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Abstract

A MAP/PH/1 queue is a queue having a Markov arrival process (MAP), and a sin-

gle server with phase-type (PH -type) distributed service time. This thesis considers

the departure process from these type of queues. We use matrix analytic methods,

the Jordan canonical form of matrices, non-linear filtering and approximation tech-

niques. The departure process of a queue is important in the analysis of networks of

queues, as it may be the arrival process to another queue in the network. If a simple

description were to exist for a departure process, the analysis of at least feed-forward

networks of these queues would then be analytically tractable.

Chapter 1 is an introduction to some of the literature and ideas surrounding the

departure process from MAP/PH/1 queues.

Chapter 2 sets up the basic notation and establishes some results which are used

throughout the thesis. It contains a preliminary consideration of PH -type distribu-

tions, PH -renewal processes, MAPs, MAP/PH/1 queues, non-linear filtering and

the Jordan canonical form.

Chapter 3 is an expansion of [7], where the question of whether a MAP de-

scription can exist for the departure process of a non-trivial MAP/M/1 queue is

considered. In a 1994 paper, Olivier and Walrand conjectured that the departure

process of a MAP/PH/1 queue is not a MAP unless the queue is a stationary M/M/1

queue. This conjecture was prompted by their claim that the departure process of an

MMPP/M/1 queue is not MAP unless the queue is a stationary M/M/1 queue. We

show that their proof has an algebraic error, which leaves open the above question

of whether the departure process of an MMPP/PH/1 queue is a MAP or not.

ix



In Chapter 4, the more fundamental problem of identifying stationary M/M/1

queues in the class of MAP/PH/1 queues is considered. It is essential to be able to

determine from its generator when a stationary MAP is a Poisson process. This does

not appear to have been discussed in the literature prior to the author’s paper [5],

where this deficiency was remedied using ideas from non-linear filtering theory, to

give a characterisation as to when a stationary MAP is a Poisson process. Chapter

4 expands upon [5]. This investigation of higher order representations of the Poisson

process is motivated by first considering when a higher order PH -type distribution

is just negative exponential.

In Chapter 5, we consider the related question of minimal order representa-

tions for PH -type distributions, an issue which has attracted much interest in the

literature. A discussion of other authors’ ideas is given and these ideas are then

inter-related to the work presented in Chapter 4 on the PH -type distributions.

The MAP/M/1 queue is then considered in Chapter 6 from the perspective of

whether having an exact level and phase independent stationary distribution of the

geometric form

Ψ0 = [π0, ηπ0, η
2π0, η

3π0, . . .],

where 0 < η < 1 is a scalar, implies that the MAP is Poisson. The answer is in the

affirmative for this question, but the converse is not strictly true. Apart from show-

ing the ubiquitous asymptotic form of level and phase independence exhibited by all

stable MAP/M/1 queues, we prove that a very large class of stable queues, exhibits

what we have termed shift-one level and phase independence. Stable MAP/M/1

queues exhibiting shift-one level and phase independence, are characterised by a

stationary distribution of the following form:

Ψ0 = [π0, χξ0, χ
2ξ0, χ

3ξ0, . . .],

where 0 < χ < 1 is a scalar and ξ0 is a positive row vector.

In Chapter 7, a family of approximations is proposed for the output process of

a stationary MAP/PH/1 queue. To check the viability of these approximations,



they are used as input to another single server queue. Performance measures for the

second server are obtained analytically in both the tandem and approximation cases,

thus eliminating the need for simulation to compare results. Comparison of these

approximations is also made against other approximation methods in the literature.

In Chapter 8, we show that our approximations from Chapter 7 have the property

of exactly matching the inter-departure time distribution. Our kth approximation

also accurately captures the first k − 1 lag-correlation coefficients of the stationary

departure process. The proofs of this direct association between lag-correlation

coefficients and the level of complexity k are given.



Chapter 1

Introduction

This thesis considers the departure processes from MAP/PH/1 queues. Departure

processes are important in the analysis of networks of such queues, as they may be

the arrival process to another queue in the network. Descriptions of the MAP and

PH -type distributions are given in detail in Chapter 2. An introductory description

of the MAP (or Markov arrival process) is that it is a process which counts transi-

tions of a finite Markov chain. A PH -type distribution (or phase-type distribution)

is the distribution of the hitting time in a finite-state, continuous, absorbing Markov

chain.

There have been many papers dealing with the output process of a single queue,

for example [11], [12], [17] and [18]. One of the earlier notable results on the depar-

ture process from a single server queue was claimed in 1955 by Morse [29], where he

stated that

“A little thought will convince one that the efflux from a single-channel,

exponential service channel, fed by Poisson arrivals, must be Poisson

with the same rate as the arrivals.”

The first proof of this was given by Burke [11] in 1956, and later by Reich [45] in 1957

by a different method. Essentially, Burke showed that under stationary conditions,

the queue size at a departure epoch and the time elapsing until the next departure

1



CHAPTER 1. INTRODUCTION 2

epoch are independent random variables. Reich on the other hand, showed that

the Markov chain X, for any birth and death process (which includes all M/M/s

systems) is reversible, and therefore that X(t) and X(−t), for t ∈ R, have the same

joint distribution. The deaths in X correspond to the births in the reversed process,

thus implying that they must both be the epochs of a Poisson process. This result

simplified much of the earlier analysis for tandems, such as that published in 1954

by R.R.P. Jackson [24]. It was noted in [24] that the stationary distribution of the

number of customers in each queue of two negative exponential servers in series, fed

with a Poisson process

“...settles down in apparent independence.”

Similarly, in 1954 O’Brien [36] stated that for two queues (gates) in series having

Poisson arrivals and a negative exponential first server, that

“The arrival of customers at gate 2 will be random and the average

arrival rate will be the same as that for gate 1.”

Therefore, some years before Burke’s proof in 1956, the departure process from an

M/M/1 queue was observed to be Poisson.

The M/M/1 queue is the simplest form of the MAP/PH/1 queue, and the de-

parture process has a simple finite description. A natural question which arises is

whether a similar property holds for other queues. That is, for more general queues,

does there exist a finite state Markov chain and a set of transitions for which the

counting process of the transitions is identical to the departure process of the original

queue. If a simple description were to exist for the departure process, the analysis of

at least feed-forward networks of these queues would then be analytically tractable.

Olivier and Walrand [42] presented an argument to show that no such finite

state chain exists for an MMPP/M/1 queue (a special case of the MAP/M/1 queue,

detailed in Chapter 2) which is not an M/M/1 queue and conjectured that this is

also true for a MAP/M/1 queue. Upon investigation, we found that their proof
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had an algebraic error (subsequently reported in [7]), leaving open the question of

whether the departure process of an MMPP/PH/1 queue can be a MAP .

There is also a more fundamental problem with Olivier and Walrand’s proof.

Since it is possible for the arrival process of a MAP/M/1 queue to be Poisson, but

with a possibly complicated description, and since we know that the output of such

a queue is a MAP (as mentioned above, it is Poisson), it is essential to be able to

tell from its generator when a MAP is, in fact, Poisson. This was not discussed in

Olivier and Walrand [42], nor does it appear to have been discussed elsewhere in

the literature. This deficiency is remedied here, and in [5], using ideas from non-

linear filtering theory, to give a characterisation as to when a stationary MAP is a

Poisson process. As a preliminary result, we will discuss how to recognise a higher

order representation of a negative exponential distribution. This is closely allied to

the non-trivial questions of determination of minimal order and non-uniqueness of

representations for PH-type distributions. These two problems have been considered

in many publications, such as [15], [16], [31], [37], [38], [39], [40], [41] and [47]. These

papers are discussed, and some of our results are re-framed using ideas from these

authors.

A stable M/M/1 queue has a geometric stationary distribution π involving a

scalar 0 < ρ =
(

λ
µ

)
< 1, where λ is the rate of the Poisson arrival process and

µ is the negative exponential service rate. The stationary distribution is given by

π = π0(1, ρ, ρ2, ρ3, . . .), where 0 < π0 < 1 and πe = 1. For MAP/M/1 queues, the

stationary distribution Ψ is matrix geometric of the following form (see [31])

Ψ = π0[I, R, R2, R3, . . .],

for some non-negative matrix R with sp(R) < 1. We suppose that the level is

exactly independent of phase, a property which has been considered in the more

general setting of the quasi birth and death (QBD) process by Ramaswami and

Taylor [44], and Latouche and Taylor [26]. Exact level and phase independence

implies that the stationary distribution for the MAP/M/1 queue may be written in
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the form

Ψ = [π0, ηπ0, η
2π0, η

3π0, . . .],

for a scalar 0 < η < 1. We will show that exact level and phase independence in a

MAP/M/1 queue implies that the stationary MAP is Poisson. However, it is then

shown that not all MAP/M/1 queues, where the stationary MAP is in fact Poisson,

have an exact level and phase independent stationary distribution. We further prove

that a large class of MAP/M/1 queues exhibits what we have termed shift-one level

and phase independence. Shift-one level and phase independence has the following

form,

Ψ = [π0, χξ0, χ
2ξ0, χ

3ξ0, . . .],

for some scalar 0 < χ < 1 and positive row vector ξ0.

There exists an exact finite MAP description of the departure process of the

MAP/PH/1/k queue. The MAP description of this queue has dimension mnk,

where m and n are the respective dimensions of the matrix parameters for the

arrival process and the service distribution. Although this description is finite, it can

become unwieldy when used as a tool for the analysis of networks of such queues.

Approximate techniques which reduce the size of these representations therefore

become necessary. An extensive list of references for methods of analysis of various

tandem queues with a finite intermediate buffer was given in [32].

In the infinite buffer case, no such exact finite description has been found. In

fact, if Olivier and Walrand’s claim turns out to be correct, there does not exist a

finite MAP description for the output process of a stationary MAP/PH/1 queue in

which the MAP is not a Poisson process. We will develop a family of MAP approxi-

mations to the departure process of the MAP/PH/1 queue. To check the viability of

these approximations, they have been used as input to another single server queue,

and the second queue length distributions have been compared with their “exact”

counterparts, calculated using matrix-analytic techniques, thus avoiding simulation.
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Other techniques to approximate point processes have been given in, for example,

[1], [2], [9], [20], [49], [51] and [52]. Some comparison is made with previous work in

the literature for further validation of the approximations. In particular, the pub-

lished results of Whitt [52] are directly compared to results obtained for the same

queues by our methods. The structure of the defining processes is exploited in our

approximations, and as a direct result, all of our approximations yield the exact

output process for the trivial situation of Poisson arrivals to a negative-exponential

first server.

We will prove that the stationary inter-departure time distribution for the MAP/PH/1

queue is identical to the stationary inter-event time distribution for our MAP ap-

proximations to the departure process of the MAP/PH/1 queue. The family of

approximations is indexed by a parameter k ∈ {1, 2, . . .}, and for k = 1, the MAP

approximation is a PH -renewal process. PH -renewal processes are non-correlated

and hence this approximation contains no correlation information about the de-

partures from the MAP/PH/1 queue. For k ≥ 2, the approximations are not

PH -renewal processes, and we prove in Chapter 8 that the lag-correlation coeffi-

cients c1(k), . . . , ck−1(k) for the stationary inter-event times of the kth approxima-

tion are identical to the lag-correlation coefficients c1, . . . , ck−1 for the stationary

inter-departure times of the MAP/PH/1 queue.



Chapter 2

Preliminaries

In this chapter, notation is defined and some results are given for the common

structures and ideas which are used throughout the thesis.

2.1 MAPs

A Markovian arrival process (or (MAP)), is a process which counts transitions of

a finite state Markov chain. Consider a Markov chain, X = {xt, t ≥ 0}, having a

finite state space X, with conservative transition rate matrix D.

For i �= j ∈ X, let

[D1]i,j ≤ [D]i,j, (2.1.1)

for i ∈ X, let

0 ≤ [D1]i,i < ∞, (2.1.2)

and let

D0 = D − D1 . (2.1.3)

If we assume that the Markov chain with transition rate matrix D is irreducible,

then this Markov chain has a unique stationary distribution ν such that νD = 0.

6
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The transitions with rates D1 are observed, while those in D0 are hidden. The

process J(t), which counts the observed transitions of this Markov chain, is a MAP

of stationary arrival rate λ = νD1e, where e is a column of ones of the appropriate

dimension. This definition for e will be used throughout this thesis, with subscripts

used to denote specific column lengths only when ambiguities could arise. The

simplest MAP is the Poisson process, with D1 = λ and D0 = −λ, where λ > 0 is

the rate of the Poisson process. The term MAP was originally coined in Lucantoni,

Meier-Hellstern and Neuts [19]. For an excellent discussion on the MAP including

examples, see Lucantoni [27].

It is possible for a process which counts transitions of an infinite state Markov

chain to be statistically equivalent to a MAP . For example, let us consider a queue

with Poisson arrivals of rate λ > 0 and a single server having negative exponentially

distributed holding times with mean 1
µ

> 0. This is known as an M/M/1 queue,

which we model by a Markov chain X = {xt, t ≥ 0}, on the state space Z
+, where

xt represents the number of customers in the queue at time t. This Markov chain

has the following infinite transition rate matrix




−λ λ 0 0 0 . . .

µ −(λ + µ) λ 0 0 . . .

0 µ −(λ + µ) λ 0 . . .
...

. . . . . . . . .




, (2.1.4)

where the number of customers in the queue, increases with the row number of the

matrix. In the situation where λ < µ, the queue is positive recurrent, and under

stationary conditions, the point process of occurrence of transitions (n+1, n), n ≥ 0,

is known (see Burke [11]) to be a Poisson process of rate λ, which is, of course, a

trivial MAP .
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2.2 MAP/M/1 queues

The arrival process can be generalised for the transition rate matrix in (2.1.4) by

relaxing the requirement that the inter-arrival times be negative exponentially dis-

tributed (see [27]). This is achieved by adding auxiliary states or phases to the

arrival process, associating certain phase changes with each arrival and allowing

phase changes to occur without arrivals. The Markovian simplicity is still preserved

since the sojourn times within phases of the auxiliary process are still negative

exponentially distributed. We define a two state Markov chain (xt, yt), where xt

represents the number of customers in the queue at time t and yt represents the

phase of the arrival process at time t. Let D0 and D1 be as in equations (2.1.1),

(2.1.2) and (2.1.3), with dimension equal to the number of auxiliary states or phases

m. Following the notation of Neuts [31], we get the following block matrix form for

the conservative rate matrix of the MAP/M/1 queue:

Q =




D0 D1 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0

...
. . . . . . . . .




. (2.2.1)

When the queue is empty, the matrix D0 governs the transitions of the arrival process

which do not correspond to an arrival and the matrix D1 governs those transitions

which do. Let Im be the identity matrix of dimension m. When the queue is

occupied, the matrix A2 = µIm governs departures, A0 = D1 governs arrivals and

A1 = D0 − A2 governs those transitions which do not correspond to an arrival or a

departure. Note that

D = D1 + D0 = A0 + A1 + A2 (2.2.2)

is the conservative rate matrix of the process which governs changes in phase, so

that

De = 0. (2.2.3)
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As in Neuts [31], we assume that Q defines an irreducible, regular Markov chain.

Necessary conditions for this are that the matrices D0 and A1 are non-singular.

Hence this Markov chain has at most one stationary distribution Ψ such that ΨQ =

0. This stationary distribution has a matrix-geometric form and is given by

Ψ = [π0, π0R, π0R
2, π0R

3, . . .] , (2.2.4)

where R is the minimal non-negative solution to the matrix quadratic equation

R2A2 + RA1 + A0 = 0, (2.2.5)

and π0 is the unique positive solution to the system of equations

π0(D0 + RA2) = 0 and π0(I − R)−1e = 1 . (2.2.6)

One special case of a MAP is the Markov-modulated Poisson process (MMPP),

characterised by a matrix D1 which is diagonal. This process is essentially a Poisson

process in which the Poisson parameter is itself a random variable dependent on a

Markov process. The Poisson parameters for a given MMPP are the diagonal entries

of the matrix D1.

2.3 PH -random variables and PH -renewal processes

Any distribution on [0,∞) which can be obtained as the distribution of time un-

til absorption in a continuous-time, finite-space Markov chain which has a single

absorbing state into which absorption is certain, is said to be of PH -type.

Consider a Markov chain with n + 1 states, initial probability vector (α, αn+1)

and transition rate matrix

Q =


 S S0

0 0


 ,

where S is a non-singular n×n matrix with Sii < 0, Sij ≥ 0 for all i �= j, and S0 ≥ 0

is an n-vector of rates such that Se+S0 = 0. The conditional probabilities rj(t) that
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the process is in state j at time t, with initial conditions (r1(0), r2(0), . . . , rn(0)) =

r(0) = (α, αn+1), satisfy the differential equations

dr(t)

dt
= r(t)Q,

which have solution

r(t) = (α, αn+1)e
Qt.

The conditional probability vector v(t) that the process is still in one of the states

1, . . . , n at time t is given by

v(t) = αeSt.

Thus

F (t) = 1 − αeSte

is the probability distribution of time until absorption into state n + 1. This is

classified as a PH -type distribution with representation (α, S).

If the (n + 1)st state of the PH -random variable is considered as an instantaneous

state, in that the process is instantaneously restarted using the probability vector

α, then the process consisting of absorption epochs is a PH -renewal process with

representation (α, S).

For a thorough treatment of PH -random variables and PH -renewal processes,

see Chapter 2 of Neuts [31].

2.4 Filtering

One of the more common uses of filtering formulae is calculating the stochastic in-

tensity of a point process, which in fact determines the law of the point process.

(See Chapter 10 of Walrand [50].) The technique of filtering or extracting informa-

tion from point processes also leads to methods whereby two point processes may
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be compared. These will now be outlined by first defining the filtration matrices

Q0 and Q1. Consider a Markov chain, X = {xt, t ≥ 0}, having a countably infinite

state space X, with transition rate matrix Q.

For i �= j ∈ X, let

[Q1]i,j ≤ [Q]i,j, (2.4.1)

for i ∈ X let

0 ≤ [Q1]i,i < ∞, (2.4.2)

and let

Q0 = Q − Q1. (2.4.3)

The transitions with rates Q1 are observed, while those in Q0 are hidden.

Note that the specifications of the above filtration matrices are very similar to the

specifications given for the matrices D0 and D1 of the MAP . The essential difference

is that the matrices Q, Q0 and Q1 are not required to be finite. The matrices D0

and D1, however, may also be viewed as a filtration of the matrix D.

Let J(t) count the number of observed transitions up to time t, and let

Ψ(t, k) = P{xt = k|J(t)},

so that Ψ(t, k) is the probability of being in state k at time t, conditioned by the

observed process up to time t. Also let Ψt be the row vector

Ψt = {Ψ(t, k), k ∈ X}.

The process J(t) is a MAP if and only if there exists another counting process

J(t)∗, defined on a finite state Markov chain with rate matrix Q∗ and corresponding

filtration matrices Q0
∗ and Q1

∗ such that Q∗ = Q0
∗ + Q1

∗, with

ΨtQ1e = Ψ∗
t Q1

∗e, for all t ∈ R
+. (2.4.4)
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Let π0 be the initial distribution of the Markov chain X with transition matrix

Q = Q0 +Q1. Let Tn denote the jump times of the process J(t), and so by Theorem

10.2.2 of [50],

Ψ(t) =
υt

υte
,

where υt is determined by




υ0 = π0,

d
dt

υt = υtQ0, t �= Tn for n ≥ 1,

υt = υt−Q1, t = Tn for some n ≥ 1.

Using this, and (2.4.4), Theorem 10.2.13 of [50] states that two processes, J(t)

and J(t)∗, have the same finite dimensional distributions if and only if, for any given

initial distributions of states π0 and π∗
0 respectively,

π0e
Q0t1Q1e

Q0t2 . . . Q1e
Q0tkQ1e

π0eQ0t1Q1eQ0t2 . . . Q1eQ0tke
=

π∗
0e

Q0
∗t1Q1

∗eQ0
∗t2 . . . Q1

∗eQ0
∗tkQ1

∗e
π∗

0e
Q0

∗t1Q1
∗eQ0

∗t2 . . . Q1
∗eQ0

∗tke
,

for all k ≥ 1, and ti ∈ [0,∞) for 1 ≤ i ≤ k.

Note that this last expression can be used to compare two point processes of any

state space dimension, including those with a countably infinite state space.

2.5 Jordan canonical form

For any m×m matrix A, there exists a non-singular m×m matrix T which transforms

A into an m × m matrix J , known as the Jordan-canonical form. See for example

page 152 of Gantmacher [21], or Noble [35], from which the following text on the
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Jordan-canonical form is adapted. The transformation is defined by

T−1AT = J =




J1 0 . . . . . . 0

0 J2 0 . . . 0
...

. . . J3
. . .

...
...

. . . . . . 0

0 . . . . . . 0 Jg




, (2.5.1)

where each Jordan block Ji is given by

Ji =




λi 1 0 . . . 0

0 λi 1
. . .

...
...

. . . λi
. . . 0

...
. . . . . . 1

0 . . . . . . 0 λi




and the λi are eigenvalues of A.

The same eigenvalue can occur in different Jordan blocks, with the number of

Jordan blocks, g, being determined by the number of independent eigenvectors. For

any given eigenvalue, λr, there is a collection of Jordan blocks containing λr, and

the order of the largest of these Jordan blocks is given by the index of the nilpotent

matrix A − λrI. The index of a nilpotent matrix, N , is the value p such that

Np = 0 and Np−1 �= 0, which in the above context is always less than or equal to

the algebraic multiplicity of the eigenvalue λr.

For example, if an 8 × 8 matrix A has 3 distinct eigenvalues, γ, β and δ, with

respective algebraic multiplicities 1, 4 and 3, with the respective number of corre-

sponding independent eigenvectors (geometric multiplicity) being 1, 2 and 2, and if

the index of A − βI is 3, then we may construct T using the following 5 Jordan

blocks.

J1 = [γ], J2 = [β], J3 =




β 1 0

0 β 1

0 0 β


 , J4 = [δ], J5 =


 δ 1

0 δ


 ,
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to give

J =




γ 0 0 0 0 0 0 0

0 β 0 0 0 0 0 0

0

0

0

0

0

0




β 1 0

0 β 1

0 0 β




0

0

0

0 0

0 0

0 0

0 0 0 0 0 δ 0 0

0

0

0

0

0 0 0

0 0 0

0

0


 δ 1

0 δ







. (2.5.2)

If we pre-multiply equation (2.5.1) by the transformation matrix T , we get AT =

TJ . This relationship enables the calculation of the columns τ i of the transformation

matrix T and hence makes possible the calculation of the rows τ̄ i of T−1. From our

example we can see, by using (2.5.2), that we get

Aτ 1 = γτ 1

Aτ 2 = βτ 2

Aτ 3 = βτ 3

Aτ 4 = βτ 4 + τ 3

Aτ 5 = βτ 5 + τ 4

Aτ 6 = δτ 6

Aτ 7 = δτ 7

Aτ 8 = δτ 8 + τ 7.

(2.5.3)

We note that in our example, τ 1, τ 2, τ 3, τ 6 and τ 7 are right eigenvectors of the

matrix A, with τ 1 corresponding to γ, τ 2 and τ 3 corresponding to β, and τ 6 and

τ 7 corresponding to δ. The columns τ 4, τ 5 and τ 8 are known as generalised right

eigenvectors which can be calculated from (2.5.3).

In our example, we have two right eigenvectors which we initially label τ β1 and

τ β2 , corresponding to the eigenvalue β. It is not clear which of these correspond

to τ 3 in the Jordan block J3. To ascertain this and to find the generalised right
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eigenvector τ 4, from (2.5.3), we look at

(A − βI)τ 4 = τ β1 and (A − βI)τ 4 = τ β2 ,

only one of which will yield a solution for τ 4. Then to find τ 5, we can solve

(A − βI)τ 5 = τ 4.

In a similar way for eigenvalue δ, we can find the appropriate right eigenvector

which corresponds to τ 7 and the generalised right eigenvector τ 8. Note also that

in this example, the rows τ̄ 1, τ̄ 2, τ̄ 5, τ̄ 6 and τ̄ 8 of T−1 are left eigenvectors of the

matrix A, with τ̄ 1 corresponding to γ, τ̄ 2 and τ̄ 5 corresponding to β, and τ̄ 6 and

τ̄ 8 corresponding to δ.

The Jordan canonical form for a matrix A can be written in the following way,

A = T


 g∑

j=1

λjEj + Nj


T−1, (2.5.4)

where the Ej are idempotent matrices, and the Nj are nilpotent matrices which give

the form for each Jordan block. Thus, in the previous example where λ3 = β, we

have

E3 =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




and N3 =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




.

Let pr be the order of the rth Jordan block Jr of the matrix A, with eigenvalue

λr. From Chapter 5 of Gantmacher [21], we see that the function f(A) of a matrix

A is defined if and only if the function f(λr), and its first pr − 1 derivatives, are
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defined for all r ∈ (1, 2, . . . , g). Then, f(A) = Tf(J)T−1, and the function f(J) can

be evaluated as


f(λ1)

f(λ2)
f ′(λ2)

1! . . . f (p2−1)(λ2)
(p2−1)!

0
. . . . . .

...
... f(λ2)

f ′(λ2)
1!

0 . . . 0 f(λ2)
. . .

f(λg)
f ′(λg)

1! . . .
f (pg−1)(λg)

(pg−1)!

0
. . . . . .

...
... f(λg)

f ′(λg)
1!

0 . . . 0 f(λg)




,

where all elements in the non-diagonal blocks are zero. In other words,

f(A) = T


 g∑

j=1

pj∑
v=1

f (v−1)(λj)

(v − 1)!
EjN

v−1
j Ej


T−1.

The exponential eAt can therefore be written as

eAt = T


 g∑

j=1

pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEjN

v−1
j Ej


T−1

=
g∑

j=1

pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtAj,v , (2.5.5)

where1 Aj,v = TEjN
v−1
j EjT

−1 and N0
j ≡ the identity matrix. The inverse A−1, if it

exists, can also be written as

A−1 = T


 g∑

j=1

pj∑
v=1

(
1

λj

)(−1

λj

)v−1

EjN
v−1
j Ej


T−1.

2.5.1 Special diagonalisable case

If the m × m matrix A has m independent eigenvectors then the Jordan canoni-

cal form reduces to a simple diagonal form D = P−1AP , where D is a diagonal
1A nice analogy, since TENET in Latin means “he holds”, synonymous with the matrix Aj,v

holding the information with respect to the matrix exponential.
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matrix of the eigenvalues of A and the matrix P is constructed of the eigenvectors

corresponding to each of the eigenvalues. Thus we can write

A =
m∑

j=1

λjrjlj,

where rj and lj are right and left eigenvectors respectively which correspond to each

eigenvalue λj for j ∈ [1, . . . , m]. The inverse A−1, if it exists, and the exponential

eAt also have simple forms written as

A−1 =
m∑

j=1

1

λj

rjlj and eAt =
m∑

j=1

eλjtrjlj.



Chapter 3

MAP output from a MAP/M/1

queue?

3.1 Introduction

Recall that a Markovian arrival process or MAP , is a process which counts transi-

tions of a finite state Markov chain. An example of an infinite state Markov chain

which can generate a point process equivalent to a MAP , is the M/M/1 queue,

described in Chapter 2. If the rate of Poisson arrivals to this queue is λ > 0 and the

average holding time is 1
µ

> 0, then for λ < µ, the queue is positive recurrent and,

under stationary conditions, the point process of occurrence of transitions (n+1, n),

for n ≥ 0, is known (see Burke [11]) to be a Poisson process of rate λ, which is of

course a trivial MAP . A question which arises is whether, for more general queues,

there exists a finite state Markov chain and a set of transitions for which the counting

process of the observed transitions is statistically identical to the departure process

of the original queue.

