

Object-Oriented Ecosystem Modelling

A Case Study: SALMO-OO

A thesis submitted for the degree of Master of Science

Byron He Zhang

Discipline of Environmental Biology

School of Earth and Environmental Sciences

The University of Adelaide

January 2006

Copyright ©2006 Byron H. Zhang.

Abstract

Object-oriented ecosystem modelling was introduced in the early of 1990s (Silvert,

1992). From that time on, ecosystem models using object-oriented programming

(OOP) has earned significant achievements with increasing upgraded information

technology. The common purposes of ecosystem modellers are to build a model with

flexible structure, which allow continuous modifications on the model content. In last

decade, ecosystem modellers have put a large number of efforts to practice the OOP

approaches in order to implement a true object-oriented ecosystem model. However,

these previous work have not fully take advantage of object-orientation because of

misusing more or less this technique. This paper explains the shortcoming of these

previous endeavours therewith points out a practical solution that using the

methodology of object-oriented software engineering and some relative novel

information techniques. A case study SALMO-OO will be presented in this paper to

prove Silvert’s assumption that OOP play an important role on ecosystem modelling

approaches. Moreover, the results of SALMO-OO convince that object-oriented

ecosystem modelling can be achieved by using object-oriented software engineering

associating with a true object-oriented programming language (Java in this case).

Statement of Originality

This work contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Libraries,

being available for photocopying and loan.

Byron Zhang

Acknowledgements

I would like to thank my supervisors, Prof. Friedrich Rechnagel and Dr. HongQing

Cao. Friedrich, my principal supervisor, offers this wonderful opportunity for me to

engage in the interdisciplinary project between ecology and software engineering. His

instruction benefits me to deepen my understanding of the difference and similarity

between the scientific research and the software development. Also he has spent lots

of precious time to teach me the knowledge of freshwater ecology with his advice,

knowledge, even patience. Likewise, HongQing, my co-supervisor, reinforce my

knowledge in software engineering area, and she instructs me one of her intelligent

Genetic Algorithms, which make me feel that I have more strength for my future

career.

This work would not have been done so quickly without the collaborations of Ms.

Lydia Cetin. As my key colleague, she has prepared most of the materials that involve

in the software development, and sometimes plays a role during I type source code as

a peer programmer, especially thanks for her proofreading my thesis.

I also would like to thank my IBP teacher, Ms. Margaret Cargill. She helps me go

through my first taste of writing a scientific paper.

Finally, I must thank my parents, QingZhi and DeJun, for their love, support, and

financial aid. None of this work would have been possible without their continuous

efforts on me.

Contents
1 Introduction ...1

1.1 Literature Review..3
1.1.1 Introduction of Object-Oriented History ...3
1.1.2 Previous Efforts of Object-Oriented Ecological Modelling6
1.1.3 Ecosystem Models Using Object-Oriented Design............................10
1.1.4 The Object-Oriented Ecosystem Models...13

1.2 Ecological Modelling vs. The Complexity of ecosystems.........................15
1.3 The Description of SALMO ...19

1.3.1 The Structure of The model SALMO..20
1.3.2 Possible Improvements Of Lake Ecosystem Modelling In General
And The Model SALMO In Particular By Means Of Object-Oriented
Programming..22

2 Proposal: Objectives, Hypotheses and Expected Outcomes..................25

3 Materials and methods ...28

3.1 Materials...28
3.2 Methods ...29

3.2.1 Object-Orientation ...29
3.2.2 The Choice of Programming Languages – Using Java31
3.2.3 Object-Oriented Software Engineering ..33
3.2.4 Prototyping ...42
3.2.5 Web Tier Techniques ...43

4 Results..45

4.1 Prototypes..45
4.2 The SALMO-OO Database ...51
4.3 The SALMO-OO Class Library ...53
4.4 Web-Enabled Applications ..56
4.5 The SALMO-OO Documents ..58

4.5.1 The SALMO-OO Requirement Statement Document58
4.5.2 The SALMO-OO Specification ..59
4.5.3 The SALMO-OO Use-Case Diagrams ...62
4.5.4 The SALMO-OO Class Diagrams...67
4.5.5 The SALMO-OO Sequence Diagrams...70
4.5.6 The SALMO-OO Communication Diagrams74
4.5.7 The SALMO-OO UML diagrams for deployment77

4.6 The SALMO-OO API Specification ..80
5 Discussion ...81

5.1 SALMO-OO can be implemented by Object-Oriented programming
using Java ..81
5.2 Users can access SALMO-OO via Internet as well as friendly GUI.......85
5.3 Object-oriented technology allows for developing an algal model library
..97
5.4 The implication of the SALMO-OO documents100

6 Conclusions ..102

7 Recommendations ..104

 I

List of Figures

Figure 1.1 An aquatic ecosystem class diagram (Ferreira 1994)......................12

Figure 1.1 The structure of the ODE of SALMO (after Recknagel 1989).........21

Figure 1.2 The input and output variables of the model SALMO21

Figure 2.1 The components of the EIS ..25

Figure 3.1 The map of Bauzten and Saidenbach reservoir................................29

Figure 3.2 UML use-case diagrams for illustrating the relationship between

algae and algal growth ...35

Figure 3.3 A UML class diagrams for phytoplankton and blue-green algae

class ..38

Figure 3.4 A UML sequence diagram for phytoplankton and zooplankton39

Figure 3.4 A UML communication diagrams for top-level value passing39

Figure 3.5 Data pre-processing ..41

Figure 4.1 A UML use-case diagram for food web in the Parker model46

Figure 4.2 A UML class diagram for Runge-Kutta calculations in the Parker

model...46

Figure 4.3 A UML class diagram for GUI in the Parker model...........................46

Figure 4.4(a) The first prototype - the Parker model results47

Figure 4.4(b) The original Parker model results ((Parker 1968)........................49

Figure 4.5 (a) Data table structure Figure 4.5 (b) Profile table structure

 52

 II

Figure 4.6 The SALMO-OO component view...54

Figure 4.7 Visualisation of validation results for concentrations of phosphate

PO4-P, chlorophyll a, total algal biovolume and zooplankton biovolume

simulated by SALMO-OO for the Bautzen Reservoir in 1978............................56

Figure 4.8 Web tier structure for SALMO-OO ..57

Figure 4.9 UML diagrams for use-case for the interaction between the user

and SALMO-OO ..63

Figure 4.10 UML diagrams for use-case for the structuring of SALMO-OO by

means of the model library and user selections ...64

Figure 4.11 UML diagrams for use-case for the structure of the model SALMO

..66

Figure 4.12 UML class diagrams for the model components of SALMO-OO .68

Figure 4.13 UML class diagrams for the mathematical operation of SALMO-

OO ...69

Figure 4.14 UML class diagrams for the graphical user interface of SALMO-

OO ...69

Figure 4.15 UML class diagrams for the lake database of SALMO-OO70

Figure 4.16 UML sequence diagrams for the application of SALMO-OO73

Figure 4.17 UML communication diagrams for the application SALMO-OO...74

Figure 4.18 A UML communication diagrams for the relationships between the

objects and the shard variables ..76

Figure 4.19 UML diagrams for deployment for the stand-alone version of

SALMO-OO ..78

 III

Figure 4.20 UML diagrams for deployment for network version of SALMO-OO

..79

Figure 4.21 Suites file hierarchy of SALMO-OO ..80

Figure 5.1 Simulation results by the FORTRAN IV version of SALMO for the

Lake Stechlin 1975, Saidenbach Reservoir 1975 and Bautzen Reservoir 1978

..81

Figure 5.2 Simulation results by SALMO-OO for Saidenbach Reservoir 1975

..82

Figure 5.3 Simulation results by SALMO-OO for Bautzen Reservoir 197883

Figure 5.4 Initial GUI of the stand-alone version of SALMO-OO.......................86

Figure 5.5 Example for the selection of lake ‘Bautzen’ by means of the GUI

stand-alone version of SALMO-OO ...87

Figure 5.6 Example for the selection of year ‘1978’ of lake ‘Bautzen’ by means

of the GUI stand-alone version of SALMO-OO ..88

Figure 5.7 Visualisation of validation results for concentrations of phosphate

PO4-P, chlorophyll a, total algal biovolume and zooplankton biovolume

simulated for the Bautzen Reservoir in 1978 by the stand-alone version of

SALMO-OO (page No. 1)...89

Figure 5.8 Visualisation of validation results for concentrations of phosphate

PO4-P, nitrate NO3-N, dissolved oxygen and detritus simulated for the

Bautzen Reservoir in 1978 by the stand-alone version of SALMO-OO (page

No. 2)...90

Figure 5.9 Visualisation of validation results for the concentrations of total

algal biomass, diatom biuomass, green algae biomass and blue-green algae

biomass simulated for the Bautzen Reservoir in 1978 by the stand-alone

version of SALMO-OO (page No. 3) ..91

 IV

Figure 5.10(a) Modelling selection page Figure 5.10(b) 1 result pagest

 92

Figure 5.10(c) 2 result page Figure 5.10(d) 3 result pagend rd92

Figure 5.11(a) Selection of the scenario ‘artificial mixing and phosphate load

reduction’ for the Saidenbach Reservoir in 1975 by means of the GUI of the

stand-alone version of SALMO-OO ...93

Figure 5.11(b) Specification of the phosphate load reduction by 90% for the

selected the scenario ‘artificial mixing and phosphate load reduction’ for the

Saidenbach Reservoir in 1975 by means of the GUI of the stand-alone

version of SALMO-OO ...94

Figure 5.12 Simulation result of the scenario ‘artificial mixing and phosphate

load reduction’ for the Saidenbach Reservoir in 1975 visualised by the GUI of

the stand-alone version of SALMO-OO...95

Figure 5.13(a) Lake selection web page Figure 5.13(b) Year selection

web page ..96

Figure 5.13(c) Scenario selection web page Figure 5.13(d) 1 result web

page

st

 96

Figure 5.13(e) 2 result web page Figure 5.13(f) 3 result web

page

nd rd

...97

Figure 5.14 Selection of the algal growth model 3 from the model library for

the simulation of the Bautzen Reservoir in 1978 by means of the GUI of the

stand-alone version of SALMO-OO ...98

Figure 5.15 Selection of the algal grazing model 3 from the model library for

the simulation of the Bautzen Reservoir in 1978 by means of the GUI of the

stand-alone version of SALMO-OO ...99

Figure 5.16 Illustration of the simulation results for the Bautzen Reservoir in

1978 by different model structures of SALMO-OO selected from the model

 V

library of the stand-alone version of SALMO-OO (from Cetin, Zhang and

Recknagel 2005) ...100

 VI

List of Tables

Table 3.1 Choice of programming languages...32

Table 4.1 Examples of the naming list of SALMO-OO..60

 VII

Chapter 1

Introduction

Ecological modelling is a process to represent and simulate natural ecosystems by

means of computable methods, such as ordinary differential equations (ODE).

Essentially, ecological modelling consists of two elements. One is an ecosystem

model that can be represented as an ecosystem class library. Another is a group of

ecological data that can be represented by an ecological database. A class library is

defined as a set of ready-made software routines (class definitions) that programmers

use for writing object-oriented programs (Schach 2002b). An ecosystem class library

therefore means a group of computer algorithms that implement the equations of an

ecosystem model and are assembled in a computer program. The ecological database

stands for information technology for archiving and retrieval of manageable

ecological data.

Ecologists benefit from both ecological modelling and novel information technology.

Computer systems provide a platform for ecologists to create virtual ecosystems

determined by process-based ODE and driven by complex ecological data. Object-

oriented design and implementation of ecosystem class libraries is a novel

information technology that significantly improves the transparency and flexibility of

complex ecological models. Object-oriented software design and implementation

have been introduced in the early 1980s and since then broadly applied for

commercial and scientific uses (Schach 2002b).

 1

Lake ecosystems are one application area of ecological modelling. Lake ecosystem

models need to reflect the basic structure of the pelagic food web and nutrient cycle in

order to realistically simulate phytoplankton and zooplankton dynamics in response to

seasons and water quality changes. The lake ecosystem model SALMO (Recknagel

and Benndorf 1982, Recknagel 1989, Recknagel et al. 1995) meets well these

requirements being based on ODE for three functional groups of phytoplankton

(diatoms, green algae, blue green algae), herbivorous zooplankton (cladocereans),

dissolved inorganic phosphate (DIP), dissolved inorganic nitrate (DIN), detritus, and

dissolved oxygen. Through continuous improvements over the past decade, this model

is now generic for non-shallow lakes (maximum depth > 5m) and able to simulate

daily dynamics of phytoplankton, zooplankton, oxygen, phosphates, nitrate, and

detritus concentration in response to lake-specific data of water temperature, solar

radiation and nutrient loadings measured for one particular year. The model is a useful

tool for scenario analysis and allows forecasting of lake ecosystem responses to

management scenarios such as artificial mixing, bio-manipulation and external

nutrient control. The pervious model class library of SALMO was designed and

implemented in a modular but rigid structure by means of the programming language

Fortran IV, which does not support the object-oriented paradigm but allows structured

programming. Therefore the functionality of the previous SALMO program was

limited in flexibility, user friendliness, and web accessibility. To overcome these

limitations, this research aimed at the object-oriented design and implementation of

the model SALMO by means of the programming language Java, and to establish a

prototype for the object-oriented design and implementations of complex ecological

models.

 2

1.1 Literature Review

1.1.1 Introduction of Object-Oriented History

Since the first object-oriented concept and Simula were introduced in 1960s (Dahl and

Nygaard 1966), the object-oriented programming language (OOPL) family probably

consists of more than 30 members by now. The popular OOPLs could be Simula,

Smalltalk-80 (Goldberg and Robson 1983), Eiffel (Meyer 1992), C++ (Stroustrup

1986), Java (Sun Microsystems 1995-2005), and C# (Microsoft 2006a).

These OOPLs are developed based on the fundamental units of object-orientation:

object, class, inheritance, encapsulation, and polymorphism (Abadi and Cardelli

1998). These basic concepts are well established and widely cited in the literature.

The most accurate definition of an object is a software bundle of variables and related

methods (Sun Microsystems 1995-2005). A class is an abstraction data type that

represents the instances of all objects (Pugh et al. 1987). In other words, a class is a

concept that abstracts a group of relative objects. For example, mankind covers all of

the human beings while an individual can be regarded as an instance of the mankind.

In this context, a concrete individual is the object of the mankind class. In case of

aquatic ecology, phytoplankton is a class that abstracts various algae. Diatoms, green

algae, blue green algae are the objects of the phytoplankton class respectively.

Inheritance is defined as a subclass that extends the details in its superclass. This idea

dates back to the creation of biological taxonomy, which is a example of how

computer science is inspired by biology. In the above case, the mankind class

comprises two subclasses: the female and the male class. Similarly, the phytoplankton

 3

class can descend from an algae species class that extends the growth behaviour.

Thus, the extended algae class is the subclass of the phytoplankton class. Logically,

the phytoplankton class is the superclass of the algae class. There are inheritance

relationship between the phytoplankton superclass and the algae subclass. Further

discussion can be found in (Meyer 1996). The idea of encapsulation was introduced as

information hiding (Parnas 1971). As the name implies, encapsulation or information

hiding allows objects to protect their details from illogical access from other objects.

