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Abstract

A random variable that is defined as the absorption time of an evanescent finite-
state continuous-time Markov chain is said to have a phase-type distribution. A
phase-type distribution is said to have a representation (o, T') where a is the initial
state probability distribution and T is the infinitesimal generator of the Markov
chain. The distribution function of a phase-type distribution can be expressed in
terms of this representation. The wider class of matriz-exponential distributions
have distribution functions of the same form as phase-type distributions, but their
representations do not need to have a simple probabilistic interpretation. This
class can be equivalently defined as the class of all distributions that have rational
Laplace-Stieltjes transform. There exists a one-to-one correspondence between the
Laplace-Stieltjes transform of a matrix-exponential distribution and a representation
(B, S) for it where S is a companion matrix.
In order to use matrix-exponential distributions to fit data or approximate prob-

ability distributions the following question needs to be answered:

“Given a rational Laplace-Stieltjes transform, or a pair (3,S) where S

15 a companion matrix, when do they correspond to a matrix-exponential

distribution?”
In this thesis we address this problem and demonstrate how its solution can be

applied to the abovementioned fitting or approximation problem.
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