In a 1994 paper [42], Olivier and Walrand presented an argument to show that

there exists no such finite state chain for an MMPP/M/1 queue and conjectured

that this is also true for a MAP/M/1 queue. Unfortunately there is an algebraic

18
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error in the argument of Olivier and Walrand. This error is explained here (see also

[7]). We also show that equation (3.2.3), which Olivier and Walrand claimed did

not have a solution, does, in fact, have a solution for a large class of MAPs. Some

numerical examples are given.

3.2 A necessary condition

Let Q be the transition rate matrix which represents a MAP/M/1 queue, given in

equation (2.2.1). Partition Q into Q0 and Q1 as follows,

Q0 =




D0 D1 0 · · ·
0 A1 A0 0
...

. . . . . .




and Q1 =




0 0 0 · · ·
A2 0 0

0 A2 0
...

. . . . . .




, (3.2.1)

where A0 = D1, A2 = µIm and A1 = D0 − A2. The matrices Q0 and Q1 are

filtration matrices, since they satisfy equations (2.4.1), (2.4.2) and (2.4.3). Let J(t)

be the process which counts the observed transitions with rates Q1 corresponding

to departures from the MAP/M/1 queue. From Chapter 2, the process J(t) is a

MAP , if and only if there exists another counting process J(t)∗ defined on a finite

state Markov chain with rate matrix Q∗ and corresponding filtration matrices Q∗
0

and Q∗
1 such that Q∗ = Q∗

0 + Q∗
1 and

Ψ(t)Q1e = Ψ(t)∗Q∗
1e, for all t ∈ R

+. (3.2.2)

Olivier and Walrand [42] considered the special case of an MMPP/M/1 queue

where the departures from the queue are observed. A necessary (and sufficient)

condition for (3.2.2) to hold is given in Olivier and Walrand [42] to be

Ψt(Q1)
y(Q0)

xe = Ψ∗
t (Q

∗
1)

y(Q∗
0)

xe, for all x, y ≥ 0. (3.2.3)

Let the MMPP have the m×m descriptive matrices D0 and D1, as described in

(2.1.1), (2.1.2) and (2.1.3), with D1 diagonal, and let µ be the service rate. Using the
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known stationary distribution Ψ for the MMPP/M/1 queue, Olivier and Walrand

proceeded to obtain “the explicit computation of the terms Ψ(Q1)
y(Q0)

xe.” Olivier

and Walrand let

α(y, x) = Ψ(Q1)
y(Q0)

xe, (3.2.4)

and then considered the difference

α(y, x + 1)

µy(−µ)x+1
− α(y, x)

µy(−µ)x
, (3.2.5)

which they showed was equal to

−π0R
y

(−A0 + D

−µ

)x

e,

where R and π0 are defined by equations (2.2.5) and (2.2.6). Summing over all y

they derived the following expression:

∞∑
y=0

(
α(y, x + 1)

µy(−µ)x+1
− α(y, x)

µy(−µ)x

)
= −π0(I − R)−1

(−A0 + D

−µ

)x

e,

for all x ≥ 0. (3.2.6)

Recall that De = 0 and observe that ν = π0(I −R)−1 is the stationary distribution

admitted by D, so that νD = 0. Olivier and Walrand erroneously concluded in

their Equation (18), that the right hand side of (3.2.6) is equal to

ν

(
A0

µ

)x

e, for all x ≥ 0. (3.2.7)

From this point they argued by contradiction that no finite-state equivalent Markov

chain Q∗ could exist, unless the MMPP is Poisson.

However, equation (3.2.7) is incorrect. For example, a value of x = 3 yields

ν

(−A0 + D

−µ

)3

e = ν


(

A0

µ

)3

+

(
A0DA0

µ3

) e �= ν

(
A0

µ

)3

e .
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3.3 The necessary condition satisfied

We shall now construct the equivalent form for the finite-state Markov chain Q∗ of

(3.2.6) and show that this equivalence can be satisfied for an MMPP/M/1 queue.

We shall then show that this equivalence can also be satisfied for another very large

class of MAP/M/1 queues.

Let Ψ∗ be the stationary distribution of the conservative generator Q∗. We can

construct the equivalent expression for (3.2.6) involving Q∗, to give

−π0(I − R)−1

(−A0 + D

−µ

)x

e = Ψ∗
(
I − Q∗

1

µ

)−1

(

Q∗
0

−µ

)x+1

−
(

Q∗
0

−µ

)x

 e,

for all x ≥ 0, (3.3.1)

which by the erroneous result of [42] should not be able to be satisfied by any

finite-state Markov chain Q∗, when the left hand side is an MMPP/M/1 queue.

We will now show that it is in fact possible for equation (3.3.1) to be satisfied

for an MMPP/M/1 queue. Recall that an MMPP has a characteristic matrix D1

which is diagonal. Let D0 be such that only (D0e)i is non-zero, so that D1 may be

written as

D1 = −D0eγ,

where γ is a row vector of zeros except that [γ]i = 1. This MMPP is also a PH -

renewal process, where α ≡ γ. In fact, it is also known as an IPP or interrupted

Poisson process.

Consider such an MMPP to be the arrival process to a positive recurrent single

server queue of service rate µ, and let ν = π0(I−R)−1 be the stationary probability

vector of D = D0 + D1, such that νD = 0. Let x0 be the stationary probability

vector whose entries x0i give the probability that a departure leaves the system

empty and the phase of the arrival process in state i, for i ∈ {1, . . . , m}. This is

calculated from the stationary distribution for the MMPP/M/1 by (see [31]),

x0 =
[
π0(I − R)−1A0e

]−1
π0RA2. (3.3.2)
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Proposition 3.1 The service rate µ, matrices D1 = A0, D0 = −A0 + D and asso-

ciated matrix R, probability vector π0, together with the (m + 1)× (m + 1) matrices

Q∗
0 =


 D0 D1e

0 −µ


 and Q∗

1 =


 0 0

µx0 (1 − x0e)µ


 , (3.3.3)

and

Ψ∗ = (π0, 1 − π0e) ,

satisfy equation (3.3.1).

Proof:

It is trivial to see that the rate matrix Q∗ = (Q∗
0 + Q∗

1) is conservative and that

Ψ∗e = 1, so we first show that Ψ∗ is the unique stationary probability vector for

Q∗, that is Ψ∗Q∗ = 0. Multiplying Q∗ on the left by Ψ∗, we get

Ψ∗Q∗ = (π0, 1 − π0e)


 D0 D1e

µx0 −µx0e




= (π0D0 + (1 − π0e)µx0, π0D1e − (1 − π0e)µx0e). (3.3.4)

We will now show that the right hand side of (3.3.4) is zero, by showing that π0D0 =

−(1−π0e)µx0. Consider the expression for the traffic intensity of the MMPP/M/1

queue, given by (see [31]),

ρ = (1 − π0e) =
π0(I − R)−1D1e

µ
.

Re-arranging, we get

(1 − π0e)µ(π0(I − R)−1D1e)−1 = 1. (3.3.5)

Recalling that D1 = A0, and post-multiplying (3.3.5) by π0RA2, we see that

π0RA2 = (1 − π0e)µ
[
π0(I − R)−1A0e

]−1
π0RA2. (3.3.6)
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From (2.2.6), π0D0 = −π0RA2, so that using (3.3.2), equation (3.3.6) can be re-

written as

π0D0 = −(1 − π0e)µx0.

Post-multiplying by e on both sides and using the fact that D0e = −D1e, we get

π0D1e = (1 − π0e)µx0e.

Substitution of this result into (3.3.4) yields

Ψ∗Q∗ = 0,

and hence that Ψ∗ is the unique stationary distribution for Q∗.

Now it remains to show that

−π0(I − R)−1

(
D0

−µ

)x

e = Ψ∗
(
I − Q∗

1

µ

)−1

(

Q∗
0

−µ

)x+1

−
(

Q∗
0

−µ

)x

 e.

We re-write the right hand side as

(π0, 1 − π0e)


 I 0

−x0 x0e



−1







D0
−µ

D1e
−µ

0 1




x+1

−




D0
−µ

D1e
−µ

0 1




x e

= (π0, 1 − π0e)


 I 0

−x0 x0e



−1







D0
−µ

D1e
−µ

0 1




x 





D0
−µ

D1e
−µ

0 1


−




I 0

0 1








 e

= (π0, 1 − π0e)


 I 0

−x0 x0e



−1







D0
−µ

D1e
−µ

0 1




x 

D0 + Iµ
−µ

D1e
−µ

0 0





 e
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= (π0, 1 − π0e)




I 0

x0
x0e

1
x0e










D0
−µ

D1e
−µ

0 1




x



(
D0

−µ
− I

)
e +

D1e

−µ

0







,

but (D1 + D0)e ≡ 0, so that the right hand side becomes

−(π0, 1 − π0e)




I 0

x0
x0e

1
x0e







(
D0
−µ

)x

e

0


 = −(π0, 1 − π0e)




(
D0
−µ

)x

e

x0
x0e

(
D0
−µ

)x

e




= −
(
π0 + (1 − π0e)

x0

x0e

)(
D0

−µ

)x

e.

Recalling that x0 = [π0(I − R)−1A0e]
−1

π0RA2 and that, in this case, A2 = µI,

we see that

x0

x0e
=

µ [π0(I − R)−1A0e]
−1

π0R

µ [π0(I − R)−1A0e]−1 π0Re

=
π0R

π0Re
,

so that

−
(
π0 + (1 − π0e)

(
x0

x0e

))(
D0

−µ

)x

e

= −
(
π0 + (1 − π0e)

(
π0R

π0Re

))(
D0

−µ

)x

e

= −
(
π0 + π0((I − R)−1 − I)e

(
π0R

π0Re

))(
D0

−µ

)x

e

= −
(
π0 + π0(R + R2 + R3 + . . .)e

(
π0R

π0Re

))(
D0

−µ

)x

e
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= −
(
π0 + π0Re

(
π0(R + R2 + R3 . . .)

π0Re

))(
D0

−µ

)x

e ♣

= −π0(I − R)−1

(
D0

−µ

)x

e.

Sufficient justification for the step at ♣, that is,

π0(R + R2 + R3 + . . .)e
(

π0R

π0Re

)
= π0(R + R2 + R3 . . .),

is that R be rank one. The matrix R is non-negative and has sp(R) < 1 (see

Neuts [31]). That is, its eigenvalues all have modulus less than 1. From Theorem

3 in Chapter XIII of Gantmacher [22], a non-negative matrix R has a non-negative

eigenvalue η of maximal real part, and associated non-negative right and left eigen-

vectors v and u respectively. If we further assume R is of rank one (so that its

eigenvalues are η and 0), and we normalise v and u such that ue = 1 and uv = 1,

then R may be written using its spectral expansion as

R = ηvu. (3.3.7)

Hence for all n ≥ 1, we may write

(π0R
ne)π0R = (π0ηv(ηuv)n−1ue)π0ηvu

= (π0ηvue)π0ηv(ηuv)n−1u

= (π0Re)π0R
n, for n ≥ 1.

From Latouche [25], it can be seen that for any QBD , the matrix R = A0(−U)−1.

The interpretation of the matrix (−U)−1 is not significant here and is omitted. For

any PH/M/1 queue, we have from D1 = (−D0e)α that the matrix A0 = D1 is rank

one. This implies that the matrix R for all PH/M/1 queues is, in fact, rank one. In

our example, the MMPP is also a PH -renewal process and hence R is rank one.
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We now give a simple numerical example of an MMPP which is also a PH -

renewal process and an IPP for which (3.3.1) holds. Consider the following MMPP

arrival process described by the matrices

D0 =



−4 3 1

1 −5 2

4 3 −7


 (3.3.8)

and

D1 =




0 0 0

0 2 0

0 0 0


 . (3.3.9)

The stationary probability distribution of phases for this MMPP is given by ν =((
5
16

)
,
(

1
2

)
,
(

3
16

))
. When this MMPP is used as arrival process to a single negative

exponential server of rate µ > 1 with infinite buffer, a possible candidate MAP

for the departure process is given by the matrices Q∗
0 and Q∗

1 given in (3.3.3). It

can be easily shown that the matrices D0, D1, Q
∗
0 and Q∗

1 along with µ > 1 satisfy

equation (3.3.1). It must be noted however that equation (3.3.1) is necessary but

not sufficient for the output process to be equivalent to a MAP . A necessary and

sufficient condition is given in Chapter 4 in equation (4.1.1). This equation is not

satisfied by Q∗
0 and Q∗

1 as given in (3.3.3) for the matrices D1 and D0 given in (3.3.8)

and (3.3.9). Hence the departure process of the above MMPP/M/1 queue is not

given by the MAP represented by the matrices Q∗
0 and Q∗

1.

Note that there are examples of MAP/M/1 queues, not just MMPP/M/1 queues,

for which (3.3.1) can be shown to be valid. In fact in the proof of Proposition 3.1

we have shown that (3.3.1) can be satisfied by every PH/M/1 queue, using those

same constructions.
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3.3.1 Three MAP/M/1 queues having a MAP output

Consider now the three non-MMPP/M/1 queues, with service rate µ > 1, defined

by

D0 =



−2 (1

2
) (1

2
)

1 −4 1

(1
2
) 1 −2


 , D1 =




(1
2
) 0 (1

2
)

1 1 0

0 0 (1
2
)


 , (3.3.10)

with ν =
(

2

5
,
1

5
,
2

5

)
,

D0 =



−4 2 1

5 −8 2

1 2 −4


 , D1 =




1 0 0

0 0 1

0 0 1


 , (3.3.11)

with ν =
(

9

20
,
1

5
,

7

20

)
, and

D0 =



−3 3 0

0 −6 4

0 0 −1


 , D1 =




0 0 0

1 1 0

(1
2
) (1

2
) 0


 , (3.3.12)

with ν =
(

1

6
,
1

6
,
2

3

)
.

All of these examples with the matrices Q∗
0 and Q∗

1 as described in (3.3.3), satisfy

equation (3.3.1). They also satisfy the necessary and sufficient condition (4.1.1) for a

MAP/M/1 queue to have a process of departures which under stationary conditions

is a MAP . This seems to indicate that the output from a single server queue can

have a simple MAP description. However, things are not as simple as they seem.

Although not obvious at first glance, all three of the above arrival processes

given by D0 and D1 under stationary conditions are a complicated description of

a Poisson process of rate 1. This then implies by Burke’s Theorem [11] that the
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output process is in fact a Poisson process of rate 1, a very simple MAP .

The question of being able to recognise a Poisson process from its MAP descrip-

tion is therefore central to the current discussion, since the process of departures

from such a MAP/M/1 queue is a simple MAP . These simple three state examples

given above highlight the non-trivial nature of this question of being able to recognise

a Poisson process from its MAP description. As the dimension of the MAP descrip-

tions increases, the difficulty of recognising a Poisson process seemingly would also

increase.

In the next chapter we address this question of when a MAP is Poisson.



Chapter 4

When is a stationary MAP

Poisson?

4.1 Introduction

The question of when a stationary MAP is in fact a Poisson process appears not to

have been discussed in the literature prior to [5], even though it is a very natural

question. Here we consider this problem using the techniques of non-linear filtering

which were briefly introduced in Chapter 2 and can be found in greater detail in

Walrand [50].

From Walrand [50] it can be seen that two point processes defined by the filtra-

tion matrices Q0 + Q1 = Q and Q∗
0 + Q∗

1 = Q∗ have the same finite dimensional

distributions, if and only if for any given initial distributions of states π and π∗

respectively, we have

πeQ0t1Q1e
Q0t2 . . . Q1e

Q0tkQ1e

πeQ0t1Q1eQ0t2 . . . Q1eQ0tke
=

π∗eQ∗
0t1Q∗

1e
Q∗

0t2 . . . Q∗
1e

Q∗
0tkQ∗

1e

π∗eQ∗
0t1Q∗

1e
Q∗

0t2 . . . Q∗
1e

Q∗
0tke

,

for all k ≥ 1, and ti ∈ [0,∞), for i ∈ {1, 2, . . . , k}. (4.1.1)

Until now we have only considered the case where Q is an infinite matrix (the rate

matrix of a MAP/M/1 queue) and Q∗ is a finite matrix. However equation (4.1.1)

29
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can be used to compare any two point processes. For this chapter, equation (4.1.1)

is re-written for the case where the left-hand side is a MAP and the right-hand side

is a Poisson process of rate λ > 0, given by the filtration matrices Q∗
0 = −λ, Q∗

1 = λ

so that Q∗ = 0. Thus equation (4.1.1) becomes

πeQ0t1Q1e
Q0t2 . . . Q1e

Q0tkQ1e

πeQ0t1Q1eQ0t2 . . . Q1eQ0tke
= λ,

for all k ≥ 1 and ti ∈ [0,∞), for i ∈ {1, 2, . . . , k}. (4.1.2)

Any point process generated by the observed transitions of Q = Q0 + Q1 which

is equivalent to a Poisson process of rate λ > 0 must satisfy equation (4.1.2). One

case where this clearly occurs is when Q1e = λe. This result is not affected by

the initial distribution π and corresponds to the case where the MAP has the same

arrival rate λ in every phase.

We will consider the matrix Q0 in its spectral form, first looking at the more

general case when Q0 is not assumed to be diagonalisable, and then consider the

diagonalisable special case. To avoid over complicating matters, the general result is

motivated in stages by first considering the equivalence of a PH -random variable to

an exponential random variable. We then consider the equivalence of a PH -renewal

process to a Poisson process and finally generalise to the equivalence of a MAP to

a Poisson process. As the title of this Chapter suggests, we will investigate the

equivalence of a stationary MAP to a Poisson process. That is, we will assume that

the initial distribution π is in fact the stationary distribution of phases of the MAP

under consideration.

4.2 Jordan canonical form of Q0

Consider the matrix Q0 in upper Jordan canonical form, written as (see (2.5.4))

Q0 = T


 g∑

j=1

λjEj + Nj


T−1 , (4.2.1)

where
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• g is the number of Jordan blocks

• λj is the eigenvalue corresponding to the jth Jordan block

• T is the transformation matrix for the Jordan canonical form

• Ej is an idempotent matrix descriptor of the jth Jordan block

• Nj is a nilpotent matrix descriptor of the jth Jordan block.

It follows that

eQ0t = T
g∑

j=1

pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEjNj

v−1EjT
−1, (4.2.2)

where pj is the order of the nilpotent matrix Nj, that is, N
pj

j = 0 but N
pj−1
j �= 0.

As a preliminary, we set up some notation for the transformation matrix T and

also for T−1. Let

T =
([

τ 11 , . . . , τ 1p1

]
,
[
τ 21 , . . . , τ 2p2

]
, . . . ,

[
τ g1 , . . . , τ gpg

])
,

where the columns τ j1 are right eigenvectors corresponding to the jth eigenvalue λj

of Q0. For v ∈ {2, . . . , pj}, τ jv are the generalised right eigenvectors corresponding

to the jth Jordan block. Similarly we write T−1 with rows τ̄ jv as

T−1 =







τ̄ 11

...

τ̄ 1p1







τ̄ 21

...

τ̄ 2p2




...


τ̄ g1

...

τ̄ gpg







,
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where the rows τ̄ jpj
are left eigenvectors corresponding to the jth eigenvalue λj of

Q0. For v ∈ {1, . . . , pj − 1}, τ̄ jv are the generalised left eigenvectors corresponding

to the jth Jordan block.

If there are s ≤ g distinct eigenvalues then we let Aj, for j = 1, 2, . . . , s contain

the indices for the Jordan blocks with λj on their diagonal. Then Q0 may also be

written as

Q0 = T


 s∑

j=1


∑

i∈Aj

λjE(j,i) + N(j,i)




T−1, (4.2.3)

with

eQ0t = T
s∑

j=1


∑

i∈Aj

p(j,i)∑
v=1

(
tv−1

(v − 1)!

)
eλjtE(j,i)N(j,i)

v−1E(j,i)


T−1, (4.2.4)

where E(j,i) and N(j,i) are the idempotent and nilpotent matrices respectively of the

Jordan canonical form description which correspond to the ith Jordan block in set

Aj, corresponding to the distinct eigenvalue λj. In (4.2.3) and (4.2.4), for each

distinct eigenvalue λj within the square brackets, there is a unique collection of

indices i ∈ Aj for that λj. Therefore, we can without ambiguity reduce the number

of subscripts by an abuse of notation and write

Q0 = T


 s∑

j=1

∑
i∈Aj

λjEi + Ni


T−1, (4.2.5)

with

eQ0t = T
s∑

j=1

∑
i∈Aj

pi∑
v=1

(
tv−1

(v − 1)!

)
eλjtEiNi

v−1EiT
−1. (4.2.6)

It is also convenient in the statement of theorems and their proofs, to define

Pj ≡ max
i∈Aj

(pi).

Then because of the fact that Npi+n
i ≡ 0 for each i, for all n ≥ 0, we may re-write

(4.2.6) as

eQ0t = T
s∑

j=1

∑
i∈Aj

Pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEiNi

v−1EiT
−1. (4.2.7)
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We will also assume that the eigenvalues λj are ordered, such that

�(λ1) ≥ �(λ2) ≥ �(λ3) ≥ . . . ,

where �(λj) is the real part of λj.

We shall state the main theorems of this chapter for irreducible Q0. A theorem

for reducible Q0, however, is given for the equivalence of a PH -random variable

to a negative exponential random variable. This theorem is not very informative

because the reducible Q0 case is far more complex in general. We shall address

some particular sub-cases which highlight this complexity. Analogous results for the

subsequent PH -renewal process and MAP equivalence to the Poisson process are

omitted.

It is important here to make the distinction between an irreducible represen-

tation (α, Q0) of a PH -distribution and an irreducible matrix Q0. Following the

definition in Neuts [31], a representation (α, Q0) of a PH -distribution is called irre-

ducible if each state of the corresponding chain has a positive probability of being

visited when the initial distribution is α. It is shown in [31] that we may always

restrict our attention to irreducible representations for both PH -distributions and

their associated PH -renewal processes. The matrix Q0 is called irreducible if, given

any initial state in Q0, every other state of the corresponding chain has a positive

probability of being visited.

The matrices Q0, are known as ML-matrices in Seneta [48]. They have important

properties, proven by extension of the Perron-Frobenius structure. In Theorem 2.6

of [48], the irreducible ML-matrices are shown to have a unique eigenvalue λ1 of

maximal real part, with associated positive right and left eigenvectors τ 1 and τ̄ 1.

Therefore, if Q0 is irreducible, A1 ≡ {1}. We also assume the following normalisation

for τ 1 and τ̄ 1.

τ̄ 1τ 1 = τ̄ 1e = 1.



CHAPTER 4. WHEN IS A STATIONARY MAP POISSON? 34

4.2.1 Equivalence of a PH-random variable to an exponen-

tial random variable

To investigate the equivalence of a PH-random variable with a negative exponential

random variable, we assume that αe = 1 (that is, αm+1 ≡ 0). Otherwise, there

would be a positive atom of probability at t = 0, which would be a contradiction to

an exponential random variable. Henceforth we make this assumption.

Theorem 4.1 A PH (α, Q0) random variable, where the matrix Q0 is irreducible,

is negative exponential with parameter λ > 0 if and only if λ = −λ1, and for all

(j, v) ∈ {2, . . . , s} × {1, . . . , Pj},

αT


∑

i∈Aj

EiN
v−1
i Ei


T−1e = 0.

Proof:

If 1 − αeQ0te = 1 − e−λt, then from (4.2.7) we have

αT


eλ1tE1 +

s∑
j=2

∑
i∈Aj

Pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEiN

v−1
i Ei


T−1e = e−λt. (4.2.8)

This is of the form

c1e
λ1t +

s∑
j=2

Pj∑
v=1

c(j,v)t
v−1eλjt = e−λt, where c1 = αTE1T

−1e (4.2.9)

and for (j, v) ∈ {2, . . . , s} × {1, . . . , Pj},

c(j,v) = αT
∑
i∈Aj

(
1

(v − 1)!

)
EiN

v−1
i EiT

−1e.

Because the λj are distinct, for (j, v) ∈ {2, . . . , s}× {1, . . . , Pj}, the functions c1e
λ1t

and c(j,v)t
v−1eλjt on the left hand side of equation (4.2.9) are linearly independent.

This follows, for example, from Theorem 12 in Chapter 2 of Coddington [13]. Now,

c1 can be re-written as c1 = ατ 1τ̄ 1e by using the definitions of T and T−1 and the

fact that E1 consists entirely of zeros except for a one in the top left-hand corner.
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From Seneta [48], τ 1 and τ̄ 1 are positive and since α > 0, we have that c1 > 0.

Equation (4.2.8) is true for all t ∈ [0,∞), therefore as eλjt �= 0 for j ∈ {1, 2, 3, . . . , s}
and for all t ∈ [0,∞), we must have that λ = −λ1, and so for all j ∈ {2, . . . , s}, we

have that

αT


∑

i∈Aj

EiN
v−1
i Ei


T−1e = 0, for all v ∈ {1, . . . , Pj}. (4.2.10)

We now consider what information can be drawn from this theorem in the fol-

lowing corollary for the special case when all the eigenvalues are distinct.

Corollary 4.2 A PH (α, Q0) random variable where Q0 is irreducible and has dis-

tinct eigenvalues in each Jordan block, is negative exponential with parameter λ > 0,

if and only if λ = −λ1 and for all j ∈ {2, . . . , g}, we have

ατ jv = 0, for all v ∈ {1, . . . , pj}
or τ̄ jve = 0, for all v ∈ {1, . . . , pj}.

Proof:

We use the result from the previous theorem. The assumption that there are

distinct eigenvalues in each Jordan block means that in this case, s = g, and hence

each set Aj has only one element. From equation (4.2.10) we see that for each

j ∈ {2, 3, . . . , g}, we have

(v = 1) αT (Ej) T−1e = 0

(v = 2) αT (EjNjEj) T−1e = 0
...

...
...

...

(v = pj − 1) αT
(
EjN

pj−2
j Ej

)
T−1e = 0

(v = pj) αT
(
EjN

pj−1
j Ej

)
T−1e = 0.

(4.2.11)
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The nilpotent matrix Nj is such that EjN
pj−1
j Ej has only one non-zero entry so

that

αT
(
EjN

pj−1
j Ej

)
=




0, . . . , 0,

position
jpj

↓
(ατ j1) , 0, . . . , 0




and the left hand side of the last equation in (4.2.11) becomes




0, . . . , 0,

position
jpj

↓
(ατ j1) , 0, . . . , 0







(τ̄ 11e)
...

(τ̄ jpj
e)

...

(τ̄ gpg
e)




← position jpj
.

Hence we can write for all j ∈ {2, 3, . . . , g}, that

(ατ j1)(τ̄ jpj
e) = 0, (4.2.12)

and for all j ∈ {2, 3, . . . , g}, that

• ατ j1 = 0 or

• τ̄ jpj
e = 0.

Now there are three cases which must be considered in further detail for each j ∈
{2, 3, . . . , g}.

1. τ̄ jpj
e �= 0

2. ατ j1 �= 0

3. ατ j1 = 0 and τ̄ jpj
e = 0.
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Case 1: When τ̄ jpj
e �= 0, we have ατ j1 = 0, so that from (4.2.11), the left hand

side corresponding to v = pj − 1 can be written as




0, . . . , 0, (ατ j1),

position
jpj

↓
(ατ j2) , 0, . . . , 0







(τ̄ 11e)
...

(τ̄ jpj−1e)

(τ̄ jpj
e)

...

(τ̄ gpg
e)




← position jpj
,

.