Specifically, an object can hide its own information, including fields (states) and

methods (behaviours). For example, a phytoplankton class contains a biomass field, a

growth and a grazing method. Another zooplankton class contains a biomass field and

a growth method. Obviously, the phytoplankton biomass is different from the

zooplankton one. Encapsulation makes these two different biological biomass fields

be invisible to each other. A zooplankton object grazes an algae object, in this

context, can be explained as a zooplankton object increases its biomass field value by

the zooplankton growth method as the same time as an phytoplankton object

decreases its biomass field value by the phytoplankton grazing method. Notes that

neither a zooplankton object nor a phytoplankton object can directly access others’

fields or methods. They have to send and receive a message in order to tell a mutual

object to complete this logic. Polymorphism means that programming language of a

variable and function have more one type (Cardelli and Wegner 1985). Polymorphism

usually accompanies with inheritance. For instance, a superclass has three subclasses.

These three subclasses inherit a variable of the superclass but each of this subclass has

different variable types and the exactly same variable name. The object of the

superclass is able to use the appropriate variable with the desired type during runtime.

This mechanism is polymorphism. It is extreme useful in ecological modelling. For

 4

example, in the above-mentioned case, a phytoplankton object can be cast as its

subclass type such as an algae type. For a concern condition, a model simulation will

be automatically informed which algae type needs to be activated. Therefore, the

model will run the approximate object methods in the runtime. The extended algae

growth model libraries provide either from the original growth model library or these

methods. Without exception, polymorphism is one of natural world concepts utilised

in computer science.

As far as the motivation of creating OOPLs is concerned, the original intention is to

create a new programming language in order to overcome some previous

programming problems such as maintainability and readability. It is well known that a

software product is made of code. The conventional programming can be described as

the larger the software product the more mass code is required. As a result, software

developers suffer the difficulty of maintenance and understand the code when the

software product is large enough to consist of long list codes.

The solution using object-oriented paradigm simply breaks the code into a number of

relative pieces. Each piece is organized in the smallest extent to represent a single

object, including its state and behaviour. For example, a car object can represent a

Ford sedan. This car object may comprise a number of states such as its colour and

the number of wheels, and behaviours such as starting, braking, and parking. Also in

this case, a car class represents all cars. Obviously, a Ford sedan is one of the

instances of cars. A well-designed class is highly reusable, which can communicate

 5

with other objects by sending and receiving message without any modification in all

the different special applications. Just like a Ford sedan can be simply used if lending

to other drivers.

In recent years, the two popular OOPLs are Java and C#, which are made from private

computer companies Sun Microsystems and Microsoft respectively. Java

programming language not only is supported by Sun Java group but also is

technological shared in open source communities. As the most popular, object-

oriented, and free OOPL, Java widespread applies in various scientific research

projects besides commercial applications.

1.1.2 Previous Efforts of Object-Oriented Ecological Modelling

Many efforts have been undertaken to improve ecological modelling by using object-

oriented technology.

In the early of 1990s, biologists had attempted to consider object-oriented technology

as a novel method for ecosystem modelling. The idea of using object-oriented

programming (OOP) for ecosystem modelling was introduced by a Canadian biologist

(Silvert 1992). From biologists’ perspectives, the object-oriented concept is to focus

on the abstract representation of real objects in the natural worlds instead of the linear

sequence of calculations in some ecosystem model programs. In this paper, Silvert

started from a question whether the model structure should reflect the ecosystem

structure. Subsequently, the detail introductions about object-oriented programming

 6

have been discussed, including the concept of objects, inheritance, interactions, even

the way to write code and maintenance. For example, an object-oriented programming

language code is listed in the below code fragment.

Algae = object(Plant)
Biomass;
procedure Growth();
procedure Grazing();

end;

This code fragment describes an Algae object that extends the Plant object. Inside the

Algae object, it comprises a Biomass state and the Growth and Grazing behaviour.

Obviously, this code fragment reflects the basic biological processes of algae species.

Firstly, it defines an Algae object is one of the sub-objects of the Plant object, which

represents the inheritance relationship. Secondly, it briefly lists the process of algae

life cycle: growth and death. The algae increases biomass value that is represented by

the growth behaviour and the value are decreased because of grazing by herbivorous

zooplankton. Besides the various code samples, this paper discusses comprehensively

the details behind these samples of code in order to instruct other practisers how to

programme object-oriented ecosystem models.

Also, this paper pointed out the natural compatibility between some object-oriented

concepts and biology. For example, the inheritance of object-orientation originates

from biological literature. Under these merits, the author believed that OOP could

implement ecosystem models with highly flexibility and maintainability. Therefore,

OOP would become a dominated methodology in implementing ecosystem models in

the future if there will appear some effective object-oriented programming language.

 7

This assumption not only indicates Silvert’s anticipation but also implies the

infeasibility of using object-oriented programming languages in developing large-

scale ecosystem models at that age. Indeed, object-oriented languages were not ready

to be applied until a few years later. The unfortunately previous disadvantages of

OOP such as low level of optimisation, difficulty to integration, and inefficiency

results in delaying widespread applications of object-oriented ecosystem models.

However, Silvert foresaw the perspectives that OOP would be an important approach

in ecosystem modelling. The history of object-oriented ecosystem modelling proves

Silvert’s undoubted prediction.

Another published paper (Sequeira et al. 1991) even further discover the object-

oriented simulation in plant applications. This paper introduces a case study to model

the plant growth objects by object-oriented paradigm. In addition to the abundant

literatures of object-oriented introduction, a specific application discussed that

illustrates the way how object-oriented simulation benefits the applications of cotton

growth and development. Even the authors of this paper adopt diagrams to represent

the design documents in order to clarify the differences between object-oriented and

procedural approaches. This outstanding work not only discusses the usage of object-

oriented programming approaches for ecological modelling in theory but also

illustrates a concrete case study. These outcomes will provide a typical sample for

other biologists and modellers although the different ecosystem types.

 8

With rapidly innovation of information technology after mid-1990s, object-oriented

technology has been widely applied to terrestrial ecosystems focusing on plant growth

models (Acock and Reddy 1997, Chen and Reynolds 1997, Lemmon and Chuk 1997)

and, to a lesser extent, to aquatic ecosystems focusing on freshwater food webs and

nutrient cycles (Ferreira 1994). Undoubtedly, these previous studies have stimulated

both concepts for ecological modelling and ecosystem research in general. However,

these efforts demonstrated neither clearly the advantage of applying object-oriented

technology to ecosystem models, nor convincingly the application of object-oriented

technology to transparently structure complex ecosystem models. Thus, there is a

demand to promote both the improved functionality of ecosystem models and the best

practice of implementing ecosystem models by object-oriented programming.

The following sections will review previous efforts on ecological modelling using

object-oriented technology in terms of their possibilities and shortcomings.

Subsequently, I will discuss how the complexity of ecosystems has influenced the

choice of modelling methods. The final section will introduce the model SALMO, as

well as discuss improvement of SALMO in particular and ecological models in

general by means of OOP.

The previous studies on object-oriented programming of ecological models resulted in

a few different object-oriented models depending on the degree of achieving both an

object-oriented design and implementation. Most of the previous studies focused

either on object-oriented design or implementation but failed to achieve both.

 9

1.1.3 Ecosystem Models Using Object-Oriented Design

Some ecosystem models were designed according to the object-oriented paradigm but

implemented by procedural or hybrid programming languages such as Fortran, Pascal

or C++. For example, FEMIME (Soetaert et al. 2002) was intended to construct an

environment for mathematically modelling with reusability, flexibility, and

maintainability by using object-oriented design. It separates deterministic ecosystem

models into three parts: formulation, numerical solution, and application, which

benefits ecologists or modellers to reuse the various model libraries as well as

simplify model libraries design. Moreover, FEMIME provides a general platform for

numerical solution selection and data interaction. The author of this paper claims that

FEMIME has generic performance in any deterministic, complex, object-oriented

ecosystem model implementation. However, this paper neither contains any clear

diagram to represent the structure of FEMIME, nor programmes it in object-oriented

language. It is hard to be convinced that FEMIME fully adopts object-oriented design

without displaying any well-designed structure diagram. As far as the usage of

programming languages is concerned, FEMIME uses one of the procedural

programming languages Fortran, which clearly indicated by the discussion of using 13

routines and programming in Fortran. These evidences show that FEMIME was built

based on object-oriented design and implemented in structural procedural language.

The limitation of Fortran is because it allows only procedural programming so that

cannot take advantage of object-oriented programming approaches, and cannot link

models to the Internet. It is clear that FEMIME needs to be implemented in an object-

oriented programming language in the future work. In addition, the generality of

FEMIME is limited in Fortran-based ecosystem models. A highly reusable model

 10

library inside model is beyond the scope of FEMIME because it only focuses only the

high-level process of modelling. Therefore, it remains a big gap that needs to be filled

in when ecologists or modellers expect more details in ecosystem model

implementation such as how to programme an Algae code object.

Other examples such as ECOWIN (Ferreira 1994) successful delivers a well-designed

aquatic ecosystem model. It is based on object-oriented paradigm but implemented in

Pascal. The most exciting outcome of ECOWIN is a descendent aquatic ecosystem

class diagram, which is showed in Figure 1.1, an aquatic ecosystem object inheritance

hierarchy by means of object-oriented design. There are four descendent levels in

ECOWIN class diagram. Each descendent level class inherit the super-level class,

which automatically reuse its public attributes and methods. For example, the

Phytoplankton and Phytobenthos object share a common method named Production

that belongs to the Producers object. Through benefiting from object-orientation,

ECOWIN earns great advantages in maintainability and adaptability. According to its

conclusion, ECOWIN can be applied in various environmental affairs such as metal

pollution and red tides.

 11

Figure 1.1 An aquatic ecosystem class diagram (Ferreira 1994)

Although ECOWIN takes fully advantages of object-oriented design, one drawback

cannot be ignored. ECOWIN is implemented in Pascal family programming language

(Turbo Pascal for Windows). In computer science context, Turbo Pascal is not

completed object-oriented programming language (McMillan and Collins 1990).

Alternatively, ECOWIN can use Delphi, which provides an object-oriented Pascal

environment (Gofen 2001). The suggestion to use object-oriented Pascal will benefit

ECOWIN take fully advantages of object-orientation in the future work.

Another case is a cotton crop model in C++, which called Cotton++ (Lemmon and

Chuk 1997). Cotton++ is designed for agriculture applications and implemented in

C++ programming language. This model is the part of a Decision Supporting Systems

(DSS) for crop management. As far as C++-based models are concerned, the

 12

ecological modellers have to take limitations and problems of the C++ programming

language such as memory leaking into account (Heine and Lam 2003). Even some

computer scientists doubt that C++ is a true object-oriented language (Jenkins and

Hardman 2004) and detail discussions can be found in (Stroustrup 1995), which

discusses why C++ is not object-oriented programming language by its creator. The

fact is C++ adopt the characters of both object-oriented and procedural programming

languages, which can be defined as a hybrid programming language. In addition, the

author of Cotton++ has done some interesting comparisons between C++ and

Smalltalk. The conclusion is using C++ rather than Smalltalk because of the

difficulties to use Smalltalk in numerical analysis.

Although these previous studies focused on different ecosystem types and problems,

they all emphasized on the following aspects: (1) the introduction of the nature and

benefits of object-oriented technology; (2) the methodology and process of

implementing ecosystem models using object-oriented technology or programming

language; (3) the design of a software application in order to facilitate the simulation

of ecosystems. All these studies provided reasonable background knowledge on the

ecosystem type and model purpose. However, most of these studies failed to

thoroughly and properly apply object-oriented technology even though paradigms of

object-oriented design were promoted. This is a crucial limitation of the previous

applications that this research is intended to overcome.

1.1.4 The Object-Oriented Ecosystem Models

 13

The object-oriented ecosystem models require not only object-oriented design but also

using an object-oriented programming language. For example, SSEM is designed for

shallow-sea fisheries and using Smalltalk (Sekine et al. 1991). The outcomes of this

model prove that object-orientation benefit the flexibility of the application. Also,

SSEM stores the ecological data into a database instead of the plain text file in the

previous applications. After 1997, a new programming language Java is introduced in

programming language family. As a result, Java-based ecological modelling earns

widespread attractions. For example, the model Eclpss adopted the Java technology to

build an ecological component library for parallel spatial simulation (Wenderholm

2003). The model Kraalingen for crops (Papajorgji et al. 2004) was implemented by

Java and is associated with the Unified Modelling Language (UML) (Object

Management Group 1997-2005), a type of modelling language to design software

applications. These efforts successfully delivered some software applications with

good performance and such desired attributes as being highly reusable, maintainable,

scalable, and portable. Object-oriented programming such as Java for object-oriented

modelling facilitates computer-based ecosystem simulation at an advanced level.

In conclusion, these previous efforts on ecological modelling attract increasing

applications in various ecological areas. Regardless of using any object-oriented

programming languages, ecologists and modellers have already been convinced that

ecological modelling can take advantage of object-orientation. Unfortunately, in the

case of using procedural or hybrid object-oriented programming language, it is

difficult to protect ecosystem models from inflexible model structure. Thus, it is

meaningless for ecosystem modellers to pursue the comparison between computer

 14

programming languages before attempting to implement an ideal ecosystem model. In

fact, there is no benchmark for guiding ecosystem modellers to practically select and

apply one object-oriented programming language to the model implementation. Detail

discussions about this issue would beyond this paper’s focus. Readers may find more

in (Ryder and Burnett 2005). Therefore, I would suggest that ecosystem modellers

regard the implementations of ecosystem models as one of the software applications

in software engineering domain. Logically, the solutions to achieve object-oriented

ecosystem models are using any object-oriented programming language and

methodology of object-oriented software engineering. To achieve this gap, the future

ecosystem modelling strongly suggests producing comprehensive modelling

documents, including the design, the class library reference, and the source code if it

is open to public. Ecologists or modellers are encouraged to further introduce the

methodology of software engineering into the development of ecosystem models in

order to achieve a global standard ecological modelling society in the future.

1.2 Ecological Modelling vs. The Complexity of ecosystems

The complexity of ecosystems is still a big challenge when ecologists attempt to

realize various ecosystem models in scientific or practical applications. User-friendly

implementation and maintenance of ecological models can be quite complicated,

time-consuming and costly.

From the ecological modellers’ point of view, the complexity of ecosystems comes

from the non-linear interactions between abiotic and biotic components as well as the

 15

stochastic nature of ecosystem that need to be taken into account by the ecological

data, mathematical equations and computer programs. Usually, modifications of the

program structure can be very time-consuming when an ecosystem model needs to be

changed or upgraded if the program is not designed appropriately. For example, it can

be expected that future applications of SALMO need to add components such as fish

in order to extend the functionality of SALMO. This would currently mean that the

Fortran IV source code for the mathematical calculations, the data import and the

subroutines invoked have to be modified. Thus, ecological modellers suffer from the

maintenance of ecosystem models if they fail to properly structure and hence simplify

the complexity of ecosystem models in the early stage of design and programming.

