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Abstract 

Object-oriented ecosystem modelling was introduced in the early of 1990s (Silvert, 

1992). From that time on, ecosystem models using object-oriented programming 

(OOP) has earned significant achievements with increasing upgraded information 

technology. The common purposes of ecosystem modellers are to build a model with 

flexible structure, which allow continuous modifications on the model content. In last 

decade, ecosystem modellers have put a large number of efforts to practice the OOP 

approaches in order to implement a true object-oriented ecosystem model. However, 

these previous work have not fully take advantage of object-orientation because of 

misusing more or less this technique. This paper explains the shortcoming of these 

previous endeavours therewith points out a practical solution that using the 

methodology of object-oriented software engineering and some relative novel 

information techniques. A case study SALMO-OO will be presented in this paper to 

prove Silvert’s assumption that OOP play an important role on ecosystem modelling 

approaches. Moreover, the results of SALMO-OO convince that object-oriented 

ecosystem modelling can be achieved by using object-oriented software engineering 

associating with a true object-oriented programming language (Java in this case).  
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Chapter 1 

Introduction 

Ecological modelling is a process to represent and simulate natural ecosystems by 

means of computable methods, such as ordinary differential equations (ODE). 

Essentially, ecological modelling consists of two elements. One is an ecosystem 

model that can be represented as an ecosystem class library. Another is a group of 

ecological data that can be represented by an ecological database. A class library is 

defined as a set of ready-made software routines (class definitions) that programmers 

use for writing object-oriented programs (Schach 2002b). An ecosystem class library 

therefore means a group of computer algorithms that implement the equations of an 

ecosystem model and are assembled in a computer program. The ecological database 

stands for information technology for archiving and retrieval of manageable 

ecological data. 

 

Ecologists benefit from both ecological modelling and novel information technology. 

Computer systems provide a platform for ecologists to create virtual ecosystems 

determined by process-based ODE and driven by complex ecological data. Object-

oriented design and implementation of ecosystem class libraries is a novel 

information technology that significantly improves the transparency and flexibility of 

complex ecological models. Object-oriented software design and implementation 

have been introduced in the early 1980s and since then broadly applied for 

commercial and scientific uses (Schach 2002b). 
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Lake ecosystems are one application area of ecological modelling. Lake ecosystem 

models need to reflect the basic structure of the pelagic food web and nutrient cycle in 

order to realistically simulate phytoplankton and zooplankton dynamics in response to 

seasons and water quality changes. The lake ecosystem model SALMO (Recknagel 

and Benndorf 1982, Recknagel 1989, Recknagel et al. 1995) meets well these 

requirements being based on ODE for three functional groups of phytoplankton 

(diatoms, green algae, blue green algae), herbivorous zooplankton (cladocereans), 

dissolved inorganic phosphate (DIP), dissolved inorganic nitrate (DIN), detritus, and 

dissolved oxygen. Through continuous improvements over the past decade, this model 

is now generic for non-shallow lakes (maximum depth > 5m) and able to simulate 

daily dynamics of phytoplankton, zooplankton, oxygen, phosphates, nitrate, and 

detritus concentration in response to lake-specific data of water temperature, solar 

radiation and nutrient loadings measured for one particular year. The model is a useful 

tool for scenario analysis and allows forecasting of lake ecosystem responses to 

management scenarios such as artificial mixing, bio-manipulation and external 

nutrient control. The pervious model class library of SALMO was designed and 

implemented in a modular but rigid structure by means of the programming language 

Fortran IV, which does not support the object-oriented paradigm but allows structured 

programming. Therefore the functionality of the previous SALMO program was 

limited in flexibility, user friendliness, and web accessibility. To overcome these 

limitations, this research aimed at the object-oriented design and implementation of 

the model SALMO by means of the programming language Java, and to establish a 

prototype for the object-oriented design and implementations of complex ecological 

models. 
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1.1 Literature Review 

1.1.1 Introduction of Object-Oriented History 

Since the first object-oriented concept and Simula were introduced in 1960s (Dahl and 

Nygaard 1966), the object-oriented programming language (OOPL) family probably 

consists of more than 30 members by now. The popular OOPLs could be Simula, 

Smalltalk-80 (Goldberg and Robson 1983), Eiffel (Meyer 1992), C++ (Stroustrup 

1986), Java (Sun Microsystems 1995-2005), and C# (Microsoft 2006a). 

 

These OOPLs are developed based on the fundamental units of object-orientation: 

object, class, inheritance, encapsulation, and polymorphism (Abadi and Cardelli 

1998). These basic concepts are well established and widely cited in the literature. 

The most accurate definition of an object is a software bundle of variables and related 

methods (Sun Microsystems 1995-2005).  A class is an abstraction data type that 

represents the instances of all objects (Pugh et al. 1987). In other words, a class is a 

concept that abstracts a group of relative objects. For example, mankind covers all of 

the human beings while an individual can be regarded as an instance of the mankind. 

In this context, a concrete individual is the object of the mankind class. In case of 

aquatic ecology, phytoplankton is a class that abstracts various algae. Diatoms, green 

algae, blue green algae are the objects of the phytoplankton class respectively. 

Inheritance is defined as a subclass that extends the details in its superclass. This idea 

dates back to the creation of biological taxonomy, which is a example of how 

computer science is inspired by biology.  In the above case, the mankind class 

comprises two subclasses: the female and the male class. Similarly, the phytoplankton 
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class can descend from an algae species class that extends the growth behaviour. 

Thus, the extended algae class is the subclass of the phytoplankton class. Logically, 

the phytoplankton class is the superclass of the algae class. There are inheritance 

relationship between the phytoplankton superclass and the algae subclass. Further 

discussion can be found in (Meyer 1996). The idea of encapsulation was introduced as 

information hiding (Parnas 1971). As the name implies, encapsulation or information 

hiding allows objects to protect their details from illogical access from other objects. 

Specifically, an object can hide its own information, including fields (states) and 

methods (behaviours). For example, a phytoplankton class contains a biomass field, a 

growth and a grazing method. Another zooplankton class contains a biomass field and 

a growth method. Obviously, the phytoplankton biomass is different from the 

zooplankton one. Encapsulation makes these two different biological biomass fields 

be invisible to each other. A zooplankton object grazes an algae object, in this 

context, can be explained as a zooplankton object increases its biomass field value by 

the zooplankton growth method as the same time as an phytoplankton object 

decreases its biomass field value by the phytoplankton grazing method. Notes that 

neither a zooplankton object nor a phytoplankton object can directly access others’ 

fields or methods. They have to send and receive a message in order to tell a mutual 

object to complete this logic. Polymorphism means that programming language of a 

variable and function have more one type (Cardelli and Wegner 1985). Polymorphism 

usually accompanies with inheritance. For instance, a superclass has three subclasses. 

These three subclasses inherit a variable of the superclass but each of this subclass has 

different variable types and the exactly same variable name. The object of the 

superclass is able to use the appropriate variable with the desired type during runtime. 

This mechanism is polymorphism. It is extreme useful in ecological modelling. For 
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example, in the above-mentioned case, a phytoplankton object can be cast as its 

subclass type such as an algae type. For a concern condition, a model simulation will 

be automatically informed which algae type needs to be activated. Therefore, the 

model will run the approximate object methods in the runtime. The extended algae 

growth model libraries provide either from the original growth model library or these 

methods. Without exception, polymorphism is one of natural world concepts utilised 

in computer science. 

 

As far as the motivation of creating OOPLs is concerned, the original intention is to 

create a new programming language in order to overcome some previous 

programming problems such as maintainability and readability. It is well known that a 

software product is made of code. The conventional programming can be described as 

the larger the software product the more mass code is required. As a result, software 

developers suffer the difficulty of maintenance and understand the code when the 

software product is large enough to consist of long list codes. 

 

The solution using object-oriented paradigm simply breaks the code into a number of 

relative pieces. Each piece is organized in the smallest extent to represent a single 

object, including its state and behaviour. For example, a car object can represent a 

Ford sedan. This car object may comprise a number of states such as its colour and 

the number of wheels, and behaviours such as starting, braking, and parking. Also in 

this case, a car class represents all cars. Obviously, a Ford sedan is one of the 

instances of cars. A well-designed class is highly reusable, which can communicate 
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with other objects by sending and receiving message without any modification in all 

the different special applications. Just like a Ford sedan can be simply used if lending 

to other drivers. 

 

In recent years, the two popular OOPLs are Java and C#, which are made from private 

computer companies Sun Microsystems and Microsoft respectively. Java 

programming language not only is supported by Sun Java group but also is 

technological shared in open source communities. As the most popular, object-

oriented, and free OOPL, Java widespread applies in various scientific research 

projects besides commercial applications.  

 

1.1.2 Previous Efforts of Object-Oriented Ecological Modelling 

Many efforts have been undertaken to improve ecological modelling by using object-

oriented technology.  

  

In the early of 1990s, biologists had attempted to consider object-oriented technology 

as a novel method for ecosystem modelling. The idea of using object-oriented 

programming (OOP) for ecosystem modelling was introduced by a Canadian biologist 

(Silvert 1992). From biologists’ perspectives, the object-oriented concept is to focus 

on the abstract representation of real objects in the natural worlds instead of the linear 

sequence of calculations in some ecosystem model programs. In this paper, Silvert 

started from a question whether the model structure should reflect the ecosystem 

structure. Subsequently, the detail introductions about object-oriented programming 
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have been discussed, including the concept of objects, inheritance, interactions, even 

the way to write code and maintenance. For example, an object-oriented programming 

language code is listed in the below code fragment.  

Algae = object(Plant) 
Biomass; 
procedure Growth(); 
procedure Grazing(); 

end; 

This code fragment describes an Algae object that extends the Plant object. Inside the 

Algae object, it comprises a Biomass state and the Growth and Grazing behaviour. 

Obviously, this code fragment reflects the basic biological processes of algae species. 

Firstly, it defines an Algae object is one of the sub-objects of the Plant object, which 

represents the inheritance relationship. Secondly, it briefly lists the process of algae 

life cycle: growth and death. The algae increases biomass value that is represented by 

the growth behaviour and the value are decreased because of grazing by herbivorous 

zooplankton. Besides the various code samples, this paper discusses comprehensively 

the details behind these samples of code in order to instruct other practisers how to 

programme object-oriented ecosystem models. 

 

Also, this paper pointed out the natural compatibility between some object-oriented 

concepts and biology. For example, the inheritance of object-orientation originates 

from biological literature. Under these merits, the author believed that OOP could 

implement ecosystem models with highly flexibility and maintainability. Therefore, 

OOP would become a dominated methodology in implementing ecosystem models in 

the future if there will appear some effective object-oriented programming language. 
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This assumption not only indicates Silvert’s anticipation but also implies the 

infeasibility of using object-oriented programming languages in developing large-

scale ecosystem models at that age. Indeed, object-oriented languages were not ready 

to be applied until a few years later. The unfortunately previous disadvantages of 

OOP such as low level of optimisation, difficulty to integration, and inefficiency 

results in delaying widespread applications of object-oriented ecosystem models. 

However, Silvert foresaw the perspectives that OOP would be an important approach 

in ecosystem modelling. The history of object-oriented ecosystem modelling proves 

Silvert’s undoubted prediction. 

 

Another published paper (Sequeira et al. 1991) even further discover the object-

oriented simulation in plant applications. This paper introduces a case study to model 

the plant growth objects by object-oriented paradigm. In addition to the abundant 

literatures of object-oriented introduction, a specific application discussed that 

illustrates the way how object-oriented simulation benefits the applications of cotton 

growth and development. Even the authors of this paper adopt diagrams to represent 

the design documents in order to clarify the differences between object-oriented and 

procedural approaches. This outstanding work not only discusses the usage of object-

oriented programming approaches for ecological modelling in theory but also 

illustrates a concrete case study. These outcomes will provide a typical sample for 

other biologists and modellers although the different ecosystem types.  
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With rapidly innovation of information technology after mid-1990s, object-oriented 

technology has been widely applied to terrestrial ecosystems focusing on plant growth 

models (Acock and Reddy 1997, Chen and Reynolds 1997, Lemmon and Chuk 1997) 

and, to a lesser extent, to aquatic ecosystems focusing on freshwater food webs and 

nutrient cycles (Ferreira 1994). Undoubtedly, these previous studies have stimulated 

both concepts for ecological modelling and ecosystem research in general. However, 

these efforts demonstrated neither clearly the advantage of applying object-oriented 

technology to ecosystem models, nor convincingly the application of object-oriented 

technology to transparently structure complex ecosystem models. Thus, there is a 

demand to promote both the improved functionality of ecosystem models and the best 

practice of implementing ecosystem models by object-oriented programming.  

 

The following sections will review previous efforts on ecological modelling using 

object-oriented technology in terms of their possibilities and shortcomings. 

Subsequently, I will discuss how the complexity of ecosystems has influenced the 

choice of modelling methods. The final section will introduce the model SALMO, as 

well as discuss improvement of SALMO in particular and ecological models in 

general by means of OOP. 

