 0 for x ≥ 0. �

Lemma 6.3 Let

h(x) = Ae−ax +Be−bx + Ce−cx,

where A,B, and C are real numbers, not all zero, and a > b > c > 0. If

1 h(0) = 0,

2 h′(0) = 0, and

3 h′′(0) > 0,

then, for x 6= 0, h(x) > 0.

Proof.

The function h(x) has a local minimum at x = 0. Suppose h(x) is nonpositive

for some x 6= 0. Then there exists an x1 6= 0 such that h(x1) = 0. Therefore, by

Conditions 1 and 2 the system of linear equations,

A + B + C = 0

aA + bB + cC = 0

e−ax1A + e−bx1B + e−cx1C = 0

, (6.1.6)

must be satisfied.

Now, if x1 > 0 we shall show that the system of functions {e−x1t, 1, t} is a

Chebyshev system of order two. Conditions (6.1.2) and (6.1.3) are satisfied because

t ≥ c > 0, and

lim
t→∞

e−x1t

t
= 0 and lim

t→∞

1

t
= 0.

Also, the function

P (t) = β0e
−x1t + β1 + β2t

has at most two distinct zeros (at most one zero if β2 = 0) on [c,∞) by Rolle’s

Theorem (see Apostol [5, page 184]) and the fact that {e−x1t, 1} is a Chebyshev
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system of order one. Similarly, we can show that if x1 < 0 the system of functions

{1, t, e−x1t} is a Chebyshev system of order two. In either case

det











1 a e−ax1

1 b e−bx1

1 c e−cx1











6= 0

when a > b > c > 0, and so (6.1.6) implies that A = B = C = 0, which contradicts

the fact that A, B, and C are not all zero. Therefore h(x) > 0 for x 6= 0. �

The following theorem gives an analytical description for Ω3 when the three zeros

of b(λ) are real.

Theorem 6.4 Let b = (b1, b2, b3). Suppose that the zeros of b(λ) = λ3+b3λ
2+b2λ+

b1, −λ1,−λ2, and −λ3, are all real and such that λ1 ≥ λ2 ≥ λ3 > 0. For u ≥ 0, let

f1(u) be defined by Theorem 5.11. Then ∂Ω3 consists of

1 the line segment between (0, 0) and (λ1λ2, 0),

2 the line segment between (λ1λ2, 0) and (λ1(λ2 + λ3), λ1), and

3 the parametric curve defined, for u ≥ 0, by

x1(u) = b1
f

(1)
1 (u)f

(2)
1 (u)− f1(u)f

(3)
1 (u)

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

(6.1.7)

x2(u) = b1
f1(u)f

(2)
1 (u)− (f

(1)
1 (u))2

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

. (6.1.8)

Proof.

From (5.6.7) and (5.6.12) we have, for u ≥ 0, that

g(x1, x2, u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u). (6.1.9)

The theorem will be proved in four steps.

1. First, we prove that g(x1, x2, 0) = 0 is the line x2 = 0 and that as u → ∞
g(x1, x2, u) = 0 approaches the line λ1λ2 − x1 + λ3x2 = 0. These two lines

intersect at (λ1λ2, 0).
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2. Next, we determine the point (x1(u), x2(u)) which is obtained by intersecting

g(x1, x2, u) = 0 with g(x1, x2, u + δu) = 0 and letting δu → 0. This point is

known as the characteristic point corresponding to u. The locus of character-

istic points is called the envelope of the family of lines given by (6.1.1), see

Bell [21, page 207] or Poritsky [114, Section 2]. Let this envelope be denoted

by Σ3.

3. Then, we check that Σ3 meets the two line segments in the points (0, 0) and

(λ1(λ2 + λ3), λ1).

4. Finally, to show that Σ3 forms the entire curved section of ∂Ω3, we prove

that, for v ≥ 0, an arbitrary point (x1(v), x2(v)) on Σ3 satisfies, for u ≥ 0 with

u 6= v, the inequality

g(x1(v), x2(v), u) > 0.

That is, any point on Σ3 is on the “feasible” side of all the linear constraints

g(x1, x2, u) = 0 where u ≥ 0.

Step 1. We have from (5.6.16) that f1(0) = 0, f
(1)
1 (0) = 0, and f

(2)
1 (0) = 1. Therefore,

the equation of the line g(x1, x2, 0) = 0 is

x2 = 0. (6.1.10)

Since f1(u) is the solution to the differential equation (5.6.15) with p = 3, it

can be written as

f1(u) = A11e
−λ1u + A12e

−λ2u + A13e
−λ3u when λ1 < λ2 < λ3,

f1(u) = A21e
−λ2u + A22ue

−λ2u + A23e
−λ3u when λ1 = λ2 < λ3,

f1(u) = A31e
−λ1u + A32e

−λ3u + A33ue
−λ3u when λ1 < λ2 = λ3, or as

f1(u) = A41e
−λ3u + A42ue

−λ3u + A43u
2e−λ3u when λ1 = λ2 = λ3,

where for i = 1, 2, 3, 4, and j = 1, 2, 3, Aij is a real constant and can be

calculated using the initial conditions (5.6.16). For i = 1, as u → ∞, the
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dominant terms in f1(u), f
(1)
1 (u), and f

(2)
1 (u) are A13, −λ3A13, and λ2

3A13,

respectively. Substituting the expressions for f1(u), f
(1)
1 (u), and f

(2)
1 (u) into

g(x1, x2, u) = 0, dividing through by A13e
−λ3u, and letting u → ∞, gives the

line

b1 − λ3x1 + λ2
3x2 = 0.

Since b1 = λ1λ2λ3 this is the line

λ1λ2 − x1 + λ3x2 = 0. (6.1.11)

The other three cases are similar. The lines given by (6.1.10) and (6.1.11)

meet at the point (λ1λ2, 0).

Step 2. To determine the characteristic point for the family of lines given by (6.1.1)

Poritsky [114] showed that this is equivalent to intersecting the two lines

b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) = 0 (6.1.12)

b1f
(1)
1 (u) + x1f

(2)
1 (u) + x2f

(3)
1 (u) = 0. (6.1.13)

The solution to this system of linear equations is given by (6.1.7) and (6.1.8),

which is the parametric equation for Σ3.

Step 3. We now need to show that the endpoints of Σ3, one at u = 0, the other as

u → ∞, meet the lines x2 = 0 and λ1λ2 − x1 + λ3x2 = 0 in the points (0, 0)

and (λ1(λ2 + λ3), λ1), respectively.

Letting u = 0 in (6.1.7) and (6.1.8) gives x1 = 0 and x2 = 0. The algebra for

the case when u→∞ is more complicated so we shall show it only for the case

when all zeros are distinct. The proofs for the other three cases are similar.

When λ1, λ2, and λ3 are distinct solving the differential equation (5.6.15) with

initial conditions (5.6.16) gives

f1(u) =
e−λ1u

(λ1 − λ2)(λ1 − λ3)
− e−λ2u

(λ1 − λ2)(λ2 − λ3)
+

e−λ3u

(λ1 − λ3)(λ2 − λ3)
.

(6.1.14)
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Substituting (6.1.14) into (6.1.7) and (6.1.8) and multiplying the numerators

and denominators through by e(λ1+λ2+λ3)u gives

x1(u) =
λ1λ2λ3((λ

2
2 − λ2

3)e
λ1u − (λ2

1 − λ2
3)e

λ2u + (λ2
1 − λ2

2)e
λ3u

(λ2
2λ3 − λ2λ2

3)e
λ1u − (λ2

1λ3 − λ1λ2
3)e

λ2u + (λ2
1λ2 − λ1λ2

2)e
λ3u

(6.1.15)

x2(u) =
λ1λ2λ3((λ2 − λ3)e

λ1u − (λ1 − λ3)e
λ2u + (λ1 − λ2)e

λ3u

(λ2
2λ3 − λ2λ2

3)e
λ1u − (λ2

1λ3 − λ1λ2
3)e

λ2u + (λ2
1λ2 − λ1λ2

2)e
λ3u

(6.1.16)

Since eλ1u is the dominant term in (6.1.15) and (6.1.16) letting u → ∞ gives

x1 = λ1(λ2 + λ3) and x2 = λ1, as required.

Step 4. Suppose that the zeros of b(λ) are such that λ1 > λ2 > λ3 > 0. The proofs for

the other three cases are similar. Letting u = v in (6.1.15) and (6.1.16) and

substituting the point (x1(v), x2(v)) on Σ3, where v ≥ 0, into (6.1.9) gives, for

u ≥ 0,

g(x1(v), x2(v), u)

b1

=
(λ2 − λ3)e

−λ1(u−v) − (λ1 − λ3)e
−λ2(u−v) + (λ1 − λ2)e

−λ3(u−v)

(λ2
2λ3 − λ2λ2

3)e
λ1v − (λ2

1λ3 − λ1λ2
3)e

λ2v + (λ2
1λ2 − λ1λ2

2)e
λ3v

(6.1.17)

=
n(u− v)
d(v)

The last expression defines n(·) and d(·) as the numerator and denominator of

(6.1.17), respectively. Now, since

(a) d(0) = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) > 0,

(b) d′(0) = 0,

(c) d′′(0) = 0, and

(d) lim
v→∞

= e−λ1vd(v) = λ2λ3(λ2 − λ3) > 0,
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we have that d(v) > 0 for v ≥ 0, by Lemma 6.2. Also, letting x = u − v we

have that

(a) n(0) = 0,

(b) n′(0) = 0, and

(c) n′′(0) = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3) > 0,

which implies that n(u − v) > 0 for u, v ≥ 0 with u 6= v, by Lemma 6.3.

Therefore, g(x1(v), x2(v), u) > 0 for u, v ≥ 0 with u 6= v. �

The next theorem gives an analytical description for Ω3 when two of the zeros

of b(λ) are a complex conjugate pair.

Theorem 6.5 Let b = (b1, b2, b3). Suppose that the zeros of b(λ) = λ3+b3λ
2+b2λ+

b1, −λ1,−λ2, and −λ3, are are such that λ1 = α+ iβ, λ2 = α− iβ, and λ3 = µ with

0 < µ ≤ α and β > 0. For u ≥ 0, let f1(u) be defined by Theorem 5.11. Let u∗ be

the minimal positive solution to

f1(u)f
(2)
1 (u)− (f

(1)
1 (u))2 = 0. (6.1.18)

Then ∂Ω3 consists of

1. the parametric curve, defined for 0 ≤ u ≤ u∗, by

x1(u) = b1
f

(1)
1 (u)f

(2)
1 (u)− f1(u)f

(3)
1 (u)

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

(6.1.19)

x2(u) = b1
f1(u)f

(2)
1 (u)− (f

(1)
1 (u))2

f
(1)
1 (u)f

(3)
1 (u)− (f

(2)
1 (u))2

, (6.1.20)

and

2. the line segment between (0, 0) and (x1(u
∗), 0) where

x1(u
∗) = −b1

f1(u
∗)

f
(1)
1 (u∗)

(6.1.21)

= −b1
f

(1)
1 (u∗)

f
(2)
1 (u∗)

. (6.1.22)
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Proof.

From (5.6.7) and (5.6.12) we have, for u ≥ 0, that

g(x1, x2, u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u). (6.1.23)

As in Theorem 6.4 g(x1, x2, 0) = 0 is the line x2 = 0. Also, the parametric equations

(6.1.19) and (6.1.20) are determined in exactly the same way as in Step 2 of the

proof of Theorem 6.4 and the envelope Σ3 meets the line x2 = 0 at the point (0, 0).

However, in this case Σ3 intersects the line x2 = 0 at least once when u > 0. We

are interested in the point that is closest to (0, 0). Let this occur when u = u∗. We

claim that u∗ is the minimal positive solution to x2(u) = 0, or to (6.1.18).

Σ3 intersects the line x2 = 0 at the point (x1(u
∗), 0). Substituting x2 = x2(u

∗) =

0 into (6.1.12) and (6.1.13) and rearranging, gives (6.1.21) and (6.1.22), respectively.

Thus, ∂Ω3 consists of Σ3 (when 0 ≤ u ≤ u∗) and the line segment between (0, 0)

and (x1(u
∗), 0).

We prove the abovementioned claim by showing that

1 a positive solution to (6.1.18) exists,

2 if µ = α, for 0 ≤ v ≤ u∗, the point (x1(v), x2(v)) on Σ3 satisfies, for u ≥ 0,

g(x1(v), x2(v), u) ≥ 0, and

3 if µ < α, for 0 ≤ v ≤ u∗, the point (x1(v), x2(v)) on Σ3 satisfies, for u ≥ 0

with u 6= v, g(x1(v), x2(v), u) > 0.

Steps 2 and 3 assert that any point on Σ3 satisfies all linear inequality con-

straints g(x1, x2, u) ≥ 0. We prove steps 2 and 3 separately because if µ = α,

g(x1(v), x2(v), u) = 0 whenever u and v differ by an integer multiple of 2π
β

,

whereas if µ < α the inequality is strict when u 6= v. Note that in both cases

g(x1(u), x2(u), u) = 0.
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Step 1. Define, for u ≥ 0,

q(u) = f1(u)f
(2)
1 (u)− (f

(1)
1 (u))2

=
−βe−2αu − (α− µ)e−(µ+α)u sin βu+ βe−(µ+α)u cos βu

β((µ− α)2 + β2)
. (6.1.24)

We have that

q
(π

β

)

= −e
− (µ+α)π

β + e−
2απ

β

(µ− α)2 + β2

< 0,

and, since µ ≤ α, that

q
(2π

β

)

=
e−

2(µ+α)π
β − e− 4απ

β

(µ− α)2 + β2

≥ 0.

Since q(u) is continuous, by the Intermediate Value Theorem there exists a

w ∈ (π
β
, 2π
β

] such that q(w) = 0 with w ≥ u∗.

Step 2. Suppose µ = α. Replacing u with v in (6.1.19) and (6.1.20) and substituting

these expressions into (6.1.23), after some rearranging we have that

g(x1(v), x2(v), u) =
b1e

−αu(1− cos β(u− v))
α2 + β2 − α(β sin βv + α cos βv)

. (6.1.25)

The denominator of (6.1.25) is positive for v ≥ 0 because α(β sin βv +

α cos βv) ≤ α
√

α2 + β2 < α2 + β2. The numerator is nonnegative for u, v ≥ 0

and zero if and only if u, v differ by an integer multiple of 2π
β

. Thus, for

0 ≤ v ≤ u∗ and u ≥ 0, g(x1(v), x2(v), u) ≥ 0, as required.

Step 3. Suppose µ < α. Replacing u with v in (6.1.19) and (6.1.20) and substituting
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these expressions into (6.1.23), after some rearranging we get

g(x1(v), x2(v), u)

b1

=
βe−µ(u−v) − (α− µ)e−α(u−v) sin β(u− v)− βe−α(u−v) cos β(u− v)
β(α2 + β2)eµv + µ(α2 − µα− β2)eαv sin βv + µβ(µ− 2α)eαv cos βv

(6.1.26)

=
n(u− v)
d(v)

.

As previously, n(·) and d(·) define the numerator and denominator of (6.1.26),

respectively.

From (6.1.24) we have that q(0) = 0, q(u∗) = 0 (by definition), q′(0) = 0, and

q′′(0) = −1. Thus, for 0 < u < u∗, q(u) < 0.

Now, since d(0) = β((α− µ)2 + β2) > 0 and, for 0 ≤ v ≤ u∗,

d′(v) = µ(α2 + β2)[βeµv + (α− µ)eαv sin βv − βeαv cos βv]

= −µβ(α2 + β2)((α− µ)2 + β2)e(2α+µ)vq(v)

≥ 0,

we have that d(v) > 0 when 0 ≤ v ≤ u∗.

The expression for n(u − v) differs from f(u − v) given by (5.6.11) only by a

positive multiplicative constant. Since f(u − v) > 0 for u > v we have, for

0 ≤ v < u, that n(u− v) > 0. Thus, for 0 ≤ v ≤ u∗ and u > v, we have that

g(x1(v), x2(v), u) > 0.

Replacing u with v−u in (6.1.24) gives, for 0 < v−u < u∗ (note that, u < v),

−βe−2α(v−u)−(α−µ)e−(µ+α)(v−u) sin β(v−u)+βe−(µ+α)(v−u) cos β(v−u) < 0.

(6.1.27)

Multiplying (6.1.27) through by −e(µ+2α)(v−u) gives

βeµ(v−u) + (α− µ)eα(v−u) sin β(v − u)− βeα(v−u) cos β(v − u) > 0. (6.1.28)
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Now,

n(u− v) = βe−µ(u−v) − (α− µ)e−α(u−v) sin β(u− v)− βe−α(u−v) cos β(u− v)

= βeµ(v−u) + (α− µ)eα(v−u) sin β(v − u)− βeα(v−u) cos β(v − u)

> 0,

by (6.1.28). Therefore, for 0 ≤ v ≤ u∗ and u ≥ 0 with u 6= v,

g(x1(v), x2(v), u) > 0, as required. �

Figure 6.1.2 shows ∂Ω3 for each of the examples depicted in Figure 6.1.1. All

envelopes Σ3 were plotted for u ∈ U = {0, 0.01, 0.02, . . . , 1, 1.1, 1.2, . . . , 10} except

for the case where λ1 = 1+ i, λ2 = 1− i, λ3 = 1, in which case the set was truncated

at u = 6.3. The diagram for the case where λ1 = 1.1 + i, λ2 = 1.1 − i, λ3 = 1

shows Σ3 plotted also for values of u ≥ u∗. This was done to illustrate the added

complexity when the polynomial b(λ) has two zeros that are a complex conjugate

pair with real part less than the zero of maximal real part. We remark here that by

construction Ω3 is bounded for all possible cases.

