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Abstract

In this thesis we extend the Mumford-Shah model and propose a new region merging
algorithm for image segmentation. The segmentation problem is to determine an
optimal partition of an image into constituent regions such that individual regions
are homogenous within and adjacent regions have contrasting properties. By opti-
mal, we mean one that minimizes a particular energy functional. In region merging,
the image is initially divided into a very fine grid, with each pixel being a separate
region. Regions are then recursively merged until it is no longer possible to decrease

the energy functional.

In 1994, Koepfler, Lopez and Morel developed a region merging algorithm for seg-
mentating an image. They consider the piecewise constant Mumford-Shah model,
where the energy functional consists of two terms, accuracy versus complexity, with
the trade-off controlled by a scale parameter. They show that one can efficiently
generate a hierarchy of segmentations from coarse to fine. This algorithm is com-
plemented by a sound theoretical analysis of the piecewise constant model, due to

Morel and Solimini.

The primary motivation for extending the Mumford-Shah model stems from the fact
that this model is only suitable for “cartoon” images, where each region is uncom-
taminated by any form of noise. Other shortcomings also need to be addressed. In
the algorithm of Koepfler et al., it is difficult to determine the order in which the

regions are merged and a “schedule” is required in order to determine the number

X



X LIST OF FIGURES

and fine-ness of segmentations in the hierarchy. Both of these difficulties mitigate
the theoretical analysis of Koepfler’s algorithm. There is no definite method for
selecting the “optimal” value of the scale parameter itself. Furthermore, the math-
ematical analysis is not well understood for more complex models. None of these

issues are convincingly answered in the literature.

This thesis aims to provide some answers to the above shortcomings by introducing
new techniques for region merging algorithms and a better understanding of the
theoretical analysis of both the mathematics and the algorithm’s performance. A
review of general segmentation techniques is provided early in this thesis. Also
discussed is the development of an “extended” model to account for white noise
contamination of images, and an improvement of Koepfler’s original algorithm which
eliminates the need for a schedule. The work of Morel and Solimini is generalized to
the extended model. Also considered is an application to textured images and the

issue of selecting the value of the scale parameter.
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Chapter 1

Introduction

Image segmentation is a standard problem in the field of image processing. The goal
is to partition an image into a set of regions that satisfy desirable properties, such
as homogeneity within regions and contrast between adjacent regions, according to
some predetermined criteria, enabling further processing such as classification to
be performed using higher level structures of the image rather than image pixels.
The image is usually represented as a function g on a rectangular domain . ¢
can be either a scalar or vector function. The latter is useful for characterizing

multi-channel data such as colour, texture features, spline coefficients and so on.

In image segmentation algorithms it is common to specify some a-priori assump-
tions on image datum. For example, we might assume the image to consist of a
“round-shaped” object plus background, or regions which are reasonably close to
being constant and so on. It is a well-accepted notion that a good choice of seg-
mentation algorithm is highly dependent on a-priori knowledge about an image.
For example if we assume an image consists of a number of bright objects on a dark
background and we have prior knowledge of distributions of the pixel intensities that
comprise the object/background then the well-known technique of histogramming
and thresholding is applicable. But such techniques hardly come into consideration

for segmenting complex images such as those with a significant amount of noise.
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1.1 Low-Level Methods

In the most general case, a segmentation can be viewed in two ways: either the
partition of an image into regions can be determined, or its boundary set can be
computed. These are “dual” in the sense that given one, we can determine the other.

Indeed, there exist both region-based and edge-based algorithms for segmentation.

The basic concept of region-based methods is as follows: starting from a very fine
segmentation, one gradually merges small regions or individual pixels into larger
regions until a desired segmentation output is obtained. There are many ways to
achieve this. For instance, an early paper by Muerle and Allen [60] proposes to
begin merging with a seed, or single-pixel region and accumulate individual pixels
according to some “acceptance criteria”. When no more pixels are accepted, the
region is complete and a new cell is selected. This is known as region aggregation
(Rosenfeld and Kak, [73]|, Zucker, [97]). An alternative concept is region growing
(Leonardis et al., [46]), where a set of small regions is first determined by some
“pre-processing” segmentation stage such as determining connected components of
constant gray value pixels. Neighbouring regions are merged together according
to some acceptance criteria. Thus region growing differs from aggregation in that
regions are treated as the basic “unit” instead of individual pixels. An example of an
acceptance criteria is that pixels be homogenous, for example if we were segmenting
a gray-level image with intensities between integers 0, ..., 255 then we can define a
region as being “legal” if the difference of gray values of any two pixels is less than
20. Note that this does not prevent overlapping regions in the final segmentation.
A segmentation without overlapping regions is known as a partition (Rosenfeld and

Kak, [73]).
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In edge-linking algorithms (Bajcsy and Tavakoli, [7], Rosenfeld and Kak, [74], Weiss
and Boldt [90]), a set of edges is determined by local properties such as image
gradient. Contours are then formed by searching for pairs of egdes that can be
conveniently linked into a “stronger” edge until some stopping criterion is satisfied.
Edges that cannot link with other edges are discarded. Adjacent edges with large
gradients and similar orientations make good candidates for merging, whereas those
with smaller gradients or conflicting orientations would be discarded as noise. An
example of an edge-linking algorithm is due to Perkins [65]. The algorithm consists

of the following steps:

e Compute edge regions by a threshold on gradient.

e Thin the gradient regions.

e Expand edges to close the small gaps between them.
e Find different regions via connectivity algorithm.

e Eliminate small regions.

e Shrink again the edge regions.

e Add new edge pixels to close newly created gaps.

e Determine active edge regions.

e Eliminate small regions again.

e Calculate properties of uniform intensity regions.

It is clear that there are many parameters and thresholds to set. For example, a
threshold must be defined in order to determine whether a region is “sufficiently”
small, and whether a gap between two edges is sufficiently small. Moreover, one

might argue that the above steps might be performed in a different order, or the
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number of steps be changed. An advantage of low-level methods is that initialization
problems are rarely significant, compared to high-level methods, which are discussed
next. Also, for edge-based algorithms the usual edge detectors are generally appli-
cable to almost any imagery. However there are also obvious disadvantages. For
example, low-level methods only consider local information, and it is a cumbersome
process to synthesize the data into something more meaningful. A diametrically
opposite approach consists of starting with large-scale objects. The basic idea is to

eliminate the use of low-level structures altogether.

1.2 High-Level Methods

Some region-based algorithms attempt to allow greater flexibility by admitting both
splitting and merging operations (Rosenfeld and Kak, [73]). Typically, an image
has dimensions 2™ x 2" for integers m,n (if this is not true, the algorithm can be
easily modified by “padding out” the image with zeros). The algorithm starts by
considering the entire image as a single region. If the region is not “homogenous
enough” it is split into four congruent squares and each square is tested separately in
the same manner. Once splitting is finished, adjacent regions may then be merged
if desired. The most obvious disadvantage of this approach is the bias towards
“blocky” regions with side-lengths likely to be powers of two. It is possible to start
at an intermediate level with blocks of size 2! x 2!,1 < min(m,n) but this causes

initialization problems and is unlikely to affect the final result anyway.

An interesting approach to edge detection is to formulate the problem of finding
the best edge using dynamic programming principles. An early paper by Martelli
[49] analyzed a relatively simple problem of segmenting an image on a rectangular
domain assumed to consist of two regions, “left” and “right” separated by an edge.
An edge is defined as a connected path of edge “elements” starting from anywhere at

the top to anywhere at the bottom. The edge elements can be considered as forming
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Figure 1.2.1: An edge separating two regions.

a completely connected graph (see Figure 1.2.1), two elements being neighbours if
and only if they share a pixel, and Martelli argued that the problem of finding
the best edge could be interpreted as solving a well-known dynamic programming
problem: finding the cheapest path from a “start” node to “goal” node with specified
costs for each link connecting two nodes. The best edge is defined as the one which

minimizes the cost function Cost = |3, c¢(e)|, where

cle) = M—g(x)+g(y), (1.2.1)

M = sgpg(z). (1.2.2)

Here c(e) is the cost for a single edge element e and z,y are the pixels on opposite
sides of the edge element and g(z) > g(y). Note that the cost is defined as a sum of
positive contributions from each edge element, so the edge “wants” to be as short

as possible. Also M — g(x) + g(y) is small only when the difference in gray values

9(z) — g(y) is large.
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Figure 1.2.2: The optimal edge computed for a simple image for Martelli’s problem.

An example of finding the optimal edge is shown in Figure 1.2.2 and the cost of this
edge is 5. Obviously Martelli’s ideas [49] are only of theoretical interest since the
assumption that an image consists only of two regions is unrealistic for real applica-
tions. However, it does highlight an important idea: the quality of a segmentation
can be quantified by a function, or more precisely, a functional which associates that
segmentation with a real number. This brings us to the concept of the Variational

Formulation, discussed in the next subsection.

1.3 The Variational Formulation

The idea of the Variational Formulation is simple: starting with an initial segmen-
tation, we define a set of operations that vary the segmentation slightly (hence the
word “variational”). We then alter the segmentation using these operations until it
is no longer possible to improve it. The quality of a segmentation is measured by
an energy functional £ and by convention, lower numbers indicate better quality.
Thus K’ is an “improvement” over K if E(K') < E(K). Typically E will consist of
a number of terms, each seeking to promote a desirable property of a segmentation,
such as a smooth boundary set or homogeneity within regions. Note that it is rarely
possible to recover a globally optimal segmentation since the search for the best
segmentation stops if a local optimum is reached. Generally, the search space of
all possible segmentations is large enough to render a brute force search infeasable.

Thus, it is usual to accept a local minimum instead of global if it “looks reasonable”.
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1.3.1 The Mumford-Shah Model and Region Merging

Pavlidis [64] made the important observation that the segmentation obtained by a
set of regions or edges can be complemented using a simple approximation u to the
original image data g. Thus a metric (such as L?-norm) can be defined, allowing
us to measure the difference between a given image and its approximation. A very

well-known example of this is the celebrated Mumford-Shah functional [61]:

E(u,K) = i? /(u —g)%dz + / \Vul|?ds + v - {(K), (1.3.1)

where ;2, v are scale parameters, v is a piecewise smooth approximation of ¢ and
K is the boundary set, assumed to be piecewise smooth with finite total length of
curves equal to £(K). The first term is just the L2-norm difference between the image
data and its approximation. The second term measures the smoothness within each
region and the final term measures the complexity of the segmentation. A useful
and popular simplification is to assume u is piecewise constant on each region of the
segmentation. Thus the term [ |Vu|?dx is dropped. Setting A\ = v/u?® and scaling
equation (1.3.1) yields the piecewise-constant Mumford-Shah model:

E(u, K) = / (u — g)%dz + X - 6(K). (1.3.2)

In this thesis, we will only be concerned with equation (1.3.2) and not (1.3.1). For
the sake of brevity we will refer to equation (1.3.2) as the “Mumford-Shah model”
instead of the “piecewise-constant Mumford-Shah model” unless stated otherwise.
As is well known, finding the global minimizer of (1.3.2) is computationally infeasible
and it is necessary to settle for a local minimizer. A popular method for comput-
ing such a local minimizer is region merging (Koepfler et al., [42]), although other
approaches are known (Nordstrom, [62], Richardson, [69]). It is assumed that the
image domain () is divided into pixels, where g is constant within each pixel, and K

is assumed to consist of vertical and horizontal “edge elements” between pixels.



1.3. THE VARIATIONAL FORMULATION 8

© 0 N |t g = |[W O
Ot W H | O k= © |0 I N
= OO W N oo ot
S kOl = 00 NN W ©o
O © NN Ot Wk = O
N H WO O &~ |t o
W N O | = OO =
N O 0|k W N O O
— Ot |00 © O N W

Figure 1.3.1: An example segmentation of an image in the discrete domain.

Both terms of (1.3.2) are computed accordingly. For example, in Figure 1.3.1, if
u(x) = 5 for all x and K is the boundary set shown then E(u, K) = 540 + 36A. In
these algorithms, all pixels must belong to one region during the merging process
and no two regions can overlap. Two regions can be merged if and only if they are
adjacent, that is, they share a common boundary. Koepfler’s algorithm (Koepfler
et al., [42])! is one of the earliest examples of region merging and its scheme can be

summarized as follows:

e Initialization: set uy = ¢ and K| is the union of all boundaries of all pixels.

Set /\0 = 0.

e Recursive merging: merge all pairs of regions whose merging decreases the

energy.

e Change of scale: increase A and return to the previous step.

L Although this paper was written by three authors, we will always write “Koepfler’s algorithm”

for reasons of brevity.
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This is a simplified statement of Koepfler’s algorithm from Morel and Solimini [58].

We study Koepfler’s algorithm in more detail in Chapter 2.

Region merging methods are attractive due to their ease of implementation. One
drawback is that the final segmentations tend to have jagged boundaries even for
smooth images. The main reason is as follows: during the early stages of region
merging, it is difficult to anticipate if merging two small regions will break an “edge”
that is only obvious at a large scale, but once pixels have been merged into a single
region at an early stage, they belong forever to the same region, making it impossible
to undo these mistakes. An example of this phenomenon can be found in the Brodatz
experiment in (Morel and Solimini, [58]). A possible solution lies in the Snake and
Active Contour models which is discussed next. We present only a brief summary
of the fundamental ideas and refer to (Aubert and Kornprobst, [6], McInerney, [54])

for a more detailed discussion.

1.3.2 The Snake Model, Active Contour Model and Level
Set Methods

A natural formulation for the edge detection problem is to consider a moving curve,
starting at some initial position and evolving over an artificial parameter of time, un-
til it fits our “expected notion” of an edge. This is the idea behind the so-called “de-
formable models”. Deformable models are also useful for computer vision/graphics
applications: indeed it is the latter in which these methodologies were originally
developed. An edge is usually represented by some structure in an image. For in-
stance if an image is assumed a-priori to be noise-free then a high gradient probably

indicates an edge.
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One of the first efforts in analyzing this formulation was made by Kass, Witkin and
Terzopoulos (Kass et al., [40]). Due to the complex motion of the curves, the authors
called them snakes and the model itself is referred to as the Snake Model. Also well-
established in the literature is the Geodesic Active Contour Model (Caselles et al.,
[14], Caselles et al., [15], Kichenassamy et al., [41]). The basic idea is that, starting
from an initial position, a curve tries to move in such a way that it approaches image
boundaries while also trying to stay smooth. The latter constraint ensures the snake
does not respond to noisy “false” edges. In the Snake Model, a typical energy J is
defined by (Aubert and Kornprobst, [6], Kass et al., [40])

J(c) = / |C'(Q)|2dq+/3/\CH(Q)|dQ+)\/92(|VI(0((1))qua (1.3.3)

where c is the curve, I is the image data, 3, A € R are parameters and g : Rt — R™*
is the “edge detector function”: g only depends on the magnitude of the gradient

and is monotonically decreasing. A typical choice is

1
1+ VG, « I’

g(IVI]) =

where GG, is a Gaussian kernel. Thus g is strictly positive in homogenous regions and
near zero on the edges®. The first two terms measure the smoothness of the curve
and the last measures how well the curve corresponds to sharp discontinuities in the
image. The first two terms are called an internal energy since it is independent of the
given data and the last is called an external energy. It is usual to omit the middle
term (8 = 0) since practice indicates that the curvature still decreases regardless
of the condition 5 = 0. Note that (1.3.3) is not intrinsic, that is, by changing the
parametrization of the curve one obtains a different solution. An alternative is to use
the following functional, which does not depend on curve parametrization (Caselles

et al., [14], Caselles et al., [15]):

2We abuse notation and use g both as a function of a real number (image gradient magnitude)

and a point in the spatial domain (z € ).
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J©) = 2V [ g(VI(el@))Ie(@)lda (1.3.4)
= 2VA(g(VIEO)): IO, (13.5)

where A € R is a parameter and (-, -) is the inner product defined in (1.3.4). This can
be interpreted as a weighted Euclidean arc length. Equation (1.3.5) is known as the
Geodesic Active Contours Model. In both the Snake and Active Contour models,
the curve is usually moved according to steepest descent of the energy functional
(in the sense of the variational calculus). A well known example of steepest descent
is that of minimizing the length of a curve ¢ in 2-D space, obtained when g = C' is

constant in equation (1.3.5). If E is defined by

Eelt, ) = [1¢(t,)lds = [ \/a'(t,5)2 +y/(¢,5)2s,
where the derivatives are with respect to s then the energy is minimized when

de
dt

X —K,

where k is the curvature, assuming the front moves normal to itself.

The Snake and Active Contour models have proved useful in the medical commu-
nity. One possible reason is that medical applications can cover a vast variety of
image structures, such as membranes, tumours, blood vessels (long and thinny).
Also, these models are intuitively easy to understand, which is suitable for user
interaction. However, there are many serious drawbacks with both models: a con-
tour cannot detect more than one object unless topological changes (breaking and
merging) are allowed; but keeping track of a variable number of closed curves is
an extremely difficult problem. Secondly, even in the case of detecting a single ob-

ject, the initial curve must be reasonably close to the desired curve, otherwise only
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a local minimum will be computed. Indeed, many applications of the Snake and
Active Contour models require user-interaction to specify the initial curve and it is
clearly advantageous to be able to automate this choice. Another difficulty is that
the number of markers is fixed, causing numerical difficulties when markers cluster

near each other (concentration) and/or leave “empty” regions (voiding).

Finally, we note that it is possible to combine region-based and edge-based methods
to exploit the advantages of both. This was attempted by Zhu and Yuille [95, 96]
and their experiments have yielded promising experimental results on a wide variety

of images.

1.3.3 The Level Set Method

To address the above issues, Osher and Sethian [63, 77] proposed an effective rep-
resentation of evolving curves known as the Level Set. Note that, unlike Snakes or
Active Contours, the concept of Level Sets is not really a “model” but is rather a
method for avoiding the above-mentioned difficulties in implementing the Snake and
Active Contour models. However it is natural to discuss the latter in conjunction
with the former. The basic idea is simple: a curve, or more precisely, a set of curves,
can be implicitly represented as the set of points (z,y) satisfying F(z,y) = 0 for
a certain continuous function F. The curve naturally divides the region of interest
into where F' is positive or negative. Level Sets can be thought of as a generalization
of Snakes or Active Contours by allowing topological changes to be easily handled.
A number of Level Set variational frameworks have been proposed by various re-
searchers (Chan and Vese, [21], Samson et al., [76], Yezzi et al., [92]). Using the
Level Set formulation, a moving boundary can be represented as a time-dependent
function ¢ = ¢(z,y,t) where the zero-level of ¢ corresponds to the position of the
curve for each time t. For example if a curve ¢ evolves according to dc/dt = RN
where R is scalar curvature and NV is inward normal then the Level Set formulation

is given by
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4 _ s V6.
i |V¢|dw|v¢‘. (1.3.6)

More generally, if a front moves normal to itself with speed® F, that is, de/dt = FN ,
where N = ¢/|¢| then the Level Set formulation is given by

¢+ F|V¢| = 0. (1.3.7)

Here we assumed that each point on the front ¢(s,?) moves along the front normal,

otherwise we can reparametrize ¢ := ¢’ so that it does.

In practice F is represented as values on a lattice. That is, F(z,y) € R where
(z,y) = (ih, jh) for integers i, j. It is immediately clear that the Level Set formu-
lation avoids many of the difficulties associated with Snakes and Active Contours.
For instance a Level Set automatically handles topological changes and also avoids
clustering of markers and “void” regions. Moreover, the formulation can easily be
extended to more than two dimensions. The most obvious disadvantage of Level Sets
is computational complexity since an “extra dimension” is being used to model an
image. For example, if we consider the problem of implementing (1.3.6) numerically
on a grid of N? points and T time iterations then the complexity of the algorithm
would be O(N?T). The generally accepted solution is the so-called narrow band
method (Adalsteinsson and Sethian, [1], Chopp, [23]). The values of ¢ are updated
only near the zero Level Set. A common assumption is that the zero Level Set is
approximated as the set of pixels where adjacent pixels differ in sign. We apply
(1.3.7) only at points “sufficiently nearby” the zero Level Set, until the curve stops
near the image boundary or reaches the edge of the “narrow band”. In the latter

case, a new narrow band is constructed and the process repeated.

3The speed F is not necessarily constant and can depend on, for example, the curvature of the

front.
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1.3.4 The Topological Snake Model

Asis apparent from above discussion, implementing Level Set algorithms are far from
trivial. Moreover, Level Sets are less convenient for user interaction and mathemat-
ical analysis. It is natural to ask if one can overcome the difficulties of traditional
Snake methods without the disadvantages of Level Sets. One idea is topologically
adaptable snakes, or T-snakes, due to Terzopoulos and Mcinerney [52, 53|. As the
name implies, T-snakes attempt to overcome the disadvantage of the fixed topol-
ogy by allowing the number of snakes to change, either by splitting one snake in
two pieces or vice versa. The basic idea is if the motion of a snake causes itself to
overlap with either itself or another snake then a topological change takes place.
Assuming a snake is represented with N markers, it requires O(N) operations to
check if an overlap occurs around one marker which is clearly inconvenient. There-
fore it is necessary to impose a grid, where each discrete cell records whether it is
in contact with a snake, and if so, which snake marker it touches. In effect the
Topological Snake model attempts to combine the advantages of Lagrangian motion
(representing a snake as a linked list of markers) and Eulerian motion (using a dis-
crete grid). Furthermore the Eulerian grid allows a natural method of avoiding the
problems associated with concentration and voiding. If adjacent markers are too
far apart, then additional markers can be added. Conversely, if too many markers
are concentrated at an area, then they can be removed (Figure 1.3.2). This means
the number of markers is not constant. Although this implies a slight complication
in the algorithmic implementation it is much less cumbersome than the difficulties
associated with Level Sets. Each curve of a topological snake can move according

to the same laws of motion derived for the Snake and Active Contour models.

Note that if starting from the outside of the boundary, it is impossible to detect
strong edges within an object. A possible solution is the use of so-called “dual”
T-snakes, (Giraldi et al., [35]), where snakes can move within an object as well as

without. Thus dual T-snakes allow for greater flexibility in initializing the snakes.
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Figure 1.3.2: Adding and deleting markers for the Topological Snake model.

1.3.5 Stochastic Models

This section describes a recent approach to image segmentation borrowing ideas
from Monte Carlo methods. The basic idea is that a Markov Field can be defined
on the discrete field or lattice. A segmentation is “good” if it has a (relatively)
high probability of occurring given the image data. The calculation of the optimal

segmentation is based on Bayes law. In other words we seek to maximise

P(g|0)P(0)

P(0lg) = W;

(1.3.8)
where 6 is the segmentation model and g the data. The first term of the numerator
measures how well the data fits the model. The second term of the numerator
measures the simplicity of the model, which will usually be defined a-priori. The
denominator is constant for given g and is almost always dropped in applications.
Note that this differs from the variational method in that we seek to maximize a
probability distribution instead of minimizing an energy functional. But by taking
negative logarithms of (1.3.8) we see that maximizing the probability and minimizing
an energy functional are equivalent in some sense. Indeed, this idea is used in

Chapter 3.
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A typical stochastic model is hierarchical with two levels. On the higher level a Gibbs
distribution characterizes how pixels are clustered into regions that are homogenous
in some sense, for example they have same textures or other features. The lower
level also uses a Gibbs distribution which describes the individual texture or feature
itself. We will not discuss the elementary theory of stochastic models in detail and
instead refer the reader to (Derin and Elliott, [30], Dubes and Jain, [31], Geman
and Geman, [33]). Dubes and Jain [31] also provides a sound review of stochastic

models used in Image Processing.

Stochastic models have proved useful for texture segmentation. Among the most
well-known are the Ising and Potts models (Chandler, [22]). The celebrated Geman
and Geman model [33] is a forerunner of the Mumford-Shah model since it attempts
to model a line process as well as pixel intensities. On the other hand, texture
segmentation can be achieved without employing stochastic methods, through the

use of texture features (Haralick et al., [38]).

