Chapter Five

Examination of the Small-Scale Spatial
Variability of Keswick Clay

5.1 INTRODUCTION

As described in the previous chapter, an extensive field study, consisting of 223 CPTs
drilled to a typical depth of 5 metres, was undertaken in order to provide accurate and
closely-spaced data on which small-scale spatial variability analyses could be based. This
chapter details these small-scale spatial variability analyses. The following sections are
subdivided into the assessment of the vertical and the horizontal spatial variability of the
Keswick Clay, using random field theory and geostatistics. However, before presenting
these analyses, it is necessary, first, to discuss the development of 3 computer programs,
SemiAuto, Monte, and CPTSpace, written by the author to facilitate these cal cul ations.

52 DEVELOPMENT OF SOFTWARE

Details of the development, assessment, validation and an itemisation of the features of
each of the three programs are given below.

521 SemiAuto

A number of relatively inexpensive and publicly available programs enable the user to
perform time series and geostatistical analyses. For example, PEST (Brockwell and Davis,
1991), which is a time series modelling package; and GEO-EAS (Englund and Sparks,
1988) and GSLIB (Deutsch and Journel, 1991), which are geostatistical software, provide
facilities for performing spatial variability analyses. However, while these packages are
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168 Chapter 5. Examination of the Small-Scale Spatial Variability of Keswick Clay

very useful, as will be seen later, each of the programs suffer from a number of limitations.
For example, PEST:

* makes no allowance for missing data which, as was shown in 83.4.3.2, is a fundamental
aspect of the measured CPT data;

* restricts the calculation of the autocorrelation, and partial autocorrelation, coefficients to
a maximum of 40 lags, which is equivalent to a distance of 200 mm when a sampling
interval of 5 mm is used;

» allows only one column of data to be input, which implies that the CPT data files
require extensive pre-processing.

On the other hand>EO-EAS limits the input data to a maximum of 1,000 rows; that is,
with a 5 mm sampling interval, a maximum CPT depth of 5 metres. Furthermore,
GEO-EAS andGSLIB provide no data transformation facilities, such as trend removal and
differencing. In addition, the process of model fitting is extremely inefficient due to the
large amount of pre-processing required, as well as the fact that these programs are each
based on the MS-DG3% environment, which provides relatively cumbersome input and

output facilities. Asa consequence, a PC-based computer program, SemiAuto, was written:

to provide an efficient and accurate tool to enable random field theory and geostatistical
analyses to be carried out simultaneously; to account for missing data within these
analyses; and to simplify the process of model fitting. SemiAuto was written using Visual

Basic® Version 3.0 Professional Edition, and was chosen because of its straightforward

ability to utilise many of the excellent graphical features which are characteristic of the
Windows™ environment. The output of SemiAuto was extensively checked and compared

with similar results generated by PEST, GEO-EAS and GSLIB, using data obtained from a
number of sources (e.g. Bowerman and O’Connell, 1979; Clark, 1979; Brockwell and
Davis, 1987). As an example, Clark (1979) presented percentage zinc data from a
hypothetical lead/zinc deposit, which included missing data, as well as results of
semivariogram calculations. These data were input $staAuto, and the results are
shown in Figure 5.1. As is evident from this figure, the experimental semivariogram
results given byemiAuto are identical to those given by Clark (1979).

Among its featuresSemiAuto reads a CPT, or other data file, and allows the user to:

» evaluate the basic statistics of the data, e.g. mean, standard deviation, v@iaete,
» perform data transformation (removal of the mean or trend function, in addition to
performing first-, and second-order differencing);

22 Microsoft Disk Operating System.
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Figure5.1 Comparison of semivariogram output by SemiAuto
with that given by Clark (1979).

» calculate the undrained shear strength from the measured values of q.;

» plot the data and trend function (linear, quadratic, or cubic) with depth;

» calculate and plot the semivariogram, and autocorrelation, partial autocorrelation and
cross-correlation functions;

» assess the stationarity of the data by performing the runs test and Kentt;s

« fit standard models to the semivariogram, e.g. spherical, linear, exponential, etc.;

» evaluate the global statistics, maxima and minima, and histograms of several CPT data
files;

» save the transformed data, and the calculated semivariograms and time series functions,
to a text file for subsequent analyses and presentation.

An example of a typical screen fro8amiAuto is shown in Figure 5.2. The majority of the
spatial variability analyses presented in this chapter ut$saAuto, in one form or
another.

522 Monte

The computer programMonte, was written to allow the user to generate random
realisations of various ARIMA modeldMonte uses thévionte Carlo Method to produce a
given number of random realisations of time series models, using either classically
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Figure5.2 A typical screen from SemiAuto.

transformed data or differenced data. Monte was also written using the Visua Basic
programming environment, and allows the user to specify: the number of realisations; the
depth range over which data will be generated; the ARIMA parameters and the distribution
of the random process, a,. In addition, Monte enables the user to save to a file: the
individual realisations; the minimum and maximum envelopes of the realisations; the
histogram of the generated data; as well as the histogram of a. A typical screen from
Monte is shown in Figure 5.3.

Monte is used in 85.4.2.3 to demonstrate the usefulness of ARIMA models as data
simulators. The results given Ibjonte were thoroughly tested by comparing them with
the original data, and by relating the autocorrelation and partial autocorrelation functions
with those of the ARIMA model. Typical results are presented in 85.4.2.3.
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Figure5.3 A typical screen from the program Monte.

5.2.3 CPTSpace

Lastly, the program CPTSpace was developed to allow the user to generate data sets with a

specified data spacing and start depth. CPTSpace was written in Turbo Pascal Version 6.0,

and is similar in operation and appearance to CPTView and CPTPlot. By specifying a data

spacing of n, and a starting depth, CPTSpace first rationalises the data and then saves every

nth row of measurements, commencing at the start depth, to a user specified data file.
CPTSpaceis used in 85.4.3.1 to enable forecasts to be made using geostatistics, and in 85.5
to investigate the sensitivity of spatial variability parameters with respect to sample
spacing.

5.3 ANALYSISOF SPATIAL VARIABILITY OF KESWICK CLAY

This section details both random field theory and geostatistical analyses, performed to
guantify the small-scale spatial variability of the undrained shear strength of the Keswick
Clay, and will be confined to the data obtained at the South Parklands and Keswick sites.
(The large-scale spatial variability of the undrained shear strength of the Keswick Clay will
be examined in Chapter 7). As detailed in the previous chapter, because of the uncertainty
associated with the evaluation Nf and, hence, the conversion @fto s,, the spatial
variability analyses are based on ‘actual’ measured valugsasfdf,, and not ‘derived’
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valuesof s,. Since g, isrelated to s, it is assumed that the spatia variability models and
results pertain to q,, as well as to the undrained shear strength, s,, of the Keswick Clay.

531 Vertical Spatial Variability

Firstly, in order to evaluate the global statistics, maxima and minima, and histograms of g,
for the entire CPT data set obtained from the South Parklands, the program SemiAuto was
used®. Since the field study was carried out over two separate periods, it is necessary to
distinguish between the two sets of results. The general statistics of the entire set of ¢, data
from the South Parklands site are summarised in Table 5.1. The measurements have been
divided into two data sets because of the two distinct periods over which the CPTs were
performed, as detailed in 84.3.2.

Table5.1 Global statistics of measurements of g, from all CPTs performed at the
South Parklands site.

CPT Data No. of M ean Std. Ccv Skew. | Kurt.
Data | (MPa) | Dev. (%)

All CPTs except CD1to CD5p 182,088 2983 1.7B7 58|82 2422 10.93

CD1 to CD50 49,533 3.284 2.68p 81.19 2.688 9.544

It is evident from Table 5.1 that the global statistics for both the data sets are similar,
though the data from CD1 to CD50 exhibit a greater variation than the former
measurements, as indicated by the higher valu€E\f Figures 5.4 and 5.5 show the
envelopes of maxima and minima for the two data sets. These figures clearly demonstrate
a significant variation in the measurementsgjoficross the study region. The figures also
demonstrate that the depth over which large valuegy obccur are approximately

3.5 metres in Figure 5.4, and 1.8 metres in Figure 5.5. These values are associated with the
largest depths at which the upper surface of the Keswick Clay was encountered.

Figure 5.6 shows a histogram of measurementg, &r each of the two data sets. It is
evident from this figure that both histograms are essentially the same and, hence, there are
no significant differences in the shear strength of the soil between the two periods of field
testing measurement. One likely reason that the histogram for measurements from CPTs
CD1 to CD50 has a higher peak than the former data set is that the CD1 to CD50 data set

% The measurements of fg are examined in §5.5.3.4.
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Figure5.4 Envelope of maxima and minima of measurementsof g, from all CPTs
performed at the South Parklands site, except for CD1 to CD50.

contains a larger population of Keswick Clay measurements, as shown previoudly in
Figures 5.4 and 5.5. In addition, Figure 5.6, as well as the values of skewness and kurtosis
given in Table 5.1, indicate that the histograms are skewed to the right-hand side and
exhibit a sharply peaked distribution.

Of the 222 vertical CPTs performed at the South Parklands site, the results of 30 have been
investigated in detail in order to examine the small-scale, vertical spatial variability of the
Keswick Clay. For each CPT the following steps were carried out:

1. The CPT profile was first edited to remove measurements performed on soils other
than Keswick Clay. This was achieved by referring to Table 5.2, which shows the
depth to Keswick Clay below the ground surface at each CPT sounding. Table 5.2 was
obtained by interpolation with respect to the nine measured depths (shown in bold) by
means of the commercial contouring package, Surfer®*. Generally, the depths used
were dightly in excess of those shown in Table 5.2, so as to account for local depth
variations due to gilgais and interpolation errors. In this way aKeswick Clay CPT file
was created.

2 qurfer isaregistered trademark of Golden Software, Inc., P.O. Box 281, Golden, Colorado, 80402.
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Table5.2 Interpolated depths below ground to the surface of the Keswick Clay,
relevant to the CPTs performed at the South Parklands Site.

Refl 0 1 2 3 4 5 6 7 8 9 10
A 230 | 229 | 226 | 222 | 216 | 208 | 200 | 1.99 | 223 | 295 | 340
B| 229 | 228 | 228 | 223 | 214 | 201 | 1.84 | 1.61 | 155 | 224 | 2.95
C| 22811 228|230 225]| 211|119 |174]139| 110|154 | 223
D| 227|227 | 226 ]| 218|201 | 187 | 1.76 | 1.54 | 1.39 | 161 | 1.98
E| 228 | 225] 219|207 |18 | 173 | 175|175 | 173 | 182 | 1.97
F|l233] 227|219 203] 176|160 | 1.72 | 185 | 191 | 1.96 | 2.03
G241 ]| 235|228 | 213|190 | 176|184 ]| 197 | 204 | 2.06 | 2.08
H|] 252 | 243|238 ]| 230 | 212|201 | 202 ) 211 | 215]| 213 | 211
| | 270 | 249 | 240 | 238 | 226 | 216 | 213 | 217 | 220 | 216 | 2.10
J | 307 ] 276|249 | 243 | 233|223 | 217 | 216 | 216 | 210 | 204
K] 330 ] 307|270 | 251 | 238 | 228 | 220 | 216 | 212 | 2.04 | 2.00

Note:  Measured depths are shown in bold.

2. The Keswick Clay CPT file was loaded into SemiAuto and the depths were then
rationalised, to enable the sleeve friction to be shifted and also to account for missing
depths. In addition, depth rationalisation allows the semivariogram, the auto-
correlation and partial autocorrelation functions to be evaluated correctly, as well as
reducing their calculation times.

3. Trend functions were evaluated using the method of ordinary least squares (OLS) and,
in each case, a quadratic trend was subtracted from the g, data.

4. The residuals were then examined for stationarity by the processes of eyebaling,
examination of the sample ACF and experimental semivariograms, and by performing
the runs test and Kendallistest, as described in §2.5.1.4. In all but one case, the
residuals were found to be stationary after the removal of a quadratic trend.

5. The sample autocorrelation function (ACF) was calculated in accordance with
Equation (2.27).

6. Vanmarcke’'s simple exponential and squared exponential models (Table 2.9) were
fitted to the ACF using the method of OLS.

k-1
7. Bartlett's limits were calculated using;| :iguz riﬁ/ = i@, as described
in §2.5.1.2iii).

8. The scale of fluctuatiord,, was evaluated using the relationships shown in Table 2.9.
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9. The semivariogram was calculated in accordance with Equation (2.49).

10. A model semivariogram was fitted using SemiAuto, which allows the user to adjust the
model by eye, as recommended by Journel and Huijbregts (1978) and Clark (1979). In
every case an appropriate sphericad model was found to fit the experimental
semivariogram.

The results of the random field theory and geostatistical analyses are treated separately
below.

5.3.1.1 Random Field Theory Analyses

In order to illustrate the evaluation process indicated in the previous section, a typical CPT
sounding, C8, is used. The measurements of ¢, plotted against depth below the ground
surface are shown in Figure 5.7. Asindicated by the continuous core sample (Figure 4.7),
and in Table 5.2, the surface of the Keswick Clay was encountered at a depth of 1,100 mm
below the ground surface. Hence, the upper 1,100 mm of g, measurements is removed
from the data set, the result of which is shown in Figure 5.8.

The CPT data, measured within the Keswick Clay for sounding C8, are then loaded into
SemiAuto, the depths are rationalised, and a series of trends are calculated using the method
of OLS. The resulting quadratic trend, as shown in Figure 5.8, is found to exhibit strong
correlation with the measured g, data, with a coefficient of determination, r* = 0.719. The
OLS linear trend, on the other hand, exhibits weak correlation, since r*> = 0.088. The
presence of the quadratic trend suggests that the data are non-stationary and should,
therefore, be removed. It was shown in Chapter 2, and it will be further observed in the
following chapter, that the Keswick Clay is overconsolidated as a result of desiccation.
Overconsolidated soils generally exhibit a quadratic variation of s, with depth and, as a
consequence, it is entirely appropriate to remove such a trend. Hence, the resulting OLS
guadratic trend, shown in Equation (5.1), is subtracted from the measured data set, as
shown in Equation (5.2). The resulting, detrended data set, also known as the residuals,
ch, isshown in Figure 5.9.

G, =3.12-1.16x103y+2.01x107y? (5.1)

where: 0. is the OLS best fit, quadratic function of cone tip
resistance in MPg;
y isthe vertical distance in mm.
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R, =0, —(3.12-1.16x10°y+2.01x107y?) (5.2)

As can be seen from Figure 5.9, the data set of the residuals appears to be stationary since
there is no apparent trend with depth, and there are no obvious indications that varianceis a
function of depth. As a check, the detrended data are subjected to the runs test and
Kendall'st test, with the following results being obtained:

* Runs test: n, = 378;n, = 400;n, = 0;R= 69 andz, = -23.03 0 Fall;
* Kendall'sttest: S=13,175;1 =0.044;,c=1.091 and, = 1.820 O Pass.

As is evident from Figure 5.9, the residuals are consistently over or under the mean and, as
a consequence, in this case, the runs test may be an inappropriate measure of data
stationarity. In contrast, the data set passes Kendakst and, as will be seen later, the
sample ACF and the experimental semivariogram also suggest that the data are stationary.
Before proceeding, however, it is worth noting that by removingtlarorder trend, lower

order trends, that in—1, n-2, ..., 1, are also removed. For example, by eliminating a
guadratic trend, a linear drift is also removed, such that the remaining residuals have a
mean of zero.
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The sample ACF obtained by substituting the residuals, shown in Figure 5.9, into Equation
(2.27), is shown in Figure 5.10. Superimposed on the sample ACF in Figure 5.10, are
models suggested by Vanmarcke (1977a, 1983), as given previously in Table 2.9.

Mode 3
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1

Sample ACF

Figure5.10 Sampleand model ACFsobtained from theresidualsof g, for C8.

The models are fitted using the method of OLS, from which the following parameters were
obtained:

Model 2: p, = Rl where: b=91.4 mm (5.3)

Model 3: p, = e (bl where: ¢ = 96.7 mm (5.4)

The scale of fluctuation, &, is then calculated, for each model, by substituting each
parameter into the relevant relationship, asgivenin Table2.9. That is:

Model 2: 9, =2b=182.7mm (5.5)

Model 3: 8, =+/mc=171.4mm (5.6)

In addition, Bartlett's limitsare determined as;

Bartlett's limit = +1.96/+/n = £1.96/4/769 = +0.071 (5.7)
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By superimposing Bartlett’'s limits onto the sample ACF, the distance teBaekbit's
distance r,, over which the samples are autocorrelated is determined and is shown in
Figure 5.11.
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Figure5.11 Sample ACF, showing Bartlett’s limits, obtained from the residuals o,
for sounding C8, and used to evaluate Bartlett's distance.
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It is evident from Figure 5.11 that the sample ACF intersects Bartlett’s limits at a distance
of approximately 240 mm. Hencg= 240 mm.

The process described above was used in each of the detailed analyses performed on the 30
vertical CPT#, the results of which are summarised in Table 5.3. As shown in this table,
the vertical scale of fluctuatio®,, varies between 63 mm and 255 mm, with a mean of
151.5 mm and a coefficient of variation equal to 30.3%. Bartlett's distance, on the other
hand, varies between 60 and 240 mm, has a mean of 147.8 mm and a coefficient of
variation of 33.4%. One would have confidence in the estimat@sasfdr,, as they are

based on populations with a large number of data points, as indicated in Table 5.3. The
similarity in the results obtained f@;, andr, begs the question of the actual relationship
between these two parameters. Figure 5.12 shows a pgtaghinstr, for the 30 CPTs
examined in detail. Figure 5.12 shows a strong correlation between these two parameters.
In fact, the OLS line of best fit has propertiesrdf= 0.893, and is expressed by the
following function:

&, =0.939r, +14.05 (5.8)

300
=) i
w200
g
2 ]
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> ]
= i
< 1004
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i 50 3, =0.939r, + 14.05
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e LR
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Figure5.12 Relationship between the scale of fluctuation, &,
and Bartlett's distance,ry.