Hence

(ατ j1)(τ̄ jpj−1e) + (ατ j2)(τ̄ jpj
e) = 0. (4.2.13)

Then, using the fact that ατ j1 = 0 and τ̄ jpj
e �= 0, we get

ατ j2 = 0.

This procedure can be repeated for each v = pj − 2, pj − 3, . . . , 1 in (4.2.11), to give

ατ jv = 0, for all v ∈ {1, . . . , pj}.

Case 2: When ατ j1 �= 0 we have τ̄ jpj
e = 0. Looking at the left hand side of

the equation in (4.2.11) corresponding to v = pj − 1, which has been re-written in

(4.2.13), we must have that

τ̄ jpj−1e = 0.

This procedure can also be repeated for each v = pj − 2, pj − 3, . . . , 1 in (4.2.11), to

give

τ̄ jve = 0, for all v ∈ {1, . . . , pj}.

Case 3: In the case when both ατ j1 = 0 and τ̄ jpj
e = 0, the choice of v = pj −1

yields

(ατ j1)(τ̄ jpj−1e) + (ατ j2)(τ̄ jpj
e) = 0,
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which gives no further information, so we look at v = pj − 2. This yields




0, . . . , 0, (ατ j1), (ατ j2),

position
jpj

↓
(ατ j3) , 0, . . . , 0







(τ̄ 11e)
...

(τ̄ jpj−2e)

(τ̄ jpj−1e)

(τ̄ jpj
e)

...

(τ̄ gpg
e)




← position jpj

,

so that we get

(ατ j1)(τ̄ jpj−2e) + (ατ j2)(τ̄ jpj−1e) + (ατ j3)(τ̄ jpj
e) = 0,

which reduces to

(ατ j2)(τ̄ jpj−1e) = 0,

and hence

ατ j2 = 0 or τ̄ jpj−1e = 0.

This is a similar scenario to that in equation (4.2.12) and therefore it is only necessary

to consider the situation when either τ̄ jpj
e �= 0 or ατ j1 �= 0.

Therefore we have that for all j ∈ {2, 3, . . . , g},

ατ jv = 0, for all v ∈ {1, . . . , pj},
or τ̄ jve = 0, for all v ∈ {1, . . . , pj}.

Before continuing on with the reducible Q0 case, it is worthy to note that for

irreducible Q0, there will always be a term involving the exponential eλ1t in αeQ0te,

with a strictly positive coefficient. This implies for example, that an Erlang distri-

bution (of order greater than 1) cannot have a representation that has an irreducible

matrix parameter Q0, since an order n Erlang distribution function is of the form

F (t) = 1 −
n∑

i=0

(
(λt)i

i!

)
e−λt, for all t ≥ 0. (4.2.14)
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For the case when Q0 is reducible, it can be seen from Gantmacher [22] that

a reducible ML-matrix has an eigenvalue λ1 of maximal real part (not necessarily

unique), with an associated pair of non-negative (not necessarily positive) right and

left eigenvectors.

Theorem 4.3 A PH (α, Q0) random variable, where the matrix Q0 is reducible, is

negative exponential with parameter λ > 0 if and only if there exists λj such that

λ = −λj, with

αT


∑

i∈Aj

Ei


T−1e = 1,

and

αT


∑

i∈Aj

EiN
v−1
i Ei


T−1e = 0, for all v ∈ {2, . . . , Pj}.

Then for all k �= j, we have

αT


∑

i∈Ak

EiN
v−1
i Ei


T−1e = 0, for all v ∈ {1, . . . , Pk}.

Proof:

The proof follows by the same method used in the proof of Theorem 4.1, but

noting that we do not in general have the condition, ατ 1 > 0. We shall now highlight

two special sub-cases for reducible Q0.

1. If λ1 is unique, and ατ 1 �= 0, then a similar Theorem 4.1 and Corollary 4.2

can be written for the irreducible Q0 with these properties. The condition

ατ 1 �= 0, at least occurs when α is strictly positive, but otherwise must be

directly investigated.
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2. If λ1 is not unique, then it is possible that there exists

αT


∑

i∈A1

EiN
v−1
i Ei


T−1e �= 0,

for some v > 1. The term
tv−1eλ1t

(v − 1)!
makes equivalence to a negative exponential

random variable impossible.

An extra significance of 2 above is that the term
tv−1eλ1t

(v − 1)!
occurs in the Erlang

distribution (see (4.2.14)), from which we can conclude the following: an Erlang

distribution of order n not only must necessarily have a reducible representation,

but must have a Q0 with a corresponding Jordan form, which has at least one Jordan

block of dimension n with the Erlang parameter on its diagonal. For example, the

irreducible PH -type distribution (note that Q0 is reducible)

Q0 =




−3 0 0 0 0 3

0 −3 3 0 0 0

0 0 −6 0 0 4

0 1 1 −6 4 0

0 1
2

1
2

0 −1 0

0 0 0 0 0 −1




,

with α =
(

1

2
, 0, 0,

1

2
, 0, 0

)
,

is a complicated representation of an order 2 Erlang distribution of parameter λ = 1.

It has a Jordan form with a Jordan block of unique maximal dimension 2, having

eigenvalue −1 on its diagonal.

The possibilities within the reducible Q0 case are many and should be best

handled on an individual basis.

For the rest of this chapter, we shall consider the equivalence of PH -renewal pro-

cesses and more generally MAPs to a Poisson process under stationary conditions.

That is, the initial distribution of states will be taken to be the stationary distri-

bution of phases for the MAP . This requires all of the MAP representations to be
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irreducible in the same sense as for the PH -renewal process representations. That

is, there exists a unique positive probability vector ν such that ν(Q0 + Q1) = 0.

4.2.2 A PH-renewal process

For the special case of a PH-renewal process we have Q1 = −Q0eα, so that for

k = 1, equation (4.1.2) becomes

−πeQ0t1Q0e

πeQ0t1e
= λ, for t1 ∈ [0,∞), (4.2.15)

and for k > 1,

−(πeQ0t1Q0e)(αeQ0t2Q0e) . . . αeQ0tkQ0e

(πeQ0t1Q0e)(αeQ0t2Q0e) . . . αeQ0tke
=

−αeQ0tkQ0e

αeQ0tke
= λ,

for all ti ∈ [0,∞) and i ∈ {1, 2, 3, . . .}. (4.2.16)

We shall state the theorems and associated special case corollaries for irreducible

Q0 and then the reducible case can be handled in an analogous way to that given

in the previous section.

Theorem 4.4 A stationary PH-renewal process (α, Q0), where Q0 is irreducible,

is a Poisson process of rate λ > 0 if and only if λ = −λ1, and for all (j, v) ∈
{2, . . . , s} × {1, . . . , Pj},

αT


∑

i∈Aj

EiN
v−1
i Ei


T−1e = 0.

Proof:

Using equations (4.2.5) and (4.2.7), equation (4.2.16) can be re-written and re-

arranged to get

αT


eλ1t(λ1 + λ)E1 +

s∑
j=2

∑
i∈Aj

Pj∑
v=1

(
tv−1

(v − 1)!
eλjtEiN

v−1
i Ei

)
[(λj + λ)Ei + Ni]


T−1e = 0.
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Now, τ 1 and τ̄ 1 are positive, so that ατ 1τ̄ 1e > 0. Therefore as eλjt �= 0 for

j ∈ {1, 2, 3, . . . , s} for all t ∈ [0,∞), it must be that λ = −λ1. Then by the same

argument as for Theorem 4.1, it can be seen that for each j ∈ {2, 3, . . . , s}

αT


∑

i∈Aj

(
EiN

v−1
i Ei

)
[(λj − λ1)Ei + Ni]


T−1e = 0, for each v ∈ {1, 2, . . . , Pj}.

(4.2.17)

Now consider equation (4.2.15). Since we are considering the stationary process,

we have that the initial distribution π = ν, the stationary distribution admitted

by the PH-renewal process. Then as Q0 and eQ0t commute, the necessary condition

λ = −λ1 yields
−νQ0e

Q0te

νeQ0te
= −λ1 for all t ∈ [0,∞). (4.2.18)

The next step is to establish a relationship between the stationary distribution

ν and the (initial) renewal probability vector α. Consider

νQ = ν(Q0 − Q0eα) = 0,

from which it can be seen that

νQ0 = (νQ0e)α.

It has been shown in Neuts [31] that we can always restrict our attention to the

irreducible PH -renewal process representations, and from page 45 of [31] we also see

that this implies that Q0 is non-singular, and so we may write

ν = (νQ0e)αQ−1
0 . (4.2.19)

Substituting this into equation (4.2.18), and noticing that (νQ0e) is a scalar quan-

tity, yields

−αeQ0te

αQ−1
0 eQ0te

= −λ1 for all t ∈ [0,∞). (4.2.20)
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Equations (4.2.5) and (4.2.7), imply that

Q−1
0 eQ0t = T


 s∑

j=1

∑
i∈Aj

Pj∑
v=1

(
eλjt

λj

)
P(λj, t, v)EiN

v−1
i Ei


T−1,

where

P(λj, t, v) =
v−1∑
z=0

tz

z!

(−1

λj

)v−1−z

.

Equation (4.2.20) then can be written as

−αT


 s∑

j=1

∑
i∈Aj

Pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEiN

v−1
i Ei


T−1e

αT


 s∑

j=1

∑
i∈Aj

Pj∑
v=1

(
eλjt

λj

)
P(λj, t, v)EiN

v−1
i Ei


T−1e

= −λ1.

Re-arranging we get

αT


eλ1tE1 +

s∑
j=2

∑
i∈Aj

Pj∑
v=1

(
tv−1

(v − 1)!

)
eλjtEiN

v−1
i Ei


T−1e

= λ1αT


(

eλ1t

λ1

)
E1 +

s∑
j=2

∑
i∈Aj

Pj∑
v=1

(
eλjt

λj

)
P(λj, t, v)EiN

v−1
i Ei


T−1e,

or

αT


 s∑

j=2

∑
i∈Aj

Pj∑
v=1

((
tv−1

(v − 1)!

)
−

(
λ1

λj

)
P(λj, t, v)

)
eλjtEiN

v−1
i Ei


T−1e = 0.

(4.2.21)

Now consider the polynomial,

(
tv−1

(v − 1)!

)
−

(
λ1

λj

)
P(λj, t, v)

=

(
tv−1

(v − 1)!

)
−

(
λ1

λj

)
v−1∑
z=0

tz

z!

(−1

λj

)v−1−z
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=




1 −
(

λ1

λj

)
for v = 1

(
tv−1

(v − 1)!

)(
1 − λ1

λj

)
−

(
λ1

λj

)
v−2∑

z=0

tz

z!

(−1

λj

)v−1−z

 for v ≥ 2.

(4.2.22)

Note that
(

λ1

λj

)
�= 1 for j ∈ {2, 3, . . . , s}, because Q0 is an irreducible matrix. Hence

1 −
(

λ1

λj

)
�= 0, and so in equation (4.2.22), the term containing tv−1 has a non-

zero coefficient. Therefore the polynomial of degree v − 1 is not identically zero for

all t ≥ 0. Thus, as (4.2.21) holds for all t ∈ [0,∞), we can use the same linear

independence argument as in Theorem 4.1, to deduce that for each j ∈ {2, 3, . . . , s}

αT


∑

i∈Aj

EiN
v−1
i Ei


T−1e = 0, for each v ∈ {1, 2, . . . , Pj}. (4.2.23)

It is clear that these conditions are sufficient to satisfy (4.2.17), and hence the

proof is complete.

Corollary 4.5 A stationary PH-renewal process (α, Q0), where Q0 is irreducible,

and the Jordan canonical form has distinct eigenvalues in each Jordan block, is a

Poisson process of rate λ > 0, if and only if λ = −λ1 and for all j ∈ {2, . . . , g},

ατ jv = 0, for all v ∈ {1, . . . , pj} (4.2.24)

or τ̄ jve = 0, for all v ∈ {1, . . . , pj}. (4.2.25)

Proof:

We proceed by starting with equation (4.2.23). In the case where each Jordan

block has a distinct eigenvalue, (4.2.23) becomes, for each j ∈ {2, 3, . . . , g},
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(v = 1) αT (Ej) T−1e = 0

(v = 2) αT (EjNjEj) T−1e = 0
...

...
...

...

(v = pj − 1) αT
(
EjN

pj−2
j Ej

)
T−1e = 0

(v = pj) αT
(
EjN

pj−1
j Ej

)
T−1e = 0,

(4.2.26)

which is the same set of equations as (4.2.11), and so the result follows from the

proof of Corollary 4.2.

4.2.3 General MAPs

For the general MAP , we consider the matrix parameters Q0 = D0 and Q1 = D1,

in order to maintain the same notation. The proofs for the PH -renewal process

equivalence were made much simpler because of the rank one nature of the matrix

parameter Q1 = −Q0eα. This caused the infinite number of conditions in (4.1.2) to

collapse to the two simple conditions (4.2.15) and (4.2.16). The same situation does

not generally apply here because of the greater generality allowed for the matrix

parameter Q1. This means we have a more complex product form for k ≥ 2.

Theorem 4.6 A stationary general MAP, where the matrix Q0 is irreducible, is

Poisson of rate λ > 0, if and only if λ = −λ1 and for all k ∈ Z
+ with (j(n), v(n)) ∈

{1, . . . , s} × {1, . . . , Pj(n)}, and for each n ∈ {1, 2, . . . , k − 1}, we have

ν
k−1∏
n=1


T

∑
i(n)∈Aj(n)

Ei(n)N
v(n)−1
i(n) Ei(n)T

−1Q1


T

∑
i(k)∈Aj(k)

Ei(k)N
v(k)−1
i(k) Ei(k)T

−1e = 0,

(4.2.27)

for all (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , Pj(k)}.

Proof:
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We will consider (4.1.2), first checking equivalence for the initial time interval

t = t1 and then for the subsequent time intervals tk for k ∈ {2, 3, . . .}. Re-arranging

equation (4.1.2) for the case k = 1, and using the fact that Q0e = −Q1e, we get

νeQ0t1(Q0e + λe) = 0.

Using equations (4.2.5) and (4.2.7), this can be re-written as

νT
(
eλ1t1(λ1 + λ)E1

)
T−1e +

νT


 s∑

j=2

∑
i∈Aj

Pj∑
v=1

(
tv−1
1

(v − 1)!
eλjt1EiN

v−1
i Ei

)
[(λj + λ)Ei + Ni]


T−1e = 0,

(4.2.28)

which by the same reasoning as for the proof of Theorem 4.1, yields the necessary

condition that λ = −λ1, and for all j ∈ {2, 3, . . . , s},

νT
∑
i∈Aj

EiN
v−1
i Ei [(λj − λ1)Ei + Ni] T

−1e = 0, for all v ∈ {1, 2, 3, . . . , Pj}.

The nilpotent matrices Ni are such that for each j ∈ {2, 3, . . . , s}, this equation can

be re-written as

(v = Pj) νT
∑
i∈Aj

EiN
Pj−1
i Ei(λj − λ1)T

−1e = 0

(v = Pj − 1) νT


∑

i∈Aj

EiN
Pj−2
i Ei(λj − λ1) + EiN

Pj−1
i Ei


T−1e = 0

...
...

(v = 1) νT


∑

i∈Aj

Ei(λj − λ1) + EiNiEi


T−1e = 0.

(4.2.29)

Therefore, noting that λj − λ1 �= 0 for all j ∈ {2, 3, . . . , s}, we have for all (j, v) ∈
{2, 3, . . . , s} × {1, 2, 3, . . . , Pj}, that

νT
∑
i∈Aj

EiN
v−1
i EiT

−1e = 0. (4.2.30)
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Equation (4.1.2), for the case k ≥ 2, can be re-arranged, again using the fact

that Q0e = −Q1e, to get

ν

(
k−1∏
n=1

eQ0tnQ1

)
eQ0tk(Q0e + λe) = 0.

Using equations (4.2.5) and (4.2.7), with the above necessary condition that λ =

−λ1, it follows that for all k ∈ Z
+, with (j(n), v(n)) ∈ {1, . . . , s} × {1, . . . , Pj(n)}

for each n ∈ {1, 2, . . . , k − 1}, we have for

Λ = ν
k−1∏
n=1


T

s∑
j(n)=1

∑
i(n)∈Aj(n)

Pj(n)∑
v(n)=1

tn
v(n)−1

(v(n) − 1)!
eλj(n)tnEi(n)Ni(n)

v(n)−1Ei(n)T
−1Q1




and

Ξ = T
s∑

j(k)=2

∑
i(k)∈Aj(k)

Pj(k)∑
v(k)=1

tk
v(k)−1

(v(k) − 1)!
eλj(k)tkEi(k)Ni(k)

v(k)−1Ei(k)

[
(λj(k) − λ1)Ei(k) + Ni(k)

]
T−1e,

for (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , Pj(k)}, that

ΛΞ = 0.

The functions

t�
v(�)−1

(v(
) − 1)!
eλj(�)t� ,

for any choice of v(
) ∈ {1, 2, . . . , Pj(�)} and j(
) ∈ {1, 2, . . . , s}, are clearly linearly

independent for any choice of 
 ∈ {1, 2, . . . , k}. This is because the variables t�

for 
 ∈ {1, 2, . . . , k} are independent and for each 
, the λj(�) are distinct for each

j(
) ∈ {1, 2, . . . , s}. This follows, by the independence argument presented in the

proof of Theorem 4.1. We also note that

λj(k) − λ1 �= 0, for all j(k) ∈ {2, 3, . . . , s},

and

eλj(�)t� > 0, for all t� ∈ [0,∞) and 
 ∈ {1, 2, . . . , k}.



CHAPTER 4. WHEN IS A STATIONARY MAP POISSON? 48

Using these facts, the coefficient terms of the functions

t�
v(�)−1

(v(
) − 1)!
eλj(�)t�

in ΛΞ must be zero. That is, for all k ∈ Z
+, with (j(n), v(n)) ∈ {1, . . . , s} ×

{1, . . . , Pj(n)} for each n ∈ {1, 2, . . . , k − 1}, we have for

Υ = ν
k−1∏
n=1


T

∑
i(n)∈Aj(n)

Ei(n)Ni(n)
v(n)−1Ei(n)T

−1Q1


 ,

and

Φ = T
∑

i(k)∈Aj(k)

Ei(k)Ni(k)
v(k)−1Ei(k)

[
(λj(k) − λ1)Ei(k) + Ni(k)

]
T−1e, (4.2.31)

for (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , Pj(k)}, that

ΥΦ = 0.

The nilpotent matrices Ni are such that for each j(k) ∈ {2, 3, . . . , s}, (4.2.31)

can be re-written for each v(k) as

(v(k) = Pj(k)) T
∑

i∈Aj(k)

EiN
Pj(k)−1

i Ei(λj(k) − λ1)T
−1e = 0

(v(k) = Pj(k) − 1) T


 ∑

i∈Aj(k)

EiN
Pj(k)−2

i Ei(λj(k) − λ1) + EiN
Pj(k)−1

i Ei


T−1e = 0

...
...

(v(k) = 1) T


 ∑

i∈Aj(k)

Ei(λj(k) − λ1) + EiNiEi


T−1e = 0.

Therefore, we have for all k ∈ Z
+, with (j(n), v(n)) ∈ {1, . . . , s} × {1, . . . , Pj(n)}

for each n ∈ {1, 2, . . . , k − 1}, that

ν


k−1∏

n=1

T
∑

i(n)∈Aj(n)

Ei(n)N
v(n)−1
i(n) Ei(n)T

−1Q1


T

∑
i(k)∈Aj(k)

Ei(k)N
v(k)−1
i(k) Ei(k)T

−1e = 0,

(4.2.32)

for all (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , Pj(k)}.
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Corollary 4.7 A stationary general MAP, where Q0 is irreducible and the Jordan

canonical form has distinct eigenvalues in each Jordan block, is Poisson of rate

λ > 0, if and only if λ = −λ1 and

ντ jv = 0, for all v ∈ {1, 2, 3, . . . , pj}, (4.2.33)

or τ̄ jve = 0, for all v ∈ {1, 2, 3, . . . , pj} (4.2.34)

for all j ∈ {2, . . . , g} and for k ≥ 2, we have

ν

(
k−1∏
n=1

TEj(n)Nj(n)
v(n)−1Ej(n)T

−1Q1

)
TEj(k)Nj(k)

v(k)−1Ej(k)T
−1e = 0, (4.2.35)

for all (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , pj(k)} and n ∈ {1, 2, . . . , k − 1} with

(j(n), v(n)) ∈ {1, . . . , s} × {1, . . . , pj(n)}.

Proof:

We will consider the appropriate equations from the proof of Theorem 4.6, follow-

ing the same method of approach, whilst noting that each Aj has only one element

in this case.

For k = 1, we get the necessary condition from equation (4.2.28), that

λ = −λ1, (4.2.36)

and from equation (4.2.30), for each j ∈ {2, 3, . . . , g}, we get

(v = 1) νT (Ej) T−1e = 0

(v = 2, . . . , pj) νT
(
EjN

pj−1
j Ej

)
T−1e = 0.

These are similar equalities to (4.2.11), so that for all j ∈ {2, 3, . . . , g}, we have

ντ jv = 0, for all v ∈ {1, 2, 3, . . . , pj}
or τ̄ jve = 0, for all v ∈ {1, 2, 3, . . . , pj}.

When k ≥ 2, we have from equation (4.2.32) that

ν

(
k−1∏
n=1

TEj(n)Nj(n)
v(n)−1Ej(n)T

−1Q1

)
TEj(k)Nj(k)

v(k)−1Ej(k)T
−1e = 0, (4.2.37)

for all (j(k), v(k)) ∈ {2, . . . , s} × {1, . . . , pj(k)} and n ∈ {1, 2, . . . , k − 1} with

(j(n), v(n)) ∈ {1, . . . , s} × {1, . . . , pj(n)}.
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4.3 Special case of diagonalisable Q0

If the m × m matrix Q0 is diagonalisable, then it has m independent eigenvectors

and may be written in spectral form as

Q0 =
m∑

j=1

λjrjlj, (4.3.1)

where λj are the eigenvalues of Q0 with corresponding left eigenvectors lj and cor-

responding right eigenvectors rj.

If there are s < m distinct eigenvalues, let Aj, for j = 1, 2, . . . , s be sets of indices

for which the corresponding eigenvalue is λj.

Then Q0 may also be written as

Q0 =
s∑

j=1

∑
i∈Aj

λjrili, (4.3.2)

where ri is the right eigenvector and li is the left eigenvector corresponding to the

ith eigenvalue λj in set Aj.

Note: Because Q0 is assumed to be an irreducible non-negative matrix, we have

that A1 ≡ {1} since λ1 is the eigenvalue of Q0 of maximal real part, which is unique

(see Seneta [48]).

The proofs of all of the subsequent Theorems and Corollaries follow directly from

their counterparts in the general case by re-writing the result such that each Jordan

block is 1 × 1.

4.3.1 A PH-random variable

Theorem 4.8 A PH-random variable (α, Q0), where Q0 is irreducible and diago-

nalisable, is negative exponential with parameter λ > 0, if and only if λ = −λ1, and

for all j ∈ {2, 3, . . . , s},

α
∑
i∈Aj

rilie = 0.
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Corollary 4.9 A PH-random variable (α, Q0), where Q0 is irreducible and has

distinct eigenvalues, is negative exponential with parameter λ > 0, if and only if

λ = −λ1, and for all j ∈ {2, 3, . . . , m},

αrj = 0, or lje = 0 .

4.3.2 A PH-renewal process

Theorem 4.10 A PH-renewal process (α, Q0), where Q0 is irreducible and diag-

onalisable, is Poisson with parameter λ > 0, if and only if λ = −λ1, and for all

j ∈ {2, 3, . . . , s},
α

∑
i∈Aj

rilie = 0 .

Corollary 4.11 A stationary PH-renewal process (α, Q0), where Q0 is irreducible

and has distinct eigenvalues, is a Poisson process of rate λ > 0, if and only if

λ = −λ1, and for all j ∈ {2, 3, . . . , m},

αrj = 0, or lje = 0 .

Note, it can be easily shown that for a given j we have

νrj = 0, if and only if αrj = 0,

by using ν = (νQ0e)αQ−1
0 shown in (4.2.19).

4.3.3 General MAPs

Theorem 4.12 A stationary general MAP, where Q0 is irreducible and diagonalis-

able, is Poisson of rate λ > 0, if and only if λ = −λ1, and for all (k, j(n), j(k)) ∈
Z

+ × {1, 2, . . . , s} × {2, 3, . . . , s},
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ν
k−1∏
n=1


 ∑

i(n)∈Aj(n)

ri(n)li(n)Q1


 ∑

i(k)∈Aj(k)

ri(k)li(k)e = 0.

For the following Corollary, the next definitions are useful.

IR(0)
def
= {j ≥ 1 : νrj �= 0},

IL(0)
def
= {j ≥ 2 : lje �= 0}, (4.3.3)

and for all i ≥ 1

IR(i)
def
= {x : ljQ1rx �= 0, for some j ∈ IR(i − 1)} (4.3.4)

IL(i)
def
= {y : lyQ1rj �= 0, for some j ∈ IL(i − 1)} (4.3.5)

Corollary 4.13 A stationary general MAP, where Q0 is irreducible and has distinct

eigenvalues, is Poisson of rate λ > 0, if and only if λ = −λ1,

νrj = 0 or lje = 0, for all j ∈ {2, 3, . . . m} (4.3.6)

and for all i ≥ 0 and x ∈ IR(i), y ∈ IL(i), the following hold:

lxQ1ry = 0, and (4.3.7)

for all z �∈ {IL(i) ∪ IR(i)} either

lxQ1rz = 0, or lzQ1ry = 0. (4.3.8)

Proof:

The requirement that λ = −λ1 and (4.3.6) follow directly from Corollary 4.7.

We may re-write equation (4.2.37) for the case where we have distinct eigenvalues

as

ν

(
k−1∏
n=1

rj(n)lj(n)Q1

)
rj(k)lj(k)e = 0, (4.3.9)
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for all (j(k)) ∈ {2, . . . , s} and n ∈ {1, 2, . . . , k − 1} with (j(n)) ∈ {1, . . . , s}.
Consider k = 2 in (4.3.9), which yields

lj(1)Q1rj(2) = 0, for all j(1) ∈ IR(0), j(2) ∈ IL(0).

Now consider k = 3 in (4.3.9), we can see that we require

lj(1)Q1rj(2)lj(2)Q1rj(3) = 0,

for all j(1) ∈ IR(0), j(3) ∈ IL(0). This along with the deduction from k = 2 implies

that either

lj(1)Q1rj(2) = 0, or lj(2)Q1rj(3) = 0,

for all j(1) ∈ IR(0), j(3) ∈ IL(0), j(2) �∈ {IR(0) ∪ IL(0)}.

If we then consider k = 4 in (4.3.9), we can see that we require

lj(1)Q1rj(2)lj(2)Q1rj(3)lj(3)Q1rj(4) = 0,

for all j(1) ∈ IR(0) and j(4) ∈ IL(0). Using the above results and the definitions in

(4.3.5), we see that

lj(1)Q1rj(2) �= 0 for all j(2) ∈ IR(1) and

lj(3)Q1rj(4) �= 0 for all j(3) ∈ IL(1),

which implies that we must have

lj(2)Q1rj(3) = 0,

for all j(2) ∈ IR(1), j(3) ∈ IL(1).