1.4 Advantages of the Variational Formulation

It is almost universally accepted that the Variational Formulation represents a sig-
nificant improvement in the development of segmentation algorithms. Morel and
Solimini [58] mention a number of arguments supporting the superiority of algo-
rithms developed in the Variational Formulation over other older “heuristic” meth-
ods. Firstly, heuristic methods are necessarily complex while the Variational For-
mulation is usually much simpler. Secondly, the energy functional allows one to
compare two segmentations and specify that one is better than the other. Thirdly,
the Variational Formulation can be seen as a general framework for many heuristic
algorithms, in the sense that one can translate such algorithms via a suitable func-
tional. In the case of algorithms such as (Perkins, [65]), it can be argued that many

segmentation or edge detection algorithms can be regarded as equivalent in some
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sense to a corresponding algorithm developed in the Variational Formulation. The
latter algorithm will often result in segmentations satisfying the properties that are
sought by the former. Thus it is completely unnecessary to specify a complex algo-
rithm such as that in (Perkins, [65]) when a much simpler algorithm yields similar

results. This observation is examined in detail in (Morel and Solimini, [58]).

1.5 Outline of the Thesis

The thesis is organized as follows: In the second chapter, we describe the Mumford-
Shah functional and region merging algorithms. We describe a simple algorithm
from Koepfler et al. and an improvement of this algorithm. We show the new al-
gorithm has important advantages: The critical values of scale parameter (where
the optimal segmentation changes) can be determined directly from the image data
instead of being “guessed”. Secondly, the globally “best” merge at each stage of
the region merging process can be determined in reasonable time. Also, the new
algorithm prefers to merge small regions “evenly” across the entire image instead
of favouring one large region accumulating single pixels. In Chapter 3%, we de-
scribe an important theorem for the Mumford-Shah model and how it generalizes
to an extended model. This chapter is an extended version of [83]. In Chapter 4,
we compute an explicit minimizer of a simple image for the extended model. In
Chapter 5°, we describe the “small sample problem” and its solution. The small
sample problem is a consequence of extending the model and it arises because we
require an extra “regularization” parameter to handle numerical instabilities when
dealing with small-size regions. We describe an alternative approach to eliminate
this problem. The alternative approach eliminates the use of the extra scale param-

eter and also succeeds in producing better segmentations in less time, albeit with a

4The contents of this chapter have been accepted for publication in the Journal of Mathematical

Imaging and Vision.
5The contents of this chapter have been submitted to the Journal of Pattern Recognition.
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few trade-offs: the mathematical analysis is less elegant, and it is difficult to gen-
eralize this to vector-valued images, hence this improvement is only of theoretical
importance. Chapter 6 describes the application of the extended model to textured
images. Chapter 7 discusses an important issue: that of automatic parameter-value
selection. Equation (1.3.2) contains one scale parameter and it is common practice
to find a good value by trial and error either by running an algorithm multiple
times, or computing a multiscale hierarchy of segmentations first and letting the
user choose. There are advantages in being able to automate the selection of a scale
parameter value. We believe this issue is neglected in the literature. We propose
two methods of determining an optimal trade-off: measuring merge significance and
modelling the merge cost. In the former, we define a simple measure of the “sig-
nificance” of each merge and choose the best segmentation as that corresponding
to the most significant merge. We show that this measure is unsatisfactory. In the
latter, we propose an “ideal model” of merge cost versus merge number and choose
the best segmentation as that corresponding to the maximum deviation from this

graph. We show that the latter method yields better results.



Chapter 2

The Basic Mumford-Shah
Functional and Region Merging

Algorithms

2.1 Introduction

In Chapter 1, we remarked that the idea of a Variational Formulation is to define
an energy functional so that a lower energy indicates a better segmentation. We
assume the segmentation represents both the boundary set K and an approximating
function u of an image g. We seek a segmentation that satisfies two properties: (i)
the segmentation must somehow be simple and (ii) the segmentation must also
be meaningful with respect to the given image. The latter requirement simply
states that u must be a reasonable approximation to g. Thus it is necessary to
define some measure of how simple a segmentation actually is and the quality of the
approximation u with respect to g. There are several alternatives to consider: we
can measure the simplicity of a segmentation by the number of regions, number of
edges, boundary length and so on. Similar considerations hold for the quality of the

approximation.

19
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In 1989, Mumford and Shah (Mumford and Shah, [61]) proposed to minimize

Ew,K) =2 [ (u(z)— g(x))%de + /Q/K V(@) 2de +v-0(K),  (2.1.1)

Q/K

where p?, v are scale parameters, v is an approximation of g, Vu is the gradient
of u, and K is assumed a-priori to be a piecewise smooth boundary set. More
specifically, K is a finite set of singular points joined by a finite set of C'! arcs, with
total length ¢(K). Equation (2.1.1) gives a relatively simple functional consisting of
three terms. The idea of the model u is to specify what is meant by “homogenous”

and “different”. The various terms in the functional can be explained as follows:

e the first term measures how well the image model fits the data g.
e the second term measures the smoothness of the image model.

e the final term measures the complexity of the image model.

Mumford and Shah conjectured the existence of minimizers. More specifically, they
conjectured that for all continuous functions ¢, £ has a minimum in the set of all
pairs (f, K) with f differentiable on each region R; and K being a finite set of

singular points joined by a finite set of C! arcs.

This conjecture remains open and only a number of “partial” results are known
(Chambolle, [16]). Despite being weaker than the original conjecture they are still
considered meaningful in practice (Morel and Solimini, [58, 59]). As stated in the
first chapter, we will be mainly concerned with the simplest model, the piecewise

constant model

E(u, K) = /(u — 9)%dz + A - (K). (2.1.2)
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This is sometimes called the “cartoon limit” of the original functional (2.1.1) (Cre-
mers et al., [25]). If we fix v/u? = ) to be constant and take the limit y — 0,7 — 0

then minimizing equations (2.1.1) or (2.1.2) are equivalent.

The mathematical analysis of this model is considered complete (Koepfler, [42]). For
instance the conjecture is known to be true for the piecewise constant model, as was
proved by Mumford and Shah [61]. An elementary constructive proof was given by
Morel and Solimini in [56, 57] and Chapter 5 of [58]. In this chapter, we discuss the
Mumford-Shah functional and a region merging algorithm due to Koepfler [42]. We
then discuss an improvement of this algorithm and give a theoretical comparison

between the two.

2.2 Discussion of the Mumford-Shah Functional

In equation (2.1.2) the parameter A controls the trade-off between the complexity
and accuracy of the segmentation. If A\ is small, a fine segmentation will result.
When A\ is increased, we would expect a coarser segmentation with a greater error

in approximating g with u.

From Chapter 1 we recall the properties of region merging algorithms. At each
iteration of the region merging process, the only operation allowed is the merging
of two adjacent regions, provided it decreases the energy functional. We assume
that each region’s area and mean gray value are recorded, and that these quantities
are always updated during the merging process. We now list some fundamental
properties of region merging algorithms. Firstly, given a boundary set K the optimal
u is obtained by taking the mean value of g on each region. That is, u(z) = u; =
ﬁ Jr, gdz when z € R;. We therefore assume in the following that after merging
two regions, the mean values are updated automatically. In other words F is a

function of K alone and hence we will write E(K) instead of E(u, K).
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Secondly, suppose we merge two regions R;, ; into I;;. Then

1. The areas and mean values are updated via

|Rij| = |Ri|+ |R;l, (2.2.1)
|Ri|u; + | Rj|u,
Ui . (2.2.2)
! | Rij

2. The corresponding change of energy is calculated via

E(K')— E(K) = |Rylo;} —|R;|o}?
—|Rilo}* — X - £(O(R;, R;))
|Ri||R;|

| Ry

(U,’ — Uj)Q - A E(G(RZ, Rj)), (223)

2 1 2 «“ : 9 LI *2 *2
where 07 = 7[R, (9 —wu)? is the “sample variance” and similarly for o7}*, 07

In Chapter 1 we gave a brief outline of a simplified version of Koepfler's region

merging algorithm:

1. Initialization: set uyg = g and K, is the union of all boundaries of all pixels.

Set /\0 =0.

2. Recursive merging: merge all pairs of regions whose merging decreases the

energy.

3. Change of scale: increase A and return to the previous step.
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To demonstrate the utility of the algorithm, Koepfler defined two basic requirements

that must be satisfied for the algorithm to be useful in practice:

e Correctedness: if g is piecewise constant then there exists a value Ay > 0 such
that for every 0 < A < \g the segmentation (u, K) obtained by the algorithm
satisfies u = g and K is the union of the boundaries of the regions where g is

constant.

e Strong causality: if Ay > A; then the boundaries provided by the algorithm for
Ay are contained in those obtained for A;, and the regions of the segmentation

associated to Ay are the unions of some of the regions obtained for A;.

We assume that the image domain 2 is a rectangle, divided into equi-sized square

“pixels” and g is constant on each pixel.

The property of correctedness ensures that it is at least possible to recover a simple
segmentation: where two adjacent pixels belong to the same region if and only if
their gray values are equal. The property of strong causality is clearly desirable
since it allows one to easily compute a fast multiscale hierarchy of segmentations.
Note that we are speaking about a sub-optimal segmentation: the segmentation
generated by the algorithm and not the theoretical optimal segmentation defined by
the energy functional. Koepfler’s algorithm satisfies both correctedness and strong

causality. We present our proofs of these facts.



2.2. DISCUSSION OF THE MUMFORD-SHAH FUNCTIONAL 24

Proof:

Let g be defined on a rectangle and set

€= inf x) — . 224
oweoid o) l9(z) — g(y)| (2.2.4)

Clearly e > 0 since there is a finite number of pixels and hence g(z) — g(y) can
only take a finite number of different values. Set A < \g = €2/3N where N is the

boundary length of Ky;. When two regions are merged the change in energy is

| R || Ry
| Ry

E(K') — E(K) = (ui — u;)? — A - £(8(Ri, R})), (2.2.5)

where K (K') is the segmentation before(after) the region merge and 0(R;, R;) is
the common boundary of the two regions. Note that O(R;, R;) is not necessarily a
single curve. Let us call a region uniform if all its pixels have equal gray value. If
two uniform regions have the same gray value, then they can be merged since the
first term vanishes and the second is negative. If two uniform regions have different

gray values then

vV
|
mM
|
™
\Y
=

so they cannot be merged. It follows that during the segmentation process it is
impossible to merge two uniform regions with different gray values and thus all
regions remain uniform. Also it is easily seen that if two adjacent pixels have equal

gray values they must eventually be merged. Thus correctedness holds.

The property of causality immediately follows from the definition of the algorithm.
If Ay < Xy then the segmentation corresponding to A is obtained by performing

region merging operations starting with the segmentation corresponding to A;. |
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2.3 Koepfler’s Algorithm

We now discuss Koepfler’s algorithm in some detail. The essential algorithm runs

as follows:

We are given an image ¢ defined on a domain €2. € is a rectangle divided into
pixels with g constant on each pixel. A set of values of A must be defined a-priori:
A={A,...; \n} with A; < A4 for each i. All regions must be sorted in a “region

list” (Koepfler et al. do not specify how to order the regions in this list).

1. For the initial segmentation, assume all pixels are separate regions. We will

call this the trivial segmentation. Set A = \;.

2. Take the first region in the list and determine which of its adjacent regions
yield the maximal decrease of energy (Koepfler et al. do not specify how to
break “ties” when two or more neighbours yield the same decrease of energy).
If such a neighbouring region exists, merge the two and proceed to check the
next region in the list. Continue merging until no further decrease in the

energy functional is possible.

3. For every )\; calculate a segmentation by iterating step 2 above. The algorithm
stops if there is just one region left or after computing a segmentation using

An-

There are two difficulties with this algorithm. The first problem lies with the selec-
tion of the set of values A = {\1,...,\,}. The most obvious choice of A is a set
of values J; increasing linearly. That is, A = {6,26... Né} for some integer N and
real § [66]. However, we still have the problem of selecting values for N and 6. In
any case A must be chosen a-priori, implying a trade-off between the accuracy of
the segmentation and computation speed. If the values of )\; are too sparse, then it
is possible to miss the correct segmentation altogether. If the values of A; are too

dense, the algorithm will be too slow.
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0 01222 0 016 16 6 6 6 |22 10 10 10 10
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S1: E =5\ S2: E =120+ 3\ S3: E=216+2)\ S4: E =600

Figure 2.3.1: Four different segmentations obtainable by region merging.

The second problem is determining which order the regions are to be merged. This
is ambiguous in Koepfler’s algorithm since the order will depend on the state of
the region list at each iteration. This causes serious difficulties in the theoretical
analysis of the algorithm. It is natural to ask if, when selecting which pair of regions
to merge, why not choose the globally best merge out of all possible pairs? Koepfler’s
algorithm deliberately avoids the globally best merge simply for reasons of speed.
The search for the globally best merge can slow down the algorithm considerably,
since it implies the sorting of a list of all possible merges, and during the initial
stages, there are order O(4N?) possible pairs of neighbouring regions from an initial

datum of N? pixels.

Note that in Koepfler’s algorithm it only makes sense to apply the definition of
strong causality for values of A\;, Ay € A, and not A, Ay € R. Furthermore the
segmentation corresponding to any A depends not only on g and A but also A itself.

A demonstration follows:

In Figure 2.3.1 let us assume that S1 is the initial segmentation and g(x) = u;(x) =
0,12 or 22 as shown in the corresponding diagram. Note that S1 is not the trivial
segmentation but we have simplified matters by assuming all adjacent pixels with
equal gray values have already been merged and it only remains to consider segmen-
tations that can be obtained by applying region merging operations to S1. There
are only four such segmentations, shown above. Recalling the formula (2.2.2) for

updating the mean u at each region, we easily check wug(x), us(x), us(x) are given
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Range of A | Best segmentation
0<A<60 S1

60 < A < 96 52

96 < A < 192 S3

192 <A < o0 54

Table 2.3.1: Best segmentation for different values of \.

by the second, third and fourth diagrams of Figure 2.3.1 respectively. For any A\ it
is not hard to calculate which of the above four segmentations is optimal according
to the definition of E. The results are summarized in Table 2.3.1. From this ta-
ble it will be observed that any algorithm that always returns the globally optimal

segmentation would not satisfy the property of causality since S3 is not a subset of

S52.

Assume that A = {66,100}. We start with SI. When A\ = 66 we find only one
possible pair of regions, which must be merged: namely, the middle and right regions,
yielding S2. We then increase A to 100 and find it is impossible to merge the

remaining two regions. Hence the segmentation corresponding to A = 100 is S2.

Now consider A = {100}. We start with S1. When A = 100, merging two regions
will produce either S2 or S3. It will be noted that both lead to a decrease in
energy, but merging all three regions actually increases the energy. This shows an
ambiguity in the algorithm: we do not know which pair of regions to merge since
the choice depends on the region list in step 2. Let us assume we choose S3 since
E(S3) < E(S2), which is equivalent to choosing a globally best merge. Thus the
segmentation corresponding to A = 100 is S3, not S2. Therefore, even if Koepfler’s
algorithm always selected the globally best merge at each iteration, the segmentation

output is not only a function of A but also A.
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2.4 An Improvement of Koepfler’s Algorithm

Redding et al. [67] show it is possible to address the above difficulties. They refer to
A as a “A-schedule” and show that by careful consideration of the energy functional,
it is in fact possible to avoid the unpleasant trade-off between the A-schedule being
too sparse or too dense. The essential idea is that instead of guessing a A-schedule,
it is possible to determine the ideal schedule straight from the image data. As a
result, it is possible to compute all segmentations efficiently, as if using an extremely

dense A-schedule without significant time-complexity. For this reason, Redding et

al. call their algorithm the Full Lambda-Schedule Algorithm (FLSA).

They also demonstrate that at the cost of reasonably complex data structures, it
is possible to find the globally best merge in reasonable time. We refer the reader
to (Robinson et al., [72]) for a detailed implementation of the algorithm. We now
discuss the FLSA.

Recall that when two regions are merged the change in energy is

E(K') - E(K) %(ul —up)? — X £(O(Ry, R;)) (2.4.1)
= AM —X-AL, (2.4.2)

where AM and AL represent the change in model accuracy and boundary length
terms respectively. The criteria for whether merging two regions is possible is if it
(1) decreases the energy and (ii) is the best among all possible merges. From (i) it

is seen that the critical value of ) is

o [Ril R (w1 — up)? |
|Rij|  £(O(R;, Ryj))

(2.4.3)

We call this value of A the “merge cost”. If A < A4, merging will not occur, since
it increases the energy. If A > A, then merging will occur, unless another merge

produces a lower value of \.
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In the formulation of the FLSA the criterion for which merge is the best among all
possible merges no longer equates to the greatest decrease in F. Instead we choose
whichever pair yields the smallest merge cost. Thus we are able to dispense with the
A-schedule altogether. However, we do need to maintain one parameter, namely the
“stopping A", denoted by As,,. Roughly speaking, this corresponds to the “scale” of
the desired segmentation in which we seek and A4, is, in some sense, equivalent to
the greatest value in the A-schedule in Koepfler’s algorithm. The modified algorithm

is now as follows:

1. Take the pixels of the image as the initial segmentation.

2. Determine which pair of adjacent regions yields the smallest merge cost. If

such a pair exists and the merge cost is less than Ay, then merge the two.

3. Iterate step 2. The algorithm stops if there is just one region left or if the

merge cost exceeds Ag,p for all possible merges.

In the case of “ties” (two or more merging operations with the same energy cost)
we require a deterministic procedure to choose one merging operation over another.
We label all pixels with coordinates (7, j) and sort the pixels in an arbitrary order,
e.g. (1,7) < (¢,7") if either i < ¢’ or i =4 and j < j'. A region R; takes precedence
over R, if the “earliest” pixel (i1,71) in Ry is less than that of Ry. This approach
is used in Redding et al. [67]. Note that this method of breaking ties can also be
applied to Koepfler’s algorithm. Thus at each step, the correct region to merge is
uniquely determined. In this way, we can obtain for any value of Ay,, a unique
segmentation given only the image g. It is easily seen that this satisfies the property
of correctedness. Starting with the trivial segmentation, merging two uniform re-
gions yields a merge cost of zero if and only if their gray values are equal. Thus, by
always choosing the region merges with smallest merge cost, all such merges yielding

a merge cost of zero will be performed first. By setting A positive but sufficiently
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Range of A | Segmentation obtained from FLSA

0<A<60 S1
60 < A < 160 S2
160 < A < o0 S4

Table 2.4.1: Segmentation obtained by the FLSA for different values of .

small we can also prevent merging two uniform regions with unequal gray values.

For example we can set A < \g = €2/3N, where

inf lg(z) — g9(y)l,

€ = i
z,y€N,9(z)#9(y)

and N is the boundary length of the trivial segmentation. The rest follows as in
the proof of correctedness for Koepfler’s algorithm. It is also easy to check that
causality holds: if Ay > A; then the boundaries provided by the algorithm for
Astop = Ao are contained in those obtained for Mg, = A1, and the regions of the
segmentation associated to Asp = A2 are the unions of some of the regions obtained

for Agiop = 1.

Note that it is possible for the merge cost to temporarily decrease in the short-term.
For example a region-merge may yield a merge cost of A, say, and the next region
merge may yield a merge cost of Ay with Ay < A;. But we would generally expect
that during region merging, the merge costs will increase in the long run. Note that

this does not violate the property of causality.

Using the FLSA we obtain, for any A, the segmentation indicated in Table 2.4.1.
The property of causality is clear. Note that the segmentation S3 is never recovered

for any value of .

A reasonable question we can ask is whether the FLSA is indeed consistent with
Koepfler’s algorithm, in the sense they yield the same segmentations. More specifi-

cally, we ask: suppose that we are given an image g and a A4,p. Then running the
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FLSA must necessarily give a unique segmentation. Does there exist a sufficiently
dense A-schedule that will guarantee Koepfler’s algorithm produces the same out-
put as the FLSA? We assume that for purposes of running Koepfler’s algorithm, the

globally best merge is always sought and there is no issue with computation-time.

The answer is yes, if we assume the following: the merge costs increase monotonically
over time. We prove this as follows: since 2 has a finite number of pixels there are
only finitely many ways to form a region using any number of pixels. Similarly,
there must be only finitely many ways to form two adjacent regions. It follows that
whenever two regions are merged, the merge cost must be an element of a finite set
A ={Xo, A1,--., Astop}. Choose A to be the A-schedule. It is not hard to see that
both Koepfler’s algorithm and the FLSA must perform the same region merges in

the same order and the end results must therefore be identical.

We should point out that the assumption of monotonically increasing merge costs
is almost always false, hence we cannot expect our output to exactly match that
produced by Koepfler’s algorithm. But the merge costs always increase in the long
run. Our experiments yield visually comparable results with that of Koepfler’s.
We conclude this chapter by demonstrating an interesting comparison between the

FLSA and Koepfler’s algorithm.

Lemma 2.4.1 Suppose that the FLSA and Koepfler’s algorithm are run on the
same image. Assume that Koepfler’s algorithm uses the singleton \-schedule A =
{A\} and that the FLSA uses Astop = A. We also assume that Koepfler’s algorithm
is “allowed” to always select the globally best merge at each iteration (since it is
clear that Koepfler et al. “wish” to be able to do this). Suppose that during the
region merging process there exist two pairs of adjacent regions AB and CD for both
the FLSA and Koepfler’s algorithm. Suppose that both the FLSA and Koepfiler’s
algorithm merge AB and C'D at some point during the process, but the FLSA merges
AB before CD and Koepfier’s algorithm merges CD before AB. Then AB has a
smaller change in AL and AM.
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This means the FLSA has a stronger preference for merging smaller regions before
larger regions (since the lower values of AL and AM imply the region sizes are more
likely to be small also). In other words, region growing takes place “uniformly”

across the entire image. We now prove this lemma.
Proof:

Recall that when two regions are merged the change in energy is

where AM and AL are given by (2.4.1-2.4.2). For the Mumford-Shah model (2.1.2),

this means that

|R;|| R 2
| Ryj| (i~ wa)

AM

for any adjacent pair of regions R;, R;. In the FLSA, the merge cost is given by

AM
)\ _— E.
Let AMag, AM¢cp, ALag, ALcp be the corresponding changes in length and model
accuracy terms. We need to show that AL, < ALcp and AMup < AMcp.

Recall that for a merge to take place, the energy must decrease in Koepfler’s algo-
rithm or the merge cost must be less than Ay, in the FLSA. Furthermore, for both
algorithms the merge must be better than all other possible merges. In other words,

for Koepfler’s algorithm the decrease in energy must exceed that of any other merge,
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and for the FLSA, the merge cost must be less than the merge cost corresponding

to any other merge. Thus

MLcp — AMep > 0,
AMyp
ALp
AMLcp —AMep > AALup — AMyp,
AMupg AMcp
ALup ALcp

< A\

We have, subtracting A from both sides of the last equation,

AMup — AMALp AMep — MLep

ALAB < ALCD ’
ML g — AMug S MLcp — AMep
ALsp ALcp .

Multiplying this by the third equation gives

1 S 1

since both sides are positive. In other words AL g < ALcp. Similarly we can show

that AMp < AMCD. I
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2.5 Conclusions

In this chapter we discussed Koepfler’s region merging algorithm and an improved
variant, called the Full Lambda Schedule Algorithm (FLSA). In both algorithms,
each pixel is initially considered a separate region and the decision of which regions to
merge is based on an energy functional. For each region-merge, Koepfler’s algorithm
seeks a locally maximal decrease of the energy functional whereas the FLSA seeks
the smallest critical value of scale parameter A, where the change of energy functional
becomes zero. In both algorithms, the approximating function u is simply the mean
value of the image data on each region and this can be easily updated when two
regions are merged. Both algorithms satisfy the properties of (i) correctedness and
(ii) causality. That is, (i) given a piecewise constant image, there exist sufficiently
small values of A\ that allow the algorithm to generate the “correct” segmentation
and (ii) for any image increasing A results in a subset of the previous segmentation.
Koepfler’s algorithm suffers two drawbacks: firstly, it is necessary to select not just
a stopping value of scale parameter but also a “schedule” to compute a hierarchy
of segmentations. Moreover, given any value of A and a A-schedule A > A the
segmentation corresponding to A still depends on A. Secondly, it is difficult to decide
which regions will be merged next, since Koepfler’s algorithm does not always select
the globally best merge. The FLSA addresses both drawbacks. By defining the
merge cost as the value of scale parameter required for the energy change to be
zero, the need of a schedule is avoided. Also, by using moderately complex data
structures the globally best region merge can be found in reasonable time. We also
noted that the FLSA has a “preference” for merging smaller regions before larger
ones. This implies the FLSA is more likely to grow regions evenly during region

merging.