Obviously, neither the semi-object-oriented programming languages (e.g. C++

language) are able to suit this purpose, nor the ordinary programming languages (e.g.

C or Fortran language). Thus, it is necessary to investigate how to consider and handle

the complexity of ecosystems by means of object-oriented ecological modelling.

There are some obvious shortcomings that the Fortran IV version of the model

SALMO does not resolve. The lack of flexibility is one of the most significant

shortcomings in terms of a SALMO class library even though the model SALMO is

designed in a modular structure. In this context, the term class library reflects a group

of flexible and transparent computer algorithms. Unlike the normal computer

programs, the class library has a well-designed structure. Even though individual

algorithms are strongly cohesive the relationships between the algorithms are loosely

coupled. The complexity of ecosystems causes the difficulty to pursue this intention.

There are nine state variables in the model SALMO, which represent nutrient cycles

 16

and food web interactions in lakes. As a result, the modellers have to consider how to

keep a high degree of cohesion in every individual state variable while lowering the

degree of couplings among these state variables in order to make the whole class

library highly flexible. The programming language Fortran does not offer object-

oriented concepts (Class, Object, Field, Method, Encapsulation, Inheritance, and

Polymorphism) but facilitated a modularly structured version of SALMO properly

executing logical and mathematical operations. The Fortran version of the model

SALMO cannot easily adapt to various data logic as applications shift from one lake

to another lake. In contrast, the object-oriented paradigm considers both specifically

mathematical calculation logic and data logic. By means of abstraction, instantiation,

inheritance, overload, overwrite and other operations, some object-oriented design

methodologies and programming languages can achieve the highly flexible class

library. Object-oriented technology represents these two logics respectively by

method and field, which are two basic elements in a class. For example, the

Zooplankton class contains a common attribute of biomass that needs to store these

values, so a field ‘valueOfBiomass’ in the zooplankton class represents the attribute

of biomass. Similarly, a method represents the logic that calculates the value of

biomass (e.g. here called ‘getBiomass’). Once the zooplankton class is created, it can

communicate with other classes via the zooplankton object (an instantiation of the

Zooplankton class). By means of similar simulations for all abiotic and biotic state

variables over time, the model SALMO realistically mimics nutrient cycles and food

web dynamics of natural lake ecosystem in the computer. All the functionalities that

belong to a particular state variable will be contained in a class (the class name

usually is the same as the state variable), which refers to the purpose of strong

cohesion. On the other hand, the parameter transfer represents the interactions

 17

amongst these state variables. It would meet the criteria of loose coupling if these

parameters were kept to a minimum. Thus, object-oriented technology is an ideal

solution that simplifies the complexity of ecosystem modelling.

Another shortcoming of the Fortran version of the model SALMO is the lack of

friendly user interface and web accessibility. It is undoubted that object-oriented

technology plays an important role in pursuing these purposes, and fortunately the

fundamentals are not too much different from the implementation of flexibility.

Technologically, most of the details are transparent to the ecological modellers. The

current information technology enables any computer model to have friendly user

interfaces. Even most non-object-oriented technologies can achieve friendly user

interfaces and web accessibility, except the Fortran programming language.

The previous studies clearly indicated that object-oriented technology provides great

potential for ecological modelling, assisting in handling and unravelling the enormous

complexity of ecosystems comparing to traditional programming methods. However,

much work remains to be done to fully utilise and implement the functionality of

object-oriented technology. It appears that object-oriented technology was not well

interpreted and therefore not fully utilised in previous ecological applications. In

particular there are not many examples of true-object-oriented applications to lake

ecosystems. Therefore, this research aims to exemplarily organize the complexity of

lake ecosystem models by means of object-oriented technology and demonstrated by

means of SALMO.

 18

1.3 The Description of SALMO

The model SALMO (Recknagel and Benndorf 1982; Recknagel 1989) is designed as

a generic lake ecosystem model. The term generic means that the ODE of the model

represent key ecological processes in order to determine mass balances of inorganic

nutrients, detritus and oxygen as well as seasonally changing biomasses of

phytoplankton and zooplankton. Also the ODE of the model require explicit data of

lake and year specific driving variables such as water temperature, solar radiation,

mixing depth and nutrient loadings, which facilitate the computer simulation of a

broad range of lakes and reservoirs with diverse morphometry, water quality and

climate conditions. For example, the model has successfully been applied to simulate

lakes in the range from oligotrophic to hypertrophic conditions, as well as inversely

stratified temperate lakes with ice cover in winter and temperate to Mediterranean

lakes with thermal stratification in summer (Recknagel 1989). The model SALMO

gains its flexibility to changing environmental and climate conditions by both causally

determined process equations and measured input data of physical and chemical

driving variables. However, the so achieved generic properties of the model have their

price by causing high complexity of the ODE. Highly complex ODE are typical for

process-based deterministic ecosystem models and often affect the model

transparency, programming, implementation and maintenance. These factors often

impact on user friendliness and acceptance of the models. To overcome such negative

impacts of model complexity in the past, structured modular programming by

conventional programming languages such as FORTRAN IV was applied. The

concept of object-oriented programming and implementation by recent programming

languages such as Java provides advanced functionality for programming and

 19

implementing complex models that become more transparent, user-friendly and open

for development.

1.3.1 The Structure of The model SALMO

Figure 1.1 displays the simplified structure of the ODE of SALMO. The rectangles

symbolise the actual mass balance of the state variables such as phosphate P or

detritus D, which represent the left hand parts of an ODE. The circles symbolise the

actual rates variables of process equations such as growth or mortality, which

determine the changes of state variables. The curved arrows represent the causal

relationships between the state variables and the rate variables. The straight arrows

indicate the direction of the mass flow either gaining mass from a source (e.g. algal

growth) or loosing mass to a sink (e.g. algal grazing). The ODE of SALMO calculates

for measured physical and chemical input data the resulting output data for the state

variables. The Figure 1.2 shows the input and output variables that are typically

processed by the ODE of SALMO.

 20

Figure 1.1 The structure of the ODE of SALMO (after Recknagel 1989)

Figure 1.2 The input and output variables of the model SALMO

The ODE of the model SALMO considers an additional 128 constant parameters that

were defined and specified for the numerous process equations (Recknagel and

 21

Benndorf 1982). These parameter values also proved to be generic for lakes under

temperate and Mediterranean climate.

In order to be applicable to thermally stratified lakes in summer the model has been

designed to temporarily simulate the epilimnion and hypolimnion of a lake model by

separately calculating all ODE for the two layers.

All ODE of SALMO are calculated with a daily time step for 360 days per year. The

daily simulations start with calculations of the mean underwater light intensity over

the water volume from the photosynthetic active solar radiation at the lake surface by

considering light extinction over depth using Lambert-Beers-Law, and the

concentrations of phosphate and nitrate. The three ODEs for phytoplankton are

applied to diatoms, green algae and blue green algae whereby algal growth is

calculated as the difference of photosynthesis and respiration. Photosynthesis is

limited by underwater light, water temperature and concentration of phosphate and

nitrate. Phytoplankton grazing by zooplankton is considered as a key ecological

process determining loss of algal biomass. By programming the daily calculations of

the ODE and using daily data of input variables, the computer simulation of food web

dynamics and nutrient cycles of lakes by SALMO can be conducted.

1.3.2 Possible Improvements Of Lake Ecosystem Modelling In General And The
Model SALMO In Particular By Means Of Object-Oriented Programming

 22

Lake ecosystem modelling using object-oriented programming can facilitate model

and data sharing through the Internet. Provided that a generic ecosystem model is

available that is applicable to different climate and water quality condition, its access

by Internet makes it a global model that can be remotely run by users around the

world. The resulting promotion and sharing of modelling research results benefits

both the model developers and users.

Object-oriented programming allows making a basic lake ecosystem class library

highly reusable. The class library can be designed to consist of classes, fields and

methods. Classes are the smallest units of the ecosystem and represent individual

plant or animal species. Fields contain the attributes that describe a class. Methods

provide information on the ecological behaviour of a class. The application of the

general categories ‘class’, ‘field’ and ‘method’ allows classifying, standardising and

documenting complex ecological knowledge in a way that is understandable by both

ecologists and computer scientists.

The lake ecosystem model SALMO fulfils the requirements of a generic ecosystem

model and promises a useful case study for object-oriented programming and

implementation by means of Java. The application of object-oriented paradigms of

Java to SALMO require the design of a new program structure and functioning

compared to the previous program version by means of the conventional

programming language FORTRAN IV. As a result SALMO will gain a more

transparent, modular and flexible source code open for further development and can

 23

be remotely run through the Internet. As there is currently no lake ecosystem model

known to be accessible by Internet, the Java version of SALMO called SALMO-OO

could become the first global lake ecosystem model.

The present research will be a contribution to the development of a prospective global

lake ecosystem model SALMO-OO. The achievement will focus on a flexible,

reusable and portable lake ecosystem model by using object-oriented programming

and largely open source tools.

 24

Chapter 2

Proposal: Objectives, Hypotheses and Expected Outcomes

The objective of this research is to contribute to an ecological information system

(EIS) that consists of a Java runtime environment (JRE), class libraries, database

management system (DBMS), and documents (see Figure 3.1). The implementation

of the class libraries, DBMS, and documents are going to be completed by this

research. As far as the model SALMO is concerned, the object-oriented version

SALMO-OO will be developed by means of Java and imbedded in the EIS (see Fig.

3.1).

Figure 2.1 The components of the EIS

The following hypotheses will be tested during this study:

1. A fully functioning object-oriented version SALMO-OO of the model SALMO can

be programmed and implemented by Java

 25

2. A user-friendly graphical user interface (GUI) allows users to access SALMO-OO

via Internet

3. The object-oriented design, programming and implementation of SALMO-OO by

Java, and allows establishing a library of alternative process models such as for algal

growth, algal grazing, zooplankton growth or zooplankton mortality.

The expected outcomes of the proposed application of object-oriented programming

to ecosystem models can be summarised as follows:

- Providing transparent program structures of complex ecosystem models by means of

object-oriented programming and implementation in Java.

- Extending the structure and functioning of complex ecosystem models by

establishing flexible libraries for alternative ecological process models such as for

algal growth, algal grazing, zooplankton growth, and zooplankton mortality.

- Facilitating data and model sharing by standardised model and data structures.

- Facilitating a web based access and use of ecosystem models.

- Providing user-friendly GUI for ecosystem models as well as documentation and

visualisation of simulation results.

The proposed research will thoroughly apply concepts of object-oriented software

engineering by means of Java to implement the object-oriented version SALMO-OO

according to following procedure:

1. Understand the basic requirements of SALMO-OO by means of object-

 26

oriented programming;

2. Design SALMO-OO that refers to these basic requirements in UML and

adopt Model-View-Control (MVC) design pattern by means of object-

oriented design (Gamma et al. 1995);

3. Implement the SALMO-OO Application Program Interface (API) in Java

programming language (Beck 1999) and object-oriented programming;

4. Deploy the SALMO-OO API in Tomcat (Apache Jakarta Project 1999-

2005) web container in order to realize web accessibility;

5. Create the SALMO-OO documents, including UML diagrams and the

SALMO-OO API Specification.

 27

Chapter 3

Materials and methods

3.1 Materials

Two types of materials are essential to be used in this project: the freshwater lake data

and two lake ecosystem models: the lake model Parker (Parker 1968) and the lake

model SALMO (Recknagel and Benndorf 1982). The Parker model will be used to

validate GUI, web and database components of SALMO-OO. Obviously, the model

SALMO is responsible for the usage of core component of SALMO-OO.

Currently, there are more than twenty databases of freshwater lakes in Australia and

overseas available. We will use Saidenbach Reservoir (mesotrophic lake, Germany,

bottom one in Figure 3.1) and Bautzen reservoir (hypereutrophic lake, Germany, top

one in Figure 3.1) databases as case studies to test and verify the object-oriented

version of the model SALMO. All measured input data for lakes are available as 10-

day mean value for 36 decades per year. In summer input date will be provided for

two layers (epilimnion and hypolimnion), including nutrients (e.g. dissolved inorganic

phosphate), solar radiation, water temperature, water volume maximum and mean

mixing depth. The validation of the model output is normally conducted by the

comparison with measured data for in-lake concentration of phosphate, Chlorophyll-a,

and nitrate.

 28

Figure 3.1 The map of Bauzten and Saidenbach reservoir

Both models are documented as sets of ODE (Parker 1968; Recknagel and Benndorf

1982). The model SALMO is also available as computer model programmed and

implemented in FORTRAN IV.

3.2 Methods

3.2.1 Object-Orientation

This project will generally adopt object-orientation to realize the hypotheses that are

mentioned in Chapter 2. Object-orientation requires using one of the object-oriented

programming languages and compulsorily develops the SALMO class libraries that

are based on object-oriented paradigm. Practically, it would not be easily to fully

follow the rules of object-orientation. As Chapter 1 discussed, the previous efforts

more or less failed to take all the advantages of object-orientation although those

practitioners were intended to do so. To address this issue, the development of

 29

SALMO-OO needs to use the methodology of object-oriented software engineering

(Schach 2002b) associating with some novel information techniques.

The method of object-orientation firstly changes several terms of model. Underlying

object-oriented paradigm, the next version of the model SALMO will be different

from the Fortran IV one in program structures, designs, programming approaches. For

example, the difference between the object-oriented (SALMO-OO) and structured

(the Fortran IV SALMO) programming has implications to the different structure and

functioning of complex ecological models. In terms of program documentation UML

diagrams will be used to represent the object-oriented program structure rather than

traditional flow charts that were used to document conventionally structured

programs. Objects in the context of object-oriented programming mean subroutines.

Secondly, comparing to Waterfall model in the methodology of classical software

engineering (Pressman 2001), object-oriented software engineering comprises three

core phases: object-oriented analysis, object-oriented design, and object-oriented

implementation and integration. These specific methods are useful to clarify the basic

requirements, design the structure, and implement the class libraries of SALMO-OO.

In other words, the development of SALMO-OO can benefit from the disciplines,

methodologies, and processes of object-oriented software engineering. Consequently,

it is easily for the SALMO-OO modeller to simulate the ecological knowledge behind

SALMO-OO together with the realization of flexibility, reusability, portability, and

interoperability.

 30

3.2.2 The Choice of Programming Languages – Using Java

Programming languages play minor roles in building object-oriented SALMO-OO

class libraries. Each programming language has advantages and disadvantages. The

benchmark of comparison between them varies from applications to applications. As a

result, this project will choose one object-oriented programming language that is

appropriately used in this circumstance rather than one has what so called generic

performance.

In this project, a number of factors have to be taken into account as the highest

priority in programming language chosen. Object-oriented paradigm is the essential

factor as the first consideration. Secondly, it is strong recommended using a non-

commercial programming language. Non-commercial programming languages easily

attract more supporting by open source community, which enable programmers to

freely share source code. Open source not only benefits cutting the project budget but

also provides unlimited code libraries to be reusable. Thirdly, the candidate

programming languages are simple to be used. For example, it is capable of realizing

web accessibility and database connection with fewer efforts, as well as platform

independence. Table 3.1 lists some available programming languages by above-

mentioned factors.