 

The previous studies on object-oriented programming of ecological models resulted in 

a few different object-oriented models depending on the degree of achieving both an 

object-oriented design and implementation. Most of the previous studies focused 

either on object-oriented design or implementation but failed to achieve both. 
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1.1.3 Ecosystem Models Using Object-Oriented Design 

Some ecosystem models were designed according to the object-oriented paradigm but 

implemented by procedural or hybrid programming languages such as Fortran, Pascal 

or C++. For example, FEMIME (Soetaert et al. 2002) was intended to construct an 

environment for mathematically modelling with reusability, flexibility, and 

maintainability by using object-oriented design. It separates deterministic ecosystem 

models into three parts: formulation, numerical solution, and application, which 

benefits ecologists or modellers to reuse the various model libraries as well as 

simplify model libraries design. Moreover, FEMIME provides a general platform for 

numerical solution selection and data interaction. The author of this paper claims that 

FEMIME has generic performance in any deterministic, complex, object-oriented 

ecosystem model implementation. However, this paper neither contains any clear 

diagram to represent the structure of FEMIME, nor programmes it in object-oriented 

language. It is hard to be convinced that FEMIME fully adopts object-oriented design 

without displaying any well-designed structure diagram. As far as the usage of 

programming languages is concerned, FEMIME uses one of the procedural 

programming languages Fortran, which clearly indicated by the discussion of using 13 

routines and programming in Fortran. These evidences show that FEMIME was built 

based on object-oriented design and implemented in structural procedural language. 

The limitation of Fortran is because it allows only procedural programming so that 

cannot take advantage of object-oriented programming approaches, and cannot link 

models to the Internet. It is clear that FEMIME needs to be implemented in an object-

oriented programming language in the future work. In addition, the generality of 

FEMIME is limited in Fortran-based ecosystem models. A highly reusable model 

 10



 

library inside model is beyond the scope of FEMIME because it only focuses only the 

high-level process of modelling. Therefore, it remains a big gap that needs to be filled 

in when ecologists or modellers expect more details in ecosystem model 

implementation such as how to programme an Algae code object. 

 

Other examples such as ECOWIN (Ferreira 1994) successful delivers a well-designed 

aquatic ecosystem model. It is based on object-oriented paradigm but implemented in 

Pascal. The most exciting outcome of ECOWIN is a descendent aquatic ecosystem 

class diagram, which is showed in Figure 1.1, an aquatic ecosystem object inheritance 

hierarchy by means of object-oriented design. There are four descendent levels in 

ECOWIN class diagram. Each descendent level class inherit the super-level class, 

which automatically reuse its public attributes and methods. For example, the 

Phytoplankton and Phytobenthos object share a common method named Production 

that belongs to the Producers object. Through benefiting from object-orientation, 

ECOWIN earns great advantages in maintainability and adaptability. According to its 

conclusion, ECOWIN can be applied in various environmental affairs such as metal 

pollution and red tides. 
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Figure 1.1 An aquatic ecosystem class diagram (Ferreira 1994) 

 

Although ECOWIN takes fully advantages of object-oriented design, one drawback 

cannot be ignored. ECOWIN is implemented in Pascal family programming language 

(Turbo Pascal for Windows). In computer science context, Turbo Pascal is not 

completed object-oriented programming language (McMillan and Collins 1990). 

Alternatively, ECOWIN can use Delphi, which provides an object-oriented Pascal 

environment (Gofen 2001). The suggestion to use object-oriented Pascal will benefit 

ECOWIN take fully advantages of object-orientation in the future work. 

 

Another case is a cotton crop model in C++, which called Cotton++ (Lemmon and 

Chuk 1997). Cotton++ is designed for agriculture applications and implemented in 

C++ programming language. This model is the part of a Decision Supporting Systems 

(DSS) for crop management. As far as C++-based models are concerned, the 
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ecological modellers have to take limitations and problems of the C++ programming 

language such as memory leaking into account (Heine and Lam 2003). Even some 

computer scientists doubt that C++ is a true object-oriented language (Jenkins and 

Hardman 2004) and detail discussions can be found in (Stroustrup 1995), which 

discusses why C++ is not object-oriented programming language by its creator. The 

fact is C++ adopt the characters of both object-oriented and procedural programming 

languages, which can be defined as a hybrid programming language. In addition, the 

author of Cotton++ has done some interesting comparisons between C++ and 

Smalltalk. The conclusion is using C++ rather than Smalltalk because of the 

difficulties to use Smalltalk in numerical analysis. 

 

Although these previous studies focused on different ecosystem types and problems, 

they all emphasized on the following aspects: (1) the introduction of the nature and 

benefits of object-oriented technology; (2) the methodology and process of 

implementing ecosystem models using object-oriented technology or programming 

language; (3) the design of a software application in order to facilitate the simulation 

of ecosystems. All these studies provided reasonable background knowledge on the 

ecosystem type and model purpose. However, most of these studies failed to 

thoroughly and properly apply object-oriented technology even though paradigms of 

object-oriented design were promoted. This is a crucial limitation of the previous 

applications that this research is intended to overcome.   

 

1.1.4 The Object-Oriented Ecosystem Models 
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The object-oriented ecosystem models require not only object-oriented design but also 

using an object-oriented programming language. For example, SSEM is designed for 

shallow-sea fisheries and using Smalltalk (Sekine et al. 1991). The outcomes of this 

model prove that object-orientation benefit the flexibility of the application. Also, 

SSEM stores the ecological data into a database instead of the plain text file in the 

previous applications. After 1997, a new programming language Java is introduced in 

programming language family. As a result, Java-based ecological modelling earns 

widespread attractions. For example, the model Eclpss adopted the Java technology to 

build an ecological component library for parallel spatial simulation (Wenderholm 

2003). The model Kraalingen for crops (Papajorgji et al. 2004) was implemented by 

Java and is associated with the Unified Modelling Language (UML) (Object 

Management Group 1997-2005), a type of modelling language to design software 

applications. These efforts successfully delivered some software applications with 

good performance and such desired attributes as being highly reusable, maintainable, 

scalable, and portable. Object-oriented programming such as Java for object-oriented 

modelling facilitates computer-based ecosystem simulation at an advanced level.  

 

In conclusion, these previous efforts on ecological modelling attract increasing 

applications in various ecological areas. Regardless of using any object-oriented 

programming languages, ecologists and modellers have already been convinced that 

ecological modelling can take advantage of object-orientation. Unfortunately, in the 

case of using procedural or hybrid object-oriented programming language, it is 

difficult to protect ecosystem models from inflexible model structure. Thus, it is 

meaningless for ecosystem modellers to pursue the comparison between computer 
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programming languages before attempting to implement an ideal ecosystem model. In 

fact, there is no benchmark for guiding ecosystem modellers to practically select and 

apply one object-oriented programming language to the model implementation. Detail 

discussions about this issue would beyond this paper’s focus. Readers may find more 

in (Ryder and Burnett 2005). Therefore, I would suggest that ecosystem modellers 

regard the implementations of ecosystem models as one of the software applications 

in software engineering domain. Logically, the solutions to achieve object-oriented 

ecosystem models are using any object-oriented programming language and 

methodology of object-oriented software engineering. To achieve this gap, the future 

ecosystem modelling strongly suggests producing comprehensive modelling 

documents, including the design, the class library reference, and the source code if it 

is open to public. Ecologists or modellers are encouraged to further introduce the 

methodology of software engineering into the development of ecosystem models in 

order to achieve a global standard ecological modelling society in the future. 

 

1.2 Ecological Modelling vs. The Complexity of ecosystems   

The complexity of ecosystems is still a big challenge when ecologists attempt to 

realize various ecosystem models in scientific or practical applications. User-friendly 

implementation and maintenance of ecological models can be quite complicated, 

time-consuming and costly.  

 

From the ecological modellers’ point of view, the complexity of ecosystems comes 

from the non-linear interactions between abiotic and biotic components as well as the 
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stochastic nature of ecosystem that need to be taken into account by the ecological 

data, mathematical equations and computer programs. Usually, modifications of the 

program structure can be very time-consuming when an ecosystem model needs to be 

changed or upgraded if the program is not designed appropriately. For example, it can 

be expected that future applications of SALMO need to add components such as fish 

in order to extend the functionality of SALMO. This would currently mean that the 

Fortran IV source code for the mathematical calculations, the data import and the 

subroutines invoked have to be modified. Thus, ecological modellers suffer from the 

maintenance of ecosystem models if they fail to properly structure and hence simplify 

the complexity of ecosystem models in the early stage of design and programming. 

Obviously, neither the semi-object-oriented programming languages (e.g. C++ 

language) are able to suit this purpose, nor the ordinary programming languages (e.g. 

C or Fortran language). Thus, it is necessary to investigate how to consider and handle 

the complexity of ecosystems by means of object-oriented ecological modelling.  

 

There are some obvious shortcomings that the Fortran IV version of the model 

SALMO does not resolve. The lack of flexibility is one of the most significant 

shortcomings in terms of a SALMO class library even though the model SALMO is 

designed in a modular structure. In this context, the term class library reflects a group 

of flexible and transparent computer algorithms. Unlike the normal computer 

programs, the class library has a well-designed structure. Even though individual 

algorithms are strongly cohesive the relationships between the algorithms are loosely 

coupled. The complexity of ecosystems causes the difficulty to pursue this intention. 

There are nine state variables in the model SALMO, which represent nutrient cycles 
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and food web interactions in lakes. As a result, the modellers have to consider how to 

keep a high degree of cohesion in every individual state variable while lowering the 

degree of couplings among these state variables in order to make the whole class 

library highly flexible. The programming language Fortran does not offer object-

oriented concepts (Class, Object, Field, Method, Encapsulation, Inheritance, and 

Polymorphism) but facilitated a modularly structured version of SALMO properly 

executing logical and mathematical operations. The Fortran version of the model 

SALMO cannot easily adapt to various data logic as applications shift from one lake 

to another lake. In contrast, the object-oriented paradigm considers both specifically 

mathematical calculation logic and data logic. By means of abstraction, instantiation, 

inheritance, overload, overwrite and other operations, some object-oriented design 

methodologies and programming languages can achieve the highly flexible class 

library. Object-oriented technology represents these two logics respectively by 

method and field, which are two basic elements in a class. For example, the 

Zooplankton class contains a common attribute of biomass that needs to store these 

values, so a field ‘valueOfBiomass’ in the zooplankton class represents the attribute 

of biomass. Similarly, a method represents the logic that calculates the value of 

biomass (e.g. here called ‘getBiomass’). Once the zooplankton class is created, it can 

communicate with other classes via the zooplankton object (an instantiation of the 

Zooplankton class). By means of similar simulations for all abiotic and biotic state 

variables over time, the model SALMO realistically mimics nutrient cycles and food 

web dynamics of natural lake ecosystem in the computer. All the functionalities that 

belong to a particular state variable will be contained in a class (the class name 

usually is the same as the state variable), which refers to the purpose of strong 

cohesion. On the other hand, the parameter transfer represents the interactions 
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amongst these state variables. It would meet the criteria of loose coupling if these 

parameters were kept to a minimum. Thus, object-oriented technology is an ideal 

solution that simplifies the complexity of ecosystem modelling. 

 

Another shortcoming of the Fortran version of the model SALMO is the lack of 

friendly user interface and web accessibility. It is undoubted that object-oriented 

technology plays an important role in pursuing these purposes, and fortunately the 

fundamentals are not too much different from the implementation of flexibility. 

Technologically, most of the details are transparent to the ecological modellers. The 

current information technology enables any computer model to have friendly user 

interfaces. Even most non-object-oriented technologies can achieve friendly user 

interfaces and web accessibility, except the Fortran programming language. 

 

The previous studies clearly indicated that object-oriented technology provides great 

potential for ecological modelling, assisting in handling and unravelling the enormous 

complexity of ecosystems comparing to traditional programming methods. However, 

much work remains to be done to fully utilise and implement the functionality of 

object-oriented technology. It appears that object-oriented technology was not well 

interpreted and therefore not fully utilised in previous ecological applications. In 

particular there are not many examples of true-object-oriented applications to lake 

ecosystems. Therefore, this research aims to exemplarily organize the complexity of 

lake ecosystem models by means of object-oriented technology and demonstrated by 

means of SALMO. 
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1.3 The Description of SALMO 

The model SALMO (Recknagel and Benndorf 1982; Recknagel 1989) is designed as 

a generic lake ecosystem model. The term generic means that the ODE of the model 

represent key ecological processes in order to determine mass balances of inorganic 

nutrients, detritus and oxygen as well as seasonally changing biomasses of 

phytoplankton and zooplankton. Also the ODE of the model require explicit data of 

lake and year specific driving variables such as water temperature, solar radiation, 

mixing depth and nutrient loadings, which facilitate the computer simulation of a 

broad range of lakes and reservoirs with diverse morphometry, water quality and 

climate conditions. For example, the model has successfully been applied to simulate 

lakes in the range from oligotrophic to hypertrophic conditions, as well as inversely 

stratified temperate lakes with ice cover in winter and temperate to Mediterranean 

lakes with thermal stratification in summer (Recknagel 1989). The model SALMO 

gains its flexibility to changing environmental and climate conditions by both causally 

determined process equations and measured input data of physical and chemical 

driving variables. However, the so achieved generic properties of the model have their 

price by causing high complexity of the ODE. Highly complex ODE are typical for 

process-based deterministic ecosystem models and often affect the model 

transparency, programming, implementation and maintenance. These factors often 

impact on user friendliness and acceptance of the models. To overcome such negative 

impacts of model complexity in the past, structured modular programming by 

conventional programming languages such as FORTRAN IV was applied. The 

concept of object-oriented programming and implementation by recent programming 

languages such as Java provides advanced functionality for programming and 
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implementing complex models that become more transparent, user-friendly and open 

for development.  