Chapter 3

Mathematical Analysis of an
Extended Mumford-Shah Model

for Image Segmentation

3.1 Introduction

We recall the well-known Mumford-Shah functional [61]':

E(u,K) = u? Q/K(u(aﬁ) — g(x))*dz + /Q/K \Vu(z)|?dx + v - U(K), (3.1.1)

where p2, v are scale parameters, v is a piecewise smooth approximation of ¢ and

K is the boundary set, assumed to be piecewise smooth with finite total length of
curves /(K). The idea of the model u is to specify what is meant by “homogenous”
and “different”. Here Vu is the gradient of u. The various terms in the functional

can be explained as follows:

"We temporarily use u?,v to be consistent with the notation in [61]. In the following, u will

take a different meaning.

35
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e the first term measures how well the image model fits the data g.
e the second term measures the smoothness of the image model.

e the final term measures the complexity of the image model.

Thus segmentations with low energy will fit the data well with smooth simple image
models. The parameters 2 > 0 and v > 0 are preset and are chosen to control the
balance between these competing entities. If ;2 is large, then a poor fitting model
is expensive, and so an optimal segmentation will have poor smoothness and high
complexity. Conversely, with a small value of 2 and large v we would expect a
simpler model with small boundary set but large error in the fitting model. In [61],
Mumford and Shah justify the use of piecewise smooth image models. They refer

to such models as cartoons of the original image.

They state the segmentation problem as one of computing optimal approzimation(s)
of g by piecewise smooth function(s) u. Thus they view segmentation as computing

the optimal pair (u, K) for which:

e u varies smoothly within the regions R; defined by K.

e y varies discontinuously/rapidly across the boundary K.

In order to make the segmentation problem more tractable, Mumford and Shah then
propose to restrict the class of image models to the piecewise constant functions. In
this case, the energy functional simplifies to

E(u,K) = i? Q/K(u(x) — g(x))%dz + v - L(K). (3.1.2)
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Now fix K and let u(xz) = u; on each open set R;. It is immediately clear that the
functional is minimized in the variables u; when

_ 1
~ R Jr?

(z) de,

u; := U; = meang,(g)

where |R;| denotes the area of R;. Considering the energy function as a functional

of K alone, (3.1.2) reduces to
Eo(K) = Z/i(ui — g(2))2dz + ) - £(K), (3.1.3)

where A = v/u?. Morel and Solimini [58] provide a detailed analysis of the piecewise

constant model (3.1.3). They state Mumford and Shah’s result as follows:

Theorem 3.1.1 (Morel-Solimini) Let g be a measurable bounded function in ).
Then the minimum of (3.1.2) or equivalently (3.1.8) is attained at some segmenta-
tion K. Moreover, the minimal boundary sets have the following geometric property:
either the points of K are reqular, C* and with curvature bounded® from above by
4(sup(g) —inf(g))?/A, or singular points are of two types, namely, triple points where
three branches meet at 120 degree angles and boundary points where K meets the

boundary of 2 at right angles.

It should be pointed out that Mumford and Shah prove an additional fact in [61].
They state that for the functional (3.1.1) it is also possible for “cracktips” to occur
where a tip of a curve meets no other curve. Note that for the piecewise constant
model, it does not make sense for cracktips to appear in a segmentation since the
mean values on both sides of the crack must be equal, so we can decrease the energy
by removing the curve. The main strength of this theorem lies in the fact that it
places considerable constraints in the possible shapes of the boundary set K. In this

chapter, we only generalize the theorem of (Morel and Solimini, [58]), not (Mumford

and Shah, [61]).
2Morel and Solimini give the bound 8(sup(g) — inf(g))?/\ but their proof implies that 8 can be

replaced by 4.
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3.2 Limitations of the Mumford-Shah Model

The Mumford-Shah model is limited by its inability to model noise or texture effects
in images. In this chapter, we show how an extension of the original model can deal
with such images [26]. We then provide a mathematical analysis of the new model.
Our main result is a generalization of Mumford and Shah’s original theorem to the
extended model. Indeed, we generalize the theorem of Morel and Solimini stated

above.

We extend the Mumford-Shah model by considering the image data g to be a random
field over the image domain 2. The random nature of our model captures the
notion of noisy data in images. Thus we consider the problem of fitting a stochastic
process/model that best explains the given data g. We use a Bayesian setting and
define the optimal segmentation as that which satisfies a maximum a posteriori
(MAP) criterion. In Section 2 we discuss the Bayesian model in more detail and
Section 3 the proof of the theorem in the extended model. We conclude with some

experiments and a short summary.

3.3 Image Segmentation in a Bayesian Setting

In this section, we use a Bayesian setting to introduce a stochastic version of the
original Mumford-Shah model (Crisp and Newsam, [26]). The analysis in (Crisp
and Newsam, [26]) is in the discrete domain but we will adapt the model to the
continuous domain, since the proof of the theorem in (Morel and Solimini, [58])
is also established in the latter. As noted by Aubert and Kornprobst [6], imaging
problems are often best understood in a continuous setting, which allows for easier
interpretation of the physical constraints. Once established, results and algorithms

can then be transferred to the discrete domain.
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We begin with the discrete domain. In the original Mumford-Shah model, it was
assumed that the pixel intensities in each region were approximated as a constant
function. For the new model, we think of the pixel intensities in each region as

realizations of a random field.

Formally, the two basic ingredients of a MAP likelihood approach to image pro-
cessing problems are: a class of functions g which are to be considered as observed
images, together with a set of image descriptors or models M which are to be fitted
to the images. The MAP likelihood estimate of the best model for a given image is
then

~

M = argmax p(M|g),

where p(M|g) is the likelihood of the image model M given the image data g. Using

Bayes theorem and taking negative logarithms we have

~

M = arg m]Vi[n E(M) = argm]vi[n [—logp(g|M) —log p(M)] . (3.3.1)

In other words, the problem is reformulated as that of minimizing an energy func-
tional. Several issues now need to be addressed:
e choosing the class of images G and image models M.

e defining the prior probability distribution p(M), and likelihood function p(g|M).

e adaptation from the discrete to the continuous model.

In the discrete domain, a model M € M consists of
M = (K,0),

where K is the segmentation boundary and § = (u,0?) are now piecewise constant

functions representing the mean and variance of each region. We assume a-priori
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there exists constants A, B such that A < g(x) < B for all pixels x € €. In other
words g € G is bounded. We say that a model is admissable if A < p; < B and
0 < 02 < 02 < osc?(g) for each i, where y; = u(x) and o? = ¢%(x) for x in region
R; and osc(g) = sup, g — infq g < B — A denotes the oscillation of g. This is no
strong assumption since g was also assumed bounded in the analysis of (Morel and
Solimini, [58]). Roughly speaking, og plays the role of regularization parameter and
is needed to prevent “blow up” of the energy functional E (Crisp and Newsam, [26],
Tao and Crisp, [82]). The essential idea is that we replace o(x) with o whenever

o(x) < of. In what follows, we will frequently refer to o as an offset.

For the class of images G in the continuous domain, it is common to assume g € G
is a function of bounded variation (Ambrosio et al., [2], Evans and Gariepy, [32]).
However we instead assume that g be (Borel) measurable and bounded with A <
g(z) < B for all = to be consistent with (Morel and Solimini, [58]) and (Crisp and
Newsam, [26]). Indeed, the fact g be bounded was also essential to the proof in

(Morel and Solimini, [58]).3

In the discrete formulation it is relatively straightforward to define the prior proba-
bility distribution and likelihood function. Following (Crisp and Newsam, [26], Tao
and Crisp, [82]) we assume that g is constant on each pixel and that pixel intensities
in the same region (determined by K) are realizations of i.i.d. normal distributions

N(u;,0?). Thus taking the product over pixel values, we have

p(glM)=1T II L exp (— M) (3.3.2)

2
icTxeR; OiV 2T 20;

2

where Z is an indexing set for all regions and x runs over all pixels in R;. We choose

to define the prior as follows:

p(M) = p(K,0) < exp(—\ - £(K)). (3.3.3)

3Note that g € BV (R™) does not imply g is bounded. This only holds when n = 1.
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This says a segmentation is simpler and more likely to be selected if it has shorter
boundary. Also it is independent of y, o, in other words it is uniformly distributed
in u, 0. Note that we avoid the use of improper priors since there are only a finite
number of possible segmentations K and y;, o7 lie in finite intervals. A short dis-
cussion on the use of this prior is in order. There are many ways of deriving a prior.
The well-known Minimum Description Length (MDL) principle (Rissanen, [71]) at-
tempts to measure both complexity and fidelity terms in common measure, namely
number of bits (Kanungo et al., [39], Leclerc, [44], Lee [45]). Therefore it eliminates
the use of scale parameter. Our model is not MDL based: for instance we do not
penalize the number of regions directly. Although Jeffrey’s prior (Box and Tiao,
[13]) is standard for the model parameters p,o?, the uniform distribution is also
common in the literature (Zhu and Yuille, [96]). Moreover, our choice allows one
to generalize the Mumford-Shah functional, as seen below. From equations (3.3.1),

(3.3.2), (3.3.3) the energy is given by (ignoring an additive constant):

BE(K,0) = 2#(}21-)10%“ +3 Z ~ 96 = m)” gk

gilog";(x) > (g 2)02( g )) UKD, (3.3.4)

where #(R;) denotes the number of pixels in region R;. If K is fixed and F(K,6)
is minimized with respect to 6 = (u,0?) subject to the condition that M = (K, 6)

be admissable, then one can show that the optimal (ji;,52) are given by

1

) = = s & o) 335)
52(x) =52 = max(o2,07?) = max (aé,ﬁ > (900 - ,m?), (3.3.6)

for all x € R;. Thus we simply consider E as a functional of K alone. Notice that

if g is large, we recover the Mumford-Shah functional since 5; = o is constant.
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We now discuss the adaptation of the model to the continuous setting. The cor-
respondence between the discrete and continuous versions of the Mumford-Shah
energy has long been studied in literature. For instance, the well known method of
Ambrosio and Tortorelli [3, 4] uses elliptic functionals to approximate (3.1.1) in the
sense of Gamma convergence (De Giorgi,[34], Dal Maso, [51]) and are easily imple-
mentable numerically (Richardson, [70]). Finite element methods based on adaptive
methods are also used, (Chambolle and Dal Maso, [17]). The Mumford-Shah energy
functional is itself derived from the discrete energies of Blake and Zisserman [12] and
particularly Geman and Geman [33]. These energies are simpler, however in two
dimensions they only Gamma-converge to an anisotropic version of the Mumford-
Shah functional (Chambolle, [16]). Mumford and Shah [61] do not justify (3.1.1)
but merely consider the discrete/continuous equations as ”equivalent”. The Geman

and Geman energy is

E(X,1) = (X - )+ ad (Xi— X;)?(1=1y) + B b, (3.3.7)
i ij j

where «, § are parameters, X represents the approximation of the image data g,

and [ represents the unobserved “edge” data. The first summation is taken over all

pixels ¢ and the second and third are taken over all adjacent pixel pairs 7, 7. An edge

between two pixels is either on or off and /;; = 1 or 0 respectively. When considering

only piecewise constant images X, (this is equivalent to setting v = co) the second

term disappears which yields

2

E(X, D) =3 (Xi— )"+ B> L. (3.3.8)



CHAPTER 3. ANALYSIS OF AN EXTENDED MUMFORD-SHAH MODEL 43

In accordance with (3.1.1) and (3.3.8) we therefore propose to minimize in the

continuous domain:

)d+)\£()

BK) = X [ Ry [ SR
:/Qiloga()dx—i-/n(() g))d +A-4(K)
+ A-

2 26%(x

; 1 ~2 *2
= Z‘R‘;g"’ +Z|R£ UK), (3.3.9)

7 %

where [i;, 52 are defined by the continuous versions of (3.3.5), (3.3.6), that is

1
plz) =p = R g(&)d¢ for all z € Ry, (3.3.10)
R;
() =67 = maX(Go,UZ‘Q)

~ max (ag, T /R (916) - m)?dg) forall z € Ry, (3.3.11)

3.4 Our Main Result for the Extended Model

We now present and prove our main result:

Theorem 3.4.1 Let g be a bounded measurable function in Q. Let o} > 0 be con-
stant. Then the minimum of (3.3.9) is obtained at some K. Moreover the minimal
boundary sets have the following properties: any point x of K either belongs to a
curve ¢ which is regular, C', and the curvature at x is bounded by 8osc®/\ai or is
an intersection point where three branches meet at 120° angles or one curve of K

meets OS2 at a right angle.

We will adapt arguments of the proof of the main theorem in Morel and Solimini
[58]. We start by recalling some definitions from (Morel and Solimini, [58]) but with

appropriate changes for our new model:
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e A Rectifiable Curveis a map c(t) from [0, 1] to R? such that £(c) := sup(|c(az)—
c(a)| + ...+ |c(a,) — ¢(an—1)| is finite, where the supremum is taken among

all finite increasing sequences of real numbers in [0, 1]. The real number #(c)

Y(ct)
£(c)

where c; is the restriction of the curve ¢ to the interval [0,¢]*. Then we can

is called the length of c. Let ¢ be a rectifiable curve and let o(t) =

reparametrize ¢ by setting, for any s in the interval [0, 1], c}(s) = c(o71(s)).
One deduces easily from the definition of ¢ and the triangular inequality that
lct(s) — c'(s)| < £(c)|(s — §')|. Conversely, if c(t) is a curve with Lipschitz
constant L on the interval [0, 1], then c is rectifiable and its length is less
than L. In the following, we therefore always assume that the considered
rectifiable curves have been parametrized with length. We shall always identify
a rectifiable curve ¢ and its range so that “c” means both the curve and its

range in the plane.

o Ascoli-Arzela Theorem. Let c* be a sequence of functions which are uniformly
Lipschitz on the interval [0, 1] and such that the set c*(0) are bounded. Then
one can extract a subsequence of ¢f which converges uniformly to a function
¢ with at most the same Lipschitz constant. Applied to a sequence of curves
¢ with £(c¥) < L and ¢*(0) bounded, this theorem asserts that a subsequence
of the c* converges uniformly to some rectifiable curve ¢ with length less than

or equal to L.

e Let c(t) be a C' rectifiable curve parametrized with length. Then one checks
easily that |¢(¢)| = 1. If ¢(t) is twice differentiable at ¢t we define the curvature

at t, curv(t), as the real positive number |¢”(?)].

4 Although we previously used o2 for the sample variance of a region we decided to keep our

notation consistent with (Morel and Solimini, [58]) in these definitions.
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e A Jordan curve is a continuous curve such that for all 0,0’ € [0,1] : ¢(o) #
c(o') unless {o,0'} = {0, 1}; if ¢(0) = ¢(1) then the Jordan curve is said to be
closed. If ¢(0) and ¢(1) are different, we call them tips of the Jordan curve.

All other points are called interior points of the Jordan curve.
e A segmentation is a union of a finite set of rectifiable curves.

e Length of a segmentation (K): we define /(K) as the infimum of the lengths
of all countable sets of rectifiable curves whose union is K. If, for instance,
K is the union of a set of rectifiable curves meeting only at a countable set
of points, it is easily seen that ¢(K) is exactly the sum of the lengths of the

curves.

e The Regions of a segmentation are the connected components of Q2 \ K. We
shall denote them by (R;);. The two-dimensional Lebesgue measure of R; is

denoted by |R;|.

e (Convergence of a segmentation: we shall say that a sequence of segmentations
K, converges to a segmentation K if each K, is a union of Jordan curves (c')
for 1 < i <k, if each (c}') tends uniformly to some curve ¢; and if K is the

union of the ranges of the c;.

e The Energy E(K): given K, 6 is determined from (3.3.5, 3.3.6). Therefore we
write E(K) instead of E(K,#).

e The Common boundary of two regions R; and R, is denoted by 9(R;, R;). It
is contained in K. If i = j, OR; denotes the boundary of R;.
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e The Isoperimetric inequality in R? and  states that for any region R whose
area does not exceed [€2|/2 and whose boundary is a countable union of finite

curves, /(OR N Q) > Cisor/|R| for some constant Cjs,, where

(ORNQ)
|R|

0
‘ 0< g < RCQ}SZ\/TT

0<Ciso:.f{ )
m 5

with equality if and only if Q = R2. If Q C R? is a rectangle of finite area
then Cj, will depend on the length and breadth of €.

e I-normal segmentations: a segmentation is I-normal if it is made of a finite
number of rectifiable Jordan curves, meeting each other and 02 only at their
tips and if each Jordan curve separates two different regions. This last property
ensures that the number of regions in the segmentation is finite. Notice that if
a Jordan curve does not separate two different regions, then we can decrease
the energy by simply removing the curve. Thus this property is no restriction.
We finally impose that each tip is a common tip of at least three Jordan curves
(if only two such curves meet at a tip we can “merge” them into a single curve

without altering the segmentation).

e The crossing points of a 1-normal segmentation are all the points of K where
at least three Jordan curves have a common tip, or where a Jordan curve meets

0f) at a tip.

e The edges of a 1-normal segmentation are each one of the Jordan curves defin-
ing a 1-normal segmentation. The edges can be equivalently defined as all the

connected components of the common boundaries O(R;, R;).

e 2-normal segmentations: a segmentation K will be called 2-normal if for every
pair of adjacent regions, the new segmentation K’ obtained by merging these

regions satisfies F(K') > E(K). (Compare to the definition of 1-normality.)
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The following lemmas from (Morel and Solimini, [58]) are easily seen to hold for the
MAP model. The proofs are omitted since they are just the same as those in (Morel

and Solimini, [58]).

Lemma 3.4.2 (Jordan Curve Lemma) Every closed Jordan curve ¢ divides the
plane into exactly two connected components, one bounded, “enclosed by c”, and the

other one unbounded.

Lemma 3.4.3 Let K be a 1-normal segmentation with o regions. Then K can be

decomposed into a union of a—1 Jordan curves meeting only at a finite set of points.

Lemma 3.4.4 Let o be the number of regions of a 1-normal segmentation K, (3 the

number of edges and v the number of crossing points. If o > 1 then

vy<2a—2 and [<3a—-1)—-2. (3.4.1)

Remark: While Morel and Solimini do not state a > 1, its necessity is implied in
their proof, so we state it explicitly. Before continuing the proof, we need some extra

preliminary results®, concerning the effects of merging two regions of a segmentation.

5We deliberately state this as an unnumbered lemma to keep the numbering consistent with

Morel and Solimini’s original proof.
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Lemma (Preliminary results): Suppose we merge two regions R;, R; into R;;.

Then

1. The model parameters fi;, 67 are updated via

_ |Ri|fi; + | R;| i
P , (3.4.2)
! | Ry
*2 *2
2 |Rilo;* + |Rjlo;”  |R||R;[,_ |,
oy = (i — B3)°, (3.4.3)
I | Rijl | Rij|? ’
5—% = max(gg’ 0';.;.2), (344)

where 072 is the true variance of region R;, defined in (3.3.11).

2. The corresponding change of energy is calculated via

E(K')— E(K) = AE; + AEy — AE;3, (3.4.5)
where
R;; R; R; _
AE, = | 2”| loga;; — |2—J‘10g0]2- _| 5 | log &7,
AE, [Rijlo?  |Rjlo}®  |Ri|o;?
257 257 207

AB; = \-UQ(Ri,Ry)),

where O(R;, R;) is the common boundary between the two regions and K, K’

are the segmentations before and after merging the two regions respectively.

3. The following bounds hold:

2
) 0SC
|AE;| < mln(\Ri\,\Rj\)%, (3.4.6)

0sc2(g)
)

AB,| < min(Ri], |R]) (3.4.7)
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Proof: The first item is an elementary calculation, so its proof is omitted. The
second item follows immediately from (3.3.9). To prove the third item it is sufficient

to show that

2
AE, < min(|Ri],|R; \)OSC (g), (3.4.8)
O
osc?(g)
AR < minR |R;)ESE, (3.4.9)
09
2
0<AE, < min(|Ri]|R; \)0502(9). (3.4.10)
0p
To show (3.4.8) we have
Rijl, 5 IR |R|
AE, Tlogaw 5 logUJ log &7
If 077 < of then AF; <0 and (3.4.8) follows immediately. If 077 > of then
_ Bl & 1Bl
AR = 2 ga Tty 2 032
< |Ri| (077 — 0%) | |Rl(07} — 07?)
- 252 2572
_ z|[|R| oy RillR 2]
|B;| [|Rz'| w2 [ BlIR] 2]
26;° |Rz‘j|(0i o) | Rij|? (i = 1)
R;||R; 1 1 Ri||Ri| (1 — fi:)? R; R;
_ Rl a|(a;2_0;2)<_2__2> | Bl | R | (i — ) (| |,2+ |g|2>
2| Ry 7 0; 2| Ry |Rijlof  |Rijlo;
. osc?(g
< min(|R,| [ B) 2L

)
a5

where we have used log(z) < z — 1 for all positive z, 7 > 07?, 67 > 0}

and | R;||R;|/|Rij| < min(| Ry, |R;]).
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Now consider (3.4.9). Clearly —AE; < 0 if 0} > max(0;?,07?). Also from (3.4.3)

*2 *2 *2 *2 *2
the case 077 < max(0}?,07?) is impossible. If 0§ > max(0;?, 03, 077) then —AE; =

0. If 0§ < min(0}?,03, 0}7) then —AF; < 0 since the function log(z) is concave

and 0} > (|Rs|o}? 4 |R;|03?)/|Ri;|. Thus we only need to consider (without loss of
generality) the case

0;? < min(og, 0;7) < max(03, 0;7) < 0}*. But then

R;|, o} |R; G5
_AE = 1Tleg Ty 16l %
1 92 og _ZQJ + 92 og 5_12]
< |R | lo U
- 2 gafj
_ R~ o)
- 257
R R oy BB
- — |Rij|(0j Uz‘ ) |Rzy| (:U”L :U'])
< min(|Ri|, |R; |)°SC “(9).
o3
To show (3.4.10) observe that if 077 > of then AE, > |Ryj| — |Ri| — |R;| = 0. If
0;? < 0§ then
\Ri\ﬁ*z( ) R; \0*2( 11 ) |Ri|| R;|(fs — j)?
AE, = Y L — > 0.
2 2 \&% &7 Ty 5% &7 * 2|R;j|6% =

Thus the left hand side inequality of (3.4.10) holds. Now consider the right hand side
inequality. If 0§ < min(o}?,07%,0;7) then AE; = 0. If 0§ > max(0;?,07%,0;7) then

AB; = R R\ — )2 /2 Rylo < min(|Ri|, |R;])osc(g) /o7 Tf max(o72,07%) <

U;"j? then
_ Rie? 1 1N IRl 1 1y L RIIR (B — )
AE, = i I b e 5
< min(|R;|,|R; DOSC (g)’
a3
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since the first two terms are negative. Thus it only remains to consider the case

*2 : 2 %2 2 S*2 *2
o;? < min(og, 077) < max(og,077) < 07, But

Ap, - |Bio?1 1 [Rjlos? 1 1 |Ril | Ryl (i — i)
2= T e 2) T 2 2) T Rl
03j o 0ij oy ij 1945
o0sc2(g)
< |Ry| :

since the first term is negative. Also

|Rij| = |Rj|  |Rilo}?

AE, <
2= 2 252
_ |Ri|(1_0f2)
2 o
| Ri|osc?(g)
o} '

Thus AE, < min(|R;|, |R;|)osc*(g) /3. |
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Lemma 3.4.5 Let o be the number of regions of a 2-normal segmentation K. Then’

1152|QIOSC(9)4) (3.4.11)

a <  max (4, 7\ 200k

where C' s the isoperimetric constant.

Proof: This is provided in detail as there are significant differences from (Morel
and Solimini, [58]) in several steps. We first observe from (3.4.6), (3.4.7) that for
a 2-normal segmentation each pair of adjacent regions (R;, R;) in a segmentation

satisfies

0sc2(g)
73

A-€@(Ri,R;)) < 2

min(| Ry, | R;|). (3.4.12)

otherwise AE3 > AFE, + AFE, and merging R;, R; will decrease the energy.

For each region R denote by #(N(R)) the number of neighbour regions. If |R| <

Q2[/2 then
Ciso)\o-g

2#(N(R)) W,

(3.4.13)

To prove this, call R; a neighbouring region of R. The fact R, R; cannot be merged
without increasing F implies that A-£(0(R, R;)) < 2|R|(0sc(g)/00)?. Thus by adding

these inequalities for all neighbours of R we obtain

M-LOR) < 2#WN(R)R| (Osc(g))Q. (3.4.14)

0o
We conclude by applying to R the isoperimetric inequality in |2|.