Programming
Language

Object-
Orientation

Open Source
Supporting

Simplicity (web, databases, and
platform independence)

Simula Yes Poor Yes, but no platform independence
Smalltalk Yes Fair Yes, but no platform independence

 31

OO Pascal N/A Poor Yes
Visual Basic N/A Poor Yes, but no platform independence

C++ N/A Fair No
Java Yes Excellent Yes
C# Yes Fair Yes

Table 3.1 Choice of programming languages

Java programming language will be used underlying the comparisons in this project.

Table 3.1 clearly highlights that Java programming language is truly object-oriented,

extensively supported in open source community, and web-enabled and database-

accessible. The second column of Table 3.1 shows that OO Pascal (Gofen 2001),

Visual Basic (Brenner 2005), and C++ (Stroustrup 1995) do not belong to the true-

object-oriented programming languages. Furthermore, Java earns the most popularity

in the open source community because of its advantages (Cornell et al. 2002)

otherwise C# would be another available choice. As far as popularity is concerned,

Java and C# is overwhelming against other programming languages. Readers may

refer to (Meyer 1988) and look through the popular object-oriented programming

languages before last decade. In addition, Java programming language is unified

applied from normal applications (e.g. to implement SALMO-OO class libraries),

web applications (e.g. to implement SALMO-OO web-enabled GUI), to database

connection (e.g. to implement SALMO-OO database transactions). In other words,

programmers do not have to use other programming language to implement the whole

SALMO-OO suite. The last but not least, the chief developers of SALMO-OO has

strong background to use Java technology in this project. It would be more or less

face potential risk if looking for other unfamiliar programming languages.

 32

3.2.3 Object-Oriented Software Engineering

SALMO-OO development compulsorily uses the methodology of object-oriented

software engineering to build fully object-oriented SALMO-OO class libraries. Thus,

it is strongly recommended that SALMO-OO development follow the processes of

object-oriented software engineering. In details, it consists of seven phases:

requirements, specification, object-oriented analysis, object-oriented design, object-

oriented programming and implementation, integration and deployment, and

maintenance.

Requirements Phase

The requirements phase aims to deliver a requirement statement document. This

requirement statement should contain the following content: the fundamentals of

SALMO-OO, the desired function and performance that SALMO-OO runs in a

specific computer system, the purposes for developing SALMO-OO. Through

interviews, scenarios, and previous outcomes reviews, the SALMO-OO developer

needs to write several reports to outline the requirements of SALMO-OO.

Subsequently, these reports need to be integrated into the final requirement statement

without any ambiguous agreements between the SALMO-OO modeller and the

SALMO-OO developer. In addition, building a prototype system to verify whether the

requirement statement satisfies the SALMO-OO modeller is suggested. The prototype

system simulates the SALMO-OO requirements to some extent, and usually delivers

some plain GUI or simple calculation results.

 33

Specification Phase

The specification phase targets a specification document. It is commonly used in

classical software engineering. The next section will introduce object-oriented

analysis to replace the usage of specification techniques. However, it does not means

that the specification phase would be taken away from the methodology of object-

oriented software engineering. In this project, we will use the specifications to clarify

the contradictory requirement between the ecological modeller of SALMO-OO and

the programmer of SALMO-OO. Normally, modellers always want to make target

applications perfect against the reality that programmers can achieve them in an easy

manner. So it is important for both participants to agree on with each other what

exactly the target applications are.

For example, after a number of times conversations, we decide that the SALMO-OO

specification document should contain the following content: 1) to use fourth order

Runge-Kutta to solve the SALMO-OO ODE calculations; 2) to list all the prerequisite

and post-requisite of every class in the SALMO-OO class library; 3) to define the

format of input and output data; 4) to propose the implementation of function and

performance of SALMO-OO by a serial of prototypes; 5) to realize web accessibility

and display only plain GUI.

 34

Object-Oriented Analysis Phase

Object-oriented analysis (OOA) uses over 60 different techniques (Schach 2002a).

We adopt UML to describe the analysis results by means of use-case modelling

(Jacobson 1992) and class modelling in this project.

Use-case modelling is used to generate UML use-case diagrams. A UML use-case

diagram consists of actors and actions. The extraction of actors and actions can be

deduced from the scenarios in the requirement phase. The term actor can be a person

who starts simulation, or a species of aquatic animal that has been simulated in the

ODE equations, or other state variables. As one of the tools of UML, UML use-case

diagrams illustrate the results of use-case modelling in the OOA phase. For example,

Figure 3.2 shows an alga as actor and its growth as action.

algae growth

Figure 3.2 UML use-case diagrams for illustrating the relationship between algae and

algal growth

Class modelling is used to discover the classes from the requirement statement. Noun

extraction technique will be used to create the classes. At the beginning of the model

development, it is strongly recommended to revise the SALMO-OO requirement

 35

statement because a concise statement will simplify the task of noun extraction. There

are two ways to discover nouns from the SALMO-OO requirement statement: the

explicit way and the implicit way. Usually, the explicit noun extraction focuses on

identifying nouns in the requirement statement. Some of these nouns will be

abstracted to the classes, and others could be the attributes of the classes or discarded.

For example, phytoplankton is a name of an aquatic organism, which is a key

component of lake ecosystems, so it is logical to have a class called phytoplankton.

However, explicit noun extraction sometimes fails to thoroughly discover the classes

that are necessary to be used in the object-oriented design phase. Thus, the implicit

noun extraction makes up for this shortcoming. For example, SALMO-OO will

extend its growth and grazing model library. It is impossible to represent every

individual model by a class, thus it is better to merge each of the growth and grazing

model into a class called AlgaeLibrary. From the developer’s point of view, there are

several implicit classes behind the requirement statement. These implicit classes are

essential to be used in the object-oriented design phase. Alternatively, these implicit

classes could hide in the form of verb rather than nouns. For example, SALMO-OO

needs to import data from databases. It involves database connection transactions.

Specifically in Java, it is called Java Database Connection (JDBC). Since our project

is named SALMO-OO, a class called SalmoJDBC may represent the verb connect.

Another task of class modelling is to find class fields and class methods. A class field

belongs to the attributes of a class, and a class method belongs to the behaviours of a

class. Fortunately, the taxonomy of organism in biology was exemplary for the object-

oriented paradigm. Therefore, it is not difficult to differentiate the biological attributes

 36

and behaviours regarding a species of animal or plant. Thus, we could follow directly

the biological categories to complete the SALMO-OO class modelling.

After completing use-case modelling and class modelling, the relationships and

interactions among classes need to be determined. This solution will be introduced in

the next paragraph.

Object-Oriented Design Phase

According to (Schach 2002b), the aim of object-oriented design (OOD) is to design

the product in terms of objects. An object is an instance of a class, and therefore the

elements of a class and the relationships and interactions among classes play

significant roles in the OOD phase. UML provide UML class, sequence, and

communication diagrams to represent the design results.

The UML class diagrams show the inner elements of classes and the relationships

between classes. The UML class diagrams contain one or more single class models. A

class model comprises a class name, class fields and class methods. The UML class

diagrams can be drawn directly from the results of class modelling in the OOA phase.

As the model kernel, these classes can be drawn directly via class diagrams such as a

UML class diagram is shown in Figure 3.3. However, not every requirement

statement has the ability to completely deliver model descriptions. This situation often

happens when either a modeller lacks experience in software application

 37

development, or the developer lacks ecological knowledge. Thus, OOD needs to

discover those implicit classes such as database connection, web transaction, and

logic invocation. Although there is no obvious order in the OOD phase, it is

recommended to design the UML class diagrams as the first step.

Phytoplantkon
biomass

growth()
death()

BlueGree
nAlgae
color

<<inherit>>

Figure 3.3 A UML class diagrams for phytoplankton and blue-green algae class

The UML sequence diagrams model the flow of logic in a virtual system. They are

one of the dynamic models. The structured programming uses flow charts to draw the

model SALMO life cycle in the design phase, whereas, OOD simulates the SALMO-

OO life cycle via sequence diagrams. Instead of sequence, selection, and loop

structure in the structured design, OOD draws UML sequence diagrams in terms of

the sequence logic of the classes. In other words, UML sequence diagrams record the

order that the classes execute in a computer system. A UML sequence diagrams can

start from an actor of a UML diagrams for use-case till the final action of this use

case, and then repeat this process generating others, and eventually integrate every

individual UML sequence diagrams into one comprehensive one.

 38

 : zooplankton : phytoplankton Growth Death

grow with light, nutrition

die by zooplankton grazing
graz phytoplankton

Figure 3.4 A UML sequence diagram for phytoplankton and zooplankton

The UML communication diagrams show the message flow between objects. It is

important to draw the dynamic value-passing process in SAMLO-OO because there

are a large number of mathematical calculations. Figure 3.4 demonstrates the general

value-passing process in four top-level objects.

input
data

Runge-Kutta
algorithm

out data 2D
diagrams

1: input

2: verify

3: calculate

4: output 5: process

Figure 3.4 A UML communication diagrams for top-level value passing

 39

Other UML diagrams such as UML activity, state machine, and component diagrams

can also be applied in the OOD phase. It differs based on the purpose of each specific

software application. In this project, we adopt UML class diagrams to describe the

static nature of SALMO-OO, use UML sequence diagrams to arrange the execute

sequence, and simulate the dynamic value passing process via UML diagrams for

communication.

The Implementation and Integration Phase

The task in this phase is to implement the SALMO-OO class library by means of

object-oriented programming (OOP) together with a simple SALMO-OO database.

Generally, OOP mainly works with one of the object-oriented programming

languages. We use Java programming language in this project. In addition, some

extreme programming (XP) methods (Beck 1999) and Prototyping will accompany

the OOP techniques.

First of all, it is necessary to create a simple relational database management system

(RDBMS) that stores the freshwater lake data. Previously, the data were stored in the

format of Microsoft Excel file (usually called MS Excel with postfix ‘xls’). For this

project the data is restored into the MySQL (MySQL AB 1995-2005) RDBMS in this

project. In this context, the process that transfers data from ordinary computer system

files (e.g. MS Excel files) to RDBMS (e.g. MySQL) is called data pre-processing. The

first step of data pre-processing is to create tables in the MySQL RDBMS via Data

Definition Language (DDL is a category of SQL, and is used to create, delete and

 40

alter tables in RDBMS). Secondly, it needs to extract the 37-day measured data from

the MS Excel files via data transformation and cleaning, and calculate 360-day

analogous data by means of mathematical interpolation algorithm. Finally storing

these 360-day analogous data into the MySQL tables that was created in the first step.

The last step aims to validate the data correctness. It can be suggested using some

software tools to complete the task of data validation. Figure 3.5 illustrates the whole

process of data pre-processing.

Figure 3.5 Data pre-processing

The primary task in this phase is to complete the SALMO-OO class library, including

its integration and testing. Using Java programming language and well-designed

UML UML class diagrams confirm the characters of object-orientation. As a result,

there are no more tasks other than typing code in this step. Even in an ideal

circumstance, some UML tools (e.g. Rational Rose (Rational Software 2005)) are able

to directly convert UML class diagrams to Java source code.

The implementation and integration of SALMO-OO takes advantage of OOP.

Nevertheless, it is still not good enough to shorten the life cycle of developing

SALMO-OO. Thus, some extreme programming methods (e.g. testing first and peer

programming) are introduced to overcome the shortcomings of the OOP techniques.

 41

XP methods permit the SALMO-OO developer to separate the SALMO-OO class

library into several smaller sub modules. These sub modules can be extremely sma

to reflect even a simple task such as database connection. Subsequently, each sub

module is set a priority number. The SALMO-OO developer programs testing cod

for these sub modules by priority number. In addition, another team member

accompanies the developer and proofreads the typed source code. After every

module has been completely verified and tested, they will be integrated into a bigge

module following the design diagrams. In this project, a bigger module is a package

that represents a group of classes that have similar functionality. Finally, all the

packages need to be integrated into one application, which is the SALMO-OO cl

library.

ll

e

 sub

r

ass

SALMO-OO Deployment

-OO is the final phase in this project. The task of this step

3.2.4 Prototyping

ues are needed in developing SALMO-OO class libraries. Those

 class

The deployment of SALMO

is to install both the SALMO-OO class libraries and its web-enabled applications into

a computer that is connected to the Internet. This computer usually is called sever.

The discussion of server technology is beyond the purpose of this project, and it is

advised that readers refer to other related sources.

Prototyping techniq

above-mentioned methods of object-oriented software engineering might not

specifically guide SALMO-OO programmers how to implement SALMO-OO

 42

libraries but propose the general solutions to simplify the SALMO-OO development.

Thus, it needs to use some software processes such as prototyping to solve the goals

in practice.

Prototyping has four basic categories: Rapid Prototyping, Throw-Away Prototyping,

el

ystem

3.2.5 Web Tier Techniques

 web tier Java technologies to implement web

erver

sed

Incremental Prototyping, and Evolutionary Prototyping. We propose to use certain

Incremental Prototyping in order to steadily update SALMO-OO. Thus, the first

SALMO-OO prototype system needs to point out how the previous SALMO mod

works. The next step will create the next version of the SALMO-OO prototype

system, which could be built based on the achievements that the first prototype s

has acquired but throw away those aspects that do not work. Alternatively, the next

prototype system can be built by improving the first one. In general, the choice relies

on how much the prototype system meets the SALMO-OO creator’s expectation.

SALMO-OO will adopt some

accessibility since SALMO-OO class libraries decide to programme in Java

programming language. Web tier techniques in Java family involves in JavaS

Pages (JSP) (Sun Microsystems 1994-2005d), Servlet (Sun Microsystems 1994-

2005c), and Applet (Sun Microsystems 1994-2005a), which all of them will be u

to build the SALMO-OO web-based applications. The purpose using JSP is to enable

to create dynamic web content, but it is difficult for JSP to realize complex GUI such

as drawing algae dynamic diagrams. Thus, we will use Applet to solve this

 43

shortcoming of JSP. In addition, Servlet encapsulates low-level computer ne

protocols such as Hyper Text Transfer Protocol (HTTP), and the SALMO-OO

developer only needs to take into account flow logic between JSP web pages.

twork

These web tier Java technologies enable platform-independence, but require the

rs

Chapter 4

assistance of Internet Explorer (IE) (Microsoft 2006b) when the SALMO-OO use

access it online. Therefore, the combination of JSP, Servlet, Applet, and IE enables

the SALMO-OO to be web accessible.

 44

Results

4.1 Prototypes

This research successfully completes SALMO-OO as well as achieves the aims and

the hypothesis. These outcomes encompass a freshwater lake database, SALMO-OO

class libraries, a few plain web-enabled applications, UML diagrams, documents, and

a SALMO-OO API specification. This research achieves all of the sub-outcomes in

SALMO-OO with fair validation by three prototype systems.

he first prototype is the object-oriented Parker model. The Parker model is an

aquatic model that simulates four state variables: algae, cladocera (zooplankton),

salmon (fish), and phosphate. This model uses the method of Runge-Kutta to calculate

the differential equations of the four state variables, which it is as exact same as the

model SALMO does. The reason why we choose this model as the first prototype

comes from its simplicity. The Parker model neither involves input data, nor considers

seasonality or stratification of the water body. Moreover, it elaborates output data by a

few line charts in its document, which is helpful to check the results of the object-

oriented Parker model whether correct or not. Thus, we rapidly draw the Parker UML

diagrams (Figure 4.1-4.3).