 

1.3.1 The Structure of The model SALMO 

Figure 1.1 displays the simplified structure of the ODE of SALMO. The rectangles 

symbolise the actual mass balance of the state variables such as phosphate P or 

detritus D, which represent the left hand parts of an ODE. The circles symbolise the 

actual rates variables of process equations such as growth or mortality, which 

determine the changes of state variables.  The curved arrows represent the causal 

relationships between the state variables and the rate variables. The straight arrows 

indicate the direction of the mass flow either gaining mass from a source (e.g. algal 

growth) or loosing mass to a sink (e.g. algal grazing). The ODE of SALMO calculates 

for measured physical and chemical input data the resulting output data for the state 

variables. The Figure 1.2 shows the input and output variables that are typically 

processed by the ODE of SALMO. 
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Figure 1.1 The structure of the ODE of SALMO (after Recknagel 1989) 

 

 

Figure 1.2 The input and output variables of the model SALMO  

 

The ODE of the model SALMO considers an additional 128 constant parameters that 

were defined and specified for the numerous process equations (Recknagel and 
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Benndorf 1982).  These parameter values also proved to be generic for lakes under 

temperate and Mediterranean climate. 

 

In order to be applicable to thermally stratified lakes in summer the model has been 

designed to temporarily simulate the epilimnion and hypolimnion of a lake model by 

separately calculating all ODE for the two layers.  

 

All ODE of SALMO are calculated with a daily time step for 360 days per year. The 

daily simulations start with calculations of the mean underwater light intensity over 

the water volume from the photosynthetic active solar radiation at the lake surface by 

considering light extinction over depth using Lambert-Beers-Law, and the 

concentrations of phosphate and nitrate. The three ODEs for phytoplankton are 

applied to diatoms, green algae and blue green algae whereby algal growth is 

calculated as the difference of photosynthesis and respiration. Photosynthesis is 

limited by underwater light, water temperature and concentration of phosphate and 

nitrate. Phytoplankton grazing by zooplankton is considered as a key ecological 

process determining loss of algal biomass. By programming the daily calculations of 

the ODE and using daily data of input variables, the computer simulation of food web 

dynamics and nutrient cycles of lakes by SALMO can be conducted. 

 

1.3.2 Possible Improvements Of Lake Ecosystem Modelling In General And The 
Model SALMO In Particular By Means Of Object-Oriented Programming 
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Lake ecosystem modelling using object-oriented programming can facilitate model 

and data sharing through the Internet. Provided that a generic ecosystem model is 

available that is applicable to different climate and water quality condition, its access 

by Internet makes it a global model that can be remotely run by users around the 

world. The resulting promotion and sharing of modelling research results benefits 

both the model developers and users.  

 

Object-oriented programming allows making a basic lake ecosystem class library 

highly reusable. The class library can be designed to consist of classes, fields and 

methods. Classes are the smallest units of the ecosystem and represent individual 

plant or animal species. Fields contain the attributes that describe a class. Methods 

provide information on the ecological behaviour of a class. The application of the 

general categories ‘class’, ‘field’ and ‘method’ allows classifying, standardising and 

documenting complex ecological knowledge in a way that is understandable by both 

ecologists and computer scientists.  

 

The lake ecosystem model SALMO fulfils the requirements of a generic ecosystem 

model and promises a useful case study for object-oriented programming and 

implementation by means of Java. The application of object-oriented paradigms of 

Java to SALMO require the design of a new program structure and functioning 

compared to the previous program version by means of the conventional 

programming language FORTRAN IV. As a result SALMO will gain a more 

transparent, modular and flexible source code open for further development and can 
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be remotely run through the Internet. As there is currently no lake ecosystem model 

known to be accessible by Internet, the Java version of SALMO called SALMO-OO 

could become the first global lake ecosystem model.   

 

The present research will be a contribution to the development of a prospective global 

lake ecosystem model SALMO-OO. The achievement will focus on a flexible, 

reusable and portable lake ecosystem model by using object-oriented programming 

and largely open source tools. 
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Chapter 2  

Proposal: Objectives, Hypotheses and Expected Outcomes 

The objective of this research is to contribute to an ecological information system 

(EIS) that consists of a Java runtime environment (JRE), class libraries, database 

management system (DBMS), and documents (see Figure 3.1). The implementation 

of the class libraries, DBMS, and documents are going to be completed by this 

research. As far as the model SALMO is concerned, the object-oriented version 

SALMO-OO will be developed by means of Java and imbedded in the EIS (see Fig. 

3.1).  

 

Figure 2.1 The components of the EIS 

 

The following hypotheses will be tested during this study:   

1. A fully functioning object-oriented version SALMO-OO of the model SALMO can 

be programmed and implemented by Java 
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2. A user-friendly graphical user interface (GUI) allows users to access SALMO-OO 

via Internet  

3. The object-oriented design, programming and implementation of SALMO-OO by 

Java, and allows establishing a library of alternative process models such as for algal 

growth, algal grazing, zooplankton growth or zooplankton mortality. 

 

The expected outcomes of the proposed application of object-oriented programming 

to ecosystem models can be summarised as follows: 

- Providing transparent program structures of complex ecosystem models by means of 

object-oriented programming and implementation in Java. 

- Extending the structure and functioning of complex ecosystem models by 

establishing flexible libraries for alternative ecological process models such as for 

algal growth, algal grazing, zooplankton growth, and zooplankton mortality. 

- Facilitating data and model sharing by standardised model and data structures. 

- Facilitating a web based access and use of ecosystem models. 

- Providing user-friendly GUI for ecosystem models as well as documentation and 

visualisation of simulation results. 

 

The proposed research will thoroughly apply concepts of object-oriented software 

engineering by means of Java to implement the object-oriented version SALMO-OO 

according to following procedure:  

1. Understand the basic requirements of SALMO-OO by means of object-
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oriented programming; 

2. Design SALMO-OO that refers to these basic requirements in UML and 

adopt Model-View-Control (MVC) design pattern by means of object-

oriented design (Gamma et al. 1995); 

3. Implement the SALMO-OO Application Program Interface (API) in Java 

programming language (Beck 1999) and object-oriented programming; 

4. Deploy the SALMO-OO API in Tomcat (Apache Jakarta Project 1999-

2005) web container in order to realize web accessibility; 

5. Create the SALMO-OO documents, including UML diagrams and the 

SALMO-OO API Specification. 
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Chapter 3  

Materials and methods 

3.1 Materials 

Two types of materials are essential to be used in this project: the freshwater lake data 

and two lake ecosystem models: the lake model Parker (Parker 1968) and the lake 

model SALMO (Recknagel and Benndorf 1982). The Parker model will be used to 

validate GUI, web and database components of SALMO-OO. Obviously, the model 

SALMO is responsible for the usage of core component of SALMO-OO. 

 

Currently, there are more than twenty databases of freshwater lakes in Australia and 

overseas available. We will use Saidenbach Reservoir (mesotrophic lake, Germany, 

bottom one in Figure 3.1) and Bautzen reservoir (hypereutrophic lake, Germany, top 

one in Figure 3.1) databases as case studies to test and verify the object-oriented 

version of the model SALMO. All measured input data for lakes are available as 10-

day mean value for 36 decades per year. In summer input date will be provided for 

two layers (epilimnion and hypolimnion), including nutrients (e.g. dissolved inorganic 

phosphate), solar radiation, water temperature, water volume maximum and mean 

mixing depth. The validation of the model output is normally conducted by the 

comparison with measured data for in-lake concentration of phosphate, Chlorophyll-a, 

and nitrate. 
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Figure 3.1 The map of Bauzten and Saidenbach reservoir 

 

Both models are documented as sets of ODE (Parker 1968; Recknagel and Benndorf 

1982). The model SALMO is also available as computer model programmed and 

implemented in FORTRAN IV. 

 

3.2 Methods 

3.2.1 Object-Orientation 

This project will generally adopt object-orientation to realize the hypotheses that are 

mentioned in Chapter 2. Object-orientation requires using one of the object-oriented 

programming languages and compulsorily develops the SALMO class libraries that 

are based on object-oriented paradigm. Practically, it would not be easily to fully 

follow the rules of object-orientation. As Chapter 1 discussed, the previous efforts 

more or less failed to take all the advantages of object-orientation although those 

practitioners were intended to do so. To address this issue, the development of 
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SALMO-OO needs to use the methodology of object-oriented software engineering 

(Schach 2002b) associating with some novel information techniques. 

 

The method of object-orientation firstly changes several terms of model. Underlying 

object-oriented paradigm, the next version of the model SALMO will be different 

from the Fortran IV one in program structures, designs, programming approaches. For 

example, the difference between the object-oriented (SALMO-OO) and structured 

(the Fortran IV SALMO) programming has implications to the different structure and 

functioning of complex ecological models. In terms of program documentation UML 

diagrams will be used to represent the object-oriented program structure rather than 

traditional flow charts that were used to document conventionally structured 

programs. Objects in the context of object-oriented programming mean subroutines.  

 

Secondly, comparing to Waterfall model in the methodology of classical software 

engineering (Pressman 2001), object-oriented software engineering comprises three 

core phases: object-oriented analysis, object-oriented design, and object-oriented 

implementation and integration. These specific methods are useful to clarify the basic 

requirements, design the structure, and implement the class libraries of SALMO-OO. 

In other words, the development of SALMO-OO can benefit from the disciplines, 

methodologies, and processes of object-oriented software engineering. Consequently, 

it is easily for the SALMO-OO modeller to simulate the ecological knowledge behind 

SALMO-OO together with the realization of flexibility, reusability, portability, and 

interoperability.  
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3.2.2 The Choice of Programming Languages – Using Java 

Programming languages play minor roles in building object-oriented SALMO-OO 

class libraries. Each programming language has advantages and disadvantages. The 

benchmark of comparison between them varies from applications to applications. As a 

result, this project will choose one object-oriented programming language that is 

appropriately used in this circumstance rather than one has what so called generic 

performance. 

 

In this project, a number of factors have to be taken into account as the highest 

priority in programming language chosen. Object-oriented paradigm is the essential 

factor as the first consideration. Secondly, it is strong recommended using a non-

commercial programming language. Non-commercial programming languages easily 

attract more supporting by open source community, which enable programmers to 

freely share source code. Open source not only benefits cutting the project budget but 

also provides unlimited code libraries to be reusable. Thirdly, the candidate 

programming languages are simple to be used. For example, it is capable of realizing 

web accessibility and database connection with fewer efforts, as well as platform 

independence. Table 3.1 lists some available programming languages by above-

mentioned factors. 

Programming 
Language 

Object-
Orientation 

Open Source 
Supporting 

Simplicity (web, databases, and 
platform independence) 

Simula Yes Poor Yes, but no platform independence 
Smalltalk Yes Fair Yes, but no platform independence 
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OO Pascal N/A Poor Yes 
Visual Basic N/A Poor Yes, but no platform independence 

C++ N/A Fair No 
Java Yes Excellent Yes 
C# Yes Fair Yes 

Table 3.1 Choice of programming languages 

 

Java programming language will be used underlying the comparisons in this project. 

Table 3.1 clearly highlights that Java programming language is truly object-oriented, 

extensively supported in open source community, and web-enabled and database-

accessible. The second column of Table 3.1 shows that OO Pascal (Gofen 2001), 

Visual Basic (Brenner 2005), and C++ (Stroustrup 1995) do not belong to the true-

object-oriented programming languages. Furthermore, Java earns the most popularity 

in the open source community because of its advantages (Cornell et al. 2002) 

otherwise C# would be another available choice. As far as popularity is concerned, 

Java and C# is overwhelming against other programming languages. Readers may 

refer to (Meyer 1988) and look through the popular object-oriented programming 

languages before last decade. In addition, Java programming language is unified 

applied from normal applications (e.g. to implement SALMO-OO class libraries), 

web applications (e.g. to implement SALMO-OO web-enabled GUI), to database 

connection (e.g. to implement SALMO-OO database transactions). In other words, 

programmers do not have to use other programming language to implement the whole 

SALMO-OO suite. The last but not least, the chief developers of SALMO-OO has 

strong background to use Java technology in this project. It would be more or less 

face potential risk if looking for other unfamiliar programming languages. 
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3.2.3 Object-Oriented Software Engineering 

SALMO-OO development compulsorily uses the methodology of object-oriented 

software engineering to build fully object-oriented SALMO-OO class libraries. Thus, 

it is strongly recommended that SALMO-OO development follow the processes of 

object-oriented software engineering. In details, it consists of seven phases: 

requirements, specification, object-oriented analysis, object-oriented design, object-

oriented programming and implementation, integration and deployment, and 

maintenance. 

 
Requirements Phase  

The requirements phase aims to deliver a requirement statement document. This 

requirement statement should contain the following content: the fundamentals of 

SALMO-OO, the desired function and performance that SALMO-OO runs in a 

specific computer system, the purposes for developing SALMO-OO. Through 

interviews, scenarios, and previous outcomes reviews, the SALMO-OO developer 

needs to write several reports to outline the requirements of SALMO-OO. 