Without loss of generality, assume now that o > 4. The union of all regions R;
is equal to the rectangle 2 and therefore >; |R;| = |2|. Thus the number of R;’s

satisfying |R;| < min(2[Q|, £[Q]) = 2|Q] is at least 2.

6The statement of the corresponding lemma in [58] is imprecise because its proof applies the
isoperimetric inequality to regions without establishing the pre-condition the area is no greater

than |Q]/2.
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Let us now apply the previous result to all such regions R;. Each region has at least

2 2
CisoAO o or

- Z C"LASOA )
24/|R;|osc?(g) 29 20sc?(g)

neighbouring regions. Consequently the number of pairs of adjacent regions, and

therefore the number 3 of edges satisfies

2 3/2 2
ﬂ 2 g ) Ciso)\ & 020 = 2_7/20iso)‘£ 020 -
8 2[2] osc?(g) | osc?(g)

Since 8 < 3a by (3.4.1) we obtain

1152|92|osc*
- C%,\204"

180
thus proving the desired result. [

Remark (Elimination of small and thin regions): By analogy with Morel and Soli-
mini’s work, the last lemma can be used to show that 2-normal segmentations do not
contain small or thin regions. The lower bound which equation (3.4.13) provides on
the number of neighbours of a segmentation region R is inversely proportional to the
“diameter” of R. This means that small regions must have many neighbours. But
equation (3.4.11) bounds the total number of regions and hence provides a crude

bound on the number of neighbours. Combining these bounds gives

1152|Q|osc? CisoAod
m (4, 2 19 4 ) Z )
Cisor0y 2y/|R|osc?(g)

which rearranges to

> win (Cerlth_Chaliot_y
- 4osc?(g)’  1152|Q)oscb(g)/

This result is significant in that it provides a lower bound on the size of a segmen-

tation region and the bound only depends on g, A, oy and 2. By working with the
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bounds (3.4.11), (3.4.13) and (3.4.14) in a similar way we can also obtain an “inverse
iosperimetric inequality” to prove that regions cannot be too “thin”. In particular,

we can show that

VIR > C-((dR), (3.4.15)

where C' is a constant depending only on g, A and 2. More specifically,

A t0R) < oV (R)IRI(PXD)

0o

osc(g) 2
a|R\l/2|Q|1/2 (TO)

1152(Q]0sc* | /9~ 179 £ 05¢(g) )2
< max (4, g o ) IRV (S

180

IN

Morel and Solimini refer to the next result as a compactness property and com-
ment that it provides a mathematical explanation of the efficiency of region growing
methods. The reasoning in the lemma is that the set of all 2-normal segmentations
is small in some sense. The efficiency follows since region growing methods produce
2-normal segmentations. Its proof uses Hausdorff distance (Evans and Gariepy, [32])
to measure the intrinsic distance between subsets of 2. If K is a subset of {2 then K¢
denotes the set of all z € Q such that d(z, K) = infycx d(x,y) < e. The Hausdorff
distance d(-,-) between two subsets K, L C 2 is then defined to be the infimum of
all € > 0 such that K C L and L C K°.
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Lemma 3.4.6 For every sequence {K,} of 2-normal segmentations there ezists a
subsequence {K,,} converging for the Hausdorff distance to a segmentation K such
that

E(K) < lim_, inf E(K,,).

Proof: We use the fact, established by the preceding lemmas that the number of
edges in a 2-normal segmentation is bounded from above. Hence there is a universal

upper bound on the number of edges in the segmentations K,,.

By considering an appropriate subsequence we can assume each K, has the same
number of regions and edges. Using the inverse isoperimetric inequality (3.4.15)
and the Lipschitz inequality for rectifiable curves implies, using the Ascoli-Arzela
Theorem, that there exists a subsequence of { K, } which converges to a segmentation
K, say. This segmentation need not be 1- or 2- normal in general. We can also show
d(K,,K) — 0 as n — oo, that is, for sufficiently large n the Hausdorff distance
between K, K, satisfies d(K,,K) < e. To prove this, we use the notation c! for
the i-th curve in the subsequence K, converging to the i-th curve ¢’ in the limit
segmentation K. Since the curves ¢!, converge uniformly to ¢’, we have

Ve >0Vi€T3n;:|c, —c|<e,Vm>n;tel01],

m

where 7 is an indexing set for the edges in any of the segmentations K, (recall that
each K, has the same number of edges). But since there are only a finite number

of curves we have

Ve In:|c, — | <eVm>n,tel0,1],icT.

m

Therefore,
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K= = U U Bl

= i€ te[0,1]

DUUC

1€Z t€[0,1]
= K,

K.=U) = U U Bl

i€l 1€Z te[0,1]

DUUC

i€Z te[0,1]
= K

which establishes Hausdorff convergence.

For large enough n, d(K,, K) < e = K, C K* = Q\ K C Q\ K,, which has a finite
number of components for each n so 6, is constant on each component of Q \ K¢ as

each component of 2\ K¢ is in a component of Q \ K,,.

Observe that 2\ K¢ has a countable number of connected components. To see this,
observe that for any € > 0, there can only be a finite number of components with
area greater than e, since (2 is finite. Thus for any positive integer n there are only

a finite number of regions R; with

19l

(n+1)

o]
<IR<=

/\

and therefore the set of connected components R

_oo _oo . ‘Q‘
0= 0 ool <me 2]

must be countable. Thus we can extract a subsequence of {f,} which converges

pointwise on 2\ K¢. To prove this note that the fact we have a countable number
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of connected components means 6, is isomorphic to some sequence {s;}; where each
s; is the vector (p;, 0?) corresponding to the estimated parameters for each region.
Clearly each s; is bounded since by hypothesis the image data g is bounded. We then
construct a subsequence such that {s;} converges for the first component and then
another subsequence for the second component and so on. By taking the “diagonal”

we see #, converges pointwise on each component.

Therefore for each € > 0 we can construct a subsequence 6, — 6 converging on
Q\ K C Q\ K. Fore=1,1/2,1/3,... we can repeat the above argument on
6¢ to obtain a subsequence {f,} converging pointwise everywhere on Q \ K. Let
§ = lim@,. Clearly 6 is constant in every connected component of 2\ K. Indeed,
since any component of 2\ K is open, given any two points z, y in such a component

we have z,y in the same component of 2 \ K¢ for sufficiently small €, and thus

f(z) = lim6,(x) = lim#0,(y) = O(y).

Since the original data g is bounded we have

x)dx < sup g,

infg <p; =

0<o2<5 = fii)*dx < osc*(g).

Thus Fatou’s Lemma implies

/ log(@ d +/ da: < hmlnf/ loga /Q—(g(a:) _’a”)de.

=2
20z

As with (Morel and Solimini, [58]) the total lengths of the curves ¢(K) can only
decrease when passing to the limit and thus lim E(K;) < E(K,). [
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Lemma 3.4.7 There ezists a 2-normal segmentation realizing inf F(K), this min-

imum being taken among all 2-normal segmentations.

Proof: From Lemma 3.4.6 we can construct a sequence K, of 2-normal segmenta-

tions with the following properties:

o K, ={ct}t>1 is made of a constant number of Jordan curves c£ : (0,1) — Q.
Their tips are a finite set of points, A = (a’,);, the crossing points of K,, which

may belong to 0f).

e Each sequence {a’ },>1 converges to a point a’ of the closure of Q.

e Each sequence of curves {cf},>; converges uniformly to a rectifiable curve c*

contained in the closure of €.

e The sequence E(K,) converges to infx F(K), this infimum being taken among

all 2-normal segmentations.

To see this, let I = inf F(K), the infimum being taken among all 2-normal segmen-
tations. Then there exists a sequence {K,,} such that I < E(K,) < I+ 1/n. Since
log o(K) is uniformly bounded from below I > —oc and therefore lim, E(K,) = I.
Using a similar argument from the previous lemma, we can assume all segmentations
in the subsequence have the same number of edges and regions and each sequence
{cF}ns1 of curves converges to a limit rectifiable curve ¢*. Since the crossing points
are tips of the curves, they belong to the curves and thus each sequence of cross-
ing points a!, converges to some a’. Let K be the union of all such (c¥);. From
the previous lemma it is clear that E(K) < liminf F(K,) = I = inf E(K), the
infimum being taken over all 2-normal segmentations. It is clear that inf F(K) is
the same whether the infimum is taken over all 2-normal segmentations or simply
all segmentations. Indeed, if a segmentation is not 2-normal then we can perform

region merging until it becomes 2-normal. Thus a segmentation that is not 2-normal
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cannot realize the infimum of inf F(K). It remains to show K is 2-normal. Clearly,
merging two regions of K cannot decrease the energy functional. Thus it only re-
mains to verify that the Jordan curves only meet each other and 02 at their tips
and each curve separates two different regions. This is equivalent to proving the
only crossing points of K are the limit points a; where each a; is the limit of some
tips of the Jordan curves in the segmentations K. Assume by contradiction that a
new crossing point a appears as we pass to the limit. Consider a disc D with centre

a and radius € with € < 1. Assume that for all 7, k,
E(K,) <I+¢, |a} —a <€, sup|ch(z)—cF(z)| < ¢
x

for sufficiently large n, say n > ng, and consider all maximal pieces of curves K
contained in D. Let us now replace each of these pieces by affine curves. Since the
curves cf do not cross in D, these affine curves also do not cross. By this process
the connected components of {2\ K remain unchanged outside D and the length
of the curves decreases. Call K’ the new segmentation. We still have E(K') <
infx E(K) + Ce?. Now consider two affine curves [u, v] and [z,y] of K’ which have
been substituted for two parts of curves of K,, passing at a distance less than €? from
a. Since a is a crossing point of K, such curves exist for large n. The lengths of the
corresponding pieces of curves are greater than 2e — 2¢2 since they pass at a distance
less than €2 from the centre of D. Moreover, when replaced by affine curves, their
lengths cannot decrease by more than Ce?, otherwise the segmentation would not
have been optimal in the first place. The contradiction comes by modifying K’ as
follows: add to K' the segments [u, ], [v, y] and remove one of the segments [u, v]

or [z,y]. This does not modify the connected components outside D.

Thus we have subtracted from F(K') a length of order 2¢, which is a contradiction.
A similar argument shows we obtain a similar contradiction if a new crossing point

appears in K on the boundary of €. |
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Lemma 3.4.8 Let K be an optimal 2-normal segmentation. Any Jordan curve in
K is a.e. twice differentiable. At such reqular points the curvature is defined and

bounded by 16 osc?(g)/Ao?.

Proof:

From (3.4.6) and (3.4.7) it is easily seen if a segmentation is altered by perturbing
a single curve within a rectangle of area A, the change of the “integral term” of the

energy is bounded by some constant times its area, namely:

05¢(g)

IAE; + AE,| < 24
g

Let ¢(s) be the arc-length parametrization of a Jordan curve of K defined on some
interval containing [—L, L]. Thus we have |c(s) — ¢(—s)| < 2s, the equality being
true if and only if ¢ is an affine curve. Set |¢(s) — ¢(—s)| = 2(s — €). Notice that all
points ¢(r) with r € [—s, s] must be enclosed by an ellipse C' with foci ¢(—s), ¢(s)

since ¢ is parametrized with arc length. One easily sees that the ellipse is contained

in a rectangle with sides of respective length 2s and 2\/ (s2 — (s — €)?). Thus the
area of the rectangle is bounded from above by 4s+/2se.

We now use the optimality of the segmentation with respect to the energy by stating
that a certain rearrangement of the segmentation cannot decrease the energy. This

rearrangement, consists of replacing the curve c by its affine curve and altering the

2

) in the corresponding regions. This decreases the length term by

parameters (u;, o
2Xe and the integral term of E cannot increase by more than 8sv/2se(osc?(g)/a?).

Thus, the optimality of the segmentation implies that

2
2) e < 88(286)% o%¢ 2(9)

99

and therefore

32s%0sc(g)

€
= 2,4
Aoy
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We now consider two successive increments of ¢, v; = ¢(0) — ¢(—s), v2 = ¢(s) — ¢(0).
We want to estimate the difference of these increments since it will yield an estimate
for the curvature at 0. Using the classical parallelogram identity, |v; — vy|? =

2(|v1|% + |v2]?) — |v1 + v2|? we obtain:

osc(g
vy — vy|? < 45% — (25 — 2¢)? < 2565* )\20(4)
0
and finally
16s%0sc?(g)
‘Ul — U2| S T"(Q)

This yields an upper bound for the discretized second-order derivative of ¢ since if

" exists then

c(s) —2¢(0) + ¢(—s)

' (0) = lim

s—0 32
which implies
160sc?(g)
"0)| < ———2. 3.4.16
0 < =50 (3.4.16)

As ¢ is Lipschitz in s, ¢/(s) exists a.e. Let a and b be two points at which ¢ is
differentiable and without loss of generality assume a < b. We divide the interval
[a,b] into n equal intervals with vertices s; = a +i(b—a)/n,i = 0...n. Set w; =
2 (c(s;) — ¢(si—1)). Then, using the above estimate with s = 2=¢ gives

(b — a)osc?(g) .

\wi — ’U)i,1| S 16 ’]’L/\O'g

By adding these estimates for all 7+ and using the triangular inequality,

(b—a)osc*(g)(n—=1) _ (b= a)osc*(g)
nio <10 o '

lw, —wq| < 16

Letting n — oo then w; — ¢ (a), w, — ¢'(b), and we obtain

0s¢*(g)
e

c'(b) — ¢(a)| < 16(b - a) (3.4.17)
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We claim that ¢’ actually exists everywhere (instead of just almost everywhere) and
Lipschitz continuous with constant no greater than 160sc(g)/Ao3. To prove this,
consider an arbitrary value of s. Then there exist sequences a,,, b, with a,, < s < b,,
d(an),c (b,) exist and b, — s = s — a, = h, — 07. For h,, the discrete curvature
estimate implies |c(s+ hy) —2¢(s) +c(s — hy)| < Ch2 for some constant C' depending
only on osc(g), o and \. It is easy to show that

jc(s + hn) = cs)] _ le(bn) = c(an)|

ho - %, =0

as n — 0o. Therefore

However, it is also easy to verify

clb) — elan) — (by — a) 1)

_ /”“ (\C’(S)—C’(an)\ N \C’(S)—C'(bn)|>d8

n 2 2
bn,
< / C(b, — ayp)ds
= C(b, —ay)?
Therefore
_ / !
¢(s*) = lim A0 = @) _ yyp @(n) + ¢0n)
n—00 bn —an n—00 2

exists. By symmetry ¢/(s7) also exists and equals ¢/(s1), thus proving the claim.
From equation (3.4.17) we deduce that ¢” is defined in the distributional sense and
with modulus bounded from above by 160sc?(g)/Aog and its modulus is nothing but

the curvature of c. [



CHAPTER 3. ANALYSIS OF AN EXTENDED MUMFORD-SHAH MODEL 63

Lemma 3.4.9 The crossing points of K are as described in Theorem 3.4.1.

Proof: Assume by contradiction that more than three curves arrive at a crossing
point a or that exactly three arrive, but with angles different from 120 degrees.
Then two of these curves form an angle strictly less than 120 degrees. Let ¢ be
very small and D = B(a, €) where B(a,r) denotes the ball centred at a with radius
r. We claim that for sufficiently small e the parts of curves lying inside D are
approximately affine curves, accurate to order O(€?). Let ¢ : [0, €] — Q be such a
curve with ¢(0) = a. For any s € [0, €] we consider sufficiently small € such that
s = ke for some integer k. Then consider the polygonal curve ¢(0),c(e),...,c(s).
From the discrete curvature bound (3.4.16) from the previous lemma we conclude
that the maximum deviation from a straight line is obtained by tracing the discrete
approximation of the circumference of a circle with radius equal to AoZ/160sc?(g).
Thus for sufficiently small €, the curve must be well approximated by an affine curve,
in the sense that the actual curve length is within O(€?) of the straight line distance
and ¢ is within O(€®) of a constant in R?. In what follows we assume the curves

inside D are affine.

Call ¢y, ¢, any pair of curves forming an angle less than 120 degrees, and u,v the
intersections of ¢,,c, with D. Let w be the Fermat point of auv, that is, w is
the unique point such that the lines wu,wv,wa have 120 degree angles. Since
lau| = |av| the triangle auv is isosceles and all angles of auv are less than 120
degrees. Thus w lies inside triangle auv. Let a be the angle determined by c,, c,.
Let |wa| = p, lwu| = |wv| = ¢, |au| = |av| = €. Then the total lengths of all curves
decreases by 2¢ — (p+ 2q). Since auv is isosceles, an elementary computation shows

that

3rle

T S,
2+ +v4— 3r?

where r = sin(60 — «/2)/sin(120) € (0, 1].

2¢ — (p+2q) =
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Remove from the segmentation the pieces of curves au,av and add the segments
wu, wv, wa. This modification does not alter the connected components outside D,

2

changes the area terms with order ¢ and reduces the length of K with order e,

which is impossible.

Note that in the case of a curve meeting 02 a similar argument can be used to
obtain the same contradiction. Let ¢ be a curve meeting 0€) at any angle except 90
degrees. Then consider D = B(a,€) where a is the intersection of ¢ with 9. Let
u be the intersection of ¢ with D and replace the curve au with the perpendicular

from u to 09. The rest follows as above. |

3.5 Experimental Results

We adapted the FLSA-algorithm (Chapter 2) by using the energy functional (3.3.4)
instead of (3.1.3). This results in a new algorithm which we denote FLSA-MAP.
Figure 3.5.1 shows the result of the FLSA-MAP segmentation algorithm with vari-
ance offset of o2 = 1.3 x 107%. We displayed the results for both 50 (middle) and
200 (right) regions remaining, as was done in (Morel and Solimini, [58]). The image
is a 256 x 256 subimage of the standard “boat” image and is the same subimage as
the one appearing in (Morel and Solimini, [58]). The actual output was generated
by Koepfler et al. in [42], as acknowledged by (Morel and Solimini, [58]). We believe
our results are comparable with that of (Koepfler et al., [42]). Figure 3.5.2 shows the
result of segmenting a synthetic image consisting of nine circles on a background.
Each circle and the background had pixel intensities taken from normal distributions
with the same mean but different variance. We kept the last ten regions and again
used an offset of 02 = 1.3 x 1075, The algorithm is able to recover all circles, despite

the fact that the circles and background have the same mean gray-value.
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Figure 3.5.1: Segmentation of the Boat image.

Figure 3.5.2: Segmentation of a synthetic image

3.6 Conclusions

We have proposed a Bayesian model for segmentation in the Mumford-Shah model.
Our new model generalizes the Mumford-Shah model and handles noisy images
at the cost of an extra regularization parameter. We have proved that optimal
segmentations exist and have the same desirable properties as given in the standard
Mumford-Shah model. We can adapt our region merging algorithm by using a new

energy functional instead of the original Mumford-Shah functional.
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Chapter 4

Computation of a Unique
Minimizer of the Energy
Functional for the Extended
Mumford-Shah Model.

4.1 Introduction

Recall that for the standard Mumford-Shah model the segmentation problem is to

minimize the following energy:

BE(u,K) = /Q (9(2) — p(x))2dz + A - £(K), (4.1.1)

where v is piecewise constant, u(z) = p; on the regions R; and ¢(K) is the length

of K. The optimal choice of u; given K is

7 1

67
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so as before we consider the minimization of

E(K) = /Q (9(z) — fu:)?da + X - (K, (4.1.2)

where [i; is the mean gray value of region R;.

In the previous chapter we derived the following energy functional for our extended

Mumford-Shah model in the continuous domain:

R;|1 R;|o7?
E(K) Z il Ogo Z | |0 A (K, (4.1.3)
with the optimal parameters given by

1

alr) = = g(z)dz for z € R;, (4.1.4)
|R;| JR;
o*(z) =0 = max(og,0;”)
1
= max (03, R (9(2) — ﬂi)de) for v € R;, (4.1.5)
i| /R

and oy is a given constant. For both the original and the extended Mumford-Shah
models, we assume that the optimal parameters are always selected, and it only
remains to choose the boundary set K. For ease of reference we refer to A - ¢(K) as
the length term and 3, |R;|log a7 /2 + 32; | Rilo;? /257 as the integral term. We will

also use the same names for a 1-dimensional version of (4.1.3), to be defined later.

In Chapter 2, we stated and proved an elementary result of the Mumford-Shah
functional: if g is piecewise constant and A > 0 is sufficiently small then the opti-
mal segmentation is obtained by taking the union of the boundaries of the regions
where g is constant. This property is referred to as “correctedness” (Koepfler et al.,

[42]). The result indicates that for a simple class of images, namely those which
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are piecewise constant, it is possible to obtain the “correct” segmentation, given an
appropriate choice of scale parameter(s) and this confirms that the Mumford-Shah
model is theoretically sound. We note that in the literature it is common to compute
an explicit minimizer for simple images for other models too. For example in (Strong
and Chan, [80]) a minimizer is computed for the Rudin-Osher-Fatemi (ROF) model
[75] where the image is a characteristic function of a disc. Chan and Esedoglu [19]
do likewise, except they vary the original ROF model by taking the L' instead of
L?-norm of the fidelity term.

We recall that the main motivation for extending the original Mumford-Shah model
is that the original model does not handle noisy images. Said differently, if two
adjacent regions have the same mean but different variance (assuming that the
normal distribution is a reasonable approximation to region statistics) then two
regions will be classified as one. Therefore, we will not consider simple images such
as the characteristic function of a disc. We will consider a more complex image and
aim to show that the extended model outperforms the original model in the following
sense: the original model does not recover the ideal segmentation for any choice of
the set of scale parameters (in this case, only one, namely A), but the extended
model does for at least one choice of the set of scale parameters. The proof of this

result is given in Section 4.2 and a short summary is provided in Section 4.3.
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4.2 The Image g and its Unique Minimizer of the
Energy Functional

Let L be a large integer, s large and Q = [0,2L] x [0,2L]. L should also be signifi-
cantly larger than s. Let g : 2 — R be defined by

g(z,y) = +1, if [z] <L,[z] even,
g(z,y) = -1, if [z] < L,[z] odd,
g(z,y) = +s, if [z] > L,[z] even,
g(z,y) = —s, if [z] > L,[z] odd,

where [z] is the “floor” function of z, i.e. the smallest integer greater than or equal
to x. Set A\ = Llog(s/2). For example, if L = 6,s = 5 then g :  — R would
be defined as shown in Figure 4.2.1. Note that we are considering the continuous
domain so the segmentation K of g need not necessarily consist of horizontal and

vertical lines only.
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+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 | +9| -5
+1) -1 | +1| -1 |+1} -1 | +3] -5 |+5| -5 | +5| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 | +9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 | +9| -5
+1) -1 +1] -1 |41} -1 | +5| -5 |+5| -5 |+9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 | +9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 | +5| -5 | +9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 | +9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 |+9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 | +5| -5 | +9| -5
+1) -1 +1) -1 |+1] -1 | +5| -5 |+5| -5 |+9| -5
+1) -1 +1) -1 |+1] -1 |+5| -5 |+5| -5 |+9| -5

Figure 4.2.1: Definition of g with parameters L = 6,s = 5.

Obviously the “desired” segmentation K is the division of €2 into two regions with
the vertical line x = L. In other words K = {(z,y) : x = L}. We aim to show (i) in
the original Mumford-Shah model, the desired segmentation is not attained for any

s, L, X and (ii) in the new model, it is attained for some choice of s, L, \, o3.

We immediately note (i) is trivial. From equation (4.1.2) it follows that if two
adjacent regions have the same mean, merging them will leave the penalty term
unchanged and decrease the length term by the common boundary length of the
two regions times the scale parameter. Therefore if the desired segmentation were
obtained for the Mumford-Shah model, we can immediately decrease the energy by

merging the two regions into one.
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For (ii) we choose the following parameter values:

oy = g, (4.2.1)
A= Llogg, (4.2.2)
L = 10" (4.2.3)
s = 10% (4.2.4)

Since g does not depend on y it is natural to consider the corresponding 1-dimensional

minimization problem

M ; 1 =2 M !
=0 =0 i

o2
2572 B o 4 (K
P log 5%(x) (¢'(z) — fi(z))?
N /[0 2L de * [0,2L] 202 dx + )‘#(Kl)a (4-2-5)

where ¢’ : [0,2L] — R is a “horizontal slice” of the original g, i.e. ¢'(z) = g(z,0).

K' is a finite set of break points i.e. K' = {ky,ks,...,kp} (if M = 0 then K’ is

the empty set), and R; denotes the interval (k;, k;11) where kg = 0 and kpr1 = 2L.