T

 45

Algae.

algal death

Phosphate.growth

nutritation loading

Cladocera.

grazing phytoplankton

Kokanee.cladocera death

grazing zooplank ton

Figure 4.1 A UML use-case diagram for food web in the Parker model

Derivn
Function

RK4Parker

derivn()

RungeKutta

fourthOrder()

Figure 4.2 A UML class diagram for Runge-Kutta calculations in the Parker model

n represents the
No. n result

ResultnApplet

init()
<<static>> main()

ChartApplet
lineCanvas : Line2DCanvas
salmoPanel : SalmoPanel

init()
start()
destory()
stop()
processEvent()
inputData()

<<extend>>

Line2DCanvas
<<static>> rela : int = 30
color : Color
coef : int
height : int
width : int
data : int[]
isConnected : Boolean
isFirst : Boolean
hline : int[]
vline : int[]
esX : double
exY : double
max
meta : double[]
unitX : String

Line2DCanvas()
init()
paint()
setH()
setV()
resetH()
resetV()
reDrawLine()

SalmoPanel
lineCanvas
button : Button

SalmoPanel()
actionPerformed()
mouseMoved()

<<include>><<include>>

invoke RK4

Figure 4.3 A UML class diagram for GUI in the Parker model

 46

The first prototype succeeds in simulating the Parker model by using the fourth order

Runge-Kutta algorithm as well as an initial GUI demonstrations, including curve

colour, style, and layout. Most importantly, the first prototype is web-enabled. Figure

4.4(a) displays the GUI results. But it remains some problems such as scales in the

coordinates, which propose to be solved in the next prototypes.

Figure 4.4(a) The first prototype - the Parker model results

Comparing to the original Parker model results (Figure 4.4(b)), it is undoubted that

the correctness of the Runge-Kutta calculations and the GUI displaying of the first

prototype but phosphate does not decrease around 32 week from the Figure 4.4(a).

This unpredicted error could be resulted by any programmed mistake. Fortunately, it

does not have significant influence to the general simulated results therefore can be

 47

remained. In addition, it further discovers that the requirement of the target SALMO-

OO applications. After continuous discussions, the SALMO-OO modeller agrees that

the final SALMO-OO GUI should be similar to the one displayed in Figure 4.4(a) but

needs to revise the scales in the x-axis to integer. The subsequent task plans to add the

SALMO ODE instead of the Parker one.

 48

Figure 4.4(b) The original Parker model results ((Parker 1968).

The second prototype implements the basic model version of SALMO as previously

implemented by FORTRAN IV in 1980. It aimed to prove that the Java version of the

 49

SALMO could produce the same results as the Fortran version. As a result a basic

version of SALMO-OO had been developed with an extended GUI.

The third prototype aimed at the implementation of an advanced version of SALMO-

OO. The model had been extended by the ODE for a third functional algal group

allowing the simulation of three algal groups rather the two as in the basic version of

SALMO-OO. At the same time a library for alternative algal process models was

implemented, including algal growth, zooplankton grazing, and zooplankton growth.

As far as the user interface is concerned, this advanced version of SALMO-OO offers

two options. One is the stand-alone edition, which runs in a single computer with

friendly GUI, where users can select any available lake, year, growth model, grazing

model, and scenario analysis for lake management in any windows operating

environment (e.g. Microsoft Windows 2000). Another is the network edition. The

SALMO-OO network edition permits users access to SALMO-OO through the

Internet. It covers all of the functionalities that the SALMO-OO stand-alone edition

has except the data import function.

The advanced version of SALMO-OO also allows to perform multiple parameter

optimisation by means of genetic algorithms (GA) according to (Back et al. 2000a))

also implemented in Java.. This GA program is designed to optimise SALMO-OO

parameters only available for the standalone mode of the advanced version of

SALMO-OO. The GA program initialises the size of populations to 100 and allows be

evolve 50 generations. As far as the crossover operator is concerned, the Java version

 50

of GA program keeps the original design. During cross calculation, this GA program

randomly chooses 8 chromosomes among parent populations to perform dual mating,

which loop-reproduce 100 child chromosomes (100 groups of SALMO-OO

parameters). Subsequently, each generation sends these calculated 100 groups of

parameters to SALMO-OO application for fitness evaluation. Finally, the GA

program selects the best 100 chromosomes between the parent populations and the

child populations by means of rank-based selection (Back et al. 2000b). Notes that we

do not enclose any GA program into the SALMO-OO suite because it beyond our

perspective in this project. This discussion only shows the possibility and flexibility

that adds advanced functionality in the SALMO-OO suite.

The advanced version of SALMO-OO contains the completed sub-outcomes: a

database (which is the freshwater lake data tables stored in MySQL RDBMS), a group

of class library, web-enabled applications, UML diagrams, documents, and a

SALMO-OO API specifications.

4.2 The SALMO-OO Database

The SALMO-OO database consists of a number of tables that store freshwater lake

data. These tables have two types of structures. One is the lake measured data table

(data table). A data table owns a name, which consist of three parts: the lake name,

the artificial mixing data flag, and the year. These three parts joint by the underscore

mark. For example, Barossa_1978 represents Barossa Reservoir measured data in

1978; and Barossa_am_1978 represents Barossa Reservoir artificial mixing data in

 51

1978. Furthermore, each data table has 44 stable columns and 360 stable rows. Its first

column represents the day number from 1 to 360 and acts as the primary key in the

lake measured data table. The other 43 columns exactly mirror the original structure

of the freshwater measured dataset except the lake, year, and day number column. The

amount of lake measured data tables depend on how many lake data will be modelled.

Figure 4.5(a) displays the detail structure of a data table.

 Figure 4.5 (a) Data table structure Figure 4.5 (b) Profile table structure

Another is the freshwater lake profile table (profile table). There is only one profile

table in this project, which is called SalmoMeta (see Figure 4.5 (b)). The SalmoMeta

consists of 18 stable columns and unlimited rows because one row stores a group of

parameters for a specific lake in a year, and it is unpredictable how many lakes and

different years will be applied in the future. Both the data tables and the profile tables

provide input data for SALMO-OO.

 52

SALMO-OO database fails to be well designed in this project. But this weakness

plays minor role in the SALMO-OO applications because the SALMO-OO class

library is highly independent on any dataset interface. Moreover, the database

technique is rapidly varied so that to exhaust a permanent database structure

implementation in an easy manner. Therefore, I would personally suggest leave the

database issues alone in this SALMO-OO applications.

4.3 The SALMO-OO Class Library

The SALMO-OO class library comprises four packages: the salmo.model, the

salmo.maths, the salmo.gui, and the salmo.db package. As its name shows, the

salmo.model package plays a core role in the SAMLO-OO class library. Figure 4.6

displays the dependencies between these four packages in the form of UML

component view, including the SALMO-OO web tier applications (note: the

SALMO-OO web tier applications do not belong to the SALMO-OO class library).

 53

salmo.db

salmo.gui

salmo.model salmo.maths

The SALMO-OO web
tier applications

The SALMO-OO
database connection

The SALMO-OO
ODE class library

The SALMO-OO
mathematical calculations
(Runge-Kutta)

The SALMO-OO
GUI

e.g.
SalmoApplet,
SalmoServlet,
HTML/JSP web
pages

Figure 4.6 The SALMO-OO component view

The salmo.model package represents the core component (ODE) in SALMO-OO.

This package consists of nine classes (AlgaeLibrary, Detritus, Light, Nitrate, Oxygen,

Phosphate, Phytoplankton, Salmo, and Zooplankton). Each class represents a state

variable except for the Light class, the Salmo class, and the AlgaeLibrary Class. The

Light class contains the light equations from the previous SALMO model. In

SALMO-OO, the light equations are separated from the algal growth equations as an

object because of using the object-oriented paradigm. Moreover, we add Salmo class

as a value object. The function of the Salmo class is to hold the SALMO-OO

parameters and input data. All of the other classes (except the Salmo class) in this

package inherit the Salmo class as its subclass in order to directly acquire these data

values. In addition, the AlgaeLibrary class realizes a flexible library for a number of

 54

optional growth and grazing models. The AlgaeLibrary class indirectly acquires the

data values from the Salmo class by inheriting the Phytoplankton class. In other

words, if we look at the Salmo class as a father, then the Phytoplankton class is its

son; consequently the AlgaeLibrary class is grandson of the Salmo class.

The salmo.maths package is the component that models Runge-Kutta calculations.

This package consists of three classes (RungeKutta, SalmoData, and SalmoRK4) and

one interface (DerivnFunction). The RungeKutta class and the DerivnFunction

interface are provided by Michael Thomas Flanagan (Flanagan 2005), which simulate

the logic of the fourth order Runge-Kutta algorithm. The SalmoRK4 class implements

the DrivnFunction interface in order to automatically communicate with the

RungeKutta class. Subsequently, the SalmoRK4 class executes the ODE calculations

by importing the classes in the salmo.model package. Finally, the SalmoData class

holds the final calculated results as an output value object.

The salmo.gui package describes the SALMO-OO GUI logic. This package consists

of four basic classes (SalmoCanvas, SalmoDiagram, SalmoFrame, and

SalmoSelection). The SalmoCanvas class provides a painting canvas for displaying

the SALMO-OO output data. The other three classes build a frame for users to select

modelling items and observe the output data in the form of a graph. Moreover, these

frame classes provide a user interface to print to printer, create output data files, and

perform the function of data pre-processing. Figure 4.7 demonstrates an example of

the salmo.gui package implementation.

 55

Figure 4.7 Visualisation of validation results for concentrations of phosphate PO4-P,

chlorophyll a, total algal biovolume and zooplankton biovolume simulated by

SALMO-OO for the Bautzen Reservoir in 1978.

The salmo.db package only contains one SalmoJDBC class. This class realizes the

database connection function. Specifically, the SalmoJDBC class needs to cooperate

with a source package that is provided by the tools in MySQL version 4 RDBMS.

4.4 Web-Enabled Applications

Web accessibility is available in SALMO-OO network edition by means of JSP,

Servlet, and Applet technologies. Although these web tier outcomes use object-

oriented paradigm, the applications lie outside the SALMO-OO class library. The

 56

current version consists of one HTML file, three JSP files, one Servlet class, and one

Applet class. Their relationships are illustrated in Figure 4.8.

Figure 4.8 Web tier structure for SALMO-OO

On the server side (on the left in Figure 4.8), the JSP and Servlet applications will run

in a computer that has installed a web container tool. Firstly, the JSP files are

converted into the JSP classes by this web container. These JSP classes are in charge

of the presentation logic, which represents the dynamic web pages. SALMO-OO

network edition includes the Prepare JSP file, the Confirm JSP file, and the Results

JSP file. Secondly, the usage of the SalmoServlet class is to transmit message

between JSP classes. Thus, it focuses on the control logic.

On the client side (on the right in Figure 4.8), the HTML, JSP and Applet applications

will run in a terminal computer that has installed an Internet Explorer tool. The JSP

files are imaged into the JSP web pages then are visibly displayed in this Internet

Explorer. These JSP pages record user request services meanwhile convert into Java

class on the server side. After receiving the redirection request of the SalmoServlet

 57

class, the Results JSP web page finally acquires the SALMO-OO calculated results

encapsulated within an object that activates the embedded SalmoApplet class.

Subsequently, the SalmoApplet class extracts data from the calculated result object,

and then invokes the GUI classes in the slamo.gui package, which eventually displays

the graphical calculated results in the web GUI. Any low-level network transactions

are transparent to the SALMO-OO developer.

4.5 The SALMO-OO Documents

As one of the most important outcomes, the SALMO-OO documents cover the detail

descriptions of the development of SALMO-OO. These documents include a

requirement statement document, a specification document, a group of UML

diagrams, and one SALMO-OO API specification.

4.5.1 The SALMO-OO Requirement Statement Document

The SALMO-OO requirement statement aims to clarify the requirement of SALMO-

OO. This document contains the SALMO-OO description, the purpose to build it, the

expectation of performance and function, and the development duration. Formal

content is as follows:

SALMO-OO is a software application. Its theoretical supporting comes from

freshwater lake modelling and based on the previous Fortran version of the model

SALMO. The main objective of SALMO-OO is to investigate how to develop

ecosystem models by means of object-oriented technology.

 58

The SALMO-OO target applications should complete the following functions: 1) to

implement a group of structured transparent class libraries that simulate the model

SALMO ODE; 2) to implement the fourth order Runge-Kutta algorithm for the ODE

calculations; 3) to illustrate the daily dynamics of all the state variables in 2D

coordinates; 4) to enable SALMO-OO to be accessed in the Internet as well as

friendly GUI.

As far as SALMO-OO performance is concerned, flexibility is the highest priority

requirement. The SALMO-OO class library must be highly flexible in response to any

modification. Moreover, users can run the SALMO-OO class library as their selection

such as arranging different lake dataset, scenario analysis, and varying the parameter

values. In other words, the SALMO-OO creator and developer can flexibly change

anything they want as well as easy access and use by the SALMO-OO users. In

addition, high response rate of the SALMO-OO network edition is expected.

As the above-mentioned requirements, it would be estimated the first version of

SALMO-OO could be delivered during 12 months.

4.5.2 The SALMO-OO Specification

The SALMO-OO specification contains three parts: naming list, database and class

library specification.

 59

Naming list defines names that will be used in developing SALMO-OO. These names

include various file names, API’s internal element, database table and its field names,

and diagram names. Once these names are decided, they will be used throughout the

whole development of SALMO-OO as permanent definitions. Table 4.1 displays a

fragment of the SALMO-OO naming list.

NAME CATEGORY FORMAT COMMENT

V measured data 2 decimals in MS Excel / field name in MySQL tables

VE measured data 2 decimals in MS Excel / field name in MySQL tables

VH measured data 2 decimals in MS Excel / field name in MySQL tables

Lake_am_Year .xls name 37 rows, 44 columns MS Excel as Legacy System

Lake_Year table name 360 rows, 44 columns in MySQL database

AlgaeLibrary class name .class Java filename in package salmo.model

Phytoplankton class name .class Java filename in package salmo.model

SalmoCanvas class name .class Java filename in package salmo.gui

SalmoRK4 class name .class Java filename in package salmo.maths

prepare class name .jsp Java Server Pages (JSP)

Table 4.1 Examples of the naming list of SALMO-OO

The database specification specifies the ecological data format that is stored in the

RDBMS. This project defines that a data table consists 360 records (rows) and 44

fields (columns). The first column is the index as the primary key of the table, which

records are incremental integer type number. Other columns hold the double type data

with stable two bit decimals. They forbid being given null values and set zero value in

the case of lacking data. In addition, it needs to manually copy the value data at

 60

season varying point only if the value of the next day is zero. For example, the data

value needs to be copied from the last day of summer to the first day of autumn only

if the data value of the first day of autumn is zero. The reason why copy data value at

season point comes from the previous SALMO model rules. Without copying job, it is

possible that the SALMO-OO Runge-Kutta calculations could overflow the computer

memory in some exceptions.