Let Γ3 = Σ3 ∩ ∂Ω3. We note here that when either the zeros of b(λ) are all

real, or such that the real part of the complex conjugate zeros equal the real zero,

we have Σ3 ⊂ ∂Ω3, that is Γ3 = Σ3. However, when the real part of the complex

conjugate zeros is less than the real zero, we have that Γ3 ⊂ Σ3.

6.2 The Constraint g(x, u) = 0 as u→∞

Before looking at the structure of Ωp when p > 3, in this section we investigate the

constraint g(x, u) = 0 as u→∞.

In Theorem 6.4 we saw that when p = 3 and b(λ) has only real zeros the con-

straint g(x1, x2, u) = 0 as u→∞, which simplifies to b1−λ3x1 +λ2
3 = 0, forms part

of ∂Ω3. In addition, the constraint has the same form when some or all of the zeros

are identical. It can be shown that when two of the zeros of b(λ) are a complex
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Figure 6.1.2: Plots of ∂Ω3 for various configurations of the zeros of b(λ)
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conjugate pair with real part equal to λ3, the constraint at infinity does not exist.

However, when two of the zeros of b(λ) are a complex conjugate pair with real part

less than λ3, the constraint exists but does not form part of ∂Ω3. These observations

can be generalized for p > 3.

Theorem 6.6 Let b = (b1, b2, . . . , bp). Suppose that the zeros of

b(λ) = λp + bpλ
p−1 + . . .+ b2λ+ b1,

−λ1,−λ2, . . . ,−λp, are such that <(λ1) ≥ <(λ2) ≥ . . . ≥ <(λp−1) ≥ λp > 0.

Suppose also that if any complex zero of b(λ) has real part equal to −λp, it has

multiplicity less than the multiplicity of −λp. Then, as u→∞, the hyperplane

g(x, u) = b1f1(u) + x1f
(1)
1 (u) + . . .+ xp−1f

(p−1)(u) = 0,

where f1(u) is defined by Theorem 5.11, can be expressed as

b1 − λpx1 + λ2
px2 + . . .+ (−1)p−1λp−1

p xp−1 = 0. (6.2.1)

Proof.

We first note that if there exists a pair of complex conjugate zeros of b(λ)

(both with multiplicity m) that have real part equal to −λp (with multiplicity

n ≤ m), say −λp ± iβ, as u → ∞, the dominant terms in f1(u) (and its deriva-

tives) are um−1e−λpu cos βu and um−1e−λpu sin βu. The term un−1e−λpu will also

be dominant if and only if n = m. Under these conditions on the zeros of b(λ),

lim
u→∞

u−m+1eλpug(x, u) does not exist and consequently no constraint at infinity ex-

ists.

We assume that if any complex zero of b(λ) has real part equal to −λp, it has

multiplicity less than n. Now, since f1(u), f
(1)
1 (u), . . . , f

(p−1)
1 (u) all approach zero as

u→∞, in order to obtain an expression for the constraint at infinity, we consider

u−n+1eλpug(x, u) = 0
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as u→∞. We have

0 = lim
u→∞

u−n+1eλpug(x, u)

= lim
u→∞

dn−1

dun−1 (eλpug(x, u))

(n− 1)!

=
1

(n− 1)!
lim

λ→0+
λ
[

λn−1 xp−1(λ− λp)
p−1 + xp−2(λ− λp−1)

p−2 + . . .+ x1(λ− λ1) + b1
(λ− λp + λ1)(λ− λp + λ2) . . . (λ− λp + λp−n)(λ− λp + λp)n

+
n−2
∑

i=0

λn−2−i d
i

dui
(eλpug(x, u))

∣

∣

∣

u=0

]

=
1

(n− 1)!

xp−1(−λp)
p−1 + xp−2(−λp−1)

p−2 + . . .+ x1(−λ1) + b1
(−λp + λ1)(−λp + λ2) . . . (−λp + λp−n)

,

which gives (6.2.1). The second equality above is due to n − 1 applications of

L’H ôpital’s Rule. The third equality is due to Heaviside’s Shifting Theorem and

the Final Value Theorem for Laplace transforms, and the expression for the Laplace

transform of the (n − 1)th derivative of a function, see Debnath [44, Sections 3.4

and 3.8]. �

Corollary 6.7 Suppose that the zeros of b(λ) satisfy the conditions given in The-

orem 6.6. The hyperplane (6.2.1) forms part of ∂Ωp if and only if there exists an

ordering of the zeros of b(λ), <(λ1) ≥ <(λ2) ≥ . . . ≥ <(λp−1) ≥ λp > 0, such

that λp−1 is real. Furthermore, any ME distribution that corresponds to a point

x = (x1, x2, . . . , xp−1) on the hyperplane (6.2.1) has an order p− 1 representation.

Proof.

Let x = (x1, x2, . . . , xp−1) satisfy (6.2.1). The LST corresponding to the function

g(x, u) can be expressed as

φ(λ) =
xp−1λ

p−1 + xp−2λ
p−2 + . . .+ x1λ+ b1

(λ+ λ1)(λ+ λ2) . . . (λ+ λp−1)(λ+ λp)

=
(yp−2λ

p−2 + yp−3λ
p−3 + . . .+ y1λ+ b1λ

−1
p )(λ+ λp)

(λ+ λ1) . . . (λ+ λp−1)(λ+ λp)

=
yp−2λ

p−2 + yp−3λ
p−3 + . . .+ y1λ+ b1λ

−1
p

(λ+ λ1) . . . (λ+ λp−1)
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where y = (y1, y2, . . . , yp−2), since −λp is a zero of the numerator of φ(λ). The

function g(x, u) will be nonnegative (and hence correspond to the ME density func-

tion f(u) = (1 − α0)g(x, u) where 0 ≤ α0 < 1) if and only if λp−1 is real and y is

contained in

Ωp−1 =
⋂

u≥0

{y ∈ R
p−2 | b1λ−1

p f̃1(u) +

p−2
∑

i=1

xif̃
(i)
1 (u) ≥ 0},

with f̃1(u) = e′
1 exp(T̃u)ep−1 where T̃ is the companion matrix that corresponds to

the polynomial

b̃(λ) = (λ+ λ1)(λ+ λ2) . . . (λ+ λp−1),

see Theorems 5.6 and 5.11. Since Ωp−1 is nonempty by Theorem 5.8, the hyperplane

(6.2.1) forms part of ∂Ωp, and any ME distribution corresponding to a point on it

will have an order p− 1 representation ((1− α0)y, T̃ ) where 0 ≤ α0 < 1. �

6.3 The Region Ωp

As we shall see it is a complex task to determine a complete analytical expression

for ∂Ωp when p > 3.

From (5.6.7) and (5.6.12) we have, for u ≥ 0, that

g(x, u) = b1f1(u) + x1f
(1)
1 (u) + . . .+ xp−1f

(p−1)
1 (u). (6.3.1)

If the analysis from Step 1 in the proof of Theorem 6.4 is extended we can show

that g(x, 0) = 0 is the hyperplane xp−1 = 0. We established, in Theorem 5.10, that

under certain conditions on the zeros of b(λ) the origin is contained in ∂Ωp. Thus,

in this case the hyperplane forms part of ∂Ωp. Also, if the zeros of b(λ) satisfy the

conditions given in Theorem 6.6 and Corollary 6.7, then as u→∞ the hyperplane

g(x, u) = 0, that is,

λ1λ2 . . . λp−1 +

p−1
∑

i=1

(−1)iλi−1
p xi = 0
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forms part of ∂Ωp.

We now consider the case when p = 4. The envelope of the family of planes,

defined for u ≥ 0,

g(x1, x2, x3, u) = 0 (6.3.2)

can be defined in a manner analogous to Σ3, see Step 2 in the proof of Theorem 6.4.

The intersection of the two planes

g(x1, x2, x3, u) = 0 (6.3.3)

g(1)(x1, x2, x3, u) = 0 (6.3.4)

(the differentiation being with respect to u) is called the characteristic line of the

plane determined by u, see Spivak [133, pages 207–208, 255–263] or Wardle [146,

pages 65–75]. The locus of these characteristic lines forms the envelope of the planes

(6.3.2). We denote this envelope by Σ4 and let Γ4 = Σ4 ∩ ∂Ω4. The intersection of

(6.3.3) and (6.3.4) with the plane

g(2)(x1, x2, x3, u) = 0

gives the characteristic point of the plane determined by u which lies on the cor-

responding characteristic line, see Spivak [133]. The locus of characteristic points,

say

x(u) = (x1(u), x2(u), x3(u)),

therefore, lies on Σ4. Under certain conditions on the functional form of the family

of planes (6.3.2), Σ4 can be expressed, for u ≥ 0, as

y(u, s) = x(u) + sx(1)(u), s ∈ R. (6.3.5)

Equation (6.3.5) is referred to as the tangent developable of x(u), see Spivak [133].

In Section 6.1 we remarked that when the zeros of b(λ) = λ3 + b3λ
2 + b2λ+ b1 are

either all real, or such that the real part of the complex conjugate zeros equals the

real zero, then Γ3 = Σ3. We also observed that when the real part of the complex
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conjugate zeros is less than the real zero, then Γ3 ⊂ Σ3. The extension to the case

when p = 4 appears difficult. Despite having an analytic expression for Σ4 it is

unclear at this stage how to obtain an expression for Γ4.

For the general case an analogous expression for the envelope of the family of

hyperplanes (6.3.1), denoted by Σp, and for the locus of characteristic points can be

found. However, again it is unclear how an analytic expression for Γp = Σp ∩ ∂Ωp

can be derived. We refer the reader to Poritsky [114] for some work on the problem

of finding the region determined by a one-parameter family of linear inequalities.

In the literature Dehon and Latouche [45], and O’Cinneide [107] also gave a

geometric characterization of particular classes of ME distributions of arbitrary

algebraic degree. The former authors considered hyperexponential distributions,

the latter, Coxian distributions. We now discuss briefly the work of O’Cinneide

[107] leaving a discussion of Dehon and Latouche [45] to Section 7.2.

O’Cinneide [107] used the idea of invariant polytopes (see O’Cinneide [104] and

[105]) to characterize the class of all Coxian distributions of arbitrary algebraic

degree, geometrically. In addition, a procedure to determine the triangular order of

a Coxian distribution of any algebraic degree was given. As an example, the class

of Coxian distributions with density function of the form, for u ≥ 0,

f(u) = (x1
u2

2
+ x2u+ x3)e

−u. (6.3.6)

was characterized. As with our characterization of ME distributions, O’Cinneide

[107] considered distributions with a possibly nonzero point mass at zero. He found,

also as in our case, that the characterization was essentially independent of the value

of the point mass at zero. O’Cinneide [107] also characterized the distributions of

the form (6.3.6) with triangular order k. For k = 3, 4, . . ., the set

Pk = {(x1, x2, x3) ∈ R | x1 + x2 + x3 = 1, x1, x3 ≥ 0, x2
2 ≤

2(k − 3)

k − 2
x1x3}

contains all points (x1, x2, x3) ∈ R
3 such that (6.3.6) corresponds to a Coxian dis-

tribution of triangular order k. Note that, for k = 3, 4, . . ., Pk is a proper subset of
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Pk+1. The set

P∞ = {(x1, x2, x3) ∈ R | x1 + x2 + x3 = 1, x1, x3 ≥ 0, x2
2 ≤ 2x1x3}

consists of all points that correspond to distributions with density of the form (6.3.6).

Figure 6.3.1 shows the sets P3, P4, P5, and P∞. Note that, P4, for example, consists

of the half-ellipse indicated by the arrow and the whole of P3. The points τ1, τ2, and

τ3 correspond to the Erlang density functions with unit rate of orders 1, 2, and 3,

respectively. These Erlang distributions correspond to the vertices of P3.

P

P

P

P

o

τ

τ

1

2

τ3

3

4

5

o

Figure 6.3.1: Diagram of the sets P3, P4, P5, and P∞

6.4 Comparing the Classes of Matrix-exponential

and Phase-type Distributions

The class of PH distributions is a proper subset of the class of ME distributions,

but how much larger is the latter class than the former? We conclude the chapter

by answering this question.



CHAPTER 6. THE REGION Ωp 111

In relation to ME distributions Asmussen and Bladt [10] mention “. . . the some-

what smaller class . . . of phase-type distributions . . . ”. Later Asmussen and

O’Cinneide [12] stated that “. . . the family of ME distributions is in a sense only

slightly larger than the family of PH distributions.” We now show that the latter

statement gives a better description of the situation.

Theorem 6.8 The set of all ME distributions of algebraic degree p that are not PH

distributions has measure zero in the set of all ME distributions of algebraic degree

p.

Proof.

Since any ME distribution of algebraic degree p can be represented by vectors

a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bp), the set of all ME distributions of alge-

braic degree p has dimension 2p.

Suppose that

1 0 < a1
b1
≤ 1, and

2 the zero of b(λ) of maximal real part −ζ is real, negative, and such that

−ζ > <(−ξ) where −ξ is any other zero.

Then, for any fixed a1 and b such that Conditions 1 and 2 hold, the subclass of ME

distributions, represented by Ωp, has dimension p− 1. Let x = (x1, x2, . . . , xp−1) be

in the interior of Ωp. Then, for u ≥ 0,

f(u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) + . . . xp−1f

(p−1)
1 (u) > 0.

The vector x, therefore, corresponds to a PH distribution by Theorem 5.7. Conse-

quently, there are no ME distributions that are not PH distributions represented

by points in the interior of Ωp. Consider x ∈ Γp. Then, for at least one u > 0,

f(u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) + . . . xp−1f

(p−1)
1 (u) = 0.
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In this case, x cannot correspond to a PH distribution by Theorem 5.7. Con-

sequently, the set of all ME distributions of algebraic degree p that are not PH

distributions with a1 and b fixed, and satisfying Conditions 1 and 2 above, is rep-

resented by Γp, a (p − 2)-dimensional subset of Ωp. It can now be seen that the

set of all ME distributions of algebraic degree p that are not PH distributions has

dimension 2p − 1, and hence has measure zero in the 2p-dimensional set of all ME

distributions.

If there exist zeros of b(λ) of maximal real part that are not real then no x ∈
Ωp corresponds to a PH distribution by Theorem 5.7. Since, in this case, the

zero of maximal real part that is real must equal the real part of at least one

complex conjugate pair of zeros, such ME distributions are parameterized by 2p− 1

parameters. Thus, the set of all such ME distributions has dimension 2p− 1, which

has measure zero in the 2p-dimensional set of all ME distributions of algebraic

degree p. �



Chapter 7

An Algorithm for Identifying

Matrix-exponential Distributions

7.1 Introduction

We saw in Chapter 6 that it is a difficult task to completely describe the region Ωp

when p > 3. Even for the case when p = 3 the analytical description of ∂Ω3 was

complicated. In addition, even if ∂Ωp could be adequately described, it is not clear

how to ascertain whether a point x = (x1, x2, . . . , xp−1) belongs to Ωp and hence

determine if a given pair of vectors a and b correspond to a ME distribution.

In this chapter we will tackle the problem of determining if a given point x ∈ R
p−1

belongs to Ωp on a “case by case” basis. That is, given x ∈ R
p−1 we develop

an algorithm to determine whether or not x ∈ Ωp without actually deriving a

parametric description for the whole of ∂Ωp. In fact, for the case when p = 3 this

approach actually does lead us to a complete description of ∂Ω3, arrived at via an

approach different to that in Section 6.1.

The method we develop is related to a technique Dehon and Latouche [45] used to

characterize the class of all generalized hyperexponential distributions of algebraic

degree three. Section 7.2 contains a discussion of their work. In Section 7.3 we

113
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develop the algorithm to determine if the vectors a and b correspond to a ME

distribution. Section 7.4 contains some examples to illustrate the procedure. In

Section 7.5 we develop another parameterization to completely describe the region

Ω3. Section 7.6 contains a discussion on the boundedness of Ωp. The chapter

concludes in Section 7.7 with a few remarks.

7.2 The Work of Dehon and Latouche

Dehon and Latouche [45] considered functions, defined for u ≥ 0, of the form,

G(x1, x2, . . . , xp, u) =

p
∑

i=1

xiFi(u), (7.2.1)

where for i = 1, 2, . . . , p, Fi(u) is the exponential distribution function

Fi(u) = 1− e−λiu,

and, without loss of generality, λ1 > λ2 > . . . > λp > 0. They investigated the

problem of determining conditions on x = (x1, x2, . . . , xp) such that (7.2.1) is a dis-

tribution function, approaching the characterization problem by utilizing the theory

of convex sets. Their approach adds insight into our more general problem.

The region which contains all x ∈ R
p such that (7.2.1) is a distribution function

is denoted by Cp and its boundary by ∂Cp. Cp is contained in the (p−1)-dimensional

subspace of R
p

x1 + x2 + . . .+ xp = 1.

If the distribution (7.2.1) has a nonzero point mass at zero α0, Cp is a subset of the

subspace

x1 + x2 + . . .+ xp = 1− α0.

Dehon and Latouche [45] only considered the case when α0 = 0.