Subsequently, these reports need to be integrated into the final requirement statement 

without any ambiguous agreements between the SALMO-OO modeller and the 

SALMO-OO developer. In addition, building a prototype system to verify whether the 

requirement statement satisfies the SALMO-OO modeller is suggested. The prototype 

system simulates the SALMO-OO requirements to some extent, and usually delivers 

some plain GUI or simple calculation results. 
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Specification Phase 

The specification phase targets a specification document. It is commonly used in 

classical software engineering. The next section will introduce object-oriented 

analysis to replace the usage of specification techniques. However, it does not means 

that the specification phase would be taken away from the methodology of object-

oriented software engineering. In this project, we will use the specifications to clarify 

the contradictory requirement between the ecological modeller of SALMO-OO and 

the programmer of SALMO-OO. Normally, modellers always want to make target 

applications perfect against the reality that programmers can achieve them in an easy 

manner. So it is important for both participants to agree on with each other what 

exactly the target applications are.  

 

For example, after a number of times conversations, we decide that the SALMO-OO 

specification document should contain the following content: 1) to use fourth order 

Runge-Kutta to solve the SALMO-OO ODE calculations; 2) to list all the prerequisite 

and post-requisite of every class in the SALMO-OO class library; 3) to define the 

format of input and output data; 4) to propose the implementation of function and 

performance of SALMO-OO by a serial of prototypes; 5) to realize web accessibility 

and display only plain GUI.  
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Object-Oriented Analysis Phase 

Object-oriented analysis (OOA) uses over 60 different techniques (Schach 2002a). 

We adopt UML to describe the analysis results by means of use-case modelling 

(Jacobson 1992) and class modelling in this project. 

 

Use-case modelling is used to generate UML use-case diagrams. A UML use-case 

diagram consists of actors and actions. The extraction of actors and actions can be 

deduced from the scenarios in the requirement phase. The term actor can be a person 

who starts simulation, or a species of aquatic animal that has been simulated in the 

ODE equations, or other state variables. As one of the tools of UML, UML use-case 

diagrams illustrate the results of use-case modelling in the OOA phase. For example, 

Figure 3.2 shows an alga as actor and its growth as action. 

algae growth

 

Figure 3.2 UML use-case diagrams for illustrating the relationship between algae and 

algal growth 

 

Class modelling is used to discover the classes from the requirement statement. Noun 

extraction technique will be used to create the classes. At the beginning of the model 

development, it is strongly recommended to revise the SALMO-OO requirement 
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statement because a concise statement will simplify the task of noun extraction. There 

are two ways to discover nouns from the SALMO-OO requirement statement: the 

explicit way and the implicit way. Usually, the explicit noun extraction focuses on 

identifying nouns in the requirement statement. Some of these nouns will be 

abstracted to the classes, and others could be the attributes of the classes or discarded. 

For example, phytoplankton is a name of an aquatic organism, which is a key 

component of lake ecosystems, so it is logical to have a class called phytoplankton. 

However, explicit noun extraction sometimes fails to thoroughly discover the classes 

that are necessary to be used in the object-oriented design phase. Thus, the implicit 

noun extraction makes up for this shortcoming. For example, SALMO-OO will 

extend its growth and grazing model library. It is impossible to represent every 

individual model by a class, thus it is better to merge each of the growth and grazing 

model into a class called AlgaeLibrary. From the developer’s point of view, there are 

several implicit classes behind the requirement statement. These implicit classes are 

essential to be used in the object-oriented design phase. Alternatively, these implicit 

classes could hide in the form of verb rather than nouns. For example, SALMO-OO 

needs to import data from databases. It involves database connection transactions. 

Specifically in Java, it is called Java Database Connection (JDBC). Since our project 

is named SALMO-OO, a class called SalmoJDBC may represent the verb connect. 

 

Another task of class modelling is to find class fields and class methods. A class field 

belongs to the attributes of a class, and a class method belongs to the behaviours of a 

class. Fortunately, the taxonomy of organism in biology was exemplary for the object-

oriented paradigm. Therefore, it is not difficult to differentiate the biological attributes 
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and behaviours regarding a species of animal or plant. Thus, we could follow directly 

the biological categories to complete the SALMO-OO class modelling. 

 

After completing use-case modelling and class modelling, the relationships and 

interactions among classes need to be determined. This solution will be introduced in 

the next paragraph. 

 

Object-Oriented Design Phase  

According to (Schach 2002b), the aim of object-oriented design (OOD) is to design 

the product in terms of objects. An object is an instance of a class, and therefore the 

elements of a class and the relationships and interactions among classes play 

significant roles in the OOD phase. UML provide UML class, sequence, and 

communication diagrams to represent the design results. 

 

The UML class diagrams show the inner elements of classes and the relationships 

between classes. The UML class diagrams contain one or more single class models. A 

class model comprises a class name, class fields and class methods. The UML class 

diagrams can be drawn directly from the results of class modelling in the OOA phase. 

As the model kernel, these classes can be drawn directly via class diagrams such as a 

UML class diagram is shown in Figure 3.3. However, not every requirement 

statement has the ability to completely deliver model descriptions. This situation often 

happens when either a modeller lacks experience in software application 
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development, or the developer lacks ecological knowledge. Thus, OOD needs to 

discover those implicit classes such as database connection, web transaction, and 

logic invocation. Although there is no obvious order in the OOD phase, it is 

recommended to design the UML class diagrams as the first step. 

Phytoplantkon
biomass

growth()
death()

BlueGree
nAlgae
color

<<inherit>>

 

Figure 3.3 A UML class diagrams for phytoplankton and blue-green algae class 

 

The UML sequence diagrams model the flow of logic in a virtual system. They are 

one of the dynamic models. The structured programming uses flow charts to draw the 

model SALMO life cycle in the design phase, whereas, OOD simulates the SALMO-

OO life cycle via sequence diagrams. Instead of sequence, selection, and loop 

structure in the structured design, OOD draws UML sequence diagrams in terms of 

the sequence logic of the classes. In other words, UML sequence diagrams record the 

order that the classes execute in a computer system. A UML sequence diagrams can 

start from an actor of a UML diagrams for use-case till the final action of this use 

case, and then repeat this process generating others, and eventually integrate every 

individual UML sequence diagrams into one comprehensive one. 
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die by zooplankton grazing
graz phytoplankton

 

Figure 3.4 A UML sequence diagram for phytoplankton and zooplankton 

 

The UML communication diagrams show the message flow between objects. It is 

important to draw the dynamic value-passing process in SAMLO-OO because there 

are a large number of mathematical calculations. Figure 3.4 demonstrates the general 

value-passing process in four top-level objects. 

input 
data

Runge-Kutta 
algorithm

out data 2D 
diagrams

1: input

2: verify

3: calculate

4: output 5: process

 

Figure 3.4 A UML communication diagrams for top-level value passing 
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Other UML diagrams such as UML activity, state machine, and component diagrams 

can also be applied in the OOD phase. It differs based on the purpose of each specific 

software application. In this project, we adopt UML class diagrams to describe the 

static nature of SALMO-OO, use UML sequence diagrams to arrange the execute 

sequence, and simulate the dynamic value passing process via UML diagrams for 

communication. 

 

The Implementation and Integration Phase 

The task in this phase is to implement the SALMO-OO class library by means of 

object-oriented programming (OOP) together with a simple SALMO-OO database. 

Generally, OOP mainly works with one of the object-oriented programming 

languages. We use Java programming language in this project. In addition, some 

extreme programming (XP) methods (Beck 1999) and Prototyping will accompany 

the OOP techniques. 

 

First of all, it is necessary to create a simple relational database management system 

(RDBMS) that stores the freshwater lake data. Previously, the data were stored in the 

format of Microsoft Excel file (usually called MS Excel with postfix ‘xls’). For this 

project the data is restored into the MySQL (MySQL AB 1995-2005) RDBMS in this 

project. In this context, the process that transfers data from ordinary computer system 

files (e.g. MS Excel files) to RDBMS (e.g. MySQL) is called data pre-processing. The 

first step of data pre-processing is to create tables in the MySQL RDBMS via Data 

Definition Language (DDL is a category of SQL, and is used to create, delete and 
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alter tables in RDBMS). Secondly, it needs to extract the 37-day measured data from 

the MS Excel files via data transformation and cleaning, and calculate 360-day 

analogous data by means of mathematical interpolation algorithm. Finally storing 

these 360-day analogous data into the MySQL tables that was created in the first step. 

The last step aims to validate the data correctness. It can be suggested using some 

software tools to complete the task of data validation. Figure 3.5 illustrates the whole 

process of data pre-processing. 

 

Figure 3.5 Data pre-processing 

 

The primary task in this phase is to complete the SALMO-OO class library, including 

its integration and testing. Using Java programming language and well-designed 

UML UML class diagrams confirm the characters of object-orientation. As a result, 

there are no more tasks other than typing code in this step. Even in an ideal 

circumstance, some UML tools (e.g. Rational Rose (Rational Software 2005)) are able 

to directly convert UML class diagrams to Java source code.  

 

The implementation and integration of SALMO-OO takes advantage of OOP. 

Nevertheless, it is still not good enough to shorten the life cycle of developing 

SALMO-OO. Thus, some extreme programming methods (e.g. testing first and peer 

programming) are introduced to overcome the shortcomings of the OOP techniques. 
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XP methods permit the SALMO-OO developer to separate the SALMO-OO class 

library into several smaller sub modules. These sub modules can be extremely sma

to reflect even a simple task such as database connection. Subsequently, each sub 

module is set a priority number. The SALMO-OO developer programs testing cod

for these sub modules by priority number. In addition, another team member 

accompanies the developer and proofreads the typed source code. After every

module has been completely verified and tested, they will be integrated into a bigge

module following the design diagrams. In this project, a bigger module is a package 

that represents a group of classes that have similar functionality. Finally, all the 

packages need to be integrated into one application, which is the SALMO-OO cl

library. 

ll 

e 

 sub 

r 

ass 

 

SALMO-OO Deployment 

-OO is the final phase in this project. The task of this step 

 

3.2.4 Prototyping 

ues are needed in developing SALMO-OO class libraries. Those 

 class 

The deployment of SALMO

is to install both the SALMO-OO class libraries and its web-enabled applications into 

a computer that is connected to the Internet. This computer usually is called sever. 

The discussion of server technology is beyond the purpose of this project, and it is 

advised that readers refer to other related sources. 

Prototyping techniq

above-mentioned methods of object-oriented software engineering might not 

specifically guide SALMO-OO programmers how to implement SALMO-OO
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libraries but propose the general solutions to simplify the SALMO-OO development.

Thus, it needs to use some software processes such as prototyping to solve the goals 

in practice. 

 

 

Prototyping has four basic categories: Rapid Prototyping, Throw-Away Prototyping, 

el 

ystem 

 

 

3.2.5 Web Tier Techniques 

 web tier Java technologies to implement web 

erver 

sed 

 

Incremental Prototyping, and Evolutionary Prototyping. We propose to use certain 

Incremental Prototyping in order to steadily update SALMO-OO. Thus, the first 

SALMO-OO prototype system needs to point out how the previous SALMO mod

works. The next step will create the next version of the SALMO-OO prototype 

system, which could be built based on the achievements that the first prototype s

has acquired but throw away those aspects that do not work. Alternatively, the next 

prototype system can be built by improving the first one. In general, the choice relies

on how much the prototype system meets the SALMO-OO creator’s expectation. 

SALMO-OO will adopt some

accessibility since SALMO-OO class libraries decide to programme in Java 

programming language. Web tier techniques in Java family involves in JavaS

Pages (JSP) (Sun Microsystems 1994-2005d), Servlet (Sun Microsystems 1994-

2005c), and Applet (Sun Microsystems 1994-2005a), which all of them will be u

to build the SALMO-OO web-based applications. The purpose using JSP is to enable

to create dynamic web content, but it is difficult for JSP to realize complex GUI such 

as drawing algae dynamic diagrams. Thus, we will use Applet to solve this 
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shortcoming of JSP. In addition, Servlet encapsulates low-level computer ne

protocols such as Hyper Text Transfer Protocol (HTTP), and the SALMO-OO 

developer only needs to take into account flow logic between JSP web pages.  

twork 

 

These web tier Java technologies enable platform-independence, but require the 

rs 

 

 

 

 

 

 

 

 

 

 

Chapter 4  

assistance of Internet Explorer (IE) (Microsoft 2006b) when the SALMO-OO use

access it online. Therefore, the combination of JSP, Servlet, Applet, and IE enables 

the SALMO-OO to be web accessible.  
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Results 

4.1 Prototypes 

This research successfully completes SALMO-OO as well as achieves the aims and 

the hypothesis. These outcomes encompass a freshwater lake database, SALMO-OO 

class libraries, a few plain web-enabled applications, UML diagrams, documents, and 

a SALMO-OO API specification. This research achieves all of the sub-outcomes in 

SALMO-OO with fair validation by three prototype systems.  

he first prototype is the object-oriented Parker model. The Parker model is an 

aquatic model that simulates four state variables: algae, cladocera (zooplankton), 

salmon (fish), and phosphate. This model uses the method of Runge-Kutta to calculate 

the differential equations of the four state variables, which it is as exact same as the 

model SALMO does. The reason why we choose this model as the first prototype 

comes from its simplicity. The Parker model neither involves input data, nor considers 

seasonality or stratification of the water body. Moreover, it elaborates output data by a 

few line charts in its document, which is helpful to check the results of the object-

oriented Parker model whether correct or not. Thus, we rapidly draw the Parker UML 

diagrams (Figure 4.1-4.3).  