The class library specification describes the system boundary of SALMO-OO. It

covers the limitation of user transactions, the look and feel of the GUI, the choice of

the specific RDBMS, and the choice of the ODE solutions. SALMO-OO final version

will provide a few basic user transactions: 1) web accessibility; 2) various algal

growth and grazing model library selections; 3) various scenario analysis selections; 4)

at least three algal functional group selections; 5) graphically display output results.

Secondly, SALMO-OO final version will provide a standard 2D line chart for output

results. This line chart will be based on 2D coordinates with the essential units, scales,

and legends. The colour of display curve is black, grey, and red, which respectively

represent the epilimnion and total volume output data, hypolimnion and scenario

output data, and the measured data. Moreover, the line chart displays on the

transparent or white background. In addition, these diagrams should display four state

variables’ output results at one time at the same page, and the users can move pages to

previous and next. Figure 10 shows an example. Thirdly, SALMO-OO final version

uses the fourth order Runge-Kutta algorithm to calculate the SALMO-OO ODE.

Finally, SALMO-OO final version is able to run in single computer and network

environment, both of them adopt MySQL version 4 RDBMS. In the case of running in

 61

the network environment, Tomcat version 4 will be used to publish the SALMO-OO

web pages as an application server.

4.5.3 The SALMO-OO Use-Case Diagrams

The SALMO-OO UML diagrams for use-case not only unambiguously establish the

fundamentals to develop SALMO-OO and comply with its creator’s intention but also

formally clarify the general structure of the target SALMO-OO applications.

During object-oriented analysis phase, three types of actors have been discovered,

including the User actor, the System actor, and the State Variable actor (Figure 4.5).

Firstly, the User actor represents a person who accesses SALMO-OO via GUI,

excluding any developers or administrators. Thus, the definition of the User actor

limits a person access authorization to read only SALMO-OO.

Secondly, the System actor means a piece of the SALMO-OO programs or a person

who operates these programs. The actions of the System actor involve in database

transactions, fetching available modelling selections such as lakes, years, scenario

analysis, and algae model libraries, and responding the actions of the User actor.

 62

ODE: ordinary
differential
equations

GUI:
graphical
user interface perform database transactions

calculate ODE by RungeKutta

output modell ing resultsconfirm & trigger modelling

provide data

select modelling options systemuser response GUIrequest GUI

Figure 4.9 UML diagrams for use-case for the interaction between the user and

SALMO-OO

A scenario descries the transactions between the User actor and the System actor. The

initial step is a user locates the URL via IE in the Internet or open the modelling

selection page in a single computer. The SALMO-OO applications display the initial

page. Subsequently, the user completes a serial of selections and SALMO-OO

responds to these relative selections until triggers Runge-Kutta calculations. Figure

4.10 exhibits this scenario.

 63

The initial step is
user access
system interface

user

3.2 algae grow & grazing selection

4.2 scenario selection

1.2 lake selection

1.1.1-2.1.1 access database table

2.2 year selection

5.2 confirm selection and trigger
modelling

3.1 display algae library

4.1 display available sceanrio
analysis items by the select...

1.1 retrieve available lakes

2.1 retrieve available years by a
selected lake

5.1 display user select ionsystem

Figure 4.10 UML diagrams for use-case for the structuring of SALMO-OO by means

of the model library and user selections

Thirdly, the State Variable actor represents the model SALMO state variables.

Theoretically, the biological complexity results the sophisticate interactions between

these state variables. As far as the detail modelling process is concerned, the

complexity of the model SALMO comes out after the User actor triggers modelling.

We have to answer at least three questions to figure out the Runge-Kutta calculations,

the SALMO ODE, the data import and export, and the relationships among them. The

first question asks which process is the subsequence among the Runge-Kutta

calculations, the SALMO ODE, and data import after the User actor triggers

modelling? Secondly, which process is the last sequence of them? The last question is

how to use Runge-Kutta algorithm to calculate the SALMO ODE.

 64

Obviously, the last question has more challenge than the other two. It can be predicted

that the future problems will frequently come from the Runge-Kutta and the SALMO

ODE calculations, therefore the solution of the last question paly a key role in the

following use-case analysis. Fortunately, SALMO-OO does not offer the solutions of

the Runge-Kutta algorithm, thus it is not necessary to model it by use-case diagrams.

The analyses only focus on the SALMO ODE.

A recommendation to simplify the complex analysis could start from the simpleness.

We take advantage of the materials such as the SALMO ODE documents and the

model SALMO structure diagrams at this time. The SALMO ODE documents record

every specific differential equation of the state variables. In general cases, the

documents are organized by each state variable, and each of them is divided into two

parts: mixed, epilimnion, and hypolimnion layer (note: the Oxygen state variable adds

winter stagnation). Additional instruction of the model SALMO structure diagrams

contributes the understanding of the relationships between the state variables and the

rate variables. Thus, it is easy to clarify each specific actor and its actions that

represent the SALMO ODE. Another advantage of this method is to reconstruct the

model SALMO in terms of object-oriented paradigm.

An ecological food web scenario demonstrates the biological activities in the model

SALMO. It can be understood from Figure 4.11 that the model SALMO starts from

light, which more accurately describes underwater solar radiation. The importing of

light and nutrient, including dissolved inorganic phosphate (DIP) and dissolved

 65

inorganic nitrate (DIN) provide rational natural conditions for algal growth, the factor

of underwater temperature is excluded because it is defined as a part of the algal

growth equations in SALMO-OO. The consequence of algal growth provides food for

zooplankton growth by grazing. On the other hand, the dead algae and zooplankton

become detritus, and detritus contributes phosphorus and nitrogen remineralization.

By chemical combination, phosphorus and nitrogen are oxygenised into DIP and DIN

respectively. As a cycle, DIP and DIN are consumed by phytoplankton.

fish*

z:mortality

zooplankton

d:import

d:grazingdetritusd:sedimentation

o:production

z:growth

d:production

n:import n:remineralization

p:import phytoplankton

a:grazing

nitrate

phosphate

n:consumption

p:consumption

light

oxygen

p:release

p:remineralization

o:consumption

algal functional
groups

a:sedimentation

a:growthlight:import

Figure 4.11 UML diagrams for use-case for the structure of the model SALMO

 66

These three UML diagrams for use-case express our understanding of the model

SALMO from different perspectives and establish a basic frame for SALMO-OO.

Undoubtedly, the confirmation of these UML diagrams for use-case determines

whether the next results proceed to our objectives.

4.5.4 The SALMO-OO Class Diagrams

The SALMO-OO UML class diagrams represent the static nature of SALMO-OO. In

SALMO-OO, four packages that include twenty-five classes have been implemented.

The salmo.model package is shown in Figure 4.12. A rectangle represents a class,

which comprises three parts with vertical layout: one class name lies in the top of the

rectangle, zero or more class fields lies in the middle, and zero or more of the class

methods lies in the bottom. The solid line with a closed empty arrow represents the

inheritance relationships between two classes. It starts from the subclass (e.g. the

Light class) and ends with the superclass (e.g. the Salmo class). The rectangle with a

folded angle on the up right represents notes. A note can be connected to a class with

dashed line.

 67

invoke salmo.db
package to get
data

Light

Light()
mix()
hypolimnion()

Zooplankton

Zooplankton()
autumnPoint()
mix()
zgrowth()
growth()
zgrow_libraries()
mort()
export()
epilimnion()
migrateEpi()
fluxEpi()
exportEpi()
hypolimnion()
growthHypo()
mortHypo()
migrateHypo()
fluxHypo()
exportHypo()

Phosphate
<<static>> PRED
PW : double

Phosphate()
autumnPoint()
mix()
imports()
consump()
remin()
export()
sed()
release()
epilimnion()
importsEpi()
fluxEpi()
exportEpi()
releaseEpi()
hypolimnion()
importsHypo()
consumpHypo()
reminHypo()
fluxHypo()
exportHypo()
releaseHypo()

Nitrate
NW : double

Nitrate()
autumnPoint()
imports()
consump()
remin()
export()
release()
epilimnion()
importEpi()
fluxEpi()
exportEpi()
releaseEpi()
hypolimnion()
importsHypo()
consumpHypo()
reminHypo()
fluxHypo()
exportHypo()
denHypo()
releaseHypo()

Oxygen

Oxygen()
mix()
autumnPoint()
hypolimnion()
importsHypo()
exportHypo()
fluxHypo()
prodHypo()
consumpHypo()
stag()
importsStag()
exportStag()
prodStag()
consumpStag()

Detritus

Detritus()
mix()
imports()
sed()
graz()
export()
epilimnion()
importsEpi()
fluxEpi()
exportEpi()
hypolimnion()
importsHypo()
sedEpiHypo()
grazHypo()
sedHypo()
fluxHypo()
exportHypo()

Salmo
<<static>> LENGTH : int = 720
constant groups : final static double
variable groups : static double
rs : ResultSet

Salmo()
setData()

Phytoplankton

Phytoplankton()
mix()
growth()
sed()
graz()
export()
epilimnion()
fluxEpi()
exportEpi()
hypolimnion()
growthHypo()
sedHypo()
grazHypo()
fluxHypo()
exportHypo()

AlageLibrary

growth_libraries()
graz_libraries()

Figure 4.12 UML class diagrams for the model components of SALMO-OO

The salmo.maths package is shown in Figure 4.13. The dashed line with a closed

empty arrowhead pointing at an interface (e.g. the DerivnFunction interface)

represents the interface inheritance relationships between a class and an interface. The

solid line with an open arrow represents the value passing relationships between two

classes.

 68

import the
salmo.model
package

DerivnFunction

derivn()

RK4
<<static>> results : double[][]

fourthOrder()

SalmoRK4
<<static>> counter : int = 0
<<static>> season : String
diatom : Diatom
greenAlgae : GreenAlgae
blueGreenAlgae : BlueGreenAlgae
zoo : Zooplankton
phosphate : Phosphate
nitrate : Nitrate
detritus : Detritus
oxygen : Oxygen
light : Light

SalmoRK4()
derivn()
autumn()
winter()
spring()
summer()

<<include>>

SalmoData
data : double[][]
dataPlus : double[][]

SalmoData()
getData()
getDataPlus()

<<communicate>>

Figure 4.13 UML class diagrams for the mathematical operation of SALMO-OO

The salmo.gui package is shown in Figure 4.14.

SalmoCanvas
<<static> RELA : int = 40
<<static>> SPACE_UP : int = 25
<<static>> SPACE : int = 40
solid : double[][]
dot : double[][]
measure : double[][]

SalmoCanvas()
init()
paint()

SalmoChoice

SalmoChoice()

SalmoDiagram
buttons : JButton
notes : String[]
units : String[]
solid : double[][
dot : double[][]
measure : double

SalmoDiagram()
createCanvasData()
finalData()
profileRefer()
profileScenario()
trophicState()

<<communicate>>

SalmoSelection
buttons : JButton
note : JLabel
choice : Choice
choices : SalmoChoice
scenario : String[]
grow : String[]
grazing : String[]

SalmoSelection()
loadLakes()
loadYears()
prepare()

<<communicate>>

<<communicate>>

SalmoDataImportFrame
buttons : Button
choice : SalmoChoice
info : Label
ta : TextArea
directory : String
profile : String[][]

SalmoDataImportFrame()
convert()
displayUserSelection()
getDataset()

SalmoFrame
lake : String
lakes : String
year : String
growth : String
graz : String
scenario : String
percent : String
desktop : JDesktopPane
menuItems : JMenuItem
mysql : SalmoJDBC
tf : TextField[]

SalmoFrame()
cancel()
createInternalFrame()
returns()

<<communicate>>

<<communicate>>

Figure 4.14 UML class diagrams for the graphical user interface of SALMO-OO

 69

The salmo.db package is shown in Figure 4.15.

JavaToExcel

JavaToExcel()

SalmoJDBC
driverName : String
url : String
username : String
password : String
conn : Connection
stat : Statement
rs : ResultSet

SalmoJDBC()
SalmoJDBC()
getResultSet()
executeSQL()
close()

ExcelToJava
data : double[][]
str : String[][]
col : int
row : int

doubleData()
stringData()
getData()

JavaToMySQL
jdbc : SalmoJDBC

JavaToMySQL()
insertSalmoMeta()

LinearInterpolation
ten : double[] []
day : double[][]

LinearInterpolation()
getInterpolationData()

DataCreator

DataCreator()
createData()
destoryData()

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

Figure 4.15 UML class diagrams for the lake database of SALMO-OO

4.5.5 The SALMO-OO Sequence Diagrams

The SALMO-OO UML sequence diagrams indicate the dynamic nature of SALMO-

OO network edition. From the developer’s point of view, this diagram represents the

whole SALMO-OO process. This process starts from the User actor via presentation

tier transactions, model tier calculations, data tier transactions, then returns by counter

order, and finally ends when the User actor exits SALMO-OO. Figure 4.16 illustrates

this process (note: this UML sequence diagrams only simulates the SALMO-OO

network edition). The rectangle shown in this figure represents an application, which

can be an actor, class, program, or a package.

 70

First of all, the User actor requests the InputHTML web page. The details in this step

start from the InputHTML web page and then transmit this request to the Servlet

class. Then the Servlet class invokes the SalmoJDBC class in the salmo.db package in

order to extract the available SALMO-OO data information. Subsequently, the Servlet

class output these data information via the InputHTML and display them to the User

actor. This is the first process called modelling preparing.

Secondly, the User actor needs to complete a series of tasks before the actual

modelling can proceed. Meanwhile, the InputHTML web page displays the available

SALMO-OO data information in the form of dropdown web component. These data

information encompass various modelling options such as lakes, corresponding years,

model libraries, scenario analyses, and parameters. The User actor can select only one

item in each of these options, then is intent to submit the selections. The modelling

will actually start after the User actor’s confirmation.

The third step is to complete the Runge-Kutta and ODE calculations. Joining the last

step, the Servlet class transmits the modelling request and invokes the SalmoData

class in the salmo.maths package in order to get the calculated data. Instead of direct

calculations, the SalmoData class invoke the RK4, the SalmoRK4, and the ODE

classes in the salmo.model package in turn, which these classes have responsibility to

perform Runge-Kutta and ODE calculations. During this step, the Salmo class imports

 71

the measured data. If this step runs successfully, the SalmoData class stores the final

calculated data.

Finally, SALMO-OO outputs the results to the User actor. The detail process involves

the data passing between the SalmoServlet class and the SalmoApplet class. An

OutputJSP web page lies in the middle of these two classes and aims to transmit the

final calculated data value with a JSP Session object. The collaborations of three of

them contribute to the task of data passing from the server side to the client side

through the Internet. As the client side class, the SalmoApplet class invokes the GUI

classes in the salmo.gui package. As a result, the classes in the salmo.gui package

finally draw various diagrams that display in a computer screen that enable the User

actor to observe the state variable dynamics.