For some integer q, where 1 ≤ q ≤ p, let I = {i1, i2, . . . , iq} be a subset of

{1, 2, . . . , p} such that i1 < i2 < . . . < iq. Denote by Fi1i2...iq (or FI) the generalized
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Erlang distribution with parameters λi1 , λi2 , . . . , λiq (note that λi1 > λi2 > . . . >

λiq > 0). Let Tp denote the set of all points in Cp that correspond to distributions

of the form

H(u) =

p
∑

i=1

ζiF12...i(u),

where ζi ≥ 0 with

p
∑

i=1

ζi = 1.

Let ∂Tp denote the boundary of Tp. We remark that Tp, which consists of all points

that correspond to mixtures of convolutions of the exponential distributions with

rates λ1, λ2, . . . , λp, corresponds to the class of all Coxian distributions of order p

whose infinitesimal generators have eigenvalues λ1, λ2, . . . , λp, see Cumani [42] or

O’Cinneide [103].

Dehon and Latouche [45] completely characterized C3 by developing a parametric

representation for its boundary (see later). They also noted that while Cp, in general,

is complicated to describe, Tp has some interesting properties:

1. Tp contains all x ∈ Cp that correspond to,

(a) the exponential distribution Fi, (i = 1, 2, . . . , p),

(b) for any I ⊂ {1, 2, . . . , p} the generalized Erlang distribution FI , and

(c) all hyperexponential distributions with distribution function

H(u) =

p
∑

i=1

xiFi(u),

where xi ≥ 0.

2. Tp is a (p − 1)-dimensional hypertetrahedron with vertices determined

by the points x that correspond to the generalized Erlang distributions

F1, F12, . . . , F12...p.

3. Every x ∈ Tp that corresponds to a generalized Erlang distribution FI , except

the exponential distribution Fp, is contained in ∂Tp (and also in ∂Cp). In

particular



CHAPTER 7. ME DISTRIBUTION IDENTIFICATION ALGORITHM 116

(a) if I ⊂ {1, 2, . . . , p − 1}, x ∈ Tp that corresponds to the generalized

Erlang distribution FI lies in the (p − 2)-dimensional hyperface of the

hypertetrahedron with vertices determined by F1, F12, . . . , F12...p−1.

(b) if I ⊂ {1, 2, . . . , p} with #I > 1, x ∈ Tp that corresponds to the gener-

alized Erlang distribution FI lies in the (p− 2)-dimensional hyperface of

the hypertetrahedron with vertices determined by F12, F123, . . . , F12...p.

These two hyperfaces form part of ∂Cp.

4. For i, j ∈ {1, 2, . . . , p}, with i < j, and u ≥ 0, we have for some ρ with

0 ≤ ρ ≤ 1,

F12...i−1i+1...j = ρF12...j−1 + (1− ρ)F12...j .

Geometrically, the point x ∈ Tp representing F12...i−1i+1...j lies on the line

segment between the points in Tp representing F12...j−1 and F12...j .

Figure 7.2.1 shows C3 and T3. Each vertex of the triangle is labelled with the

symbol denoting its corresponding distribution function. The vertices are F1, F12,

and F123 as per note 2 above. The line segments F1F12 and F12F123 form part of

∂C3 in accordance with notes 3(a) and 3(b), respectively. Also, F2 ∈ F1F12, and

F13, F23 ∈ F12F123, as per note 4. We also have, by symmetry, that F3 ∈ F1F13 and

F3 ∈ F2F23.

It is very likely that the characterization of Tp would be similar if some of

λ1, λ2, . . . , λp are identical. For example, suppose that λ1 = λ2 > λ3 > 0. Then T3

would look similar to the diagram in Figure 7.2.1 but with F1 coinciding with F2,

and F13 with F23.

In order to describe the curved section of ∂C3 Dehon and Latouche [45] con-

sidered, for −λ1(λ1 − λ3)
λ2(λ2 − λ3)

≤ γ ≤ 0, the family of rays emanating from F3 with
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Figure 7.2.1: Diagram of C3 showing T3 and the arrangement of the points that

represent the distributions F1, F2, F3, F12, F13, F23, and F123

parametric equations

x1 = ν

x2 = νγ

x3 = 1− ν − νγ,

where ν ≥ 0. For each ray ν = 0 corresponds to the point F3. The ray correspond-

ing to γ = 0 is
−−→
F3F1, and the ray corresponding to γ = −λ1(λ1 − λ3)

λ2(λ2 − λ3)
is
−−−−→
F3F123.

For a fixed γ they determined the largest possible ν > 0, say ν∗ = ν∗(γ), that en-

sures the point (ν∗, ν∗γ, 1−ν∗−ν∗γ) corresponds to a generalized hyperexponential

distribution, and hence derived an expression for ∂C3 in terms of γ.

We now state Theorem 1 of Dehon and Latouche [45] which gives the complete
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description of C3.

Theorem 7.1 C3 is bounded by the line segments F1F12 and F12F123, and the curve

with parametric equations, for 0 ≤ β ≤ 1,

x1(β) =
λ3

d(β)
(7.2.2)

x2(β) = −kλ3β

d(β)
(7.2.3)

x3(β) = 1− λ3(1− kβ)

d(β)
(7.2.4)

where

r =
λ1 − λ3

λ2 − λ3

,

k =
λ1(λ1 − λ3)

λ2(λ2 − λ3)
, and

d(β) = (−λ1 + kλ2)β
r + (1− kβ)λ3.

Note that β = −γ
k
.

We shall now show that the parameterization of ∂C3 (7.2.2)–(7.2.4) is equivalent

to the parameterization given by (6.1.15) and (6.1.16) in Theorem 6.4 when λ1, λ2,

and λ3 are distinct. The former description gives the set of all admissible mixing

coefficients (x1, x2, x3) of the exponential distributions F1, F2, and F3, while the

latter description gives the set of all admissible coefficients of λ and λ2, (X1, X2), in

the numerator polynomial of the LST

φ(λ) =
X2λ

2 +X1λ+ b1
λ3 + b3λ2 + b2λ+ b1

.

Consider the distribution function, defined for u ≥ 0 and 0 ≤ β ≤ 1,

Fβ(u) = x1(β)(1− e−λ1u) + x2(β)(1− e−λ2u) + x3(β)(1− e−λ3u),
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and its LST, defined for λ ∈ C such that <(λ) > −λ3,

φβ(λ) =
x1(β)λ1

λ+ λ1

+
x2(β)λ2

λ+ λ2

+
x3(β)λ3

λ+ λ3

=
X2(β)λ2 +X1(β)λ+X0(β)

(λ+ λ1)(λ+ λ2)(λ+ λ3)
,

where

X0(β) = λ1λ2λ3(x1(β) + x2(β) + x3(β)) = λ1λ2λ3, (7.2.5)

X1(β) = λ1(λ2 + λ3)x1(β) + λ2(λ1 + λ3)x2(β) + λ3(λ1 + λ2)x3(β) (7.2.6)

X2(β) = x1(β)λ1 + x2(β)λ2 + x3(β)λ3. (7.2.7)

Making the transformation β = e−(λ1−λ2)u in (7.2.6) and (7.2.7), after some re-

arrangement, gives (6.1.15) and (6.1.16), respectively (with “X” replacing “x”

throughout). Equation (7.2.5) verifies the Final Value Theorem for this situation

since

lim
u→∞

Fβ(u) = x1(β) + x2(β) + x3(β)

= 1,

and

lim
λ→0+

φβ(λ) = lim
λ→0+

X2(β)λ2 +X1(β)λ+X0(β)

(λ+ λ1)(λ+ λ2)(λ+ λ3)

=
X0(β)

λ1λ2λ3

= 1.

It can also easily be shown that the line segments between (0, 0) and (λ1λ2, 0),

and (λ1λ2, 0) and (λ1(λ2 + λ3), λ1) in Theorem 6.4, are equivalent to F123F12 and

F12F1, respectively, in Theorem 7.1.
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7.3 The Matrix-exponential Identification Algo-

rithm

Suppose that a1 and the vector

b =
(

b1 b2 . . . bp

)

satisfy Conditions 2 and 3 of Theorem 5.6. Let

â =
(

a1 â2 . . . âp

)

be a fixed vector. Condition 1 of Theorem 5.6 is satisfied if and only if

x̂ =
(

x̂1 x̂2 . . . x̂p−1

)

=
b1
a1

(

â2 â3 . . . âp

)

is contained in the set Ωp. Let Q ∈ R
p−1 have coordinates x̂ = (x̂1, x̂2, . . . , x̂p−1).

The point Q represents the function

g(x̂, u) = b1f1(u) + x̂1f
(1)
1 (u) + x̂2f

(2)(u) + . . .+ x̂p−1f
(p−1)
1 (u). (7.3.1)

In order to determine if Q is in Ωp (that is, represents a ME distribution) we need

to ascertain whether g(x̂, u) ≥ 0 for u ≥ 0.

Let the point P ∈ R
p−1, with coordinates x̄ = (x̄1, x̄2, . . . , x̄p−1), represent the

mixture of the point mass at zero and the exponential distribution

F (u) =







α0, u = 0

1− (1− α0)e
−λpu, u > 0,

(7.3.2)

where 0 ≤ α0 < 1, see Figure 7.3.1. Recall from Theorem 5.8 that x̄ ∈ Ωp and x̄i is

the coefficient of λi in the expansion of (λ+ λ1)(λ+ λ2) . . . (λ+ λp−1)λp. Note that,

for u ≥ 0, g(x̄, u) = λpe
−λpu. Let

−→
PQ denote the ray emanating from P and passing

through Q. For i = 1, 2, . . . , p − 1, let θi ∈ [0, π] be the angle
−→
PQ makes with the
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Figure 7.3.1: Diagram of Ω3 showing the points P , Q, and X

ray emanating from P in the direction parallel to the ith positive coordinate axis.

Let θ = (θ1, θ2, . . . , θp−1). We have

cos θi =
x̂i − x̄i

‖x̂− x̄‖2
,

where ‖ · ‖2 denotes the length of a vector, that is, if y ∈ R
n

‖y‖2 =
√

y2
1 + y2

2 + . . .+ y2
n.

Any point on the line extending in both directions through P and Q has coordinates

defined by, for i = 1, 2, . . . , p− 1, and r ∈ R,

xi(r, θi) = x̄i + r cos θi. (7.3.3)

For u ≥ 0, define r(u) to be the distance from the point P to the hyperplane

g(x, u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) + . . .+ xp−1f

(p−1)
1 (u) = 0 (7.3.4)
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measured in the direction determined by the ray
−→
PQ (or θ). Suppose that, for any

given u ≥ 0,
−→
PQ meets the hyperplane defined by (7.3.4) in the point X. Letting

r = r(u) and substituting (7.3.3) into (7.3.4) gives

b1f1(u) +

p−1
∑

i=1

(x̄i + r(u) cos θi)f
(i)
1 (u) = 0. (7.3.5)

Rearranging (7.3.5) gives

r(u) =
−b1f1(u)− x̄1f

(1)
1 (u)− x̄2f

(2)
1 (u)− . . .− x̄p−1f

(p−1)
1 (u)

cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u)

=
−λpe

−λpu

cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u)

. (7.3.6)

For u ≥ 0, we have that r(u) 6= 0. If r(u) < 0 then
−→
PQ never meets the hyper-

plane g(x, u) = 0. However, the ray emanating from P in the direction determined

by (π − θ1, π − θ2, . . . , π − θp−1) does. If this ray meets g(x, u) = 0 in the point

Y , say, the length of the line segment PY is −r(u). If r(u) is infinite then
−→
PQ is

parallel to g(x, u) = 0. If r(u) ≤ 0 for all u ≥ 0 then Ωp will be unbounded in the

direction determined by θ. It is the absence of any such examples of r(u) which

leads us to conjecture that Ωp is bounded, see Section 7.6.

Let θ be fixed. Using (7.3.3), define, for r ∈ R and u ≥ 0,

h(r,θ, u) = g(x(r,θ), u)

= b1f1(u) +

p−1
∑

i=1

(x̄i + r cos θi)f
(i)
1 (u).

For any given u ≥ 0, since h(r,θ, u) is a linear function of r, we have either

h(r,θ, u) ≥ 0 whenever r ≤ r(u), and (7.3.7)

h(r,θ, u) < 0 whenever r > r(u), (7.3.8)

or

h(r,θ, u) ≥ 0 whenever r ≥ r(u), and (7.3.9)

h(r,θ, u) < 0 whenever r < r(u). (7.3.10)
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Since, for u ≥ 0, h(0,θ, u) = λpe
−λpu > 0 conditions (7.3.7) and (7.3.8) hold when

r(u) > 0, and conditions (7.3.9) and (7.3.10) hold when r(u) < 0.

We require, for the calculated cosines of θ that, for u ≥ 0,

h(r,θ, u) ≥ 0 and r(u) > 0.

Both inequalities are satisfied when r is less than or equal to the global positive

minimum of r(u), say r∗. It does not matter if this minimum is attained at more

than one value of u ≥ 0 because it is the quantity r∗ that we require. If u∗ is the

smallest nonnegative value of u where r(u) attains a global positive minimum then

r∗ = r(u∗). Let r̂ = ‖PQ‖2 = ‖x̂ − x̄‖2. Now, if r̂ ≤ r∗ then Q, or x̂, is in Ωp,

and the vectors â and b correspond to a ME distribution, otherwise, that is, when

r̂ > r∗, they do not.

We now have the following algorithm to determine whether or not the vectors a

and b correspond to a ME distribution.

1. If 0 < a1
b1
≤ 1 then goto 2, else goto 10.

2. Calculate the zeros of the polynomial b(λ) = λp + bpλ
p−1 + bp−1λ

p−2 + . . .+ b1.

3. If there exists a zero of maximal real part that is both real and negative then

goto 4, else goto 10.

4. Calculate x̂ = b1
a1

(a2, a3, . . . , ap).

5. Calculate the coordinates x̄ = (x̄1, x̄2, . . . , x̄p) of the point P which corresponds

to the mixture of the point mass at zero and the exponential distribution

(7.3.2).

6. Calculate r̂ = ‖x̂− x̄‖2.

7. For i = 1, 2, . . . , p− 1, calculate

cos θi =
x̂i − x̄i

‖x̂− x̄‖2
.
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8. Find the value r∗ which is the global positive minimum of

r(u) =
−λpe

−λpu

cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u)

.

where u ≥ 0. If no such r∗ exists then goto 11.

9. If r̂ > r∗ then goto 10, else goto 11.

10. The vectors a and b do not correspond to a ME distribution.

11. The vectors a and b correspond to a ME distribution.

At Step 8, instead of finding the global positive minimum of r(u), which is

discontinuous whenever the denominator is equal to zero, we can equivalently find

the global minimum of the continuous function

d(u) = − λp

r(u)

= eλpu(cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u)). (7.3.11)

If d∗ = d(u∗) then r∗ = −λp

d∗
.

In order to minimize d(u) the inbuilt routine fminbnd in MATLAB r©, which

finds the local minimum of a nonlinear convex function over a finite interval, can be

applied repeatedly over intervals where the function is locally convex. In practice,

the nature of d(u), determined by the zeros of the polynomial b(λ), could be used

as a guide in selecting the number and size of such intervals.

According to Reemtsen and Görner [116], however, “. . . there does not exist

an algorithm which is able to detect a global maximizer of an arbitrary continuous

function with certainty.” The ME characterization problem, in general, from an

algorithmic point of view, remains a difficult problem to solve. Also, it could be

argued that minimizing d(u) is equivalent to minimizing g(x, u) and determining if

it ever becomes negative. While this is true, the algorithm presented in this section

gives a mechanism by which a function of the form (7.3.1) that does not correspond
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to a ME distribution can be altered so that it does correspond to a ME distribution.

That is, by altering x so that the point representing it becomes closer to the point

representing the mixture of the point mass at zero and the exponential distribution

(7.3.2). This method is far better than the ad hoc procedure due to Harris and

Marchal [66] which was described in Section 4.3. Our method also gives us the

possibility of describing Ωp in an alternative way as we shall see for Ω3 in Section

7.5.

7.4 Examples

We now consider the following three examples of pairs of vectors a and b and

determine if they correspond to ME distributions.

1.

a =
(

6 2 2
)

(7.4.1)

b =
(

6 11 6
)

(7.4.2)

2.

a =
(

2.21 −1 1
)

(7.4.3)

b =
(

2.21 4.41 3.2
)

(7.4.4)

3.

a =
(

24 60 60 28 12 1
)

(7.4.5)

b =
(

30 109 159 120 50 11
)

(7.4.6)

In the first example since λ1 = 3, λ2 = 2, λ3 = 1, and a1
b1

= 1, Conditions 2 and

3 of Theorem 5.6 are satisfied. The coordinates of P and Q are (5, 1) and (2, 2), re-

spectively. We have that r̂ =
√

10 ≈ 3.16 and (cos θ1, cos θ2) = (− 3√
10
, 1√

10
). Figure
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7.4.1 shows Ω3 with the ray
−→
PQ indicated, and Figure 7.4.2 shows the accompanying

graph of r(u) versus u for 0 ≤ u ≤ 5.
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Figure 7.4.1: Diagram of Ω3 for Example 1

We now discuss how r(u) relates to Ω3. For u ≥ 0, r(u) is the distance from P

to the line g(x1, x2, u) = 0 in the direction determined by
−→
PQ or θ. When u = 0,

r(0) ≈ −3.16 which means that the distance P is from the line g(x1, x2, 0) = x2 = 0

is approximately 3.16 units, but the ray emanating from P that intersects the line

is in the opposite direction to
−→
PQ. As u increases r(u) decreases until u ≈ 0.17

where the corresponding line (plotted on Figure 7.4.1) is parallel to
−→
PQ and r(u) is

infinite. This is represented by the vertical asymptote at u ≈ 0.17 in Figure 7.4.2.