% The measured values of q, f, and Fy for each of the 30 CPTs are shown graphically in Appendix A. In addition, the
complete CPT datafor C8 areincluded in Appendix A.
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Table5.3 Results of random field theory analyses on detrended residuals of q,
measur ements obtained from 30 of the 222 vertical CPTs at the South
Parklands site.
CPT Depth (mm) No. of Autocorrelation Function
No. Min. Max. | Data | ry (mm) r 3, (mm) [ 3, (mm)
AO0 2305 5045 546 195 0.908 172 193
Al 2500 5105 517 150 0.903 126 156
A2 3000 5095 416 150 0.809 168 149
A4 2500 5245 545 145 0.964 141 166
A6 2500 5135 525 160 0.984 166 189
A8 3000 5040 405 65 0.785 71 63
A10 | 3400 5055 327 185 0.890 170 194
Bl 2600 5090 494 70 0.802 63 73
B5 2300 5130 564 120 0.895 116 133
B8 2500 5045 505 110 0.779 100 110
CO 2300 5035 542 100 0.924 104 111
C4 2200 5020 560 120 0.938 126 128
C8 1100 5055 783 240 0.884 183 171
C10 | 2700 5050 466 120 0.954 122 133
CD1 | 2500 5020 501 230 0.980 216 241
CD30| 3000 5015 400 95 0.954 96 107
D5 2500 4945 488 155 0.887 150 168
D8 2400 5045 525 140 0.892 124 152
E1l 2200 5125 581 155 0.982 171 174
E7 2205 5030 560 170 0.863 166 174
GO 2000 5035 603 120 0.966 160 131
G5 2000 5025 602 240 0.904 245 252
G10 | 2200 5005 557 160 0.964 161 181
H7 2200 5045 564 110 0.956 120 122
H10 | 2300 5120 559 160 0946 131 156
11 2100 5150 605 240 0.960 186 209
19 2200 5120 579 180 0.904 154 169
J8 2200 5025 560 115 0.753 92 88
KO 3305 5275 393 145 0.981 143 153
K10 | 2005 5020 599 235 0.950 244 255
Average 152.8 0.909 146.2 156.7
Standard Deviation 49.4 0.07 44.1 47.4
Coefficient of Variation 32.3% 7.2% 30.2% 30.3%

Note:

The measured data associated with each of the 30 CPTs are shown graphically in Appendix A.
An explanation of each of the following parametersis given later in this section.

's

8,: 8,

Bartlett’s distance the distance at which the sample ACF intersects the limit obtained
from Bartlett’s formula;

the autocorrelation coefficient at lag 1. These values will be discussed in §85.5;
scale of fluctuation obtained by fitting Vanmarckaisple exponential and squared
exponential models, respectively, to the sample ACF (Models 2 and 3 in Table 2.9).
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As can be seen, Equation (5.8) is close to the equality line and, hence for all practical
purposes, one can assume that r, expresses the same quantity as that given by the scale of
fluctuation, §,. This is significant since it is more straightforward to evaluate Bartlett's
distance tha®,. Hence, as Bartlett’s distance expresses the extent over which a parameter
exhibits autocorrelation, the scale of fluctuation may also be defined as such. This
suggests that the tercorrelation distance, assigned previously to the parametgrby
Vanmarcke and Fuleihan (1975), may be an inappropriate use of this term, sincg both
andd, are essentially expressions of tuerelation distance, whereas, is not the same as

o, or rg, as indicated previously in 82.5.2.1. For the remainder of this thesis the term
“correlation distance” will refer to the extent over which samples exhibit strong
autocorrelation, which is synonymous with the definitio®cdndr,, and will not refer to

the explanation given by Vanmarcke and Fuleihan (1975).

The results of tests to assess the stationarity of the residual data, that is, the runs test and
Kendall'st test, are shown in Table 5.4. It can be seen from this table that all 30 detrended
data sets failed the runs test, yet all but K10 passed Kend#d#i&. In addition, all 30 of

the detrended data sets passed the eyeball test and, inspection of the sample ACF and
experimental semivariogram. In addition, when each of the 30 data sets were first-, or
second-differenced, none of the transformed data sets passed the runs test. This is contrary
to the other four tests which indicated data stationarity. It is evident from this, that the runs
test may be a poor indicator of data stationarity for large valugsaoidn,.

As a result of the foregoing analyses, within the Keswick Clay, the vertical extent over

which the cone tip resistance is autocorrelated (that is, the correlation distance in the
vertical direction) is of the order of 150 mm, and varies between 60 mm and 240 mm, as
shown in Table 5.3.

The next section presents the results of the geostatistical analyses performed on the same
30 CPTs, and allows comparisons to be made betdjgeep and the range of influenca,

5.3.1.2 Geostatistical Analyses

Again using sounding C8 for illustrative purposes, and the process detailed in 85.3.1, the
experimental semivariogram was evaluated uSiag Auto, and the results are shown in
Figure 5.13. A model semivariogram is then fitted by eye. Figure 5.13 shows a spherical
model superimposed on the experimental semivariogram, and which is expressed by the
following equation:
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Table5.4 Results of the runs tests and Kendall’s tests performed on detrended
residuals ofqg, measurements obtained from 30 of the 222 vertical CPTs
at the South Parklands site.

CPT Runs Test Kendall's T Test

No. n, n, R zZ, S T Z, C
AO | 275 | 271 | 72 | -17.31 |*|| 863 0.006 | 0.203 | 1.012 |V
Al | 245 | 272 | 87 | -15.71 |*|| -6166 | -0.046 | -1.571 | 0912 |V
A2 | 212 | 204 | 82 | -12.47 |*|| -1482 | -0.017 | —-0.523 | 0.966 |V
A4 | 305 | 240 | 52 | -18.93 || 5830 | 0.039 | 1.373 | 1.082 |V
A6 | 234 | 291 | 31 | -20.28 [*|| 6464 | 0.047 | 1.610 | 1.099 |V
A8 | 203 | 202 | 60 | -14.28 [*|| 2686 | 0.033 | 0.987 | 1.068 |V
A10 | 185 | 142 | 43 | -1338 |%|| 2685 | 0.050 | 1.359 | 1.106 |V
Bl | 259 | 235 | 116 | -11.87 |*|| -1251 | —-0.010 | —0.341 | 0.980 |V
B5 | 299 | 265 | 89 [ -16.33 |*|| -7726 | -0.049 | -1.730 | 0.907 |V
B8 | 257 | 247 | 82 | -15.25 |* 84 0.001 | 0.022 | 1.001 |V
CO | 267 | 275 | 40 | -19.95 |*|[ —331 | -0.002 | -0.079 | 0.995 |V
C4 | 271 | 289 | 29 | -21.31 |*|| 2782 | 0.018 | 0.629 | 1.036 |V
C8 | 378 | 400 | 69 [ -23.03 |*|| 13175 | 0.044 | 1820 | 1.091 |V
Cl0 | 234 | 231 | 65 | -15.64 [*|| 3306 | 0.031 | 0988 | 1.063 |V
CD1| 262 | 239 | 20 | -20.70 |*|| 548 0.004 | 0.146 | 1.009 |V
CD30| 178 | 222 | 31 | -16.99 |*|| -196 | -0.002 | -0.073 | 0.995 |V
D5 | 222 | 266 | 79 | -14.99 | *|[ -3936 | -0.033 | -1.094 | 0.936 |V
D8 | 234 | 291 | 67 | -17.10 |*|| 6720 | 0.049 | 1.674 | 1.103 |V
El | 316 | 265 | 12 | -23.20 | *|| 862 0.005 | 0.184 | 1.010 |V
E7 | 268 | 292 | 89 | -16.23 ||| 4510 | 0.029 | 1.020 | 1.059 |V
GO [ 322 | 281 | 25 | -22.61 |%|| 3975 | 0.022 | 0.804 | 1.045 |V
G5 [ 261 | 341 | 77 | -1824 ||| 1671 | 0.009 | 0339 | 1.019 |V
G10 | 256 | 301 | 28 | —21.32 |*|| 7024 | 0.045 | 1.601 | 1.095 |V
H7 | 296 | 267 | 41 | -20.37 |*|| 2099 | 0.013 | 0471 | 1.027 |V
H10 | 293 | 267 | 49 | -19.62 ||| 2012 | 0.013 | 0.455 | 1.026 |V
11 | 318 | 287 | 25 | -22.66 |*|[ -7090 | -0.039 | -1.428 | 0.925 [V
19 | 268 | 310 | 77 | -17.70 | *|[ -5123 | -0.031 | -1.105 | 0.940 [V
J8 | 269 | 291 | 139 | -11.99 |*|| -7666 | —0.049 | -1.733 | 0.907 |V
KO | 215 | 178 | 25 | -17.40 |*|| 2174 | 0.028 | 0.836 | 1.058 |V
K10 | 256 | 343 | 41 | -21.15 | *|| 11653 | 0.065 | 2.382 | 1.139 |x

Note: Themeasured data associated with each of the 30 CPTsare shown graphically in Appendix A.
Inall of the 30 cases, the number of ties, T, and n; = 0.
v Passed the test;

x Failed the test.
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Figure5.13 Experimental and model semivariograms of residual g, data from C8.

Y L wh
= - <
Vs =Cha Toa3H 0 When y=a (5.9)
y, =C+C, when y>a
where: a =330 mm;
C = 0.0231 MP&;

G = 0.0018 MPZ.

As can be seen clearly from Figure 5.13, there is justification for inclusion of a nugget, C,,

within the spherical model. As discussed previously in §2.5.1.Gfi)accounts for
microstructures within the geological material, sampling or statistical errors, and random
measurement errors. The nugget effect will be discussed in greater detail in 85.5.

The results of the geostatistical analyses performed on the 30 vertical CPTs from the South
Parklands are shown in Table 5.5. In each case an appropriate spherical model was found
to fit the experimental semivariogram. Three examples of experimental semivariograms,
and their associated spherical models, are shown in Figures 5.14 to 5.16. They are
included to indicate the variation in how well the spherical model fits the experimental
semivariograms obtained. Figure 5.14 shows an example efcdient fit between the
spherical model and the experimental semivariogram, whereas Figure 5.15 shows an
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Table5.5 Results of geostatistical analyses performed on measurements of g,
obtained from 30 of the 222 vertical CPTs at the South Parklands site.
CPT Depth (mm) No. of Semivariogram
No. [ Min. Max. | Data | a(mm) |C,(MPa2)| C (M Pa2) Co/(C + Co) Fit
A0 2305 5045 546 320 |1.06 x 107%2.66 x 107 3.8% G
Al 2500 5105 517 295 |[1.28 x107%2.69 x 107 4.5% G
A2 3000 5095 416 380 |6.40x10%4.35x107% 12.8% G
A4 2500 5245 545 285 ]2.01x107%1.02x 10" 1.9% G
A6 2500 5135 525 340 0 4.00x 10" 0.0% G
A8 3000 5040 405 100 [1.59x107°(6.97 x107°%| 18.6% Ex
A10 | 3400 5055 327 375 |1.06 x 107%|2.86 x 107 3.6% G
Bl 2600 5090 494 125 [1.50x107°(9.19x107° 14.0% G
B5 2300 5130 564 210 |7.11x107%9.43x 107° 7.0% G
B8 2500 5045 505 215 |2.62x107152x 107 14.7% VG
Co 2300 5035 542 180 |1.61x1076.45x 107 2.4% F
C4 2200 5020 560 180 [1.30x107(2.70 x 1072 4.6% VG
C8 1100 5055 783 330 [1.77x10%2.31%x 107 7.1% Ex
C10 | 2700 5050 466 275 |1.45x 107%7.47 x 107 1.9% F
CD1 | 2500 5020 501 575 0 9.47 x 1072 0.0% F
CD30| 3000 5015 400 175 |2.42x1079.80 x 107 2.4% G
D5 2500 4945 488 330 [4.05x107%5.43 x 10°° 6.9% P
D8 2400 5045 525 315 |1.67x10%2.03 x 10°* 7.6% G
El 2200 5125 581 265 0 1.94 x 10™ 0.0% VG
E7 2205 5030 560 240 [1.81x107°151x107% 10.7% F
GO 2000 5035 603 160 |2.74x107|1.37 x 107 2.0% G
G5 2000 5025 602 450 [3.30x107%4.53 x 107 6.8% Ex
G10 | 2200 5005 557 345 [1.23x107%6.43 x 107 1.9% F
H7 2200 5045 564 200 [1.05x107%4.70 x 107 2.2% VG
H10 | 2300 5120 559 300 [1.67x107%3.97 x 10° 4.0% VG
11 2100 5150 605 535 [4.55x102.34 x 107 1.9% F
19 2200 5120 579 340 [1.15x107%1.97 x 107* 5.5% G
J8 2200 5025 560 175 [1.39x107°(4.77 x 107  22.6% VG
KO 3305 5275 393 240 0 2.15x 107 0.0% G
K10 | 2005 5020 599 430 [9.42x107.01x 10°° 1.3% VG
Average 2895 [1.62x107°541x107% 5.8% -
Standard Deviation 1132 |1.69x107°[7.65x107% 5.8% -
Coefficient of Variation 39.1% | 104.4% | 141.5% 99.5% -

Note: The measured data associated with each of the 30 CPTs are shown graphically in Appendix A.
Fit refers to a subjective assessment of how well the spherical model fits the experimental

semivariogram. (Ex: excellent; VG: very good; G: good; F: fair and P: poor).
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Figure5.16 Experimental and model semivariograms of residual g, data from
D5 - an example of a poor fit.

example of agood fit, and Figure 5.16 an example of a poor fit. Asis evident from these
figures, while the experimental semivariogram fluctuates about the sill of the spherical
model, that is C + C,, one has confidence that the range, a, and the nugget effect, C,, are
accurately modelled. Furthermore, it can be clearly seen from these figures that the
experimental semivariograms are highly regular, that is, there is minima significant
fluctuation between adjacent points. This suggests some degree of confidence with respect
to the form of the resulting experimental semivariograms.

Referring to Table 5.5, the range of influence, a, associated with the spherical models
varies between 100 mm and 575 mm, with a mean of 289.5 mm and a coefficient of
variation, CV, of 39.1%. As defined in 82.5.1.3(i), the paramedgmeasures the distance
over which samples are correlated. Hence, one would expect the vahi&s reisemble
closely those 0b, andr,. While the values ad are similar and within the same order of
magnitude a®, andr;, there is some variation betwearand the parameters obtained
from random field theory analysesThe relationships betweea &, and r, will be
examined further, in 85.3.3.

Since the nugget,, and the parametet, vary considerably with respect to one another,
it is best to examine the ratio between these two variables; that isgldtige nugget,
CO/(C+CO). As shown in Table 5.5, this ratio varies between 0% and 22.6%, with a mean



Chapter 5. Examination of the Small-Scale Spatial Variability of Keswick Clay 189

of 5.8%, and a CV of 99.5%. Asis evident from the high CV, the ratio of C, with respect
to C + C, varies considerably. However, an important conclusion is that the nugget effect
was evident in 26, or 87%, of the 30 CPTsinvestigated.

Before concluding this treatment of the vertical spatial variability of the Keswick Clay, it
will be necessary, in the following chapters, to combine the small-scale variability model
with the large-scale model obtained from measurements of s,, based on the results of
unconsolidated undrained triaxial tests. In order to achieve this, it will be necessary to
derive amodel based on observations of s,, rather than on measurements of ¢, as was the
case in the preceding analyses. The following section compares the various spatial
variability parameters obtained from random field theory and geostatistics, using
measurements of q,, as compared with those obtained using derived values of s,, via the
relationship given previously in Equation (2.5).

5.3.1.3 Spatial Variability Models Derived From s, Compared With q,

In Chapter 2, it was shown that the undrained shear strength, s,, of a clay soil can be
determined from the CPT by the following expression, (given previoudy in Equation (2.5)):

S = N—k (5.10)

In Chapter 4, severa relationships were examined which yielded estimates for the cone
factor, N,, and it was concluded that no unique and reliable estimate for N, could be
obtained. As a result of this, it was decided to base the spatial variability analyses on
measurements of q., rather than on derived values of s,. As a precursor to later analyses,
however, it is necessary to examine the effect that varying N, has on the various random
field theory and geostatistical parameters.

Again using CPT C8 as an example, the measurements of g, within the Keswick Clay,
shown previously in Figure 5.8, were converted to values of s,, via Equation (5.10), by
letting N, = 20 and 40, respectively. The values of o,,, were obtained using:

O, =YZ (5.11)

where: % is the bulk unit weight of the clay, which was set at
18 kN/m? (Cox, 1970);
z Is the depth below ground (m).
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In order to satisfy stationarity, the OLS quadratic trend was removed prior to calculating
the ACF and semivariogram. Figure 5.17 shows the sample and model ACFs given by
N,= 20 and 40 (the plots are identical), whereas Figures 5.18 and 5.19 show the
experimental and model semivariograms given by N, = 20 and 40, respectively. Since the
sample ACF for N, = 20 isidentical to that for N, = 40, the model ACF, and hence the scale
of fluctuation, is independent of N,. Furthermore, the sample ACFs given by N, = 20 and
40, areidentical to the sample ACF obtained by using the residuals of ¢, shown previously
in Figure 5.10. Figures 5.18 and 5.19, on the other hand, indicate that the experimental
semivariogram for N, = 20 isidentical to that for N, = 40, except for the scale of the y-axis,
ory,. Inother words, the ranges of influence, a, areidentical, and only C and C, depend on
the value of N,.