 72

User InputHTML OutputJSP Applet Servlet salmo.maths salmo.model salmo.db salmo.gui Database

request using the SALMO-OO

invoke Runge-Kutta

invoke ODE

invoke SalmoJDBC

return data

return ODE & data

return results

data processing

import request GUI to draw graph

return GUI content

demonstra
te to user

user input access
database

calcuate ODE with data

return calcuated data

draw graph

be imported

access

display graph to user

transfer calculated data

calculate with imported data

invoke database connection class (SalmoJDBC) access database

return data
return avialable datasetoutput to web page

display available modelling options

select modelling options

request user confirmation

confirm & submit
transmit modelling request

modelling analysis

access database

return data

Figure 4.16 UML sequence diagrams for the application of SALMO-OO

 73

4.5.6 The SALMO-OO Communication Diagrams

The SALMO-OO UML communication diagrams aim to model the dynamic nature of

SALMO-OO stand-alone edition. Figure 4.13 shows the details. A rectangle in the

UML communication diagrams represents an instance of a class, which is an object. A

dashed arrow with a number represents a step, which is a method. Figure 4.17 lists the

specific SALMO-OO applications as well as their relationships and interactions.

 : RK4

 : SalmoFrame

salmo :
Salmo

sc :
SalmoCanvas

sd :
SalmoData

mysql :
SalmoJDBC

connects
MySQL
database

g :
SalmoRK4

user access
SALMO-OO

 :
SalmoSelection

 : SalmoDiagram

 :
Phytoplankton

phosphate :
Phosphate

light :
Light

zoo :
Zooplankton

oxygen :
Oxygenphyto :

AlageLibrary

detritus :
Detritus

4: getResultSet()

nitrate :
Nitrate

salmoJDBC :
SalmoJDBC

13: getResultSet()

24: derivn()

1: createInternalFrame()
2: SalmoSelection()

12: SalmoJDBC()

14: setData()

23: fourthOrder()

10: SalmoRK4()

11: Salmo()

15: Light()

16: Phosphate()

17: Nitrate()
18:

20: Zooplankton()
21: Oxygen()

22: Detritus()

7: SalmoDiagram()

3: SalmoJDBC()

5: loadLakes()
6: loadYears()

9: SalmoData()
25: getData()

26: getDataPlus()

8: SalmoCanvas()
27: init()

28: paint()

19: Phytoplankton()

Figure 4.17 UML communication diagrams for the application SALMO-OO

 74

There is more information behind Figure 4.17. It is invaluable to display too many

details because the omissions play secondary role in the SALMO-OO communication

diagrams. The omissive information involves the process of the distributive seasons,

the water volume, and the additional model libraries. It also ignores the relationships

between the RK4 class and the SalmoRK4 class. For example, it neither takes into

account how the SalmoRK4 class implements the DerivnFunction interface since

interfaces do construct any instance, nor indicates how many times that an object of

the RK4 class invokes one of the SalmoRK4 class. Obviously, a RK4 object invokes a

SalmoRK4 object for 1440 times during 360 differential steps because SALMO-OO

uses fourth order Runge-Kutta algorithm.

In addition to the conventional usage, the SALMO-OO UML communication

diagrams introduce a new procedure. According to the results in the OOA phase, there

are 19-shared variables in the salmo.model package. These variables belong to the

objects that represent the state variables. Although the SALMO ODE document

records their location in a few equations, it is still difficult to figure out which object

is involved in calculating one of these variables. In fact, diagrams can solve this

problem. We use UML communication diagrams to represent this logic. Figure 4.18

shows the object rectangle and the note rectangle, which respectively symbolize the

objects and the shared variables. It can be shown in Figure 4.18 that a variable needs

to be calculated by an object if a dashed line connects them. The Light object does not

calculate any of these variables therefore it is isolated. Furthermore, it is clearly

shown in Figure 4.14 how many objects need to share a variable’s calculation.

 75

Detritus

Oxygen

Phytoplankton &
AlgaeLibrary

Light

Zooplankton

Phosphate Nitrate

WX, WXH

G, GH

GSUM,
GHSUM

XEX, XHEX,
XHFLUK

WZ,WZH,
MORTZ,
MORTZH

RZ, RZHLOH DEX, DHEX,
DHFLUK

Figure 4.18 A UML communication diagrams for the relationships between the

objects and the shard variables

It can be stated that the complete UML communication diagrams are one of the

milestone in the SALMO-OO life cycle. Often this is the end of the object-oriented

design phase. With the guide of these UML diagrams, Java programming language

can implement the SALMO-OO class library in a short time. In general sense, a well-

designed software structure will free the person who types source code to a large

degree. However, object-oriented programming strongly relies on a programmer’s

experience and skill.

At this stage, a conclusion can be drawn for both the SALMO-OO UML sequence

diagrams and SALMO-OO communication diagrams. On one hand, the purpose of the

 76

SALMO-OO UML sequence diagrams is to figure out the flow logic between the

SALMO-OO applications on the top level. As normal understanding process, it is

more important for us to firstly understand how the message flows between the top-

level components than the low-level classes. Thus, the SALMO-OO UML sequence

diagrams focus on the general message flow in the network edition rather the details

in the stand-alone edition because the network edition contains a large amount of

complex user transactions. On the other hand, the SALMO-OO UML communication

diagrams deal with the detail message flow as a compensative solution. These details

dominate the flow logic in SALMO-OO stand-alone edition. Therefore, the

collaboration of these two diagrams clarifies the interactions between the SALMO-

OO applications in the OOD phase.

4.5.7 The SALMO-OO UML diagrams for deployment

The target SALMO-OO applications need deployment to be available. The

components of deployment encompass hardware devices, operating systems,

SALMO-OO suites, and various supporting software.

SALMO-OO involves two deployment strategies. One is the stand-alone edition

deployment. The stand-alone edition requires the SALMO-OO suites to be installed in

a single computer but does not involve any transactions across the computer network.

A single computer can be any computer that has ability to run the SALMO-OO suites.

For example, this single computer can be a desktop, laptop, or mainframe regardless

 77

of connecting to the Internet, but it has to meet the minimum configuration. Actually,

most of the computers produced after 2000 are able to run the SALMO-OO suites.

Figure 4.19 uses UML diagrams for deployment to show the details. It can be seen

from this figure that all the components are deployed in one computer device.

Figure 4.19 UML diagrams for deployment for the stand-alone version of SALMO-

OO

Another is the network version deployment. The network version requires the

SALMO-OO suites to be installed in the computers that connect to the Internet. The

 78

specific deployment strongly depends on the available network structure. Generally,

the SALMO-OO suites distribute the class library and database into two hardware

devices. Moreover, it requires the client terminals to install Internet Explorer

embedded Java Runtime Environment that enable to display Applet. Figure 4.20

shows these configurations.

Figure 4.20 UML diagrams for deployment for network version of SALMO-OO

In addition to these UML diagrams for deployment, it is necessary to display further

deployment of the SALMO-OO suites in the Tomcat container. Figure 4.21 shows the

hierarchy in the form of tree graph. A rectangle with underline text represents a

directory, and a rectangle with plain text represent one or more files.

 79

Figure 4.21 Suites file hierarchy of SALMO-OO

Tomcat 4 and JRE 1.5 are required for both the stand-alone and network version of

SALMO-OO.

4.6 The SALMO-OO API Specification

The SALMO-OO API specification provides the detail instructions for the SALMO-

OO class library. As an important document, this API specification reflects the

structure of the core SALMO-OO applications, including packages, classes, fields,

and methods. It is organized in the form of web pages that comply with the standard

of Java code conventions (Sun Microsystems 1994-2005b).

 80

Chapter 5

Discussion

5.1 SALMO-OO can be implemented by Object-Oriented
programming using Java

SALMO-OO achieves the same results as the original Fortran IV version of SALMO.

Figure 5.1 illustrates the simulation results of the Fortran IV version of SALMO for

phosphate, phytoplankton and zooplankton by means of data from Lake Stechlin

1975, Saidenbach Reservoir 1975, and Bautzen Reservoir 1978.

Figure 5.1 Simulation results by the FORTRAN IV version of SALMO for the Lake

Stechlin 1975, Saidenbach Reservoir 1975 and Bautzen Reservoir 1978

 81

The second prototype system exactly reconstructs SALMO but is implemented in

Java programming language. The new results add Chlorophyll-a state variable and

simulate epilimnion and hypolimnion together, excluding Lake Stechlin 1975.

Figure 5.2 shows the result of the second prototype system that simulates Saidenbach

Reservoir 1975.

Figure 5.2 Simulation results by SALMO-OO for Saidenbach Reservoir 1975

Comparing to the Fortran result of Saidenbach Reservoir 1975 in the middle of Figure

5.1, it is obvious that Figure 5.2 has higher daily dynamics than Figure 5.1 in DIP,

phytoplankton, and zooplankton. This difference comes from using wrong parameters.

 82

After correcting the mistakes, the result of Bautzen Reservoir 1975 is far similar to

the Fortran one (Figure 5.3).

Figure 5.3 Simulation results by SALMO-OO for Bautzen Reservoir 1978

It is clear that using object-oriented technology can produce the same model as

before. However, the second prototype system is not good enough to show the

strength of object-oriented technology. Our project further enforces the model

SALMO in the third prototype system, which is the final version of SALMO-OO. It

achieves more accurate results than those previous ones, and optimises the structures

of the SALMO-OO class library. These improvements realize the possibility to add an

extra algal functional group; therefore SALMO-OO can simulate Diatoms, Green

Algae, and Blue Green Algae at the same time. Moreover, SALMO-OO offers a new

 83

function that permits users to adjust the primary modelling parameters. Thus,

ecologists can flexibly select the SALMO parameters to pursue any perspective result.

Fortunately, all these processes are happened in an easy manner.

The SALMO-OO achievements benefit from the object-oriented technology. In others

words, the model SALMO is standardised by means of object-oriented modelling

such as UML modelling. However, the Fortran version of SALMO follows the

structural paradigm, which uses flow chart to simulate the modelling process.

Although the Fortran one has a well-design structure (Figure 1 and Figure 2 in Section

1.3.1), it did not describe it in a simple modelling language, which results in the

complexity of SALMO. As a result, neither modellers can directly clarify the

structure, nor programming languages can easily implement the relative applications.

On the other hand, the SALMO-OO class library solves the problems by means of

object-oriented modelling. As far as the performance is concerned, the realizations of

flexibility, reusability, and platform independence enable the SALMO-OO class

library to be accessed more freely than before. The flexible SALMO-OO class library

takes advantage of object-oriented analysis and design. Specifically, UML modelling

achieves the aims. SALMO-OO provides transparent program structure against its

complexity. The previous SALMO model is broken up into pieces that represented by

objects in the OOA phase. The merit of object orientation provides a beneficial way to

simplify the complexity of the model SALMO because everything originates from an

atomic particle. Theoretically, an atomic particle is the minimum understandable unit

 84

in the human mind. In the context of object-oriented paradigm, this atomic particle

means object. Subsequently, OOD discovers the relationships and interactions

between these objects and represents the details by various UML diagrams. These two

processes finally model the SALMO-OO requirement, structure, and logic in a simple

way. Moreover, the well-designed structure benefits the reusability of the class

library. The advantage of reusability not only reduces a large amount of source code

but also simplify the implementation of target SALMO-OO. In addition, the SALMO-

OO class library is independent to the runtime environment, including hardware

devices, operating systems, and databases. Undoubtedly, Java technology plays a key

role in the platform independence. In general, UML modelling provides one of the

most representative methods standardise the model SALMO and data structure, which

delivers the aims of data and model sharing by standardised model and data

structures.

Since SALMO-OO can be implemented by object-oriented technology, it also is

capable to pursue more advanced applications such as web accessibility, even to be

built accompanying with other application-level software systems such as Graphical

Information System (GIS). The latter is supposed to upgrade SALMO-OO on the

spatial dimension. Therefore, using object-oriented technology solves the key of

SALMO-OO as well as aims to future considerations.

5.2 Users can access SALMO-OO via Internet as well as friendly GUI

Web accessibility and friendly GUI is the second achievement of SALMO-OO.

 85

Although SALMO-OO considers both stand-alone edition and network edition, the

core class library is exactly same between two editions. The difference between them

only involves part of GUI components, but does not has any dissimilar operations for

users. To clarify the visual effect, both editions demonstrate an example.

First, SALMO-OO stand-alone edition GUI is shown in Figure 5.4.

Figure 5.4 Initial GUI of the stand-alone version of SALMO-OO

Figure 5.4 consists of three parts. The first part is the SALMO-OO modelling options,

which lies in the top of Figure 5.4. SALMO-OO provides lake, year, algal growth,

 86

algal grazing, and scenario selections. User can freely chose any combination among

them. The second part is the SALMO-OO modelling parameters, which lies in the

middle of Figure 5.4. Currently, SALMO-OO provides the whole algal parameters

and part of zooplankton parameters, including additional model library parameters for

algal growth and algal grazing. The third part is the GUI functional area, which lies in

the bottom of Figure 5.4. Users can submit modelling request by press the Submit

button, or cancel it. For example, a user clicks the Lake Selection option, the system

responses to list all the available lakes or reservoirs (Figure 5.5). Responsively, the

user chooses the Bautzen item and the system vary it into blue background.

Figure 5.5 Example for the selection of lake ‘Bautzen’ by means of the GUI stand-

alone version of SALMO-OO

 87

After release mouse, the Bautzen item displays in the Lake Selection option instead of

the previous default one. The Year Selection option automatically displays the

available years that respond to one selected lake (Figure 5.6). In this case, SALMO-

OO only offers one year 1978 regrading to the Bautzen Reservoir. Subsequently, the

user press the Submit button with other default options, which are the original

SALMO-OO algal growth and grazing model without scenario analysis, therefore the

system skip to the result GUI (Figure 5.7).

Figure 5.6 Example for the selection of year ‘1978’ of lake ‘Bautzen’ by means of the

GUI stand-alone version of SALMO-OO

 88

Figure 5.7 Visualisation of validation results for concentrations of phosphate PO4-P,

chlorophyll a, total algal biovolume and zooplankton biovolume simulated for the

Bautzen Reservoir in 1978 by the stand-alone version of SALMO-OO (page No. 1)

Figure 5.7 displays the simulated data of DIP, Chlorophyll-a, total algal biomass, and

zooplankton. The user can look through other state variables by press the Next button

in the bottom of Figure 5.7. For instance, the user wants to display DIP, DIN, oxygen,

and detritus, which are illustrated in Figure 5.8.

 89

Figure 5.8 Visualisation of validation results for concentrations of phosphate PO4-P,

nitrate NO3-N, dissolved oxygen and detritus simulated for the Bautzen Reservoir in

1978 by the stand-alone version of SALMO-OO (page No. 2)

Similarly, Figure 5.9 displays total algal biomass and three functional groups

respectively.

 90

Figure 5.9 Visualisation of validation results for the concentrations of total algal

biomass, diatom biuomass, green algae biomass and blue-green algae biomass

simulated for the Bautzen Reservoir in 1978 by the stand-alone version of SALMO-

OO (page No. 3)

The user usually wants to look through another lake at the result GUI. For instance,

the user is intent to explore Saidenbach Reservoir. It can be done by click the Return

button that closed to the Next button. The system will display the initial GUI in Figure

5.4. By performing the similar operation, Figure 5.10 suite displays the simulated data

respectively of Saidenbach Reservoir 1975.