#(K') is the number of break points, i.e. the cardinality of the set K’'. For = € R;,
~2

the optimal values pu(z) = fi; and o%(z) = &7 are again given by equations (4.1.4)

and (4.1.5) except that each R; is an interval instead of a region.

Given a segmentation K and 0 < j7 < 2L we denote a “horizontal slice” of {2 and K

by Q, = {(z,y) : £ € R} and K, = K N, respectively. We want to establish:

1. The unique minimizer of the 1-dimensional problem (4.2.5) is K = {L}, in

other words, the optimal segmentation is a single break point at L.

2. If K is a minimizer of the 2-dimensional problem (4.1.3), each horizontal slice

K of K must be a minimizer of (4.2.5) for all 0 <y, < 2L.
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Items 1. and 2. are obviously sufficient to establish that the desired segmentation

is the unique minimizer of equation (4.1.3).

We now address item 1. From the previous chapter we deduced a lower bound on

the size of any region in a 2-normal segmentation.

osc?(g)
g

A-(@(Ri,R;)) < 2

min(| Ry, | Ry]).

which is equation (3.4.12) in Chapter 3. This rearranges to

A-LO(R;, R;))og

. ) 1) >
min(|R;|, [R;]) > 20sc2(g)

(4.2.6)
The proof of (3.4.12) can easily be adapted to the 1-dimensional case to prove (4.2.6)
with ¢’ replacing g. In the 1-dimensional case, we have ¢(0(R;, R;)) = 1 and from
the definition of ¢’ and choice of parameters in equations (4.2.1) - (4.2.4) we have
osc(g') = 2s and o = 8/9. Thus, any interval of an optimal partition must have
length no less than \oj/9s* &~ 9.46 x 10® > 2 since the oscillation of ¢ is 2s. We
immediately observe this simplifies the 1-dimensional energy considerably. From
the definition of ¢’ it is easy to see no interval R; can have 62 < 8/9 otherwise
its length must be smaller than 2, which we already know is impossible. (If the
length of the interval R; exceeds 2 then the minimum value o2 = 8/9 occurs, for
example, when R; = {z : 1 < z < 4}). But then the term 3>, [ (¢'(z) — [15)?/25] =
> |Ril6*?/26** = 2L/2 = L is constant so we need only consider the minimization

of

1
B(K) = 53 |Rillogo? + (K

- % log 52(x)dz + A (K"). (4.2.7)

QI
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We claim the unique minimizer is a single break point at L i.e. Kj = {L}. First

observe that for this partition K| the energy (4.2.7) is

L L
E'(K)) = §log52+ alogl—i—Llog% -1
2

S
= Llog—
g
so we need to show no other partition can have lower energy. If K' = ¢ is the
“empty” partition then
2L s?2+1 52
E'(K')=—1 Llog —.
(K') = - log—5— > Llog

Next, we observe K’ cannot consist of two or more intervals on the “left”, i.e.
contained in [0, L]. This would imply K’ must be of the form K’ = {ki,...,kn}
where k; < ky < L and M > 2 and we can decrease the energy by merging the
two left-most intervals, i.e. replacing K' by K'\ {k;}. We already established any
interval of K’ must have length at least Aoj/8s, so their length must be at least
2, say. It is easy to see for any interval contained in [0, L], we have 8/9 < 52 < 1.
Thus when K is replaced with K'\ {k;}, the error term changes by no more than
Llog9/8 — Llog1 = Llog9/8 but the complexity term decreases by Llogs/2.

Similarly we observe K’ cannot consist of two or more intervals on the right, i.e.
contained in [L,2L]. This would imply K’ must be of the form K' = {ki,...,kx}
with L < kp—1 < kyy and M > 2. We can decrease the energy by merging the
two right-most intervals, i.e. replacing K' by K’ \ {ka/}. Again we know that any
interval of K’ must be of length at least 2. Let I be any interval contained in
[L,2L] and assume it has length of A+ B > 2 where A = |[{z € I : g(z) = s}| and
B = |{z €1:g(z) =—s}| and |.| denotes Lebesque measure. It is not hard to show
max(A/B, B/A) > 2 and thus 8/9s® < 67 = 4AB/(A + B)? < s%.
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When two such intervals are merged, the error term changes by no more than

2

Llog s* —Llog% :Llogg < Llog% =A-1

Thus merging the two intervals decreases the energy, a contradiction.

Next, observe we cannot have three or more break points, since this would imply
either two intervals on the left or two intervals on the right, which we know is
impossible. We next establish K’ cannot have even two break points. Suppose
K' = {ki,ko} and denote the three intervals R; = (k;, k1) for ¢ = 0,1,2 where
ko = 0 and k3 = 2L. To avoid two intervals on the left or right, we must have
ki < L < ky The complexity term contributes 2L log(s/2) = Llogs?/4. Hence the
error term must be no greater than Llog1/2. But consider ky. If ky < 3L/2 then
R3 has error at least L/2log8s?/9, which is too high. Similarly if k; > 3L/2 then
it is not hard to show that it is region Ry which contributes at least L/2log8s*/9

to the error term, another contradiction.

It remains to consider segmentations with only a single break point. Let K’ be the
segmentation where the break point occurs at 0 < kg < 2L. The energy (4.2.7)

reduces to

R R
E'(K") = |2—0|log5§ + %logé1 + A,

where Ry, R; are the two regions in question and 5%, 52 are the corresponding esti-
mated variances. We consider the following cases: z; < kg < z;47 fort =0,1,...,6

(but not in that order) where {z}; = {0,2,L —1,L, L +1,L + 103 2L}.

We first show the break point cannot be to the left of L. Suppose the break point

occurs at L — 1 < kg=L —r < L. Then
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AR?
—92 - 1=
% (L — Ak)?
_2 Ls? LAk
0'1 =

L+Ak T L+ aR2

To deal with the energy (4.2.7) effectively we need to estimate the natural logarithm
function in terms of rational functions of L and r. The usual trick would be to
estimate the natural logarithm function via log(z) < z — 1. Unfortunately it turns
out the inequality is in the “wrong direction”, so we instead use —log(1/z) > 1-1/z.

An elementary calculation shows that

L— Ak AR?
E'(K') = (1—7>
(K R G N AE
L+ Ak (L52 L LAk ) \
2 S\L+ Ak (L+Ak)2
L— Ak
5 10g<1—
L— Ak
= —— 10g(1+

L+ Ak

S
Llog —
+ og2

Ak? ) L+Aklo < Ls? )
(L — Ak)? o B\L+Ak
Ak? )
L2 — 2AkL
+ (log 52 —log(1 + %)) + Llogg
_L — Ak Ak?
2 L? —2AkL

v

Ak(L + Ak)
2L

52

2

L Ak S
“logs® + —logs® — Llog —
+2 0gs” + 5 0gs + og2

L
> Elogs2 +Llog§ = Llog

since Ak/2log s? dominates the negative terms.

We already know ko > 2 since the length of any interval of K’ must exceed 2. For
2 < kg < L—1, the proof is similar. Although the exact calculation of 53, % is more

involved it is sufficient to estimate them via
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2 (L —Ak)* —
R AN PR

P ( Ls? )
= \LxAk)

and the rest follows as before.

We next demonstrate that the break point cannot be to the right of L. First, suppose
that L < kg =L+ Ak < L+ 1. Then

P L N LAks?
- L+ Ak (L+Ak)?

Ak?
2 _ _ 2
o] = (1 (L—Ak)2>8 ,

and therefore

L+ Ak L — Ak
E'(K') = +2 logﬁf—l—Tlog&%%—Llogg-l
B L+Ak1 ( L
2 S\L+Ak

N LAks? >+L Akl ((1_ Ak? ))+L1 s
(L + Ak)2 2 8 (L — Ak)? 85

L—i—Ak Aks?
lo (1+_> Hog( L+Ak+Ak52)]

h

A

N

(1 1 (1 LAk )) 4 Llog 2
og s’ —log 12 — 9AkL %8 5
(Ak Aks? )

L+A

N

L L+ Ak+ Aks?

Ak ) +Llog =
YN 985

_ £1 2+Ak(L+Ak)( 52 _l>
T g 8% 2 L+ Ak+Aks? L

AR, LAk AR
5 logs’ 2 12— 2AkL

L 2
> §log32—l—Llog§ = Llog%.

v

h

A

=

log s

S
Llog =
+ og2
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The last inequality is valid since there is a positive term of order O(Aks?) which

dominates all the negative terms.

If L+1 < ky = L+ Ak < L+103 the proof is similar. Although the exact calculation

of 62,52 is more involved, it is sufficient to estimate them via

52 L +(’)( Ak52>
O 7 L+ Ak L+ Ak)’
i (L—Ak)Z—l) >
= ( (L—Ak2 )%

and the rest follows as before. Now consider the case when L+103 < kg = L+ Ak <

2L and Ak is an even integer. We have

L+ Ak, L+ Aks* L-—Ak L L
! AN ! — 1 1 2__1 1__1 2
E'(K') — E'(Ky) 5 18 T A + 5 logs” — 5 log 5 10g s
L Ak(s? —1) Ak L(s*—1)
= —=1 l———7) = —log|{l+ —~——-"=
2 og( L+Aks2) 2 og( +L—I—Ak32>

LAKk(s* = 1) LAk(s*—1)
2(L + Aks?)  2(L + Aks?)
— 0,

where we used the fact —log(1l + z) > —z. Note that we could have immediately
obtained this inequality simply by observing log(x) is concave, but this is not enough.
We also need to establish |E'(K') — E'(KY)| is sufficiently large so we can estimate
the difference when the break point kg is not an even integer by rounding £y to
the nearest even integer. In this case we observe that Ak(s?> — 1)/L + Aks® >
10" /2%10" = 1/20 and that — log(1—1/20) —1/20 > 1072 so the error incurred by
applying the inequality (4.2.8) is at least L x 1073 = 10? from the first term alone.

Now consider the case when L + 10% < kg = L + Ak < 2L and Ak is not an even
integer. By rounding the break point to the nearest even integer, the break point

shifts by no more than one unit. Thus the energy of the segmentation changes by
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no more than 2 - osc?/02 = 2(25)?/(8/9) = 9 % 108, a result proved in the previous
chapter (the factor of 2 is necessary since shifting the break point is equivalent to
“undoing a merge” by adding a new break point next to the original break point
and then performing a different merge by deleting the original break point). But
this is not sufficient to compensate for an error of 10° as shown above. Therefore

the only correct segmentation can be a single break point at K = {L}.

We now address item 2. The general strategy is as follows: we decompose each
region as an uncountable union of horizontal strips of zero width, (as in a Riemann
integration) so we can estimate the energy of any segmentation by some expression
involving the integration of (4.2.5) for every horizontal strip y = 4,0 < yo < 2L.
We have observed from the previous chapter that when two regions are merged, the
integral term changes by no more than |R|osc? /02 = 9|R|s?/2 where |R| is the size
of the smaller region. Obviously the same inequality holds when a region is split

into two (i.e. undoing the merge). This also applies to the 1-dimensional case.

We have already seen that for the variance of an interval to be below 8/9, the
interval must have length less than 2. In the 2-dimensional case, we will refer to
an interval as a subset of Q of the form {z,y : © = z9,5 < y < y1} for some
%o, Yo, y1. We note the length term of (4.1.3) can be estimated from below by the
integration of the cardinality term from (4.2.5) over all 0 < y < 2L. Note it is
possible for K to contain horizontal boundaries, in which case the cardinality is
infinite for a particular y = yo. But the set of “offending” values of y are Lebesque-
negligible, so we will only integrate over the non-offending values of y. Also, (i)
the log function is concave, which suggests we estimate | R;| loga? by integration of
the |R;,| log 6,2?/ terms where the subscript iy represents the intersection of 7™ region
and the line {(z,y) : z € R} and (ii) the term |R;|0}?/5? behaves like |R;|, which
is actually equal to [;|R;;|. Unfortunately both (i) and (ii) are only valid when the
variances exceed the offset o2. Thus we also need to decompose the horizontal strips

further into those where the variance is below or above o2. Fortunately, we observe
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that if the variance of an interval R;; is below oj the length of the interval must
be small (less than 2). Consider the horizontal slice containing such an interval.
We can substantially decrease the 1-dimensional energy by merging that interval
with an adjacent interval. The length term decreases by Llog(s/2) = 8 x 102 and
the integral term changes by no more than 2(2s)%/02 = 9s* = 9 x 10%. In other
words, when the variance of an interval is less than o2 we incur an error in applying
(i) and (ii) but this is more than compensated for by the fact the solution to the

1-dimensional problem is substantially non-optimal for some y = yj.

The above discussion was deliberately vague in order to develop the intuition. We
now translate this into a rigorous proof. Denote by R; the i'" region. Set R;, =
R; N Qy = Upgez,, Riye Where Q, is the horizontal line {(z,y) : z € R} and T, is
an indexing set for the intervals comprising R;,. Note that R;, is not necessarily
a single interval. Denote by R (R;,) the union of all intervals Ry, such that the

variance is less than (greater than or equal to) 8/9 respectively.

y

R.

Figure 4.2.2: An example of decomposing a region into horizontal strips.
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For example, in Figure 4.2.2 suppose 0}? > 03 > 8/9 > 032, where 0}> =
1/ Rige| [y (9(2) = e and iz = 1/|Rige] [, 9(2)d, for k= 1,2,3. 16 y = yo
then Ry = Ry U Ry U Rys and R} = Ry3 and Rj, = Ry U Ryp. Tt is easily
verified that any interval R;,;, C R?y must have length at most 2, otherwise the
variance would exceed 8/9. In particular, if Z, is the number of intervals R;,;, C €2,

with variance less than 8/9, then |R} | < 2Z,. To simplify the notation, set

0 __ 0
R, = U R,
0<y<2L
*2
o’
—2
Si = loga; + 7,

K3

where ¢;” and &7 are given by (4.1.5) and similarly for Sy, S, and Sj,. Since g has

oscillation 2s the quantity

0_*2

=2 R
logoyp + =
05

is bounded from above by log4s? + 1 for any region R. Let us define the energy

contribution E, from a single horizontal line €, as

R;
B,(K) = X ol + oy,

i

where K, = K N§2,. The total energy is estimated via
y Yy g
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BK) = TS,
sl e 5

-U(K)

Vv

1 095
S Z\RZ-\—+/\-€(K)

> Z/ ‘RzySOd —Z/L‘ w|(1og4s +1)d +2/
—Z\R?|—+A-€(K)

o A S (TR E
—2;/0 IR?yITderA/O #(K,)dy

>

2L | Ry, | 2L ) ) 2L
Z/O - Siydy—/o Z, (185 + log 4s +1)dy+)\/0 #(K,)dy

2L
> / inf B, + Z,(L 1og§ — 9% — 18s? — log4s? — 1)dy
0

2L
> / inf B,dy = 2L inf E,,
0

where Z, is the number of intervals lying in (2, where g is constant. The last
inequality is valid since L logs/2 dominates all the negative terms. But it is clear
that inf F(K) < 2Linfgs E'(K’). By solving the 1-dimensional problem we obtain
a set of discontinuities K’ = {2y < ... < z,,} and in the 2-dimensional problem
we can define K to be the set of all points whose z-coordinate lies in K’. In other
words, K is a set of vertical lines. Thus inf E(K) = 2Linf E'(K’) and moreover in
every horizontal strip the corresponding 1-dimensional energy (4.2.5) must realize

its minimum value.

This establishes the desired result: for g defined as in Figure 4.2.1 and the parameter
values given by (4.2.1-4.2.4) the only optimal segmentation is the set K = {(z,y) :
x = L}.
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4.3 Conclusions

The purpose of this chapter was to demonstrate via a mathematical analysis the
superiority of the extended Mumford-Shah model over the standard one. The ex-
tended model can distinguish two regions with the same mean but different variance.
We defined a simple image ¢ : [0,2L] x [0,2L] — R consisting of two regions. The
left region had zero mean and unit variance, and the right region had zero mean
and large variance s? where s? > 1. We showed that for the original Mumford-Shah
model, it was impossible for the two-region segmentation to be optimal for any choice
of parameters s2, L, \, but for the extended model the two-region segmentation was

optimal given suitable values of these parameters plus the offset oZ.
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Chapter 5

A Solution to the Small Sample
Problem for Region Merging
Algorithms

5.1 Introduction

We recall the work of Crisp and Newsam [26] which is based on a Bayesian approach
where the optimal segmentation is defined as the model which is most likely to occur
given the image data. In other words, it is a Maximum A-Posteriori estimate of the
optimal partition of 2 into regions. The segmentation model M = (K, 0) consists
of a boundary set K and a function # approximating the image data. From Bayes

Law we have

p(M)p(g|M)
)

Mzargmaxp M|g) = argmax
ipep(Mlo) M- p(g

bl

where g is the given data. Since p(g) is assumed constant this is equivalent to
M = arg m]\}n E(M) = arg mjvi[n ( —Inp(M) — lnp(g|M)). (5.1.1)

85
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In (Crisp and Newsam, [26]), the authors work in the discrete domain: the approx-
imating function 6 is constant within each pixel x and defined as a random variable
whose pixel intensities follow independent Gaussian distributions. Any two such
distributions are identical if they correspond to two pixels in the same region R; of

the segmentation K. Thus
0(x) ~ N(u(x),0%(x)) = N (s, 07) where x € R;. (5.1.2)

Since 6 is completely determined by its means and variances at each pixel, we can
encode the same information by using a deterministic two-dimensional vector. Thus
we write 0(x) = (u(x),0%(x)) instead of (5.1.2) from now on. Crisp and Newsam

[26] show that the problem of minimising (5.1.1) reduces to

M = arg min ( 2 #(Ri)log (Vara)
+2 2

i XER;

557000 = ) - ). (13

where #(R;) is the number of pixels in R; and p;, 07 are the estimated mean and
variance parameters corresponding to 6 on R;. It is easily shown that part of the
minimization can be done analytically. If K is given then the optimal parameters

for 6 are the sample mean and variance, i.e.

0x) = (W'(x),0”x) = (4,07, x€ R, (5.1.4)
* 1 x
M= ) xgﬁg( ), (5.1.5)
*2 1 *\2
g; = #(R,) xgzi(g(X) — 1)% (5.1.6)
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where R; is the region containing pixel x. In our notation we assume 6 = 0 unless
explicitly stated otherwise. By only considering segmentation models where 6§ = 0

the minimization problem reduces to
K =arg m}}n E(K,f) = arg m}gnz #(R;) log(oy) + A - £(K). (5.1.7)

We recall the Full Lambda Schedule Algorithm (FLSA) (Crisp and Tao, [27], Red-
ding et al., [67], Robinson et al., [72]) which has already been described in Chapter
2. Redding et al. [67] and Robinson et al. [72] implemented the FLSA for the
Mumford-Shah model. Crisp and Newsam [26] extended the FLSA to the above-
mentioned Bayesian model with Gaussian distributions for pixels. We denote this
extension of the FLSA as FLSA-MAP, since it uses the Maximum A-Posteriori
principle to calculate an optimal segmentation given the image data. Unlike the
Mumford-Shah model, a subtle difficulty is that for single pixel regions we have
o = 0, in which case (5.1.3) does not make sense. We view this as a manifestation
of the small sample problem. The solution suggested in (Crisp and Newsam, [26])
was to associate with each region two quantities, the true variance o7 and modified
variance 62, both of which are used to calculate the change in energy when two
regions are merged. A simpler more convenient version of this idea was offered by
Crisp and Tao in [27]. The idea is to offset the variance estimate so that the sample
variance o is replaced with o2 + o2 for some predetermined value of o2. In effect,
this sacrifices accuracy to avoid the singularity at o = 0. Alternatively, we could
replace o2 with max(o?, 03), which is essentially the approach used in Chapter 3.
The disadvantage of either approach is that there is no obvious choice of the extra
parameter of. If of is too small, (5.1.3) is numerically unstable. If of is large, the
loss of accuracy can be substantial. We remark that various other solutions to the
small sample problem have already been proposed in the literature. For instance,
Kanungo et al. [39] proposed that for small regions the sample variance should be

weighted against the global variance for the whole image. This is somewhat similar
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to (Crisp and Newsam, [26]), except the true and modified variance are in effect
being combined into one via a weighted average. In Lee [45], the initial segmenta-
tion is determined by a set of seeds which consist of one or more pixels. Kanungo’s
solution has the drawback of specifying an extra parameter to determine the relative
weighting between local and global variance. Moreover it does not work in the case
of the image being (approximately) globally constant. The solution in (Lee, [45])
requires a non-trivial initialization stage for determining which pixels are seeds. It
also requires an assumption on the size of the smallest region. In our view, none
of the above solutions to the small sample problem have proved fully convincing
and the aim of this paper is to describe a satisfactory solution to the small sample
problem. In Section 5.2 we discuss the small sample problem and our proposed
solution. Section 5.3 describes the new algorithm which we denote as FLSA-CDF
(the reason for the “CDF” will become clear later). In Section 5.4 the utility of the
new algorithm is assessed and its performance is compared with the FLSA described

in Chapter 2. In Section 5.5 we draw some conclusions.

5.2 Solution to the Small Sample Problem

The reason behind the problems in (5.1.3) when o2 = 0 can be explained by careful
consideration of the probability density function (pdf) of a Gaussian random vari-
able. A Gaussian pdf can either be proper when o2 > 0 or degenerate when o2 = 0.
Unless we work with distributions (in the sense of Schwartz, say) we see that degener-
ate pdfs are not defined everywhere. On the other hand the cumulative distribution
function (cdf) is well defined everywhere regardless of the condition ¢ > 0 without
having to resort to Schwartz distributions. For instance, when o2 = 0, the cdf for
N(u,0?) is F(z) = H(z — p) where H is the Heaviside function, i.e. H(z) =1 for
non-negative x and 0 otherwise. This suggests it may be advantageous to consider

the cdfs instead of pdfs.
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In the use of cdfs it is conventional to resolve discontinuities via enforcing right-
continuity everywhere. Thus the cdf correpsonding to a random variable Z is defined

by

Fo(2)=P(Z<2)= [ f2ly)dy,

where f7 is the pdf of Z (if it exists). By considering the cdf instead of pdf we
forfeit the possibility of quantifying the likelihood of some set of observed data,
via maximum likelihood estimation or otherwise. Instead we measure a different
quantity, namely how much the cdfs corresponding to one segmentation differ from
those corresponding to a benchmark segmentation. The obvious choice of benchmark
is the trivial segmentation, since that yields the most accurate model of the image,
at the expense of greatest complexity. Thus our formulation has similar properties
to the Mumford-Shah model, in the sense that fine segmentations correspond to
a low data-fidelity penalty and high model-complexity penalty and vice versa for
coarse segmentations and we believe this justifies the use of cdfs as a solution to the

small sample problem.

Given a segmentation K and a pixel x we define FX* to be a cdf corresponding
to the sample parameters (u(x), 0?(x)) determined by equations (5.1.5) and (5.1.6).

In other words,

Ff(z) = PN (u(x),0%(x)) < 2)

= /_zoo o(x)li\/ﬁ exp ( — %)dy. (5.2.1)

For the trivial segmentation T, a pixel with intensity g(x) will have u(x) = g(x)
and 02(x) = 0. Thus for K = T we have

F**(z) = H(z — g(x)).



5.2. SOLUTION TO THE SMALL SAMPLE PROBLEM 90

We generalize our notation so that FX denotes the set of cdfs { FE*:x € Q}, each
cdf corresponding to a pixel in ). Motivated by the discussion earlier in this section,

we would like an energy functional of the form

E(K)=D(F* F') + X - ¢(K)

for some metric D. Our problem is to determine a suitable choice of D. The metric

D should satisfy the following requirements:

1. Suppose K' is obtained by merging any two adjacent regions of K. Then it
should be easy to calculate the quantity D(FX'| FT) — D(F¥, FT) so that the
quantity AE = F(K') — E(K) is likewise easy to calculate.

2. The distance D should satisfy the usual properties of a metric. In particular,
D(F*%,FT) should be finite for any segmentation K. Note that since the

cumulative distribution is defined on (—o0, 00) this is not trivial.