Mode 3

Model 2

¥
o
~
|

|
02 1000

Autocorrelation, r
o

-0.4 § Distance, y (mm)
064
0.8-

4

Sample ACF

Figure5.17 Sampleand model ACFsof theresidualsof s, for C8, obtained by
converting measur ements of g, using N, = 20, and 40.

Hence, both the scale of fluctuation, §,, and the range of influence, a, are independent of

N,. Thisis an important outcome, which will be used later when developing a general
horizontal spatial variability model.

While the analyses, thus far, have been concerned with evauating the vertical spatial
variability of the Keswick Clay, the following two sections deal with quantifying the
horizontal spatial variability of this clay.



Chapter 5. Examination of the Small-Scale Spatial Variability of Keswick Clay 191

(o]
o

~
(@]

D
(@)

)
wW a
(@) o
b b b b b b

N
o

Semivariogram, y (kPa?)
N
S

Experimental Semivariogram

=
o
|

—— Spherical Model

T 1T T T T T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Distance, y (mm)

Figure5.18 Experimental and model semivariograms of theresidualsof s,, for C8,
obtained by converting measurements of g, using N, = 20.

,‘e;‘

)

==

£

£

=1]

=

=

=

g 1:

& 4 - Experimental Semivariogram
2] — Spherical Model
O . T T I T T I T T I T T I T T T I T T T I T T T I T T T I T T T I T T T

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Digtance, y (mm)

Figure5.19 Experimental and model semivariograms of theresidualsof s,, for C8,
obtained by converting measurements of g, using N, = 40.



192 Chapter 5. Examination of the Small-Scale Spatial Variability of Keswick Clay

5.3.2 Horizontal Spatial Variability

The horizontal spatial variability of the Keswick Clay was examined at two sites: the South
Parklands site and the Keswick site. The spatial variability analyses associated with each
of these sites are treated separately, below.

5.3.2.1 South Parklands Site

The data for the horizontal spatial variability analyses were obtained by examining the
measurements of q., at a particular depth below the ground surface, for each of the 51
CPTs located aong a single line. Only the line consisting of CPTs A5 to K5 was
examined, as the FO to K10 transect contained many unsuccessful soundings and, therefore,
contained too much missing information, as indicated in Figure 4.7. Each of the 51 CPTs
along the line A5 to K5 were first rationalised so that consistent depths, spaced at 5 mm
increments, could be established for each of the soundings. Once this was achieved, the 51
CPTs were combined to form a single data file so that adjacent CPTs were placed in
neighbouring columns, as shown in Table 5.6. For example, for a depth of 4,250 mm
below the ground, the horizontal spatial variability data consisted of the following values:
3.3,2.7,2.9, 3.4, 2.64, 2.96, 2.57, 2.33, 2.68, ..., 1.8, 1.7, 2.2, as highlighted in Table 5.6;
with each of these data being spaced at one metre intervals.

In order to guarantee that only Keswick Clay data were used to analyse the horizontal
spatial variability, measurementsapfat depths of 3.5, 3.75, 4.0 and 4.25 metres below the
ground surface were investigated. These data sets are shown in Figure 5.20.

It is evident from Figure 5.20 that each of the data sets appear to be non-stationary. This is
verified by the fact that each of the data sets failed the runs test and Kendaek's
However, once the OLS quadratic trend was removed, each of the four data sets satisfied
the stationarity constraint. The sample ACFs and experimental semivariograms of the
residuals of each data set are shown in Figures 5.21 and 5.22, respectively. Bartlett’'s
distancesr,, were calculated using the technique detailed previously, and the parameters,
a, C, and C, were obtained by fitting appropriate spherical models to the experimental
semivariograms, an example of which is shown in Figure 5.23. Table 5.7 provides a
summary of these parameters.
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Table5.6 Measurements of g, from vertical CPTs A5 to K5 used to generate
horizontal spatial variability data.
Depth Measured Cone Tip Resistance, g, (M Pa)
(mm) | A5 | AB1| A52| A3 | A54| B5 | B51 | B52 | B53 J53 | J54 | K5
5 07]119]14]128]045]|0.69]092] 139 1.39 0 0 | N/A
10 07]119]14]139]0.69]0.81]092]0.92|1.39 0 0 | N/A
15 05]1141]109]116]045]|045]1.39] 1.39| 1.39 0 0 | N/A
20 08]191]14]139]069]|045]139] 139 1.39 N/A|l O | NA
25 09]1191]14]139]045]092]139] 139 1.39 01] 0 |NA
30 1 19| 16 ]1139]|045]069]1.39|1.39] 1.39 03] 0.1 | N/A
35 11]119]19]1163]069]081|1.39|1.39]1.39 0.6 | 0.2 | N/A
40 11]119]19]1139]069]092|1.39|1.39]1.39 0.8 | 0.3 | N/A
45 131 19]19]1163]045]092|1.39|1.39]1.39 1 | 05 | N/A
50 131 19]19]1163]069]092|1.39|1.39]1.39 1.1 | 0.7 | N/A
4250 | 33 | 27 | 29| 34 |264] 296|257 | 2.33| 2.68 18| 1.7 | 22
4255 | 32| 28 | 29| 34 |1265]|3.08| 2.62| 2.32 | 2.67 19| 18 | 22
4260 | 3.2 | 26 | 29| 34 | 274|301 | 2.68| 2.23 | 2.65 19| 18 | 22
Note: N/A refers to missing data.
4.0
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Figure5.20 Horizontal spatial variability data along transect A5to K5.
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Figure5.22 Experimental semivariograms of the residuals of the horizontal
gpatial variability data for transect A5to K5.
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Table5.7 Results of random field theory and geostatistical analyses of horizontal
gpatial variability data, from transect A5to K5, at various depths.
Depth || ACF Semivariogram
(m) rg(m) [[ a(m) |C,(MPa)[C(MPa)| C,/(C+C,)
35 0.9 46 |4.44x1073.89x 107 53%
3.75 1.0 42 |[3.72x107%4.40 x 107 46%
4.0 0.9 45 |[5.16 x 107%4.44 x 107 54%
4.25 0.9 46 |3.61x107%3.14 x 102 53%
Averagell 0.9 45 [4.23x10%3.97 x 102 52%

It isevident from Figures 5.21 and 5.22, and Table 5.7, that:

» thevaue of ry is approximately equal to, or sightly less than, the spacing between the
cone penetration tests;

» at least 3 points define the descending limb of the sample ACFs and the ascending limb
of the experimental semivariograms;
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» the relative nugget values are comparatively large, suggesting a substantial random
component which is difficult to quantify reliably at this scale of testing.

While appropriate models may be fitted to the sample ACFs and the experimental
semivariograms shown in Figures 5.21 and 5.22, the reliability of these models may be
questionable. As a conseguence, it is desirable to obtain measurements of g, at latera
spacings closer than one metre.

As described in 84.3.2, in order to better model the lateral variability of the Keswick Clay,

a further 50 CPTs were drilled at the South Parklands site; with each CPT spaced at
0.5 metre lateral intervals, which is about the closest practical spacing for drilling vertical
CPTs. These 50 CPTs, CD1 to CD50, shown previously in Fijdrevere treated in the

same way as the data from CPTs A5 to K5, detailed above. Agamgasurements from

four separate depths were analysed; that is, 3.5, 4.0, 4.5 and 5.0 metres below the ground
surfacé®. These data were generated using the same procedure detailed above, and the
results are shown in Figure 5.24.
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Figure5.24 Horizontal spatial variability data along transect CD1 to CD50.

% |t should be noted that different depths were used for the CD1 to CD50 transects to those of the A5 to K5 transects.
This is due to missing data at some of the depths along the transects, as well as the variation of the surface of the
Keswick Clay across the South Parklands site.
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Again, in order to satisfy the requirement of stationarity, the OLS quadratic trends for each

data set were evaluated. Interestingly, Kendaltsst indicated stationarity with no trend
removal, whereas the other tests suggested that the untransformed data were non-stationary.
This result seems to indicate that at reasonably low valugssaly less than 50, Kendall’s

T test may, in some cases, fail to reject non-stationary data. This highlights the point made
by Brockwell and Davis (1991) that no single stationarity test should be used in isolation.

The sample ACFs and the experimental semivariograms for each of the four de-trended
data sets are shown in Figures 5.25 and 5.26, respectively. Table 5.8 presents a summary
of r;, a, C, and C values pertaining to the sample ACFs and the experimental
semivariograms. The values &@fC, andC were obtained by fitting appropriate spherical
models to the experimental semivariograms, an example of which is shown in Figure 5.27.

Table5.8 Results of random field theory and geostatistical analyses of horizontal
spatial variability data, from transect CD1 to CD50, at various depths.
Depth || ACF Semivariogram
(m) re(m || a(m) |C,(MPa%|C (MP&) Co/(C + Co)
3.5 1.8 5.2 |3.27x1078.25x 102 28%
4.0 1.3 5.5 |2.25x107%4.01x 102 36%
4.5 1.5 6.3 |2.65x 107%4.63x 102 36%
5.0 1.0 5.3 |1.92x107%5.82x 102 25%
Average|| 1.38 56 |2.52x 107?5.68 x 10 31%

It is evident from Figures 5.25 and 5.26, and Table 5.8, that the data from CD1 to CD50
yield relatively reliable estimates of, a, C, andC, and these results compare well with
those obtained from the one metre spaced data, as shown in Table 5.7. Furthermore, the
relative nugget values have decreased, which is likely to be caused by the difference in
location between transects CD1 to CD50 and A5 to K5, rather than due to the reduced
sample spacing.

It is worth noting that some of the experimental semivariograms, given in Figure 5.26,
describe a structural function which is sometimes monotonidatiyeasing. Such an
example is shown in Figure 5.27. Generally, one would expect a semivariogram to be
monotonically increasing, and in the case of transitive models, to asymptote towards the
sill, as the separation distance increases. This behaviour expresses the notion that adjacent
samples are more closely related than samples separated by greater distances. The
semivariogram given in Figure 5.27 suggests that, for example, samples separated by a
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Figure5.25 Sample ACFsof theresidualsof the horizontal
gpatial variability data for transect CD1 to CD50.
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Figure5.26 Experimental semivariograms of the residuals of the horizontal
gpatial variability data for transect CD1 to CD50.
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Figure5.27 Experimental semivariogram of theresiduals of transect CD1 to CD50
at adepth of 3.5 metres.

distance of 12 metres exhibit greater correlation than samples separated by a distance of

4 metres. However, as pointed out in §2.5.1.3(i), the reliability of the semivariogyais,

related to the number of pairs, which decreases as the separation distancesases.
Journel and Huijbregts (1978) suggested that a minimum of 30 data pairs should be used to
determine the experimental semivariogram. With reference to Figure 5.27, at separation
distances ok > 9.5 metres, the number of data paMss 30. Hence, semivariogram
values at separation distancesin excess of 9.5 metres should be neglected. As a result,
the remaining experimental semivariogram does not exhibit monotonically decreasing
behaviour.

It should be noted that the data sets used in the preceding analyses were obtained by taking
a series of horizontal slices, 5 mm in thickness and, either, 25 or 50 metres in length. Since
the ground surface is not level, as shown by Figures 4.17 and 4.18, the horizontal slices are
not planar sections, but thin strips which follow the topography of the ground surface.
Using these thin strips neglects the influence of macro-structures within the clay mass, such
as gilgais, as well as the influence of variations in the ground surface. Perhaps a more
appropriate technique is to average the valueg ofith depth, and analyse the resulting

data set. Suclspatial averaging would even out local depositional and structural
fluctuations, and may actually give a better representation of the ‘true’ nature of the
horizontal spatial variability of the Keswick Clay. Figure 5.28 shows measuremepts of
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Figure5.28 Horizontal spatial variability data, along transect CD1 to CD50,
aver aged over depths 3.5 m to 4.5 m below the ground surface.

for each of the CPTs from CD1 to CD50, averaged between depths of 3.5 and 4.5 metres
below ground. Again, aquadratic trend, shown in Figure 5.28, was removed from the data
in order to satisfy the stationarity constraint. The sample ACF and experimenta semivario-
gram were calculated as before, and the results are shown in Figures 5.29 and 5.30.

From Figure 5.29, r, was found to equal 2.3 metres. By fitting a suitable spherical model
to the experimental semivariogram in Figure 5.30, the following parameters were obtained:

a = 6.1 metres;
C =412 x 102 MP&:
G, =225 x 10° MP&.

These results compare well with those given previously. However, as one would expect,
the spatial averaging process results in greater continuity in the random field. This is
observed by the values of r, and a being slightly greater than the values obtained in Tables
5.7 and 5.8. In addition, as suggested by Vanmarcke (19774), the variance of the spatially
averaged data is lower than that of the point values, as indicated by the respective values of
Cand C,. Again, the experimental semivariogram values at separation distances in excess
of 9.5 metres were obtained using less than 30 data pairs and, as a result, should be ignored.
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Figure5.29 Sample ACF of theresiduals of thedata, for transect CD1 to CD50,
averaged over depths 3.5 m to 4.5 m below the ground surface.
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Figure5.30 Experimental semivariogram of theresiduals of the data, for transect
CD1to CD50, averaged over depths 3.5 m to 4.5 m below the ground surface.
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It appears from the analyses presented in this section, that the horizontal correlation
distance of the Keswick Clay, obtained from the sample ACF, is between 1 and 2 metres,

and the range, a, obtained from the experimental semivariogram, is between 5 and

6 metres. These results are, however, based on a limited number of data, obtained from a
series of vertical CPTs spaced at lateral intervals of between 0.5 and 1 metre. Asdiscussed

in 84.4, the physical limitations of drilling closely-spaced vertical boreholes, as well as the
limited population size, prompted the drilling of a horizontal cone penetration test at the
Keswick site. The results of this test are examined in the following section.

5.3.2.2 Keswick Site

As detailed previously in 84.4.2, only one horizontal CPT could be performed within the
imposed time and financial constraints at the Keswick site. Figure 5.31 shows the
measured values of plotted against the horizontal penetration distance for the CPT. The
first two metres of data have been removed from the data set, as these measurements are
likely to have been influenced by weathering and movements adjacent to the face of the
embankment. In addition, Figure 5.31 shows a quadratic trend, indicated by Equation
(5.12), fitted to the data by the method of OLS regression.

Q. = —4.44x107°x* +4.66x107* x+1.37 (5.12)
where: X Is the horizontal distance of penetration in mm.
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Figure5.31 Horizontal CPT data with quadratic trend function.
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The statistics for the horizontal g, data set are: mean, m = 2.46 MPa; standard deviation,
o= 0284 MPa; coefficient of variation, CV = 11.53%; skewness = 0.106 MPa*
kurtosis = 2.38 MPa*; and the number of values, N = 1,106.

Figure 5.32 shows the residuals after the quadratic trend has been removed. As can be seen
from this figure, the data set appears to be stationary, which is supported by the fact that
Kendall'st test was passed.
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= ]
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Figure5.32 Residualsof the horizontal CPT data after quadratic trend removal.

The sample ACF of the residual data set is shown in Figure 5.33. Models 2, 3 and 4 were
fitted by means of OLS regression to the sample ACF, two of which are shown in Figure
5.33. A summary of these models, their parameters and their associated horizontal scales
of fluctuation,d,,, is given in Table 5.9.

Table5.9 Summary of random field theory analyses, performed on the residuals
of the horizontal CPT data, obtained from the Keswick site.

Model No. Model ACF Parameters Scale of Fluctuation, &,
2 p, =e P b=71mm 142 mm
3 p, =g X c=80 mm 142 mm
ol x| C
4 b 4 H d=35.6 mm 142 mm
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Figure5.33 Sampleand model autocorrelation functions of
the de-trended horizontal CPT data.

As can be seen from Figure 5.33 and Table 5.9: the model ACFs fit the sample ACF very
well; the resulting horizontal scales of fluctuation, &, = 142 mm; and the values of o, are

identical for each model.

The value of §,,, obtained above, can be compared with Bartlett's distagceBartlett’'s

limits are equal t&0.060, which intersects the sample ACF at a lag of 28, or a distance of
140 mm. Hence, Bartlett's distancg, is equal to 140 mm, which is almost identical to
the 142 mm obtained f@;,. This gives further weight to the conclusion made in §5.3.1.1,
thatr is equal to the scale of fluctuatiay),

The experimental semivariogram of the residual data set is shown in Figure 5.34. Again,
the spherical model was found to satisfactorily describe the experimental semivariogram.
The model is represented by the following equation:

X he wh
= -—— when x<a
Ve =Ca " 2ar < (5.13)
Y, =C+C, when x=a
where: a =190 mm;
C = 6.80x 102 MP&;

C, =0MP3
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Figure5.34 Experimental and model semivariograms of
the de-trended horizontal CPT data.

As can be seen from Figure 5.34, the spherical model fits the experimental semivariogram
very well, especially for values of x between 0 and the range, a. The range of 190 mm is
comparable to the value of &, of 140 mm, obtained earlier.