 

T
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Figure 4.1 A UML use-case diagram for food web in the Parker model 
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Figure 4.2 A UML class diagram for Runge-Kutta calculations in the Parker model 
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Figure 4.3 A UML class diagram for GUI in the Parker model 
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The first prototype succeeds in simulating the Parker model by using the fourth order 

Runge-Kutta algorithm as well as an initial GUI demonstrations, including curve 

colour, style, and layout. Most importantly, the first prototype is web-enabled. Figure 

4.4(a) displays the GUI results. But it remains some problems such as scales in the 

coordinates, which propose to be solved in the next prototypes. 

 

 

Figure 4.4(a) The first prototype - the Parker model results 

 

Comparing to the original Parker model results (Figure 4.4(b)), it is undoubted that 

the correctness of the Runge-Kutta calculations and the GUI displaying of the first 

prototype but phosphate does not decrease around 32 week from the Figure 4.4(a). 

This unpredicted error could be resulted by any programmed mistake. Fortunately, it 

does not have significant influence to the general simulated results therefore can be 
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remained. In addition, it further discovers that the requirement of the target SALMO-

OO applications. After continuous discussions, the SALMO-OO modeller agrees that 

the final SALMO-OO GUI should be similar to the one displayed in Figure 4.4(a) but 

needs to revise the scales in the x-axis to integer. The subsequent task plans to add the 

SALMO ODE instead of the Parker one. 
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Figure 4.4(b) The original Parker model results ((Parker 1968). 

 

The second prototype implements the basic model version of SALMO as previously 

implemented by FORTRAN IV in 1980. It aimed to prove that the Java version of the 

 49



 

SALMO could produce the same results as the Fortran version. As a result a basic 

version of SALMO-OO had been developed with an extended GUI. 

 

The third prototype aimed at the implementation of an advanced version of SALMO-

OO. The model had been extended by the ODE for a third functional algal group 

allowing the simulation of three algal groups rather the two as in the basic version of 

SALMO-OO. At the same time a library for alternative algal process models was 

implemented, including algal growth, zooplankton grazing, and zooplankton growth. 

As far as the user interface is concerned, this advanced version of SALMO-OO offers 

two options. One is the stand-alone edition, which runs in a single computer with 

friendly GUI, where users can select any available lake, year, growth model, grazing 

model, and scenario analysis for lake management in any windows operating 

environment (e.g. Microsoft Windows 2000). Another is the network edition. The 

SALMO-OO network edition permits users access to SALMO-OO through the 

Internet. It covers all of the functionalities that the SALMO-OO stand-alone edition 

has except the data import function.  

 

The advanced version of SALMO-OO also allows to perform multiple parameter 

optimisation by means of genetic algorithms (GA) according to (Back et al. 2000a)) 

also implemented in Java.. This GA program is designed to optimise SALMO-OO 

parameters only available for the standalone mode of the advanced version of 

SALMO-OO. The GA program initialises the size of populations to 100 and allows be 

evolve 50 generations. As far as the crossover operator is concerned, the Java version 
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of GA program keeps the original design. During cross calculation, this GA program 

randomly chooses 8 chromosomes among parent populations to perform dual mating, 

which loop-reproduce 100 child chromosomes (100 groups of SALMO-OO 

parameters). Subsequently, each generation sends these calculated 100 groups of 

parameters to SALMO-OO application for fitness evaluation. Finally, the GA 

program selects the best 100 chromosomes between the parent populations and the 

child populations by means of rank-based selection (Back et al. 2000b). Notes that we 

do not enclose any GA program into the SALMO-OO suite because it beyond our 

perspective in this project. This discussion only shows the possibility and flexibility 

that adds advanced functionality in the SALMO-OO suite. 

 

The advanced version of SALMO-OO contains the completed sub-outcomes: a 

database (which is the freshwater lake data tables stored in MySQL RDBMS), a group 

of class library, web-enabled applications, UML diagrams, documents, and a 

SALMO-OO API specifications. 

 

4.2 The SALMO-OO Database 

The SALMO-OO database consists of a number of tables that store freshwater lake 

data. These tables have two types of structures. One is the lake measured data table 

(data table). A data table owns a name, which consist of three parts: the lake name, 

the artificial mixing data flag, and the year. These three parts joint by the underscore 

mark. For example, Barossa_1978 represents Barossa Reservoir measured data in 

1978; and Barossa_am_1978 represents Barossa Reservoir artificial mixing data in 
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1978. Furthermore, each data table has 44 stable columns and 360 stable rows. Its first 

column represents the day number from 1 to 360 and acts as the primary key in the 

lake measured data table. The other 43 columns exactly mirror the original structure 

of the freshwater measured dataset except the lake, year, and day number column. The 

amount of lake measured data tables depend on how many lake data will be modelled. 

Figure 4.5(a) displays the detail structure of a data table. 

           

    Figure 4.5 (a) Data table structure  Figure 4.5 (b) Profile table structure 

 

Another is the freshwater lake profile table (profile table). There is only one profile 

table in this project, which is called SalmoMeta (see Figure 4.5 (b)). The SalmoMeta 

consists of 18 stable columns and unlimited rows because one row stores a group of 

parameters for a specific lake in a year, and it is unpredictable how many lakes and 

different years will be applied in the future. Both the data tables and the profile tables 

provide input data for SALMO-OO. 
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SALMO-OO database fails to be well designed in this project. But this weakness 

plays minor role in the SALMO-OO applications because the SALMO-OO class 

library is highly independent on any dataset interface. Moreover, the database 

technique is rapidly varied so that to exhaust a permanent database structure 

implementation in an easy manner. Therefore, I would personally suggest leave the 

database issues alone in this SALMO-OO applications.  

 

4.3 The SALMO-OO Class Library 

The SALMO-OO class library comprises four packages: the salmo.model, the 

salmo.maths, the salmo.gui, and the salmo.db package. As its name shows, the 

salmo.model package plays a core role in the SAMLO-OO class library. Figure 4.6 

displays the dependencies between these four packages in the form of UML 

component view, including the SALMO-OO web tier applications (note: the 

SALMO-OO web tier applications do not belong to the SALMO-OO class library). 
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Figure 4.6 The SALMO-OO component view 

 

The salmo.model package represents the core component (ODE) in SALMO-OO. 

This package consists of nine classes (AlgaeLibrary, Detritus, Light, Nitrate, Oxygen, 

Phosphate, Phytoplankton, Salmo, and Zooplankton). Each class represents a state 

variable except for the Light class, the Salmo class, and the AlgaeLibrary Class. The 

Light class contains the light equations from the previous SALMO model. In 

SALMO-OO, the light equations are separated from the algal growth equations as an 

object because of using the object-oriented paradigm. Moreover, we add Salmo class 

as a value object. The function of the Salmo class is to hold the SALMO-OO 

parameters and input data. All of the other classes (except the Salmo class) in this 

package inherit the Salmo class as its subclass in order to directly acquire these data 

values. In addition, the AlgaeLibrary class realizes a flexible library for a number of 
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optional growth and grazing models. The AlgaeLibrary class indirectly acquires the 

data values from the Salmo class by inheriting the Phytoplankton class. In other 

words, if we look at the Salmo class as a father, then the Phytoplankton class is its 

son; consequently the AlgaeLibrary class is grandson of the Salmo class.  

 

The salmo.maths package is the component that models Runge-Kutta calculations. 

This package consists of three classes (RungeKutta, SalmoData, and SalmoRK4) and 

one interface (DerivnFunction). The RungeKutta class and the DerivnFunction 

interface are provided by Michael Thomas Flanagan (Flanagan 2005), which simulate 

the logic of the fourth order Runge-Kutta algorithm. The SalmoRK4 class implements 

the DrivnFunction interface in order to automatically communicate with the 

RungeKutta class. Subsequently, the SalmoRK4 class executes the ODE calculations 

by importing the classes in the salmo.model package. Finally, the SalmoData class 

holds the final calculated results as an output value object.  

 

The salmo.gui package describes the SALMO-OO GUI logic. This package consists 

of four basic classes (SalmoCanvas, SalmoDiagram, SalmoFrame, and 

SalmoSelection). The SalmoCanvas class provides a painting canvas for displaying 

the SALMO-OO output data. The other three classes build a frame for users to select 

modelling items and observe the output data in the form of a graph. Moreover, these 

frame classes provide a user interface to print to printer, create output data files, and 

perform the function of data pre-processing. Figure 4.7 demonstrates an example of 

the salmo.gui package implementation. 
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Figure 4.7 Visualisation of validation results for concentrations of phosphate PO4-P, 

chlorophyll a, total algal biovolume and zooplankton biovolume simulated by 

SALMO-OO for the Bautzen Reservoir in 1978. 

 

The salmo.db package only contains one SalmoJDBC class. This class realizes the 

database connection function. Specifically, the SalmoJDBC class needs to cooperate 

with a source package that is provided by the tools in MySQL version 4 RDBMS. 

 

4.4 Web-Enabled Applications 

Web accessibility is available in SALMO-OO network edition by means of JSP, 

Servlet, and Applet technologies. Although these web tier outcomes use object-

oriented paradigm, the applications lie outside the SALMO-OO class library. The 
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current version consists of one HTML file, three JSP files, one Servlet class, and one 

Applet class. Their relationships are illustrated in Figure 4.8. 

 

Figure 4.8 Web tier structure for SALMO-OO 

 

On the server side (on the left in Figure 4.8), the JSP and Servlet applications will run 

in a computer that has installed a web container tool. Firstly, the JSP files are 

converted into the JSP classes by this web container. These JSP classes are in charge 

of the presentation logic, which represents the dynamic web pages. SALMO-OO 

network edition includes the Prepare JSP file, the Confirm JSP file, and the Results 

JSP file. Secondly, the usage of the SalmoServlet class is to transmit message 

between JSP classes. Thus, it focuses on the control logic.  

 

On the client side (on the right in Figure 4.8), the HTML, JSP and Applet applications 

will run in a terminal computer that has installed an Internet Explorer tool. The JSP 

files are imaged into the JSP web pages then are visibly displayed in this Internet 

Explorer. These JSP pages record user request services meanwhile convert into Java 

class on the server side. After receiving the redirection request of the SalmoServlet 
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class, the Results JSP web page finally acquires the SALMO-OO calculated results 

encapsulated within an object that activates the embedded SalmoApplet class. 

Subsequently, the SalmoApplet class extracts data from the calculated result object, 

and then invokes the GUI classes in the slamo.gui package, which eventually displays 

the graphical calculated results in the web GUI. Any low-level network transactions 

are transparent to the SALMO-OO developer. 

 

4.5 The SALMO-OO Documents 

As one of the most important outcomes, the SALMO-OO documents cover the detail 

descriptions of the development of SALMO-OO. These documents include a 

requirement statement document, a specification document, a group of UML 

diagrams, and one SALMO-OO API specification. 

 

4.5.1 The SALMO-OO Requirement Statement Document 

The SALMO-OO requirement statement aims to clarify the requirement of SALMO-

OO. This document contains the SALMO-OO description, the purpose to build it, the 

expectation of performance and function, and the development duration. Formal 

content is as follows: 

SALMO-OO is a software application. Its theoretical supporting comes from 

freshwater lake modelling and based on the previous Fortran version of the model 

SALMO. The main objective of SALMO-OO is to investigate how to develop 

ecosystem models by means of object-oriented technology.  
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The SALMO-OO target applications should complete the following functions: 1) to 

implement a group of structured transparent class libraries that simulate the model 

SALMO ODE; 2) to implement the fourth order Runge-Kutta algorithm for the ODE 

calculations; 3) to illustrate the daily dynamics of all the state variables in 2D 

coordinates; 4) to enable SALMO-OO to be accessed in the Internet as well as 

friendly GUI. 

 

As far as SALMO-OO performance is concerned, flexibility is the highest priority 

requirement. The SALMO-OO class library must be highly flexible in response to any 

modification. Moreover, users can run the SALMO-OO class library as their selection 

such as arranging different lake dataset, scenario analysis, and varying the parameter 

values. In other words, the SALMO-OO creator and developer can flexibly change 

anything they want as well as easy access and use by the SALMO-OO users. In 

addition, high response rate of the SALMO-OO network edition is expected.  

 

As the above-mentioned requirements, it would be estimated the first version of 

SALMO-OO could be delivered during 12 months. 

 

4.5.2 The SALMO-OO Specification 

The SALMO-OO specification contains three parts: naming list, database and class 

library specification.  
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Naming list defines names that will be used in developing SALMO-OO. These names 

include various file names, API’s internal element, database table and its field names, 

and diagram names. Once these names are decided, they will be used throughout the 

whole development of SALMO-OO as permanent definitions. Table 4.1 displays a 

fragment of the SALMO-OO naming list. 

NAME CATEGORY FORMAT COMMENT 

V measured data 2 decimals in MS Excel / field name in MySQL tables 

VE measured data 2 decimals in MS Excel / field name in MySQL tables 

VH measured data 2 decimals in MS Excel / field name in MySQL tables 

Lake_am_Year .xls name 37 rows, 44 columns MS Excel as Legacy System 

Lake_Year table name 360 rows, 44 columns in MySQL database 

AlgaeLibrary class name .class Java filename in package salmo.model 

Phytoplankton class name .class Java filename in package salmo.model 

SalmoCanvas class name .class Java filename in package salmo.gui 

SalmoRK4 class name .class Java filename in package salmo.maths 

prepare class name .jsp Java Server Pages (JSP) 

Table 4.1 Examples of the naming list of SALMO-OO 

 

The database specification specifies the ecological data format that is stored in the 

RDBMS. This project defines that a data table consists 360 records (rows) and 44 

fields (columns). The first column is the index as the primary key of the table, which 

records are incremental integer type number. Other columns hold the double type data 

with stable two bit decimals. They forbid being given null values and set zero value in 

the case of lacking data. In addition, it needs to manually copy the value data at 
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season varying point only if the value of the next day is zero. For example, the data 

value needs to be copied from the last day of summer to the first day of autumn only 

if the data value of the first day of autumn is zero. The reason why copy data value at 

season point comes from the previous SALMO model rules. Without copying job, it is 

possible that the SALMO-OO Runge-Kutta calculations could overflow the computer 

memory in some exceptions. 