For k = 5 we have

lj(1)Q1rj(2)lj(2)Q1rj(3)lj(3)Q1rj(4)lj(4)Q1rj(5) = 0,

for all j(1) ∈ IR(0) and j(5) ∈ IL(0). Again using the previous result, it can be seen

that this reduces to

lj(2)Q1rj(3)lj(3)Q1rj(4) = 0,
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for all j(2) ∈ IR(1) and j(4) ∈ IL(1). These conditions are similar to those for the

case k = 3 and in fact similarly imply that either

lj(2)Q1rj(3) = 0, or lj(3)Q1rj(4) = 0,

for all j(2) ∈ IR(1) ,j(4) ∈ IL(1) and j(3) �∈ {IR(1) ∪ IL(1)}.
By further considering k = 6, 7, . . . the result can easily be established as the

conditions repeat.

It is not clear from the statement of Corollary 4.13 whether there are finitely or

infinitely many conditions in (4.3.7) and (4.3.8). However, there can only be a finite

number of unique conditions, since there is a finite number of eigenvectors for any

given finite matrix Q0. Furthermore, if there exists a K such that IL(K) = IR(K) =

∅, then there will be no conditions in equations (4.3.7) and (4.3.8) for i > K. In

fact if there exists a K ′ such that only one of IL(K ′) = ∅ or IR(K ′) = ∅, there will

be no conditions in (4.3.7) for i > K. and by considering (4.3.9), it is easy to see

that there are no new conditions in (4.3.8) for i > K.

At this point it is worth noting that (4.3.7) and (4.3.8) are not a consequence

of λ = −λ1 and (4.3.6). For example, let us consider the following non-Poisson

example which satisfies λ = −λ1 and (4.3.6).

Q0 =



−3 3 0

0 −6 4

0 0 −1


 , Q1 =




0 0 0

2 0 0

1
4

3
4

0


 , so that ν =

(
1

6
,
1

6
,
2

3

)
.

It can easily be verified that IR(0) = {1, 2} and IL(0) = {3} while

l1Q1r3 �= 0, and l2Q1r3 �= 0.

We will now recall the three MAP examples, given at the end of Chapter 3,

which are complicated representations of a Poisson process of rate 1 under sta-

tionary conditions. Each example exhibits a distinct characteristic form covered in



CHAPTER 4. WHEN IS A STATIONARY MAP POISSON? 55

Corollary 4.13. In (3.3.10), we had

D0 =



−2 (1

2
) (1

2
)

1 −4 1

(1
2
) 1 −2


 , D1 =




(1
2
) 0 (1

2
)

1 1 0

0 0 (1
2
)


 ,

with ν =
(

2

5
,
1

5
,
2

5

)
,

in which ν is the left eigenvector of the matrix Q0 corresponding to λ1.

In (3.3.11), we had

D0 =



−4 2 1

5 −8 2

1 2 −4


 , D1 =




1 0 0

0 0 1

0 0 1


 ,

with ν =
(

9

20
,
1

5
,

7

20

)
,

in which e is the right eigenvector of the matrix Q0 corresponding to λ1.

Finally in (3.3.12), we had

D0 =



−3 3 0

0 −6 4

0 0 −1


 , D1 =




0 0 0

1 1 0

(1
2
) (1

2
) 0


 ,

with ν =
(

1

6
,
1

6
,
2

3

)
,

in which neither ν or e is an eigenvector corresponding to λ1, but νr2 = 0 and

l3e = 0.



Chapter 5

Minimal order Phase

representation

Our discussion in Chapter 4 involves a consideration of the higher order represen-

tations for the negative exponential distribution. This issue is closely allied to the

question of finding a representation with the least possible number of states for

any given PH -distribution. As noted by Neuts in [31], any given PH -distribution

may have many distinct irreducible representations. This question of minimal order

representation is non-trivial and has been addressed in the literature using many dif-

ferent approaches. Here we include a short section on some of the literature which

considers the problem of minimal order phase representations as well as of that of

non-uniqueness.

Some of our results in Chapter 4 will be expressed in terms of the framework of

the results of other authors cited in this chapter.

In [37], O’Cinneide introduced two properties of PH-generators, called PH -

simplicity and PH -majorization, useful in the study of PH -type distributions and

their representations. PH -simplicity concerns the possibility of a given distribution

having more than one representation in terms of the same PH -generator. The PH -

generator Q0 is described as being PH -simple if there is a unique initial vector α for

56
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every distribution representable by this PH -generator. PH -majorization concerns

the possibility that a PH -generator Q0a may provide representations for all the dis-

tributions representable by another PH -generator Q0b
, in which case Q0a is said to

PH -majorize Q0b
.

One result which O’Cinneide states using these ideas is the fact that every PH -

distribution which has an upper triangular representation also has a bi-diagonal

representation. If we consider the set of bi-diagonal PH -generators and the set of

upper triangular PH -generators, then in terms of PH -majorization, the set of bi-

diagonal PH -generators PH -majorizes the set of upper triangular PH -generators.

In fact these two constructs turn out to give rise to the same family of distributions,

as proven in [37].

A theorem on minimal order follows, using our results and O’Cinneide’s work on

PH -simplicity.

Theorem 5.1 A representation (α, Q0) of a PH -type distribution, where the n×n

matrix Q0 is PH -simple and has distinct eigenvalues, is of minimal order if α is

not orthogonal to any of the right eigenvectors of Q0.

Proof:

The representation (α, Q0) has distribution function given by 1−αeQ0te which

can be written as

1 − α
n∑

j=1

eλjtrjlje.

From Theorem 2 of [37], because Q0 is PH -simple there is no left eigenvector of

Q0 which is orthogonal to e. Therefore, since α is not orthogonal to any right

eigenvector of Q0, all of the coefficients αrjlje of eλjt > 0 are non-zero. From

Theorem 12 in Chapter 2 of Coddington [13], it can be seen that because the λj

are distinct, the functions αeλjtrjlje �= 0 for each j ∈ {1, 2, . . . n} are linearly

independent. This representation must therefore be unique, and has minimum order.
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For a interesting example of (α, Q0) which satisfies Theorem 5.1, let us consider

the following bi-diagonal PH -distribution

Q0(1) =


 −1 1

0 −r


 ,

with α(1) = (1, 0), for any given finite r > 0. This distribution can be shown to

have an infinite number of alternative irreducible bi-diagonal representations of the

following form

Q0(n) =




−1 1 0 · · · 0

0 −2 2
...

0
. . . . . . . . . 0

...
. . . −n n

0 · · · · · · 0 −r




,

with α(n) = ( 1
n
, . . . , 1

n
, 0) for n ∈ {1, 2, . . .}. These (α(n), Q0(n)) representations

demonstrate the contra-positive of Theorem 5.1 since they are not of minimal order

and ατ � ≡ 0 for all 
 ∈ {2, 3, . . . , n}. Although this example displays that a

reduction of order is possible, even while retaining the bi-diagonal form, this is not

always the case. Consider the following example, taken from [37]. Let

Q0 =




−1 1 0 0

0 −2 2 0

0 0 −3 3

0 0 0 −4




(5.0.1)

and

α =
(

1

2
, 0, 0,

1

2

)
.

The eigenvalues of Q0 are obviously −1,−2,−3,−4. Also, α is orthogonal to the

right eigenvector of Q0 which corresponds to the eigenvalue −4. This might indicate

a possible reduction of order for the representation, and an obvious attempt could
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be to let

Q̂0 =




−1 1 0

0 −2 2

0 0 −3




and find an appropriate α̂ such that

αeQ0te = α̂eQ̂0te for all t ≥ 0.

The solution for α̂e = 1, however, is α̂ =
(

2
3
,−1

3
, 2

3

)
. This does not give a valid

phase-type description and therefore this distribution has a minimal bi-diagonal

representation of order 4. The further question of minimal order in some form other

than a bi-diagonal representation is not clear, demonstrating the non-trivial nature

of minimal order.

One of our earlier results concerning the higher order representations for the

negative exponential distribution, can be expressed in terms of PH -simplicity, as

follows.

Corollary 5.2 A PH (α, Q0) random variable, where the PH -generator Q0 is irre-

ducible, PH -simple, and its Jordan canonical form has distinct eigenvalues in each

Jordan block, is negative exponential with parameter λ > 0, if and only if λ = −λ1

and α is the left eigenvector of Q0 corresponding to λ1.

Proof: From Corollary 4.2, it can be seen that for all j ∈ {2, . . . , g}, we require

ατ jv = 0, for each v ∈ {1, . . . , pj},
or τ̄ jve = 0, for each v ∈ {1, . . . , pj},

in order for the distribution to be a negative exponential distribution. However, by

Theorem 2, of [37] τ̄ jve �= 0, for all j ∈ {2, . . . , g}, since Q0 is PH -simple. Hence

ατ jv = 0 for all (j, v) ∈ {2, . . . , g}×{1, . . . , pj}, and so for equivalence to a negative

exponential distribution of rate λ we need

e−λt = αeQ0te

= αeλ1tτ 1τ̄ 1e.
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The eigenvectors τ 1 and τ̄ 1 can always be normalised such that

τ̄ 1τ 1 = τ̄ 1e = 1,

so that

= ατ 1e
λ1t,

and hence ατ 1 ≡ 1 and λ1 = −λ. This then implies that

αQ0 = ατ 1τ̄ 1λ1 = τ̄ 1λ1,

but as τ̄ 1 is the left eigenvector of Q0 corresponding to the eigenvalue of maximal

real part, we may write

τ̄ 1λ1 = τ̄ 1Q0.

The matrix Q0 is a non-conservative generator and so does not have a zero eigen-

value. Combining the last two expressions,

(α − τ̄ )Q0 = 0,

requiring α ≡ τ̄ .

Corollary 5.3 For any given irreducible PH -simple PH -generator Q0, choosing α

to be the left eigenvector of the eigenvalue of maximal real part λ1 of Q0 yields

a unique representation of a negative exponential distribution of rate −λ1 for that

PH -generator Q0.

Proof:

Since α is the left eigenvector of the eigenvalue of maximal real part, then the

conditions of Theorem 4.1 are satisfied, yielding a negative exponential distribution

of rate −λ1. Then from [37], as the PH -generator Q0 is PH -simple, the negative

exponential distribution of rate −λ1 uniquely defines the initial vector α.
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In [38], O’Cinneide considered the Laplace-Stieltjes transform of the complemen-

tary distribution function and used an approach to PH -type distributions which he

called the invariant polytope approach. This approach firstly relies on the Invariant

Polytope Lemma, which is described as a geometric characterisation of PH -type

distributions, and secondly on a collection of techniques developed to construct R-

invariant polytopes (see [38]). The Laplace-Stieltjes transform of the complementary

distribution function for a PH -type distribution is a rational function and may be

written as the ratio of two coprime polynomials p(s) and q(s). That is,

−α(sI − Q0)
−1Q0e + αn+1 =

p(s)

q(s)
, for s ∈ [0,∞). (5.0.2)

The degree of the denominator polynomial q(s) is known as the algebraic degree of

the distribution. The order of a PH -distribution is at least as great as its degree [38],

and O’Cinneide proposed a conjecture that the minimal representation order is equal

to this algebraic degree. However, he subsequently disproved this conjecture using

his invariant polytope approach, but in doing so, provided a method of characterising

PH -type distributions. This characterisation states that,

A distribution on [0,∞) with rational Laplace-Stieltjes transform is of

phase type if and only if it is either the point mass at zero, or (a) it has

a continuous positive density on the positive reals, and (b) its Laplace-

Stieltjes transform has a unique pole of maximal real part.

It was shown by construction that the order of some PH -type distributions is in fact

greater than their algebraic degree. In Theorem 3.1 of [39], O’Cinneide gave a lower

bound on the minimal number of states required to represent a PH -distribution

based on poles of its Laplace-Stieltjes transform, for those PH -distributions whose

Laplace-Stieltjes transforms have non-real poles. The lower bound is established by

proving that the order n of a PH -distribution satisfies

n ≥ πθ

λ2 − λ1

. (5.0.3)
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Here π = 3.1415 . . . and −λ1 is the pole of maximal real part of the Laplace-Stieltjes

transform of the complementary distribution function of the PH -distribution. This

Laplace-Stieltjes transform also has poles at −λ2 ± iθ, such that θ > 0. Note that

the poles of the Laplace-Stieltjes transform of a PH -distribution can be seen to

be eigenvalues of any PH -generator Q0 which can be used to represent it, either

directly from equation (5.0.2), or see [38]. O’Cinneide described a collection of PH -

distributions of algebraic degree 3, that have arbitrarily large order, again showing

that the algebraic degree is not always the minimal order of a distribution. For those

distributions whose Laplace-Stieltjes transforms only have real poles, it was shown

that they may be represented by a PH -generator which is bi-diagonal or Coxian.

The discussion continued in [41] where O’Cinneide considered the more spe-

cific upper or lower triangular PH -generator form (TPH -distribution). The TPH -

distributions give rise to the same family of distributions as the Coxian distributions

and as was shown in [37], each triangular representation has a bi-diagonal represen-

tation of the same order. The minimum number of states required to represent a

TPH -distribution using a triangular PH -generator is defined as the triangular or-

der. O’Cinneide established some interesting results using triangular order including

giving a formula for the triangular order of the collection of PH -distributions of al-

gebraic degree 3, which he had already shown to have order in excess of the algebraic

degree. The discussion of triangular order is fairly complete, but it is noted that the

triangular order of a TPH -distribution is at least as great as its order, and in fact

may exceed its order.

Commault and Chemla in [15] used a dual representation to consider PH -type

distributions. Using control theory and the idea of PH -simplicity, they proved that

a PH -type distribution representation (α, Q0), where Q0 is n × n, has order equal

to its algebraic degree if and only if one of the two following conditions hold.

a) rank[Q0e, Q2
0e, . . . , Qn

0e] = n and rank




α

αQ0

αQn−1
0


 = n, or
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b) the representation and its dual are both PH -simple.

Commault and Chemla pointed out that given a relation as in (5.0.2), the question

of finding real α and Q0 for a given p(s)
q(s)

is a classical control theory problem that

has received a complete solution. From control theory, the first condition is true if

and only if n is equal to the degree of the polynomial q(s) in (5.0.2). The second

condition uses the concept of a dual which in this case is the time-reverse of the

original representation.

Commault and Chemla also noted that for real Q0 and α, a minimal order

solution equal to the degree of q(s) is always possible to find using a reduction

procedure. The parameters α and Q0, however, are constrained by the fact that

they represent a PH -distribution. That is, α ≥ 0, αe = 1 and Q0 is a non-singular

n × n matrix with [Q0]ii < 0, [Q0]ij ≥ 0 for all i �= j, such that Q0e ≤ 0 with

not all row sums being identically zero. Constrained in this way, finding a minimal

order solution equal to the degree of q(s) in (5.0.2) becomes difficult because there

is no known reduction procedure for reducing a non-PH -simple representation to a

PH -simple one.

In [16], Commault and Chemla proved that the minimal number of states which

are visited before absorption is equal to the difference between the degree of q(s)

and p(s) as defined in (5.0.2). They proved that for a PH -distribution where q(s)

is of degree n with real roots and p(s) is of degree less than or equal to 1, the

given distribution has order n. In their proof, they exhibited a class of PH -type

distributions whose order is equal to their algebraic degree. This result does not

extend to the case where q(s) has non-real roots or to where p(s) has degree 2.

Ryden [47] also addressed the problem of minimal order. He gave a lower bound

on the minimal order of PH -type distributions by representing them as aggregated

Markov chains and using uniformisation to convert them to discrete time. His lower

bound nE(µ) − 1, was given in terms of the dimension of a linear space nE(µ)

defined on the aggregated Markov chain representation of the PH -type distribution

µ. Ryden verified O’Cinneide’s result by showing the equivalence of nE(µ) − 1 to
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dim(Span(µ)) − 1. O’Cinneide showed in Theorem 2.1 of [38] that this is equal to

the algebraic degree of the PH -type distribution µ. Span(µ), defined by O’Cinneide,

is a linear space which “loosely speaking, is spanned by µ and all residual lifetime

distributions associated with µ” [47].

Summarising the above discussion, there does not seem to be a simple method

of being able to determine the minimal order of a PH -distribution except in a few

particular cases. Theorem 4.1 and Corollary 4.2 showed that the exponential distri-

bution may have a representation (α, Q0), where Q0 may take any dimension n ≥ 1.

We have also shown that every irreducible PH -simple generator Q0 of dimension

n ≥ 1 can be used as a complicated representation of a negative exponential dis-

tribution of rate −λ1. In this case, α ≡ τ̄ 1, the left eigenvector of the eigenvalue

of maximum real part λ1. Trivially, this also implies that the negative exponential

generator −λ is PH -majorized by all irreducible PH -simple generators Q0 having

−λ as the eigenvalue of maximal real part. In general, the minimal order is at least

as great as the algebraic degree of the distribution, and is clearly no larger than the

order of any of its representations.



Chapter 6

MAP/M/1 level and phase

independence

A stable M/M/1 queue has a geometric stationary distribution involving a scalar

ρ = λ
µ

< 1, which is just the traffic coefficient. That is,

π = π0[1, ρ, ρ2, ρ3, . . .].

A stable MAP/M/1 queue has a matrix geometric stationary distribution of the

form

Ψ = π0[I, R, R2, R3, . . .] , (6.0.1)

where the matrix R, defined in equation (2.2.5), has a maximal eigenvalue η which

satisfies 0 < η < 1. The phase of the arrival process j, for j ∈ {1, 2, . . . , n},
corresponds to the jth entry of each of the vectors π0R

m. The vector πm = π0R
m,

for m ∈ {0, 1, 2, . . .}, is the stationary distribution of level m corresponding to m

customers in the system. It is of interest to investigate conditions under which the

matrix-geometric distribution (6.0.1) is exactly level and phase independent. That

is, when

Ψ = π0[1, ζ, ζ2, ζ3, . . .], (6.0.2)

and 0 < ζ < 1 is a scalar.
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Our interest is to study whether exact level and phase independence of a MAP/M/1

queue implies that the stationary MAP is a Poisson process. The answer to this

question is shown to be in the affirmative. However, it is then shown that not all

MAP/M/1 queues, where the stationary MAP is in fact Poisson, have an exact level

and phase independent stationary distribution of the form (6.0.2).

We will also address another distinct form of level and phase independence ex-

hibited by MAP/PH/1 queues. In particular, we show that all PH/M/1 queues are

shift-one level and phase independent. That is, the stationary distribution is given

by

Ψ =
[
π0, ξ0

[
χ, χ2, χ3, . . .

]]
, (6.0.3)

where χξ0 = π0R and 0 < χ < 1 is a scalar.

Another form of level and phase independence was shown in Latouche and Tay-

lor [26]. In the more general setting of a quasi-birth-and-death process (QBD), they

showed that every QBD and hence every MAP/M/1 queue has an ubiquitous form

of level and phase independence which is asymptotic. They used the spectral ex-

pansion of the matrix R in the expression for the stationary distribution of level m,

and showed that

lim
m→∞πm = (π0v)ηmu + o(ηm).

Here v is the positive right eigenvector of the matrix R corresponding to the unique

maximal eigenvalue η. The term (π0v) is a positive scalar and hence the level is

asymptotically independent of the phase as m becomes large.

Ramaswami and Taylor [44] have shown that the level is exactly independent of

the phase if and only if π0 = (1 − η)ηu. Here u is the positive left eigenvector of

R, corresponding to η and normalised so that ue = 1. In this case, the parameter ζ

in (6.0.2) is in fact given by η. Latouche and Taylor in [26] have shown that exact

level and phase independence can be achieved in any QBD by just a modification of

the boundary transition behaviour. They have also shown that this result extends

to the more general GI/M/1 -type queues. This property of exact level and phase
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independence is a useful condition for quasi-reversibility as shown in Bean, Latouche

and Taylor [34]. Quasi-reversibility is sufficient to imply that a network of such

QBDs would have a product-form stationary distribution.

We first consider exact level and phase independence as defined in (6.0.2). Con-

sider the conservative rate matrix for the MAP/M/1 queue, given in (2.2.1). As-

suming that it exhibits exact level and phase independence, we pre-multiply this

rate matrix by its stationary distribution Ψ = π0 [1, η, η2, η3, . . .]. This yields

ΨQ = π0

[
1, η, η2, η3, . . .

]



D0 D1 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0

...
. . . . . . . . .




= 0. (6.0.4)

From (6.0.4), we can see that

π0(D0 + ηA2) = 0, (6.0.5)

and hence π0D0 = −π0ηA2. Recall from Chapter 2 that the matrix A2 has a simple

form µI, since we only have a single server with a constant service rate µ. This

implies that π0D0 = −ηµπ0, and so π0 is a left eigenvector of D0 corresponding to

eigenvalue −ηµ. We will now show that π0 is also a left eigenvector of D1, which

we will then use to show that the MAP is Poisson. Consider equation (6.0.4) which

yields

π0(D1 + ηA1 + η2A2) = 0 and π0η
m(A0 + ηA1 + η2A2) = 0, for m ∈ {1, 2, . . .}.

(6.0.6)

Recall from Chapter 2 again that (A1 + A2) = D0 and A0 = D1, so that (6.0.5) and

(6.0.6) yield

π0(A1 + A2 + ηA2) + π0(A0 + ηA1 + η2A2) +
∞∑

m=1

π0η
m(A0 + ηA1 + η2A2)

=
π0

(1 − η)
(A0 + A1 + A2)

=
π0

(1 − η)
(D1 + D0)

= 0.
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This implies that π0 is also a left eigenvector of D1 corresponding to eigenvalue

ηµ. Having now established the fact that π0 is also the left eigenvector correspond-

ing to eigenvalue −ηµ of D0 and eigenvalue ηµ of D1, then π0

π0e is the stationary

distribution for the MAP . We will use this result in the series expansion of

π0e
D0tD1 = π0

( ∞∑
i=0

(D0t)
i

i!

)
D1

= π0

( ∞∑
i=0

(−ηµt)i

i!

)
D1

= π0D1e
−ηµt

= π0(ηµ)e−ηµt. (6.0.7)

Recall that any point process defined by the filtration matrices Q0 and Q1 is Poisson

of rate λ, if and only if it satisfies equation (4.1.2) for all initial distribution of states

π. That is,

πeQ0t1Q1e
Q0t2 . . . Q1e

Q0tkQ1e

πeQ0t1Q1eQ0t2 . . . Q1eQ0tke
= λ, for all k ≥ 1, and ti ∈ [0,∞), for i ∈ {1, 2, . . . , k}.

(6.0.8)

Using the stationary distribution ν = π0(I −R)−1 of the MAP , and (6.0.7), we will

now show that the stationary MAP is in fact Poisson. Recall that we have already

shown that ν is a normalised version of π0, that is ν = π0(I − R)−1 = π0

π0e . The

filtration of the MAP which gives the arrival transitions is trivially

Q0 = D0, Q1 = D1.

Substituting into the left hand side of (6.0.8) gives

νeD0t1D1e
D0t2 . . . D1e

D0tkD1e

νeD0t1D1eD0t2 . . . D1eD0tke
=

(ηµ)k+1e−ηµt1e−ηµt2 . . . e−ηµtkνe

(ηµ)ke−ηµt1e−ηµt2 . . . e−ηµtkνe

= ηµ, for all k ≥ 1, and ti ∈ [0,∞), for i ∈ {1, 2, . . . , k}.

This implies that any MAP/M/1 queue which admits an exact level and phase

independent stationary distribution must have a Poisson arrival process of rate λ =
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ηµ. Then by Burke [11] the output process of this particular MAP/M/1 queue

should also be Poisson of rate ηµ.

This can also be shown directly by considering the MAP/M/1 queue, with a

filtration defined by Q0 and Q1, which gives us the departure process. That is,

Q0 =




D0 D1 0 0 · · ·
0 A1 A0 0 · · ·
0 0 A1 A0

...
. . . . . . . . .




and Q1 =




0 0 0 0 · · ·
A2 0 0 0 · · ·
0 A2 0 0
...

. . . . . . . . .




.

From ΨQ = 0, we see that

ΨQ0 = −ΨQ1

= −(π0ηA2, π0η
2A2, π0η

3A2, . . .)

= −(π0ηµ, π0η
2µ, π0η

3µ, . . .)

= −ηµ(π0, π0η, π0η
2, . . .)

= −ηµΨ,

and hence that

ΨeQ0t = Ψ
∞∑
i=0

Qi
0

i!
ti

= Ψ
∞∑
i=0

(ηµ)i

i!
ti

= e−ηµtΨ.

Then

ΨeQ0tQ1 = e−ηµtΨQ1

= e−ηµtµ(π0η, π0η
2, . . .)

= e−ηµtηµΨ.

From here we see that the left hand side of equation (6.0.8) for this filtration yields

ΨeQ0t1Q1e
Q0t2 . . . Q1e

Q0tkQ1e

ΨeQ0t1Q1eQ0t2 . . . Q1eQ0tke
=

(ηµ)k+1e−ηµt1e−ηµt2 . . . e−ηµtkΨe

(ηµ)ke−ηµt1e−ηµt2 . . . e−ηµtkΨe
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= ηµ, for all k ≥ 1, and ti ∈ [0,∞), for i ∈ {1, 2, . . . , k},

which is Poisson of rate ηµ.

We will now show that shift-one level and phase independence is a characteristic

of all PH/M/1 queues. We will subsequently show that not all MAP/M/1 queues

which have a stationary MAP which is Poisson have an exact level and phase inde-

pendent stationary distribution.

Theorem 6.1 All stable PH/M/1 queues have a shift-one level and phase indepen-

dent stationary distribution. This distribution is given by

Ψ =
[
π0, (π0v)u

[
η, η2, η3, . . .

]]
, (6.0.9)

where η is the eigenvalue of maximal real part of the matrix R defined in (2.2.5), and

v and u are the associated positive right and left eigenvectors respectively, normalised

such that uv = ue = 1.

Proof:

Recall from Chapter 3 (or see Latouche [25]), that for a PH/M/1 queue, R is

rank one. From equation (3.3.7), the matrix R may be written using its spectral

expansion as

R = ηvu.

The stationary distribution of a stable MAP/M/1 queue is given in equation (6.0.1),

which in this case may be written as

Ψ = π0

[
I, vu

[
η, η2, η3, . . .

]]
.

This is in the same form as equation (6.0.3), where χ = η and ξ0 = (π0v)u, and

hence the stationary distribution is shift-one level and phase independent as given

in (6.0.9).



CHAPTER 6. MAP/M/1 LEVEL AND PHASE INDEPENDENCE 71

The following simple PH/M/1 example will demonstrate that not all MAP/M/1

queues which have a stationary Poisson MAP have an exact level and phase inde-

pendent stationary distribution. Consider

D0 =



−3 3 0

0 −6 4

0 0 −1


 , D1 =




0 0 0

1 1 0

(1
2
) (1

2
) 0


 and A2 =




2 0 0

0 2 0

0 0 2




In this example, the matrix geometric stationary distribution is parameterised

by

R =




0 0 0

(1
4
) (1

4
) (1

2
)

(1
8
) (1

8
) (1

4
)


 = ηvu =

1

2




0

2

1



(

1

4
,
1

4
,
1

2

)
,

and

π0 =
[

5

120
,

5

120
,

5

12

]
.

This is the MAP/M/1 example given at the end of Chapter 3 in equation (3.3.12),

which is a stationary Poisson process of rate 1. The stationary distribution of the

MAP , which is given by the matrices D0 and D1, is

ν = π0(I − R)−1 =
[
1

6
,
1

6
,
2

3

]
.