3. The metric should be stable in the following sense: Given two segmentations
K, K, if the parameters 6,6, corresponding to K, K, are perturbed by a
small amount, say, ¢ > 0, then D(F¥:1 FX2) should also be perturbed by a
small amount, no greater than () for some function 6 : Rt — R*. Hence if
two regions are merged and their mean and variance are about equal then the
difference between D(F*', FT) and D(F¥, FT) should be small. In particular
if the two regions have equal mean and variance then the difference should
be exactly zero. Conversely, the above difference should be large if either the

sample mean or variance is significantly different in the two regions.
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The first item suggests if K’ is obtained by merging two regions R;, Ry of K then
D(F¥ FX') only depends on pixels belonging to Ry U Ry. Thus we assume that D

satisfies

D(F*,F¥') = Y d(F*>, FX'>), (5.2.2)

x€eN

where d is a metric measuring the difference between two cdfs. Note that if x ¢
Ry U Ry then FK* = FK'* and d(FK* FK'*) = 0. Given (5.2.2), the problem of
determining D reduces to that of defining d. We have considered various possibilities
for the metric d(-, ), including the Kolmogorov-Smirnov metric (Utgoff and Clouse,
[87]), the Skorohod metric (Billingsley, [11]) and the Kakutani-Hellinger metric (Anh
et al. [5]). However, the first two of these do not satisfy the stability condition and
the last is more relevant to comparing pdfs than cdfs. Instead we have opted for

one of the simplest metrics for cdfs: the L' metric over (—oo, 00).
d(F, F') = ||F = F'|[ 1) = / |F(t) — F'(t)|dt. (5.2.3)

It is easily verified the L' metric satisfies the stability condition. Thus we choose to

define the metric D by
D(F¥, F¥) = 3 d(F*, F¥>) = Y [ x ‘FK”‘(z) _FRRG)lde. (5.2.4)
x€eN xeQ’ T

In other words, we have combined the ideas (5.2.2) and (5.2.3). We turn now to the

computation of the metric (5.2.4).
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Recall that equation (5.2.1) specifies the form of the cdfs involved. It is well known
that (5.2.1) can be expressed as

FE%(2) = = + %erf(z_iu(x)), (5.2.5)

o(x)V/2

1
2

where erf is the error function, defined by erf(z) = % JEe dt. If o(x) = 0 then we
use the convention that erf((z — u(x)/o(x)Vv/2) = sign(z — p(x)) where sign(z) = 1
for positive z, -1 for negative x and 0 for x = 0. Using (5.2.5) it is possible to show

that for any segmentations K, K», pixel x and p;, o7 corresponding to K;, we have

p2 — pa|
AFR F) =y = et L2
|02 - 01|\/§

— 2 — uql?
Jr|02 01|\fexp( 2 — | )

- 0.2.6
ﬁ 2|O'2 —0'1‘2 ( )

The details are given in Appendix A. Expression (5.2.6) is clearly finite for all
Ap, Ao, proving d is always finite. Thus D(F¥' FX2) is always finite for any two
segmentations. Although the choice of L'-norm is somewhat ad-hoc, we note that a
significant advantage of this norm is that d(F**, FK2*) reduces to a closed-form

expression. Returning to (5.2.4), we now have the closed-form expression

(5.2.7)

However, as explained next, there is still a problem. Although (5.2.7) is an analytic
expression, it involves a summation of all the g(x)’s which is inconvenient for large
regions. In practice, since we are interested in changes in the energy functional rather
than absolute values, we will actually calculate quantities of the form D(FX', FT) —

D(FX FT). In this case the summation simplifies by removing all pixels in € that
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are not in either of the two regions involved in the merge. However, the computation
is still expensive since for N pixels there are N — 1 region merging operations and
the later operations will involve large numbers of pixels leading to a complexity
of O(N?). In order to make the computation practical, we invoke a simplifying

assumption. We assume that

D(F¥' FTy - D(FX, FT) = D(F¥'| F¥). (5.2.8)

Equation (5.2.8) is false because the properties of a metric only imply the triangle
inequality, not an equality. This fact is the price we pay for considering cdfs instead
of pdfs. In any case our experiments show that for purposes of running the algorithm

the errors incurred in (5.2.8) are negligible and do not compound.

With (5.2.8) in place we can now easily calculate the change in energy when two
regions are merged. Let the two regions be R;, R, and let their parameters be
01 = (u1,02) and Oy = (uo,03), respectively. Denote their common boundary by
£(0(Ry, Ry)) and denote the merged region by R3 = Ry U R,. Then given (5.2.8) we
see that

AE = E(K') - E(K)
= D(FK' FT) — D(FK FT) — X-£(8(Ry, Ry))

Q

D(FX'  FEY — X\ £(3(Ry, Ry)).

Using (5.2.2) this becomes

AE = #(R1)d(Fy,), Faes)) + #(R2)d(Fars,), Fass))
—A-£(O(R1, Rp)), (5.2.9)

where d(-,-) is given by (5.2.6) and 63 are the parameters for the new region R3 =

Ry UR;.
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It is important to point out a subtle distinction between the optimal and sample
parameters of mean/variance for each region. In our earlier work (Crisp and Tao,
[27]), we showed that if the segmentation boundary K is fixed then § minimizes the
energy E when

g = : Z 9(x), (5.2.10)

o = (9(x) — i)™ (5.2.11)

pis
=
=

It turns out in the new formulation, equations (5.2.10), (5.2.11) no longer minimize
the energy functional for fixed K and are therefore not optimal. Calculating the
optimal values of y;, 07 has proved to be an analytically intractable optimization
problem. Hence we take the practical solution of considering only segmentations
where 6 equals the sample mean/variance for each region determined by K. In

other words we solve
M= argm]vifn E(M) = arg III%igIE(K, 6) (5.2.12)

subject to (5.2.10) and (5.2.11). Thus F is a function of K alone.
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5.3 The Basic Algorithm

As mentioned before, our basic algorithm is a continuation of previous work (Crisp
and Newsam, [26], Redding et al., [67], Robinson et al., [72]) motivated by efforts to
improve on Koepfler’s algorithm [42]. We recall that the main differences are that
we avoid the use of the A-schedule and also our algorithm always locates the globally
best merge at each merging operation, at the expense of complex data structures.

The basic outline of our algorithm is as follows:

1. Initialize the data with the trivial segmentation, where each pixel is its own

region.

2. Calculate the merge cost for each possible region merge. The merge cost is
given by setting (5.2.9) equal to 0 and using (5.2.6). Thus for any pair of
adjacent regions Ry, Ry and R3 = Ry U Ry,

B 1 |3 — pa
A= m [#(Rm/ﬁ:’, - M1|erf(m)

03 — 01| V2 ( |M3—M1|2>
R =2 __~“1iv=e _m Al
+#( 1) \/77_ eXp 2‘0_3 _ 0_1‘2

‘:U'3 :U'?‘
+#(Ry) s — 1 f<7>

_ 2 _ 2
|0 @Ifexp(_ |13 — o )]

+#(Ry) o 205 — o2

3. Find the pair of regions with smallest merge cost and merge them.
4. Repeat until only one region remains.

5. Go over the list of all segmentations and choose the “best one”. This corre-

sponds to choosing the best .



5.4. TEST IMAGES AND EXPERIMENTS 96

Despite the surface simplicity of the region merging algorithm, much care is needed
in choosing good data structures to avoid inefficient performance in time [27]. For
example, given an N x N image and the trivial segmentation, there are N? regions
and O(2N?) pairs of adjacent regions. Determining the pair of adjacent regions with
smallest merge cost would be extremely expensive unless a sorted list is somehow
maintained. Similarly each region must keep and update a record of its set of
neighbouring regions. A detailed analysis of this algorithm and Koepfler’s algorithm

is provided in (Redding et al., [67]).

5.4 Test Images and Experiments

Our aim in this section is to compare the performance of the old algorithm described
in (Crisp and Newsam, [26], Crisp and Tao, [27]), and the new, the idea being to
assess the suitability of our proposed solution to the small sample problem. For
convenience we denote the old and new algorithms as FLSA-MAP and FLSA-CDF
respectively. In order to assess segmentation performance we would ideally like a set
of real images with associated ground truth. However, despite the vast amount of
research on the problem of image segmentation there is no generally accepted test
suite of images, nor do there exist many standard benchmark tests and algorithms
that are easily obtained. We note that progress is being made, see for instance the
Berkeley data set (Martin et al., [50]), but that is more suitable for edge detection
algorithms rather than segmentation. A good review of the situation with several
suggested approaches is given by Zhang in [93]. We have chosen to use synthetic
imagery, as is commonly done. Choosing the correct set of synthetic test images
for experiments is a difficult task (Zhang, [94]). Many papers display experimental
results without justification of why their chosen test images are “correct” for testing
purposes. We do not claim that our tests convincingly prove the advantages of our
new algorithm; they do give a general indication of under what conditions the new

algorithm performs well.
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We performed a number of experiments on four synthetic images, shown in figure
(5.7.1), and the standard HOUSE image, used by (Kanungo et al., [39]). For the
synthetic images, the properties of interest are region shape (first image), contrast
between adjacent regions of different size (second image), noise level (third image)
and size (fourth image). In these experiments we measure both the time taken
for the algorithm and its accuracy. The accuracy measure is described in the next
subsection. All test images are of size 256 x 256 with 256 gray levels. Each of the four
synthetic images were tested with various parameter settings, and the diagrams in
figure (5.7.1) show only images for a particular set of parameter values. In all images
except the third, the variance is a parameter. In the third image, the circle radius is
a parameter. The first two images have variance 20, and the third and fourth images
have radius 28 and variance 60 respectively. The image names from left to right are
SHAPE, CONTRAST, NOISE and RADIUS. For each of the four synthetic images, we
tested both FLSA-MAP and FLSA-CDF. Recall that the FLSA-MAP requires a
variance offset o7 to be specified. Since there is no rigorous way of choosing o}
we specify a range of values and consider the results from them all. The following
representative values were used: 10~¢ where i is an integer between 0 and 9. We
use an offset of zero to denote the FLSA-CDF algorithm since a zero offset has no
meaning for FLSA-MAP. This is merely for convenience of displaying the results
(Tables 5.7.1 - 5.7.9). Note that the FLSA-MAP does not “converge” to the FLSA-
CDF as the offset approaches zero.

5.5 The Accuracy Measure

The accuracy metric is defined as follows: a pixel is called an “edge pixel” if any
of its four (less than four if it lies in 0f2) neighbours is in a different region. For
each edge pixel in the ground truth, measure the Euclidean distance to the closest
edge pixel in the actual segmentation and vice versa (reverse the roles of ground

truth and actual segmentation). Then sum up all the distances to yield the total
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“score”. A score of zero indicates a perfect or near perfect segmentation (note that
zero indicates that each pixel is correctly classified as edge-pixel or non-edge-pixel,
although the segmentations may still be slightly different, but we believe the error
is negligible, since the horizontal-vertical discretization of €2 implies a measurement
error anyway). This is the “Boundary Distance Measure” used by Kanungo et al.
[39]. A high score implies a serious mismatch in the segmentation, for instance one
region is completely missing or the boundary of a region “oscillates” much more
than it should. Since there is no ground truth for the HOUSE image, we decided to

compare it subjectively with the results in (Kanungo et al., [39]).

5.6 Experimental results

5.6.1 The SHAPE Image

The first image, called SHAPE (Figure 7), consists of ellipses with various eccentric-
ities with mean 100 against a background of mean 200. We tested the image with
various amounts of noise, more specifically, variance = 0,20,40,60. The algorithm
was instructed to stop at 6 regions. The time and accuracy results are in Tables
5.7.1 and 5.7.2 respectively, where o7 represents the variance offset and ‘var’ rep-
resents the variance. Timewise, FLSA-CDF was better for non-zero variance and
worse with zero variance. For variance of 0 or 20, no circles were lost. Obviously
we had a perfect segmentation with variance 0. With variance of 40, FLSA-MAP
lost one or all ellipses with offset 02 = 1073 or less. In fact FLSA-CDF outscored
FLSA-MAP for all values of offset. With variance of 60, FLSA-CDF also outscored
FLSA-MAP for all values of offset since it lost only most of the bottom ellipse.

FLSA-MAP could not retain any ellipse, with any choice of variance offset except

one ellipse when of = 101
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5.6.2 The CONTRAST Image

The second image, called CONTRAST, is a 4x4 chessboard with small circles. The
black and white squares have mean 100, 200 respectively and the circles have mean
150. Again the image was tested with variance levels 0,20,40,60. The algorithm was
to stop at 20 regions. The time and accuracy results are in Tables 5.7.3 and 5.7.4
respectively, where of represents the variance offset and ‘var’ represents the variance.
Again FLSA-CDF did better than FLSA-MAP timewise with non-zero variance, but
worse with zero variance. For variance of 0, both FLSA-CDF and FLSA-MAP (any
offset) recovered the exact segmentation. For variance of 20, FLSA-MAP lost three
circles out of four when offset was 107 or 1078, With any other offset FLSA-MAP
retained all circles, as did FLSA-CDF. With variance 40, FLSA-CDF outscored
FLSA-MAP even with the best offset for the latter. FLSA-CDF lost none of the
circles. With offset of 1072 FLSA-MAP lost all circles and squares. With offset
1078 or 1077 FLSA-MAP only kept two and five large squares respectively. The
symbol '-X’ in Table 5.7.4 indicates at least one square was lost, clearly much worse
than losing any number of circles. With an offset 107° or greater, FLSA-MAP lost
3 or 4 circles, but kept the squares. In some of these cases the shape-errors in the
squares outweighed the number of circles lost. With variance of 60, FLSA-CDF’s
superiority was not as pronounced. Although FLSA-CDF kept the squares, it lost
all circles and was outscored by FLSA-MAP when o3 > 1072,
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5.6.3 The NOISE Image

The third image, called NOISE, consists of 9 circles of equal radii on a background,
all with mean 128. The background has variance 5 and each circle has a different
level of variance ranging from 20-100. The algorithm was to stop at 10 regions. We
tested four different versions of the image where the radius of the circles changed: the
radius was 4,12,20,28. The results are in Tables 5.7.5 and 5.7.6 respectively, where
op represents the variance offset and ‘rad’ represents the radius of the circles. We
counted a circle as being “retained” if at least one pixel is classified as being different
from the background. This is because the difference between a single pixel and
no pixel results in an order-of-magnitude difference in the accuracy metric defined
above. Note that for images NOISE and RADIUS (subsection 5.6.4) the columns are in
order of decreasing radius/variance respectively so that the difficulty of segmenting

the image increases from left to right, which is consistent with the tables for the

first two images.

FLSA-CDEF’s time-superiority is evident from Table 5.7.5. FLSA-MAP takes signif-
icantly less time when the offset exceeds the critical value of about 10~7 to 105,
but is still nowhere near as good as FLSA-CDF. Also note that the ground truth
is different for different values of radius (unlike variance). On one hand, we would
expect that for small radius the scores to be lower since there are less pixels in the
ground truth and the accuracy measure sums up pixel distances. On the other hand
one could argue that for small radius, the circles are harder to distinguish (espe-
cially ones with small variance) so the scores should be higher. Thus comparing
the accuracy for different values of the radius is not really meaningful. However,
it still makes sense to compare FLSA-MAP and FLSA-CDF for the same value of
radius. FLSA-CDF is comparable with FLSA-MAP with offset of 02 = 107°, but
worse when 1078 < 03 < 1073, and better when 08 > 1072. Thus FLSA-CDF’s

“superiority” (if any) is not as pronounced as for the first two images.
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Example outputs for Image NOISE with radius 12 are given in Figure 5.7.2. The
2nd-4th diagrams are segmentation masks corresponding to a variance offset of

107%,107%,1072 respectively. The final diagram is the segmentation mask corre-

sponding to FLSA-CDF.

Since FLSA-CDF performed worse than the other images we decided to investigate
the effect of removing the upper left circle, resulting in Image NOISE2 (not shown).
This time the algorithm was instructed to retain only nine regions. We did not
display the time taken since it is not significantly different from before. Here we
counted the upper left circle as missing even though the ground truth did not have
it. Thus any algorithm must “lose” at least one circle. This is to keep the data for
Image NOISE2 consistent with the data for Image NOISE. If FLSA-CDF were allowed
to keep ten regions instead of nine it would lose only one circle scoring 957, a 10-fold
improvement. Again FLSA-CDF did poorly compared to the first two images. Note
that in both Images NOISE and NOISE2, FLSA-MAP did better than FLSA-CDF
(assuming correct offset), but not by an order of magnitude (except the case of
radius 12). This was because FLSA-CDF’s fractal-like boundaries were worse than
FLSA-MAP’s even though they recovered the same number of “circle-like objects”.
Of course, the scores in Image NOISE2 were lower than in Image NOISE since the

removal of one circle would leave less error.

5.6.4 The RADIUS Image

The last image, called RADIUS, consists of 9 circles of equal variance but different radii
ranging from 4 to 36, on a background of variance 5. The circles and background
all had the same mean. We tested four different versions of the image where the
variance of the circles changed: the variance was 20,40,60,80. Again the algorithm
was to stop at 10 regions. With variance of 20 FLSA-CDF lost 1 circle but FLSA-
MAP also lost at least one circle for any offset. Thus FLSA-CDF was clearly better.
With variance of 40 FLSA-MAP was generally better than FLSA-CDF unless the
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offset exceeded 10 3. FLSA-CDF was only comparable with FLSA-MAP with an
offset of 10~°. With variance 60 or 80 FLSA-CDF outscored FLSA-MAP only when
the offset exceeded 1072. With lower values of offset FLSA-MAP did significantly
better than FLSA-CDF, even when the offset was 107°. Example outputs for Image
RADIUS are given in Figure 5.7.3. The 2nd-4th diagrams are segmentation masks
corresponding to variance offset equal to 1078,1075, 1073 respectively. The final

diagram is the segmentation mask corresponding to FLSA-CDF.

5.6.5 The HOUSE Image

The HOUSE image is a standard image, shown in Figure 5.7.4. Note that, unlike
the synthetic images, the correct number of regions is not obvious. Thus, we have
instead specified a value of )\, namely A\ = 1.585 = log(3)/log(2). Kanungo et
al. [39] showed that the Minimum Description Length functional yields an approx-
imately linear weighting between model complexity and accuracy (ignoring a few
other terms such as the code length for encoding coefficients of polynomials and so
on) and that A & log(3)/log(2) is a reasonable approximation to the “correct” value
of scale parameter. We noted that the algorithm always ran in under 5 seconds on
a Sun Microsystems machine regardless of whether variance offset was used or not.
With offset of 107 the image was heavily oversegmented (768 regions), with an
offset of 1072 the image was “about right” (61 regions), and with an offset of 107!
a number of regions were over-merged (10 regions), which indicated a very small
margin of error for guessing oy. The algorithm without variance offset resulted in a
segmentation close to the result for offset = 102. In Figure 5.7.4 the 2nd-4th dia-
grams correspond to variance offset equal to 1073,1072, 107! respectively. The final
diagram is the segmentation mask corresponding to FLSA-CDF. We believe our seg-
mentation results are comparable with Kanungo’s. In particular, the final diagram
of Figure 5.7.4 seems to indicate our algorithm is slightly better than Kanungo’s at

eliminating small regions, although some of our regions have been overmerged.
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5.7 Conclusions

We have described a new segmentation algorithm called the FLSA-CDF algorithm.
It is based on the algorithm described in (Crisp and Newsam, [26], Crisp and Tao,
[27]), which we denote by FLSA-MAP. The FLSA-CDF algorithm proposes a new
solution of the small sample problem. It avoids the problem of guessing a suitable
value of variance offset parameter, and runs significantly faster than the FLSA-
MAP, except in the trivial case of an image with zero noise. The offset parameter
is eliminated by considering the cumulative distribution function instead of the
probability density to calculate merge costs. Removing this parameter is a significant
advantage since the tests show that the best choice of offset parameter varies from
image to image and it is difficult to justify one value over another. The new algorithm
has some disadvantages: it resorts to a number of approximations such as equations

(5.2.8), (5.2.10), and (5.2.11).

From the experimental results, we conclude the new algorithm is more robust to
difficult images with poor SNR/contrast, but given an “easy image” there exist
values of offset parameter such that FLSA-MAP outscores FLSA-CDF, assuming
that there exists some solution to the choice of scale parameter A (for instance in the
ground truth, we know the number of regions and can set A accordingly). We note
that generally in the latter case, FLSA-MAP only “just” outperforms FLSA-CDF
(i.e. not by an order of magnitude) but the superiority of FLSA-CDF over FLSA-
MAP is very significant in the former. For example in Image RADIUS FLSA-CDF
really outshines FLSA-MAP for variance of 20 but FLSA-CDF does poorly against
FLSA-MAP with variance of 80 or 60. In Image SHAPE, FLSA-CDF dominates
completely for variance of 60 but for variance of 20 it is just outscored for FLSA-
MAP with offset 107® or higher (FLSA-MAP has fewer “small shape errors” than
FLSA-CDF). In Image NOISE FLSA-CDF does not do well at all and we believe
this is because changing the radius of circles does not really correspond to good or

poor SNR/contrast. We believe that in the latter case the reason for slightly worse



5.7. CONCLUSIONS 104

performance without variance offset in “easy images” is due to the approximation in
(5.2.8) and the fact that sample mean /variance no longer optimizes the new energy
functional with respect to . We noted that the old algorithm ran much slower when
segmenting a noisy image with few regions, as compared to an image with a high
amount of structure, such as the HOUSE image. A significant weakness of the new
algorithm is the inability to handle multi-band images. The reason for this is our
inability to generate a closed form expression for the difference of two cdfs according
to some integral expression such as (5.2.3) since otherwise the algorithm would take
too much time updating merge costs at each merging iteration. The multivariate

normal distribution is given by

p() = Gy o (= 5l = 'S - ) (5.7.1)

for mean vector p and covariance matric ¥. Its cdf is generally not an analytic
expression (Tong, [84]). In other words, it cannot be expressed in terms of simple
functions, including error functions as for the 1-dimensional case. However, it is pos-
sible to investigate the effect of approximating (5.7.1) by a simpler, more tractable

expression. We think this is a promising avenue of future research.

As a final remark, we note that the idea of considering the cdf of a probability density
can apply equally well to many distributions, not just the Guassian. For example, if
the order parameter of a Gamma distribution tends to infinity, the resulting density

becomes a Dirac delta, the same result as a Gaussian with zero variance.
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og\var | 0 20 40 60
0 180 51 | 9.0 | 5.5
1072 || 8.2 | 68.9| 29.8 | 38.5
1078 |/ 20.8 | 22.5 | 23.0 | 41.1
1077 || 8.2 | 30.6 | 34.3 | 36.0
10°¢ || 8.2 333 36.2 | 37.9
107° || 8.2 | 33.0| 66.9 | 23.2
107* || 7.9 | 18.8 | 100.2 | 18.0
1072 || 7.9 | 10.9 | 65.3 | 11.2
1072 || 7.9 | 17.8 | 38.3 | 17.3
1071 || 7.8 | 24.0 | 49.7 | 54.0
1070 || 7.5 | 20.3 | 44.9 | 57.5

Table 5.7.1: Time taken for Image SHAPE.

o2\var || 0| 20 40 60 02040 |60
0 0] 12 553 21x10* 0[O0 |00
107 [0]102]3.4x10%|35x105||0| 0 |-5]-5
1078 0|22 [36x10°|35%x10° 0|0 |-5]-5
1007 |[0| 16 | 3.4x10%|35x10° |0 | 0 | -5 -5
10% |[0| 6 |34x10°|35x10°||0| 0 |-5]-5
10°° 0| 6 |36x10*|34x10°|0| 0 |-1]-5
107 0| 6 |[36x10*|26x10° 0|0 |-1]|-5
107 0| 8 [35x10*|25%x10° 0|0 |-1]-5
1072 0| 8 603 25x10° |0 0| 0]-5
1071 0] 10 712 1.4x10°)0| 0| 0 |-4
107 |[0] 10 741 25%x10° |0 0| 0]-5

Table 5.7.2: Accuracy results/No.

of ellipses lost for Image SHAPE.