5.3.2.3 Discussion of Horizontal Spatial Variability Results

The results obtained from the horizontal spatial variability anayses, performed on the
South Parklands data, suggest that the Keswick Clay has a horizontal correlation distance
of between 1 and 2 metres, and a range of influence, a, of between 5 and 6 metres. On the
other hand, the results of similar analyses performed on data from the Keswick site, suggest
that the same clay has a horizontal correlation distance of 140 mm and a range of 190 mm.
While these results appear to contradict one another, they do, however, provide evidence of
nested structures within the Keswick Clay. Nested structures are sources, or structures, of
variability which come into play simultaneously for al distances h, and which are
influenced by the scale of observation (Journel and Huijbregts, 1978).

Vanmarcke (1978) recognised that the scale of spatial variability modelling may vary
greatly, depending upon the type of problem considered. With reference to Figure 5.35,
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Figure5.35 Scales of spatial variability modelling in geotechnical engineering.
(After Vanmarcke, 1978).

Vanmarcke (1978) suggested that the dimensions may include any of the following:

@ sizes of soil particles;

(b) sizes of |aboratory specimens;

(©) vertical sampling distances;

(d) lateral distances between borings;

(e horizontal intervals measured along the centreline of long linear facilities.

As a consequence of this, Vanmarcke (1978) suggested that geotechnical properties may
exhibit two, or more, superimposed scales of fluctuation, depending on the modelling
scale. As mentioned previoudly, the results of the horizontal CPT were obtained by
sampling at 5 mm intervals, over alateral extent of 7.62 metres. The results obtained from
the horizontal spatial variability analyses of the South Parklands data were obtained by
sampling at intervals of 0.5 and 1 metre, over a maximum distance of 50 metres. It is not
surprising, therefore, that two quite distinct scales of fluctuation (6, = 150 mm and
0, = 2 metres) were observed. Vanmarcke (1978) proposed a framework for incorporating
these superimposed variabilities within random field theory. For the one-dimensional case,
Vanmarcke suggested that, if a geotechnical property, v(A2), is actually the sum of two
independent contributions, v,(A2) and v,(Az), then the mean, v, and variance, oZ, of V(Az)
may be expressed as.

V=V, +V,
=0, +0;, =(a +a.)o; .
g, g,

where: a=—;a="—-;ad a +a, =1
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Vanmarcke (1978) proposed that the ACF, p,(Az), and the variance function, I'?(Az), of
V(AZ) could then be expressed as:

p,(A2) =a,p, (A7) +a,p, (A2)
2 2 2 (5.15)
My (A7) =l (A7) +a,l (A2)
Since Vanmarcke proposed this nested structure model, there appears to be no indication of
its use in the geotechnical engineering literature; probably because, until now, there has
been little experimental evidence of geotechnical properties exhibiting the presence of such
structures. Journel and Huijbregts (1978) also provided a similar theoretical setting for
incorporating nested structures. However, their framework was based on the theory of
geostatistics. For example, the semivariogram function, y,,, may be expressed as the linear
combination of several separate semivariograms:

Yo =V t¥n t¥n t o Yy (5.16)
In 85.3.2.1, a number of horizontal semivariogram models were suggested by the

measurements off,, obtained from the South Parklands site. These models may be
summarised by the following spherical model:

—OO6E'E B+003 when x<a (5.17)

y, =0.09 when x=>a

where: a = 6 metres.

In 85.3.2.2, a horizontal semivariogram model was proposed by the measurenmgnts of
obtained from the Keswick site. For comparative purposes, this model is restated here in
the following equation:

—007927 X’ H+O when x<a (5.18)

y, =0.07 when x=>a

where: a = 0.2 metres.

While these models describe the spatial variability of the undrained shear strength of the
Keswick Clay, they are, however, based on measuremeqts @s mentioned previously,

in order to combine both the small-scale and the large-scale spatial variability models, it is
imperative that they be derived from the same parameter. Therefore, it is necessary to
convert the measurementsgpfto estimates of,, in order to maintain consistency with the
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data which will be used to derive the large-scale model, as will be presented in Chapter 6.

It was shown in 85.3.1.3, that the scale of fluctuation and the range of influence are
independent of the value df, which is used to convert measurements.db values of

S,- Only the scale of thg-axis of the semivariogram, and her@gandC, are dependent
onN,. In Chapter 2, several relationships were presented for the estimabipn dfwas
concluded in 84.5, that the expression proposed by Baligh (1975), given in Equation (2.7),
yielded the best estimates of the undrained shear strength of the Keswick Clay from
measurements af,, when compared with observations ffderived from triaxial tests.
Furthermore, Tabletl.4 presented a summary of valuesNgfwhich were obtained by
comparing measurements @f from CPTs, with measurements §ffrom triaxial tests.
Taking an average of the estimatedNpf derived from the relationship proposed by Baligh
(1975), yieldsN, = 17.2. This value o, was then substituted into Equation (5.10), in
order to convert the measurements|db estimates of,. It should be noted that since the
measurements af, were obtained from horizontal transects, the value of the overburden
pressureg,,, is constant for each data set. As a consequepcaay be neglected, since

its inclusion simply results in a small, uniform translationsgf whose influence is
nullified by the removal of the trend.

The experimental semivariograms for the Keswick data (described previously in 85.3.2.2)
and for South Parklands data (given in 85.3.2.1) were obtained by: first converting the
measurements @f, to values ofs,, usingN, = 17.2; and then removing the OLS quadratic
trend in order to achieve stationarity. Appropriate spherical models were then fitted to the
resulting experimental semivariograms, these models being described in Equations (5.19)
and (5.20), and shown graphically in Figure 5.36.

[3x x*[ (5.19)
. i ite; = -— h < :
Keswick Site: A 230% e Hr 0O when x<a
Y, =230 when x=>a
where: a = 0.2 metres.
» South Parklands Site: = 290[3)( —X—3D+ 100 when x<a (5.20)
' Vi = 20, T2 =
Y, =390 when x=a
where: a = 6 metres.

It is evident from Figure 5.36, that the two spherical models appear to be appropriate since,
as the range increases, so too does the level of the sill, as one would expect. Furthermore,
since the model obtained from the Keswick sitg, was measured over a total lateral
extent of 7.62 metres (84.4.2), the model semivariogram is appropriate over a region of
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Figure5.36 Thetwo spherical semivariogram models used to describe the
horizontal spatial variability of the Keswick Clay.

(Note: x-axisis not drawn to scale).

half this distance, say 3 metres. In contrast, the model obtained from the South Parklands
Siteis appropriate over alateral distance of 25 metres.

One would normally have expected that the nugget associated with the South Parklands
model would be greater than the level of the sill of the Keswick site model. It is apparent
from Figure 5.36 that this is not the case. The nugget associated with the South Parklands
model is 100 kP&, whereas the sill level of the Keswick site model is 230 kP, It islikely
that this apparent discrepancy is due to the fact that these two models are based on testing
performed at two different locations within the Adelaide city area. Since a lateral spatial
variability model will be used in Chapter 7 to predict estimates of undrained shear strength
at untested locations, a model based on testing at various sites within the Adelaide city area
Is entirely appropriate.

Combining these two models into a single, nested semivariogram, yields the following
relationship, which is shown graphically in Figure 5.37.

0+ 23055 - 2 Fraeon - X f (5.21)
=0+ -— [ --——H .

Y %al 2a’[] Ea2 2a’ [

where: aQ = 0.2 metres,

a, = 6 metres.
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Figure5.37 Nested horizontal spatial variability model for Keswick Clay.

(Note: x-axisis not drawn to scale).

The genesis of the two horizontal spatial variability structures is unknown. It is possible,

though, that micro-fissuring within the Keswick Clay contributes to the small-scale
variability structure (a, = 0.2 metres); whereas the larger structure (a, = 6 metres) may be
influenced by gilgais and/or jointing within the soil mass (Mardand and Quarterman,

1982). Unfortunately, it is not possible to determine the ‘true’ origin of the variability
structures without far more extensive testing and investigation, which is beyond the scope
of this study.

Since the study of the horizontal spatial variability of the undrained shear strength of the
Keswick Clay was confined to a lateral distance of 50 metres, it is possible that additional
nested structures may exist beyond this distance. The following chapter will detail data
used to quantify the large-scale variability of the Keswick Clay, and Chapter 7 will analyse
these data to determine whether additional nested structures exist beyond distances of
50 metres.

It was found in 85.3.1.1 that the scale of fluctuatidy), is comparable to Bartlett's
distancey,. In addition, thoughd,, r; and the range of influence, are defined as each
measuring the correlation distance, it was observed that valaesrefsomewhat different
to those of bottd, andr,. The following section examines the empirical relationship
between these three parameters.
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533 Relationship Between §,, r, and a

Figure 5.38 shows the relationship between 8, and a, and superimposed on the data is the
OLS line of best fit. The line fits the data reasonably well, as indicated by the value of
r?=0.783. However, one would expect the range of influence to equal zero when 3, equals
zero; which is not the case with the OLS linear function. Figure 5.39 shows the same
graph, but with a power function, obtained by the method of OLS, superimposed on the
data. It is evident from the regression coefficients (r* = 0.829), that the power function
better fits the data, and also passes through the origin.
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Figure5.38 Relationship between d, and a, OL Sbest fit linear function.

Figure 5.40 shows the relationship between Bartlett's distarge, and the range of
influence,a. Superimposed on the data in Figure 5.40 is the OLS best fit power function.
The regression coefficient’(= 0.959) indicates that this relationship is slightly better than
that obtained fod, anda.

Based on the regression analyse$ of; anda, and shown in Figures 5.39 and 5.40, the
following relationships are proposed:

5, = 2.5502°7 (5.22)
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ry =2.023a%"® (5.23)

where: 0,, I'; and a are expressed in mm.

As a consequence of their respective definitions, one would expect the values obtained for
0, and a to be identical, or at least closely related to one another. While the latter was
observed, a non trivial difference was aso found to exist between these two parameters.
The processes of evaluating o, and a are substantially different, and this may explain, to
some degree, the observed discrepancy.

To this point, each of the preceding analyses has been confined to the treatment of
measurements of the cone tip resistance, g.. The following section examines
measurements of sleeve friction, f..

534 Analysis of Sleeve Friction M easurements

Unlike the measurements of g, the measurements of f, are complicated by a phenomenon

that appears to be associated with rebound of the Keswick Clay, and is termed the rebound
phenomenon. Figure 5.41 shows the measurements of f, for the CPT sounding AO.
Immediately below the depth at which penetration of the cone was temporarily suspended

to allow the addition of further drilling rods, the values of f, have increased significantly

above the measurements that were obtained prior to the test being suspended. This can be

seen more clearly by examining the CPT results, obtained from the horizontal CPT
performed at the Keswick site. The measurements of f, from this CPT are shown in Figure

5.42. This CPT was carried out using an hydraulic ram that provided a maximum stroke of

one metre, as described previously in 84.4.2. Hence further drilling rods were added at
penetration intervals of one metre. As is evident from Figure 5.42, this rebound
phenomenon occurs at each point in the CPT where the test is temporarily halted, to allow
additional rods to be added, and recommenced after some short period of time. This is
more evident in Figures 5.43 and 5.44, which show an enlargement of the CPT AO and the
horizontal CPT performed at the Keswick site.

This phenomenon has been observed in each of the CPTs performed at the South Parklands
site, as well as CPTs carried out at other locations throughout the Adelaide city area within
the Keswick Clay. In contrast, however, this phenomenomdtdseen observed in similar

tests performed in other soils. Figure 5.45 shows the measuremdptsbtdined from

CPTs carried out in Red-Brown Earth, and Estuarine Sands and Clays. As can be seen
from this figure, no rebound phenomenon is evident in either of the two CPTs.
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Figure5.45 Seevefriction measurementsfrom CPTsperformed in
red-brown earth and estuarine sands and clays.

Since the Keswick Clay is overconsolidated as a result of desiccation, as described
previously in 82.3.2.1(i), it is proposed that the rebound phenomenon is a consequence of
rebound of the Keswick Clay. As a result of this rebound phenomenon, the prdfile of
measurements is unreliable and does not reflect the ‘true’ distributionwothin the
Keswick Clay at that particular location. Use can only be madg ofeasurements
obtained from the first stage of penetration; that is, from the ground surface to the depth at
which the first drilling rod was added.

The CPT I1 is one of the few CPTs performed, either at the South Parklands or the
Keswick sites, that provides a reasonable amourfif ddta within the Keswick Clay, as
shown in Figure 5.46. As can be seen from this graph, since the likely surface of the
Keswick Clay is encountered at a depth of approximately 2.1 metres below ground, and the
first rod was added at a depth of 3.18 metres, little over one metreath are available

for analysis. As before, the OLS quadratic trend was removed from these data in order to
create a stationary data set, as indicated by Figure 5.47. This plot suggests that the data
appear to be stationary (which is supported by the fact that Kendaés was passed),
although the data may be heteroscedastic. There are too few data, however, to justify any
variance transformations.
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Again, the sample ACF and the experimental semivariogram were evaluated, and the
results are shown in Figures 5.48 and 5.49, respectively. The simple exponential and the
squared exponential models, proposed by Vanmarcke (1977a, 1983), were fitted to the
sample ACF by means of OLS regression, the results of which are given below.

¥

| ‘ |
200 300
Distance (mm)

0.4 i /q .....................
-0.6 Sample ACF

Autocorrelation, »

Figure5.48 Sampleautocorrelation function and model obtained from
residuals of f, measurementsfrom I 1.

(i) Model 2: p, =g MP where: b=52.2 mm (5.24)
y
3, =20=104.4mm (5.25)
(ii) Mode! 3 p, =e 1 where c=63.8mm  (5.26)
8, =+/mc=113.1 mm (5.27)
(iii) Bartlett's distancer,;, was found to equal 95 mm.

Again, the scale of fluctuatio®,, is very close to,. An appropriate spherical model was
fitted to the experimental semivariogram, and the parameters were found to be:

a =240 mm;
C =0.0173 MP§
G =0 MP&.
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Figure5.49 Experimental semivariogram and spherical model obtained
from residuals of f, measurementsfrom |1.

It is evident from Figure 5.49, that beyond the range, a = 240 mm, the experimental
semivariogram exhibits a monotonically decreasing behaviour. Since, in this case, thereis
a sufficient number of data pairs associated with each of the experimental semivariogram
values (N,,;, = 108 at y = 540 mm), this monotonically decreasing behaviour must be
associated with some other phenomenon. Journel and Huijbregts (1978) suggested that a
semivariogram which displays a growth which is not monotonic is said to exhibit a hole
effect. The genesis of hole effects are periodicities within the random field, which may
result from the interception of layer boundaries whose elevation fluctuates with lateral
distance (Journel and Huijbregts, 1978; Hohn, 1988). It is possible that the hole effect may
be the result of variations caused by gilgai structures within the Keswick Clay. However, it
is difficult to confirm this, since a large number of sampling boreholes would be required
to determine the extent of gilgais within the site. Journel and Huijbregts (1978) suggested
that, for estimation purposes, an experimental hole effect that is open to a doubtful
interpretation, or is not very marked, can smply be ignored. Should one wish to model a
hole effect, however, it is possible to do so using the hole effect semivariogram model
(Journel and Huijbregts, 1978; Olea, 1991):

in(ah
Y, :C%—S'n;h i, (5.28)
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As a verification of the relationship between §, and a, substituting a = 240 mm into
Equation (5.22) yields an estimate of &, equal to 138.5 mm, which is dightly higher than
the 110 mm determined above.

The results of this one analysis, concerning the spatial variability of measurements of f
within the Keswick Clay, indicate that the values of §,, r, and a are within the ranges of
those found earlier. Because of the relatively small number of reliable measurements of f,
subsequent spatial variability analyses will be confined to measurements of ., aone. The
sleeve friction data, nevertheless, will be used in the next section to investigate the most
appropriate value for the shift distance, by means of cross-correlation analyses.

535 Cross-Correlation Analysis: g. and f,

Severa researchers and codes of practice (Standards Association of Austraia, 1977,
Campanella et al., 1983; American Society of Testing and Materials, 1986; Schmertmann,

1978; De Beer et al., 1988) suggest that, when interpreting or presenting CPT resullts,
attention should be given to the fact that measurements of ¢ and f, do not correspond to the

same depth. Schmertmann (1978) suggested that if attention is not given to this depth
anomaly, errors can result from the interpretation of CPT measurements, such as the
calculation of the friction ratio, F;. Generally, this is achieved by shifting the f, values

back by the shift distance; usually 75 mm. However, it is difficult to know the ‘true’ shift
distance, as it is a complex variable which involves the extent of the zones of soll
contributing to the measurementscgpfandf,, and the distance between these zones. The
evaluation of the shift distance is made more difficult because the extent of these zones is a
function of the soil type, as mentioned in §2.4.6.

Campanella et al. (1983) suggested that, for heavily interbedded soils and relatively stiff
soils, the shift distance may be significantly greater than the standard shift distance, in their
case equal to 100 mm. The authors developed a data presentation program which enables
the user to input any value for the shift distance and, in addition, provides a facility for the
evaluation of the shift distance, whereby the peaks and troughs gfahdf, profiles may

be matched by means of the graphical capabilities of a computer.

Alternatively, the cross-correlation function (CCF) provides a statistical technique for
determining this shift distance. The recorded valudsméasured from CPT I1 within the
Keswick Clay, and shown previously in Figure 5.46, were combined with the
measurements @, at the same depths, and substituted into Equations (2.46) and (2.47)
via SemiAuto. The resulting sample CCF is shown in Figure 5.50.
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Figure5.50 Sample cross-correlation function of conetip resistance and sleeve
friction measurements, from within the Keswick Clay, from CPT 11.