The matrix D0 has distinct eigenvalues and in spectral form is given by

D0 = [r1, r2, r3]




λ1 0 0

0 λ2 0

0 0 λ3







l1

l2

l3


 =




(6
5
) −1 (4

5
)

(4
5
) 0 −(4

5
)

1 0 0






−1 0 0

0 −3 0

0 0 −6







0 0 1

−1 −1 2

0 −(5
4
) 1



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Corollary 4.11 is satisfied as νr3 = 0 and l2e = 0, which implies that the stationary

MAP is a Poisson process of rate −λ1 = 1 and hence by Burke’s Theorem the

stationary MAP/M/1 queue also has a Poisson output of rate 1. Here π0v = 1
2

so that the stationary distribution for the MAP/M/1 queue may be written in the

modified geometric form, or shift-one level and phase independent form:

[
π0,

u

2

[(
1

2

)
,
(

1

2

)2

,
(

1

2

)3

, . . .

]]
.

We note here that the stationary distribution for this MAP/M/1 queue cannot

be written as π0[1, ζ, ζ2, . . .] for any scalar ζ, and hence is not exactly level and phase

independent. Therefore a necessary but not sufficient condition for exact level and

phase independence is that a stationary MAP be Poisson. From Ramaswami and

Taylor [44], we have that the level is exactly independent of the phase if and only if

π0 = (1 − η)ηu.



Chapter 7

Approximations to MAP/PH/1

departure processes

7.1 Introduction

The departure process of a queue is important in the analysis of networks of queues

as it may be the arrival process to another queue in the network. There have been

many papers (see [11], [12], [17], [18], [28], [46]) dealing with the output process of

a single queue. In 1956, Burke [11] and later Reich [45], independently proved the

1955 claim by Morse [29] that “A little thought will convince one that the efflux

from a single-channel, fed by Poisson arrivals, must be Poisson with the same rate

as the arrivals”. This result simplified much of the analysis for tandems that had

already been undertaken, for example by R.R.P. Jackson [24].

For a MAP/PH/1 queue with a finite buffer, that is, a MAP/PH/1/k queue,

there exists an exact finite MAP description of the output process. This MAP

description has dimension kmn, where k is maximum buffer size, m is the dimension

of the matrix descriptor of the input MAP and n is the dimension of the matrix

descriptor of the PH -server. This exact representation suffers from the “curse of

dimensionality”, especially when considered as a tool in the analysis of a network.
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Approximate techniques which reduce the size of these representations therefore

become necessary. An extensive list of references for methods of analysis of various

tandem queues with a finite intermediate buffer is given in [32].

In the infinite buffer case, with which this chapter is primarily concerned, no such

exact finite description has been found. In fact, it appears that there does not exist

a finite MAP description for the output process of a stationary MAP/PH/1 queue

in which the MAP is not a Poisson process. The possibility of a finite description

was addressed in Olivier and Walrand [42], who claimed that the output from an

MMPP/M/1 queue can not have a MAP description. Although their proof was

shown to be flawed in Chapter 3, and also in [7], the author believes the result to

be true. In Chapter 4 and also in [5], we addressed the question of when a MAP is

just a complicated description of a Poisson process, in which case the output of the

MAP/M/1 queue must be a Poisson process.

In this chapter, as in [6], a family of MAP approximations to the departure

process of the MAP/PH/1 queue is proposed. To check the viability of these ap-

proximations, they are used as input to another single server queue, and the second

queue length distributions are compared with their exact counterparts, calculated

using matrix-analytic techniques. Other techniques to approximate point processes

have been given in, for example, [1], [2], [3], [9], [20], [49], [51] and [52]. Where

possible, the approximations given here are compared to the results of these publi-

cations.

The structure of the defining processes is exploited in the approximations used

in this chapter. As a direct result of this, all of the approximations yield the exact

output process for the trivial situation of Poisson arrivals to a negative-exponential

first server.
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7.2 The MAP/PH/1 Queue

The notation for the MAP/PH/1 queue is established by considering the Markov

chain (x, y) defined for the MAP/M/1 queue and its associated rate matrix given

in (2.2.1) of Chapter 2. That is, the rate matrix

Q =




D0 D1 0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0

...
. . . . . . . . .




.

Recall for the MAP/M/1 queue description that x represents the number of cus-

tomers in the queue at time t and y represents the phase of the arrival process at

time t. The service times can be generalised by allowing them to be distributed ac-

cording to an n-state PH-distribution (β, S) as defined in Chapter 2. To model the

MAP/PH/1 queue we need to keep track of the phase of both the arrival process and

the service distribution, when x ≥ 1. That is, for x ≥ 1, we need to take y = (a, s),

where a and s represent the phase of the arrival process and service distribution re-

spectively at time t. The Markovian simplicity is preserved since the sojourn times

within each phase are still negative exponentially distributed. Let D0 and D1 be the

m × m matrix descriptors of the MAP , defined by (2.1.1), (2.1.2) and (2.1.3) and

let ν > 0 be the stationary distribution for the MAP such that ν(D0 + D1) = 0

and νe = 1. Let In and Im be the identity matrices having the same dimensions as

S and D0 respectively. The MAP/PH/1 queue then has conservative rate matrix

Q =




B1 B0

B2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .




, (7.2.1)

where

B0 = D1 ⊗ β,
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B1 = D0,

B2 = Im ⊗ S0,

A0 = D1 ⊗ In,

A1 = Im ⊗ S + D0 ⊗ In,

A2 = Im ⊗ S0β,

and ⊗ is the Kronecker product as defined in Chapter 2. This rate matrix is in the

form of a quasi-birth and death (QBD) process as given in Neuts [31]. Assume it

defines an irreducible, regular Markov chain. Therefore this Markov chain has at

most one stationary distribution Ψ such that ΨQ = 0. This stationary distribution

is given by the following modified matrix geometric form

Ψ = π0[I, R0, R0R, R0R
2, . . .], (7.2.2)

where the mn × mn matrix R is the minimal non-negative solution to the matrix

quadratic equation

R2A2 + RA1 + A0 = 0. (7.2.3)

The m × mn matrix R0 is given by

R0 = −B0 (A1 + RA2)
−1 (7.2.4)

and the vector π0 is the unique positive solution to the system of equations

π0(B1 + R0B2) = 0 and π0e + π0R0(I − R)−1e = 1. (7.2.5)

The inverse (A1 + RA2)
−1 always exists (see, for example, equation (16) of [25]).
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7.3 A Family of Approximations

In this section we consider the departure process from a MAP/PH/1 queue. We

partition Q given in (7.2.1) into the filtration matrices Q0 and Q1 given by

Q0 =




B1 B0

A1 A0

A1 A0

A1 A0

. . . . . .




and Q1 =




0

B2 0

A2 0

A2 0
. . . . . .




. (7.3.1)

The observed transitions recorded by Q1 are departure transitions and the observed

process is the departure process. However, this is not a MAP because there are

infinitely many states.

One obvious method to obtain a MAP approximation for the departure process

is to truncate the matrices Q0 and Q1 in (7.3.1) at a “sufficiently” large level 
 and

to use these as the MAP descriptors. A major problem with this method is that as

the traffic intensity increases, the value of 
 which gives an accurate approximation

grows quickly with 
, making the size of the matrix descriptors extremely large. We

also need to think about how to adjust the transition rates at level 
 in order to

ensure that the generator remains conservative. Two common ways to do this are to

add diag(A0e) to A1 or to add A0 to A1, both at level 
. The first of these effectively

assumes that transitions to level 
 + 1 do not happen, while the second allows these

transitions to occur but assumes that the process remains at level 
. However, it

was pointed out in Theorem 1 on page 362 of Bright and Taylor [10] that the best

way to adjust the transition rates is to add RA2 to A1 at level 
. This takes into

account the influence of the structure of the QBD beyond level 
 on the invariant

measure at level 
 and below. In fact, the stationary distribution of this truncation

is a renormalised version of the stationary distribution of the whole process.

Another way to obtain a MAP approximation for the departure process can be

obtained by thinking physically about what is happening in the QBD . During the
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busy period, the departure process from the queue is just the PH -renewal process

(β, S). It is only when the queue becomes empty that this simplicity is lost. How-

ever, if we knew the phase of the arrival process when the busy period finishes, we

could model the time until the next busy period. To characterise the departure

process exactly we also need to know the length of the busy period. Ramaswami

in [43] has studied the busy period of queues with a matrix-geometric steady state

probability vector. He gives expressions for the Laplace-Stieltjes transform for the

distribution function of the busy period which are complex, even in the case of the

simple M/M/1 queue. The actual distribution function of the busy period of an

M/M/1 queue is given explicitly in equation (2.33) of Cohen [14] as an integral of a

mixture of Bessel functions. Neither of these expressions leads easily to a PH -type

description of the busy period. Thus in this thesis we approximate the busy period

with a PH -type random variable in order to get a MAP description of the departure

process. Below we construct a family of approximations indexed by a parameter k.

The kth approximation assumes that

1. the phase of the arrival process when the QBD moves from level k to level

k − 1 is given by its correct marginal distribution, and

2. the number of services during a sojourn at level k and above is geometrically

distributed with the mean chosen such that the sojourn at level k and above

has the correct mean.

Thus the k = 1 approximation assumes that

1. the phase of the arrival process when a busy period ends has the correct

marginal distribution, and

2. the number of services during a busy period is geometrically distributed with

the mean chosen such that the busy period has the correct mean.

Physically, the kth approximation amalgamates levels k and above into a super

level k̄, approximates the distribution of the sojourn in level k̄ by a geometric mixture
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of convolutions of PH-type distributions, and also approximates the phase on return

to level k−1 by its correct marginal distribution. What is lost in this approximation

is the exact distribution of the sojourn at and above level k and correlations between

the return phases and sojourn times.

Although it must be true that the stationary rate of departures from a MAP/PH/1

queue is equivalent to its stationary rate of arrivals, we prove this in the following

lemma. We will use this result in the construction of the distribution of the QBD

at level k − 1, conditional on a departure having just occurred.

Lemma 7.1 The expected stationary rate of departures is given by νD1e.

Proof:

ΨQ1e = π0R0B2em + π0R0

∑
k≥1

RkA2emn

= π0R0B2em + π0R0R(Imn − R)−1A2emn.

From Neuts [31] we have that RA2emn = A0emn and from Ψ(Q0 + Q1) = 0 it can

be shown that π0R0B2 = π0D1, so that

ΨQ1e = π0D1em + π0R0(Imn − R)−1A0emn

= π0D1em + π0R0(Imn − R)−1(D1 ⊗ en)emn

= π0D1em + π0R0(Imn − R)−1(Im ⊗ en)D1em

=
(
π0 + π0R0(Imn − R)−1(Im ⊗ en)

)
D1em

= νD1em.

The distribution of the QBD at level k − 1, conditional on a departure having

just occurred, can be calculated from the stationary distribution of the QBD by (see

[31])

xk−1 =




π0R0B2(νD1e)−1 for k = 1

π0R0R
k−1A2(νD1e)−1 for k > 1,

(7.3.2)
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where we recall that ν is the unique stationary distribution of the MAP . In our

approximation, the probability of return to level k − 1 after each service in the

super-level k̄ is
xk−1e

(
∑∞

j=k−1 xje)
,

and the distribution of the return phase given that a return occurs is given by

xk−1

xk−1e
.

Thus the unconditional distribution of return phase at level k − 1 is given by

yk−1 =
xk−1

(
∑∞

j=k−1 xje)
. (7.3.3)

The kth MAP approximation for the departure process of the MAP/PH/1 queue is

thus given by

Q0(k) =




B1 B0

A1 A0

A1
. . .
. . . A0

A1 E0

E1




, Q1(k) =




0

B2 0

A2
. . .
. . . 0

A2 0

E2 E3




.(7.3.4)

Here the matrices are as defined previously with

E0 = D1e ⊗ In,

E1 = S,

E2 = S0yk−1,

E3 = (1 − yk−1e)S0β.

The stationary distribution of this MAP approximation can be shown to be given

by

ν(k) = π0[I, R0, R0R, . . . , R0R
k−2, R0R

k−1(Imn − R)−1(em ⊗ In)],
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where em is an m × 1 column of 1’s.

It seems intuitive that neither of the approximations discussed above should be

too drastic. The test of this, however, will come with the numerical results that we

discuss in Section 5.

For the special case of k = 1, the MAP approximation to the departure process

of the MAP/PH/1 queue reduces to a PH -renewal process with the exact stationary

inter-departure time distribution. In fact, all of our approximations have this exact

stationary inter-departure time distribution. We prove this analytically in Chapter

8.

For k = 1, the MAP approximation is given by

Q0(1) =


 D0 D1eβ

0 S


 and Q1(1) =


 0 0

S0x0 (1 − x0e)S0β


 .

This can also be represented as a PH -distribution (α, Q0(1)), where Q0(1) is as

above and

α = (x0, (1 − x0e)β) . (7.3.5)

Here, x0 is the distribution of phases of the arrival process immediately after a

departure that leaves the queue empty, calculated using (7.3.2). Bitran and Dasu

[9] showed that this distribution was in fact the stationary inter-departure time

distribution of the MAP/PH/1 queue. The stationary distribution of this MAP

approximation can be shown to be given by

ν(1) = [π0, π0R0(Imn − R)−1(em ⊗ In)].

This approximation precisely captures the distribution of the inter-departure times

but ignores any correlation structures between these times. This (m + n)× (m + n)

MAP approximation is satisfactory in a great many situations, as is shown by the

results in Section 5. For the case of Poisson arrivals of rate λ > 0 to a negative

exponential server of rate µ > 0, such that λ < µ, the approximation is exact as can
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be seen by the following. Let

D0 = −λ, D1 = λ, S = −µ, β = 1,

so that

α =

(
µ − λ

µ
,
λ

µ

)
, Q0(1) =


 −λ λ

0 −µ


 .

In this case, because the arrivals are Poisson and service is negative exponential,

π0 = x0. The vector β = 1, so that from (7.3.5), the vector α is identical to the

stationary distribution ν(1). The stationary probability vector ν(1) of this process

is also the left eigenvector of the matrix Q0(1) corresponding to eigenvalue λ, which

by Corollary 4.11 implies that the departure process under stationary conditions is

Poisson of rate λ.

Increasing the value of k clearly increases the accuracy of the approximation,

but also the complexity of the MAP . This then requires a trade off be made by

the modeller between the degree of accuracy required and the time taken to do the

analysis.

7.4 The tandem queueing models

To measure the accuracy of the approximations of the departure process of the

MAP/PH/1 queue, we used the approximations as input to another single server

queue and the stationary distribution of the second server queue length compared to

that of a tandem queueing system. The tandem queueing system of two FIFO servers

in series can be represented by a QBD as outlined in [8], by setting the number in the

first and second queues to be the level and part of the phase description respectively.

Under this regime, the size of one of the queues must be truncated at a “sufficiently

large” value that will not affect the calculation of the stationary distribution of the

that queue length. We refer to the results calculated for this QBD model as “exact”

throughout this paper.
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For comparison of numerical results, we calculated the probability distributions

of the stationary second queue length so that any queue length probability being

less than 10−14 was considered as 0. This distribution was then used to calculate

the mean and variance for the stationary queue length.

Six different arrival processes as given in Appendix A.1 were used to feed the

tandem queueing system, including three PH -renewal processes and three different

correlated MAPs. The first PH -type server was one of the four given in Appendix

A.2 and the second PH -type server was one of the four given in Appendix A.3. The

service distributions were scaled appropriately to give the correct traffic intensity

at each queue. Each of the two FIFO servers had an infinite buffer with the traffic

intensity at each queue being one of (0.1, 0.25, 0.5, 0.75).

All permutations of the above were investigated, except the situation where the

fifth arrival process was fed to the first queue with traffic intensities 0.5 and 0.75 and

with traffic intensity 0.75 at the second queue. The “exact” results were not able

to be evaluated for these traffic intensities because of the very bursty nature of the

arrival process; the required level of truncation for the QBD models according to

the “sufficiently large” regime proved too large. All of our approximations, however,

still deliver a result. Overall we used 1504 different queueing tandems to check the

approximation methods via the moments of the second queue.

In Appendix A.1, the squared coefficient of variation σ2

µ2 is given for each of

the arrival processes. For those processes which have a non-zero lag-correlation

structure, an indication of the level of this structure is given by the first two lag

correlation coefficients c1 and c2, calculated by (see [33])

ci =

2
νD1e

ν[(−D0)
−1D1]

i(−D0)
−1e − 1

(νD1e)2

2
νD1e

ν(−D0)−1e − 1
(νD1e)2

, (7.4.1)

where ν is the stationary probability vector of the arrival process. Note that all PH-

renewal arrival processes have a zero lag-correlation structure by their very nature.
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7.5 The results

The results are compiled for the approximations with four variants for the aggregated

state approximation. These are

• AGG1: k = 1

• AGG2: k = 2

• AGG3: k = 3

• AGG-3: k = max(j : p(j) > 10−3),

where p(j) is the probability of there being j customers in the first queue of the

tandem. Overall results for the 1504 different queueing tandems are broken up into

16 sets which specify the traffic intensities for both queues, then subsequent smaller

groupings are given which tend to show the particular applicability of each variant.

The sets A, B, . . . ,K and M, N, O, given in Table 7.5.1 each comprise 96 different

combinations of the 6 arrival processes, 4 first server and 4 second server processes

for the values of traffic intensity at each queue specified by ρ1 and ρ2. Sets L and

P both comprise 80 different combinations of the 5 arrival processes (these do not

include the fifth arrival process given in Appendix A.1), 4 first server distributions

given in Appendix A.2 and 4 second server distributions given in Appendix A.3 for

the values of traffic intensity at each queue specified by ρ1 and ρ2.

The second group of 16 sets A∗, B∗, . . . , P ∗, given in Table 7.5.2, are subsets

of the sets A, B, . . . , P given in Table 7.5.1. They are comprised of 48 different

combinations of the 3 PH -renewal arrival processes given in Appendix A.1, 4 first

server distributions given in Appendix A.2 and 4 second server distributions given

in Appendix A.3, for the values of traffic intensity at each queue specified by ρ1 and

ρ2.
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The results given in Tables 7.5.1 and 7.5.2 are the average over each set of the

absolute percentage difference from the exact result given by

100 |exact- approximation|
exact

for the first and second central moments of the queue length of the stationary second

queue.

Traffic Averaged absolute percentage differences for the stationary

Set intensities second queue length of the tandem

AGG1 AGG2 AGG3 AGG-3

ρ1 ρ2 E[µ] E[σ2] E[µ] E[σ2] E[µ] E[σ2] E[µ] E[σ2] k

A 0.1 0.1 0.3501 1.1388 0.0154 0.0650 0.0018 0.0090 0.0000 0.0002 3.6

B 0.1 0.25 2.6681 6.3460 0.1127 0.3817 0.0097 0.0484 0.0003 0.0021 3.6

C 0.1 0.5 5.6243 10.6426 0.1986 0.5438 0.0103 0.0440 0.0003 0.0017 3.6

D 0.1 0.75 6.3970 11.2535 0.2196 0.5240 0.0114 0.0352 0.0004 0.0014 3.6

E 0.25 0.1 0.2119 0.7201 0.0100 0.0414 0.0011 0.0052 0.0000 0.0000 6.0

F 0.25 0.25 2.2317 5.8062 0.2839 1.0148 0.0766 0.3366 0.0001 0.0009 6.0

G 0.25 0.5 6.1140 12.4001 0.8809 2.7517 0.2898 1.1332 0.0036 0.0211 6.0

H 0.25 0.75 7.4304 13.9464 1.1038 2.9392 0.3747 1.1412 0.0084 0.0428 6.0

I 0.5 0.1 0.0706 0.2601 0.0038 0.0166 0.0004 0.0018 0.0000 0.0000 12.3

J 0.5 0.25 0.6097 1.9343 0.0666 0.2604 0.0128 0.0579 0.0000 0.0000 12.3

K 0.5 0.5 4.6695 11.3070 1.4906 4.6422 0.8400 2.8534 0.0033 0.0206 12.3

L 0.5 0.75 2.7466 8.5090 1.2067 4.2924 0.5655 2.2551 0.0027 0.0189 ♥ 8.9

M 0.75 0.1 0.0234 0.0887 0.0014 0.0061 0.0001 0.0007 0.0000 0.0000 26.3

N 0.75 0.25 0.1761 0.6198 0.0202 0.0839 0.0037 0.0170 0.0000 0.0000 26.3

O 0.75 0.5 1.3195 3.9419 0.3408 1.2225 0.1401 0.5490 0.0000 0.0000 26.3

P 0.75 0.75 2.8511 9.0210 1.6456 5.7547 0.9628 3.7110 0.0005 0.0040 ♦ 18.6

Absolute percentage

difference 2.7184 6.1210 0.4750 1.5338 0.2063 0.7624 0.0012 0.0071

Table 7.5.1:

The results show a marked difference in the accuracy for both the mean queue

length and its variance between the AGG1 approximation and the AGG2 approxi-

mation, with still further improvement for the AGG3 approximation. The AGG-3

approximation is not a fixed level aggregation but is dynamically decided by a spe-

cific first queue length probability truncation, making some of the MAP approxi-

mations smaller or larger than those of the AGG3 approximation. With this type
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Traffic Averaged absolute percentage differences for the stationary

Set intensities second queue length of the tandem

AGG1 AGG2 AGG3 AGG-3

ρ1 ρ2 E[µ] E[σ2] E[µ] E[σ2] E[µ] E[σ2] E[µ] E[σ2] k

A∗ 0.1 0.1 0.0172 0.0715 0.0013 0.0064 0.0001 0.0006 0.0000 0.0000 3.3

B∗ 0.1 0.25 0.0850 0.3544 0.0059 0.0311 0.0006 0.0039 0.0000 0.0003 3.3

C∗ 0.1 0.5 0.2074 0.7835 0.0148 0.0694 0.0017 0.0092 0.0001 0.0007 3.3

D∗ 0.1 0.75 0.3126 0.9396 0.0213 0.0751 0.0024 0.0095 0.0001 0.0006 3.3

E∗ 0.25 0.1 0.0339 0.1357 0.0030 0.0142 0.0004 0.0020 0.0000 0.0000 4.9

F ∗ 0.25 0.25 0.1733 0.6955 0.0231 0.1112 0.0041 0.0223 0.0000 0.0001 4.9

G∗ 0.25 0.5 0.6910 2.5918 0.1175 0.5370 0.0264 0.1406 0.0002 0.0019 4.9

H∗ 0.25 0.75 1.3269 4.1176 0.2637 0.9543 0.0641 0.2633 0.0008 0.0044 4.9

I∗ 0.5 0.1 0.0354 0.1384 0.0030 0.0138 0.0004 0.0018 0.0000 0.0000 8.5

J∗ 0.5 0.25 0.1670 0.6470 0.0278 0.1267 0.0062 0.0315 0.0000 0.0000 8.5

K∗ 0.5 0.5 1.0137 3.7074 0.2724 1.1610 0.0851 0.4099 0.0001 0.0008 8.5

L∗ 0.5 0.75 3.0406 9.7222 1.1981 4.3764 0.5236 2.1395 0.0024 0.0168 8.5

M∗ 0.75 0.1 0.0183 0.0709 0.0014 0.0064 0.0002 0.0008 0.0000 0.0000 18.0

N∗ 0.75 0.25 0.1121 0.4237 0.0175 0.0760 0.0036 0.0173 0.0000 0.0000 18.0

O∗ 0.75 0.5 0.6099 2.1485 0.1757 0.7126 0.0595 0.2666 0.0000 0.0000 18.0

P ∗ 0.75 0.75 3.0753 9.9312 1.6636 5.9560 0.9312 3.6546 0.0004 0.0032 18.0

Absolute percentage

difference 0.6825 2.2799 0.2381 0.8892 0.1069 0.4358 0.0003 0.0018

Table 7.5.2:

of parameterisation, excellent results can be gained as is seen by Tables 7.5.1 and

7.5.2, but the MAP approximations become large as ρ1 becomes large. The average

value of k is given for the AGG-3 approximation in the extreme right hand column.

Note that the value of k at ♥ for the set L is significantly less than for the sets I, J

and K, because, as mentioned above, the bursty arrival process (the fifth arrival

process given in Appendix A.1) for this combination of traffic intensities was not

investigated. For the same reason, the value of k at ♦ for the set P is significantly

less than that of sets M, N and O.

The actual times taken will vary according to differing software and platforms.

Since investigation of the hardware and programming language parameters was not

intended, the average times were recorded across all runs (including all variations,

without exception) and given relative to the value for k = 1. These relative times are
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given in Table 7.5.3. For completeness, the actual average times are also recorded

in Table 7.5.4 for the following computer configuration, with the code implemented

using Matlab version 5.0.0.4064.

• Platform: SUNW Ultra-1, sun4u, sparc,

• Memory size: 192 Megabytes,

• Operating system: SunOS 5.5.1, Generic 103640-08 ,

Relative time taken with respect to k = 1

AGG1 AGG2 AGG3 AGG-3

1.000 1.5817 1.9664 155.3203

Table 7.5.3:

Actual average time taken in seconds

AGG1 AGG2 AGG3 AGG-3

.2752 .4353 .5411 42.7434

Table 7.5.4:

7.6 Comparison to other work

Whitt [52] used the work of Shimshak [49] on expected waiting times of queues

in series to compare his work on approximating departure processes. Shimshak

used simulation results for the total expected waiting time in two single server

queues in series. The Fraker, Page and Marchal approximations are approximations

constructed by Shimshak using previous approximations. The M/M/1 , M/G/1 ,

QNA and modified QNA approximations are described in Section 5 of Whitt [52].

We produce results for Shimshak’s experiments I, III and IV using the methods

that we have proposed in this paper. In Shimshak’s experiment II, the second
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queue had ten servers and was therefore not considered in Whitt [52] or in this

thesis. Experiments I, III and IV involved three different renewal arrival processes

used to feed two queues in series. The arrival processes were a Poisson process, a

two state hyper-exponential process with squared coefficient of variation 4 and an

Erlang renewal process of order 10. The actual form of the hyper-exponential arrival

process was constructed using the reference given in Shimshak [49] to the definition

in Morse [30]. The service distributions were either negative-exponential (E1) or

Erlang of order 10 (E10), with the traffic intensities being either 0.6 or 0.8.

Shimshak’s experiment I

System Queue 1 Queue 2

number ρ1 distr. ρ2 distr.

1 0.6 E10 0.6 E1

2 0.8 E10 0.6 E1

3 0.6 E10 0.6 E10

4 0.8 E10 0.6 E10

5 0.6 E10 0.8 E1

6 0.8 E10 0.8 E1

7 0.6 E10 0.8 E10

8 0.8 E10 0.8 E10

Shimshak’s experiments III and IV

System Queue 1 Queue 2

number ρ1 distr. ρ1 distr.

1 0.8 E1 0.6 E1

2 0.8 E10 0.6 E1

3 0.8 E1 0.6 E10

4 0.8 E10 0.6 E10

5 0.8 E1 0.8 E1

6 0.8 E10 0.8 E1

7 0.8 E1 0.8 E10

8 0.8 E10 0.8 E10

Table 7.6.1: Table 7.6.2:

Experiment I has a Poisson arrival process of rate one with the first server fixed

as E10. In experiments III and IV, the arrival processes of rate one are the two state

hyper-exponential and Erlang (E10) process respectively with the first queue traffic

intensity set to 0.8 for both cases. Shimshak’s experiment IV has the same traffic

intensities and service time distribution as his experiment III. The traffic intensity

and service time distributions for Shimshak’s experiments I and III are given in

Tables 7.6.1 and 7.6.2.