5.7. CONCLUSIONS

106

Table 5.7.3: Time taken for Image CONTRAST.

oa\var | 0 | 20 | 40 | 60
0 70| 53 | 6.2 | 5.3
107° || 4.2 ] 10.8 | 22.3 | 32.2
1078 || 7.2]10.5|19.1 | 36.4
1077 || 4.3|10.6 | 13.7 | 33.2
1076 || 43] 9.8 [ 12.0]25.4
1075 || 42| 9.0 | 11.1]27.5
107* | 4.1| 7.0 | 10.8 | 13.6
1073 | 42| 57 | 7.7 | 7.1
1072 | 42| 56 | 7.1 | 6.1
107t || 42| 58 | 7.1 | 76
107 ||39] 59 | 6.8 | 80

oZ\var || 0 20 40 60 0|20 40 | 60
0 0 126 1.1x10% [ 6.9%x10* | 0] 0 | O | -4
107° |0 |1.2x10%|58x%x10%|58x10°|0]-3|-X|-X
107 | 0|1.1x10%|1.8x10°|58x10°(0]|-3|-X]|-X
1007 || 0 319 1.3x10° [ 5.8x10° (0| 0 |-X|-X
10°% || 0 179 3.3x10%|5.7x10° 0] 0 | 4 |-X
107° | 0 79 1.6x10° |51 x10°|[ 0| 0 | -4 | -X
107* |0 88 1.5x10% | 5.0x10°|[0| 0 | -4 | -X
1072 | 0 95 20x10% [1.5x10* 0| 0 | -4 | -4
102 |0 119 1.4%x10% [6.0x10°| 0| 0 | -3 | -4
107" |0 121 32x10% [ 56x10° 0| 0 | -3 | -4
107° |0 197 41%x10% | 58x10°(|0| 0 | -4 | -4

Table 5.7.4: Accuracy results/No. of circles lost for Image CONTRAST.
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off \rad | 28 | 20 | 12 | 4
0 6.8 | 6.2 | 58 | 5.5
107° 65.5 | 68.6 | 51.2 | 39.9
1078 | 65.2 | 69.7 | 55.8 | 32.3
1077 | 55.4 | 47.0 | 50.5 | 52.7
1076 | 23.6|28.9]325|31.4
107 || 14.2 | 20.0 | 24.2 | 24.4
107* || 14.7|17.3 | 20.9 | 16.8
1073 || 18.5 | 21.6 | 24.4 | 27.2
1072 || 18.4 | 22.6 | 23.9 | 25.4
1071 |[21.4]22.2|24.126.2
1070 || 21.8 | 22.8 | 24.0 | 26.4

Table 5.7.5: Time taken for Image NOISE.

o2\ rad 28 20 12 4 28 12012 | 4
0 1.5x10* | 1.3 x 10* | 9.0 x 103 | 1.0 x 10* | -1 | -1 | -1 | -3
1072 | 1.6 x 10* | 1.3 x 10* | 8.9 x 10% | 6.8 x 10% || -1 | -1 | -1 | -2
108 [ 2.9x10°| 1.9 x 10° 958 34x10° 0|0 |0 |-1
1077 | 2.6 x10° | 1.3 x 10° 808 33x10° 0|0 |0 |-1
109 | 1.8x10%|1.0x 103 765 3.3x10%| 0| 0|0 |-1
107° || 1.5 x 10° 961 743 128 00010
107* || 1.6 x 10° | 1.0 x 103 564 98 00010
1073 | 1.4x10* | 1.2 x10* | 8.8 x 103 | 3.4 x 10% || -1 | -1 | -1 |-1
1072 || 4.3x10* | 4.3x10* | 2.8 x10* | 1.0x 10* || -3 | -3 | -3 | -3
1070 [ 2.1x10%|2.1x10%|8.0x10*|50x10%| -7 |-7|-6 -8
1070 [ 2.8x10°|1.9x10° | 8.0 x 10* | 5.0 x 10° || -7 | -7 | -6 | -8

Table 5.7.6: Accuracy results /No. of circles lost for Image NOISE.
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o2\ rad 28 20 12 4 28 12012 | 4
0 1.9x10% | 3.0 x 103 | 9.1 x 10% | 6.8 x 10® | -1 | -1 | -2 | -3
1079 || 1.4 x 10° 835 614 3.5x10% || -1 | -1 |-1|-2
1078 || 1.1 x 10° 872 402 115 B R I R e |
1077 | 1.0 x 10° 677 334 94 B R I R e |
10-¢ 932 610 321 84 B S R I R e |
107° 863 573 310 71 I I R I R s |
1074 855 559 312 60 S s s |
1073 || 1.3 x 10? 964 545 31x10% || -1 | -11]-1]-2
1072 [ 1.7x10*|29x10*|1.9x10*|7.1x10% | -3 |-3|-31-3
107" || 1.6 x10° | 1.7 x 10° | 6.4 x 10* | 4.3 x 10* | -7 | -7 | -6 | -8
1070 |[2.3x10° | 1.5x10% | 6.4 x10* | 43x10* | -7 |-7| -6 | -8

Table 5.7.7: Accuracy results/No. of circles lost for Image NOISE2.

Figure 5.7.1: Four different synthetic images to be segmented.
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og\var | 80 | 60 | 40 | 20

0 58 | 6.0 | 6.4 | 6.3
1079 || 42.4 | 43.6 | 44.0 | 65.1
1078 |/ 38.0 | 39.1 | 41.2 | 46.6
1077 || 44.9 | 44.0 | 45.4 | 49.4
1076 | 22.4]22.1|23.0]24.9
107° | 16.2 | 15.4 | 16.3 | 18.3
107* | 16.0 | 16.8 | 16.2 | 16.8
1073 | 18.3|19.2 | 19.4 | 20.4

1072 | 19.3 | 20.4 | 21.7 | 23.2
107 | 19.5|21.5 | 21.2 | 22.5
107° | 19.3 | 22.0 | 21.7 | 224

Table 5.7.8: Time taken for Image RADIUS. o2 = variance offset, var = variance of

added noise.

o2\var 80 60 40 20 80 | 60 | 40 | 20
0 90.7x102|1.2x10%|48%x103[7.9x103| 0| 0 |-1]-1
1072 || 5.6 x 102 | 8.1 x 102 |45x 103 |1.0x 105l 0 | O | -1 -6
1078 || 4.7%x10% | 7.1x10%2|42%x10°|26x10*|| 0 | O |-11-3
1077 |43 %x10%2|6.5x10%2|1.3x10%|1.7x10*l 0| 0| 0 |-2
1076 || 3.8%x102|52x10%2|1.0x10%|7.4%x103|| 0 | 0| 0 |-1
10°° [13.9%x10%2|5.3x102|96x10%2[58%x103| 0| 0| 0 |-1
107% || 4.1%x10%2(55x10%2|1.0x10%|6.4%x10°| 0| 0| 0 |-1
1073 || 6.4%x10%|88x10%2 |4.5x10%|1.8%x10*| 0 | 0 | -1 | -2
1072 || 2.3%x10% |64 x10% |52x10*[1.0x10°|| 0 |-1]|-5]-6
1070 | 1.0x10°|1.2x10° | 6.9x10* | 1.0x10° || -7 | -6 | -5 | -6
109 |1.6%x10°|1.2x10°|6.9x10*|1.0x10°|| -7 | -6 | -5 | -6

Table 5.7.9: Accuracy results /No. of circles lost for Image RADIUS.
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Figure 5.7.2: Comparison of algorithms FLSA-MAP and FLSA-CDF for Image
NOISE.

Figure 5.7.3: Comparison of algorithms FLSA-MAP and FLSA-CDF for Image
RADIUS.

Figure 5.7.4: Comparison of algorithms FLSA-MAP and FLSA-CDF for Image
HOUSE.



Chapter 6

The Modelling of Images with

Texture

6.1 Introduction

Texture is an inherent property of most real images and hence texture segmentation
of images is an important problem. A fundamental difference between textured and
smooth images is that texture can only be defined across a neighbourhood of pixels,
instead of a single pixel. Indeed this demonstrates one of the difficulties of texture
segmentation. Typically the image data are presented in the form of a matrix, with
each element recording a gray value intensity. Hence there is no texture information
in a single element. Another difficulty of texture segmentation stems from the
inability to easily define texture. Roughly speaking, texture can be characterized by
repeating patterns of intensity differences. For instance an object can be described
as striped, furry, uniform or checkerboard and so on, but it is difficult to represent
such notions using mathematical formulae. This has been attempted: for instance,

the use of co-occurrence matrices' was introduced by Haralick et al. [38] to model

!The original authors used the term “gray-tone spatial dependency matrices”, but this is now

obsolete.
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spatial properties of an image. However, it requires extensive computation, and
moreover, many “texture features” derived from this matrix do not correspond to
visual perception of the human eye. At the opposite extreme, Tamura [81] defined
six texture features derived directly from visual perception, but the features were

measured “psychometrically” (Coombs et al., [24]) rather than mathematically.

However current research has shown much promise and many methodologies to
texture segmentation have been proposed, with some success. Of course it will be
impossible to cover the vast literature in detail and we only concentrate on the

important aspects.

Simon Barker [8] classified segmentation methodologies into two main categories.
In model-based segmentation the optimal segmentation is defined via a Bayesian
sense, usually via the Maximum A-Posteriori (MAP) principle. To model spatial
dependencies between adjacent pixels, the Markov Random Field (MRF) is used to
specify the probabilities of all possible configurations on a lattice. The inter-spatial
dependence between pixels is captured by the Markov property via specification of
neighbourhoods. The neighbourhood of a pixel x is usually defined as the set of all
pixels within a ball of radius » > 0 centred at x, but excluding x itself. We will
not discuss MRF theory in detail and instead refer the reader to [9]. In feature-
based segmentation, the original image is transformed to another domain so the
data reflect texture characteristics instead of individual pixel values. The transform

data are further processed, for instance, via K-means clustering.

Model-based segmentation has proved attractive in theory, since there are few prob-
lems with setting arbitrary thresholds and it is easy to specify a Markov Random
Field via an “energy potential” due to the well-known Hammersley and Clifford
Theorem (Besag, [9]). However, the search for efficient algorithms for computing
the minimizer has proved elusive, except for trivial models. Hence it is necessary to
settle for a local minimum. One of the most common techniques is to update pixel

intensities one at a time using Iterated Conditional Modes (ICM) (Besag, [10]), or
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simulated annealing (Geman and Geman, [33]) thanks to its ease of implementation.
Simulated annealing avoids the problem of local minima by allowing a temporary
increase of energy. In fact, simulated annealing is a special case of ICM with temper-
ature fixed at zero (Barker, [8]). Geman and Geman [33] proved simulated annealing
always results in convergence to the global minima (under certain conditions). Un-
fortunately the result is only of theoretical interest since it requires the temperature
be reduced extremely slowly. One of the simplest and well-known models is the Ising
model (Chandler, [22]), later developed into the Potts model. In both models the
random process is a lattice and energy is calculated by summing contributions from
individual pixels or adjacent pairs of pixels. The model introduced by Geman and
Geman [33] adds a line process and is a precedent of the celebrated Mumford-Shah
model [61].

In feature-based segmentation a vector is typically associated with each pixel, each
element of a vector representing some component of texture. A simple example
is that used by Laws [43]. The original image is convolved with a small mask,
from which statistics such as variance can be computed for each pixel. An even
simpler method by Unser [85] proposes the use of Hadamard 2x2 masks to estimate
local derivatives in horizontal, vertical and diagonal directions. In the use of co-
occurrence matrices (Haralick et al., [38]) each entry of the matrix represents the
number of times two gray levels appear in two pixels separated by a fixed distance
and orientation. Thus the matrix does not represent texture directly, but it can be
used to extract features such as energy, entropy and contrast (Soares et al., [78]). It
has been used extensively (Davis et al., [28, 29], Haralick et al., [38], Soares et al.,
[78], Unser [86], Welch, [91]). Its main drawback is the computational cost, which
increases quadratically with the number of gray levels of an image. There are many
other ways to derive texture features and we refer to (Reed and Du Buf, [68]) for a
more complete survey. Feature-based methods have proved useful in practice, since

good segmentations can be readily computed in reasonable time (Barker, [8]).
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Our main motivation is to extend the region merging algorithms of Koepfler (Koepfler
et al., [42]), originally intended for Mumford-Shah segmentation. We propose the
use of feature-based methods, simply because this was also proposed by Koepfler
(Koepfler et al., [42]). According to the Mumford-Shah model [61] (we work in the

discrete domain) the correct segmentation is one that minimizes

Eu,K) =Y (u(x) — g(x))2+ A - (K), (6.1.1)

x€N

where u(z) is constant on each region of Q \ K. Implicit in (Koepfler et al., [42])
is the assumption that the image is represented as a scalar or vectorial function
with each channel representing some meaningful quantity such as colour, gray-level
or wavelet transform coefficients. Furthermore, the channel data must be smooth
(without texture or noise). However, the authors point out that in the vectorial
case texture discrimination can be achieved by assigning suitable texture features
to a number of “channels”. They cite a number of papers (Malik and Perona, [47],
Marr [48], Voorhees and Poggio, [88]) where texture features are derived from local
operators such as convolutions or derivatives, similar to the ideas of Unser [85].
Koepfler et al. themselves propose the use of the Haar Wavelet transform, useful

for multiscale analysis.

Recall that Crisp and Newsam [26] developed an “Extended Mumford-Shah” (EMS)
model to account for images contaminated by white noise. This was discussed in
Chapter 3. In that chapter we derived the following energy functional, where the
variance was always assumed to be bounded from below by some predetermined

constant o3
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loga (x) — ji;)?
Y #(Ri) +> Z g A UE), (612)
1€T 1€T XER; 0;
where 7 is an indexing set for all regions and
= o 2 o)
Hi = g\Xx),
#(RZ) XER;
1

5; = max(op, 0] :max<02,7 g(x) — f; 2).

Essentially, equation (6.1.2) avoids excessive penalization of regions with large os-
cillation, provided they fit a normal distribution. The original Mumford-Shah func-
tional enforces all regions to be smooth, thus it cannot distinguish two regions with
same mean but different variance. This is demonstrated in (Crisp and Newsam,

[26]).

It is worth demonstrating the difference between calculating mean/variance directly
and defining them in transform domain. In a simple synthetic image consisting of two
regions (Figure 6.1.1, first diagram) applying our algorithm using the EMS model
yields roughly the correct segmentation (second diagram). If we instead compute
the mean and variance for each pixel in a 3x3 window, say, then the resulting
transform images are still noisy (third and fourth diagrams), and hence unsuitable

for Koepfler’s segmentation algorithm.

However, the EMS model in (Crisp and Newsam, [26]) could not discriminate be-
tween different textures since pixel intensities were assumed independent. This latter
assumption was necessary to facilitate the mathematical analysis of the model and
algorithm implementation. For instance, it allowed us to derive analytic formulae
for optimal mean and variance parameters. In the next section we propose how to
modify the EMS model to account for texture segmentation. Section 6.3 describes

the experimental results and Section 6.4 is a short summary.
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Figure 6.1.1: The difference between the EMS model and the use of transform

domain for mean and variance.

6.2 Modifying the EMS Model to Account for

Textures

We propose to combine the EMS model with the use of the Haar wavelet-transform
to derive texture features. More specifically we convolve the original image with the

masks shown in Figure 6.2.1:

+ |+ + |- + |+ + |-
+ |+ + |- — | - — |+
+l+ |- |- + |+ + +l+ |- |-
+l+ |- |- |+ |+ +l+ |- |-
+1+ |- |- —-|-1=-- — =+ +
+l+ |- |- —|-1-- — =+ +

Figure 6.2.1: Seven masks used for texture segmentation.
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For each mask, the plus/minus signs represent the number +£1/N where N is the
number of plus signs within that mask. Thus the first mask returns the average
gray value of four pixels. The other 2x2 masks measure horizontal, vertical and
diagonal derivatives. In fact these are the same masks used by Unser [85]. The
three 4x4 masks are dilated versions of the latter three 2x2 masks. After applying
the masks, the channels are convolved with a 3x3 Gaussian filter. We then take
the absolute values of the channel outputs. We prefer this to Koepfler’s half-wave
rectification [42] to reduce the number of channels. Thus there are seven masks in
total. These channels are then treated as a vector random variable where correlation
can exist between different bands of the same pixel, but not between different pixels.
Strictly speaking, correlation does exist between pixels since pixel neighbourhoods
are required to calculate the texture features. In practice we ignore this to simplify

the implementation of our region merging algorithm.

6.3 Experimental Results

We tested a number of synthetic and real images, described below. We use the
region merging algorithm described in Chapters 2 and 3 (Crisp and Newsam, [26] and
references therein). Recall that our algorithm computes a unique segmentation given
any value of scale parameter A. Equivalently we can compute a unique segmentation
given a specific number of regions, which is done in the experiments below. As noted
in the previous chapter, one difficulty with this algorithm is that modelling textures
implies the use of multiple data channels, and it is therefore impossible to use the
FLSA-CDF to solve the problem of determining a reasonable value of variance offset.

In the experiments below, the variance offset is equal to 1.0 unless stated otherwise.
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6.3.1 Synthetic Image

For our first experiment, we tested a synthetic image consisting of two different
regions, shown in Figure 6.3.1 (left). Both regions have the same striped texture
but the bottom region is contaminated by white noise. This synthetic image is
similar to one used by Koepfler [42] where two similar regions differ only by a weak
“secondary channel”. Using the seven channels defined above we easily recover
two regions as shown in Figure 6.3.1 (right). An interesting aspect of Koepfler’s
experiment on texture segmentation is that he deliberately suppresses the gray value
channel information. For purposes of classifying different textures, mean gray value
is irrelevant. For example if a region has a particular texture then it will still have
the same texture if a constant is added to all pixel intensities. Indeed, using the
gray value channel information can sometimes result in an incorrect segmentation.
To demonstrate this, we tested the same synthetic image but with an increased
signal-to-noise ratio, as shown in Figure 6.3.2 (left). Using all channels except the
gray value, we recover the correct segmentation (Figure 6.3.2, middle). With the

gray value channel added, the result is nonsense (Figure 6.3.2, right).

We also tested a two-dimensional synthetic image where the image used in the pre-
vious experiment is combined with its “transpose” (Figure 6.3.3, left and middle
diagrams). For both dimensions, the seven masks in Section 6.2 are computed, re-
sulting in fourteen channels in total. We discard the gray-value channels, leaving
only twelve channels. Using these twelve channels results in the desired four-region
segmentation, (Figure 6.3.3, right) albeit with jagged boundaries. We note a similar
phenomenon has been observed with Koepfler’s original algorithm (Morel and Soli-
mini, [58], Chapter 5) although no explanation was given. We conjecture that this
may have something to do with the fact that more than one channel is contribut-
ing important information (which was not the case with the previous experiment).
Despite the result of the above experiments in Figures 6.3.2 and 6.3.3, we believe

suppressing the gray value channel is somewhat artificial. Clearly, suppressing the
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Figure 6.3.1: An image with striped texture with strong noise.

—

Figure 6.3.2: An image with striped texture with weak noise.

=

Figure 6.3.3: A two-dimensional image with striped texture with weak noise.
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Figure 6.3.4: The Cameraman image.

gray value channel prevents us from segmenting piecewise constant functions cor-
rectly. This is inconvenient from a theoretical perspective, since the main motivation
for this work is to generalize the Mumford-Shah model. Indeed, Simon Barker [8]
correctly pointed out that the choice of which features or channels to measure is
ad-hoc and difficult to justify theoretically. Nevertheless, suppressing irrelevant
channels is quite useful in practice, since one can obtain better segmentations with
less computational burden. For instance if we had a priori information that regions
differed in terms of textures rather than average gray value, it would not be surpris-
ing if suppressing the gray value channel leads to superior results for a particular

test suite.

6.3.2 The Cameraman Image

The next experiment was performed on the standard image Cameraman (Figure
6.3.4, left). This is very popular for image compression (Wakin et al., [89], Mertins,
[55]) but it is also used for segmentation and denoising algorithms (Chan et al., [20]).
We ran the algorithm to obtain a 2-region segmentation using the gray value channel
(Figure 6.3.4, middle) only and all seven channels (Figure 6.3.4, right). Using only
the gray value information, the man is merged with the background to the right.

Using all seven channels, we obtain a reasonable segmentation, comparable with the
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Figure 6.3.5: A Brodatz mosaic.

result in (Chan et al., [20]).

6.3.3 A Brodatz Mosaic

The next experiment was performed on a Brodatz mosaic (Figure 6.3.5). A popular
experiment for texture segmentation is to divide a square into a mosaic of subsquares
consisting of different Brodatz textures. Indeed a number of such experiments are
demonstrated in (Koepfler et al., [42]). We tested a synthetic image consisting of
four different Brodatz textures with and without white noise. The textures can be
described as noisy (top left), strong horizontal (top right), weak vertical (bottom
left) and grid (bottom right). In the case without noise, we recover near perfect
boundaries except for the interface between the top left and bottom left regions
(Figure 6.3.5, 1st and 2nd diagrams). This can be explained by the rough interface
between the two textures. Note that the top right and bottom right textures are
much more regular. When noise was added, we were still able to recover the correct

regions, albeit with jagged boundaries (Figure 6.3.5, 3rd and 4th diagrams).
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6.4 Conclusions

We briefly surveyed algorithms for texture segmentation. Algorithms can be classi-
fied as model-based or feature-based. Our new proposed algorithm is feature-based
and combines the ideas of modelling white noise contamination and defining sim-
ple texture features based on the Haar wavelet transform. Much of these ideas are
based on the original work of Koepfler [42]. We pointed out that Koepfler’s texture
features do not allow one to obtain the correct segmentations for images contami-
nated by white noise. We found that suppressing the gray-value output sometimes
improves the segmentation results obtained in practice, as was the case in Koepfler’s
original experiment, but we pointed out that this is theoretically doubtful since the
ability to segment cartoon images correctly is lost. We propose as future work the
possibility of considering other, more complex, texture features (such as those de-
rived from co-occurrence matrices) to enable us to obtain reasonable segmentations

of complex images.



Chapter 7

Selection of an Optimal Value of
the Scale Parameter for the

Extended Piecewise Constant

Mumford-Shah Functional

7.1 Introduction

In previous chapters we had considered the following problem: given an image and
the value of a scale parameter, find a reasonable segmentation, one that is locally
optimal in some sense. We now discuss the important issue of finding the “optimal”

value of the scale parameter itself.

The problem of choosing scale values of parameters is pervasive in virtually all
energy functionals used in image segmentation. In Chapter 1 we discussed the
variational formulation of the image segmentation problem and discussed numerous
methodologies (Snakes, Active Contours, Level Sets) proposed in the literature. All
of these are based on selection of a model M that minimizes an energy functional

of the form

123
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E(M) =Y \T; (7.1.1)

i=1

consisting of two or more terms where each ); is a scale parameter and each 7; is
a term designed to enforce some property of a desired segmentation such as “data
fidelity” or “smoothness of boundaries” and so on. Assuming the energy is scaled
with A; = 1, this leaves one or more scale parameters which control the trade-off
between the various properties of a segmentation. We note that some authors have
studied functionals without scale parameters. For example Kanungo et al. [39]
derive an energy functional from the principle of Minimum Description Length to
derive the terms 7;. The main disadvantage of this is that the functional becomes
very complex and consists of many terms. In the literature, energy functionals
are almost always based on equation (7.1.1). We will only consider the piecewise

constant Mumford-Shah model which only contains one scale parameter.

The simplest way to choose the scale parameter is to determine the proper values
experimentally, running the algorithm a number of times before the user is sat-
isfied with the end result. Alternatively a multiscale hierarchy of segmentations
can be computed first. This allows the user to view all segmentations “off-line”
after running the algorithm once only. One of the earliest efforts in context of the
Mumford-Shah functional is, of course, Koepfler’s algorithm [42], which has already
been discussed in considerable detail in this thesis. We recall the basic properties
of Koepfler’s algorithm: starting with a fine segmentation, regions are successively
merged until it is no longer possible to decrease an energy functional. The energy
functional depends on a scale parameter A. Given a schedule A, that is, a finite
list of values for the scale parameter, the algorithm can compute a hierarchy K of
segmentations, that is, a finite list of segmentations with each one corresponding to
a specific value A € A. Furthermore C and A satisfy the property of causality. That
is, if segmentations K, Ky are computed for Aj, Ay, with A; < Ay then Ky C K;.
In the Full Lambda Schedule Algorithm (FLSA), described in Chapter 2, we show
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that it is possible to obtain a full schedule, where A = [0, 00|, the set of all positive
reals, eliminating the need to select K a-priori. In this case each segmentation in the
hierarchy corresponds to an interval A € (A1, \o] and the causality property implies

that for A\ < Ay, we have Ky, C K; or Ky = Kj.