As u continues to increase r(u) decreases to a local minimum value of approximately

4.07 when u ≈ 0.59. This value is the global positive minimum of r(u) over u ≥ 0.

Thus, u∗ ≈ 0.59 and r∗ ≈ 4.07. The value of r∗ is the maximum distance a point
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Figure 7.4.2: Graph of r(u) versus u for Example 1

X(x1, x2) can be from P in the direction of
−→
PQ such that it is in Ω3 (or such

that g(x1, x2, u) ≥ 0 for u ≥ 0). The point X that is r∗ units from P occurs

at the intersection of
−→
PQ and g(x1, x2, u

∗) = 0 and is indicated on Figure 7.4.1.

The coordinates of X are approximately (1.14, 2.29). As u increases from u∗, r(u)

increases to infinity when u ≈ 1.35. This is represented by the vertical asymptote at

u ≈ 1.35 in Figure 7.4.2. The corresponding line, which is parallel to
−→
PQ is plotted

on Figure 7.4.1. For u & 1.35, r(u) is always negative and lim
u→∞

r(u) ≈ −1.58. Thus,

as u → ∞, P is approximately 1.58 units from g(x1, x2, u) = 6 − x1 + x2 = 0 in

the direction opposite to
−→
PQ. Since r̂ < r∗ the point Q is contained in Ω3 and

the vectors given by (7.4.1) and (7.4.2) correspond to a ME distribution. In this

example, to minimize d(u) we used the fminbnd repeatedly over [0, 2] in intervals of

length 0.1. The run time was approximately three seconds.
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In the second example λ1 = 1.1 + i, λ2 = 1.1 − i, λ3 = 1, and a1
b1

= 1. Thus,

Conditions 2 and 3 of Theorem 5.6 are satisfied. The coordinates of P and Q are

(2.21, 1) and (−1, 1), respectively. We have that r̂ ≈ 3.20 and (cos θ1, cos θ2) =

(−1, 0). The global positive minimum value of r(u) over u ≥ 0 is r∗ ≈ 2.65 which

occurs when u∗ ≈ 0.74. The point where this occurs is labelled X1 on both the

diagram of Ω3, shown in Figure 7.4.3, and the graph of r(u) versus u, shown in

Figure 7.4.4. Since r̂ > r∗ the point Q is not contained in Ω3 and so the vectors

given by (7.4.3) and (7.4.4) do not correspond to a ME distribution. We also note

that the graph of r(u) has an asymptote at u = 0 since the ray
−→
PQ is parallel to

the line x2 = 0.
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Figure 7.4.3: Diagram of Ω3 and Σ3 for Example 2

As u increases from u∗, r(u) increases until it becomes infinite when u ≈ 1.52.

This is indicated by the asymptote in Figure 7.4.4. As u continues to increase, r(u)
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Figure 7.4.4: Graph of r(u) versus u for Example 2

increases to approximately −0.50 when u ≈ 3.88. Thus, the distance P is from

the line g(x1, x2, 3.88) = 0 in the direction opposite to
−→
PQ is approximately 0.50.

The point at which this occurs, in both Figures 7.4.3 and 7.4.4, is labelled X2. As u

increases further the envelope (x1(u), x2(u)) (that is, Σ3) eventually fails to form the

boundary ∂Ω3. The next three points at which the line PX intersects Σ3 are X3,

X4, and X5, in order of increasing u. We can see from Figures 7.4.3 and 7.4.4, that

Σ3 exhibits complicated behaviour. As u increases the lines g(x1, x2, u) = 0 behave

in such a way so that the distance from P to Σ3 (in the opposite direction to
−→
PQ)

oscillates. When u ≈ 7.02, this distance attains a local maximum of ‖PX3‖2 ≈ 3.84.

At u ≈ 10.16, this distance attains a local minimum of ‖PX4‖2 ≈ 0.66, and so on.

The envelope Σ3 is plotted for u ∈ [0, 12] and since the point X5 occurs when u ≈
13.30, Σ3 is not seen to pass through it. As u→∞, g(x1, x2, u) = 0 approaches the
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line 2.21−x1+x2 = 0 (see (6.1.11) and Theorem 6.6) which is indicated by the dashed

line in Figure 7.4.3. For the given zeros of b(λ) for this example this constraint

exists but lies outside of Ω3, see Corollary 6.7. We have that lim
u→∞

r(u) = −1.01,

which means that the point P is 1.01 units from this line in the direction opposite

to
−→
PQ. The solid diagonal lines in Figure 7.4.4 are asymptotes that occur when the

denominator of x1(u) (or denominator of x2(u) - they are identical functions) equal

zero, see (6.1.19) and (6.1.20). For this example d(u) was minimized over [0, 2] in

intervals of length 0.1. The run time was approximately 3.5 seconds.

In the final example λ1 = 3, λ2 = 2 + i, λ3 = 2 − i, λ4 = 2, λ5 = 1,

λ6 = 1, a1
b1

= 4
5. Thus, Conditions 2 and 3 of Theorem 5.6 are satisfied.

The coordinates of P and Q are (79, 80, 40, 10, 1) and (75, 75, 35, 15, 1.25), re-

spectively. We have that r̂ ≈ 9.5427 and (cos θ1, cos θ2, cos θ3, cos θ4, cos θ5) ≈
(−0.4192,−0.5240,−0.5240, 0.5240, 0.0262). The plot of r(u) versus u is shown in

Figure 7.4.5. We can see from the graph that r∗ ≈ 10.05 when u∗ ≈ 4.31. Since

r̂ < r∗ the vectors given by (7.4.5) and (7.4.6) correspond to a ME distribution.

The graph of u versus r(u) gives us the distance the point P is from the hyperplane

g(x, u) = 0 and whether or not the intersection of the line PQ with the hyperplane is

in the same direction as
−→
PQ. The graph suggests that the geometry of the situation

is quite complicated. For this example d(u) was minimized over [0, 5] in intervals of

length 0.1. The run time was approximately 9.5 seconds.

7.5 Another Parameterization of Ω3

In this section, using the method developed in Section 7.3, we give an alternative

parameterization of ∂Ω3. Theorem 7.2 gives the parameterization when the zeros of

the polynomial b(λ) are all real and distinct. Similar results when some or all of the

zeros are repeated are stated without proof in Theorem 7.3. Theorem 7.4 gives the

parameterization when two of the zeros are a complex conjugate pair.
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Figure 7.4.5: Graph of r(u) versus u for Example 3

Theorem 7.2 Suppose that the vectors a = (a1, a2, a3) and b = (b1, b2, b3) are such

that

1 0 < a1
b1
≤ 1, and

2 the zeros of b(λ) = λ3 + b3λ
2 + b2λ+ b1, −λ1,−λ2, and −λ3, are real and such

that λ1 > λ2 > λ3 > 0.

If θ1, θ2, and θ3 are such that

1 tan θ1 = 1
λ1 + λ2

and π < θ1 <
3π
2 ,

2 tan θ2 = λ3
λ1λ3 + λ2λ3 − λ1λ2

and π < θ2 < 2π, and

3 tan θ3 = 1
λ2

and 0 < θ3 <
π
2 ,
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then the parametric representation for ∂Ω3 is:

1. For θ1 < θ ≤ θ2,

x1(θ) = −λ3 cot θ + λ3(λ1 + λ2) (7.5.1)

x2(θ) = 0. (7.5.2)

2. For θ2 < θ ≤ θ3 + 2π,

x1(θ) =
(λ1λ2 + λ2

3) cos θ − λ2
3(λ1 + λ2) sin θ

cos θ − λ3 sin θ
(7.5.3)

x2(θ) =
λ3 cos θ + (λ1λ2 − λ1λ3 − λ2λ3) sin θ

cos θ − λ3 sin θ
. (7.5.4)

3. For θ3 < θ ≤ θ1,

x1(θ) =
λ3(λ1 − λ3)(λ2 − λ3) cos θ

λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2

+ λ3(λ1 + λ2)

(7.5.5)

x2(θ) =
λ3(λ1 − λ3)(λ2 − λ3) sin θ

λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2

+ λ3, (7.5.6)

where

γ(θ) =
λ1(cos θ − λ1 sin θ)

λ2(cos θ − λ2 sin θ)
. (7.5.7)

Proof.

Refer to Figure 7.5.1 below for a diagram of the situation. Recall from Theorem

6.4 that ∂Ω3 consists of

1 the line segment between O(0, 0) and R(λ1λ2, 0),

2 the line segment between R and S(λ1(λ2 + λ3), λ1), and

3 the curve Γ3 which has as its endpoints O and S.
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Figure 7.5.1: Diagram of Ω3 showing the points O, P , R, and S

We show that these three sections of ∂Ω3 are parameterized by (7.5.1) and (7.5.2),

(7.5.3) and (7.5.4), and (7.5.5) and (7.5.6), respectively.

Recall, also, that the mixture of the point mass at zero and the exponential

distribution (7.3.2) is represented by the point P (λ3(λ1 + λ2), λ3). Let θ be the

angle between the ray emanating from P parallel to the positive x1-axis and any

ray emanating from P , measured in an anticlockwise direction. Let θ1, θ2, and θ3

be such angles that are defined by the rays
−→
PO,

−→
PR, and

−→
PS, respectively. We

have that tan θ1 = 1
λ1 + λ2

, and since the coordinates of P are both positive then

π < θ1 <
3π
2 . Also, tan θ2 = λ3

λ1λ3 + λ2λ3 − λ1λ2
, and since the x2 coordinate of P

is positive then π < θ2 < 2π. Lastly, tan θ3 = 1
λ2

, and since both coordinates of S

are greater than their respective coordinates of P , then 0 < θ3 <
π
2 .
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For p = 3, from (7.3.6),

r(u) =
−λ3e

−λ3u

cos θf
(1)
1 (u) + sin θf

(2)
1 (u)

,

and therefore

d(u) = − λ3

r(u)

= eλ3u(cos θf
(1)
1 (u) + sin θf

(2)
1 (u)). (7.5.8)

The function d(u) attains a global minimum when one of the following three situa-

tions occur:

1 u = 0,

2 u→∞, or

3 d′(u) = 0.

1. Suppose the global minimum is achieved when u = u∗ = 0. The minimum

value of d(u) is therefore

d∗ = d(0) = sin θ.

Thus, the corresponding points on the boundary ∂Ω3, using (7.3.3), are given

by

x1(θ) = −λ3

d∗
cos θ + λ3(λ1 + λ2)

= −λ3 cot θ + λ3(λ1 + λ2), (7.5.9)

and

x2(θ) = −λ3

d∗
sin θ + λ3

= 0.



CHAPTER 7. ME DISTRIBUTION IDENTIFICATION ALGORITHM 135

This situation occurs when the ray emanating from P in the direction defined

by θ intersects the line g(x1, x2, 0) = 0, that is,
←→
OR. Thus, we have that

θ1 < θ ≤ θ2. Note that (7.5.9) is defined for these values of θ because cot θ is

defined for π < θ < 2π.

2. Suppose the global minimum is achieved as u → ∞. The minimum value is

therefore

d∗ = lim
u→∞

d(u)

= lim
u→∞

eλ3u(cos θf
(1)
1 (u) + sin θf

(2)
1 (u))

=
−λ3 cos θ + λ2

3 sin θ

(λ1 − λ3)(λ2 − λ3)
.

The last equality is achieved by observing that, from (6.1.14), the domi-

nant terms in f
(1)
1 (u) and f

(2)
1 (u), as u → ∞, are −λ3e

−λ3u

(λ1 − λ3)(λ2 − λ3)
and

λ2
3e

−λ3u

(λ1 − λ3)(λ2 − λ3)
, respectively. Thus, the points on the boundary of ∂Ω3 are

given by

x1(θ) = −λ3

d∗
cos θ + λ3(λ1 + λ2)

=
(λ1 − λ3)(λ2 − λ3) cos θ

cos θ − λ3 sin θ
+ λ3(λ1 + λ2)

=
(λ1λ2 + λ2

3) cos θ − λ2
3(λ1 + λ2) sin θ

cos θ − λ3 sin θ
, (7.5.10)

and

x2(θ) = −λ3

d∗
sin θ + λ3

=
(λ1 − λ3)(λ2 − λ3) sin θ

cos θ − λ3 sin θ
+ λ3

=
λ3 cos θ + (λ1λ2 − λ1λ3 − λ2λ3) sin θ

cos θ − λ3 sin θ
. (7.5.11)

This occurs when the ray emanating from P in the direction defined by θ

intersects the line g(x1, x2, u) = 0 as u → ∞, that is,
←→
RS. Thus, θ2 <
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θ ≤ 2π + θ3. Note that (7.5.10) and (7.5.11) are defined for such θ since

cos θ − λ3 sin θ > 0. This follows because:

(a) If π < θ2 <
3π
2 then tan θ2 = λ3

λ1λ3 + λ2λ3 − λ1λ2
> 0. Now, for θ2 <

θ < 3π
2 , tan θ > tan θ2. Therefore, we have that

cos θ >
λ1λ3 + λ2λ3 − λ1λ2

λ3

sin θ

> λ3 sin θ,

since 0 ≤ λ1λ3 + λ2λ3 − λ1λ2
λ3

< λ3 and sin θ < 0.

(b) If 3π
2 ≤ θ2 < 2π then, for θ2 < θ < 2π,

cos θ > λ3 sin θ,

since cos θ > 0, sin θ < 0, and λ3 > 0.

(c) If 2π ≤ θ ≤ 2π + θ3 then tan θ ≤ tan θ3 = 1
λ2

. Therefore,

cos θ ≥ λ2 sin θ

> λ3 sin θ,

since 0 < λ3 < λ2.

3. Suppose the global minimum is achieved when d′(u) = 0. We have, using the

expression (6.1.14) for f1(u), that

d′(u) = eλ3u(λ3 cos θf
(1)
1 (u) + (cos θ + λ3 sin θ)f

(2)
1 (u) + sin θf

(3)
1 )

= eλ3u (cos θ − λ1 sin θ)λ1e
−λ1u − (cos θ − λ2 sin θ)λ2e

−λ2u

λ1 − λ2

, (7.5.12)

Solving d′(u) = 0 and letting the value of u when this occurs be u∗ = u∗(θ)

gives

eu∗(θ) =
(λ1(cos θ − λ1 sin θ)

λ2(cos θ − λ2 sin θ)

) 1
λ1−λ2 . (7.5.13)
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The function d(u) attains a minimum when u = u∗. This is the case because

d′′(u∗) =
eλ3u∗

λ1 − λ2

(

(cos θ − λ1 sin θ)λ1λ3e
−λ1u∗ − (cos θ − λ2 sin θ)λ2λ3e

−λ2u∗

− (cos θ − λ1 sin θ)λ2
1e

−λ1u∗

+ (cos θ − λ2 sin θ)λ2
2e

−λ2u∗

)

=
eλ3u∗

λ1 − λ2

(

−(cos θ − λ1 sin θ)λ2
1e

−λ1u∗

+ (cos θ − λ2 sin θ)λ2
2e

−λ2u∗

)

>
eλ3u∗

λ1 − λ2

(

−λ1(cos θ − λ1 sin θ)λ1e
−λ1u∗

+ λ1(cos θ − λ2 sin θ)λ2e
−λ2u∗

)

= 0.

The second and third equalities are due to the fact that d′(u∗) = 0, and the

inequality is because 0 < λ2 < λ1, and for θ3 < θ ≤ θ1, cos θ−λ2 sin θ < 0, see

below.

Define, for θ3 < θ ≤ θ1,

γ(θ) =
λ1(cos θ − λ1 sin θ)

λ2(cos θ − λ2 sin θ)
.

For θ3 < θ ≤ θ1, (7.5.13) is defined since γ(θ) > 0. This follows because:

(a) If θ3 < θ ≤ π
2 then tan θ > tan θ3 = 1

λ2
. Therefore,

cos θ < λ2 sin θ

< λ1 sin θ,

since 0 < λ2 < λ1.

(b) If π2 < θ ≤ π, we have that

cos θ < λ2 sin θ

< λ1 sin θ,

since cos θ < 0, sin θ ≥ 0, and 0 < λ2 < λ1.
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(c) If π < θ ≤ θ1, we have that

tan θ ≤ tan θ1

=
1

λ1 + λ2

<
1

λ2

<
1

λ1

.

Thus, cos θ < λ2 sin θ < λ1 sin θ since 0 < λ2 < λ1, and sin θ < 0 and

cos θ < 0.

Equating the expression for d′(u∗) in (7.5.12) to zero we have that

λ2e
−λ2u∗(θ)(cos θ − λ2 sin θ) = λ1e

−λ1u∗(θ)(cos θ − λ1 sin θ).

Substituting this expression into (7.5.8), after some rearrangement, gives

d(u∗(θ)) = −λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)e(λ3−λ1)u∗(θ)

(λ1 − λ3)(λ2 − λ3)

= −λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2

(λ1 − λ3)(λ2 − λ3)
,

by (7.5.13). Thus, the points on ∂Ω3 are given by

x1(θ) = −λ3

d∗
cos θ + λ3(λ1 + λ2)

=
λ3(λ1 − λ3)(λ2 − λ3) cos θ

λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2

+ λ3(λ1 + λ2),

and

x2(θ) = −λ3

d∗
sin θ + λ3

=
λ3(λ1 − λ3)(λ2 − λ3) sin θ

λ3(cos θ − λ3 sin θ)− λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2

+ λ3.