It can be seen clearly from Figure 5.50 that the maximum value of the cross-correlation
coefficient, r,_, occurs at a spacing of —125 mm*’. This implies that the optimal shift

distance is 125 mm, somewhat higher than the actual physical spacing of 75 mm.

While the CCF shown in Figure 5.50 was derived from sleeve friction data free from the
influence of rebound, as discussed previously, there are extremely limited sleeve friction
data, measured from within the Keswick Clay, which fit this criterion. As a consequence,
in order to derive areliable CCF based on alarge population size, it is preferable to use the
entire g, and f, measurements of each CPT. In order to evaluate an appropriate shift
distance for the Keswick Clay, of the 222 vertical CPTs performed in the South Parklands
site, 77 were chosen, effectively at random, for the purpose of cross-correlation analyses.
Of the 77 examined, 60 yielded sensible results, and these are summarised in Table 5.10;
whereas the remaining 17 produced inappropriate, or ambiguous, shift distances. The
results given in Table 5.10, provide a range of shift distances varying from -70 to
—-165 mm, with amean of —112.7 mm, standard deviation of 22.56 mm and a coefficient of
variation of 20.0%.

%" For each of the cross-correlation analyses referred to in this section, a negative value of spacing implies that the sleeve
friction measurements are shifted upwards relative to the cone tip resistance values.
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Table5.10 Results of cross-correlation analyses performed on measurements of g,
and f_, from 60 of the 222 vertical CPTs, from the South Parklands site.

CPT | Shift Distance | Maximum || CPT | Shift Distance | Maximum
No. (mm) Ky No. (mm) M,
A0 -135 0.853 CD20 -135 0.917
A2 -120 0.957 CD24 -125 0.948
A3 -110 0.916 D4 =75 0.856
A4 -105 0.861 D8 -115 0.763
A5 -145 0.858 D10 -95 0.942
A8 -105 0.967 E4 -80 0.877
Al10 -95 0.911 E53 -130 0.926
B7 -80 0.879 E7 -115 0.568
B8 -125 0.585 F13 =70 0.929
B10 -125 0.896 F33 -150 0.939
Co -90 0.705 F42 -125 0.926
C8 -130 0.773 F6 -105 0.939
CD1 -95 0.826 F64 -115 0.583
CD2 -105 0.824 F8 -80 0.587
CD3 -90 0.733 Fo4 -105 0.617
CD4 -135 0.772 GO -105 0.945
CD5 -110 0.832 G4 -110 0.949
CD6 -105 0.852 G9 -125 0.883
CD7 -80 0.862 G10 -110 0.755
CD8 -90 0.913 HO -120 0.881
CD9 =70 0.895 H5 -100 0.952
CDh11 -135 0.946 11 -110 0.721
CD12 -165 0.922 |7 -145 0.926
CD13 -130 0.953 110 -160 0.731
CD14 -130 0.875 JO =75 0.842
CD15 -140 0.683 J1 -90 0.877
CD16 -95 0.565 J6 -110 0.890
CD17 -155 0.983 KO -135 0.871
CD1s8 -100 0.961 K4 -120 0.861
CD19 -115 0.820 K8 -110 0.875

The mgority of the CPT data yielded CCFs that enabled a relatively straightforward and
unambiguous value of the shift distance to be determined. Two such examples are given in
Figures 5,51 and 5.52. As can be seen from these figures, a single and/or relatively
obvious maximum value for the correlation coefficient is given, which can readily be
associated with an appropriate shift distance. For example, Figure 5.51 yields a maximum
value of 0.916 for the correlation coefficient, which occurs at a distance of =110 mm,
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Figure5.51 Sample CCF of g, and f, measurements from CPT A3.
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Figure5.52 Sample CCF of g, and f, measurements from CPT B10.
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whereas Figure 5.52 produces a maximum value of 0.963 at a shift distance of —125 mm.
Occasionally, however, the cross-correlation analyses yielded CCFs that indicated
inappropriate shift distances. Two such examples are given in Figure 5.53. As s evident

from these plots, the globa maximum value of the cross-correlation coefficient, for both

CPTs Al and CDA40, yield unrealistic values for the shift distance. In the maority of cases

the occurrence of a ‘poor’ CCF, as shown in Figure 5.53, can be explained by the presence
of one or more relatively large rebound phenomena, contained within the sleeve friction
data. However, not every poor CCF can be attributed to this. The CPT CD40 is a good
example. As shown in Appendix A, where the complete CPT profile of CD40 is given,
this cone penetration test does not appear to have any obvious data irregularities, nor
rebound phenomena, that one would expect would cause poor cross-correlation results. In
addition, since each of the CPTs, including CD40, contain measuremeptanuff, from

soils other than the Keswick Clay, it is possible that these values contribute, in some way,
to the poor cross-correlation results. Yet, Figure 5.53, clearly demonstratdscthat
maxima occur at shift distances consistent with those given in Table 5.10. In fact, each of
the 17 cases which resulted in poor CCFs, yielded local maxima which compare well with
those in Table 5.10.

- 1 Maximum cross-correlation _ .
Maximum cross-correlation coefficient at -400 mm 1 Local maximum
coefficient at -870 mm - 08 I 0.8 at -130 mm
Local maximum(~ 0.6 - 06

a-120mm |- 04 " 04
i
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L 1 -
Cross-Correlation Coefficient Cross-Correlation Coefficient
(a) (b)

Figure5.53 Sample CCF of g, and f, measurements from CPT:
(a) Al and (b) CD40.

The measurements of andf,, obtained from the horizontal CPT and performed at the
Keswick site, were also used to generate the sample CCF, the results of which are shown in
Figure 5.54. As can be seen from this figure, the maximum cross-correlation coefficient,
of magnitude 0.607, occurs at a shift distance-10 mm, which is consistent with the
results given in Table 5.10.
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Figure5.54 Sample CCF of g. and f, measurements from the
horizontal CPT performed at the Keswick site.

In summary, the cross-correlation analyses presented in this section suggest that,
statistically, the most appropriate shift distance associated with CPTs performed in the
Keswick Clay varies between =70 and —165 mm, with a mean of —-112.7 mm, standard
deviation of 22.56 mm and a coefficient of variation of 20.0%.

5.3.6 Discussion of Spatial Variability Results

Throughout the course of the analyses presented in this chapter, it has been found that the
distance indicated by the intersection of the sample ACF and the +2/ VN line, presently
referred to as Bartlett’s distanag, yields almost identical values to those of the scale of
fluctuation, d,. Sinced, is evaluated by fitting one of Vanmarcke’s ACF models to the
sample ACF by means of ordinary least squares (OLS), it is computationally more efficient
to evaluaterg, instead. While it has been shown, in each of the relevant analyses
performed in this chapter, thag yielded excellent estimations &f, it remains to be
demonstrated whether such a relationship will be observed in other soil types.

The results presented in this section have been obtained using the classical decomposition
technique for the transformation of non-stationary data. While the process of differencing
is a valid and useful technique for transforming non-stationary data to the state of
stationarity, it is known that such a process completely destroys the continuity of the
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original data, which is an undesirable outcome when quantifying the correlation distance of
a soil (Campanella et al., 1987). In fact, the sample ACF of the residuas, after first- or
subsequent differencing, yields essentially a white noise process, or at best, a significant
peak up to a lag of perhaps 3. In addition, the experimental semivariogram of the
differenced residuals al'so demonstrates a white noise process, as indicated by a pure nugget
model. This would imply an extremely small correlation distance and range of influence,
which isin conflict with the results obtained from classical decomposition, as well as those
published in the literature. While the technique of differencing is used extensively in
random field theory, particularly in the Box-Jenkins methodology, it is not used at all in the
field of geostatistics. As a consequence of this, the transformation process of differencing
has not been used to assess the correlation distance, nor the range of influence of the
Keswick Clay, but will be used in the next section to determine the usefulness of ARIMA
models as estimators of the spatial variability of these soils.

The vertical correlation distance of the undrained shear strength of the Keswick Clay has
been found to lie within the range 60 to 240 mm, with a mean of 150 mm and a CV of
30%. Table 5.11 presents a summary of vertical and horizontal correlation distances (= )
for s,, g, and f, of clay soils published in the literature. (These results were given
previously in Table 2.10). It is evident, from Table 5.11, that the vertical correlation
distance varies between 0.13 and 8.6 metres. While the vertical correlation distance
obtained for the Keswick Clay of 0.15 metres lies at the lower end of the range reported by
others, it isin general agreement with the results presented by Campanella et al. (1987), Li
and Lee (1991), and Wickremesinghe and Campanella (1993). From observations of the
vertical experimental semivariograms, it is possible that a larger-scale nested structure
exists within the Keswick Clay. The maximum layer thickness of the clay is approximately
7 metres and, in this study, its spatial variability has been examined over the upper
4 metres of this soil. As a consequence, any larger-scale nested structure, if one exists,
must have a vertical correlation distance greater than 4 metres. In this investigation, since
the extent of cone penetration testing has been confined to a maximum depth of 5 metres,
the presence of a vertica correlation distance greater than 0.15 metres cannot be
discounted.

Investigation of the horizontal spatial variability of the undrained shear strength of the
Keswick Clay has indicated that a nested structure exists within this soil. At the micro-
scale, the clay has been shown to exhibit a horizontal correlation distance of 0.15 metres
and a range, a, of 0.19 metres. At a larger-scale, the clay manifested a horizonta
correlation distance of 1 to 2 metres and arange, a, of between 5 and 6 metres. To date, no
researcher has investigated the horizontal spatial variability of soil properties at closely-
spaced, latera intervals. Perhaps as a consequence of this, the geotechnical engineering
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Table5.11 Summary of vertical and horizontal correlation distances (=9, of s,, Q.
and f, of clay soils published in theliterature.

Sail Geotech. | Direction Scale of Sampling
Type Property | (H:Horiz, | Fluctuation | Interval Resear cher (s)
V: Vert.) 9, (m) Az, (m)

Marine Clay, Hong Kong S, \% 6.0 0.3 Lumb (1974)
Chicago Clay S, \Y 8.6 ? Wu (1974)
Marine Clay, Japan S, \% 13-27 10-7.7 Matsuo (1976)
New Liskeard Varved S, \% 5 =15 Vanmarcke (1977b)

Clay, Canada S, H 46 =25
Seabed Deposits, Nth. Sea 0. H 53 >20 Tang (1979)
Soft Clay, S, \ 24 10-33 Asaoka and
New Y ork S, Vv 6.2 3.0-48 A-Grivas (1982)
Deltaic Soils, Canada 0. \% 0.13-0.71 0.025 Campanellaet a. (1987)
Silty Clay, Cdifornia 0. \% 0.68 0.1 Spry et al. (1988)
Silty Clay e Y, 0.2 0.020 Li & Lee (1991)
Deltaic Sails, Qe \ 0.24-0.32 0.025 Wickremesinghe and
Canada fy \% 0.35-0.40 0.025 Campanella (1993)

literature suggests that soils exhibit horizontal correlation distances of the order of
50 metres (Vanmarcke, 1977b; Tang, 1979).

Furthermore, with respect to correlation distances, by the very nature of the CPT, one

would expect soils to exhibit correlation over some finite distance. Figure 5.55 shows the

failure zone associated with a vertical CPT performed in the Keswick Clay. It was shown

in Table 4.4 that, for the Keswick Clay, the rigidity index, |,, was found to vary between

15.0 and 116.5, with a mean of 67.4. Using the relationships given by Teh and Houlsby

(1991), shown in Figure 2.10, with a, = 17.9 mm, 3 = 60° and, = 67.4, the parameters

andr, were found to equal 65 mm and 122 mm, respectively, as shown in Figure 5.55. It
can be seen from this figure that as the CPT progresses, the failure zone ‘front’ follows the
cone penetrometer with an offset equalzo or 65 mm. As a consequence, the
measurements of andf are spatially averaged values within this failure zone. Therefore,
one would expect, as a minimum, soils located within a depth of 381mm16.0) to

90 mm (, = 116.5), to exhibit correlation as a result of this soil failure zone.

The cross-correlation results, presented in 85.3.5, indicated that, statistically, the most
appropriate value for the shift distance for the Keswick Clay is approximately 120 mm,
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both vertically and horizontally. One would expect the value to be dlightly greater than the
physical distance separating the cone tip and dleeve friction load cells, that is,
approximately 75 mm. This is because the centroid of the soil contributing to the
measurement of g, is below the cone tip, as shown in Figure 5.55. Conseguently, the
distance between this centroid and the centre of the friction sleeve is greater than 75 mm,
and depends on the extent of the failure zone.

5.3.7 Summary

In summary, the analyses presented in this section have yielded the following results:

» Using random field theory analyses, the vertical correlation distance of the cone tip
resistance, q., of the Keswick Clay (and hence s,) has been found to be in the range of
60 to 240 mm, with a mean of approximately 150 mm and a CV of 30%. Using
geostatistics, the vertical range of influence of g, of the Keswick Clay (and hence s,)
was found to be between 100 to 575 mm, with a mean of approximately 290 mm and a
CV of 40%.
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» Using geostatistics, the lateral spatial variation of the undrained shear strength of the
Keswick Clay has been found to exhibit a nested structure, which is satisfactorily
modelled using the following nested spherical model:

042305 - X Fraeop - X f
=0+2305, -5 5[ 16005, -~ 5 5F
Y a, 2a’[0 a, 2a[
where: aQ = 0.2 metres,
a, = 6 metres.

» The vertical correlation distance of the sleeve friction, f,, of the Keswick Clay was

found to be 95 mm, and the range of influence, a, of f, was found to equal 240 mm.
Both of these values lie within the ranges observed for g..

The following section makes use of these results to develop random field theory and
geostatistical models, to stochastically describe the spatial variability of the undrained
shear strength of the Keswick Clay.

5.4 MODEL FORMULATION, PARAMETER ESTIMATION,
FORECASTING AND DATA SSMULATION

The results of the analyses, presented in 85.3, provide a framework for the formulation of
spatial variability models that stochastically describe the measured CPT data. They also
enable measurements, at yet untested locations, to be estimated. This section details the
process of formulating, both random field and geostatistical models. For the analysis of
random fields, as shown in FiguBl4, the process of defining a model involves the
estimation of its parameters and diagnostic checking. Once the model has been formulated,
forecasts can then be obtained. For geostatistics, on the other hand, the model is defined by
the model semivariogram, and forecasts, or estimates, are obtained by the process of
kriging. In addition, with the relevant model defined, it is possible to generate an infinite
number of simulated data sets. Both random field theory and geostatistics provide
frameworks whereby such simulated data may be generated. Data simulations are
particularly useful in reliability and risk analyses. These processes of model formulation,
parameter estimation, forecasting and data simulation, for both random field theory and
geostatistics, are treated separately below.
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54.1 Random Field Theory

Before examining the random field models associated with the 30 CPTs studied in the
previous section, by means of introduction, and also to verify the calculations, it is worth
looking briefly at the analyses presented by Ravi (1992).

54.1.1 Re-examination of Ravi's (1992) Analysis

As discussed in 82.5.2.1, Ravi (1992) re-examined the data presented by Asaoka and
A-Grivas (1982) and used standard time series techniques to fit ARMA models to the 5
separate sets of data. One such data set, from borehole A-1, is given in Figure 5.56 and
Table 5.12. Using their method, described previously in 82.5.2.1, Asaoka and A-Grivas
(1982) proposed the following model for the A-1 data set:

By 1.401
8= zZ=
1-B, 7 1-0.437

z= 2488z (5.29)

S |
i —s— Measured data
E 10 — Ravi (1992)
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Figure5.56 Datafrom borehole A-1 with models proposed by
Asaoka and A-Grivas (1982) and Ravi (1992).
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Table5.12 Undrained shear strength data from borehole A-1 presented by Asaoka
and A-Grivas (1982) and re-examined by Ravi (1992).

Depth Below | Undrained Shear Depth Below Undrained Shear
Mud Line(m) | Strength (kPa) Mud Line (m) Strength (kPa)
6.98 20.1 17.83 46.9
7.99 20.1 18.84 37.8
8.99 18.7 19.84 63.7
10.00 27.8 20.85 64.6
10.82 34.0 21.85 65.5
11.80 32.6 22.86 53.2
12.80 354 23.87 53.6
13.81 34.5 24.90 50.8
14.81 36.9 25.91 54.6
15.82 29.7 26.91 70.4

16.86 35.4

Ravi (1992), after removing the OLS linear and quadratic trends from the data, fitted an
AR(1) model to the measurements of undrained shear strength. A summary of the model
presented by Ravi is given below.

7, =033, +a, (5.30)

where: a has a mean of zero and a variance of 45.1.

The models proposed by Asaoka and A-Grivas (1982) and Ravi (1992) are shown
graphicaly in Figure 5.56, aong with the original data. It is common practice in the
assessment of models, to measure the sum of the squared differences, S3D, between the
measured data, Y, and the model estimate, Y', as shown in the following equation:

so=Y(Y-Y) (5.31)
=1
where: Y, is the ith measurement;
Y isthe model estimate of theith element;
n is the number of data.