In some applications it is desirable to eliminate the need for human interaction
altogether. In other words, an algorithm is required to not only construct the mul-
tiscale heirarchy of segmentations but also automate the selection of the parameter
value. Recently there has been an increasing interest in multiscale approaches to
Image Processing problems such as segmentation and restoration. However many
algorithms are multiscale in nature, not with respect to the scale parameters \; but
with respect to something else! For example the algorithm proposed by Chan and
Esedoglu [18] is a multiscale generalization of the algorithm by Song and Chan [79].
Both papers seek a local minimizer of the Mumford-Shah functional via the Level
Set method. The latter considers the effect of altering the state of a single pixel,
but the former considers instead neighbourhoods of pixels of various sizes. Chan
and Esedoglu argue that the multiscale nature of their algorithm allows them to
remove noise at different scales of the boundary interface. Thus, given a value of
scale parameter, they are more likely to produce a reasonable segmentation. But
neither paper discusses the selection of the scale parameter itself. To the best of our
knowledge, we are unaware of any significant efforts to address the issue of auto-
matic scale parameter selection for the Mumford-Shah model (or any of its variants).
Indeed, the selection of scale parameter is a somewhat controversial issue. Some au-
thors (Marr, [48], Petrovic and Vendergheynst, [66]) insist that image segmentation
is inherently a multiscale problem and there is no “unique” correct scale on which to
analyze an image. We do not entirely agree with this. Although all realistic images
have features at different scales, we believe some scales are more important than
others. For instance, if one looks at an ebony chessboard, the division of the board

into 64 squares is more prominant than the ebony-texture within each square.
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Thus the former large-scale segmentation should be ranked higher than the latter
small-scale segmentation. But if we were only shown a single square then the texture
within that square would stand out more clearly. This brings us to the fundamental
idea of this chapter: every segmentation can be given a score which reflects how
important it is relative to every other segmentation. The segmentation with the
best score out of the hierarchy is chosen as the optimal. Note that the scoring
function also allows us to rank, say, the best N segmentations out of a hierarchy,

where NV is an integer.

Recall that in the standard and extended Mumford-Shah models, the scale parame-
ter A plays the role of controlling the trade-off between two quantities and there are
many well-known techniques for defining an optimal trade-off between two quanti-
ties. For instance, in (Tao and Crisp, [82]) we mentioned the possibility of using
L-curves. The basic principle is that for any value of scale parameter A, the solution
“size” (complexity) and “error” (accuracy) can be computed, hence a graph of ac-
curacy versus complexity can be drawn, with each point on the graph corresponding
to a particular value of A\. Hansen (Hansen, [36]) defines the optimal value of \ as
that corresponding to the “corner” of the graph. Ideally, the graph should contain
only one obvious corner, resembling the corner of the letter 'L’, hence the name “L-
curve”. A common definition of best corner is one with greatest curvature (Hansen
and O’Leary, [37]). In the case of image segmentation, we can associate with each
merge a “merge number” (the order in which they occur) and a “merge cost”. When
merging two regions, the merge cost is the critical value of scale parameter A that
results in no change of the value of the energy functional. The merge cost is given
by (2.4.3), from Chapter 2. However, we reported in (Tao and Crisp, [82]) that the
experimental results obtained were not satisfactory. Moreover, the use of L-curves
is difficult to justify theoretically since it was originally intended for linear problems
of the form Ax = B where A is ill-conditioned. This is not really related to the
Mumford-Shah functional.
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We therefore need a different solution to the problem of ranking each merge. We
propose two possibilites in the next subsection: measuring the significance of each
merge and modelling the merge cost. We will show that the former, while simpler,

is not really satisfactory but the latter yields better results.

7.2 Significance of Merges

Recall that Koepfler’s algorithm can be extended by using the FLSA (Chapter 2)
or its variants, FLSA-MAP (Chapter 3) and FLSA-CDF (Chapter 5). In this way
we can determine a unique segmentation K given an image ¢ and value of scale
parameter A € R. We thus have the hierarchy ={Kj, K1, ... Ky} where N is the
number of pixels and each K; corresponds to some interval (A;, A;+1]. From each K,
the segmentation K;,; can be obtained by a single region merge and the value A\;;;
is called the merge cost. Furthermore, the values of \; and the full hierarchy /C of
segmentations can be efficiently computed. Since the image has N pixels, we have
N —1 merging operations, or simply “merges”, indexed with a merge number 7 where
i€{1,2,...,N—1}. The i-th merge corresponds to changing the (N —i+ 1)-region
segmentation into the (IV —1)-region segmentation. Our problem is to determine the

correct value of A or equivalently, the correct interval (A;, A;41] for some 0 < i < n—1.

The most obvious idea would be to define the correct segmentation as that corre-
sponding to the largest interval, i.e. where \;1; — \; is maximum. One difficulty is
that, by definition the right segmentation would always be the “blank” one-region
segmentation K = ¢ since the corresponding interval is (Ao, 00) for some Ay € R!
A possible solution is to define an artificial threshold 7" > 0 and consider only scale
parameter values in (0,7") instead of (0,00). But this is clearly undesirable, since
T behaves as another scale parameter to be determined. Instead, we will simply
discount the possibility of obtaining the one-region segmentation. This is no great

loss since the 1-region segmentation carries no useful information in any event. Thus
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the algorithm is expected to return a segmentation with two or more regions, and it
is up to the user to decide if the segmentation carries any useful information. The
theory behind this is that if the 1-region segmentation is correct, then there is no real
image structure and we would expect all region merges to be equal in significance,
to within the usual statistical “chance variations”. In other words we would expect
a random number of regions to be reported as optimal. Thus a large number of
regions imply no significant image structure but a small number of regions probably
indicates some important information in the image. Admittedly this is somewhat
artificial but we believe the advantages of the automatic selection of scale parameter

outweighs the disadvantages.

In our experiments we found that the merge cost increases in the long run with re-
spect to the merge number. However the merge cost does not increase monotonically
as demonstrated by the following simple example: suppose one is given two pairs
of adjacent regions AB and CD. If merging AB is cheaper than merging C'D then
the former must be merged before the latter. If however we only have three regions
A, B, D all adjacent to each other, one can merge AB to obtain a larger region C'
and then merge C' with D. It is then possible for the merge C'D to be cheaper than
that for AB. We define the significance of a region merge M as

max (0, \(M) — Sup A(M")),

where A\(M) is the merge cost for the merge M and the supremum is taken over
all previous merges M’'. This is equivalent to taking the “envelope” of the merge
cost graph (the infemum of all monotonically increasing functions not lower than
the original graph) and defining the significance as the difference between adjacent
elements. If merge M; is the most significant merge, then the (N — i + 1)-region
segmentation is correct. By definition, this implies the correct segmentation must

have between 2 and N regions.
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Figure 7.3.1: Four images to be segmented.

7.3 Experimental Results for the Significance of

Merges

We ran the FLSA-MAP and FLSA-CDF algorithms and tested four images, called
“House”, “Gaussian Noise”, “Multiscale” and “Boat” (Figure 7.3.1). The House and
Boat images are standard in the literature. The Gaussian Noise image is obtained
by using pixel values from i.i.d. N (128,64) distributions. The Multiscale image is
constructed as follows: a 256 x 256 image is divided into a 2 x 2 large chessboard
whose mean “black-square” and “white-square” gray values differ by 40. Each of
these squares is divided into a 4*4 sub-chessboard whose mean black- and white-
square gray values differ by 20. Each of the 64 squares is of constant gray value
except that a white noise is added to each pixel within a small circle of radius 8,
centred at the centre of the square. Thus there are three levels of detail in an image:
the division into large squares, division into small squares, and adding white noise

to a small circle within each small square.
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We tested the FLSA-MAP with offset of 107%,1073,1 and FLSA-CDF. We will not
be concerned with the proper selection of offset for the FLSA since we argued that
the use of FLSA-CDF provides a reasonable solution. For notational convenience
we use an offset of zero to denote the use of the FLSA-CDF, as was done in Chapter
5. The results are displayed in Figures 7.3.2-7.3.5, with the graphs for merge cost
on the left and the significance of merges on the right (middle and right for Figure
7.3.3).

For convenience of displaying thes results we showed the base-ten logarithm of the
merge costs since the smallest and largest non-zero values differ by several orders
of magnitude. Note that the curves do not “start” at merge number zero since
the earliest merges correspond to a merge cost of A = 0 or log(\) = —oo. In the
merge significance graphs we displayed the number of regions on the x-axis, which
is equivalent to reversing the merge number on the x-axis. This is because the
most significant merges tend to occur with fewer regions. Optimal segmentations
obtained using the FLSA-CDF using the significance of merges for the House (2
regions), Gaussian Noise (5 regions), Multiscale (4 regions) and Boat (2 regions)

images are shown in Figure 7.3.6.

We considered the obtained results in (Figures 7.3.2-7.3.5) to be unsatisfactory.
Firstly, for the Gaussian Noise image, the “optimal” number of regions is less than
30 with almost all pixels belonging to a single region. In other words, both FLSA-
MAP and FLSA-CDF incorrectly assume that there is significant structure in the
image. Moreover, the number of regions obtained for the Boat image is two. The
resulting segmentation is nonsense. A more subtle problem can be discerned through
careful consideration of the Multiscale image. It is possible to divide only some of
the four quadrants of the image into 16 smaller squares. In other words, the scale
of the segmentation differs at various parts of the image. This results in a 19-, 34-

or 49- region segmentation, shown in Figure 7.3.7.
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Merge cost graph for House image

Merge significance graph for House image
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Figure 7.3.2: Graphs for merge cost and significance of merges for the House image.
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Merge cost graph for Multiscale image
T

s Merge significance graph for Multiscale image
~ofisel=0 ' i j 140 T T T T T :
= O offset=0
— ogse: = 1e:gg X offset = 1e-06
ok offset = 1e-03 i + + offset=1e-03
offset = Le 120l * _(10x) offset = 1e-00 | |
WL ]
x
! 100+ 7
of i 4
| &
- 1
St P 4 % 80f T
3 B 2
3 - <
g - 5
< - 2 x
; 13
s & g 60r 4
g
= 1 @
a0t 4
a4l g
4
20| J
-5} 4 o
5 *
6 . . . . . . 0 o s o
0 1 2 3M o 4 5 6 47 0 10 20 30 40 50 60 7
lerge number 10 Number of regions

Figure 7.3.4: Graphs for merge cost and significance of merges for the Multiscale
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Figure 7.3.5: Graphs for merge cost and significance of merges for the Boat image.
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Figure 7.3.6: Optimal segmentations obtained using Significance of merges for the

images in Figure 7.3.1.

Figure 7.3.7: Segmentations at different scales for the Multiscale image.
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But according to the results these segmentations are not considered significant at all.
The results suggest that the largest intervals idea is biased towards segmentations
with fewer regions. We believe this is confirmed by the the following observation
from our experimental results: the graph of merge cost over merge number grows

more than linearly, which accounts for the above bias.

7.4 Modelling the Merge Cost

We need a better heuristic for selecting a correct value of scale parameter. Essen-
tially, we need a more appropriate model of how the merge costs \; grow over each
iteration. Morel and Solimini [58] state that the number of regions should be propor-
tional to 1/)\?. This is corroborated by Lemma 5.5 of their proof of the Mumford-
Shah conjecture for the Mumford-Shah model which gives an explicit bound for the
number of regions « for a 2-normal segmentation:
288|Qosc*(g)  C

180

for some constant C, where Cj,, and osc(g) have the same meaning as in Chapter
3. In the adaptation of this proof for our extended model in Chapter 3 we have a
similar inverse square law. Note that equation (7.4.1) alone does not prove that the
number of regions behaves like 1/A?, since ideally, one would need a bound from

both directions. That is,
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However, Morel and Solimini maintain that their numerical simulations justify the
assumption that |R| and A can be related by an inverse square law. We observe that

the inverse square law can be rewritten as

Ao |R|7Y2,

This can be interpreted as saying \/|R|~'/2 should ideally be constant over time.
Obviously we cannot expect a graph of |R| against A/|R|~'/2 to be approximately
constant for any image. We will not attempt to justify the inverse square law, but

simply use it as a heuristic, based on the work of Morel and Solimini.

We therefore propose the following: instead of plotting the values of A against merge
number we plot the ratio A\/|R|~}/? against merge number. We denote by ¢ the
function that returns the ratio A\/|R|~'/2 given the merge number. The maximum
value of \/|R|7/? is the most significant “indication of structure” (in some sense)

and is therefore the one corresponding to the “optimal” number of regions.

7.5 Experimental Results for Modelling the Merge
Cost

We tested the same four images as those used in Section 7.3. For all images, we
found that either (i) the optimal number of regions is 64 or less, or (ii) the optimal
number of regions is large and the curve is approximately “bell-shaped”. The latter
case is observed when either segmenting the Gaussian Noise image with any offset or
segmenting either the House or Boat image with an offset of 107%. Note that for the
bell-shaped curves, we have suppressed the effect of many small-term fluctuations
for convenience of displaying the results. The fluctuations are characterized by the

1/2

fact that there were many values of R where the ratio A/R™'/? is significantly lower
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than the neighbouring values. We plotted only the envelopes of the curves defined
by

ENVy(z) = min(sup ¢(y), sup ¢(y)). (7.5.1)

y<z y>z

Roughly speaking, this corresponds to the infimum of all “A-shaped” functions not
lower than the original graph. Note that for bell-shaped curves, taking the envelope
in equation (7.5.1) and multiplying by a constant does not affect where the maximum
occurs. The results are shown in Figures 7.5.1-7.5.4 and are much better than those
shown for the significance of merges. Note that in some cases, the ratio A : R~1/2

differed by an order of magnitude for various offsets so we have multiplied this ratio

by 10 for ease of comparison.

Figure 7.5.1 shows the graph of A/R~/2 using 30 regions or less (offset # 1079)
or the envelope (offset = 107°) for the House image. Figure 7.5.2 shows the graph
of the envelope of \/R~'/? for the Gaussian Noise image. Figure 7.5.3 shows the
Graph of A\/R™/? using 70 regions or less for the Multiscale image. Figure 7.5.4
shows the Graph of A\/R~'/2 using 40 regions or less (offset # 107%) or envelope
(offset = 107%) for the Boat image. Note that in some cases the reason for showing
only the graphs for up to a specified number of regions is because the envelope of
the graphs is flat for a larger number of regions. For the House image, the FLSA-
CDF reported two regions, as did FLSA-MAP with an offset of 1073 or 10°. With
an offset of 107%, FLSA-MAP incorrectly guessed a large number of regions. For
the Gaussian Noise image, both FLSA-MAP and FLSA-CDF correctly reported a
large number of regions as optimal, indicating there is no structure in the image.
In Figure 7.5.5 the obtained segmentation looks almost the same as the original,
and one must look closely to determine that small regions of constant gray value
indeed exist. For the Multiscale image, FLSA-MAP and FLSA-CDF recognise the
19-, 34- and 49- region segmentations as being significant. FLSA-MAP reported the

four-region segmentation as the optimal segmentation except for an offset of 1075.
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Figure 7.5.1: Graph of A\/R~%/2 for the House image.

With such an offset, the four-region segmentation is ranked fifth, behind the 19-
34- 49- and 64- region segmentations. For the Boat image, FLSA-CDF reports 12
regions, better than the 2-region segmentation, albeit not perfect. It recognizes a
number of “blobby regions” on the lower part of the boat but misses the long lines
at the top, which is not surprising since in our proof of the main theorem we showed
that long skinny regions do not occur. It is futile to discuss the correct number
of regions without a proper ground truth image. However we should mention that
Koepfler et al. [42] chose to display the result for 50 and 200 regions. Results for
the CDF algorithm using Modelling the merge cost are shown in Figure 7.5.5 for the

House(4 regions), Gaussian Noise (14297 regions), Multiscale (4 regions) and Boat
(12 regions).
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Figure 7.5.2: Graph of A\/R™'/? for the Gaussian Noise image.
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Modelling the merge cost for Boat image Modelling the merge cost for Boat image
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Figure 7.5.4: Graph of A\/R™%/? for the Boat image.

Figure 7.5.5: Optimal segmentations obtained using Modelling the merge cost for

the images in Figure 7.3.1.
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7.6 Conclusions

To determine a segmentation corresponding to the optimal value of scale parameter
A is an important but difficult problem. Koepfler et al. showed that a relatively sim-
ple algorithm can be used to obtain a hierarchy of segmentations satisfying causality,
i.e. segmentations corresponding to greater values of A are a subset of those cor-
responding to lesser values. However, Koepfler et al. did not state any reasonable
solution for the automatic selection of A. Nor are we aware of any significant efforts
in the literature to address this. In Chapter 5 we discussed the idea of using the
cumulative distribution function and the corresponding FLSA-CDF. This avoids the
use of the regularization parameter o7 in the FLSA. Our experimental results suggest
both FLSA-CDF and FLSA-MAP report the correct number of regions, provided
the variance offset is correctly guessed for the latter. We considered two different
criteria for determining the most significant merge, namely: (i) largest difference
between A corresponding to a merge and any previous merge and (ii) the maximum
value of the ratio \/|R|~'/2, justified by Morel and Solimini’s consideration that
the number of regions should behave as A=2. The first criterion is simpler, but we

considered it unsatisfactory. The second yields better results.



Chapter 8

Conclusions

The central themes of this thesis are an analysis of an extended Mumford-Shah
model and the development of a new region-merging algorithm for this model. In
Chapter 1 we gave an overview of various algorithms for finding a segmentation of
a given image. In Chapter 2 we described the piecewise constant Mumford-Shah
model and Koepfler’s region merging algorithm in detail. This model allows an effi-
cient representation of simple images whose regions are approximately constant. We
also proposed some improvements to Koepfler’s original region merging algorithm.
We eliminated the requirement of selecting a “Lambda-schedule” prior to region
merging, and we also demonstrated that it was possible to find the globally best
merge at each stage of the region merging algorithm, instead of just approximating
the best merge by considering one region only. This considerably facilitated the

theoretical analysis of the algorithm.

However, the piecewise constant Mumford-Shah model is unsuitable for images cor-
rupted by noise or texture. We proposed a new extended model to account for
images corrupted by white noise. This was examined in detail in Chapter 3, the
central chapter of this thesis. The basic idea was the following: each pixel value in
the same region was represented as independent and identically distributed normal

random variables. An image model consisted of the partition of the image domain
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into regions and the specification of the model parameters within each region. The
probability of the data given the model was obtained by multiplying the individual
probabilities for each pixel, and the prior probability of the model itself was defined
as being proportional to exp(—A\ - £(K)) where ¢(K) is the length of K and ) is
the scale parameter. By defining the energy to be the negative logarithm of the
probability of the model given the data, and applying Bayes Law, we showed it was
possible to convert the problem of maximizing a probability function into that of
minimizing an energy functional. A number of important properties of the original
Mumford-Shah model were shown to be true also for the extended model. In Chap-
ter 4, we gave an example image g where a unique minimizer could be explicitly

computed.

One difficulty we noted with the extended model was that an extra parameter was
required to regularize the problem. The difficulty stemmed from the following con-
sideration: a normal random variable with zero variance was an improper distribu-
tion, namely a Dirac distribution centred on the mean of the random variable. Thus
when taking the negative logarithm of the probability in order to obtain an energy
functional, we found the latter was unbounded from below. We therefore added an
extra parameter, called the variance offset, to fix this problem. We showed that a
theorem by Morel and Solimini, developed for the piecewise constant Mumford-Shah
model, was also applicable to the extended model, with minor changes. In Chapter
5, we proposed an alternative solution which did not require an extra parameter: by
considering the cumulative distribution function instead of the probability density,
we avoided having to work with the Dirac distribution altogether since a variance
of zero merely implies a cumulative distribution function which equates to that of
a Heaviside step function. We showed that better segmentations were obtained in

less time.
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The disadvantages of this approach are: (i) a number of approximations are required
to quickly calculate the change of energy when merging two regions, (ii) the method
is not directly applicable to multiband images, since the calculation of the cumulative
distribution function is intractable. However, we proposed for future research the
possibility of approximating the cumulative distribution function with a simpler

expression.

Following the original paper of Koepfler et al. [42] we argued that with suitable
definition of data channels, we could also achieve texture segmentation. We showed
that we could segment images corrupted with both texture and noise. This was
discussed in Chapter 6. However, the methods employed were rather simple and we
hope that investigation of more sophisticated methods could provide a promising av-
enue of future research. Finally we considered the problem of automatically selecting
a stopping value of scale parameter in Chapter 7, an issue somewhat neglected in

the literature.
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Appendix A

The Distance Between Two Error
Functions for the Metric d Defined
in Chapter 5

We use the standard result

6—22 b

\/’Tra

b
/erf(z)dz = zerfz +

to verify that if d(-,-) is defined by equation (5.2.3) and if FXv* FK2X corre-
spond to the cumulative distribution functions (cdfs) of two normal distributions

N(6,(x)), N (65(x)) then

Mo — /1'1‘
d(FKl’x,FK2’x) — |N2 _ M|erf(‘7>
|O'2 — O'1|\/§
o9 — 01[V/2 < ‘/ﬁz—ﬂ1|2)
—_ — . A0.1
T P\ T, —ap (4.0.1)

The proof follows. In it we use the convention that erf((z)/0) = sign(z) = 1 for

positive z, -1 for negative z and 0 for z = 0.
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The cdf of a normal distribution N'(6) = N (i, 0?) is given by

1 (_(y—u)Q)dy

/ 21 202
/(z u)/fff

Fyey(2) =

exp

1
 dt

o0 ﬁ

10 2 . 1 [=wovz 2

- o[ Sty —/ 2 dt

2/ \/_e +2 0 \/Tr

L f( )

e

2 o2

Since d(FXvx FK2X) = J(FK»* FX1X) we can assume without loss of generality

that o7 < 9. Then

% |1 _ 11
d(FFx, FRox) = / ‘ + erf(”’ ’“)————rf( dz

-5/ et 01\/5) ‘erf(x@ﬁ)

The curves erf(z—p; /o1v/2), exf (2 — 12 /091/2) must either (i) coincide (p; = po, 01 =

i)

09) or (ii) intersect an infinite number of times (1 # p2,01 = 09 = 0) or (iii) are
parallel (u; # pg,01 = 09 # 0) or (iv) intersect exactly once (o7 # 02). In the first
two cases equation (A.0.1) is trivial so we assume either (iii) or (iv). Let K be the
point of intersection of the two curves, where K = oo in case (iii) and K < oo in

case (iv). K will be the value where

—+—erf< >:——|——erf< )
2 2 o1v?2

which reduces to

102 — U201
K= M92 7 f201
g9 — 01
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Therefore

1 rK T — o T — W
d(FKix pEex) — i—/ f( )— f( )d
( ) 2J-x “ 0'2\/5 . 0'1\/5 v

1 poo T — U2 r— MK
i—/ f( ) —erf< )dx A0.2
2k . o9V/2 o1V/2 ( )

with the above-mentioned value for K. We must determine the plus/minus signs
via comparison of erf((z — p;)/01v/2) and erf((z — pg)/02v/2). Since oy < oy we
have that < K implies the graph of the first cdf must be below that of the second,

and vice versa for x > K which implies that (A.0.2) reduces to

K _ _
erf(y m)—erf(y Ml)dy

1
d FKI,X’FKQ,X — _/
( ) 2J- 09V/2 o1V/2
1 foe Y — Mo Yy—
_L f( )— f( )d (A3
2/K . o9V/2 . o1V2 Y ( )

For notational convenience we also introduce

_K—Nl_K—Nz_ M1 — M2

L= 01\/5 B 02\/5 _\@(02—01).
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Now we calculate

°° Yy— Y — e
erf( ) erf( )dy
/ o1V2 09V/2
T _
= lim erf(y Ml) — erf(y M)dy

T—o0 01V/2 09V/2
(T—p1)/o1V2
= lim o (o1V/2)erf (y)dy
T—o0 JI

(T—p2)/02V?2
-/ (azx/i)erf( )dy

= Jim o1v2 [yerfy+ ﬁ (LT m)/o1v2
_OQJ[yerfy + ﬁ] (LT_M)/@\/E

= Tll—{{.lo(T M1)erf( 01_\/@) —(T - MQ)erf(T;Z—\//;)
+(0og — al)ﬁ(LerfL n %)

= (p2— ) (1 + erf(ﬁ))

+ (A.0.4)

A similar calculation gives
/K erf(y — MQ) — erf(y Ml)
—0000 02_\/5_ 01\/_
= —/_Kerf( 52\/52) —erf( 51\/51)6@
_ _/OZ erf(y ;f\;%h)) B erf(y ;;\;%h))dy
1~ M2
:(m—mmkmﬁQé%;%E»

Therefore (A.0.1) follows from (A.0.3), (A.0.4) and (A.0.5).

+ (A.0.5)
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