This occurs when the ray emanating from P in the direction defined by θ

intersects the line g(x1, x2, u) = 0 where u > 0. Thus, θ3 < θ ≤ θ1. �
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Similar parameterizations for ∂Ω3 can be can be found when the zeros of b(λ)

are real but not distinct which we state without proof.

Theorem 7.3 Suppose that the vectors a = (a1, a2, a3) and b = (b1, b2, b3) are such

that

1 0 < a1
b1
≤ 1, and

2 the zeros of b(λ) = λ3 + b3λ
2 + b2λ+ b1, −λ1,−λ2, and −λ3, are real and such

that

(a) λ1 = λ2 > λ3 > 0.

If θ1, θ2, and θ3 are such that

1 tan θ1 = 1
2λ2

and π < θ1 <
3π
2 ,

2 tan θ2 = λ3

2λ2λ3 − λ2
2

and π < θ2 < 2π, and

3 tan θ3 = 1
λ2

and 0 < θ3 <
π
2 ,

then the parametric representation for ∂Ω3 is:

1. For θ1 < θ ≤ θ2,

x1(θ) = −λ3 cot θ + 2λ2λ3

x2(θ) = 0

2. For θ2 < θ ≤ θ3 + 2π,

x1(θ) =
(λ2

2 + λ2
3) cos θ − 2λ2λ

2
3 sin θ

cos θ − λ3 sin θ

x2(θ) =
λ3 cos θ + (λ2

2 − 2λ2λ3) sin θ

cos θ − λ3 sin θ
.

3. For θ3 < θ ≤ θ1,

x1(θ) =
λ3(λ2 − λ3)

2 cos θ

λ3(cos θ − λ3 sin θ)− λ2(cos θ − λ2 sin θ)e(λ3−λ2)η(θ)
+ 2λ2λ3

x2(θ) =
λ3(λ2 − λ3)

2 sin θ

λ3(cos θ − λ3 sin θ)− λ2(cos θ − λ2 sin θ)e(λ3−λ2)η(θ)
+ λ3,
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where

η(θ) =
cos θ − 2λ2 sin θ

λ2(cos θ − λ2 sin θ)
.

(b) λ1 > λ2 = λ3 > 0.

If θ1, θ2, and θ3 are such that

1 tan θ1 = 1
λ1 + λ3

and π < θ1 <
3π
2 ,

2 tan θ2 = 1
λ3

and π < θ2 <
3π
2 , and

3 tan θ3 = 1
λ3

and 0 < θ3 <
π
2 ,

then the parametric representation for ∂Ω3 is:

1. For θ1 < θ ≤ θ2,

x1(θ) = −λ3 cot θ + λ3(λ1 + λ3)

x2(θ) = 0

2. For θ2 < θ ≤ θ3 + 2π,

x1(θ) =
λ1λ3(θ + θ3 − 2θ2 + 2π)

θ3 − θ2 + 2π
(7.5.14)

x2(θ) =
λ1(θ − θ2)

θ3 − θ2 + 2π
. (7.5.15)

3. For θ3 < θ ≤ θ1,

x1(θ) =
λ3(λ1 − λ3)

2 cos θ

(λ3 − λ1)(cos θ − 2λ3 sin θ) + λ3(cos θ − λ3 sin θ) log ζ(θ)

+ λ3(λ1 + λ3)

x2(θ) =
λ3(λ1 − λ3)

2 sin θ

(λ3 − λ1)(cos θ − 2λ3 sin θ) + λ3(cos θ − λ3 sin θ) log ζ(θ)
+ λ3,

where

ζ(θ) =
λ1(cos θ − λ1 sin θ)

λ3(cos θ − λ3 sin θ)
.

(c) λ1 = λ2 = λ3 > 0.

If θ1, θ2, and θ3 are such that
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1 tan θ1 = 1
2λ3

and π < θ1 <
3π
2 ,

2 tan θ2 = 1
λ3

and π < θ2 <
3π
2 , and

3 tan θ3 = 1
λ3

and 0 < θ3 <
π
2 ,

then the parametric representation for ∂Ω3 is:

1. For θ1 < θ ≤ θ2,

x1(θ) = −λ3 cot θ + 2λ2
3

x2(θ) = 0

2. For θ2 < θ ≤ θ3 + 2π,

x1(θ) =
λ2

3(θ + θ3 − 2θ2 + 2π)

θ3 − θ2 + 2π
(7.5.16)

x2(θ) =
λ3(θ − θ2)

θ3 − θ2 + 2π
. (7.5.17)

3. For θ3 < θ ≤ θ1,

x1(θ) =
2λ3

3 sin θ(λ3 sin θ − cos θ)

(cos θ − λ3 sin θ)2 + λ2
3 sin2 θ

x2(θ) =
λ3(cos θ − 2λ3 sin θ)2

(cos θ − λ3 sin θ)2 + λ2
3 sin2 θ

.

The parametric equations (7.5.14) and (7.5.15), and (7.5.16) and (7.5.17) have a

different form to (7.5.3) and (7.5.4) because the point corresponding to the mixture

of the point mass at zero and the exponential distribution (7.3.2), that is, P , lies on

the line segment RS, see Figure 7.5.1 (in fact P and R coincide when λ1 = λ2 = λ3).

When θ2 < θ ≤ θ3 + 2π, r(u) attains a minimum of r∗ = 0 (d∗ is infinite) when

u→∞, and the parameterization given by

x1(θ) = r∗ cos θ + λ3(λ1 + λ3) = λ3(λ1 + λ3)

x2(θ) = r∗ sin θ + λ3 = λ3

is redundant. Consequently, RS needs to be expressed in a different way, as we have

done.
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We now give an alternative parameterization of ∂Ω3 when two of the zeros of

b(λ) are a complex conjugate pair.

Theorem 7.4 Suppose that the vectors a = (a1, a2, a3) and b = (b1, b2, b3) are such

that

1. 0 < a1
b1
≤ 1, and

2. the zeros of b(λ) = λ3 + b3λ
2 + b2λ + b1, −λ1, −λ2, and −λ3, are such that

λ1 = α + iβ, λ2 = α− iβ, and λ3 = µ with 0 < µ ≤ α and β > 0.

Let f1(u) be the solution to the differential equation (5.6.15) with initial conditions

(5.6.16). If θ1 and θ2 are such that

1 tan θ1 = 1
2α and π < θ1 <

3π
2 , and

2 tan θ2 =
µ

2µα− x1(u
∗)

where u∗ is the minimal positive solution to

f1(u)f
(2)
1 (u)− (f

(1)
1 (u))2 = 0, (7.5.18)

and

x1(u
∗) = −b1

f1(u
∗)

f
(1)
1 (u∗)

= −b1
f

(1)
1 (u∗)

f
(2)
1 (u∗)

, (7.5.19)

and π < θ2 < 2π,

then the parametric representation for ∂Ω3 is:

1. For θ1 ≤ θ < θ2,

x1(θ) = −µ cot θ + 2µα (7.5.20)

x2(θ) = 0, (7.5.21)

2. For θ2 ≤ θ < 2π + θ1,

x1(θ) =
µ((µ− α)2 + β2) cos θ

µ(cos θ − µ sin θ)− w(θ)zw(θ)
z

+ 2µα (7.5.22)

x2(θ) =
µ((µ− α)2 + β2) sin θ

µ(cos θ − µ sin θ)− w(θ)zw(θ)
z

+ µ, (7.5.23)
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where

w(θ) = α cos θ − (α2 − β2) sin θ + i(β cos θ − 2αβ sin θ), (7.5.24)

and

z =
1

2
+ i

α− µ
2β

. (7.5.25)

The expressions w(θ) and z denote the complex conjugates of w(θ) and z,

respectively.

Proof.

Refer to Figure 7.5.2. Recall from Theorem 6.5 that ∂Ω3 consists of

1 the line segment between O(0, 0) and R(x1(u
∗), 0) where u∗ is the minimal

positive solution to (7.5.18), and x1(u
∗) is given by (7.5.19), and

2 the curve Γ3 which has as its endpoints O and R.

Recall also that the mixture of the point mass at zero and the exponential distri-

bution (7.3.2) is represented by the point P (2µα, µ). Let θ be the angle between the

ray emanating from P parallel to the positive x1-axis and any ray emanating from

P , measured in an anticlockwise direction. Let θ1 and θ2 be such angles that are de-

fined by the rays
−→
PO and

−→
PR, respectively. We have that tan θ1 = 1

2α , and since the

coordinates of P are both positive then π < θ1 <
3π
2 . Also, tan θ2 =

µ
2α− x1(u

∗)
,

and since the x2 coordinate of P is positive then π < θ2 < 2π.

The parametric equations for (7.5.20) and (7.5.21) are found in precisely the same

way as (7.5.1) and (7.5.2), respectively, in the proof of Theorem 7.2 since λ1, λ2, and

λ3 are distinct. Likewise, the parametric equations for (7.5.22) and (7.5.23) are

found in the same way as (7.5.5) and (7.5.6), respectively. Defining γ(θ) by (7.5.7)

we have that

λ1(cos θ − λ1 sin θ)γ(θ)
λ3−λ1
λ1−λ2 = λ1(cos θ − λ1 sin θ)

(λ1(cos θ − λ1 sin θ)

λ2(cos θ − λ2 sin θ)

)

λ3−λ1
λ1−λ2

= (λ1(cos θ − λ1 sin θ))
λ3−λ2
λ1−λ2 (λ2(cos θ − λ2 sin θ))

λ1−λ3
λ1−λ2

= w(θ)zw(θ)
z
, (7.5.26)
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P(2µα, µ) 

O(0,0) R(x
1
(u* ), 0) 

θ
1
 θ

2
 

Ω
3
 

Figure 7.5.2: Diagram of Ω3 showing the points O, P , and R

where w(θ) and z are defined by (7.5.24) and (7.5.25), respectively. Substituting the

expression (7.5.26) into (7.5.5) and (7.5.6) gives (7.5.22) and (7.5.23), respectively.

�

7.6 The Boundedness of Ωp

In this section we explore the following conjecture:

Conjecture 7.5 Ωp is bounded.

In doing so we rely on the work of Krĕın and Nudel′man [80, Chapter 1].



CHAPTER 7. ME DISTRIBUTION IDENTIFICATION ALGORITHM 145

Recall from Section 7.3 that if Ωp is unbounded then there exists a vector θ =

(θ1, θ2, . . . , θp−1) such that, for u ≥ 0,

r(u) =
−λpe

−λpu

cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u)

≤ 0. (7.6.1)

Geometrically, the ray emanating from the point P whose direction is determined

by θ never intersects, for any u ≥ 0, a hyperplane of the form

g(x, u) = b1f1(u) + x1f
(1)
1 (u) + x2f

(2)
1 (u) + . . .+ xp−1f

(p−1)
1 (u) = 0.

Statement (7.6.1) is equivalent to

cos θ1f
(1)
1 (u) + cos θ2f

(2)
1 (u) + . . .+ cos θp−1f

(p−1)
1 (u) ≥ 0.

Thus, if no c = (c1, c2, . . . , cp−1) ∈ R
p exists such that, for all u ≥ 0,

c1f
(1)
1 (u) + c2f

(2)
1 (u) + . . .+ cp−1f

(p−1)
1 (u) ≥ 0, (7.6.2)

then Ωp is bounded.

Consider the vector-valued function, defined for u ≥ 0,

z(u) =
(

f (1)(u) f (2)(u) . . . f (p−1)(u))
)

,

and the curve Z = {z(u) | u ≥ 0}. When u = 0, z(0) = (0, 0, . . . , 1) by (5.6.16).

Also, as u → ∞, z(u) approaches the origin since the eigenvalues of T in the

expression

f1(u) = e′
1(u) exp(Tu)ep (7.6.3)

all have negative real part. Let C(Z) be the convex hull of Z, that is, the intersection

of all convex sets containing Z. Since z(u) is a continuous function, if the origin is

contained in the interior of C(Z) then any hyperplane through the origin

c1x1 + c2x2 + . . .+ cp−1xp−1 = 0
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will cut the curve. If this is the case, then for any c = (c1, c2, . . . , cp−1) ∈ R
p, there

will exist values of u ≥ 0 such that

c1f
(1)
1 (u) + c2f

(2)
1 (u) + . . .+ cp−1f

(p−1)
1 (u) < 0

and (7.6.2) will not hold. Figure 7.6.1 shows Z and C(Z) when the eigenvalues of

T are λ1 = −3, λ2 = −2, and λ3 = −1.

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

−0.2

0

0.2
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0.6

0.8

1

f
1
 ′(u)

f 1′′ (u
)

The Curve Z and its Convex Hull C(Z)

O 

Z 

C(Z) 

Figure 7.6.1: Diagram of the curve Z and its convex hull C(Z)

We now prove the following.

Theorem 7.6 Ω3 is bounded.

Proof.

We need to show that a small open neighbourhood containing the origin lies

entirely within C(Z). Let f1(u) be given by (7.6.3) where T is a companion matrix
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(5.4.3) that has an eigenvalue of maximal real part that is real and negative. Since

f1(0) = 0, f
(1)
1 (0) = 0, and f

(2)
1 (0) = 1, the function f1(u) has a local minimum

of zero when u = 0. Also, since lim
u→∞

f1(u) = 0, by the Mean Value Theorem there

exists a u1 ∈ (0,∞) such that f
(1)
1 (u1) = 0 with f

(2)
1 (u1) < 0 (a local maximum at

u = u1). Also by the Mean Value Theorem, and the fact that f
(1)
1 (u) changes from

positive to negative at u = u1, there exists u2 ∈ (0, u1) such that f
(2)
1 (u2) = 0 with

f
(1)
1 (u2) > 0, and u3 ∈ (u1,∞) such that f

(2)
1 (u2) = 0 with f

(1)
1 (u3) < 0. We have

that the four points

(0, 1), (0, f
(2)
1 (u1)), (f

(1)
1 (u2), 0), (f

(1)
1 (u3), 0) (7.6.4)

lie on Z. If we choose ε > 0 to be such that

ε < min(1, |f (2)
1 (u1)|, f (1)

1 (u2), |f (1)
1 (u3)|),

then the open simplex defined by the four points (which are contained in C(Z) since

the set is convex)

(0, ε), (0,−ε), (ε, 0), (−ε, 0)

contains the origin. Therefore, Ω3 is bounded. �

Proving the general case appears to be more difficult. The process of finding

points on the curve Z equivalent to (7.6.4) that lead to a simplex containing the

origin would become more complicated as the order of T increases. An inductive

proof could be a way of showing Conjecture 7.5 as we have proven the case when

p = 3. Further investigation is required.

7.7 Concluding Remarks

In this chapter we have reduced the problem of determining whether or not the vec-

tors a and b correspond to a ME distribution to one of finding the global minimum

of a continuous single-variable function d(u) over the nonnegative real numbers.

While, as mentioned in the last paragraph of Section 7.3, this is not necessarily a
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straightforward exercise, if the size of a and b is relatively low, the optimization can

be performed accurately within a reasonable time. A problem would arise, however,

even for the low order case, if many applications of the algorithm are required be-

cause of the time such a task would take. This problem would arise when fitting

ME distributions to data because the algorithm would need to be used each time

the parameter values are updated. In the next chapter we develop an alternative

algorithm to identify ME distributions and use the approach to fit ME distributions

to data in Chapter 9.



Chapter 8

An Alternative Algorithm for

Identifying Matrix-exponential

Distributions

8.1 Introduction

In this chapter we make use of the fact that for a suitable vector b the vectors a that

are such that a and b correspond to a ME distribution lie in a region that is closed

and (we assume) bounded. We can then determine whether or not the vectors a

and b correspond to a ME distribution by minimizing a distance function over Ωp.

In Section 8.2 we set up the ME identification problem as a convex semi-infinite

programming problem. More specifically, we seek to minimize a convex function

over a set that is the intersection of an uncountable number of linear constraints.

Section 8.3 contains a brief introduction to semi-infinite programming and a short

literature review. The particular algorithm is given in Section 8.4 and we give some

examples in Section 8.5.

149
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8.2 The Matrix-exponential Identification Prob-

lem

Throughout the next two chapters we will assume that Ωp is bounded. Ωp is closed

because it is the intersection of closed halfspaces.

Suppose the two vectors a and b satisfy conditions 2 and 3 of Theorem 5.6. Then

a and b correspond to a ME distribution if and only if

c =
b1
a1

(

a2 a3 . . . ap

)

(8.2.1)

is contained in Ωp.

Consider the function, defined for x = (x1, x2, . . . , xp−1) ∈ Ωp,

h(x) = ‖x− c‖2

=
(

p−1
∑

i=1

(xi − ci)2
) 1

2
.

If c ∈ Ωp then h(x) attains a minimum over Ωp when x = c. The minimum value of

h(x) is then h(c) = 0. If c 6∈ Ωp then the minimum value of h(x) occurs when x 6= c

and is greater than zero. If a suitable method of minimizing h(x) over Ωp can be

developed we will be able to determine whether c ∈ Ωp. We begin by investigating

the function h(x).

Lemma 8.1 For x ∈ Ωp the function h(x) is convex.

Proof.