The results for Shimshak’s experiments I, III and IV are given respectively in

Tables 7.6.3, 7.6.4 and 7.6.5. The simulation estimates of the total expected waiting

time at the first and second queues were obtained by Shimshak and have a 95%
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Shimshak’s experiment I, with Poisson arrival stream

Approximations

Sys. Sim. QNA Mod.

no. est. M/M/1 M/G/1 Fraker Page Marchal (st. int.) QNA AGG1 AGG2

1 1.20 1.80 1.40 1.19 1.20 1.18 1.25 1.30 1.11 1.15

(±0.09) (0.50) (0.17) (-0.01) (0.00) (-0.02) (0.04) (0.08) (-0.08) (-0.04)

2 2.27 4.10 2.66 2.30 2.31 2.28 2.38 2.42 2.23 2.25

(±0.23) (0.81) (0.17) (0.01) (0.02) (0.01) (0.05) (0.07) (-0.02) (-0.01)

3 0.78 1.80 0.99 0.77 0.84 0.84 0.84 0.89 0.66 0.68

(±0.06) (1.31) (0.27) (-0.02) (0.08) (0.07) (0.08) (0.14) (-0.15) (-0.13)

4 1.83 4.10 2.26 1.90 1.99 1.98 1.98 2.01 1.83 1.83

(±0.22) (1.24) (0.23) (0.04) (0.09) (0.08) (0.08) (0.10) (0.00) (0.00)

5 3.41 4.10 3.70 3.07 3.10 3.06 3.21 3.27 2.98 3.18

(±0.43) (0.20) (0.09) (-0.10) (-0.09) (-0.10) (-0.06) (-0.04) (-0.13) (-0.07)

6 4.33 4.33 6.40 4.96 3.85 3.70 3.84 4.07 3.78 3.91

(±0.60) (0.48) (0.15) (-0.14) (-0.10) (-0.11) (-0.06) (-0.05) (-0.13) (-0.10)

7 1.93 4.10 2.26 1.60 1.73 1.72 1.77 1.83 1.48 1.64

(±0.27) (1.12) (0.17) (-0.17) (-0.10) (-0.11) (-0.08) (-0.05) (-0.23) (-0.15)

8 2.48 6.40 3.52 2.43 2.58 2.57 2.63 2.68 2.27 2.33

(±0.29) (1.58) (0.42) (-0.02) (0.04) (0.04) (0.06) (0.08) (-0.08) (-0.06)

Average relative

error 0.91 0.21 -0.05 -0.01 -0.02 0.01 0.04 -0.10 -0.07

Average absolute

relative error 0.91 0.21 0.06 0.07 0.07 0.06 0.08 0.10 0.07

Table 7.6.3:

confidence interval given in brackets below each estimate. The tables were produced

in the same form as that of [52] for easy comparison. We give the total expected

waiting times at both queues as calculated by each of the approximation methods,

together with the relative error (in brackets). These relative errors were calculated

by taking the difference of the approximation to the simulation estimate and dividing

by the simulation estimate. Following the form of the tables in [52], we have given

the average relative and average absolute relative errors for each approximation

method across the eight systems. In experiment III, the Page method could not be

applied to the system and for the Fraker approximation, the blanks indicate that a

negative waiting time was recorded.

Note that across the three experiments, the two columns labelled QNA are in
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Shimshak’s experiment III, with hyper-exponential arrival stream

Approximations

Sys. Sim. QNA Mod.

no. est. M/M/1 M/G/1 Fraker Marchal (st. int.) QNA AGG1 AGG2

1 9.08 4.10 4.10 10.30 10.39 9.39 9.56 9.02 9.08

(±1.38) (-.055) (-0.55) (0.13) (0.14) (0.03) (0.05) (0.01) (0.00)

2 6.49 4.10 6.49 – 7.91 7.72 7.94 6.78 6.79

(±0.73) (-0.37) (-0.51) (0.22) (0.19) (0.22) (0.04) (0.05)

3 8.55 4.10 3.18 10.17 9.86 8.98 9.16 8.53 8.53

(±1.20) (-0.52) (-0.63) (0.19) (0.15) (0.05) (0.07) (0.00) (0.00)

4 6.01 4.10 2.26 – 7.43 7.31 7.54 6.25 6.25

(±0.73) (-0.32) (-0.62) (0.24) (0.22) (0.25) (0.04) (0.04)

5 12.31 6.40 6.40 13.50 13.54 12.92 13.09 12.38 12.55

(±2.26) (-0.48) (-0.48) (0.10) (0.10) (0.05) (0.06) (0.01) (0.02)

6 9.64 6.40 4.96 – 10.78 10.67 10.88 9.30 9.44

(±1.33) (-0.34) (-0.49) (0.12) (0.11) (0.13) (-0.04) (-0.02)

7 11.13 6.40 4.96 12.55 11.90 11.49 11.65 10.68 10.79

(±1.37) (-0.42) (-0.55) (-0.13) (0.07) (0.03) (0.05) (-0.04) (-0.03)

8 7.40 6.40 3.52 – 9.21 9.23 9.44 7.17 7.25

(±0.95) (-0.14) (-0.52) (0.24) (0.25) (0.28) (-0.03) (-0.02)

Average relative

error -0.39 -0.54 0.14 0.16 0.12 0.14 0.00 0.00

Average absolute

relative error 0.39 0.54 0.14 0.16 0.12 0.14 0.03 0.02

Table 7.6.4:

general superior to all the columns to the left. Therefore we shall confine our com-

parison to those marked QNA. It is interesting to note that our approximations do

not show their best results with a Poisson arrival stream, but this is not the case with

the QNA methods. When the arrival stream is hyper-exponential, it appears that

our methods strongly outperform the QNA methods as well as the others. When

the arrival stream is Erlang, our method again outperforms the QNA methods with

the method labelled AGG2 being the best. When the arrival process is Poisson, it is

hard to separate any of the methods and so the simplest method should be chosen.

It would be interesting to understand why both of our methods perform so much

worse with a Poisson arrival stream.

Whitt’s results in [52] are compared to simulation results obtained by Shimshak
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Shimshak’s experiment IV, with Erlang (E10) arrival stream

Approximations

Sys. Sim. QNA Mod.

no. est. M/M/1 M/G/1 Fraker Page Marchal (st. int.) QNA AGG1 AGG2

1 2.30 4.10 4.10 2.24 2.30 2.21 2.29 2.25 2.30 2.24

(±0.19) (0.78) (0.78) (-0.03) (0.00) (-0.04) (0.00) (-0.02) (0.00) (-0.03)

2 0.59 4.10 3.18 0.58 0.65 0.59 0.56 0.56 0.58 0.57

(±0.04) (5.95) (4.39) (-0.02) (0.10) (0.00) (-0.05) (-0.05) (-0.02) (-0.03)

3 1.95 4.10 3.18 1.81 1.92 1.84 1.89 1.85 1.92 1.89

(±0.45) (1.10) (0.63) (-0.07) (-0.02) (-0.06) (-0.03) (-0.05) (-0.02) (-0.03)

4 0.25 4.10 2.26 0.27 0.38 0.35 0.20 0.20 0.25 0.25

(±0.02) (15.40) (8.04) (0.08) (0.52) (0.40) (-0.20) (-0.20) (0.00) (0.00)

5 3.84 6.40 6.40 4.27 4.30 4.26 4.21 4.17 4.31 4.02

(±0.33) (0.67) (0.67) (0.11) (0.12) (0.11) (0.10) (0.09) (0.12) (0.05)

6 1.82 6.40 4.96 1.77 1.85 1.75 1.85 1.85 1.83 1.77

(±0.19) (2.52) (1.73) (-0.03) (0.02) (-0.04) (0.02) (0.02) (0.01) (-0.03)

7 2.68 6.40 4.96 2.79 2.92 2.88 2.77 2.73 2.90 2.68

(±0.52) (1.39) (0.84) (0.04) (0.09) (0.07) (0.03) (0.02) (0.08) (0.00)

8 0.46 6.40 3.52 0.50 0.61 0.58 0.43 0.43 0.49 0.45

(±0.02) (12.91) (6.65) (0.09) (0.33) (0.26) (-0.06) (-0.06) (0.07) (-0.02)

Average relative

error 5.09 2.97 0.02 0.15 0.09 -0.02 -0.03 0.03 -0.01

Average absolute

relative error 5.09 2.97 0.06 0.15 0.12 0.06 0.06 0.04 0.02

Table 7.6.5:

[49], and a future intention is to remove any simulation discrepancy by using the

“exact” technique as outlined in Section 7.4. This, however, will consume a great

deal of computer time and at present must be left as future work. The fitting of a

PH-type approximation to the busy period which takes into account higher moments

is also being investigated. The possible adaption and application to more general

queues, such as the MAP/G/1 and a feedback queue, will also be investigated in

future work.
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7.7 Summary

In this chapter we have proposed a family of methods to approximate the output

process of MAP/PH/1 queues. We compared the methods with exact results and

also with results given in Whitt [52] for the experiments of Shimshak and found that

they performed very well. In the next chapter, it is shown that our approximations

for k ≥ 2 have the property of matching the exact lag-correlation coefficients of the

departure process up to order k − 1.



Chapter 8

Correlation structure of

MAP/PH/1 departure processes

and the family of approximations

8.1 Introduction

Following the notation of Chapter 7, we let D0 and D1 be the m×m matrix descrip-

tors of the MAP such that D1 ≥ 0, and we let (β, S) be the n-state PH-renewal

service distribution. We also assume that the QBD process defines an irreducible

regular Markov chain, so that it has a unique stationary distribution and both D−1
0

and (D0 ⊕ S)−1 exist.

In this chapter we first establish the form of the stationary distribution given in

Chapter 7 for the kth approximation. We then prove that the stationary inter-event

time distribution for each of our approximations is in fact the same as the stationary

inter-departure time distribution for the MAP/PH/1 queue. For k ≥ 2 we then show

that the lag-correlation coefficients c1(k), . . . , ck−1(k) for the stationary inter-event

times of the kth approximation are identical to the lag-correlation coefficients for the

stationary inter-departure times of the MAP/PH/1 queue.

93
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All of our approximations thus have the exact stationary inter-event time dis-

tribution of the departure process from the MAP/PH/1 queue. The correlation

structure between successive inter-event times must therefore be all that separates

our approximations from the actual departure process. This exact correlation struc-

ture would seem to be a very important characteristic to capture when modelling

departure processes. One measure of this correlation structure is in fact given by

the lag-correlation coefficients. Our kth approximation captures exactly all of these

lag-correlation coefficients up to the k − 1st for the stationary inter-departure times

of the MAP/PH/1 queue. This claim is supported by the results given in Chapter

7, where the accuracy of our approximations increased as more of the lag-correlation

coefficients were captured.

For k = 1 the MAP approximation is a PH -renewal process, which has been

shown in [9] to have an inter-event time distribution which is the exact inter-

departure time distribution of the MAP/PH/1 queue. Of course, this process con-

tains no correlation information about the departures from the MAP/PH/1 queue.

The results claimed are trivially true for the case k = 1.

Although it has already been discussed in [9] we will use this case to illustrate

our method. To avoid ambiguity in the following Kronecker algebra, appropriate

columns of ones and identity matrices will be given a subscript denoting their di-

mension.

Recall the filtration matrices which give the departure process of the MAP/PH/1

queue, that is,

Q0 =




B1 B0

A1 A0

A1 A0

A1 A0

. . . . . .




and Q1 =




0

B2 0

A2 0

A2 0
. . . . . .




. (8.1.1)

From (7.2.2), the stationary distribution for this QBD is given by

Ψ = [π0, π1, π2, . . .]
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= π0[I, R0, R0R, R0R
2, . . .]. (8.1.2)

Recall also that the k = 1 MAP approximation to the departure process is given by

Q0(1) =


 D0 D1emβ

0 S


 and Q1(1) =


 0 0

S0x0 (1 − x0em)S0β


 , (8.1.3)

where

x0 = π0R0B2(νD1em)−1,

and ν is the unique stationary distribution of the MAP . Also from equation (7.3.4),

for k ≥ 2, the MAP approximations are given by

Q0(k) =




B1 B0

A1 A0

A1
. . .
. . . A0

A1 E0

E1




, Q1(k) =




0

B2 0

A2
. . .
. . . 0

A2 0

E2 E3




, (8.1.4)

where

A0 = D1 ⊗ In,

A1 = D0 ⊕ S =
(
(Im ⊗ S) + (D0 ⊗ In)

)
,

A2 = Im ⊗ (S0β),

B0 = D1 ⊗ β,

B1 = D0,

B2 = Im ⊗ S0,

E0 = (D1 ⊗ In)(em ⊗ In),

E1 = S,

E2 = S0yk−1 and

E3 = (1 − yk−1emn)S0β.

(8.1.5)

Recall also that S0 = −Sen and that yk−1 is given in equation (7.3.3) by

yk−1 =
xk−1

(
∑∞

j=k−1 xjemn)
for k ≥ 2, (8.1.6)
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where

xk−1 = πkA2(νD1em)−1 = π0R0R
k−1A2(νD1em)−1 for k ≥ 2. (8.1.7)

The following results used throughout this chapter, are given as a lemma. See

Appendix B for some rules on the Kronecker manipulations used in their proofs.

For reference, Appendix C contains the dimensions of common matrices used in this

chapter.

Lemma 8.1 The following relationships hold:

a. (em ⊗ In)en = emn,

b. (em ⊗ In)S0 = (Im ⊗ (S0β))emn,

c. (em ⊗ In)(−S)−1 = (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1 − (D0 ⊕ S)−1(em ⊗ In),

d. πk(Imn − R)−1 = πk + πk+1(Imn − R)−1, for all k ≥ 1,

e. πk(Imn − R)−1(em ⊗ In)S0yk−1 = πk(Im ⊗ (S0β)) for all k ≥ 2.

Proof:

a.

(em ⊗ In)en = (em ⊗ en)

= emn.

b. Using the fact that βen = 1,

(em ⊗ In)S0 = (Imem ⊗ S0)

= (Imem ⊗ (S0βen))

= (Im ⊗ (S0β))(em ⊗ en)

= (Im ⊗ (S0β))emn.
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c. Consider

(D0 ⊕ S)(em ⊗ In)(−S)−1 =
(
(D0 ⊗ In) + (Im ⊗ S)

)
(em ⊗ In)(−S)−1

= (D0em ⊗ In)(−S)−1 + (em ⊗ S)(−S)−1.

From (D0 + D1)em = 0 we have D0em = −D1em, which gives

(D0 ⊕ S)(em ⊗ In)(−S)−1 = (D1em ⊗ In)S−1 − (em ⊗ In)

= (D1 ⊗ In)(em ⊗ In)S−1 − (em ⊗ In),

so that pre-multiplying both sides by (D0 ⊕ S)−1 yields the result.

d. By definition, we have for all k ≥ 1 that

πk(Imn − R)−1 = πk

∞∑
i=0

Ri

= πk + πkR
∞∑
i=0

Ri

= πk + πk+1(Imn − R)−1.

e. Using equation (8.1.7) in (8.1.6), noting that (νD1em)−1 is a scalar and that

πk+i = πkR
i for all k ≥ 1 and i ≥ 0, we see that

yk−1 =
xk−1∑∞

j=k−1 xjemn

=
πkA2(νD1em)−1∑∞

j=k−1 πj+1A2(νD1em)−1emn

=
πkA2

πk(Imn − R)−1A2emn

for all k ≥ 2. (8.1.8)

Substituting the definition of A2 from (8.1.5) into equation (8.1.8), it can be

seen that

yk−1 =
πk(Im ⊗ (S0β))

πk(Imn − R)−1(Im ⊗ (S0β))emn

for all k ≥ 2. (8.1.9)
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Substitution of (8.1.9) into the left hand side of Lemma 8.1e gives

πk(Imn − R)−1(em ⊗ In)S0 πk(Im ⊗ (S0β))

πk(Imn − R)−1(Im ⊗ (S0β))emn

,

which by using Lemma 8.1b yields

πk(Imn − R)−1(em ⊗ In)S0 πk(Im ⊗ (S0β))

πk(Imn − R)−1(em ⊗ In)S0

= πk(Im ⊗ (S0β)), for all k ≥ 2.

8.2 The stationary distribution

To establish the unique form of the stationary distribution for the kth MAP approx-

imation, we will first introduce the following lemma.

Lemma 8.2 The following relationship holds for all k ≥ 2:

πk−1(D1em ⊗ In) + πk(Imn − R)−1(em ⊗ In)
(
S + (1 − yk−1emn)(S0β)

)
= 0.

(8.2.1)

Proof:

Using (8.1.9) and Lemma 8.1d, it follows that

1 − yk−1emn = 1 − πk(Im ⊗ (S0β))emn

πk(Imn − R)−1(Im ⊗ (S0β))emn

=
πk(Imn − R)−1(Im ⊗ (S0β))emn

πk(Imn − R)−1(Im ⊗ (S0β))emn

− πk(Im ⊗ (S0β))emn

πk(Imn − R)−1(Im ⊗ (S0β))emn

=
πk+1(Imn − R)−1(Im ⊗ (S0β))emn

πk(Imn − R)−1(Im ⊗ (S0β))emn

for all k ≥ 2. (8.2.2)
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The quantity given in (8.2.2) is a scalar which we will substitute into the left hand

side of (8.2.1) to give

πk−1(D1em ⊗ In)

+ πk(Imn − R)−1(em ⊗ In)S

+ πk(Imn − R)−1(em ⊗ In)S0πk+1(Imn − R)−1(Im ⊗ (S0β))emnβ
πk(Imn − R)−1(Im ⊗ (S0β))emn

.

Using Lemma 8.1b, this yields

πk−1(D1em ⊗ In)

+ πk(Imn − R)−1(em ⊗ In)S

+ πk(Imn − R)−1(Im ⊗ (S0β))emn
πk+1(Imn − R)−1(Im ⊗ (S0β))emnβ

πk(Imn − R)−1(Im ⊗ (S0β))emn

= πk−1(D1 ⊗ In)(em ⊗ In)

+ πk(Imn − R)−1(Im ⊗ S)(em ⊗ In)

+ πk+1(Imn − R)−1(Im ⊗ (S0β))emnβ,

which by using Lemma 8.1b again yields

πk−1(D1 ⊗ In)(em ⊗ In)

+ πk(Imn − R)−1(Im ⊗ S)(em ⊗ In)

+ πk+1(Imn − R)−1(em ⊗ In)S0β

= πk−1(D1 ⊗ In)(em ⊗ In)

+ πk(Imn − R)−1(Im ⊗ S)(em ⊗ In)

+ πk+1(Imn − R)−1(Im ⊗ (S0β))(em ⊗ In).
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This can be re-arranged using Lemma 8.1d to give

πk−1(D1 ⊗ In)(em ⊗ In)

+ πk(Im ⊗ S)(em ⊗ In)

+ πk+1(Im ⊗ (S0β))(em ⊗ In)

+ πk+1(Imn − R)−1(Im ⊗ S)(em ⊗ In)

+ πk+2(Imn − R)−1(Im ⊗ (S0β))(em ⊗ In).

(8.2.3)

From Ψ(Q0 + Q1) = 0, we see for all j ∈ {0, 1, 2, . . .} and k ≥ 1 that

πk+jA0 + πk+1+jA1 + πk+2+jA2 = 0,

or by using the definitions of A0, A1 and A2 given in (8.1.5) that

πk+j(D1 ⊗ In) + πk+1+j

(
(Im ⊗ S) + (D0 ⊗ In)

)
+ πk+2+j(Im ⊗ (S0β)) = 0

for all k ≥ 1. (8.2.4)

Note that the first three terms in (8.2.3) can be written as(
πk−1(D1 ⊗ In) + πk(Im ⊗ S) + πk+1(Im ⊗ (S0β))

)
(em ⊗ In),

which by (8.2.4) is equal to

−πk(D0 ⊗ In)(em ⊗ In).

We can now re-arrange (8.2.4) to give

πk+1+j(Im ⊗ S) + πk+2+j(Im ⊗ (S0β)) = −πk+j(D1 ⊗ In) − πk+1+j(D0 ⊗ In)

for all k ≥ 1 and j ∈ {0, 1, 2, . . .}.
Summing over all j yields

πk+1(Imn − R)−1(Im ⊗ S) + πk+2(Imn − R)−1(Im ⊗ (S0β))

= −πk(Imn − R)−1(D1 ⊗ In) − πk+1(Imn − R)−1(D0 ⊗ In).

Post-multiplying by (em⊗In) yields an alternative expression for the last two terms

in (8.2.3). That is,

πk+1(Imn − R)−1(Im ⊗ S)(em ⊗ In) + πk+2(Imn − R)−1(Im ⊗ (S0β))(em ⊗ In)

= −πk(Imn − R)−1(D1 ⊗ In)(em ⊗ In) − πk+1(Imn − R)−1(D0 ⊗ In)(em ⊗ In),
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which by using the fact that D0em = −D1em yields

πk+1(Imn − R)−1(Im ⊗ S)(em ⊗ In) + πk+2(Imn − R)−1(Im ⊗ (S0β))(em ⊗ In)

= πk(Imn − R)−1(D0 ⊗ In)(em ⊗ In) − πk+1(Imn − R)−1(D0 ⊗ In)(em ⊗ In)

= πk(D0 ⊗ In)(em ⊗ In).

Therefore (8.2.3) may be written as

−πk(D0 ⊗ In)(em ⊗ In) + πk(D0 ⊗ In)(em ⊗ In) = 0.

Theorem 8.1 The stationary distribution of phases of the kth MAP approximation

to the departure process of the MAP/PH/1 queue is given by

ν(k) =
(
π0, π1, . . . ,πk−1, πk(Imn − R)−1(em ⊗ In)

)
for all k ≥ 1, (8.2.5)

where (π0, π1, π2, . . .) is the stationary distribution of the MAP/PH/1 queue.

Proof:

To prove that the probability vector given in (8.2.5) is the unique stationary

probability vector for the kth MAP approximation, it is only necessary to show that

ν(k)(Q0(k) + Q1(k)) = 0. This is because we have

ν(k)e = π0em +
k−1∑
i=1

πiemn + πk(Imn − R)−1(em ⊗ In)en

= π0em +
k−1∑
i=1

πiemn + πk(Imn − R)−1emn

= π0em + π1(Imn − R)−1emn

= Ψe = 1,

where Ψ is the stationary distribution of the MAP/PH/1 queue.

For k ≥ 2, the kth MAP approximation given by the filtration matrices Q0(k)

and Q1(k) in equation (8.1.4) has identical non-zero entries to the QBD forms Q0

and Q1 given in equation (8.1.1) for levels 0, . . . , k − 2. Because of this as well as
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because of the tri-diagonal structure, it is only necessary to prove that the last two

entries of the row vector ν(k)(Q0(k) + Q1(k)), which correspond to levels k − 1 and

k, are zero. That is, for level k − 1 we need




π0B0 + π1A1 + π2(Imn − R)−1(em ⊗ In)E2 = 0, if k = 2,

πk−2A0 + πk−1A1 + πk(Imn − R)−1(em ⊗ In)E2 = 0, if k > 2,
(8.2.6)

and for level k we need

πk−1E0 + πk(Imn − R)−1(em ⊗ In)(E1 + E3)

= πk−1(D1em ⊗ In) + πk(Imn − R)−1(em ⊗ In)
(
S + (1 − yk−1emn)S0β

)

= 0. (8.2.7)

Note that equation (8.2.7) is the result given by Lemma 8.2. Now from Ψ(Q0+Q1) =

0, it can be seen that

π0B0 + π1A1 + π2A2 = 0 and

πk−2A0 + πk−1A1 + πkA2 = 0, for k > 2.

Using this, we see that for equation (8.2.6) to hold requires

πk(Imn − R)−1(em ⊗ In)E2 = πkA2, for all k ≥ 2,

or, by using the definitions of E2 and A2 that

πk(Imn − R)−1(em ⊗ In)S0yk−1 = πk(Im ⊗ (S0β)), for all k ≥ 2,

which follows directly from Lemma 8.1e.

We have just shown that the stationary distribution of the kth approximation is

identical to the stationary distribution of the MAP/PH/1 queue up to the k − 1st

level with the super level k̄ taking up the remaining probability πk(Imn −R)−1. We

will show in the next section that exactly matching this stationary distribution up

to the k − 1st level imparts more important properties.
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8.3 The stationary inter-event time distribution

We have now established the common form of the stationary distribution for the

MAP approximations. In this section we will show how this specific form translates

to the stationary inter-event time distribution for each of the MAP approximations.

In fact these inter-event time distributions are exactly the same. Moreover, they

are identical to the stationary inter-departure time distribution for the MAP/PH/1

queue. This statement is given in the following theorem.

Theorem 8.2 The stationary inter-event time distributions for each of the MAP

approximations to the departure process of the MAP/PH/1 queue are identical to

the stationary inter-departure time distribution of the MAP/PH/1 queue.

Proof:

For the k = 1 approximation, we have a PH -renewal process given by (α, Q0(1)),

where

α = (x0, (1 − x0em)β) and Q0(1) =


 D0 D1emβ

0 S


 .

Recall that x0 is the stationary distribution of phases of the arrival process imme-

diately after a departure that leaves the queue empty (when a busy period ends).

The stationary inter-event time interval for the k = 1 approximation is, with

probability x0em, the convolution of the idle period and the PH -type service time

and is with probability (1 − x0em), just the PH -type service time. Thus the k = 1

approximation has exactly the same stationary inter-event time distribution as does

the stationary departure process of the MAP/PH/1 queue.

We will now show that this same argument can be applied in the case k ≥ 2,

by proving that the stationary distribution of the system being empty immediately

after a departure (for all k ≥ 2) is given by the same vector x0. The stationary

distribution of the kth MAP approximation is shown in Theorem 8.1 to be given by

ν(k) =
(
π0, π1, . . . ,πk−1, πk(Imn − R)−1(em ⊗ In)

)
for all k ≥ 2,



CHAPTER 8. MAP/PH/1 DEPARTURE CORRELATION STRUCTURE 104

so that the stationary distribution of being in level 1 is the same for all MAP approx-

imations for k ≥ 2. Therefore from equation (7.3.2), we have that the stationary

distribution of the system being empty immediately after a departure in the kth

MAP approximation is, for all k ≥ 2, given by

π1B2(νD1em)−1 = x0. (8.3.1)

We must justify the use of νD1em to normalise equation (8.3.1), by showing that

Ψ(k)Q1(k)e = νD1em.

Ψ(k)Q1(k)e

= π0R0B2em + π0R0

k−2∑
i=1

RkA2emn

+π0R0R
k−1(Imn − R)−1(em ⊗ In) (E2emn + E3em)

= π0R0B2em + π0R0

k−2∑
i=1

RkA2emn

+π0R0R
k−1(Imn − R)−1(em ⊗ In)

(
S0yk−1emn + (1 − yk−1emn)S0βem

)

= π0R0B2em + π0R0

k−2∑
i=1

RkA2emn

+π0R0R
k−1(Imn − R)−1(em ⊗ In)S0

= π0R0B2em + π0R0

k−2∑
i=1

RkA2emn

+π0R0R
k−1(Imn − R)−1(em ⊗ S0β)emn, by Lemma 8.1b

= π0R0B2em + π0R0(Imn − R)−1A2emn

= νD1em, by Lemma 7.1.

Hence for all MAP approximations with k ≥ 1, we have that the stationary inter-

event time interval, is with probability x0em, the convolution of the idle period and

the PH -type service time and with probability (1−x0em), just the PH -type service

time.
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8.4 The mean and variance of the stationary inter-

event times

The previous result of course implies that the mean and variance of the station-

ary inter-event time distribution of each MAP approximation are both identical to

the mean and variance of the stationary inter-departure time distribution of the

MAP/PH/1 queue. However, we will give an alternative direct proof of the equiva-

lence of mean and variance for all of our approximations as motivation for the proof

of another result on lag-correlation coefficients.

Theorem 8.3 The mean of the stationary inter-event times for the kth MAP ap-

proximation to the departure process of the MAP/PH/1 queue is identical to the

mean stationary inter-departure time of the MAP/PH/1 queue, for all k ≥ 1.