 

The class library specification describes the system boundary of SALMO-OO. It 

covers the limitation of user transactions, the look and feel of the GUI, the choice of 

the specific RDBMS, and the choice of the ODE solutions. SALMO-OO final version 

will provide a few basic user transactions: 1) web accessibility; 2) various algal 

growth and grazing model library selections; 3) various scenario analysis selections; 4) 

at least three algal functional group selections; 5) graphically display output results. 

Secondly, SALMO-OO final version will provide a standard 2D line chart for output 

results. This line chart will be based on 2D coordinates with the essential units, scales, 

and legends. The colour of display curve is black, grey, and red, which respectively 

represent the epilimnion and total volume output data, hypolimnion and scenario 

output data, and the measured data. Moreover, the line chart displays on the 

transparent or white background. In addition, these diagrams should display four state 

variables’ output results at one time at the same page, and the users can move pages to 

previous and next. Figure 10 shows an example. Thirdly, SALMO-OO final version 

uses the fourth order Runge-Kutta algorithm to calculate the SALMO-OO ODE. 

Finally, SALMO-OO final version is able to run in single computer and network 

environment, both of them adopt MySQL version 4 RDBMS. In the case of running in 
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the network environment, Tomcat version 4 will be used to publish the SALMO-OO 

web pages as an application server. 

 

4.5.3 The SALMO-OO Use-Case Diagrams 

The SALMO-OO UML diagrams for use-case not only unambiguously establish the 

fundamentals to develop SALMO-OO and comply with its creator’s intention but also 

formally clarify the general structure of the target SALMO-OO applications.  

 

During object-oriented analysis phase, three types of actors have been discovered, 

including the User actor, the System actor, and the State Variable actor (Figure 4.5). 

Firstly, the User actor represents a person who accesses SALMO-OO via GUI, 

excluding any developers or administrators. Thus, the definition of the User actor 

limits a person access authorization to read only SALMO-OO.  

 

Secondly, the System actor means a piece of the SALMO-OO programs or a person 

who operates these programs. The actions of the System actor involve in database 

transactions, fetching available modelling selections such as lakes, years, scenario 

analysis, and algae model libraries, and responding the actions of the User actor. 
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Figure 4.9 UML diagrams for use-case for the interaction between the user and 

SALMO-OO 

 

A scenario descries the transactions between the User actor and the System actor. The 

initial step is a user locates the URL via IE in the Internet or open the modelling 

selection page in a single computer. The SALMO-OO applications display the initial 

page. Subsequently, the user completes a serial of selections and SALMO-OO 

responds to these relative selections until triggers Runge-Kutta calculations. Figure 

4.10 exhibits this scenario. 
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Figure 4.10 UML diagrams for use-case for the structuring of SALMO-OO by means 

of the model library and user selections 

 

Thirdly, the State Variable actor represents the model SALMO state variables. 

Theoretically, the biological complexity results the sophisticate interactions between 

these state variables. As far as the detail modelling process is concerned, the 

complexity of the model SALMO comes out after the User actor triggers modelling. 

We have to answer at least three questions to figure out the Runge-Kutta calculations, 

the SALMO ODE, the data import and export, and the relationships among them. The 

first question asks which process is the subsequence among the Runge-Kutta 

calculations, the SALMO ODE, and data import after the User actor triggers 

modelling? Secondly, which process is the last sequence of them? The last question is 

how to use Runge-Kutta algorithm to calculate the SALMO ODE. 
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Obviously, the last question has more challenge than the other two. It can be predicted 

that the future problems will frequently come from the Runge-Kutta and the SALMO 

ODE calculations, therefore the solution of the last question paly a key role in the 

following use-case analysis. Fortunately, SALMO-OO does not offer the solutions of 

the Runge-Kutta algorithm, thus it is not necessary to model it by use-case diagrams. 

The analyses only focus on the SALMO ODE. 

 

A recommendation to simplify the complex analysis could start from the simpleness. 

We take advantage of the materials such as the SALMO ODE documents and the 

model SALMO structure diagrams at this time. The SALMO ODE documents record 

every specific differential equation of the state variables. In general cases, the 

documents are organized by each state variable, and each of them is divided into two 

parts: mixed, epilimnion, and hypolimnion layer (note: the Oxygen state variable adds 

winter stagnation). Additional instruction of the model SALMO structure diagrams 

contributes the understanding of the relationships between the state variables and the 

rate variables. Thus, it is easy to clarify each specific actor and its actions that 

represent the SALMO ODE. Another advantage of this method is to reconstruct the 

model SALMO in terms of object-oriented paradigm. 

 

An ecological food web scenario demonstrates the biological activities in the model 

SALMO. It can be understood from Figure 4.11 that the model SALMO starts from 

light, which more accurately describes underwater solar radiation. The importing of 

light and nutrient, including dissolved inorganic phosphate (DIP) and dissolved 
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inorganic nitrate (DIN) provide rational natural conditions for algal growth, the factor 

of underwater temperature is excluded because it is defined as a part of the algal 

growth equations in SALMO-OO. The consequence of algal growth provides food for 

zooplankton growth by grazing. On the other hand, the dead algae and zooplankton 

become detritus, and detritus contributes phosphorus and nitrogen remineralization. 

By chemical combination, phosphorus and nitrogen are oxygenised into DIP and DIN 

respectively. As a cycle, DIP and DIN are consumed by phytoplankton. 

fish*

z:mortality

zooplankton

d:import

d:grazingdetritusd:sedimentation

o:production

z:growth

d:production

n:import n:remineralization

p:import phytoplankton

a:grazing

nitrate

phosphate

n:consumption

p:consumption

light

oxygen

p:release

p:remineralization

o:consumption

algal functional 
groups

a:sedimentation

a:growthlight:import

 

Figure 4.11 UML diagrams for use-case for the structure of the model SALMO  
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These three UML diagrams for use-case express our understanding of the model 

SALMO from different perspectives and establish a basic frame for SALMO-OO. 

Undoubtedly, the confirmation of these UML diagrams for use-case determines 

whether the next results proceed to our objectives. 

 

4.5.4 The SALMO-OO Class Diagrams 

The SALMO-OO UML class diagrams represent the static nature of SALMO-OO. In 

SALMO-OO, four packages that include twenty-five classes have been implemented.  

 

The salmo.model package is shown in Figure 4.12. A rectangle represents a class, 

which comprises three parts with vertical layout: one class name lies in the top of the 

rectangle, zero or more class fields lies in the middle, and zero or more of the class 

methods lies in the bottom. The solid line with a closed empty arrow represents the 

inheritance relationships between two classes. It starts from the subclass (e.g. the 

Light class) and ends with the superclass (e.g. the Salmo class). The rectangle with a 

folded angle on the up right represents notes. A note can be connected to a class with 

dashed line.  
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invoke salmo.db 
package to get 
data

Light

Light()
mix()
hypolimnion()

Zooplankton

Zooplankton()
autumnPoint()
mix()
zgrowth()
growth()
zgrow_libraries()
mort()
export()
epilimnion()
migrateEpi()
fluxEpi()
exportEpi()
hypolimnion()
growthHypo()
mortHypo()
migrateHypo()
fluxHypo()
exportHypo()

Phosphate
<<static>> PRED
PW : double

Phosphate()
autumnPoint()
mix()
imports()
consump()
remin()
export()
sed()
release()
epilimnion()
importsEpi()
fluxEpi()
exportEpi()
releaseEpi()
hypolimnion()
importsHypo()
consumpHypo()
reminHypo()
fluxHypo()
exportHypo()
releaseHypo()

Nitrate
NW : double

Nitrate()
autumnPoint()
imports()
consump()
remin()
export()
release()
epilimnion()
importEpi()
fluxEpi()
exportEpi()
releaseEpi()
hypolimnion()
importsHypo()
consumpHypo()
reminHypo()
fluxHypo()
exportHypo()
denHypo()
releaseHypo()

Oxygen

Oxygen()
mix()
autumnPoint()
hypolimnion()
importsHypo()
exportHypo()
fluxHypo()
prodHypo()
consumpHypo()
stag()
importsStag()
exportStag()
prodStag()
consumpStag()

Detritus

Detritus()
mix()
imports()
sed()
graz()
export()
epilimnion()
importsEpi()
fluxEpi()
exportEpi()
hypolimnion()
importsHypo()
sedEpiHypo()
grazHypo()
sedHypo()
fluxHypo()
exportHypo()

Salmo
<<static>> LENGTH : int = 720
constant groups : final static double
variable groups : static double
rs : ResultSet

Salmo()
setData()

Phytoplankton

Phytoplankton()
mix()
growth()
sed()
graz()
export()
epilimnion()
fluxEpi()
exportEpi()
hypolimnion()
growthHypo()
sedHypo()
grazHypo()
fluxHypo()
exportHypo()

AlageLibrary

growth_libraries()
graz_libraries()

 

Figure 4.12 UML class diagrams for the model components of SALMO-OO 

 

The salmo.maths package is shown in Figure 4.13. The dashed line with a closed 

empty arrowhead pointing at an interface (e.g. the DerivnFunction interface) 

represents the interface inheritance relationships between a class and an interface. The 

solid line with an open arrow represents the value passing relationships between two 

classes. 
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import  the 
salmo.model 
package

DerivnFunction

derivn()

RK4
<<static>> results  :  double[][]

fourthOrder()

SalmoRK4
<<static>> counter : int = 0
<<static>> season : String
diatom : Diatom
greenAlgae : GreenAlgae
blueGreenAlgae : BlueGreenAlgae
zoo : Zooplankton
phosphate : Phosphate
nitrate : Nitrate
detritus : Detritus
oxygen : Oxygen
light : Light

SalmoRK4()
derivn()
autumn()
winter()
spring()
summer()

<<include>>

SalmoData
data : double[][]
dataPlus : double[][]

SalmoData()
getData()
getDataPlus()

<<communicate>>

 

Figure 4.13 UML class diagrams for the mathematical operation of SALMO-OO 

 

The salmo.gui package is shown in Figure 4.14. 

SalmoCanvas
<<static> RELA : int = 40
<<static>> SPACE_UP : int = 25
<<static>> SPACE : int = 40
solid : double[][]
dot : double[][]
measure : double[][]

SalmoCanvas()
init()
paint()

SalmoChoice

SalmoChoice()

SalmoDiagram
buttons : JButton
notes : String[]
units : String[]
solid : double[][
dot : double[][]
measure : double

SalmoDiagram()
createCanvasData()
finalData()
profileRefer()
profileScenario()
trophicState()

<<communicate>>

SalmoSelection
buttons : JButton
note : JLabel
choice : Choice
choices : SalmoChoice
scenario : String[]
grow : String[]
grazing : String[]

SalmoSelection()
loadLakes()
loadYears()
prepare()

<<communicate>>

<<communicate>>

SalmoDataImportFrame
buttons : Button
choice : SalmoChoice
info : Label
ta : TextArea
directory : String
profile : String[][]

SalmoDataImportFrame()
convert()
displayUserSelection()
getDataset()

SalmoFrame
lake : String
lakes : String
year : String
growth : String
graz : String
scenario : String
percent : String
desktop : JDesktopPane
menuItems : JMenuItem
mysql : SalmoJDBC
tf : TextField[]

SalmoFrame()
cancel()
createInternalFrame()
returns()

<<communicate>>

<<communicate>>

 

Figure 4.14 UML class diagrams for the graphical user interface of SALMO-OO 
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The salmo.db package is shown in Figure 4.15. 

JavaToExcel

JavaToExcel()

SalmoJDBC
driverName : String
url : String
username : String
password : String
conn : Connection
stat : Statement
rs : ResultSet

SalmoJDBC()
SalmoJDBC()
getResultSet()
executeSQL()
close()

ExcelToJava
data : double[][]
str : String[][]
col : int
row : int

doubleData()
stringData()
getData()

JavaToMySQL
jdbc : SalmoJDBC

JavaToMySQL()
insertSalmoMeta()

LinearInterpolation
ten : double[] []
day :  double[ ][ ]

LinearInterpolation()
getInterpolationData()

DataCreator

DataCreator()
createData()
destoryData()

<<communicate>>

<<communicate>>

<<communicate>>

<<communicate>>

 

Figure 4.15 UML class diagrams for the lake database of SALMO-OO 

 

4.5.5 The SALMO-OO Sequence Diagrams 

The SALMO-OO UML sequence diagrams indicate the dynamic nature of SALMO-

OO network edition. From the developer’s point of view, this diagram represents the 

whole SALMO-OO process. This process starts from the User actor via presentation 

tier transactions, model tier calculations, data tier transactions, then returns by counter 

order, and finally ends when the User actor exits SALMO-OO. Figure 4.16 illustrates 

this process (note: this UML sequence diagrams only simulates the SALMO-OO 

network edition). The rectangle shown in this figure represents an application, which 

can be an actor, class, program, or a package.  
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First of all, the User actor requests the InputHTML web page. The details in this step 

start from the InputHTML web page and then transmit this request to the Servlet 

class. Then the Servlet class invokes the SalmoJDBC class in the salmo.db package in 

order to extract the available SALMO-OO data information. Subsequently, the Servlet 

class output these data information via the InputHTML and display them to the User 

actor. This is the first process called modelling preparing.  