Ravi (1992) calculated the sum of the squared differences, SSD, for both his AR(1) model
and that proposed by Asaoka and A-Grivas (1982), and found that the SSDs equalled 950.9
and 1103.0, respectively. While the difference between the two SDs is relatively small,
the difference calculated for the other 4 data sets was more marked. As a result, Ravi
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argued that traditiona time series modelling yielded better estimates than the technique
proposed by Asaoka and A-Grivas (1982). The measurements of s, obtained from borehole

A-1, given previoudly in Table 5.12, were input into PEST (Brockwell and Davis, 1991), a
one-dimensional, time series analysis and computer modelling package. As can be seen

from Figure 5.56, a strong trend exists between s, and the depth below the mud line. In
addition, these data failed both the runs test and Kendak'st and, as a consequence, the
untransformed data are non-stationary. As Ravi (1992) suggested, the OLS quadratic trend
was removed from these data. Such a transformation yields a stationary data set, as
indicated by the fact that the runs test and Kendall®®st were both passed. Ravi
suggested that the most appropriate ARMA model for each of the 5 data sets is a first-order
autoregressive process; that is, an ARMA(1,0), or simply an AR(1). After entering this
model, as well as the detrended data into the software pa¢kegEyielded the following
parameter estimates by means of the maximum likelihood method:

Z, =0314Z_, +a, (5.32)

where: a, has a mean of zero and a variange of 45.10.

As described in 82.5.1.2(v), the adequacy of a model is assessed by examining the
residuals. Brockwell and Davis (1987, 1991) suggested the use of resvﬂuamjch are
one-step prediction errors and are given by the following relationship:

(5.33)

where: Y, is the random field, or time series, data;
Y, is the best linear mean-square predictoiY,ofbased on the
observations up to distande; 1;
o’ IS the white noise variance of the fitted model.

These residuals are then rescaled as follows:

WO = ‘/EW (5.34)

2w

As suggested by Brockwell and Davis (1991), these rescaled residuals were then examined
for autocorrelation. Inspection of the ACF of the residuals, as well as the portmanteau test,
indicated that the residuals were in fact uncorrelated, suggesting that the AR(1) model and
its estimated parameters were appropriate. Interestingly, if these rescaled residuals are
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recombined with the original OLS quadratic trend and superimposed on to the measured
data, as shown in Figure 5.57, a dightly better fit is obtained than by the models proposed
by both Ravi (1992) and Asaoka and A-Grivas (1982). In fact, the sum of the squared
differences, SSD, was found to be 946.8, a slight improvement on the model proposed by
Ravi (1992) which was quoted as having an SSD equal to 950.9. However, examination of
Figures 5.56 and 5.57 suggest that, while the model proposed by Ravi (1992) is a
significant improvement of that proposed by Asaoka and A-Grivas (1982), it falls far short
of adequately modelling the spatial variability of the data.

S |
—a— Measured data
T  10- ——  AR(1)-Ravi (1992)
£ ] —— AR(1) - Using rescaled residudls
= ]
= 15
= i
=
3 ]
=z 204
[==] ]
=
=3 ]
2 ]
[= 25+
30 \\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\

O 10 20 30 40 50 60 70 80
Undrained Shear Strength, s, (kPa)

Figure5.57 Datafrom borehole A-1 with the model proposed by Ravi (1992)
and that obtained by using rescaled residuals.

The analyses presented in this section have shown that the random field theory model
formulation, parameter estimation, and forecasting calculations, are equivalent to those
performed by other researchers. The following section analyses the CPT data presented
earlier in this chapter.
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54.2 Random Field Analyses of Keswick Clay

Before forecasts of values of g, for the Keswick Clay can be generated, it is first necessary
to formulate random field models and estimate their parameters. The following section
summarises the analyses performed in each of these stages.

5421 Modd Formulation and Parameter Estimation

Firstly, in order to introduce the calculations involved in the process of model formulation
and parameter estimation, a typical CPT, C8, is examined in some detail. The
measurements of g, within the Keswick Clay, for CPT C8, were given previously in
Figures 5.8 to 5.10, and are included in Figures A.13 to A.26 in Appendix A. The sample
PACF of theresidual ¢, data, from C8, is shown in Figure 5.58.
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Figure5.58 Sample PACF obtained from theresiduals of g. for C8 after classical
transformation, that is, removal of the OL S quadratic trend.

It can be seen from Figure 5.58 that the sample PACF cuts off after a distance of 15 mm, or
lag 3. This, together with the fact that the sample ACF decays in an exponential fashion
(Figure 5.10), indicates that the appropriate model is an autoregressive process of order 3;
that is, an AR(3). Preliminary estimates of the AR parameters are obtained from PEST and
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are: @, = 0.669; @, = 0.152; and @, = 0.111. These parameters are then optimised by means
of the maximum likelihood method and the resulting AR(3) model is:

Z =0.672Z_,+0.154Z,_,+0.1147 _, +a, (5.35)

where: a, has amean of zero and avariance, a2, of 0.0372.

Diagnostic tests performed on the rescaled residuals yielded the following results:

* Portmanteau test: For K =20, Q = 24.04. x2(17)=27.59 0 Pass;
e Test based on turning points:  535. Asymptotically normal = 520.7 0 Pass,
» Difference-sign test: 385. Asymptotically normal = 391 0 Pass,
* Rank test: 149,169. Asymptotically normal = 153,077 [ Pass.

The rescaled residuals are shown in Figure 5.59 and the ACF of the rescaled residuals is
given in Figure 5.60. As is evident from these figures, the residuals give no indication of
non-stationarity, nor autocorrelation. Furthermore, since each of the 4 diagnostic tests
were passed, as well as the test for normality (performed within PEST), then the AR(3)
model satisfactorily describes the underlying process of the spatia variability of g. for the
CPT sounding C8.

In order to assess the suitability of a model, one approach is to superimpose the model

estimates on to the original data, as was done previoudy in Figure 5.57. Another
technique, which will be examined later in 85.4.2.2, is to compare the forecasts obtained
from the model with measured data at the forecast locations. Since the rescaled residuals
are actually prediction errors, the model estimates are obtained by simply adding the
rescaled residuals to the original measurements. Figure 5.61 shows the estimates obtained
from the AR(3) model superimposed on to the measured C8 data. As can be seen from the
figure, the model estimates provide an excellent representation of the spatial variability of
the g, measurements. The sum of the squared differer8Ses, between the model
estimates and the origing| data, was evaluated and found to equal 2.82*MPehis
relatively low value of th&3D is a further indication that the AR(3) model is an excellent
descriptor of the spatial variability of tlgemeasurements.

An alternative to the classical transformation approach is to use differencing, as detailed
previously in 82.5.1.2(ii). The measurementsjofor sounding C8, shown previously in
Figure5.8, were differenced at lag 1, that is, first-differenced; the residuals of which are
given in Figure 5.62. Performing Kendallistest on the first-differenced data, yielded

T = 0.0019,z, = 0.080 andc = 1.004, which indicates that the transformed data are
stationary. Inspection of the scatterplot (Figure 5.62), the sample ACF (Figure 5.63)
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Figure5.59 Rescaled residuals after fitting an AR(3) mode to the classically
transfor med measurements of g, for sounding C8.
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Figure5.60 ACF of therescaled residualsof g, for C8 after fitting an AR(3) model.
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Figure5.63 Sample ACF obtained from theresidualsof q., for sounding C8,
after first-differencing.

and the experimental semivariogram (Figure 5.64), confirm the conclusion of stationarity.
The runs test, on the other hand, yielded R = 462 and z, = 5.484, which suggests that the
data are non-stationary. This, again, supports the conclusion that the runs test may be an
inappropriate assessor of stationarity, either when the data fluctuates relatively slowly
about the mean, asis the case with the measurements of g, from C8, or when the number of
dataislarge, say greater than 50. The sample ACF and PACF of the first-differenced data
aregiven in Figures 5.63 and 5.65. It can be clearly seen from these figures that the sample
ACF cuts-off after lag 1 (a distance of 5 mm) and the sample PACF cuts-off after lag 2 (a
distance of 10 mm). This suggests that an integrated moving average process of order 1, or
IMA(1,1), is an appropriate model. A preliminary estimate of the IMA parameter is
obtained from PEST and is: 6, = —0.299. This parameter is then optimised by means of the
maximum likelihood method and the resulting IMA(1,1) model is:

Z =a -032la , (5.36)

where: a, has a mean of zero and avariance, o2, of 0.0375.

1 Ya

Diagnostic tests performed on the rescaled residual s yielded the following results:

 Portmanteau test: For K =20, Q=26.79. x2(19) =30.14 0 Pass;
e Test based on turning points:  528. Asymptotically normal = 520 0 Pass,
» Difference-sign test: 382. Asymptotically normal = 391 0 Pass,

* Rank test: 153,340. Asymptotically normal = 152,686 [] Pass.
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Figure5.64 Experimental semivariogram obtained from theresidualsof q.,
for sounding C8, after first-differencing.
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The rescaled residuals are shown in Figure 5.66 and the ACF of the rescaled residuals is
given in Figure 5.67. Asis evident from these figures, the residuals give no indication of
non-stationarity, nor autocorrelation, and, since each of the diagnostic tests were passed,
the IMA(1,1) model satisfactorily describes the underlying process of the spatial variability
of g, for the CPT sounding C8.
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Figure5.66 Rescaled residuals, after fittingan IMA(1,1) model to the
first-differenced measurements of q,, for sounding C8.

Again, in order to assess the suitability of the proposed IMA(1,1) model, the estimates are
superimposed onto the origina data, as shown in Figure 5.68. The model estimates were
obtained by undifferencing the rescaled residuals, shown previously in Figure 5.66, with
the original g, measurements. Undifferencing is achieved by reversing the differencing
process, that is:

Y =0 +Y, (537)

where: Y, istherescaled residua at location, t;
Y,., istheorigina g, measurement at location, t—1.
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Figure5.67 ACF of therescaled residuals of g, for C8 after
fittingan IMA(1,1) model.
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obtained by using rescaled residuals.
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As can be seen from Figure 5.68, the IMA(1,1) model is an excellent representation of the
spatial variability of the g, measurements. The sum of the squared differences, SD,
between the model estimates and the original ¢, data, was found to equal 0.29 MPZ.
Again, this extremely low SSD gives further confirmation that the IMA(1,1) model is an
excellent descriptor of the spatial variability of the g, measurements, and that it is slightly
superior to the AR(3) model (SSD = 2.82 MP&’) given by classical transformation.

Based on the approach given above, the same 30 vertical CPTs from the South Parklands,

which were examined previously in 85.3.1 and TdbR were entered into the program,
PEST, in order to determine the parameters of the most appropriate ARIMA model. The
results of these analyses are summarised in Tables 5.13 and 5.14: Table 5.13 giving the
results which refer to classically transformed data; and Table 5.14 giving the results which
refer to differenced data. In addition, Tables 5.13 and 5.14 present the vasiardethe

white noise componeng,, of the ARMA and ARIMA models; as well as the sum of the
squared difference§3D, between the original measured data and the model estimates. In
obtaining the results presented in Tables 5.13 and 5.14 the following steps were performed:

1. The values ofj, measured within the Keswick Clay, for each of the 30 CPT data sets,
were, first, separately entered infemiAuto. The data were then rationalised, in
accordance with 83.4.3.2, to account for missing data. Each of the 30 data sets were
transformed, either by classical transformation, or by first-differencing. Kendall’s
tests, performed previously on the classically transformed data (refer to T.dple
supported the hypothesis that the residuals are stationary; whereas, each of the first-
differenced data sets also passed Kendalfsst, suggesting that these data are also
stationary.

2. The sample ACF, and the sample PACF, were calculated for each of the stationary data
sets. The sample ACF and PACF were used to provide a preliminary estimate of the
appropriate ARMA or ARIMA model, using the rules given in 82.5.1.2(v).

3. The transformed, data for each of the 30 CPTs were then input separatelPHSE0,
where, in addition to the sample ACF and PACF, preliminary ARMA and ARIMA
models were proposed and preliminary estimates of the autoregregsivemeters and
the moving averag® parameters, were obtained by means of relationships similar to
those given in 82.5.1.2(v).

4. The preliminary estimates of tlggand0 parameters were optimised withREST, by
means of the maximum likelihood method.
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Table5.13 Results of random field analyses performed on classically transformed
residuals of g, measurements obtained from 30 of the 222 vertical CPTs
performed at the South Parklands site.

2

CPT |No. off ARMA ARMA O, SSD
No. | Data| Mode Parameters (MPa? (MPa?
AO | 546 | AR(Q) 0.433, 0.312, 0.219 0.0272 1.49
Al | 517 | AR(@) 0536, 0.250, 0.178 0.0261 135
A2 | 416 | AR(3) 0.592, ~0.136, 0.468 0.0853 3.55
A4 | 545 | AR(8) 0.634, 0.208, 0.036, -0.067 0.0031 1.68
0.262, 0.039, —0.054, —0.093
A6 | 525 | AR(5) 0.929, 0.162, 0.090, -0.092, -0.106 0.0319 2.78
A8 | 405 | AR(2) 0.640, 0.222 0.0289 117
AL0 | 327 | AR(@) 0.482, 0.280, 0.191 0.0352 115
BL | 494 | AR() 0.425, 0.479 0.0243 1.20
B5 | 564 | AR(8) | 0.449,0.258,0.156,0.236,0,0,0,-0.160 | 0.112 6.34
B8 | 505 | AR(3) 0.437,0.321, 0.158 0.0438 221
CO | 542 | AR(Q2) 0.747,0.225 0.0055 0.30
C4 | 560 | AR(® 0.726, 0.189, 0.177, 0, 0.0221 1.24
0, -0.161, 0.123, -0.106
Cs | 783 | AR(Q) 0.672,0.154, 0114 0.0372 2.82
C10 | 466 | AR(7) 0.732,0.332,0, 0, 0, 0, —0.098 0.0343 1.60
CD1 | 501 | AR(6) 0.804, 0.347, -0.032, 0, -0.015, -0.122 | 0.0111 0.56
CD30| 400 | AR(4) 0.756, 0.392, 0, ~0.188 0.0053 0.23
D5 | 488 [ AR(9) 0.365, 0.182, 0.258, 0.162, 0.0586 3.00
0.127,0, 0,0, -0.148
D8 | 525 | AR(3) 0.435,0.275,0.243 0.0278 1.46
El | 581 | AR(5) 0.933, 0.150, 0.034, 0, -0.130 0.0304 1.77
E7 | 560 | AR(3) 0.459, 0311, 0.171 0.0327 1.83
GO | 603 | AR(6) 0.804, 0.333, 0.015, 0.0052 0.31
—.028, —0.076, —0.080
G5 | 602 | AR() 0.302, 0.368, 0.241, 0.050 2.99
0.184, 0, 0, —0.134
G10 | 557 | AR(6) 0.710, 0.304, 0.090, 0, 0, -0.131 0.0180 1.00
H7 | 564 | AR(6) 0.690, 0.335, 0.105, 0.0267 151
0.031, -0.102, -0.106
H10 | 559 | AR(6) 0.541, 0.232, 0, 0.376, 0, -0.188 0.0210 1.18
11 | 605 | AR(5) 0.610, 0.413, 0.156, -0.071, -0.136 0.0097 0.59
19 | 579 [ AR(®) 0.531, 0.127, 0.088, 0.020, 0.0219 1.27
0.277, -0.019, 0.050, -0.129
J8 | 560 | AR(3) 0.457,0.211, 0.198 0.0230 1.29
KO | 393 | AR(4) 0.930, 0.340, —0.059, -0.232 0.0043 0.17
K10 | 599 | AR(6) 0.560, 0.341, 0.146, 0.0043 2.54
0.107, -0.054, -0.131

Note: AR parameters are given in the numerical order, that is, @, @, ..., @,
S3D refers to the sum of the squared differences between the original data and the mode! estimates.
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Table5.14 Results of random field analyses performed on first-differenced
residuals of g, measurements obtained from 30 of the 222 vertical CPTs
performed at the South Parklands site.