Proof:

The proof will proceed in terms of the stationary rates (which are the inverse of

the mean inter-event times). The average arrival rate for the kth MAP approxima-

tion is given by (see [33])

ν(k)Q1(k)e,

so that the mean inter-event time is given by

1

ν(k)Q1(k)e
. (8.4.1)

For k = 1 the stationary arrival rate can be seen directly to be

ν1Q1(1)e = π1(I − R)−1(em ⊗ In)S0.

For k > 1, ν(k)Q1(k)e is given by


π1(Im ⊗ S0)em + π2(I − R)−1(em ⊗ In)S0, if k = 2,

π1(Im ⊗ S0)em +
∑k−1

i=2 πi(Im ⊗ S0β)emn + πk(I − R)−1(em ⊗ In)S0 if k ≥ 3,



CHAPTER 8. MAP/PH/1 DEPARTURE CORRELATION STRUCTURE 106

which using Lemma 8.1b and 8.1d, yields the same result as for k = 1.

Consider the MAP/PH/1 queue represented by the QBD model given in (7.3.1),

from which it can be seen that the stationary departure rate is given by

π1(Im ⊗ S0)em +
∞∑
i=2

πi(Im ⊗ S0β)emn,

which, again using Lemma 8.1b and 8.1d, can be re-written in exactly the same way

as for the case k = 1.

To show equivalence of variance for the stationary inter-event times for all of

our approximations, and also to show equivalence to the variance of the stationary

inter-departure times of the MAP/PH/1 queue, we need the following lemma on

the form of (−Q0(k))−1, for k ≥ 2.

Lemma 8.3 For all k ≥ 2, the matrix −Q0(k)−1 has the form


X(0) X1 X2 X3 · · · Xk−2 Xk−1 Z(k)

0 Y0 Y1 Y2 · · · Yk−3 Yk−2 Zk−1

0 Y0 Y1
. . . Yk−3 Zk−2

0 Y0
. . . . . .

...
...

... 0
. . . . . . Y2 Z3

. . . . . . Y1 Z2

. . . Y0 Z1

0 · · · 0 Z(0)




, (8.4.2)

where

X(0) = −D−1
0 ,

Xi = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(D0 ⊕ S)−1, for i ∈ {1, 2, . . . , k − 1},

Yi = −
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i

(D0 ⊕ S)−1, for i ∈ {0, 1, . . . , k − 2},
Z(0) = −S−1,

Zi = −
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i

(em ⊗ In)S−1 for i ∈ {1, 2, . . . , k − 1} and

Z(k) = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−1

(em ⊗ In)S−1. (8.4.3)
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Proof:

We will show that Q0(k)(−Q0(k))−1 = −I, by considering each non-trivial term.

Using (8.1.4), (8.4.2) and the definitions of the sub-matrices of Q0(k) given in (8.1.5),

Q0(k)(−Q0(k))−1 yields the following non-trivial terms.

B1X(0) = D0(−D0)
−1 = −Im,

B1X1 + B0Y0 = D0D
−1
0 (D1 ⊗ β)(D0 ⊕ S)−1 − (D1 ⊗ β)(D0 ⊕ S)−1 = 0,

B1Xi + B0Yi−1 = D0D
−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(D0 ⊕ S)−1

−(D1 ⊗ β)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(D0 ⊕ S)−1

= 0, for 1 ≤ i < k,

B1Z(k) + B0Zk−1 = D0D
−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−1

(em ⊗ In)S−1

−(D1 ⊗ β)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−1

(em ⊗ In)S−1

= 0,

A1Y0 = (D0 ⊕ S)(−(D0 ⊕ S)−1) = −Imn,

A1Yi + A0Yi−1 = −(D0 ⊕ S)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i

(D0 ⊕ S)−1

−(D1 ⊗ In)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(D0 ⊕ S)−1

= 0, for 1 ≤ i < k − 1,

A1Zi + A0Zi−1 = (D0 ⊕ S)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i

(em ⊗ In)S−1

+(D1 ⊗ In)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(em ⊗ In)S−1
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= 0, for 2 ≤ i < k,

A1Z1 + E0Z(0) = (D0 ⊕ S)
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)
(em ⊗ In)S−1

+(D1 ⊗ In)(em ⊗ In)S−1

= 0 and

E1Z(0) = S(−S)−1 = −In.

Theorem 8.4 The variance of the stationary inter-event times for the kth MAP

approximation to the departure process of the MAP/PH/1 queue is identical to the

variance of the stationary inter-departure times for the MAP/PH/1 queue.

Proof:

Written in the current context, page 396 of Neuts [33] implies that the variance

of the stationary inter-arrival times of the approximation MAPs is given by

σ2 = 2
ν(k)(−Q0(k))−1e

ν(k)Q1(k)e
− 1

(ν(k)Q1(k)e)2
. (8.4.4)

Therefore from (8.4.4) it can be seen that for the variances of the approximations

to be identical it is necessary and sufficient to show that

ν(k)(−Q0(k))−1e

is the same for all k ≥ 1.

The equivalence of variance for all of the approximations will be shown by induc-

tion. First we show that ν(1)(−Q0(1))−1e = ν(2)(−Q0(2))−1e. In the case where

k = 1,

Q0(1) =


 D0 (D1em ⊗ β)

0 S



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and

(−Q0(1))−1 =


 (−D0)

−1 D−1
0 (D1 ⊗ β)(em ⊗ In)S−1

0 (−S)−1


 .

For k = 2,

Q0(2) =




D0 (D1 ⊗ β) 0

0 (D0 ⊕ S) (D1em ⊗ In)

0 0 S




and from (8.4.2), we have

(−Q0(2))−1 =




(−D0)
−1 X1 Z(2)

0 −(D0 ⊕ S)−1 Z1

0 0 (−S)−1


 .

Using these results, we may then write

ν(1)(−Q0(1))−1e = π0(−D0)
−1em + π0D

−1
0 (D1 ⊗ β)(em ⊗ In)S−1en

+π1(Imn − R)−1(em ⊗ In)(−S)−1en,

and

ν(2)(−Q0(2))−1e = π0(−D0)
−1em + π0X1emn + π0Z(2)en

−π1(D0 ⊕ S)−1emn + π1Z1en

+π2(Imn − R)−1(em ⊗ In)(−S)−1en.

Hence using Lemma 8.1d, for equivalence of variance for k = 1 and k = 2 it is both

necessary and sufficient to show that

π0D
−1
0 (D1 ⊗ β)(em ⊗ In)S−1en + π1(em ⊗ In)(−S)−1en

= π0X1emn + π0Z(2)en − π1(D0 ⊕ S)−1emn + π1Z1en. (8.4.5)

Using Lemma 8.1c, the term on the left hand side of (8.4.5) involving π0 becomes

D−1
0 (D1 ⊗ β)(em ⊗ In)S−1en
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= −D−1
0 (D1 ⊗ β)

(
(D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1 − (D0 ⊕ S)−1(em ⊗ In)

)
en

= −D−1
0 (D1 ⊗ β)

(
(D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1en − (D0 ⊕ S)−1emn

)

= Z(2)en + X1emn. (8.4.6)

Using Lemma 8.1c again, consider the term on the left hand side of (8.4.5) involving

π1 , which yields

(em ⊗ In)(−S)−1en = (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S0 − (D0 ⊕ S)−1emn

= Z1en − (D0 ⊕ S)−1emn. (8.4.7)

Hence equation (8.4.5) holds, and so the variance of the inter-event times is equal

for approximations k = 1 and k = 2.

Now let us assume that the variances of the inter-event time distributions are

equal up to an approximation k = g ≥ 2. We show that the variance for approxi-

mation k = g + 1 is identical to the previous variances. From (8.4.2) it can be seen

that for g ≥ 2, we have

−Q0(g)−1 =




(
N

)
Z(g)

Zg−1

...

Z1

0 · · · 0 (−S)−1




(8.4.8)

and

−Q0(g + 1)−1 =




(
N

)
Xg Z(g + 1)

Yg−1 Zg

...
...

Y1 Z2

0 · · · 0

0 · · · 0

−(D0 ⊕ S)−1 Z1

0 (−S)−1




. (8.4.9)

Note that it is not necessary here to give an explicit description for the square matrix

N . Using the stationary distribution given in (8.2.5), and the matrix forms given in
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(8.4.8) and (8.4.9), the equivalence of the variances requires

π0Z(g)en + π1Zg−1en + · · · + πg−1Z1en + πg(Imn − R)−1(em ⊗ In)(−S)−1en

= π0

(
Xgemn + Z(g + 1)en

)
+ π1

(
Yg−1emn + Zgen

)
+ · · · + πg−1

(
Y1emn + Z2en

)

+πg

(
− (D0 ⊕ S)−1emn + Z1en

)
+ πg+1(Imn − R)−1(em ⊗ In)(−S)−1en,

which by Lemma 8.1d, reduces to

π0Z(g)en + π1Zg−1en + · · · + πg−1Z1en + πg(em ⊗ In)(−S)−1en

= π0

(
Xgemn + Z(g + 1)en

)
+ · · · + πg−1

(
Y1emn + Z2en

)

+πg

(
− (D0 ⊕ S)−1emn + Z1en

)
. (8.4.10)

Using Lemma 8.1c, the term involving πg on the left hand side of (8.4.10) becomes

(em ⊗ In)(−S)−1en

= (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1en − (D0 ⊕ S)−1(em ⊗ In)en

= (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1en − (D0 ⊕ S)−1emn

= Z1en − (D0 ⊕ S)−1emn. (8.4.11)

The term involving πg−1 on the left hand side of (8.4.10) now yields

Z1en = (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1en,

which, by Lemma 8.1c, gives

Z1en = (D0 ⊕ S)−1(D1 ⊗ In)(D0 ⊕ S)−1emn

−
(
(D0 ⊕ S)−1(D1 ⊗ In)

)2

(em ⊗ In)S−1en

= Y1emn + Z2en.

It then follows similarly for the terms involving πr, with r = 1, . . . , g − 2, so that

we have

Zren = Yremn + Zr+1en, for r = 1, . . . , g − 1. (8.4.12)
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Lastly, the term containing π0 on the left hand side of (8.4.10) yields

Z(g)en = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)g−1

(em ⊗ In)S−1en,

which by using Lemma 8.1c, gives

Z(g)en = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)g

(em ⊗ In)S−1en

+D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)g−1

(D0 ⊕ S)−1emn

= Z(g + 1)en + Xgemn. (8.4.13)

By substituting (8.4.11), (8.4.12) and (8.4.13) into (8.4.10), it is seen that the gth

and the g+1st approximations have the same variance for their respective stationary

inter-event times. Therefore by induction all of the approximations for k ≥ 1 have

the same variance.

8.5 The lag-correlation coefficients of the approx-

imating MAPs

Now we turn to the study of something which is not covered by Theorem 8.2, that is,

the correlation between successive inter-event times. In this section we use methods

similar to those which were used in Section 8.4, to study the lag-correlation between

successive inter-event times in our approximations.

We note here that all of our MAP approximations are defined by a conservative

generator matrix Q(k) = Q0(k) + Q1(k). The filtration matrix Q0(k) (the unob-

served process) is a non-conservative generator matrix by definition, and Q1(k) (the

observed process) is non-negative. Hence the (i, j)th entry of the (a, b)th block of the

matrix −Q0(k)−1 is the expected sojourn in phase j of level b before an observed

event from the kth MAP approximation, given that the process starts in phase i of

level a. Moreover, the matrix −Q0(k)−1Q1(k) is the probability transition matrix

of the embedded Markov Chain at observed epochs of the kth MAP approximation.
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To assist with the proof of the next theorem concerning lag-correlation coeffi-

cients, we first establish the following lemma.

Lemma 8.4 With

σ = (S0β)(−S)−1en,

θ = (em ⊗ In)σ and

ε = −(Im ⊗ (−S0))D−1
0 em + θ, (8.5.1)

the following relationship holds:

−Q1(k)Q0(k)−1e =




0

ε

θ
...

θ




k − 2

repeats

σ




, for all k ≥ 2. (8.5.2)

Proof:

It has been shown in the proof of Theorem 8.4 that for all g ≤ k with k ∈
{1, 2, . . .}, the matrices −Q0(g)−1 and −Q0(k)−1 have the same row sum for level

0. We have also shown by symmetry, that the row sums are identical for all levels

1, . . . , g−1. Therefore we may use the row sum for level 0 from the matrix −Q0(1)−1

as the row sum for level 0 in −Q0(k)−1, for all k ≥ 1. Similarly, we may use the

row sum for level 1 of the matrix Q0(2)−1 as the row sum for levels 1, 2, . . . , k − 1

in −Q0(k)−1 for all k ≥ 2. Using this result and the fact from (8.4.7) that

−(D0 ⊕ S)−1emn + Z1en = (em ⊗ In)(−S)−1en,
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we have for all k ≥ 2 that

−Q0(k)−1e =




−D−1
0 em + D−1

0 (D1 ⊗ β)(em ⊗ In)S−1en

(em ⊗ In)(−S)−1en

...

(em ⊗ In)(−S)−1en




k − 1

repeats

(−S)−1en




. (8.5.3)

Then using (8.1.4) and (8.5.3), we see that

−Q1(k)Q0(k)−1e =




0

ε

ϑ
...

ϑ




k − 2

repeats

ς(k)




for all k ≥ 2,

where

ε = B2

(
− D−1

0 em + D−1
0 (D1 ⊗ β)(em ⊗ In)S−1en

)

= B2

(
− D−1

0 em + D−1
0 (D1em ⊗ β)S−1en

)

= B2

(
− D−1

0 em + D−1
0 (−D0em ⊗ β)S−1en

)

= B2

(
− D−1

0 em + (−em ⊗ β)S−1en

)

= B2

(
− D−1

0 em + emβ(−S)−1en

)

= −(Im ⊗ S0)D−1
0 em + (Im ⊗ S0)emβ(−S)−1en,

ϑ = A2(em ⊗ In)(−S)−1en

= (Im ⊗ (S0β))(em ⊗ In)(−S)−1en and

ς(k) = E2(em ⊗ In)(−S)−1en + E3(−S)−1en

= S0yk−1(em ⊗ In)(−S)−1en + (1 − yk−1emn)(S0β)(−S)−1en.
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Using the expression for yk−1 for all k ≥ 2 given in (8.1.9), noting that yk−1emn is

a scalar and that βen = 1, we may write

S0yk−1(em ⊗ In)(−S)−1en = S0πk(Im ⊗ (S0β))(em ⊗ In)(−S)−1en

πk(Imn − R)−1(Im ⊗ (S0β))emn

= S0πk(Im ⊗ (S0βenβ))(em ⊗ In)(−S)−1en

πk(Imn − R)−1(Im ⊗ (S0β))emn

= S0πk(Im ⊗ (S0β))(Im ⊗ enβ)(em ⊗ In)(−S)−1en

πk(Imn − R)−1(Im ⊗ (S0β))emn

= S0πk(Im ⊗ (S0β))(em ⊗ enβ)(−S)−1en

πk(Imn − R)−1(Im ⊗ (S0β))emn

= S0yk−1(em ⊗ enβ)(−S)−1en

= S0yk−1emnβ(−S)−1en

= yk−1emn(S0β)(−S)−1en,

so that

ς(k) = S0yk−1(em ⊗ In)(−S)−1en + (1 − yk−1emn)(S0β)(−S)−1en

= yk−1emn(S0β)(−S)−1en − yk−1emn(S0β)(−S)−1en + (S0β)(−S)−1en

= (S0β)(−S)−1en, for all k ≥ 2.

We may also re-write ϑ to get

ϑ = (Im ⊗ (S0β))(em ⊗ In)(−S)−1en

= (em ⊗ (S0β))(−S)−1en

= (em ⊗ In)(S0β)(−S)−1en.

Hence

ς(k) = σ = (S0β)(−S)−1en,

ϑ = θ = (em ⊗ In)σ and

ε = ε = −(Im ⊗ S0)D−1
0 em + θ.
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Theorem 8.5 For each k ≥ 2 and for each i ∈ {1, 2, . . . , k− 1}, the lag-correlation

coefficients ci(k + r) are identical for all r ∈ {0, 1, 2, . . .}.

Proof: We first note that for k = 1 we have a PH -renewal approximation to the

inter-departure time distribution and, as a result, the stationary inter-event times

are non-correlated.

Recall from (7.4.1) that the lag-correlation coefficients ci(k) of these approxima-

tion MAPs are given by

2
ν(k)Q1(k)e

ν(k)[(−Q0(k))−1Q1(k)]i(−Q0(k))−1e − 1
(ν(k)Q1(k)e)2

2
ν(k)Q1(k)e

ν(k)(−Q0(k))−1e − 1
(ν(k)Q1(k)e)2

, for i ≥ 1,

(8.5.4)

where ν(k) is the stationary distribution of the kth MAP approximation given by

Theorem 8.1. The denominator in (8.5.4) and the term 1

ν(k)Q1(k)e
are the expres-

sions for the variance and the mean of the stationary inter-event times respectively,

given in equations (8.4.4) and (8.4.1). We have already shown in Theorem 8.2 that

the stationary inter-event time distributions for all of our approximations are identi-

cal. Hence the proof can be reduced to proving equivalence for each i = 1, . . . , k− 1

and r = 0, 1, 2, . . ., of

ν(k + r)[(−Q0(k + r))−1Q1(k + r)]i(−Q0(k + r))−1e. (8.5.5)

We first show that c1(k) for the stationary inter-event times is common to all

MAP approximations for k ≥ 2. The general case for cg(k) is then shown for all

MAP approximations with k > g ≥ 2.

Case c1(k): Using Lemmas 8.3 and 8.4, for k = 2 and k = 3 respectively, we have

that

Q0(2)−1Q1(2)Q0(2)−1e =




X1ε + Z(2)σ

Y0ε + Z1σ

Z(0)σ


 and
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Q0(3)−1Q1(3)Q0(3)−1e =




X1ε + X2θ + Z(3)σ

Y0ε + Y1θ + Z2σ

Y0θ + Z1σ

Z(0)σ




.

From (8.5.5), equivalence of c1(k) for the k = 2 and k = 3 MAP approximations

necessitates that

π0

(
X1ε + Z(2)σ

)
+ π1

(
Y0ε + Z1σ

)
+ π2(Imn − R)−1(em ⊗ In)Z(0)σ

= π0

(
X1ε + X2θ + Z(3)σ

)

+π1

(
Y0ε + Y1θ + Z2σ

)

+π2

(
Y0θ + Z1σ

)

+π3(Imn − R)−1(em ⊗ In)Z(0)σ,

which reduces to

π0Z(2)σ + π1Z1σ + π2(em ⊗ In)Z(0)σ

= π0

(
X2θ + Z(3)σ

)
+ π1

(
Y1θ + Z2σ

)
+ π2

(
Y0θ + Z1σ

)
. (8.5.6)

We will consider seperately each of the terms on the left hand side of (8.5.6). That

is, for the term involving π0, we have

Z(2)σ = −D−1
0 (D1 ⊗ β)(D0 ⊕ S)−1(D1em ⊗ In)S−1σ

= D−1
0 (D1 ⊗ β)(D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)(−S)−1σ,

which by Lemma 8.1c yields

Z(2)σ = D−1
0 (D1 ⊗ β)

(
(D0 ⊕ S)−1(D1 ⊗ In)

)2

(em ⊗ In)S−1σ

−D−1
0 (D1 ⊗ β)(D0 ⊕ S)−1(D1 ⊗ In)(D0 ⊕ S)−1(em ⊗ In)σ

= Z(3)σ + X2θ.
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Also, by Lemma 8.1c, for the term involving π1 we have that

Z1σ = −(D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ Im)(−S)−1σ

= −
(
(D0 ⊕ S)−1(D1 ⊗ In)

)2

(em ⊗ In)S−1σ

+(D0 ⊕ S)−1(D1 ⊗ In)(D0 ⊕ S)−1(em ⊗ In)σ

= Z2σ + Y1θ.

Again using Lemma 8.1c, for the term involving π2, we have

(em ⊗ In)Z(0)σ = (em ⊗ In)(−S)−1σ

= (D0 ⊕ S)−1(D1 ⊗ In)(em ⊗ In)S−1σ

−(D0 ⊕ S)−1(em ⊗ In)σ

= Z1σ + Y0θ. (8.5.7)

Substitution of these results into (8.5.6) shows the equivalence of c1(k) for the k = 2

and k = 3 MAP approximations.

Assuming c1(2) ≡ c1(3) ≡ . . . ≡ c1(k) for some k ≥ 3, we now show that this

implies that c1(k) = c1(k + 1). For k ≥ 3, we have that

Q0(k)−1Q1(k)Q0(k)−1e =




X1ε +
∑k−1

i=2 Xiθ + Z(k)σ

Y0ε +
∑k−2

i=1 Yiθ + Zk−1σ

Y0θ +
∑k−3

i=1 Yiθ + Zk−2σ
...

Y0θ +
∑1

i=1 Yiθ + Z2σ

Y0θ +
∑0

i=1 Yiθ + Z1σ

Z(0)σ




, (8.5.8)

and therefore from equation (8.5.5), equivalence of c1(k) and c1(k + 1) requires

π0

(
X1ε +

k−1∑
i=2

Xiθ + Z(k)σ
)

+ π1

(
Y0ε +

k−2∑
i=1

Yiθ + Zk−1σ
)

+
k−1∑
j=2

πj

( k−j−1∑
i=0

Yiθ + Zk−jσ
)

+ πk(Imn − R)−1(em ⊗ In)Z(0)σ
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= π0

(
X1ε +

k∑
i=2

Xiθ + Z(k + 1)σ
)

+ π1

(
Y0ε +

k−1∑
i=1

Yiθ + Zkσ
)

+
k∑

j=2

πj

( k−j∑
i=0

Yiθ + Zk−j+1σ
)

+ πk+1(Imn − R)−1(em ⊗ In)Z(0)σ,

which reduces to

π0Z(k)σ +
k−1∑
j=1

πjZk−jσ + πk(em ⊗ In)Z(0)σ

= π0

(
Xkθ + Z(k + 1)σ

)
+

k−1∑
j=1

πj

(
Yk−jθ + Zk+1−jσ

)
+ πk

(
Y0θ + Z1σ

)
.

(8.5.9)

The equivalence of the terms involving πk has already been shown in (8.5.7), and

the equivalences for each term involving πi for i ∈ {0, 1, 2, . . . , k−1}, follow directly

by the same arguments that were used in the previous case for k = 2 and k = 3.

For completeness, we now give this argument for the term involving π0, and then

for the general term πj for j ∈ {1, 2, 3, . . . , k − 1}. Using Lemma 8.1c, we have

Z(k)σ = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−1

(em ⊗ In)S−1σ

= D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−1

(D0 ⊕ S)−1σ

+D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k

(em ⊗ In)S−1σ

= Xkθ + Z(k + 1)σ, (8.5.10)

and for all j ∈ {1, 2, 3, . . . , k − 1},

Zk−jσ = −
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−j

(em ⊗ In)S−1σ

= −
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−j+1

(em ⊗ In)S−1σ

−
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)k−j

(D0 ⊕ S)−1(em ⊗ In)σ

= Zk−j+1σ + Yk−jθ. (8.5.11)

Hence by induction all c1(k)’s are identical for k ≥ 2.

Case cg(k) : 2 ≤ g < k:



CHAPTER 8. MAP/PH/1 DEPARTURE CORRELATION STRUCTURE 120

It remains to be shown that for each k ≥ 3, that

cg(k) = cg(k + r), for all g ∈ {2, 3, . . . , k − 1} and r ∈ {0, 1, 2, . . .}.

We will first simplify the form of the column Q0(k)−1Q1(k)Q0(k)−1e, given in

(8.5.8). From (8.5.10), we see that

Z(2)σ = X2θ + Z(3)σ

= X3θ + X2θ + Z(4)σ

=
...

=
k−1∑
i=2

Xiθ + Z(k)σ,

so that

X1ε +
k−1∑
i=2

Xiθ + Z(k)σ = X1ε + Z(2)σ. (8.5.12)

Similarly, using the result of (8.5.11), we can write

Z1σ = Z2σ + Y1θ

= Z3σ + Y2θ + Y1θ

=
...

= Zk−r+1σ +
k−r∑
i=1

Yiθ.

Therefore for r = 2, we have

Y0ε +
k−2∑
i=1

Yiθ + Zk−1σ = Y0ε + Z1σ, (8.5.13)

and for r ∈ {3, 4, . . . , k − 1}, we have

Y0θ +
k−r∑
i=1

Yiθ + Zk−r+1σ = Y0θ + Z1σ. (8.5.14)

Note that S0 = −Sen and that (β(−S)−1en) is a scalar, so that using (8.5.7) in

(8.5.14), we see that for all r ∈ {3, 4, . . . , k},

Y0θ +
k−r∑
i=1

Yiθ + Zk−r+1σ = Y0θ + Z1σ
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= (em ⊗ In)Z(0)σ

= (em ⊗ In)(−S)−1(S0β)(−S)−1en

= (em ⊗ In)(−S)−1(−S)en

(
β(−S)−1en

)

= (em ⊗ In)en

(
β(−S)−1en

)

=
(
β(−S)−1en

)
emn. (8.5.15)

Substitution of (8.5.12), (8.5.13) and (8.5.15) into equation (8.5.8) yields

Q0(k)−1Q1(k)Q0(k)−1e =




X1ε + Z(2)σ

Y0ε + Z1σ(
β(−S)−1en

)
emn

...(
β(−S)−1en

)
emn




k − 2 repeats

(
β(−S)−1en

)
en




, (8.5.16)

where we emphasise the fact that
(
β(−S)−1en

)
is a scalar.

Now using (8.4.2) and the form of Q1(k) given in (8.1.4), we may write −Q0(k)−1Q1(k)

as 


X1B2 X2A2 X3A2 · · · Xk−1A2 Z(k)E2 Z(k)E3

Y0B2 Y1A2 Y2A2 · · · Yk−2A2 Zk−1E2 Zk−1E3

0 Y0A2 Y1A2 Yk−3A2 Zk−2E2 Zk−2E3

0 Y0A2
. . .

...
...

...
. . . . . . Y1A2 Z2E2 Z2E3

. . . Y0A2 Z1E2 Z1E3

0 · · · 0 Z(0)E2 Z(0)E3




, (8.5.17)

where we recall from (8.1.5) that

B2 = (Im ⊗ S0),

A2 = (Im ⊗ (S0β)),
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E2 = S0yk−1 and

E3 = (1 − yk−1emn)S0β.

Important here is that the matrix (−Q0(k))−1Q1(k) is stochastic, since it is

the probability transition matrix of the embedded Markov chain immediately after

observed epochs of the kth MAP approximation. Therefore, using (8.5.17) and

(8.5.16) we may write
(
(−Q0(k))−1Q1(k)

)2

(−Q0(k))−1e as




C2,0

C2,1

C2,2

(β(−S)−1en)emn

...

(β(−S)−1en)emn




k − 3 repeats

(β(−S)−1en)en




. (8.5.18)

Here using the fact that all row sums of the matrix in (8.5.17) are identically 1, we

have for all k ≥ 3, that

C2,0 = X1B2

(
X1ε + Z(2)σ

)
+ X2A2

(
Y0ε + Z1σ

)

+(em − X1B2em − X2A2emn)(β(−S)−1en),

C2,1 = Y0B2

(
X1ε + Z(2)σ

)
+ Y1A2

(
Y0ε + Z1σ

)

+(emn − Y0B2em − Y1A2emn)(β(−S)−1en) and

C2,2 = Y0A2

(
Y0ε + Z1σ

)
+ (emn − Y0A2emn)(β(−S)−1en).