 

Secondly, the User actor needs to complete a series of tasks before the actual 

modelling can proceed. Meanwhile, the InputHTML web page displays the available 

SALMO-OO data information in the form of dropdown web component. These data 

information encompass various modelling options such as lakes, corresponding years, 

model libraries, scenario analyses, and parameters. The User actor can select only one 

item in each of these options, then is intent to submit the selections. The modelling 

will actually start after the User actor’s confirmation. 

 

The third step is to complete the Runge-Kutta and ODE calculations. Joining the last 

step, the Servlet class transmits the modelling request and invokes the SalmoData 

class in the salmo.maths package in order to get the calculated data. Instead of direct 

calculations, the SalmoData class invoke the RK4, the SalmoRK4, and the ODE 

classes in the salmo.model package in turn, which these classes have responsibility to 

perform Runge-Kutta and ODE calculations. During this step, the Salmo class imports 
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the measured data. If this step runs successfully, the SalmoData class stores the final 

calculated data. 

 

Finally, SALMO-OO outputs the results to the User actor. The detail process involves 

the data passing between the SalmoServlet class and the SalmoApplet class. An 

OutputJSP web page lies in the middle of these two classes and aims to transmit the 

final calculated data value with a JSP Session object. The collaborations of three of 

them contribute to the task of data passing from the server side to the client side 

through the Internet. As the client side class, the SalmoApplet class invokes the GUI 

classes in the salmo.gui package. As a result, the classes in the salmo.gui package 

finally draw various diagrams that display in a computer screen that enable the User 

actor to observe the state variable dynamics. 
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User InputHTML OutputJSP Applet Servlet salmo.maths salmo.model salmo.db salmo.gui Database

request using  the SALMO-OO

invoke Runge-Kutta

invoke ODE

invoke SalmoJDBC

return data

return ODE & data

return results

data processing

import request GUI to draw graph

return GUI content

demonstra
te to user

user input access 
database

calcuate ODE with data

return calcuated data

draw graph

be imported

access

display graph to user

transfer calculated data

calculate with imported data

invoke database connection class (SalmoJDBC) access database

return data
return avialable datasetoutput to web page

display available modelling options

select modelling options

request user confirmation

confirm & submit
transmit modelling request

modelling analysis

access database

return data

 

Figure 4.16 UML sequence diagrams for the application of SALMO-OO 
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4.5.6 The SALMO-OO Communication Diagrams 

The SALMO-OO UML communication diagrams aim to model the dynamic nature of 

SALMO-OO stand-alone edition. Figure 4.13 shows the details. A rectangle in the 

UML communication diagrams represents an instance of a class, which is an object. A 

dashed arrow with a number represents a step, which is a method. Figure 4.17 lists the 

specific SALMO-OO applications as well as their relationships and interactions.  

 : RK4

 : SalmoFrame

salmo : 
Salmo

sc : 
SalmoCanvas

sd : 
SalmoData

mysql : 
SalmoJDBC

connects 
MySQL 
database

g : 
SalmoRK4

user access 
SALMO-OO

 : 
SalmoSelection

 : SalmoDiagram

 : 
Phytoplankton

phosphate : 
Phosphate

light : 
Light

zoo : 
Zooplankton

oxygen : 
Oxygenphyto : 

AlageLibrary

detritus : 
Detritus

4: getResultSet( )

nitrate : 
Nitrate

salmoJDBC : 
SalmoJDBC

13: getResultSet( )

24: derivn( )

1: createInternalFrame( )
2: SalmoSelection( )

12: SalmoJDBC( )

14: setData( )

23: fourthOrder( )

10: SalmoRK4( )

11: Salmo( )

15: Light( )

16: Phosphate( )

17: Nitrate( )
18: 

20: Zooplankton( )
21: Oxygen( )

22: Detritus( )

7: SalmoDiagram( )

3: SalmoJDBC( )

5: loadLakes( )
6: loadYears( )

9: SalmoData( )
25: getData( )

26: getDataPlus( )

8: SalmoCanvas( )
27: init( )

28: paint( )

19: Phytoplankton( )

 

Figure 4.17 UML communication diagrams for the application SALMO-OO  
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There is more information behind Figure 4.17. It is invaluable to display too many 

details because the omissions play secondary role in the SALMO-OO communication 

diagrams. The omissive information involves the process of the distributive seasons, 

the water volume, and the additional model libraries. It also ignores the relationships 

between the RK4 class and the SalmoRK4 class. For example, it neither takes into 

account how the SalmoRK4 class implements the DerivnFunction interface since 

interfaces do construct any instance, nor indicates how many times that an object of 

the RK4 class invokes one of the SalmoRK4 class. Obviously, a RK4 object invokes a 

SalmoRK4 object for 1440 times during 360 differential steps because SALMO-OO 

uses fourth order Runge-Kutta algorithm. 

 

In addition to the conventional usage, the SALMO-OO UML communication 

diagrams introduce a new procedure. According to the results in the OOA phase, there 

are 19-shared variables in the salmo.model package. These variables belong to the 

objects that represent the state variables. Although the SALMO ODE document 

records their location in a few equations, it is still difficult to figure out which object 

is involved in calculating one of these variables. In fact, diagrams can solve this 

problem. We use UML communication diagrams to represent this logic. Figure 4.18 

shows the object rectangle and the note rectangle, which respectively symbolize the 

objects and the shared variables. It can be shown in Figure 4.18 that a variable needs 

to be calculated by an object if a dashed line connects them. The Light object does not 

calculate any of these variables therefore it is isolated. Furthermore, it is clearly 

shown in Figure 4.14 how many objects need to share a variable’s calculation. 
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Oxygen

Phytoplankton & 
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Figure 4.18 A UML communication diagrams for the relationships between the 

objects and the shard variables 

 

It can be stated that the complete UML communication diagrams are one of the 

milestone in the SALMO-OO life cycle. Often this is the end of the object-oriented 

design phase. With the guide of these UML diagrams, Java programming language 

can implement the SALMO-OO class library in a short time. In general sense, a well-

designed software structure will free the person who types source code to a large 

degree. However, object-oriented programming strongly relies on a programmer’s 

experience and skill. 

 

At this stage, a conclusion can be drawn for both the SALMO-OO UML sequence 

diagrams and SALMO-OO communication diagrams. On one hand, the purpose of the 
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SALMO-OO UML sequence diagrams is to figure out the flow logic between the 

SALMO-OO applications on the top level. As normal understanding process, it is 

more important for us to firstly understand how the message flows between the top-

level components than the low-level classes. Thus, the SALMO-OO UML sequence 

diagrams focus on the general message flow in the network edition rather the details 

in the stand-alone edition because the network edition contains a large amount of 

complex user transactions. On the other hand, the SALMO-OO UML communication 

diagrams deal with the detail message flow as a compensative solution. These details 

dominate the flow logic in SALMO-OO stand-alone edition. Therefore, the 

collaboration of these two diagrams clarifies the interactions between the SALMO-

OO applications in the OOD phase. 

 

4.5.7 The SALMO-OO UML diagrams for deployment  

The target SALMO-OO applications need deployment to be available. The 

components of deployment encompass hardware devices, operating systems, 

SALMO-OO suites, and various supporting software. 

 

SALMO-OO involves two deployment strategies. One is the stand-alone edition 

deployment. The stand-alone edition requires the SALMO-OO suites to be installed in 

a single computer but does not involve any transactions across the computer network. 

A single computer can be any computer that has ability to run the SALMO-OO suites. 

For example, this single computer can be a desktop, laptop, or mainframe regardless 
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of connecting to the Internet, but it has to meet the minimum configuration. Actually, 

most of the computers produced after 2000 are able to run the SALMO-OO suites. 

 

Figure 4.19 uses UML diagrams for deployment to show the details. It can be seen 

from this figure that all the components are deployed in one computer device. 

 

 

Figure 4.19 UML diagrams for deployment for the stand-alone version of SALMO-

OO  

 

Another is the network version deployment. The network version requires the 

SALMO-OO suites to be installed in the computers that connect to the Internet. The 
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specific deployment strongly depends on the available network structure. Generally, 

the SALMO-OO suites distribute the class library and database into two hardware 

devices. Moreover, it requires the client terminals to install Internet Explorer 

embedded Java Runtime Environment that enable to display Applet. Figure 4.20 

shows these configurations. 

 

Figure 4.20 UML diagrams for deployment for network version of SALMO-OO  

 

In addition to these UML diagrams for deployment, it is necessary to display further 

deployment of the SALMO-OO suites in the Tomcat container. Figure 4.21 shows the 

hierarchy in the form of tree graph. A rectangle with underline text represents a 

directory, and a rectangle with plain text represent one or more files. 
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Figure 4.21 Suites file hierarchy of SALMO-OO 

 

Tomcat 4 and JRE 1.5 are required for both the stand-alone and network version of 

SALMO-OO. 

 

4.6 The SALMO-OO API Specification 

The SALMO-OO API specification provides the detail instructions for the SALMO-

OO class library. As an important document, this API specification reflects the 

structure of the core SALMO-OO applications, including packages, classes, fields, 

and methods. It is organized in the form of web pages that comply with the standard 

of Java code conventions (Sun Microsystems 1994-2005b).   
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Chapter 5 

Discussion 

5.1 SALMO-OO can be implemented by Object-Oriented 
programming using Java 

SALMO-OO achieves the same results as the original Fortran IV version of SALMO. 

Figure 5.1 illustrates the simulation results of the Fortran IV version of SALMO for 

phosphate, phytoplankton and zooplankton by means of data from Lake Stechlin 

1975, Saidenbach Reservoir 1975, and Bautzen Reservoir 1978. 

 

Figure 5.1 Simulation results by the FORTRAN IV version of SALMO for the Lake 

Stechlin 1975, Saidenbach Reservoir 1975 and Bautzen Reservoir 1978 
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The second prototype system exactly reconstructs SALMO but is implemented in 

Java programming language. The new results add Chlorophyll-a state variable and 

simulate epilimnion and hypolimnion together, excluding Lake Stechlin 1975. 

 

Figure 5.2 shows the result of the second prototype system that simulates Saidenbach 

Reservoir 1975. 

 

Figure 5.2 Simulation results by SALMO-OO for Saidenbach Reservoir 1975 

 

Comparing to the Fortran result of Saidenbach Reservoir 1975 in the middle of Figure 

5.1, it is obvious that Figure 5.2 has higher daily dynamics than Figure 5.1 in DIP, 

phytoplankton, and zooplankton. This difference comes from using wrong parameters. 
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After correcting the mistakes, the result of Bautzen Reservoir 1975 is far similar to 

the Fortran one (Figure 5.3). 

 

Figure 5.3 Simulation results by SALMO-OO for Bautzen Reservoir 1978 

 

It is clear that using object-oriented technology can produce the same model as 

before. However, the second prototype system is not good enough to show the 

strength of object-oriented technology. Our project further enforces the model 

SALMO in the third prototype system, which is the final version of SALMO-OO. It 

achieves more accurate results than those previous ones, and optimises the structures 

of the SALMO-OO class library. These improvements realize the possibility to add an 

extra algal functional group; therefore SALMO-OO can simulate Diatoms, Green 

Algae, and Blue Green Algae at the same time. Moreover, SALMO-OO offers a new 
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function that permits users to adjust the primary modelling parameters. Thus, 

ecologists can flexibly select the SALMO parameters to pursue any perspective result. 

Fortunately, all these processes are happened in an easy manner. 

 

The SALMO-OO achievements benefit from the object-oriented technology. In others 

words, the model SALMO is standardised by means of object-oriented modelling 

such as UML modelling. However, the Fortran version of SALMO follows the 

structural paradigm, which uses flow chart to simulate the modelling process. 

Although the Fortran one has a well-design structure (Figure 1 and Figure 2 in Section 

1.3.1), it did not describe it in a simple modelling language, which results in the 

complexity of SALMO. As a result, neither modellers can directly clarify the 

structure, nor programming languages can easily implement the relative applications. 

 

On the other hand, the SALMO-OO class library solves the problems by means of 

object-oriented modelling. As far as the performance is concerned, the realizations of 

flexibility, reusability, and platform independence enable the SALMO-OO class 

library to be accessed more freely than before. The flexible SALMO-OO class library 

takes advantage of object-oriented analysis and design. Specifically, UML modelling 

achieves the aims. SALMO-OO provides transparent program structure against its 

complexity. The previous SALMO model is broken up into pieces that represented by 

objects in the OOA phase. The merit of object orientation provides a beneficial way to 

simplify the complexity of the model SALMO because everything originates from an 

atomic particle. Theoretically, an atomic particle is the minimum understandable unit 
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in the human mind. In the context of object-oriented paradigm, this atomic particle 

means object. Subsequently, OOD discovers the relationships and interactions 

between these objects and represents the details by various UML diagrams. These two 

processes finally model the SALMO-OO requirement, structure, and logic in a simple 

way. Moreover, the well-designed structure benefits the reusability of the class 

library. The advantage of reusability not only reduces a large amount of source code 

but also simplify the implementation of target SALMO-OO. In addition, the SALMO-

OO class library is independent to the runtime environment, including hardware 

devices, operating systems, and databases. Undoubtedly, Java technology plays a key 

role in the platform independence. In general, UML modelling provides one of the 

most representative methods standardise the model SALMO and data structure, which 

delivers the aims of data and model sharing by standardised model and data 

structures. 