CPT |No.of| ARIMA | Mean ARIMA o; | ssb
No. | Data| Model Parameters (MPa?| (M Pa?)
AO | 545 | IMA@1,1) | 0.00112 -0.506 0.0279| 0.39
Al | 516 | IMA@1,1) | 0.00072 -0.433 0.0268| 0.26
A2 | 415 | IMA@5) |-0.00152| -0.423,-0.352,0.222,0.149, -0.154 |0.0873| 1.44
A4 | 544 | IMA@5) |-0.00092| -0.343,0.040,0.137,0.060,0.119 |0.0319]| 4.30
A6 | 524 No ARIMA model could be fitted to the first—differenced data
A8 | 404 | IMA(L1) (-0.00136 0.309 0.0309]| 0.11
Al10 | 326 | IMA(L1) [-0.00095 -0.478 0.0361| 0.26
Bl | 493 | IMA(1,2) | 0.00032 -0.571, 0.246 0.0249| 0.48
B5 | 563 | IMA(14) [-0.00275 -0.580, 0, 0, 0.202 0.114 | 2.38
B8 | 504 | IMA(11) | -.00012 -0.513 0.0447| 0.57
CO | 541 | IMA(L1 | 0.00065 -0.157 0.0055| 0.01
C4 | 559 No ARIMA model could be fitted to the first—differenced data
Cc8 | 782 | IMA(L1) | 0.00013 -0.321 0.0375| 0.29
C10 | 465 | IMA(16) [-0.00202| -0.342,0.126,0,0,0,0.155 |[0.0347| 0.25

CD1 | 500 No ARIMA model could be fitted to the first—differenced data

CD30| 399 | IMA(L5 |-0.00008 —-0.246, 0.218, 0, 0, 0.136 0.0054| 0.03
D5 | 487 |ARIMA(2,1,2)|-0.00099| 0.631, -0.257, -1.175,0.513 |0.0609| 0.91
D8 | 524 | IMA(LY) 0 -0.482 0.0288| 0.30
E1l | 580 |ARIMA(5,15)-0.00266| -0.154,0.868, 0.679, -0.397, -0.176 |0.0295| 0.22

0, -0.748, -0.399, 0.507, 0
E7 | 559 | IMA(1,1) | 0.00098 -0.535 0.0327| 0.51
GO | 602 No ARIMA model could be fitted to the first—differenced data
G5 | 601 | IMA(13) [-0.00150 -0.711, 0.159, 0.113 0.507 | 1.64

G10 | 556 | IMA(L2) |-0.00095 -0.279, 0.115 0.0188| 0.09
H7 | 563 | IMA(14) |-0.00263| -0.277,0.124,0.079, 0.101 0.0279| 0.17
H10 | 558 | IMA(L5) [-0.00183| -0.400,0.118,0.145,0,0.106 |0.0215| 0.24

11 604 | IMA(L3) | 0.00098 -0.386, 0.159, 0.114 0.0099| 0.10
19 578 | IMA(L1) [-0.00064 -0.412 0.0228| 0.22
J8 559 | IMA(L1) | 0.00045 -0.562 0.0235| 0.38
KO | 392 | IMA(L3) | 0.00112 -0.106, 0.317, 0.235 0.0043| 0.03

K10 | 598 | IMA(1,1) | 0.00035 -0.385 0.0448| 0.39

Note: Parameters shown in italics are moving average parameters, i.e. 6,, whereas the autoregressive

parameters are shown normally;
IMA(d,q), the integrated moving average process, is equivalent to the ARIMA(0,d,q) process,

ARIMA parameters are given in the numerical order, that is, ¢;, @, ..., @,, 6;, 6,, ..., 8;

SSD refers to the sum of the squared differences between the original data and the model estimates.
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5. Findly, diagnostic tests were performed on the rescaled residuals. These diagnostic
tests: the portmanteau test; the test based on turning points; the difference-sign test; and
the rank test, examine the hypothesis that the residuals are observations from an
independent and identically distributed sequence (Brockwell and Davis, 1991). In
addition, the ACF of the rescaled residuas was inspected, and the rescaled residuals
were tested for normality by examining the histogram of the residuals. Each of these
tests assesses whether the proposed ARMA or ARIMA process satisfactorily models the
underlying behaviour of the random field, bearing in mind that neither of these tests is
foolproof in al situations (Brockwell and Davis, 1991). Each of the ARMA and
ARIMA models presented in Tables 5.13 and 5.14 passed these 4 diagnostic tests, as
well as the test for independence, as indicated by the ACF of the residuals and the test
for normality.

It is evident from Tables 5.13 and 5.14 that an autoregressive (AR) process, usually of
order 3, though occasionally as high as order 8 or 9, satisfactorily describes the classically
transformed data. In contrast, the integrated moving average (IMA) process, usualy of
order 1, though occasionally as high as order 5 or 6, satisfactorily models the differenced
data. In addition, Table 5.14 shows that 2 of the differenced data sets were best modelled
by combined ARIMA processes. Furthermore, it is evident from the S3Ds, given in Tables
5.13 and 5.14, that the IMA process provides a dlightly better representation of the spatial
variability of the measured data. However, this is not always the case, as shown in Table
5.14, since no ARIMA model could be satisfactorily fitted to 4 of the 30 CPTs examined.

Following the procedure detailed above for sounding C8, the measurements of g, obtained
from the horizontal CPT, performed at the Keswick site, were also examined. Firstly, the
classically transformed data indicated an exponentially decaying sample ACF and a sample
PACF which cut-off at a distance of 30 mm, or lag 6. As a consequence, an AR(6) model
was investigated. After preliminary estimation of the parameters, by means of the
program, PEST, the parameters were optimised using the maximum likelihood method,
which yielded the following model:

Z,=0.769Z,_, +0.346Z,_, +0.0517,_,-0.0517,_, +0.071Z, . +0.077Z,_, +a, (5.38)
where: a has a mean of zero and a variance of 0.0282.

Diagnostic tests performed on the rescaled residuals suggested that the AR(6) model is a
valid representation of the data. This is supported by Figure 5.69 which shows the AR(6)
model superimposed on the original g, measurements. As can be seen clearly from this
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Figure5.69 Measured g, data from horizontal CPT, from the Keswick site, with the
AR(6) model obtained by using rescaled residuals.

figure, as well as the relatively low value of SSD (3.12 MP&), the AR(6) model is an
excellent representation of the spatial variability of the g, measurements, obtained from the
horizontal CPT within the Keswick Clay.

The sample ACF and PACF, of the first-differenced data, indicated that both cut-off at a
lag of 3. Asaconsequence, an ARIMA(3,1,3) model was investigated. Again, preliminary
estimates of the parameters were obtained by the program, PEST, and these parameters
were subsequently optimised using the maximum likelihood method. The ARIMA model
obtained is given in the following equation:

Z =-0.287Z_,-0.1717,_,+0.102Z,_,+a, +0.058a_, +0.401a_, +0.122a,_, (5.39)

where: a has a mean of zero and a variance of 0.0288.

Again, diagnostic tests were performed on the rescaled residuas, which suggested that the
ARIMA(3,1,3) model is a valid representation of the data. Figure 5.70 shows this model
superimposed on the original g, measurements. This figure clearly demonstrates that the
ARIMA(3,1,3) model is an excellent representation of the spatial variability of the g,
measurements, obtained from the horizontal CPT within the Keswick Clay. This
conclusion is again supported by the low value of SSD, which was found to equal
0.44 MP&.
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Figure5.70 Measured g, data from horizontal CPT, from the Keswick site, with the
ARIMA(3,1,3) model obtained by using rescaled residuals.

It has been demonstrated in the foregoing discussion, and the results presented, that random
field theory provides a useful framework for modelling the spatial variability of
geotechnical properties. The following section extends these models, so that forecasts may
be obtained at |ocations yet to be tested.

54.2.2 Forecasting

As detailed in 82.5.1.2(v), the field of time series analysis and, in particular, the Box-
Jenkins methodology, provides a framework whereby forecasts, or predictions, may be
generated at unsampled locations. Again, the vertical CPT sounding, C8, and the
horizontal CPT performed at the Keswick site, will be examined in some detail. The
program,PEST, allows forecasts to be made up to 52 lags into the future, or up to a
distance of 52 times the sample spacing. In order to assess the success, or otherwise, of the
application of random field theory to forecasting measuremergsaifuntested locations,

the lower 30 values were removed from the C8 data set, and then inpBERBEo The

data were transformed either by: (i) removing the OLS quadratic trend; or (ii) first-
differencing. Then, for each of these data sets, the appropriate ARIMA model, as given
previously in Tables 5.13 and 5.14, was entered REST and forecasts were then
obtained for the lower 30 depths, that is, from 4,905 mm to 5,050 mm. The results of these
analyses are summarised in Figure 5.71, where the AR(3) model refers to the classically
transformed data set, and the IMA(1,1) model refers to the first-differenced data. The sum
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of the squared differences for the AR(3) and IMA(1,1) models, over the forecast depth
range 4,905 mm to 5,050 mm, are 2.03 and 1.10 MP2, respectively. Table 5.15
summarises the first 10 forecasts for both the AR(3) and IMA(1,1) models. It is relatively
obvious from Figure 5.71, Table 5.15 and the values of S, that neither the AR(3) nor the
IMA(1,1) model provide satisfactory forecasts of ¢.. Furthermore, both of the models
failed to predict the direction of the g, measurements.
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Figure5.71 Forecasts of . measurements obtained from classically transfor med
data, AR(3), and first-differenced data, IMA(1,1), for C8.

Table5.15  First 10 forecasts of g, (MPa) for CPT C8.

Depth M easured AR(3) IMA(L,1)
(mm) Data

4,905 2.24 2.31 2.31
4,910 2.23 2.32 2.31
4,915 2.20 2.32 2.31
4,920 2.14 2.33 2.31
4,925 2.18 2.33 2.31
4,930 2.20 2.34 2.31
4,935 2.2 2.34 2.32
4,940 2.27 2.35 2.32
4,945 2.20 2.35 2.32
4,950 2.23 2.36 2.32
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The same procedure was adopted for the measurements of ¢, obtained from the horizontal
CPT, performed at the Keswick site. In this case, the last 44 values of g, were removed
and, again, the classically transformed data set (the AR(6) model) and the first-differenced
data set (the ARIMA(3,1,3) model) were used by PEST to generate forecasts. The 44
forecasts for each of the models, as well as the original measurements, are shown in Figure
5.72. The S for the AR(6) model, and the ARIMA(3,1,3) model, was calculated to be
1.01 and 1.03 MP&, respectively. Figure 5.72 and the calculated values of the SSD, again,
suggest that the random field models fail to accurately predict the spatial variability of the
g. measurements. Table 5.16 presents the first 10 of the 44 forecasts generated for the
horizontal CPT. It is evident, from this table, that these first 10 forecasts are reasonable
estimates of g,. On the whole, however, it can be concluded that the random field models,
examined here, fail to satisfactorily forecast measurements of g, at unsampled locations.

AR(6)

1.5 Original Data ARIMA(3,1,3)

Cone Tip Resistance, ¢, (MPa)

0:“|“|“|“|“|“|"|“|“
6000 6200 6400 6600 6800 7000 7200 7400 7600 7800

Horizontal Penetration Distance, x (mm)
Figure5.72 Forecasts of . measurements obtained from classically transfor med

data, AR(6), and first-differenced data, ARIMA(3,1,3), for the horizontal CPT.

Another aspect associated with models which characterise the spatial variability of
geotechnical properties, isthat of data simulation. This aspect is treated in the next section.
54.2.3 Data Simulation

Once arandom field model has been formulated, which characterises the spatia variability
of some geotechnical property in question, it is possible to generate an infinite number of
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Table5.16  First 10 forecasts of ¢, (MPa) for the horizontal CPT from the Keswick

site.

Depth M easured AR(6) ARIMA(3,1,3)
(mm) Data

7,405 2.45 2.43 241
7,410 2.45 2.45 2.42
7,415 2.39 2.46 2.43
7,420 2.43 247 2.42
7,425 2.39 2.48 2.43
7,430 2.39 2.48 2.43
7,435 2.43 2.48 2.43
7,440 2.42 2.48 2.43
7,445 2.33 2.48 2.43
7,450 2.38 2.48 2.42

random realisations of measurements of this property. For example, consider again the
AR(3) model generated for the classically transformed data of CPT C8:

Z, =0672Z,_,+0.154Z,_,+0.114Z,_,+a, (5.40)

where: a has a mean of zero and avariance, o2, of 0.0372.
Recall that, by definition, a, is a purely random process, aso known as a white noise
process, for which each member of the population is independently and normally
distributed, and has a mean of zero and a constant variance, o>. By randomly generating a
series of values for a, and substituting these into Equation (5.40), it is possible to generate
arealisation of g, measurements which will have the properties of the AR(3) model, given
in Equation (5.40). While it is extremely unlikely that any given realisation will be
identical to that measured at the location C8, it is, nevertheless, a valid representation of
the process generating that CPT, which, it can be argued, may have been measured under
dightly different site conditions. For example, such a realisation may have been measured
at alocation very near to C8, or may have been obtained had the test been performed on a
different day, or had the subsurface moisture regime been dightly different, and so on. By
generating a sufficiently large number of such realisations, it is possible to examine the
reliability of some geotechnical system in question. For example, the probability of failure
of an embankment with some particular geometry, and under some particular loading
configuration, can be examined by evaluating the stability of the embankment for a large
number of possible ground situations. Once this has been achieved, it is then possible to



Chapter 5. Examination of the Small-Scale Spatial Variability of Keswick Clay 251

calculate the likelihood, or probability, of embankment failure. Such a case study will be
examined in Chapter 8.

The Monte Carlo Method enables such realisations of data to be performed, essentialy
following the procedure given above. The program Monte, discussed previously in 85.2.2,

was used to generate five random realisations of the AR(3) process, given in Equation
(5.40), for CPT C8, and these are shown in Figure 5.73. As can be seen from this figure,
while none of the 5 realisations are identical to the valueg ofeasured at location C8,

they appear to be valid representations of the underlying probtsge was subsequently

used to generate 1,000 such realisations, the envelope of which is given in Figure 5.74. It
is evident from this envelope that the AR(3) process seems to satisfactorily model the
spatial variability ofg, at location C8.
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Figure5.73 Fiverandom realisations of the AR(3) processfor CPT C8
obtained from Monte.

The programMonte, was also used to obtain an envelope of 1,000 realisations of the
IMA(1,1) model, which represents the first-differenced C8 data. This envelope is given in
Figure 5.75. As can be seen clearly from this figure, the envelope is extremely large, the
minimum locus of which even extends well into the negative region, which is unrealistic
for the CPT. As a consequence of the large extent of the IMA(1,1) envelope, as well as the
fact that a number of the realisations extend into the neggtregiion, it is concluded that
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Figure5.74 Envelope of 1,000 realisations of the AR(3) process, for CPT C8,
obtained from Monte.
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Figure5.75 Envelope of 1,000 realisations of the IMA(1,1) process, for CPT C8,
obtained from Monte.
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the IMA(1,1) model is an inappropriate representation of the spatial variability of g, for
CPT C8, with respect to data simulation.

Figures 5.76 and 5.77 present the minimum and maximum envelopes of the AR(6) and the
ARIMA(3,1,3) models, respectively, for the horizontal CPT performed at the Keswick site.
The envelopes were again obtained by entering the respective models into the program,
Monte, and subsequently performing 1,000 realisations. As was observed with the C8 data,
the classically decomposed model (the AR(6) process) provides a valid representation for
the spatia variability of the CPT data. On the other hand, the first-differenced model (the
ARIMA(3,1,3) process), again, fails to adequately represent the data, since many of the
realisations yielded negative values of q..
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Figure5.76 Envelope of 1,000 realisations of the AR(6) process, for the
horizontal CPT, obtained from Monte.

In summary, while the models which were derived using the Box-Jenkins method of
differencing, that is the ARIMA processes, yielded somewhat better representations of the
measured data, as was shown in 85.4.2.1, these models failed to provide robust estimates
when derived from simulation. In contrast, the models obtained from classical
decomposition provided better estimates than the ARIMA models, when used in data
simulation. However, neither the ARIMA models, nor the ARMA models, provided
reasonable forecasts of measurements at untested locations. In conclusion, therefore, the
AR models obtained from classical decomposition yielded, overall, far more robust
estimates than those obtained from the Box-Jenkins method of differencing.
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Figure5.77 Envelope of 1,000 realisations of the ARIMA(3,1,3) process, for the
horizontal CPT, obtained from Monte.

The following section deals with the same aspects of data estimation, although, in this case,
based on the framework of geostatistics.

54.3 Geostatistical Analyses

In geostatistics, forecasts are obtained by, firstly caculating the experimental
semivariogram, fitting a model semivariogram to it and, lastly, by using the process of

kriging to obtain the forecasts. As a consequence, the model formulation stage, with

respect to geostatistics, consists essentially of fitting a model semivariogram to the
experimental semivariogram, as was undertaken previously in 85.3.1.2 and 85.3.2. The
following section uses these geostatistical models to obtain forecasts at unsampled
locations and compares these results with those obtained from random field analyses, given
in the previous sections.

54.3.1 Forecasting

In 85.4.2.1, random field analyses were used to generate estimates of the measured quantity
using the proposed ARIMA model. The validity of the model was assessed by comparing
these estimates with the actual measured values, an example of which was given previously
in Figure 5.61. Geostatistics, on the other hand, provides no direct means whereby such
estimates of the measured quantity can be generated from the model. However, it is
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possible to compare the geostatistical model with its random field counterpart, by using

kriging. The estimated quantities, given previously in 85.4.2.1, were esseonzkiep

ahead forecasts; that is, at the following 5 mm depth interval. In geostatistics, by using
kriging, it is also possible to generate similar one-step ahead forecasts. For example, if
every second measurement is removed from the data set, it is possible to use kriging to
estimate these ‘deleted’ measurements. While these values are ‘estimates’ of the measured
data, they are in fact forecasts and, hence, are not the same as the estimates derived from
random field analyses. They will, nevertheless, suffice for comparison purposes.

Again, the vertical CPT sounding C8, and the horizontal CPT from the Keswick site, will

be examined so that the results can be compared with those given in 85.4.2.1 and §85.4.2.2.
In order to allow one-step ahead forecasts to be generated, each of the data sets were first
detrended by removing the OLS quadratic trend, uSemyAuto, and the residuals were

then manipulated using the progra@RTSpace, detailed previously in 85.2.3. Kriging

was then carried out using the computer progr@®B2D, which is part of theGSLIB

package (Deutsch and Journel, 1991) and which performs two-dimensional ordinary, block
or point kriging of user specified data. The progr&@KB2D, was written in standard
Fortran 77 and was used on an IBM-PC platform. Lastly, the kriged estimates were
recombined with the OLS quadratic trend to produce final estimatgs of

While OKB2D enables two-dimensional block kriging to be performed, the program was
used to carry out one-dimensiomalnt kriging. This was achieved by entering a dunmymy
variable, so that each measuremengohad an associated depth in millimetres and a
value of unity, and by specifying values of 1 for both thandy block discretisation
parameters. The results of the one-step ahead forecasts for C8 and the horizontal CPT,
obtained by ordinary kriging fro®@KB2D, are shown in Table 5.17, and Figures 5.78 and
5.79, respectively.