Similarly for all k ≥ 3 and g < k, we may write
(
(−Q0(k))−1Q1(k)

)g

(−Q0(k))−1e
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as 


Cg,0

Cg,1

...

Cg,g

(β(−S)−1en)emn

...

(β(−S)−1en)emn




k − g − 1 repeats

(β(−S)−1en)en




, (8.5.19)

where the Cg,i are common to all MAP approximations with k > g. Therefore to

show cg(k) ≡ cg(k + 1), for all k ≥ 2 and for all g ∈ {2, 3, . . . , k − 1}, we see from

(8.5.5) that it is only necessary to prove that

πk(Imn − R)−1(em ⊗ In)
(
β(−S)−1en

)
en

= πk

(
β(−S)−1en

)
emn + πk+1(Imn − R)−1(em ⊗ In)

(
β(−S)−1en

)
en,

or, more simply, that

πk(em ⊗ In)
(
β(−S)−1en

)
en = πk

(
β(−S)−1en

)
emn,

which is trivially true, as
(
β(−S)−1en

)
is just a scalar.

Hence by induction ci(k) ≡ ci(k + r) for all k ≥ 2 and 0 < i < k, with r ∈
{0, 1, 2, . . .}.

8.6 MAP/PH/1 departure process lag-correlations

By considering the filtration of the MAP/PH/1 queue given by the matrices Q0 and

Q1 in (8.1.1), we will establish the equation for the lag-correlation coefficients of

the stationary inter-departure times. The matrix Q = Q0 + Q1 has finite, negative
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diagonal entries and finite, non-negative off diagonal entries. The row sums are all

equal to zero, so that Q is a stable and in fact uniform conservative generator matrix.

The matrix Q1 is also strictly non-negative, with some positive entries at every level

greater than zero (as departures are possible from every occupied level). Using the

same methods that were used to establish the form of the matrix −Q0(k)−1 given

in Lemma 8.3, it can readily be seen that the matrix −Q−1
0 is given by

−Q−1
0 =




X(0) X1 X2 X3 · · ·
0 Y0 Y1 Y2 · · ·

0 Y0 Y1

... 0 Y0
. . .

0
. . .

. . .




, (8.6.1)

where

X(0) = −D−1
0 ,

Xi = D−1
0 (D1 ⊗ β)

(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i−1

(D0 ⊕ S)−1 and

Yi = −
(
− (D0 ⊕ S)−1(D1 ⊗ In)

)i

(D0 ⊕ S)−1.

All of the sub-matrices in equation (8.6.1) are finite as the matrix

−(D0 ⊕ S)−1(D1 ⊗ In)

is sub-stochastic. This can be shown by considering the filtration of the conservative

rate matrix Q∗, given by

Q∗
0 = (D0 ⊕ S) and Q∗

1 = (D1 ⊕ S0β),

where Q∗
1 is the observed process. Note that (−Q∗

0)
−1Q∗

1 is the probability transition

matrix of the embedded Markov chain immediately after observed transition epochs

for the process given by Q∗. In this case,

(−Q∗
0)

−1Q∗
1 = (−(D0 ⊕ S))−1(D1 ⊕ (S0β))

= (−(D0 ⊕ S))−1
(
(D1 ⊗ In) + (Im ⊗ (S0β))

)
,
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which is stochastic. Therefore

(−(D0 ⊕ S))−1(D1 ⊗ In)

is sub-stochastic, since −(D0 ⊕ S)−1, (D1 ⊗ In) and (Im ⊗ (S0β)) are non-negative

and non-zero. Hence, (−(D0 ⊕ S)−1(D1 ⊗ In))i exists for all i ≥ 1, and in fact

lim
i−→∞

(−(D0 ⊕ S)−1(D1 ⊗ In))i −→ 0. (8.6.2)

Given that Ψ is the stationary distribution of the MAP/PH/1 queue, the dis-

tribution of states in the queue immediately after an arbitrary departure under the

stationary regime is given by

Ψdep = (ΨQ1e)−1ΨQ1 =
1

λ
ΨQ1. (8.6.3)

Here λ = ΨQ1e (see page 320 of Walrand [50]) is the average departure rate from

the queue.

The distribution of time between two consecutive departures under the stationary

regime is therefore given by

F (t) = Ψdep

( ∫ t1

x1=0
eQ0xQ1dx1

)
e, (8.6.4)

where the exponential is defined by (see Cohen [14] or Walrand [50])

eQ0x =
∞∑
i=0

xi

i!
Qi

0.

Hence the joint distribution of n consecutive inter-departure times can be written

as

F (t1, . . . tn) = Ψdep

( ∫ t1

x1=0
eQ0x1Q1dx1 . . .

∫ tn

xn=0
eQ0xnQ1dxn

)
e. (8.6.5)

Taking the Laplace-Stieltjes transform of this, we get

φ(s1, . . . , sn) =
∫ ∞

t1=0
. . .

∫ ∞

tn=0
e−s1t1 . . . e−sntndF (t1, . . . , tn)

= Ψdep

( ∫ ∞

t1=0
e−s1t1eQ0t1Q1dt1 . . .

∫ ∞

tn=0
e−sntneQ0tnQ1dtn

)
e

= Ψdep

(
(s1I − Q0)

−1Q1 . . . (snI − Q0)
−1Q1

)
e,

for s1, . . . , sn ≥ 0. (8.6.6)



CHAPTER 8. MAP/PH/1 DEPARTURE CORRELATION STRUCTURE 126

All of the above integrals are well defined for s1, . . . , sn > 0, as can be seen from the

definition of matrix resolvents in Chapter 1.3 of Anderson [4]. We also note, since

our matrix Q0 is strictly non-conservative, that the matrix resolvent

(
(s1I − Q0)

−1Q1 . . . (snI − Q0)
−1Q1

)

is in fact defined for si = 0, for all i ∈ {1, 2, . . . n}.
Let X1 and Xn be the random variables representing the first and nth inter-

departure time respectively, immediately after an arbitrary departure under the

stationary regime. The nth lag-correlation coefficient, cn, is then given by

cn =
Cov(X1, Xn)(

V ar(X1)V ar(Xn)
) 1

2

. (8.6.7)

The derivatives of the matrix resolvent given in (8.6.6) exist and are defined in the

proof of Theorem 3.3 of Anderson [4], so that by differentiating the Laplace-Stieltjes

transform (8.6.6), for n = 1, we can get an expression for the mean and variance

of the stationary inter-departure times. That is, the mean inter-departure time is

given by

E[X] = −∂φ(s1)

∂s1

∣∣∣∣
s1=0

= −Ψdep(s1I − Q0)
−2

∣∣∣∣
s1=0

Q1e

= −ΨQ1

λ
(−Q0)

−2Q1e

= −ΨQ0

λ
(−Q0)

−2Q0e

= −Ψ

λ
e

=
1

λ
,

since ΨQ1 = −ΨQ0 and Q1e = −Q0e. The variance σ2, is given by

σ2 = E[X2] − (E[X])2

=
∂2φ(s1)

∂s2
1

∣∣∣∣
s1=0

−
(

1

λ

)2
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= Ψdep2(s1I − Q0)
−3

∣∣∣∣
s1=0

Q1e −
(

1

λ

)2

=
2ΨQ1

λ
(−Q0)

−3Q1e −
(

1

λ

)2

=
2ΨQ0

λ
(−Q0)

−3Q0e −
(

1

λ

)2

=
2Ψ

λ
(−Q0)

−1e −
(

1

λ

)2

.

We can also get an expression for the covariance between the first and nth inter-

departure time, after an arbitrary departure in the stationary version. This is given

for i = 1, . . . , n, by

Cov(X1, Xn) = E[X1Xn] − E[X1]E[Xn].

The term E[X1]E[Xn] is trivially given by
(

1

λ

)2

, and the joint expectation E[X1Xn]

is given by

E[X1Xn] =
∂2φ(s1, . . . sn)

∂s1 ∂sn

∣∣∣∣
si=0

= Ψdep(s1I − Q0)
−2Q1(s2I − Q0)

−1Q1 . . . (sn−1I − Q0)
−1Q1(snI − Q0)

−2Q1e

∣∣∣∣
si=0

= Ψdep(−Q0)
−2Q1

(
(−Q0)

−1Q1

)n−2

(−Q0)
−2Q1e

=
Ψ

λ
(−Q0)

−1Q1

(
(−Q0)

−1Q1

)n−2

(−Q0)
−1e

=
Ψ

λ

(
(−Q0)

−1Q1

)n−1

(−Q0)
−1e. (8.6.8)

Equation (8.6.7) can therefore be written as

cn =

Ψ

λ

(
(−Q0)

−1Q1

)n−1

(−Q0)
−1e −

(
1

λ

)2

2Ψ

λ
(−Q0)

−1e −
(

1

λ

)2 ,

or more simply as

cn =

Ψ

λ

(
(−Q0)

−1Q1

)n−1

(−Q0)
−1e −

(
1

λ

)2

σ2 . (8.6.9)

For an insight into the physical meaning of the terms in (8.6.8), we will construct

the same expression using a probabilistic argument involving the embedded Markov
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chain immediately after departure epochs. Under the stationary regime, the inter-

departure times have the same expected mean and variance. However, we must

consider the the correlation which exists between X1 and Xn. The expectation

E[X1Xn] in (8.6.8), clearly involves two dependent random variables. However,

these random variables are conditionally independent given the state j1 at the end

of X1 and the state in−1 at the beginning of Xn. Thus we can write

E[X1Xn] =
∑

j1,in−1

E[X1Xn|j1, in−1]P (j1, in−1)

=
∑

j1,in−1

E[X1|j1]P (j1, in−1)E[Xn|in−1]

=
∑

j1,in−1

E[X1|j1]P (j1)P (in−1|j1)E[Xn|in−1]. (8.6.10)

This is illustrated in the following diagram.

Figure 8.6.1: Stationary inter-departure intervals.

Recall that in our filtration of the MAP/PH/1 queue, the matrix Q0 governs

transitions which are un-observed and the matrix Q1 governs those transitions which

are observed (the departure process). We will construct individual expressions for

each of the terms P (in−1|j1), E[Xn|in−1], E[X1|j1] and P (j1).

The matrix −Q−1
0 Q1 is the probability transition matrix of the embedded Markov

chain immediately after departure epochs of the MAP/PH/1 queue. Given that the
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process is in state j1 immediately before the observed transition which ends X1, the

probability that it is in state i1 immediately after this transition is given by

ξj1,i1 =




[Q1]j1,i1∑
�

[Q1]j1,�

if
∑

�

[Q1]j1,� > 0,

0 otherwise.

Let Ξ be the matrix of terms ξj,i. This then allows us to use the probability tran-

sition matrix embedded immediately after departures to find P (in−1|j1). Hence if

the process is in state j1 immediately before the first arrival transition, then the

probability of being in state in−1 immediately after the n − 1st arrival transition is

given by

P (in−1|j1) =

[
Ξ
(
− Q−1

0 Q1

)n−2
]

(j1,in−1)

. (8.6.11)

Given that the process is in state in−1 immediately after the n − 1st transition, the

expected sojourn time before the nth observed transition is given by

E[Xn|in−1] =
[
−Q−1

0 e
]
in−1

. (8.6.12)

In order to evaluate P (j1) and E[X1|j1], since j1 is the state immediately before

the transition at the end of X1, we will need to use the time reverse process to give

us this probability and expected sojourn time. If we let Φ = diag(Ψ), then the time

reverse matrix corresponding to Q0 is given by

QR
0 = Φ−1QT

0 Φ, (8.6.13)

where the superscript T indicates the transpose. The jth
1 term of the row vector

[(
−QR

0

)−1
e
]T

contains the expected sojourn time before an observed transition in the reverse time

process, given that it starts in state j1. Thus

E[X1|j1] =
[ (

−QR
0

)−1
e
]T

j1
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=
[ (

−Φ−1QT
0 Φ

)−1
e
]T

j1

=
[
− Φ−1

(
Q−1

0

)T
Φe

]T

j1

=
[
− Φ−1

(
Q−1

0

)T
ΨT

]T

j1

=
[
Ψ(−Q0)

−1
(
Φ−1

) ]
j1

.

This expected sojourn time corresponds to the first inter-arrival time X1, given that

the process ends in j1. Similarly P (j1) is given by the jth
1 term of the distribution

embedded immediately after departures in the reverse time process, that is,
[
ΨR

dep

]
j1

.

This distribution is given by

ΨR
dep =

ΨQR
1

ΨQR
1 e

=
Ψ

(
Φ−1QT

1 Φ
)

Ψ (Φ−1QT
1 Φ) e

=
eT QT

1 Φ

eT QT
1 ΨT =

(ΦQ1e)T

ΨQ1e
,

hence

P (j1) =
[ΦQ1e]j1
ΨQ1e

. (8.6.14)

Therefore, we have

P (j1)P (in−1|j1) =
[ΦQ1e]j1
ΨQ1e

[
Ξ
(
− Q−1

0 Q1

)n−2
]

(j1,in−1)

,

which by the definition of Ξ gives us

P (j1)P (in−1|j1) =
1

ΨQ1e

[
ΦQ1

(
− Q−1

0 Q1

)n−2
]

(j1,in−1)

.

Hence we may write the joint expectation E[X1Xn] as

∑
j1,in−1

E[X1|j1]P (j1)P (in−1|j1)E[Xn−1|in−1]

=
∑

j1,in−1

[
Ψ(−Q0)

−1
(
Φ−1

) ]
j1

1

ΨQ1e

[
ΦQ1

(
− Q−1

0 Q1

)n−2
]

(j1,in−1)

[
−Q−1

0 e
]
in−1

=
Ψ
(
− Q−1

0 Q1

)n−1

(−Q0)
−1e

ΨQ1e
. (8.6.15)

This is the same expression as given in (8.6.8), since λ = ΨQ1e.
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Theorem 8.6 The lag-correlation coefficients ci(k) of the stationary inter-event

times for the kth MAP approximation to the departure process of the MAP/PH/1

queue are identical to the lag-correlation coefficients ci of the stationary inter-departure

times for the MAP/PH/1 queue, for each i ∈ {1, 2, . . . k − 1}, for all k ≥ 2.

Proof:

From the proof of Theorem 8.5, we only need to prove for all k ≥ 2 that

Ψ
(
− Q−1

0 Q1

)i

(−Q0)
−1e = ν(k)

(
− Q0(k)−1Q1(k)

)i

(−Q0(k))−1e,

for all i ∈ {1, 2, . . . k − 1}. (8.6.16)

Using the form of −Q−1
0 given in (8.6.1), and the form of Q1 given in (8.1.1), it may

be seen that

−Q−1
0 Q1 =




X1B2 X2A2 X3A2 X4A2 · · ·
Y0B2 Y1A2 Y2A2 Y3A2 · · ·

0 Y0A2 Y1A2 Y2A2

0 0 Y0A2 Y1A2
. . .

...
. . . . . . . . . . . .




, (8.6.17)

and that

(−Q0)
−1e =




−D−1
0 em +

∑∞
i=1 Xiemn∑∞

i=0 Yiemn

...


 , (8.6.18)

where the sub-matrices are all as previously defined. From equations (8.4.12) and

(8.4.13), we see that

Zren = Yremn + Zr+1en, for all r ≥ 1, and

Z(k)en = Xkemn + Z(k + 1)en, for all k ≥ 2.

Using the recursive definitions of Zr and Z(k) given in (8.4.3) and the statement

given in (8.6.2), we can see that

lim
r→∞Zren = 0, and

lim
k→∞

Z(k)en = 0,



CHAPTER 8. MAP/PH/1 DEPARTURE CORRELATION STRUCTURE 132

so that

Zren =
∞∑

j=r

Yjemn, for all r ≥ 1, (8.6.19)

Z(k)en =
∞∑

i=k

Xiemn, for all k ≥ 2. (8.6.20)

From (8.6.19) and (8.6.20), we can re-write (8.6.18) as

−Q−1
0 e =




−D−1
0 em + X1emn + Z(2)en

Y0emn + Z1en

...


 . (8.6.21)

Hence, using the definition of Y0 given in (8.4.3) and equations (8.4.6) and (8.4.7),

(8.6.21) may be re-written as

−Q−1
0 e =




−D−1
0 em + D−1

0 (D1 ⊗ β)(em ⊗ In)S−1en

(em ⊗ In)(−S)−1en

...


 . (8.6.22)

From (8.1.1) and (8.6.22) we may write

−Q1Q
−1
0 e =




0

B2

(
− D−1

0 em + D−1
0 (D1 ⊗ β)(em ⊗ In)S−1en

)

A2

(
(em ⊗ In)(−S)−1en

)

A2

(
(em ⊗ In)(−S)−1en

)
...




,

which from the proof of Lemma 8.4 is equal to

−Q1Q
−1
0 e =




0

ε

θ

θ
...




, (8.6.23)
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where we recall from (8.5.1) that

θ = (em ⊗ In)(S0β)(−S)−1en and

ε = −(Im ⊗ (−S0))D−1
0 em + θ.

Using (8.6.1) and (8.6.23), we may then write

Q−1
0 Q1Q

−1
0 e =




X1ε +
∑∞

i=2 Xiθ

Y0ε +
∑∞

i=1 Yiθ∑∞
i=0 Yiθ∑∞
i=0 Yiθ

...




. (8.6.24)

We will now simplify the three terms in (8.6.24) and establish the similarity to the

finite case. From (8.5.12) we have that

X1ε +
k−1∑
i=2

Xiθ + Z(k)σ = X1ε + Z(2)σ,

which by equation (8.6.20) yields

X1ε +
∞∑
i=2

Xiθ = X1ε + Z(2)σ. (8.6.25)

Then from (8.5.13), we have that

Y0ε +
k−2∑
i=1

Yiθ + Zk−1σ = Y0ε + Z1σ,

which by equation (8.6.19) yields

Y0ε +
∞∑
i=1

Yiθ = Y0ε + Z1σ. (8.6.26)

Finally from (8.5.14), we have that

k−3∑
i=0

Yiθ + Zk−2σ = Y0θ + Z1σ,

which by equation (8.6.19) yields

∞∑
i=0

Yiθ = Y0θ + Z1σ,
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which by the result in (8.5.15) yields

∞∑
i=0

Yiθ = (β(−S)−1en)emn. (8.6.27)

Hence, using (8.6.25), (8.6.26) and (8.6.27) in (8.6.24), we have that

Q−1
0 Q1Q

−1
0 e =




X1ε + Z(2)σ

Y0ε + Z1σ

(β(−S)−1en)emn

(β(−S)−1en)emn

...




. (8.6.28)

Then since −Q−1
0 Q1 is stochastic, using (8.6.17) and (8.6.28) we may write for all

g ≥ 1 that

(
−Q−1

0 Q1

)g
(−Q0)

−1e =




Cg,0

Cg,1

...

Cg,g

(β(−S)−1en)emn

...




, (8.6.29)

where the terms Cg,i, for all 0 ≤ i ≤ g, are the same as those for all MAP approx-

imations with k > g. This can be readily seen from the fact that for all k ≥ 2,

the first k − 1 entries of the first k rows of the matrix −Q0(k)−1Q1(k) are identical

to those of the matrix −Q−1
0 Q1, and both are stochastic. Comparing (8.6.29) and

(8.5.19), all that remains to be proven for

Ψ
(
− Q−1

0 Q1

)i

(−Q0)
−1e = ν(k)

(
− Q0(k)−1Q1(k)

)i

(−Q0(k))−1e, for all k > i ≥ 2,

to hold true is that

πk(Imn − R)−1(β(−S)−1en)emn = πk(Imn − R)−1(em ⊗ In)(β(−S)−1en)en,

for all k > 2.

This is trivial since (β(−S)−1en) is just a scalar.
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8.7 Summary

We have shown that all of our approximations have the same stationary inter-event

time distribution, and that this distribution is in fact the same as the stationary

inter-departure time distribution for the MAP/PH/1 queue. Furthermore, we have

shown that the kth approximation has the same lag-correlation coefficient structure

as the MAP/PH/1 queue, up to the k−1st lag-correlation coefficient. Both of these

properties contribute to the accuracy of our approximations, with the increase in

the level k delivering a substantial increase in accuracy.



Chapter 9

Summary

We have investigated the departure process from MAP/PH/1 queues using matrix

analytic methods in a variety of different ways. Our initial investigation was from

the perspective of finding a MAP description of this process.

In a 1994 paper, Olivier and Walrand conjectured that the departure process of

a MAP/PH/1 queue is not a MAP unless the queue is a stationary M/M/1 queue.

Their conjecture was based on a claim that the departure process of an MMPP/M/1

queue is not MAP unless the queue is a stationary M/M/1 queue. We showed that

their proof had an algebraic error, which left open the above question of whether

the departure process of an MMPP/PH/1 queue is a MAP or not.

A fundamental question arising from our investigations, was that of identifying

stationary M/M/1 queues in the class of MAP/PH/1 queues. We addressed this

question, using ideas from non-linear filtering theory and the Jordan canonical form

for matrices, to give a characterisation as to when a stationary MAP is a Poisson

process.

This consideration of higher order representations of the Poisson process natu-

rally leads to the related question of minimal order representations for other pro-

cesses. In particular, we considered the question of minimal order representations

for PH -type distributions, an issue which has attracted much interest in the litera-

ture. We gave a short summary of some authors’ work in this field and related their

136
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techniques to our work presented on the PH -type distributions.

We showed that if a MAP/M/1 queue has an exact level and phase independent

stationary distribution, the the MAP is Poisson. On the other hand, we have shown

by example that a stationary MAP/M/1 queue in which the MAP is Poisson does

not necessarily have an exact level and phase independent stationary distribution.

We have also proven that all PH/M/1 queues exhibit what we have termed shift-one

level and phase independence.

The question of whether the departure process of an MAP/PH/1 queue is a

MAP or not is a particularly difficult one, and remains unanswered except in the

case where the stationary arrival MAP to the queue is Poisson.

We have proposed a family of MAP approximations to the departure process

of MAP/PH/1 queues indexed by a parameter k. We have demonstrated the ca-

pabilities of this family of approximations using our own test methods and also

by comparison to other approximation methods in the literature. Our family of

approximations performed very well. We have shown that the entire family of ap-

proximations has a stationary inter-event time distribution which is identical to the

stationary inter-departure time distribution of the MAP/PH/1 queue. The distribu-

tions of the inter-departure times being identical, there remains a distinct difference

between the various approximations; that being the correlation between successive

departure intervals. One measure of this structure is given by the lag-correlation

coefficients. In this respect, we have shown that our kth approximation accurately

captures the first k−1 lag-correlation coefficients of the stationary departure process.

Further investigation of the possibility of placing a metric on the difference be-

tween our approximations and the exact departure process has been undertaken, and

will be reported in future work. In particular, the notion of placing a measure on

the correlation structure which exists between inter-event times shows good promise.

As mentioned before, one measure of this structure is given by the lag-correlation

coefficients. From our results, a simple question therefore might be: “How many of

these lag-correlation coefficients have to be taken into account before the approx-
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imation becomes essentially indistinguishable from the actual departure process?”

A simple modification of the approximation to the busy period in our k = 1 ap-

proximation has also shown good results, to be reported also at a later date. The

generalisation of these approximation techniques to feedback queues and to more

general service times is also reserved for future work. There are many avenues for

future research, including the possible incorporation of our techniques in a package

for network analysis. Here, for example, a fixed point iteration could be used in

conjunction with our methods to gain some approximate solutions.



Appendix A

Tandem queue processes

A.1 The arrival processes.

1. Poisson of rate 1,
σ2

µ2
= 1.0000

2.

B0 =


 −3 2

4 −6


 , A0 =


 0 1

1 1


 ,

σ2

µ2
= 1.0969, c1 = −0.0044, c2 = 0.0004.

3. Erlang (E2) of rate 1,
σ2

µ2
= 0.5000.

4. Hyper-exponential

B0 =


 −2 0

0 −1


 , α = (0.75, 0.25),

σ2

µ2
= 1.2400.

5. Markov Modulated Poisson process MMPP

B0 =


 −10.0 1.0

0.4 −0.8


 , A0 =


 9.0 0.0

0.0 0.4


 ,

σ2

µ2
= 4.9721, c1 = 0.1892, c2 = 0.0896.
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6.

B0 =


 −4 1

1 −6


 , A0 =


 1 2

1 4


 ,

σ2

µ2
= 1.1183, c1 = 0.0046, c2 = 0.0004.

A.2 The first server.

a Negative-exponential,
σ2

µ2
= 1.0000.

b Erlang E2,
σ2

µ2
= 0.5000.

c Hyper-exponential

S =


 −6 0

0 −12


 , β = (0.2, 0.8),

σ2

µ2
= 1.2222.

d Mixed-Erlang

β = (0.6, 0.4),
σ2

µ2
= 0.7188.

A.3 The second server.

i Negative-exponential,
σ2

µ2
= 1.0000.

ii Hyper-exponential

S =


 −15 0

0 −8.75


 , β = (0.3, 0.7),

σ2

µ2
= 1.0952.

iii Erlang E2,
σ2

µ2
= 0.5000.

iv Mixed-Erlang

β = (0.25, 0.75),
σ2

µ2
= 0.9200.



Appendix B

Kronecker manipulations

B.1 Kronecker product and sum

For the m × n matrix A and r × s matrix B the Kronecker product is the mr × ns

matrix defined by

A ⊗ B =




a11B a12B · · · a1nB

a21B a2nB
...

...

am1B am2B · · · amnB




.

For the m×m matrix A and n×n matrix B the Kronecker sum is the mn×mn

matrix defined by

A ⊕ B = A ⊗ In + Im ⊗ B,

where the matrices Im and In are the identity matrices of order m and n respectively.

B.2 Some properties and rules

The proofs for all of the following may be found in Graham [23]. The following is

given with respect to the Kronecker product, since the Kronecker sum may be dealt
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with along the same lines by considering it as the addition of two Kronecker products.

The dimensions of the matrices A, B, C and D are arbitrary unless specified.

1. For a scalar α, we have

A ⊗ (αB) = α(A ⊗ B).

2. Distributive rule with respect to addition.

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

where the operation A + B must be well defined.

3. Associative rule.

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

4. The mixed product rule.

(A ⊗ B)(C ⊗ D) = AC ⊗ BD,

where the products AC and BD must be well defined.

5. For an m × m matrix A and n × n matrix B

(A ⊗ B)−1 = A−1 ⊗ B−1,

provided the inverses exist.



Appendix C

Matrix dimensions

m × m D0

m × m D1

n × n S

1 × n β

n × 1 S0

n × n S0β

mn × mn R

m × mn R0

1 × m π0

1 × mn πi for all i ≥ 1

1 × m y0

1 × mn yi for all i ≥ 1

mn × n (em ⊗ In)

mn × n (D1em ⊗ In)

mn × mn (Im ⊗ (S0β))

mn × mn (D0 ⊗ In)

mn × mn (Im ⊗ S)
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mn × mn A0 = (D1 ⊗ In)

mn × mn A1 = (D0 ⊕ S)

mn × mn A2 = (In ⊗ (S0β))

m × mn B0 = (D1 ⊗ β)

m × m B1 = D0

mn × m B2 = (Im ⊗ S0)

mn × n E0 = (D1 ⊗ In)(em ⊗ In)

n × n E1 = S

n × mn E2 = S0yk−1 for all k ≥ 2

n × n E3 = (1 − yk−1emn)S0β for all k ≥ 2

m × m X(0)

m × mn Xi for all i ≥ 1

mn × mn Yi for all i ≥ 0

n × n Z(0)

mn × n Zi for 0 < i < k

m × n Z(k)
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