 

Since SALMO-OO can be implemented by object-oriented technology, it also is 

capable to pursue more advanced applications such as web accessibility, even to be 

built accompanying with other application-level software systems such as Graphical 

Information System (GIS). The latter is supposed to upgrade SALMO-OO on the 

spatial dimension. Therefore, using object-oriented technology solves the key of 

SALMO-OO as well as aims to future considerations. 

 

5.2 Users can access SALMO-OO via Internet as well as friendly GUI 

Web accessibility and friendly GUI is the second achievement of SALMO-OO. 
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Although SALMO-OO considers both stand-alone edition and network edition, the 

core class library is exactly same between two editions. The difference between them 

only involves part of GUI components, but does not has any dissimilar operations for 

users. To clarify the visual effect, both editions demonstrate an example. 

 

First, SALMO-OO stand-alone edition GUI is shown in Figure 5.4. 

 

Figure 5.4 Initial GUI of the stand-alone version of SALMO-OO 

 

Figure 5.4 consists of three parts. The first part is the SALMO-OO modelling options, 

which lies in the top of Figure 5.4. SALMO-OO provides lake, year, algal growth, 
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algal grazing, and scenario selections. User can freely chose any combination among 

them. The second part is the SALMO-OO modelling parameters, which lies in the 

middle of Figure 5.4. Currently, SALMO-OO provides the whole algal parameters 

and part of zooplankton parameters, including additional model library parameters for 

algal growth and algal grazing. The third part is the GUI functional area, which lies in 

the bottom of Figure 5.4. Users can submit modelling request by press the Submit 

button, or cancel it. For example, a user clicks the Lake Selection option, the system 

responses to list all the available lakes or reservoirs (Figure 5.5). Responsively, the 

user chooses the Bautzen item and the system vary it into blue background. 

 

Figure 5.5 Example for the selection of lake ‘Bautzen’ by means of the GUI stand-

alone version of SALMO-OO  
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After release mouse, the Bautzen item displays in the Lake Selection option instead of 

the previous default one. The Year Selection option automatically displays the 

available years that respond to one selected lake (Figure 5.6). In this case, SALMO-

OO only offers one year 1978 regrading to the Bautzen Reservoir. Subsequently, the 

user press the Submit button with other default options, which are the original 

SALMO-OO algal growth and grazing model without scenario analysis, therefore the 

system skip to the result GUI (Figure 5.7). 

 

Figure 5.6 Example for the selection of year ‘1978’ of lake ‘Bautzen’ by means of the 

GUI stand-alone version of SALMO-OO 
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Figure 5.7 Visualisation of validation results for concentrations of phosphate PO4-P, 

chlorophyll a, total algal biovolume and zooplankton biovolume simulated for the 

Bautzen Reservoir in 1978 by the stand-alone version of SALMO-OO (page No. 1) 

 

Figure 5.7 displays the simulated data of DIP, Chlorophyll-a, total algal biomass, and 

zooplankton. The user can look through other state variables by press the Next button 

in the bottom of Figure 5.7. For instance, the user wants to display DIP, DIN, oxygen, 

and detritus, which are illustrated in Figure 5.8. 
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Figure 5.8 Visualisation of validation results for concentrations of phosphate PO4-P, 

nitrate NO3-N, dissolved oxygen and detritus simulated for the Bautzen Reservoir in 

1978 by the stand-alone version of SALMO-OO (page No. 2) 

 

Similarly, Figure 5.9 displays total algal biomass and three functional groups 

respectively. 
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Figure 5.9 Visualisation of validation results for the concentrations of total algal 

biomass, diatom biuomass, green algae biomass and blue-green algae biomass 

simulated for the Bautzen Reservoir in 1978 by the stand-alone version of SALMO-

OO (page No. 3) 

 

The user usually wants to look through another lake at the result GUI. For instance, 

the user is intent to explore Saidenbach Reservoir. It can be done by click the Return 

button that closed to the Next button. The system will display the initial GUI in Figure 

5.4. By performing the similar operation, Figure 5.10 suite displays the simulated data 

respectively of Saidenbach Reservoir 1975. 
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Figure 5.10(a) Modelling selection page           Figure 5.10(b) 1st result page 

       

       Figure 5.10(c) 2nd result page             Figure 5.10(d) 3rd result page 

 

Sometimes, the user adopts various scenario analyses in order to investigate the 

simulated results of lake management. For example, it is often helpful for freshwater 

management personnel to reduce DIP loads and artificial mixing to control the total 

algal biomass. SALMO-OO enables this operation to be easily performed. Figure 5.11 

illustrates a user click the Scenario Selection option, which is the Scenario7-Artificial 

Mixing and Phosphate Load Reduction item. 
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Figure 5.11(a) Selection of the scenario ‘artificial mixing and phosphate load 

reduction’ for the Saidenbach Reservoir in 1975 by means of the GUI of the stand-

alone version of SALMO-OO 

 

After choose the Scenario7, the user needs to choose how much reduction of DIP 

from the Phosphate Load Reduction % option. In this case, the user clicks the ‘90’ 

item (Figure 5.11(b)). 
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Figure 5.11(b) Specification of the phosphate load reduction by 90% for the selected 

the scenario ‘artificial mixing and phosphate load reduction’ for the Saidenbach 

Reservoir in 1975 by means of the GUI of the stand-alone version of SALMO-OO 

 

Responsively, the SALMO-OO invokes the artificial mixing dataset associating with 

DIP load reduction 90%, finally drawing two different curves to represent these 

simulated results. Figure 5.12 shows the scenario simulation data with dash line 

differs the original SALMO one with solid line. It is obvious that the total algal 

biomass is decreased because of DIP reduction.  
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Figure 5.12 Simulation result of the scenario ‘artificial mixing and phosphate load 

reduction’ for the Saidenbach Reservoir in 1975 visualised by the GUI of the stand-

alone version of SALMO-OO 

 

SALMO-OO network edition delivers almost similar visual effect to its stand-alone 

edition, but disable the functions of the parameter adjustments or the algal growth and 

grazing model library selections. It is unnecessary for remote users to assess our 

proceeding project. Although some remote users expect doing so, it is actually hard to 

keep the robust and correctness of the whole algal model library because varied 

parameters and algal models have not been verified. In some worst case, some 

arbitrary parameter and algal model selections could cause system collapse. Thus, 

SALMO-OO network edition GUI is different from its stand-alone one somewhat. 
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Figure 5.13(a) shows the initial web page (lake selection). A remote user must choose 

one lake dataset to skip to the next web page (year selection Figure 5.13(b)). The 

following web page is scenario selection (Figure 5.13(c)). Finally, the first result web 

page is displayed in Figure 5.13(d) after the remote user press the Submit button. Also 

the remote user can look through other results by the Next button (Figure 5.13(e) and 

Figure 5.13(f)), but web page does not skip. 

      

 Figure 5.13(a) Lake selection web page         Figure 5.13(b) Year selection web page 

     

Figure 5.13(c) Scenario selection web page       Figure 5.13(d) 1st result web page 
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   Figure 5.13(e) 2nd result web page                  Figure 5.13(f) 3rd result web page 

 

It can be seen from these figures that SALMO-OO provides friendly GUI as well as 

web-based access. In the stand-alone edition, friendly GUI implementation mainly 

depends on Java Abstract Window Toolkit (AWT) and Java Swing component, and 

network edition adds HTML and JSP to be enabled web presentation. 

 

5.3 Object-oriented technology allows for developing an algal model 
library 

SALMO-OO easily implements an algal model library by using object-oriented 

technology. This algal model library contains a number of algal growth and grazing 

models, which encapsulated into the AlgaeLibrary class in the salmo.model package. 

Technologically, the AlgaeLibrary class extends the Phytoplankton class, the various 

growth and grazing models act as methods in the AlgaeLibrary class. Java 

programming language provides polymorphism for an AlgaeLibrary object invokes 

one specific method between the superclass (Phytoplankton) and the subclass 

(AlgaeLibrary). Therefore, the alternative equations can replace the ones in SALMO-

OO; eventually investigate which one improves SALMO as ecological expectations. 
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As far as users are concerned, these processes are transparent. The model library 

option is similar to the lake or year option in GUI. Figure 5.14 illustrates how a user 

chooses a growth model associating with Bautzen Reservoir 1978. Obviously, it does 

not require users to put any extra efforts. 

 

Figure 5.14 Selection of the algal growth model 3 from the model library for the 

simulation of the Bautzen Reservoir in 1978 by means of the GUI of the stand-alone 

version of SALMO-OO 

 

Usually, a user may observe accompanying grazing model instead of the original 

SALMO grazing model. Similar operation needs to be done for this user (Figure 

5.13(b)). 
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Figure 5.15 Selection of the algal grazing model 3 from the model library for the 

simulation of the Bautzen Reservoir in 1978 by means of the GUI of the stand-alone 

version of SALMO-OO 

 

In the meanwhile, the user can freely adjust various modelling parameters to pursue 

expected simulation results. By using these functions, my colleague has made further 

progress on SALMO improvements. Figure 5.16 lists the comparisons among a group 

of diagrams that represent various simulation results by model library selections and 

parameter adjustments. Undoubtedly, these improvements benefit from using object-

oriented technology. 
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Figure 5.16 Illustration of the simulation results for the Bautzen Reservoir in 1978 by 

different model structures of SALMO-OO selected from the model library of the 

stand-alone version of SALMO-OO (from Cetin, Zhang and Recknagel 2005) 

 

5.4 The implication of the SALMO-OO documents  

The SALMO-OO documents are to abstractly model SALMO-OO. These documents 

consist of three basic categories: descriptions, simulations, and instructions. The 

category of descriptions comprises the SALMO-OO requirement statement and 

specification document, which clarify the fundaments of SALMO-OO and specify the 

limitations of SALMO-OO. The second category simulates SALMO-OO by means of 

UML modelling, including the SALMO-OO use-case diagrams, class diagrams, 

sequence diagrams, communication diagrams, and UML diagrams for deployment . 

The third category is the SALMO-OO API specification, which instructs how to use 

the SALMO-OO class library. The strength of the SALMO-OO documents plays a 

key role in the process of simplifying the complexity of SALMO-OO. Moreover, 
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these documents provide an understandable platform for anyone who involves 

SALMO-OO to easily mutual communication. Therefore, the SALMO-OO 

documents are the primary outcomes of this project. 
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Chapter 6 

Conclusions 

Through this project, we draw two conclusions: lake ecosystem modelling can use 

object-oriented technology and lake ecosystem modelling can benefit from object-

oriented software engineering. 

 

We have achieved the key requirements of SALMO-OO. Now, the SALMO-OO 

creator and developer can arbitrarily vary and extend their logics. The flexibility of 

the class library permits them to perform any reasonable operations without 

destruction. Moreover, the friendly GUI enables the model users access SALMO-OO 

in a comfortable situation. Also they can observe the state variable dynamics with any 

combinative modelling options.  

 

As far as the methods are concerned, the development of SALMO-OO takes 

advantages of up-to-date information technologies. With the guidance of object-

oriented software engineering, SALMO-OO realizes all the objectives in the proposal. 

Furthermore, the developing duration and workload has been overestimated because 

of using some Extreme Programming methods. Finally, SALMO-OO delivers some 

useful documents to describe the whole developing process. These documents not 

only clarify SALMO-OO development but also explain SALMO-OO from different 

perspectives. Therefore, SALMO-OO is far understandable for both ecologists and 

computer scientists. 
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It is clear that object orientation has more ability to build the flexible lake ecosystem 

model class library than some previous means. Lake ecosystem modelling can make 

achievements by means of object-oriented technology. 
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Chapter 7 

Recommendations 

From the scientific perspective, the SALMO-OO class library considers to be 

improved to be compatible to the future applications. Specifically, a generic 

freshwater class library contains various variables that involve in freshwater 

simulation is needed. This expected achievement would highly contribute to the 

society of water research and management. The benefits are the whole society can 

reuse the programming code as well as easily deploy this standard class library in 

various water dependent applications. 

 

The achieved SALMO-OO needs maintenance. The methodology of modern software 

engineering concludes the maintenance task lives in all the phases of software life 

cycles. Theoretically, it sounds that we have completed the SALMO-OO maintenance 

since this project ended. However, it is possible to vary SALMO-OO in the future 

such as correcting faults, optimising structure, extending algal functional groups or 

model libraries, changing run environment, even transferring to other computer 

systems. Therefore, it can be recommended leaving the maintenance of SALMO-OO 

as the future works. 

 

Maintenance will improve SALMO-OO in the future. However, our conclusions do 

not prove other object-oriented ecological models are inability to achieve our 

objectives. Information technology is upgrading everyday, ecological models 
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accompany enforcement once if they adopt novel techniques. It is impossible to trace 

and look through their improvements in real time. In the world wide, the development 

of Information technology is far faster than using them in a real application. Thus, 

SALMO-OO has to keep up with the development in order to make future 

achievements. 
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