 91

Figure 5.10(a) Modelling selection page Figure 5.10(b) 1st result page

 Figure 5.10(c) 2nd result page Figure 5.10(d) 3rd result page

Sometimes, the user adopts various scenario analyses in order to investigate the

simulated results of lake management. For example, it is often helpful for freshwater

management personnel to reduce DIP loads and artificial mixing to control the total

algal biomass. SALMO-OO enables this operation to be easily performed. Figure 5.11

illustrates a user click the Scenario Selection option, which is the Scenario7-Artificial

Mixing and Phosphate Load Reduction item.

 92

Figure 5.11(a) Selection of the scenario ‘artificial mixing and phosphate load

reduction’ for the Saidenbach Reservoir in 1975 by means of the GUI of the stand-

alone version of SALMO-OO

After choose the Scenario7, the user needs to choose how much reduction of DIP

from the Phosphate Load Reduction % option. In this case, the user clicks the ‘90’

item (Figure 5.11(b)).

 93

Figure 5.11(b) Specification of the phosphate load reduction by 90% for the selected

the scenario ‘artificial mixing and phosphate load reduction’ for the Saidenbach

Reservoir in 1975 by means of the GUI of the stand-alone version of SALMO-OO

Responsively, the SALMO-OO invokes the artificial mixing dataset associating with

DIP load reduction 90%, finally drawing two different curves to represent these

simulated results. Figure 5.12 shows the scenario simulation data with dash line

differs the original SALMO one with solid line. It is obvious that the total algal

biomass is decreased because of DIP reduction.

 94

Figure 5.12 Simulation result of the scenario ‘artificial mixing and phosphate load

reduction’ for the Saidenbach Reservoir in 1975 visualised by the GUI of the stand-

alone version of SALMO-OO

SALMO-OO network edition delivers almost similar visual effect to its stand-alone

edition, but disable the functions of the parameter adjustments or the algal growth and

grazing model library selections. It is unnecessary for remote users to assess our

proceeding project. Although some remote users expect doing so, it is actually hard to

keep the robust and correctness of the whole algal model library because varied

parameters and algal models have not been verified. In some worst case, some

arbitrary parameter and algal model selections could cause system collapse. Thus,

SALMO-OO network edition GUI is different from its stand-alone one somewhat.

 95

Figure 5.13(a) shows the initial web page (lake selection). A remote user must choose

one lake dataset to skip to the next web page (year selection Figure 5.13(b)). The

following web page is scenario selection (Figure 5.13(c)). Finally, the first result web

page is displayed in Figure 5.13(d) after the remote user press the Submit button. Also

the remote user can look through other results by the Next button (Figure 5.13(e) and

Figure 5.13(f)), but web page does not skip.

 Figure 5.13(a) Lake selection web page Figure 5.13(b) Year selection web page

Figure 5.13(c) Scenario selection web page Figure 5.13(d) 1st result web page

 96

 Figure 5.13(e) 2nd result web page Figure 5.13(f) 3rd result web page

It can be seen from these figures that SALMO-OO provides friendly GUI as well as

web-based access. In the stand-alone edition, friendly GUI implementation mainly

depends on Java Abstract Window Toolkit (AWT) and Java Swing component, and

network edition adds HTML and JSP to be enabled web presentation.

5.3 Object-oriented technology allows for developing an algal model
library

SALMO-OO easily implements an algal model library by using object-oriented

technology. This algal model library contains a number of algal growth and grazing

models, which encapsulated into the AlgaeLibrary class in the salmo.model package.

Technologically, the AlgaeLibrary class extends the Phytoplankton class, the various

growth and grazing models act as methods in the AlgaeLibrary class. Java

programming language provides polymorphism for an AlgaeLibrary object invokes

one specific method between the superclass (Phytoplankton) and the subclass

(AlgaeLibrary). Therefore, the alternative equations can replace the ones in SALMO-

OO; eventually investigate which one improves SALMO as ecological expectations.

 97

As far as users are concerned, these processes are transparent. The model library

option is similar to the lake or year option in GUI. Figure 5.14 illustrates how a user

chooses a growth model associating with Bautzen Reservoir 1978. Obviously, it does

not require users to put any extra efforts.

Figure 5.14 Selection of the algal growth model 3 from the model library for the

simulation of the Bautzen Reservoir in 1978 by means of the GUI of the stand-alone

version of SALMO-OO

Usually, a user may observe accompanying grazing model instead of the original

SALMO grazing model. Similar operation needs to be done for this user (Figure

5.13(b)).

 98

Figure 5.15 Selection of the algal grazing model 3 from the model library for the

simulation of the Bautzen Reservoir in 1978 by means of the GUI of the stand-alone

version of SALMO-OO

In the meanwhile, the user can freely adjust various modelling parameters to pursue

expected simulation results. By using these functions, my colleague has made further

progress on SALMO improvements. Figure 5.16 lists the comparisons among a group

of diagrams that represent various simulation results by model library selections and

parameter adjustments. Undoubtedly, these improvements benefit from using object-

oriented technology.

 99

Figure 5.16 Illustration of the simulation results for the Bautzen Reservoir in 1978 by

different model structures of SALMO-OO selected from the model library of the

stand-alone version of SALMO-OO (from Cetin, Zhang and Recknagel 2005)

5.4 The implication of the SALMO-OO documents

The SALMO-OO documents are to abstractly model SALMO-OO. These documents

consist of three basic categories: descriptions, simulations, and instructions. The

category of descriptions comprises the SALMO-OO requirement statement and

specification document, which clarify the fundaments of SALMO-OO and specify the

limitations of SALMO-OO. The second category simulates SALMO-OO by means of

UML modelling, including the SALMO-OO use-case diagrams, class diagrams,

sequence diagrams, communication diagrams, and UML diagrams for deployment .

The third category is the SALMO-OO API specification, which instructs how to use

the SALMO-OO class library. The strength of the SALMO-OO documents plays a

key role in the process of simplifying the complexity of SALMO-OO. Moreover,

 100

these documents provide an understandable platform for anyone who involves

SALMO-OO to easily mutual communication. Therefore, the SALMO-OO

documents are the primary outcomes of this project.

 101

Chapter 6

Conclusions

Through this project, we draw two conclusions: lake ecosystem modelling can use

object-oriented technology and lake ecosystem modelling can benefit from object-

oriented software engineering.

We have achieved the key requirements of SALMO-OO. Now, the SALMO-OO

creator and developer can arbitrarily vary and extend their logics. The flexibility of

the class library permits them to perform any reasonable operations without

destruction. Moreover, the friendly GUI enables the model users access SALMO-OO

in a comfortable situation. Also they can observe the state variable dynamics with any

combinative modelling options.

As far as the methods are concerned, the development of SALMO-OO takes

advantages of up-to-date information technologies. With the guidance of object-

oriented software engineering, SALMO-OO realizes all the objectives in the proposal.

Furthermore, the developing duration and workload has been overestimated because

of using some Extreme Programming methods. Finally, SALMO-OO delivers some

useful documents to describe the whole developing process. These documents not

only clarify SALMO-OO development but also explain SALMO-OO from different

perspectives. Therefore, SALMO-OO is far understandable for both ecologists and

computer scientists.

 102

It is clear that object orientation has more ability to build the flexible lake ecosystem

model class library than some previous means. Lake ecosystem modelling can make

achievements by means of object-oriented technology.

 103

Chapter 7

Recommendations

From the scientific perspective, the SALMO-OO class library considers to be

improved to be compatible to the future applications. Specifically, a generic

freshwater class library contains various variables that involve in freshwater

simulation is needed. This expected achievement would highly contribute to the

society of water research and management. The benefits are the whole society can

reuse the programming code as well as easily deploy this standard class library in

various water dependent applications.

The achieved SALMO-OO needs maintenance. The methodology of modern software

engineering concludes the maintenance task lives in all the phases of software life

cycles. Theoretically, it sounds that we have completed the SALMO-OO maintenance

since this project ended. However, it is possible to vary SALMO-OO in the future

such as correcting faults, optimising structure, extending algal functional groups or

model libraries, changing run environment, even transferring to other computer

systems. Therefore, it can be recommended leaving the maintenance of SALMO-OO

as the future works.

Maintenance will improve SALMO-OO in the future. However, our conclusions do

not prove other object-oriented ecological models are inability to achieve our

objectives. Information technology is upgrading everyday, ecological models

 104

accompany enforcement once if they adopt novel techniques. It is impossible to trace

and look through their improvements in real time. In the world wide, the development

of Information technology is far faster than using them in a real application. Thus,

SALMO-OO has to keep up with the development in order to make future

achievements.

 105

Reference:
Abadi, M., and L. Cardelli. 1998. A Theory of Objects. Springer, New York.

Acock, B., and V. R. Reddy. 1997. Designing an object-oriented structure for crop
models. Ecological Modelling 94:33-44.

Apache Jakarta Project. 1999-2005. in. Apache Jakarta Project.

Back, T., D. B. Fogel, and Z. Michalewicz. 2000a. Evolutionary Computation 1 Basic
Algorithms and Operators. IOP Publishing Ltd.

Back, T., D. B. Fogel, and Z. Michalewicz. 2000b. Evolutionary Computation 1 Basic
Algorithms and Operators. IOP Publishing Ltd.

Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

Brenner, N. 2005. VISUAL BASIC .NET – ONE TEACHER'S EXPERIENCE.
Consortium for Computing Sciences in Colleges 21:89 - 94.

Cardelli, L., and P. Wegner. 1985. On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys (CSUR) 17:471 - 523.

Chen, J. L., and J. F. Reynolds. 1997. GePSi: A generic plant simulator based on
object-oriented principles. Ecological Modelling 94:53-66.

Cornell, G., C. S. Horstmann, and C. S. Forstmann. 2002. Core Java 2: Fundamentals.
Sun Microsystems.

Dahl, O. J., and K. Nygaard. 1966. SIMULA-an algol-based simulation language.
Communications of the ACM 9:671-678.

Ferreira, J. G. 1994. ECOWIN - an object-oriented ecological model for aquatic
ecosystems. Ecological Modelling 79:21-34.

Flanagan, M. T. 2005. Michael Thomas Flanagan's Java Library RungeKutta Class.
in. Flanagan, M. T.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns. Addison-
Wesley Professional.

Gofen, A. 2001. From Pascal to Delphi to Object Pascal-2000. ACM Press 36:38-49.

Goldberg, A., and D. Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley, Reading.

Heine, D. L., and M. S. Lam. 2003. A practical flow-sensitive and context-sensitive C
and C++ memory leak detector. ACM SIGPLAN Notices, Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design and
implementation 38:168-185.

 106

Jacobson, I. 1992. Object-Oriented Software Engineering: A Use Case Driven
Approach, 1st edition. ACM Press, Addison-Wesley, New York.

Jenkins, T., and G. Hardman. 2004. How to program using Java. Palgrave Macmillan,
New York.

Lemmon, H., and N. Chuk. 1997. Object-oriented design of a cotton crop model.
Ecological Modelling 94:45-51.

McMillan, T., and W. Collins. 1990. Implementing abstract data types in Turbo
Pascal. ACM Press 22:134-138.

Meyer, B. 1988. Object-oriented software engineering. Prentic Hall International
(UK) Ltd., Hertfordshire.

Meyer, B. 1992. Eiffel: The Language. Prentice Hall International.

Meyer, B. 1996. The many faces of inheritance: a taxonomy of taxonomy. IEEE
Computer 29:105-108.

Microsoft. 2006a. Learn C#. in. Microsoft Corporation.

Microsoft. 2006b. Microsoft Internet Explorer. in. Microsoft Windows Group.

MySQL AB. 1995-2005. in. MySQL AB.

Object Management Group. 1997-2005. Unified Modeling Language. in. Object
Management Group.

Papajorgji, P., H. W. Beck, and J. L. Braga. 2004. An architecture for developing
service-oriented and component-based environmental models. Ecological
Modelling 179:61-76.

Parker, R. A. 1968. Simulation of An Aquatic Ecosystem. The Biometric Society 24.

Parnas, D. L. 1971. Information distribution aspects of design methodology.
Proceedings of the IFIP Congress:339-344.

Pressman, R. S. 2001. Software Engineering: A Practitioner's Approach, 5th edition.
McGraw-Hill Professional, Boston.

Pugh, J. R., W. R. LaLonde, and D. A. Thomas. 1987. Introducing Object-Oriented
Programming into the Computer Science Curriculum. ACM Press 19:98-102.

Rational Software. 2005. Rational Software. in. IBM.

Recknagel, F. 1989. Applied Systems Ecology. Akademie Verlag, Berlin.

Recknagel, F., and J. Benndorf. 1982. Validation of the ecological simulation model
SALMO. Int. Rev. Ges. Hydrobiol 67 (1):113-125.

 107

Recknagel, F., M. Hosomi, T. Fukushima, and D. S. Kong. 1995. Short - and long-
term control of exernal and internal phosphorus loads in lakes - a scenario
analysis. Water Research 29:1767-1779.

Ryder, B. G., and M. Burnett. 2005. The impact of software engineering research on
modern programming language. ACM Transactions on Software Engineering
and Methodology 14:431-477.

Schach, S. R. 2002a. Object-oriented and classical software engineering, fifth edition.
The McGraw-Hill Companies, Inc.

Schach, S. R. 2002b. Object-oriented and classical software engineering, fifth edition.
The McGraw-Hill Companies, Inc.

Sekine, M., H. Nakanishi, M. Ukita, and S. Murakami. 1991. A shallow-sea
ecological model using an object-oriented programming language. Ecological
Modelling 57:221-236.

Sequeira, R. A., P. J. H. Sharpe, N. D. Stone, K. M. El-Zik, and M. E. Makela. 1991.
Object-oriented simulation: plant growth and discrete organ to organ
interactions. Ecological Modelling 58:55-89.

Silvert, W. 1992. Object-oriented ecosystem modelling. Ecological Modelling 68:91-
118.

Soetaert, K., V. deClippele, and P. Herman. 2002. FEMME, a flexible environment
for mathematically modelling the environment. Ecological Modelling
151:177-193.

Stroustrup, B. 1986. An Overview of C++. ACM SIGPLAN Notices 17.

Stroustrup, B. 1995. Why C++ is not just an object-oriented programming language.
ACM Press 6:1-13.

Sun Microsystems. 1995-2005. What Is an Object. in. Sun Microsystems, Inc.

Sun Microsystems, I. 1994-2005a. Java Applet Technology. in. Sun Microsystems,
Inc.

Sun Microsystems, I. 1994-2005b. Java Code Conventions. in. Sun Microsystems,
Inc.

Sun Microsystems, I. 1994-2005c. Java Servlet Technology. in. Sun Microsystems,
Inc.

Sun Microsystems, I. 1994-2005d. JavaServer Pages Technology. in. Sun
Microsystems, Inc.

Wenderholm, E. 2003. Eclpss: a Java-based framework for parallel ecosystem
simulation and modelling. Environmental Modelling & Software.

 108