We need to show, for x,y ∈ Ωp, and 0 ≤ ρ ≤ 1, that

h(ρx + (1− ρ)y) ≤ ρh(x) + (1− ρ)h(y).
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Now,

h(ρx + (1− ρ)y) = ‖ρx + (1− ρ)y − c‖2
= ‖ρ(x− c) + (1− ρ)(y − c)‖2
≤ ‖ρ(x− c)‖2 + ‖(1− ρ)(y − c)‖2
= ρ‖(x− c)‖2 + (1− ρ)‖(y − c)‖2
= ρh(x) + (1− ρ)h(y).

Since ‖·‖2 is a norm (see Apostol [6, page 48]) the inequality follows from the triangle

inequality, and the second-to-last equality follows from the identity ‖γ(·)‖2 = |γ|‖·‖2,
where γ ∈ R, and the fact that ρ and 1− ρ are both nonnegative. �

Note that, h(x) is not strictly convex because if x = c, y = c, or x−c = k(y−c)

for some k > 0, then, for 0 < ρ < 1, h(ρx + (1− ρ)y) = ρh(x) + (1− ρ)h(y).

Lemma 8.2 Under the assumption that Ωp is bounded there exists a unique x∗ ∈ Ωp

that minimizes h(x).

Proof.

Since h(x) is continuous and is being minimized over a closed and bounded set,

h(x) attains a global minimum on Ωp, when, say, x = x∗. Let the global minimum

attained be h∗ = h(x∗). If c ∈ Ωp then h(x) attains a global minimum when x∗ = c.

In this case h∗ = h(c) = 0 and x∗ is unique since ‖x∗−c‖2 = 0 if and only if x∗ = c.

Suppose that c 6∈ Ωp, then x ∈ ∂Ωp. This follows because if x is in the interior

of Ωp then there exists a ρ, with 0 < ρ < 1, such that (1 − ρ)c + ρx∗ lies on ∂Ωp.
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We now have

h((1− ρ)c + ρx∗) = ‖(1− ρ)c + ρx∗ − c‖2

= ‖ρ(x∗ − c)‖2

= ρ‖x∗ − c‖2

< ‖x∗ − c‖2

= h(x∗),

which contradicts the fact that the global minimum of h(x) is attained when x =

x∗ ∈ Ωp\∂Ωp.

Now, suppose h(x) also attains a global minimum over Ωp when x = x∗∗ with

x∗ 6= x∗∗. For 0 < ρ < 1 we have that ρx∗ + (1− ρ)x∗∗ ∈ Ωp since the set is convex.

We have,

h(x∗) = ‖x∗ − c‖2

≤ ‖ρx∗ + (1− ρ)x∗∗ − c‖2

= ‖ρ(x∗ − c) + (1− ρ)(x∗∗ − c)‖2

≤ ρ‖x∗ − c‖2 + (1− ρ)‖x∗∗ − c‖2. (8.2.2)

The first inequality follows because h(x) attains a global minimum when x = x∗.

The second inequality follows from the triangle inequality. A simple argument shows

that the second inequality is strict if and only if none of the following conditions

hold:

1. x∗ = c.

2. x∗∗ = c.

3. x∗ − c = k(x∗∗ − c) for some k > 0.
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Conditions 1 and 2 do not hold because c 6∈ Ωp. If Condition 3 holds then x∗∗ =

1
k
x∗ + (1 − 1

k
)c. That is, x∗∗ lies on the line through x∗ and c. This implies that

one and only one of the following four situations can occur. The vector x∗∗ is

1 exterior to Ωp,

2 interior to Ωp,

3 equal to x∗, or

4 on ∂Ωp but not equal to x∗, that is, on ∂Ωp but on the side opposite to x∗.

It is immediately clear that Statements 1–3 lead to contradictions. If Statement 4

holds then x∗ − c = k(x∗∗ − c) where 0 < k < 1. This leads to

‖ x∗ − c ‖ = ‖ k(x∗∗ − c) ‖

= k ‖ x∗∗ − c ‖

< ‖ x∗∗ − c ‖,

that is, h(x∗) < h(x∗∗), which contradicts the assumption that the global minimum

is also obtained when x = x∗∗. Rearranging the inequality (8.2.2), that is,

h(x∗) < ρ‖x∗ − c‖2 + (1− ρ)‖x∗∗ − c‖2

gives h(x∗) < h(x∗∗). Thus, x∗ is unique. �

Now, given the vectors a and b we have the following algorithm to determine

whether or not they correspond to a ME distribution.

1. If 0 < a1
b1
≤ 1 then goto 2, else goto 7.

2. Calculate the zeros of the polynomial b(λ) = λp + bpλ
p−1 + bp−1λ

p−2 + . . .+ b1.

3. If there exists a zero of maximal real part that is both real and negative then

goto 4, else goto 7.
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4. Calculate c = b1
a1

(a2, a3, . . . , ap).

5. Find h∗, the global minimum of h(x) = ‖x− c‖2 over Ωp.

6. If h∗ = 0 then goto 8, else goto 7.

7. The vectors a and b do not correspond to a ME distribution.

8. The vectors a and b correspond to a ME distribution.

Step 5 requires a convex semi-infinite programming problem to be solved. While

this is not a trivial exercise there is a substantial literature on the subject. In the

next section we give a brief discussion on the topic.

8.3 Semi-infinite Programming

In this section we present a brief introduction to semi-infinite programming (SIP)

and a short literature review. This discussion draws mainly on the two references

Hettich and Kortanek [70], and the more recent Reemtsen and Görner [116]. Both

of these papers contain comprehensive bibliographies. We also refer the reader to

the two monographs Reemtsen and Rückmann [115], and Goberna and López [61],

and the references therein for a thorough treatment of the subject. In addition, the

text by Polak [113] devotes a whole chapter to SIP.

Suppose that x ∈ R
n and Y ⊂ R

m has infinite cardinality. The primal SIP

problem can be stated as follows:

P [Y ] :
minimize f(x) subject to x ∈ XP (Y ),

where XP (Y ) = {x ∈ R
n | g(x,y) ≥ 0,y ∈ Y }.

(8.3.1)

We say that x∗ is a solution of P [Y ] if f(x) attains either a local or global mini-

mum at x∗, given the constraints. The term “semi-infinite” refers to the fact that

the objective function f depends on a finite number of variables and that it is be-

ing minimized subject to an infinite number of constraints. This is in contrast to



CHAPTER 8. AN ALTERNATIVE ALGORITHM 155

infinite programming where the objective function depends on an infinite number of

variables. If f and g(·,y) are linear (convex) functions we refer to a linear (convex )

SIP problem, otherwise we refer to a nonlinear SIP problem.

The theory of SIP was first developed by Charnes, Cooper, and Kortanek [35]

in 1962 when they connected linear SIP problems with their dual problems. Refer

to Goberna and López [62] and [63] for the formulation of the dual of a linear SIP

problem. Kortanek [79] gave a brief history of SIP from 1962 to 1972. Since 1962

SIP has been applied to a wide variety of problems particularly those where systems

are described by functions of several variables which are subject to constraints that

depend continuously on time, space, or some other parameter. Areas of application

have included reliability theory, control theory, digital and wavelet filter design,

actuarial risk theory, air pollution control, approximation theory, game theory, and

robotics. Hettich and Kortanek [70, Section 2] described a number of examples

where SIP has been used in modelling. They also listed in their bibliography many

references on the applications of SIP. Reemtsen and Rückmann [115, Part III], and

Goberna and López [61, Part IV] have included contributions from many authors

on some specific applications of SIP.

Given a SIP problem of the form (8.3.1) there are three main classes of methods

used to solve them. They are

1 discretization,

2 local reduction, and

3 exchange methods.

The idea behind the method of discretization is to minimize the objective func-

tion in (8.3.1) subject to a finite subset of the constraints. That is, if Y ′ ⊂ Y where

Y ′ is finite, a solution of P [Y ′] is sought. Once a solution is found, if necessary,

a more accurate solution can be obtained by either refining Y ′ or using another

method.
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More precisely, suppose, for some integer k ≥ 1, that a sequence of finite sets,

Y0 ⊂ Y1 ⊂ . . . ⊂ Yk ⊂ Y , is used to obtain a sequence of successive approximate

solutions, x∗
0,x

∗
1, . . . ,x

∗
k, to P [Y ]. In order to do this one approach would be to

use the solution of P [Yi] as the starting point for P [Yi+1]. A problem would arise,

however, if x∗
i is not feasible for P [Yi+1]. This situation is likely to occur, especially

if x∗
i lies on the boundary of XP (Yi), because XP (Yi+1) ⊂ XP (Yi). Another phase

in the overall algorithm would be required to ensure that the starting point for

each problem is feasible. Consequently, such a procedure to find a solution to P [Y ]

would be computationally costly. Also, discretization methods usually produce an

outer approximation to the solution of P [Y ]. That is, the solution x∗
k of P [Yk] is

not feasible for P [Y ]. While the accuracy may be sufficient for most problems, if a

feasible solution is required another method must be used. Hettich and Kortanek

[70, Sub-sections 4.4 and 7.2], and Reemtsen and Görner [116, Sub-section 2.5]

discussed conditions under which discretization algorithms converge, that is, when

the successive approximate solutions converge to a solution of P [Y ].

The method of local reduction, like that of discretization, seeks to convert the

SIP problem (8.3.1) into an optimization problem involving a finite number of con-

straints. Suppose that Z ⊂ R
m is finite. Any point x ∈ R

n that is feasible for the

finite programming problem P [Z] has a neighbourhood that can be completely de-

fined by the active constraints at x. In particular, if x∗ is a solution of P [Z] then it

is also a solution of P [Z ′] where Z ′ consists of the indices for the active constraints at

x∗. The converse is also true, that is, if x∗ is a solution of P [Z ′] it is also a solution

of P [Z]. The situation is not so straightforward for SIP problems. If Y ′ indexes

the (finite number of) constraints that are active at the solution of P [Y ], it is not

true, in general, that the reduced problem P [Y ′] has the same solution as P [Y ].

Reemtsen and Görner [116] gave a simple example to illustrate this. It is possible,

however, under certain assumptions, to derive a finite number of constraints so that

the reduced problem has the same solution as P [Y ].
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For a fixed x̄ ∈ XP (Y ) consider the following parametric optimization problem:

R(x̄)[Y ] : minimize g(x̄,y) subject to y ∈ Y. (8.3.2)

We assume that there are a finite number of solutions to R(x̄)[Y ]. Let the solution

set be Y (x̄) = {y1(x̄),y2(x̄), . . . ,yr(x̄)}. Consider the following reduced optimiza-

tion problem:

Pred[Y (x̄)] :
minimize f(x) subject to x ∈ XP (Y (x̄)),

where XP (Y (x̄)) = {x ∈ R
n | g(x,y) ≥ 0,y ∈ Y (x̄)}.

(8.3.3)

Under certain regularity conditions the solution of Pred[Y (x̄)] is also a solution of

P [Y ], and conversely, see Hettich and Kortanek [70, Sub-section 7.3], and Reemtsen

and Görner [116, Sub-section 2.6].

The main problem with the method of reduction is that the constraints indexed

by Y (x̄) are implicitly defined. In practice, however, the following algorithm could

be used:

1. Suppose for some i ≥ 1, x̄i ∈ R
n (which actually does not need to be feasible)

is given.

2. Find all solutions (that is, all local minima) of R(x̄i)[Y ]. Let Y (x̄i) be the

solution set.

3. Apply a finite programming algorithm to Pred[Y (x̄i)] to obtain the solution

x∗
i .

4. Let x̄i+1 = x∗
i and i = i+ 1. Return to Step 1 until the desired accuracy has

been reached.

Step 2 requires the global optimization of g(x̄i,y) which may be computationally

costly. Also, local reduction methods generally require a number of assumptions to

ensure convergence.

The third class of methods, exchange methods, are described in Hettich and

Kortanek [70, Sub-section 7.1] as any algorithm of the form:
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1. Let, for some i ≥ 1, Yi ⊂ Y be a finite set.

2. Find a solution x∗
i of P [Yi].

3. Find all solutions Y (x∗
i ) = {y1(x

∗
i ),y2(x

∗
i ), . . . ,yr(x

∗
i )} of R(x∗

i )[Y ].

4. If, for j = 1, 2, . . . , r, g(x∗
i ,yj(x

∗
i )) ≥ 0, then stop.

5. Choose Yi+1 ⊂ Yi ∪ Y (x∗
i )

6. Let i = i+ 1 and return to Step 1.

Hettich and Kortanek [70] gave conditions under which the above algorithm, using

Yi+1 = Yi ∪Y (x∗
i ) in Step 5, converges. Reemtsen and Görner [116] preferred to use

the term “semi-continuous” when referring to SIP algorithms that are neither based

on discretization nor local reduction. The above exchange algorithm is a particular

case of a semi-continuous algorithm.

Discretization and exchange methods, in general, are computationally costly and

produce only outer approximations but are relatively easy to implement. Local re-

duction methods, on the other hand, are usually less computationally costly but

require restrictive assumptions for convergence. Also, given that the constraints

in the reduced optimization problem (8.3.3) are implicitly defined in terms of the

solution to (8.3.2), they are more difficult to implement. In practice often a dis-

cretization or exchange method is used to produce an outer approximation with a

local reduction method implemented to give a final feasible solution. Reemtsen and

Görner [116, Section 3] discussed in detail how each of the three abovementioned

classes of methods have been used in linear, convex, and nonlinear SIP problems.

8.4 The Algorithm

In this section we present a SIP algorithm to determine whether c given by (8.2.1)

is contained in Ωp determined by a suitable vector b. A discretization method is
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used because it is the simplest to implement. Also, if the parameters that index the

linear constraints are chosen to be sufficiently close together, the method of Section

7.3 can be utilized to refine the optimal solution and ensure that it corresponds to a

ME distribution. To perform the convex minimization we use a steepest projected

descent method, see Chong and Żak [36, Chapter 22]. MATLAB r© has an inbuilt SIP

function fseminf in the optimization toolbox, but as we shall mention in Section 8.5,

our algorithm takes a lot less time to run and is slightly more accurate. The likely

reason for this is that fseminf is a multipurpose SIP algorithm which uses more

sophisticated techniques such as quadratic and cubic interpolation, and sequential

quadratic programming, see Bertsekas [22].

A detailed explanation of our algorithm is given below.

1. Choose a set of nonnegative real numbers U = {0 = u1, u2, . . . , um−1, um} such

that the set

Ωp =
m
⋂

j=1

{x ∈ R
p−1 | b1e′

1 exp(Tuj)ep +

p−1
∑

i=1

xie
′
i+1 exp(Tuj)ep ≥ 0} (8.4.1)

approximates Ωp “sufficiently closely”. Note that Ωp ⊂ Ωp. If the constraint

at infinity needs to be included we can set um = ∞. The corresponding

constraint, if it exists, is given by (6.2.1). At this stage, given the limited

number of general results concerning Ωp, choosing U is ad hoc. Selecting u1 = 0

would seem to be a good choice because Conjecture 5 in O’Cinneide [108] (see

also Theorem 5.10 of this thesis) suggests that the corresponding constraint is

always necessary. Also, if the zeros of b(λ) are such that any complex zero of

the form −λp + iβ (β ∈ R) has multiplicity less than the multiplicity of −λp,

then the constraint when um =∞ is also valid, see Theorem 6.6. In addition,

Corollary 6.7 asserts that if the zeros of b(λ) can be ordered so that −λp−1 is

real, then the constraint at um =∞ forms part of ∂Ωp and is hence necessary.

If U is too sparse then it is possible that Ωp is unbounded. If this is the case

then the algorithm may not converge.
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2. Initialize i = 0 and x(0) = xexp, the point corresponding to the mixture of

the point mass at zero and the defective exponential distribution (5.6.8). This

point is always contained in Ωp by Theorem 5.8 and is hence contained in Ωp.

Let A ⊂ U be the set of indices that correspond to the set of active constraints.

Initialize A = ∅ and choose a tolerance ε > 0.

3. Calculate the direction of steepest descent of h(x) when x = x(i). That is,

D = −∇h(x(i)) = −x(i) − c

h(x(i))
.

4. Let q be the number of active constraints. If A = {u(1), u(2), . . . , u(q)} 6= ∅
determine whether the optimal point has been found at the boundary. This

occurs if

∇h(x(i)) =

q
∑

j=1

µ(j)x
(i) exp(Tu(j))ep (8.4.2)

has a solution where each of µ(1), µ(2), . . . , µ(q) are nonnegative. If this is the

case then goto Step 11, otherwise proceed to Step 5.

5. Determine which constraints will become inactive if we move from x(i) in the

direction D. These constraints correspond to those µ(j)’s in (8.4.2) that are

negative. Remove the corresponding indices from A. Update q.

6. If A 6= ∅ then project D onto the constraints indexed by A. If the active

constraints are written in matrix form as Bx′ = d where the dimensions of

B and d are q × p and q × 1, respectively, the projected direction of steepest

descent is given by

D1 = D(I −B′(BB′)−1B),

where I is the p × p identity matrix, see Chong and Żak [36, Section 22.1].

Let D = D1.

7. Determine the constraint that is first violated when moving from x(i) in the

direction D. Let this constraint be indexed by ũ.
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8. Perform a Golden Section line search (see Chong and Żak [36, Section 7.1])

in the direction D from xi until the constraint indexed by ũ is reached. Let

x(i+1) be the value that minimizes h(x) in this direction.

9. If h is minimized when the constraint indexed by ũ is inactive, then if

|h(x(i+1))− h(x(i))| < ε go to Step 11, else let i = i+ 1 and return to Step 3.

10. If h is minimized when the constraint indexed by ũ is active, then if |h(x(i+1))−
h(x(i))| < ε go to Step 11, else let i = i+ 1, add ũ to A, and return to Step 3.

11. Let x∗ = x(i+1) and h∗ = h(x∗).

12. If h∗ = 0 then x∗ = c and c ∈ Ωp. Otherwise, h∗ > 0 and x∗ 6= c which

implies that c 6∈ Ωp.

This algorithm gives an outer approximation when minimizing h(x) over Ωp.

So, if h∗ = 0 and x∗ ∈ ∂Ωp then it is unlikely that c ∈ Ωp. However, since the

indices of the active constraints, u(1), u(2), . . . , u(q), are known, the function d(u)

in the algorithm of Section 7.3 could be minimized over intervals containing these

values. Ideally, the intervals would need to be small enough so that d(u) is convex

on each one. If h∗ = 0 and x∗ is close to ∂Ωp, or U does not contain sufficiently

many points for Ωp to adequately approximate Ωp, it is also possible that c 6∈ Ωp.

The method of Section 7.3 would be more difficult to apply in this situation unless

we have some knowledge of the indices for the constraints that are near to x∗. If,

however, h∗ > 0 we can be absolutely sure that c 6∈ Ωp.

8.5 Examples

To illustrate the algorithm described in Section 8.4 we determined whether or not

the following four pairs of vectors correspond to ME distributions.
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1.

a =
(

6 6 2
)

(8.5.1)

b =
(

6 11 6
)

(8.5.2)

2.

a =
(

6 1 3
)

(8.5.3)

b =
(

6 11 6
)

(8.5.4)

3.

a =
(

96 1 1 1 1
)

(8.5.5)

b =
(

120 274 225 85 15
)

(8.5.6)

4.

a =
(

96 3 3 3 0
)

(8.5.7)

b =
(

120 274 225 85 15
)

(8.5.8)

In Examples 1 and 2, λ1 = 3, λ2 = 2, λ3 = 1, and a1
b1

= 1. Thus, Conditions 2

and 3 of Theorem 5.6 are satisfied. Applying the SIP algorithm with the first pair

of vectors gave h∗ = 0. In light of the comments made at the end of Section 8.4 we

cannot be absolutely sure that (8.5.1) and (8.5.2) correspond to a ME distribution,

but an application of the algorithm of Section 7.3 confirmed that they in fact do.

The second pair of vectors (8.5.3) and (8.5.4), however, do not correspond to a

ME distribution. Of this we can be sure. The algorithm gave h∗ = 0.7113 when

x∗ = (1.2805, 2.3463), the active constraint being the one that corresponds to u =

0.6. The point x∗ itself does not quite correspond to a ME distribution. The

algorithm of Section 7.3 gave r̂ = 3.9557 and r∗ = 3.9554 when d(u) was minimized
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over the intervals [0.5, 0.6] and [0.6, 0.7]. Note that it is r̂ that corresponds to

x∗ here. The point that corresponds to the exponential distribution in this case

is x̄ = (5, 1), and x = (1 − r∗

r̂
)x̄ + r∗

r̂
x∗ = (1.2807, 2.3462) corresponds to a

ME distribution. The corresponding vectors are a = (6, 1.2807, 2.3462) and b =

(6, 11, 6). In Examples 1 and 2 the algorithm took less than 0.1 second to run. On

the other hand, fseminf took over a minute in both cases. It produced the same

results (to four decimal places) for Example 1, but in Example 2 it gave h∗ = 0.7115

when x = (1.2832, 2.3473), Also, the optimal value was not achieved on a constraint.

In Examples 3 and 4, since λ1 = 5, λ2 = 4, λ3 = 3, λ4 = 2, λ5 = 1, and

a1
b1

= 4
5
, Conditions 2 and 3 of Theorem 5.6 are satisfied. In the third example,

since the point mass at zero is 1
5
, in order to check that (8.5.5) and (8.5.6) cor-

respond to a ME distribution we need to ascertain that c = ( 5
4
, 5

4
, 5

4
, 5

4
) ∈ Ωp,

see (8.2.1). Applying the semi-infinite programming algorithm gave h∗ = 1.0876

when x∗ = (1.2572, 1.2921, 1.2721, 0.1634) which lies on the constraint indexed

by u = 0.31. Thus, (8.5.5) and (8.5.6) do not correspond to a ME distribution.

As with Example 2 above, since x∗ does not quite correspond to a ME distribu-

tion, using the method of Section 7.3 we get x = (1.2589, 1.2929, 1.2723, 0.1635)

which does correspond to a ME distribution. This translates into the vectors

a = (96, 1.0057, 1.0337, 1.0177, 0.1308) and b = (120, 274, 225, 85, 15) correspond-

ing to a ME distribution. For Example 4 the algorithm gave that (8.5.7) and (8.5.8)

correspond to a ME distribution which the algorithm of Section 7.3 also confirmed.

In Examples 3 and 4 the algorithm took less than 0.2 second to run, whereas fsem-

inf took approximately two minutes. In Example 3 it gave h∗ = 1.0877 when

x = (1.2580, 1.2911, 1.2755, 0.1634). The optimal value was achieved on a con-

straint. The same results were achieved for Example 4.

In these examples our SIP algorithm took less time to run than the algorithm of

Section 7.3. However, given that this method was required to refine the SIP there

is no time saved when using the SIP algorithm to identify ME distributions. The

real saving will come when we apply it many times when fitting ME distributions to
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data and the algorithm of Section 7.3 is used only once to refine the final solution.

This is the focus of the next chapter.

8.6 Problems and Suggested Improvements

Despite our algorithm outperforming fseminf in MATLAB r© a more efficient method

could be sought. One method that has been suggested in the SIP literature is

sequential quadratic programming (SQP), see Polak [113, Section 2.9] or Bertsekas

[22, Section 4.3]. SQP is an interior point penalty function method which could

be particularly useful for our problem since infeasible solutions are not suitable

because they do not correspond to ME distributions. Lawrence and Tits [87] gave

and analyzed a SQP algorithm for finely discretized SIP problems.

The overall approach of employing a discretization algorithm followed by the

method of Section 7.3 (which is essentially a local reduction algorithm) is probably

a good one. However, more research needs to be done into the structure of the

region Ωp which would allow a more intelligent selection of the linear constraints

that define the feasible region. Once a better, more efficient algorithm is developed

investigation into the properties of the ME estimators can be embarked upon.



Chapter 9

Fitting with Matrix-exponential

Distributions

9.1 Introduction

Many algorithms that are used to fit distributions to data require the distribution’s

parameters to be updated at each iteration. In order to fit ME distributions to data

we would need to check that the updated parameters a and b correspond to a ME

distribution at each iteration. This process would require a considerable number

of applications of the method of Section 7.3 and hence become computationally

infeasible. In this chapter we address this issue by making use of the fact that for

a suitable vector b we have a convex, closed, and bounded region that contains

all points that correspond to ME distributions. Given the vector b, the problem

of fitting a ME distribution to data using maximum likelihood estimation then

becomes one of maximizing a convex function over a convex region.

In Section 9.2, by modifying the algorithm in Section 8.4 we develop a procedure

to find maximum likelihood parameter estimates when fitting ME distributions to

data. The algorithm can also be used to approximate probability distributions by

choosing sample points to represent the distribution. To illustrate the algorithm we

165
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present in Section 9.3 one data fitting example, and one distribution approximation

example.

9.2 Fitting Matrix-exponential Distributions to

Data

In this section we develop a SIP algorithm similar to the one in Section 8.4 to find

maximum likelihood estimates when fitting ME distributions to data.

Let S be a sample independently and identically distributed according to a ME

distribution with parameters a and b. Suppose that b has already been selected

in some manner so that it satisfies Condition 3 of Theorem 5.6. If the estimate of

the point mass at zero α̂0 is given by the proportion of zero elements in S then the

estimate for a1 is

â1 = b1(1− α̂0), (9.2.1)

see Lemma 5.2. Denote by S = {z1, z2, . . . , zn} the set that consists of all nonzero

elements of S. Let z = (z1, z2, . . . , zn).

Recall from (5.6.7) and Theorem 5.11 that, for x ∈ Ωp and u ≥ 0,

g(x, u) = b1e
′
1 exp(Tu)ep +

p−1
∑

i=1

xie
′
i+1 exp(Tu)ep.

Define, for x ∈ Ωp, the likelihood function

G(x, z) =
n

∏

j=1

g(x, zj). (9.2.2)

Under the assumption that Ωp is bounded, since the set is closed and G(x, z) is a

continuous function of x, there exists an x̃ ∈ Ωp such that G(x, z) is maximized.

Define, for u ≥ 0, the set

Λp(u) = {x ∈ Ωp | g(x, u) = 0},

and let Λp(S) =
n

⋃

j=1

Λp(zj). The likelihood function (9.2.2) can never attain a

maximum on Λp(S) as the next lemma asserts.
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Lemma 9.1 If x̃ maximizes G(x, z) then x̃ 6∈ Λp(S).

Proof.

If x ∈ Λp(S) then G(x, z) = 0. Now, choose x so that it corresponds to the

exponential distribution (5.6.8). Then

G(x, z) =
n

∏

j=1

λpe
−λpzj > 0.

Therefore, the value of x that maximizes G(x, z), that is x̃, cannot be in Λp(S). �

Define, for x ∈ Ωp and u > 0,

l(x, u) =











log g(x, u), x 6∈ Λp(u)

−∞, x ∈ Λp(u)
.

We have the following.

Lemma 9.2 If, for u > 0, x,y ∈ Ωp\Λp(u) with x 6= y, and 0 < ρ < 1, then

l(ρx + (1− ρ)y, u) > ρl(x, u) + (1− ρ)l(y, u).

Proof.

Given the conditions in the statement of the theorem we have that

l(ρx + (1− ρ)y, u) = log g(ρx + (1− ρ)y, u)

= log(ρg(x, u) + (1− ρ)g(y, u))

> ρ log g(x, u) + (1− ρ) log g(y, u)

= ρl(x) + (1− ρ)l(y).

The second equality holds since g(x, u) is a linear function of x, and the inequality

is due to the strict convexity of − log(·). �

The loglikelihood function is defined, for x ∈ Ωp, as

L(x, z) =















n
∑

j=1

l(x, zj), x 6∈ Λp(S)

−∞, x ∈ Λp(S)

. (9.2.3)

We now have
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Theorem 9.3 Under the assumption that Ωp is bounded there exists a unique x̃ ∈
Ωp\Λp(S) that maximizes L(x, z).

Proof.

The loglikelihood function cannot attain a maximum on Λp(S) by Lemma 9.1.

For j = 1, 2, . . . , n, the function −l(x, zj) is strictly convex on Ωp\Λp(zj) by Lemma

9.2. Since the sum of a finite number of strictly convex functions is also strictly

convex on the intersection of their domains of definition, −L(x, z) is strictly convex

on Ωp\Λp(S). Consequently, as Ωp is closed and bounded, there exists a unique

x̃ ∈ Ωp\Λp(S) that maximizes L(x, z). �

Given b that satisfies Condition 3 of Theorem 5.6 we can use a SIP algorithm

very similar to that given in Section 8.4 to maximize the loglikelihood (9.2.3). The

direction of steepest ascent, for x ∈ Ωp\Λp(S), is given by

D = ∇L(x)

=

(

∂L
∂x1

∂L
∂x2

. . . ∂L
∂xp−1

)

where, for i = 1, 2, . . . , p− 1,

∂L

∂xi

=
n

∑

j=1

ei+1 exp(T zj)ep

g(x, zj)
.

Since x̃ is unique it is a function of b and we write x̃ = x̃(b). Consequently, the

loglikelihood (9.2.3) can be expressed as

L(b, z) =
n

∑

j=1

log
(

b1e
′
1 exp(T zj)ep +

p−1
∑

i=1

x̃i(b)e′
i+1 exp(T zj)ep

)

. (9.2.4)

Since T depends nonlinearly on b the function L(b, z) is not convex in b. In order

to estimate b so that (9.2.4) is maximized we require a multidimensional nonlinear

optimization procedure such as simulated annealing or the Nelder-Mead flexible

polyhedron search.

We need to ensure that the vector b is such that it satisfies Condition 3 of

Theorem 5.6. A necessary condition for this is that its components are nonnegative.
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However, this condition is not sufficient. For example, the polynomial x3+x2+x+2

has zeros that are approximately −1.3532 and 0.1766 ± 1.2028i. Therefore, it is

insufficient to require that the components of b are positive to ensure that Condition

3 of Theorem 5.6 is satisfied when maximizing L(b, z). We can, however, ensure

the condition is met by requiring that the zeros of b(λ) are such that they all have

negative real part and that there exists a zero of maximal real part that is real.

Thus, we write L(b, z) as L(λ, z).

Since the SIP algorithm will produce an outer approximation (see the comments

immediately after the ME identification algorithm in Section 8.4) the algorithm of

Section 7.3 can be applied to ensure that the final parameter estimates correspond

to a ME distribution.

In summary, in order to fit a ME distribution to data we have the following

algorithm:

1. Calculate α̂0 and form S.

2. Calculate â1 using (9.2.1).

3. Choose an initial λ(0) = (λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
p ).

4. Calculate λ̂ = (λ̂1, λ̂2, . . . , λ̂p) that maximizes L(λ, z).

5. Calculate b̂ from the coefficients of

b(λ) = (λ+ λ̂1)(λ+ λ̂2) . . . (λ+ λ̂p).

6. Calculate x̂ = x(b̂), the value of x̃ that maximizes (9.2.3) given b̂.

7. Calculate â using, for i = 2, 3, . . . , p,

âi = (1− α0)x̂i−1

=
â1

b̂1
x̂i−1,

see (5.6.5) and Lemma 5.2.
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8. Apply the algorithm of Section 7.3.

Since L(λ, z) is not convex in λ the algorithm will converge only to a local max-

imum. Therefore, there is no guarantee that the algorithm will find the maximum

likelihood estimate. In practice the algorithm should be run several times with dif-

ferent initial parameters and the one with the greatest loglikelihood selected. It

may be, however, that the best loglikelihood after Step 7 does not yield the best

loglikelihood once Step 8 is applied. Given this possibility, the best loglikelihoods

achieved with Steps 1–7 should be selected and then refined separately using Step

8.

9.3 Examples

In order to demonstrate the ME fitting algorithm described in Section 9.2 we fit

three order five ME distributions, each one with b(λ) having a different configuration

of zeros, to a sample that was formed by shifting the Old Faithful geyser data set,

mentioned in Section 3.3, 1.66 units to the left. A histogram of the data is shown

in Figure 9.3.1 and its empirical cumulative distribution function is shown in Figure

9.3.2. Fitting the original data set with PH distributions has proven to be very

difficult because there are no data between zero and 1.67, see Asmussen, Nerman,

and Olsson [15]. Since PH density functions are positive on the positive real numbers

fitting this gap well requires distributions of high order, see Faddy [53] and [56].

We anticipate a similar problem with ME distributions. In general, ME density

functions may be zero for some positive real numbers, but the number of such values

is usually small. For example, ME distributions of order three where b(λ) either has

only real zeros, or where the real zero is greater than the real part of the complex

conjugate zeros, have density functions that equal zero for at most one positive

value, see Theorems 6.4 and 6.5. However, as we shall see, this particular data set

demonstrates the extra flexibility ME distributions exhibit over PH distributions

in fitting problems.
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Figure 9.3.1: Histogram of the shifted inter-eruption times of the Old Faithful geyser

data set

Since our implementation of the ME fitting algorithm is not very efficient the

examples presented in this section are mainly illustrative. An in-depth study into

fitting with ME distributions can be undertaken when a more efficient algorithm

is developed. Our algorithm however, as in Section 8.5, outperformed fseminf in

MATLAB r©. An initial run using fseminf took considerably longer per iteration

than our algorithm and eventually produced a matrix-dimensionality error which

stopped the program.

In order to maximize L(λ, z) the Nelder-Mead algorithm was used because it is a

reliable inbuilt function in MATLAB r©. For each of the three fitted ME distributions

the zeros of b(λ) were such that

1 all five were real,



CHAPTER 9. FITTING WITH ME DISTRIBUTIONS 172

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

u

re
la

tiv
e 

cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

Empirical Cumulative Distribution

Figure 9.3.2: Empirical cumulative distribution of the shifted inter-eruption times

of the Old Faithful geyser data set

2 three were real and two were a complex conjugate pair, and

3 one was real and four were complex conjugate pairs.

These three configurations of zeros were treated separately because, at each iteration

in the Nelder-Mead algorithm when λ is updated, there is no simple way of changing

a real zero into a complex one, and vice versa. It is much easier to update separately

the real and imaginary (if there are any) parts of the zeros which are all real numbers.

The algorithm was run with ten different sets of starting parameters and the

one with the highest loglikelihood was then selected. The final fitted parameters

were refined using the method of Section 7.3. Note that the Nelder-Mead algorithm

finds local minima so we are actually minimizing −L(λ, z) even though we speak



CHAPTER 9. FITTING WITH ME DISTRIBUTIONS 173

of maximizing L(λ, z). For each run U = {0, 0.01, . . . , 10,∞}. In each of the three

cases the starting parameters were randomly chosen from a uniform distribution on

(0, 10). The starting parameters were the negatives of the real parts of all zeros,

and either the positives or the negatives of their imaginary parts, as appropriate.

Throughout it was ensured that the zero of maximal real part was real and negative.

We now discuss the results. For the first case the final loglikelihoods ranged

from −266.1221 to −124.3825. Run times ranged from 21 to 43 minutes. The best

loglikelihood was achieved when the zeros of b(λ) were

λ̂ =
(

−2.7056 −2.2886 −1.9883 −1.8489 −0.8759
)

,

which corresponds to the estimate

b̂ =
(

19.9375 59.6544 67.5479 36.7671 9.7073
)

.

The estimate for a was

â =
(

19.9375 23.6151 8.6018 9.1515 0.5041
)

.

The maximum loglikelihood occurred when the constraint indexed by u = ∞ was

active. This solution is likely to be exact because this constraint forms part of the

boundary of Ω5, see Corollary 6.7. An application of the method of Section 7.3

confirmed that this is indeed the case. Since λ consists entirely of real numbers

and the maximum loglikelihood was attained when u = ∞ the ME distribution

represented by a and b is a ME distribution of order four, see Corollary 6.7. The

zeros of the polynomial

a(λ) = 0.5041λ4 + 9.1515λ3 + 8.6018λ2 + 23.6151λ+ 19.9375

are −17.3183, −0.8759, and 0.0196± 1.6147i. Cancelling the identical factors in the

LST φ(λ) =
a(λ)
b(λ)

gives the maximum likelihood parameter estimates

λ̂ =
(

−2.7056 −2.2886 −1.9883 −1.8489
)

,
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which corresponds to the estimate

b̂ =
(

22.7629 42.1195 29.0319 8.8314
)

.

The estimate for a then becomes

â =
(

22.7629 0.9730 8.7100 0.5041
)

.

In the second case the final loglikelihoods ranged from −325.6831 to −114.3065.

Run times ranged from 11 to 32 minutes. The best loglikelihood was achieved when

the zeros of b(λ) were

λ̂ =
(

−3.8163 −1.1829 −1.1347± 1.6534i −0.5676
)

which corresponds to the estimate

b̂ =
(

10.3030 35.3777 41.6319 24.0063 7.8362
)

.

The estimate for a was

â =
(

10.3030 17.3382 2.6518 6.7637 0.5023
)

.

The constraint that corresponds to u = 4.76 was active when the maximum loglike-

lihood was attained. Using the method of Section 7.3 changed a3 to 2.6519, and the

loglikelihood decreased slightly to −114.3066. The vectors a and b correspond to a

ME distribution that is not a PH distribution because the density function is zero

for u ≈ 4.76.

For the third case the loglikelihoods ranged from −164.8511 to −110.9792. Run

times ranged from 8 to 35 minutes. The best loglikelihood was achieved when the

zeros of b(λ) were

λ̂ =
(

−1.0079± 2.0601i −1.0079± 0.7818i −0.6512
)

which gives the estimate

b̂ =
(

5.5726 17.5974 21.0122 13.5751 4.6826
)

.
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The estimate for a was

â =
(

5.5726 7.6548 2.6449 3.0305 0.7413
)

.

The constraint that corresponds to u = 4.54 was active when the maximum loglike-

lihood was achieved. The method of Section 7.3 decreased the loglikelihood slightly

to −111.0081. The vectors a and b correspond to a ME distribution that is not a

PH distribution because the density function is zero for u ≈ 4.54.

In order to compare our ME fitting algorithm with a PH fitting algorithm we

fitted the same data set with a general order five PH distribution using EMpht.

The fitted PH distribution was a Coxian distribution of triangular order five. Its

corresponding loglikelihood was −133.6592 and the parameter estimates were

λ̂ =
(

−4.0847 −1.9270 −1.9270 −1.9270 −1.9270
)

b̂ =
(

56.3196 130.6962 119.6253 53.7637 11.7926
)

â =
(

56.3196 29.3261 22.8282 7.8978 1.0246
)

.

The algorithm took approximately four seconds to perform 700 iterations, by which

stage convergence had been reached. In fact, using EMpht, a Coxian distribution of

order 13 needs to be fitted to the data set in order to achieve a loglikelihood greater

than −111.0081. The run time for convergence for this fit was approximately one

minute.

The density functions for the three ME fits, and the order five PH fit, plotted

with the histogram of the data, are shown in Figure 9.3.3. The corresponding

distribution functions, plotted with the empirical cumulative distribution of the

data, are shown in Figure 9.3.4

It is clear from Figure 9.3.3 that the two ME densities whose corresponding

polynomials b(λ) have complex conjugate zeros fit the histogram the best. Their

corresponding loglikelihoods are also the greatest. Although each of the four densi-

ties fit the first peak well, it is Fits 2 and 3 that fit the second, broader peak and
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Figure 9.3.3: Density functions for the three ME and one PH fits plotted with the

histogram of the data

the trough around 1 the best. Fit 3 fits the second peak better than Fit 2 and it

has a shorter tail. Also, Fit 2’s tail rises to a small peak around 5.5 before decaying

again. Fit 1 appears to outperform the PH fit since it fits the trough around 1 and

the second peak better.

Comparing the fitted distributions with the empirical cumulative distribution

gives a better picture. Again, it is clear from Figure 9.3.3 that Fits 2 and 3 fit the

empirical cumulative distribution the best. Each distribution function fits the data

well up to approximately 0.3, and the PH fit does reasonably well up to approxi-

mately 1. Fits 2 and 3 outperform the other two fits on [1.1, 2.3] but do not fit the

data well on [1.3, 2.3]. From 2.7–4 Fits 2 and 3 do better than Fit 1 and the PH

Fit with Fit 3 outperforming Fit 2 on this interval. On the interval [4.3, 6.6] Fit 2
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Figure 9.3.4: Distribution functions for the three ME and one PH fits with the

empirical cumulative distribution of the data

performs worse than the other three fits. This corresponds with the small peak in

Fit 2’s density at u ≈ 5.5 mentioned in the previous paragraph.

To further illustrate the algorithm given in Section 9.2 the uniform density on

(1, 2) was approximated with three order five ME densities. This density comes from

the Aalborg benchmark, see Bobbio and Telek [25]. Each approximating ME density

had one of the three configurations of zeros for b(λ) used in the previous example.

The sample chosen to represent the density was S = {1.005, 1.015, . . . , 1.995}. As

with the previous example we chose U = {0, 0.01, . . . , 10,∞} and the starting pa-

rameters were again chosen from a uniform distribution on (0, 10). In each case the

algorithm was run ten times and the best loglikelihood was selected and then refined

using the method of Section 7.3. However, in the case when the zeros of b(λ) are all
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real, the parameters that initially gave the best loglikelihood, when refined, actually

gave a loglikelihood that was less than the second best (unrefined) loglikelihood.

Refining the second best set of parameters actually produced a better loglikelihood

than the first. The parameters giving rise to the best refined loglikelihood are given

below. Overall, run times ranged from 2 to 37 minutes.

When b(λ) has zeros that are all real the final parameters were

λ̂ =
(

−4.5974 −4.2547 −4.1718 −4.0988 −3.8283
)

,

b̂ =
(

1280.5055 1533.3180 733.7806 175.4252 20.9511
)

,

â =
(

1280.5055 −377.0691 83.3616 −3.1616 0.4441
)

.

The loglikelihood was −43.5593. When b(λ) has three real zeros the final parameters

were

λ̂ =
(

−6.9980 −5.6924 −1.6556± 3.1473i −1.6556
)

,

b̂ =
(

834.0386 987.8479 448.8461 120.9943 17.6572
)

,

â =
(

834.0386 −277.7983 60.9690 −3.2405 0.3758
)

.

The loglikelihood was −33.1678. When b(λ) has one real zero the final parameters

were

λ̂ =
(

−4.1805± 1.8639i −1.9013± 3.3573i −1.9013
)

,

b̂ =
(

592.9764 699.9947 332.7166 90.7566 14.0648
)

,

â =
(

592.9764 −200.2047 42.0915 −2.4444 0.1537
)

.

The loglikelihood was −30.9800. None of these approximating ME distributions is

a PH distribution as each one has zero density for some positive values of u. Also,

the second and third distributions have zeros of maximal real part that equal (at

least to the above accuracy) the real part of a complex conjugate pair of zeros.
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Using an order five PH distribution to approximate the shifted uniform density

with EMpht yielded an Erlang distribution with parameters

λ̂ =
(

−3.3333 −3.3333 −3.3333 −3.3333 −3.3333
)

,

b̂ =
(

411.5226 617.2840 370.3704 111.1111 16.6667
)

,

â =
(

411.523 0 0 0 0
)

.

The loglikelihood was −61.3004. The algorithm took approximately three seconds

to perform 1000 iterations, by which stage convergence had been achieved. In fact,

an order 12 Erlang distribution is required to achieve an approximation that has a

loglikelihood greater than −30.9800. The run time was approximately 45 seconds.

Aldous and Shepp [3] showed that the PH distribution with the least coefficient of

variation (2.4.3) is the Erlang distribution. The coefficient of variation in the order

five case is 0.2. Since the shifted uniform density has a small coefficient of variation

(that is, 0.0370) it would seem reasonable that the best PH approximation is an

Erlang distribution. The coefficients of variation for the above approximating ME

distributions are 0.1488, 0.1571, and 0.1299, respectively. This observation does not

contradict the result of Aldous and Shepp [3] because they are not PH distributions,

see also O’Cinneide [106, page 226].

The density functions for the three ME approximations, and the order five PH

approximation, plotted with the shifted uniform density, are shown in Figure 9.3.5.

The corresponding distribution functions, plotted with the shifted uniform distribu-

tion function, are shown in Figure 9.3.6

As with the previous example it is clear from Figure 9.3.5 that the two ME

distributions with b(λ) having complex conjugate zeros approximate the shifted

uniform density the best. Their loglikelihoods are also the greatest. Approximations

2 and 3 approximate the peak the best but have longer tails than Approximation

1. Approximation 3 approximates the peak better than Approximation 2 and has

a slightly shorter tail. All of the ME densities are nonzero at the origin, unlike the



CHAPTER 9. FITTING WITH ME DISTRIBUTIONS 180

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

u

re
la

tiv
e 

fr
eq

ue
nc

y

Shifted Uniform Density and Approximating Densities

Approx 1   −−
Approx 2   −
Approx 3   −.
PH5          ... 

Figure 9.3.5: Density functions for the three ME and one PH approximations plot-

ted with the density function of the uniform distribution on (1, 2)

Erlang density, but are able to approximate the gap [0, 1] better because they are

zero at two points in the interval.

It is also clear from Figure 9.3.6 that the ME approximations do better than

the PH approximation, which only does better on the interval [0, 0.5]. Approxi-

mations 2 and 3 approximate the shifted uniform distribution function better than

Approximation 1 on the intervals [0.6, 1.4] and [1.7, 2.5], but Approximation 1 does

slightly better on [2.8, 4]. Approximation 3, overall, performed slightly better than

Approximation 2, its logliklehood also being larger.

These examples indicate that more flexibility can be achieved when ME distribu-

tions are used in preference to PH or Coxian distributions to fit data or approximate

distributions. This observation is not surprising since any PH distribution is a ME
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Figure 9.3.6: Distribution functions for the three ME and one PH approximations

with the distribution function for the uniform distribution on (1, 2)

distribution and PH distributions of high order can be represented by ME distri-

butions of low order. These examples also suggest that ME distributions whose

corresponding polynomial b(λ) has complex zeros may be better suited to fit data

sets, or approximate distributions, that have gaps or are multimodal. This fact may

be due to the sinusoidal nature of such ME distributions but a more in-depth study

is required to establish any meaningful results.



Chapter 10

Conclusion

We began this thesis by considering PH distributions and how they could be used

to fit data and approximate probability distributions. In order to overcome some

of the problems with current methods, particularly that of overparameterization,

it was proposed in Chapter 4 that the fitting or approximation be carried out in

the LST domain. Two methods due to Harris and Marchal [66] were described in

detail and some associated problems were discussed. In particular, two important

questions arose:

1. When does a rational LST correspond to a PH distribution?

2. If it does correspond to a PH distribution, what is a PH representation for

it?

In Chapter 5 we found that the second question could be answered easily if we

considered ME distributions and their representations instead. The original sec-

ond question, with regard to PH distributions, is an important one and remains

unsolved. O’Cinneide’s [107] characterization of the triangular order of Coxian dis-

tributions using invariant polytopes would be a natural place to start.

Given the one-to-one correspondence between a rational LST and the companion

form representation of a ME distribution we stated our results in terms of the vectors

a and b. In order to answer the first question in terms of ME distributions the

182
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necessary condition on the vector b was relatively simple. For the vector a to then

correspond to a ME distribution it needed to belong to Ωp which was defined by

an uncountably infinite set of linear constraints that depend on b. In Chapter 6 we

derived a complete analytical description for Ω3, but the problem for higher orders

is difficult to solve.

In Chapter 7 we developed an algorithm based on the work of Dehon and La-

touche [45] which, given a suitable vector b, determined whether or not the vector a

belonged to Ωp. An alternative description of Ω3 was also given. Since the algorithm

given in Section 7.3 required the global minimization of a single-variable function

over the nonnegative real numbers, a potentially difficult optimization problem, in

Chapter 8 we developed a SIP algorithm to tackle the ME identification problem.

Even though the algorithm of Section 7.3 was required in the last stage the opti-

mization was localized and hence easier to perform accurately. In Chapter 9 the SIP

approach was used to develop an algorithm to fit ME distributions to data. The

examples given towards the end of the chapter illustrated the extra flexibility ME

distributions exhibit over PH distributions when used to fit data or approximate

probability distributions even though our algorithm (and particularly fseminf in

MATLAB r©) took much longer to converge than EMpht. More efficient nonlinear

optimization and SIP algorithms, to find b and a, respectively, need to be developed

and tested thoroughly.

Our original idea of fitting or approximating with PH and ME distributions

in the LST domain is now possible using the SIP approach. An objective function

which measures, in some sense, the distance between the fitting/approximating LST

and the empirical/approximated LST could be minimized. It may even be, as with

the loglikelihood function, that given a suitable vector b the objective function is

convex in a. However, given that the maximum likelihood estimation is relatively

easy to perform, and that the properties of maximum likelihood estimators are well

established, transform estimation is essentially unnecessary. Transform estimation

has usually only been used when methods such as maximum likelihood and moment
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matching have led to intractable problems.

Once a better SIP algorithm has been developed a thorough experimental anal-

ysis of fitting ME distributions to data can be carried out. Confidence intervals

for the parameter estimates using, say, the bootstrap can be calculated. In the lit-

erature it is only Faddy [51] and [52], Faddy and McClean [55], and Hampel [65]

that reported the asymptotic standard errors for the maximum likelihood estimates

when fitting Coxian distributions to data.

On the theoretical side, properties of the maximum likelihood estimators (for

example, consistency and asymptotic normality) for PH and ME distributions need

to be established. Asmussen, Nerman, and Olsson [15] stated for the case with PH

distributions

“. . . that due to the over-parameterization the situation is somewhat non-

standard, although usual asymptotic distribution properties concerning

estimable quantities . . . should be derivable from knowledge of the exis-

tence of a sufficiently regular unique parameterization. (Candidates for

such a parameterization are either the zeros and poles of the Laplace

transform, or maybe a sequence of moments, . . . )”

As we have seen such a parameterization exists for ME distributions and therefore

it seems likely that the abovementioned properties will be shown first for ME dis-

tributions. So far, only the consistency of the maximum likelihood estimators for

MMPPs has been established by Rydén [118].

It may also be possible to extend the methods developed in this thesis to identify

RAPs and then use them to develop fitting and approximation algorithms.

Concerning Ωp we still need to establish that it is bounded and contains the

origin, as well as finding a complete analytical description for the set when p > 3.

The work of Krĕın and Nudel′man [80] on convex sets and Chebyshev systems ought

to lead to some fruitful developments in these problems.
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[63] Goberna, M. Á, and López, M. A. Linear Semi-Infinite Optimization, volume 2

of Wiley Series in Mathematical Methods in Practice. John Wiley and Sons,

Chichester, 1998.

[64] Green, D., Metcalfe, A. V., and Swailes, D. C. A matrix analytic model

for machine maintenance. In Latouche, G. and Taylor, P., editors, Matrix-

analytic Methods. Theory and Applications, pages 133–146. World Scientific,

New Jersey, 2002.

[65] Hampel, K. Modelling Phase-type Distributions. Honours Thesis. Department

of Statistics, The University of Adelaide, South Australia, 1997.

[66] Harris, C. M. and Marchal, W. G. Distribution estimation using Laplace

transforms. INFORMS Journal on Computing, 10:448–458, 1998.

[67] Harris, C. M. and Sykes, E. A. Likelihood estimation for generalized mixed

exponential distributions. Naval Research Logistics, 34:251–279, 1987.

[68] Harris, C. M., Marchal, W. G., and Botta, F. B. A note on generalized hyper-

exponential distributions. Communications in Statistics – Stochastic Models,

8:179–191, 1992.

[69] Heathcote, C. R. The integrated squared error estimation of parameters.

Biometrika, 64:255–264, 1977.

[70] Hettich, R. and Kortanek, K. O. Semi-infinite programming: Theory, meth-

ods, and applications. SIAM Review, 35:380–429, 1993.



BIBLIOGRAPHY 193

[71] Hoeting, J. A. and Tweedie, R. L. Transform estimation of parameters for

stage-frequency data. Unpublished manuscript, 2001.
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