Table5.17 Resultsof one-step ahead ordinary kriging from OKB2D.

CPT No. of | Spacingof | SSD Range of kriging
No. Data | Data (mm) | (MPad variance, a2, (MPa?
C8 389 10 1.18 0.003 - 0.004

Horizontal 553 10 1.03 0.003 - 0.010

The ordinary kriged point estimates, shown in Figures 5.78 and 5.79, were obtained by
setting: the grid spacing to 5 mm in the depth direction; the maximum number of points
used in the kriging process to 20; tsearch radius to 2,000 mm, that is, the maximum
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isotropic distance over which OKB2D searches for points; the model semivariogram to a
spherical model (it = 1), with parameters a = 330 mm, C, = 0.0018, C = 0.0231 (cc), for
C8, and a = 270 mm, C, =0, C = 0.0901, for the horizontal CPT, which are consistent with
the models derived previously.

As is evident from Figures 5.78 and 5.79, and the sum of the squared differences, S,

given in Table 5.17, the one-step ahead forecasts provide very good predictions of the
‘deleted’ data. This is justified by comparing the value§s, for each of the random

field models, with the values obtained from kriging, as shown in Table 5.18. While the
first-differenced models (the ARIMA processes) yield the lovSBIs, it has been shown

in 85.4.2.3 that these models are not robust, since they fail to provide adequate descriptions
of the spatial variability of thg, measurements. The kriged one-step forecasts, on the
other hand, yield loweB3Ds than the classically transformed autoregressive processes.

Table5.18 Results of one-step ahead ordinary kriging from OKB2D, compared
with those obtained from random field analyses.

Random Field Analysis Geostatistics
CPT Classically Transformed First-Differenced Kriged
No. M odel SSD Model SSD SSD
C8 AR(3) 2.82 IMA(1,1) 0.29 1.18
Horizontal AR(6) 3.12 ARIMA(3,1,3) 0.44 1.03

By examining the output file given HKB2D, it is possible to inspect the kriging weights
obtained by the ordinary point kriging process. For C8, the estimates were obtained by
using 6 points. For example, data point 722, that is, at a depth of 4,705 mm, the ordinary
kriged point estimate was obtained by the following equation:

0.(4705) = g.(4680) x 0.055+ q,(4690) x 0120 + g.(4700) x 0.325
+0,.(4710) x 0.325+q.(4720) x 0120 + g.(4730) x 0.055+ OL S trend

= (-0.120) x 0.055 + (~0.100) x 0.120 + (~0.110) x 0.325 (5.41)
+(~0.070) x 0.325 + (~0.060) x 0:120 + (-0.170) x 0.055+ OL S trend

=-0.0937+ OL S trend = 2.008 M Pa

where: 0.(4705) is the value df, at a depth of 4705 mm.
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The values of 0.055, 0.120 and 0.325, are the kriging weights, w;, discussed previously in
82.5.1.3(ii). Notice that the 6 weights sum to unity, a requirement of the kriging process;
the weights are symmetrical about the estimate, since the spacing of the 6 points is
constant; and the weights decrease away from the location of the estimate, as one would
expect. The kriged estimate €0.0937, when recombined with the OLS quadratic trend,
yields an estimate af, of 2.008 MPa, which compares well with the measured value of
2.04 MPa. This represents an estimation error of 1.6%, which lies within the 5.4% kriging
error limits given byOKB2D. The vast majority of the kriged estimates consisted of these

6 kriging weights of 0.055, 0.120, 0.325, 0.325, 0.120 and 0.055. However, while this
example demonstrated symmetrical kriging weights, this was not always the case.
Unsymmetrical weights are obtained when missing data are encountered, or when
extrapolation is performed. Data number 736, that is, at a depth of 4,775 mm, is an
example of a situation where unsymmetrical weights were obtained, as shown below.

q,(4775) = q,(4740) x 0.037 + ¢, (4750) x 0.081 + g, (4760) x 0.221
+0,(4780) x 0.429 + g (4790) x 0159 + q(4800) x 0.073+ OL Strend

= (-0.090) x 0.037 + (0.130) x 0.081+(0.180) x 0.221 (5.42)
+(0.050) x 0.429+ (0.070) x 0.159 + (0.090) x 0.073+ OL Strend

=0.0861+ OLStrend = 2.239 M Pa

Notice thatq,(4770) is a missing depth and, hence, the data values are not symmetrical
about the depth 4,775 mm and, as a result, neither are the kriging weights. The kriged
estimate of 0.0861 MPa, when recombined with the OLS quadratic trend, yields an
estimate ofy, of 2.239 MPa. This compares well with the measured value of 2.20 MPa and
represents an estimation error of 1.8%, which lies within the 5.0% kriging error limits
given byOKB2D.

For the horizontal CPT performed at the Keswick site, similar estimates were obtained.
While in many cases the kriged estimates consisted of 6 points, the vast majority of
estimates used only 2 points. Examples of each are given below.

q,(6715) = q,(6680) x —0.001 + g (6690) x 0.000 + g, (6700) x 0.250
+0,(6720) x 0.751+ g, (6730) x 0.000 + g (6740) x ~0.001+ OL S trend

= (0.268) x —0.001+ (0.240) x 0.000 + (0:151) x 0.250 (5.43)
+(0.054) x 0.751+ (0.075) x 0.000 + (0.186) x —~0.001+ OL S trend

=0.0777+ OLStrend = 2.575 MPa
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q.(7175) = q,(7170) x 0.500 + g, (7180) x 0.500

= (-0.129) x 0.500 + (~0:157) x 0.500 + OL S trend (5.44)

=-01430+ OLStrend = 2.285 M Pa

It was observed from the OKB2D output file that 6 points were used in the kriged estimate
only when a missing depth was encountered. This is the case in Equation (5.43) where
6710 is a missing depth and, consequently, has no associated measurement of g.. The
kriged estimate of 0.0777, when recombined with the OLS quadratic trend, yielded an
estimate for g, at a depth of 6,715 mm, of 2.575 MPa, which compares reasonably well
with the measured value of 2.62 MPa. This value represents an estimation error of 1.7%,
which lies within the 4.3% kriging error limits suggested by OKB2D. Equation (5.44), on
the other hand, contains no missing depths and, consequently, as can be seen, only 2 points
were used. Since the kriging weights are equal to 0.5 and only two points were used, this
estimate represents a linear prediction; that is, the interpolated estimate is a sSimple average
of the two end points. In this way, the kriged estimate was found to be equal to —0.1430
and, when recombined with the trend, yielded an estimate of ¢, of 2.285 MPa. This
compares favourably with the measured value of 2.26 MPa and represents an estimation
error of 1.1%, which lies within the 4.6% kriging error limits given by OKB2D.

A sengitivity study was undertaken to examine the influence of using a greater number of
data pointsin the kriging process. Up to 20 points were used in both the C8 and horizontal
CPT data sets and it was found, by examining the SSDs, that no better estimates were
obtained than by using the 6 data points, as detailed above. In fact, in some instances, the
estimates produced by using a greater number of data points yielded slightly poorer results.

The examples given above, referred to one-step ahead forecasts, so that the results of
random field analyses could be compared with those obtained from geostatistics. However,
kriging alows far greater flexibility, with respect to estimation, than does random field
theory. The program, OKB2D, was used to generate estimates at 5 mm intervals based on:
input data at 20, 50, 100, 200 and 300 mm spacings, and the spherical semivariogram
model originally derived from the 5 mm spaced data. These analyses are similar to those
performed by Brooker (1977) and the results are summarised in Table 5.19.

Figures 5.80 and 5.81 show examples of the kriged estimates for C8 and the horizontal
CPT, respectively, using input data at 200 mm spacings. In other words, the program,
OKB2D, generated estimates of g, at 5 mm spacings based on measured data spaced at
200 mm, as shown in Figures 5.80 and 5.81. It is evident from these figures that the kriged
estimates are ‘smoothed’ approximations of the measured data. In fact, the process of
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Table5.19 Results of forecasts at 5 mm spacings obtained by ordinary kriging

using OKB2D.
CPT No. of | Spacingof | SSD Range of kriging
No. Data | Data (mm) | (MPad variance, a2, (MPa?
194 20 2.27 0.003 - 0.005
79 50 3.77 0.004 - 0.005
C8 40 100 6.34 0.004 - 0.014
20 200 8.31 0.004 - 0.027
14 300 13.30 0.005 - 0.020
277 20 1.55 0.004 - 0.020
110 50 4.39 0.005 - 0.049
Horizontal 55 100 15.50 0.005 - 0.085
28 200 41.82 0.005- 0.118
17 300 63.02 0.005 - 0.120

kriging is equivalent to fitting spline functions to the measured data using a specific model
for the covariance (Olea, 1991) and, as a result, are, by their very nature, smoothed
representations of the data. It is appears from Figures 5.80 and 5.81, that the kriged
estimates are simply linear interpolations of the input data. However, closer examination
of the estimates, reveal that they are, in fact, curvilinear approximations, which yield
somewhat better estimates than those given by linear interpolation, as shown in Table 5.20.

Table5.20 Comparison of the sum of the squared differences, SSD, (MPa%
between linear interpolation and ordinary kriging of C8 and the
horizontal CPT.

CPT All Estimates (inc. extrapol ated) | nterpolated Values Only
No. Linear Interpolation | Kriging | Linear Interpolation | Kriging
C8 11.21 8.31 8.77 8.09

Horizontal 42.37 41.82 41.52 39.91

A significant feature of geostatistics is that the error associated with the kriged estimate,
that is, the kriging variance, o7, is readily available, as mentioned previously. By
superimposing the 95% confidence limits (x20) of the kriged estimates onto the original
measured data, it is possible to assess the validity of the kriging process. Figures 5.82 and
5.83 show the ordinary kriged estimates obtained from OKB2D, using 200 mm spaced
Input data, shown previously in Figures 5.80 and 5.81, as well as the 95% confidence limits
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and the original measured data for C8 and the horizontal CPT, respectively. As can be seen
clearly from these figures, the 20 envelope encloses the majority of the measured data. In
fact, for C8, 39 out of the 791 values, or 4.9%, lie outside this envelope and, for the
horizontal CPT, 62 out of the 1124 values, or 5.5%, lie outside. These results support the
fact that these bounds are actually 95% confidence limits, since 95% of the data are
included within its envelope. As a consequence, the geostatistical models adequately
define the spatial variability of the g, measurements of the Keswick Clay.

Interestingly, if the origina g, data are kriged without detrending, practically identical
forecasts are obtained. This holds true for interpolation situations, but not for
extrapolation. Journel and Rossi (1989) also reported similar findings when they compared
the results of ordinary kriging, with those of universal kriging. The observation that almost
identical forecasts are obtained whether the trend is removed or not, implies that a sizeable
amount of computational effort may be saved by not first detrending the data and,
subsequently recombining the trend with the kriged estimates.

To this point, kriging has been used primarily to provide forecasts at untested locations,
essentially in an interpolation setting. Just as the random field ARIMA models were used

to provide forecasts beyond the measured data, as in 85.4.2.2, kriging may also be used to
generate such extrapolated forecasts. By inputting the same data as in 85.4.2.2 (that is,
measurements af. at 5 mm spacings, between 1,100 and 4,900 mm for C8, and between
2,000 and 7,400 mm for the horizontal CPOKB2D was used to krige extrapolated
forecasts at 5 mm intervals (between 4,905 and 5,050 mm for C8, and between 7,405 and
7,620 mm for the horizontal CPT). The ordinary kriged forecasts for C8 and the horizontal
CPT are shown in Figures 5.84 and 5.85. ¥8Bs for each of the kriged forecasts are
given in Table 5.21, as well as those evaluated for the ARIMA models, given previously in
§5.4.2.2.

Table5.21 Results of forecasts obtained by ordinary kriging, using OKB2D,
compared with those obtained from random field theory.

Random Field Theory Geostatistics
CPT Classically Transformed First-Differenced Kriged
No. M odel SSD Model SSD SSD
C8 AR(3) 2.03 IMA(1,1) 1.10 1.96
Horizontal AR(6) 1.01 ARIMA(3,1,3) 1.03 0.56

It is evident from Table 5.21 that the process of kriging produces forecasts as good, or
better than, those given by random field theory. However, examination of Figures 5.84 and
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5.85 indicates that the kriged forecasts, while being smoothed representations of the
variability of q., lack much of its detail. As a result, it would appear that, while the
forecasts produced by random field theory and geostatistics look reasonable, models more
complex than simple linear estimators are necessary to generate predictions which closely
match the variability indicated by measurements.

While geostatistics also provides a framework for data simulation, unlike random field
theory, its implementation is far more complex. As a consequence, while geostatistical
data simulation will not be addressed in this chapter, various geostatistical simulation
techniques will be discussed and implemented in Chapter 8.

54.4 Summary of Random Field and Geostatistical Modelling of
Keswick Clay

In summary:

1. For each of the data sets examined, the removal of the OLS quadratic trend was
sufficient to satisfy the stationarity criterion.

2. The differencing method, while useful in the estimation and forecasting process, causes
the continuity of the datato belost. As aconseguence, it is not recommended as avalid
transformation procedure when the correlation distance of the geotechnical parameter is
being examined.

3. By the application of random field theory, classically transformed CPT data follow an
autoregressive, AR, process, with up to 8 parameters, whereas first-differenced CPT
data generaly follow an integrated moving average, IMA, process, with up to 5
parameters. While the IMA models tended to fit the measured data better than their AR
counterparts, in a small number of cases, no IMA, nor ARIMA, model was found to fit
the CPT data. When used in a forecasting mode, both the AR and IMA models
produced overly smoothed representations of the measured data. In addition, it has been
shown that, by use of the random field models, it is possible to generate any number of
random realisations of the CPT data which exhibit the same statistical behaviour. It has
been observed that, while the IMA models yielded valid simulated data, in many
instances the measurements of ¢ fell below zero, an impossible outcome in a standard
CPT. The AR models, on the other hand, yielded more robust estimates, the envelope
of which, tended to follow the OLS quadratic trend.
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4. 1t has been observed that geostatistics provides a more flexible framework for the
prediction, or forecasting, of values at yet-to-be tested locations, than does random field
theory. It has been shown that the process of kriging provides estimates which are
similar to curve fitting using spline functions and, as a result, provide smoothed
representations of the actual measured data. In a one-dimensional forecasting sense,
kriging has been shown to provide as good predictions as those given by random field
theory and, in some cases, the forecasts were significantly better.

To this point, the CPT data used to establish models describing the spatial variability of the

undrained shear strength of the Keswick and Hindmarsh Clays, have been assumed to be
adequate representations of the ‘true’ strength of these soils. The following section
examines the accuracy of these measured data and the factors which may influence results
obtained from them.

5.5 ASSESSMENT OF ACCURACY OF MEASURED DATA

It was shown previously in 82.4.7 that the CPT has been reported to have the lowest total
measurement error of any in situ test in current practice. The assessments of the accuracy
of the CPT, reported in the literature, were based on an analysis procedure, proposed by
Baecher (1982), and treated in 82.5.2.1. This procedure separates the scatter observed in
geotechnical data into its two component sources: (i) the spatial variability of the material,
and (ii) the random measurement error associated with the test itself. Several other authors
(Tang, 1984; Filippas et al., 1988; Spry et al., 1988; Kay, 1990; Kay et al., 1991; DeGroot
and Baecher, 1993; Christian et al., 1994) have used this method, or results based on it, to
postulate various aspects relating to geotechnical uncertainty and reliability. However,
before the accuracy of the CPT data is considered, the limitations of Baecher’s technique
are first examined.

55.1 Inadequacies of Baecher’s Method

While Baecher’'s approach focuses on the tools associated with random field analyses,
treated in 82.5.1.2, three important factors in geostatistics have highlighted inadequacies
with the current method. These factors: the nugget effect; the spacing between samples;
and the degree of trend removed from the data, greatly influence the random measurement
error obtained by the procedure proposed by Baecher (1982), and are each discussed below.
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55.1.1 Nugget Effect

It has long been appreciated in geostatistics that many ore bodies exhibit erratic behaviour
at lags close to zero. This erratic behaviour, known as the nugget effect, C,, manifests
itself as an apparent non-zero value of the semivariogram at zero lag. As discussed
previously in §2.5.1.3, the nugget effect is the combination of three separate phenomena:

1. microstructures within the geological material;
2. sampling, or statistical, errors,
3. measurement errors.

Baecher’s procedure, in essence, attributes the nugget effect solely to measurement error
and ignores microstructure variabilities and sampling errors. These two effects must be
accounted for before conclusions can be made regarding the extent of random measurement
error associated with a particular test.

At this point, it is necessary to define a new parameterA@tenugget, R,, which is the
difference between unity and the value of the autocorrelation coefficient at lag zero,
obtained by extrapolating the sample ACF back to lag zero, as shown in Equation (5.45).
The ACF nugget, like the nugget effect from geostatistics, accounts for the micro-
variability of the geological material, sampling errors and random measurement errors; but
Is determined from the sample ACF, rather than from the semivariogram.

R,=1-T, (5.45)

55.1.2 Sample Spacing

As mentioned in the previous section, another important factor is the effect of the sample
spacing on the observed nugget. In fact, the nugget effect that is obtained from the
experimental semivariogram, depends greatly on the physical distance between the
individual samples that form the data set. As the sampling distance decreases, it is possible
to obtain a better estimate 6f. However, while one is able to reduce the sampling
interval to a very small distance, the cost of the exploration programme increases
dramatically. As a result, it is often unreasonable, and in fact unnecessary, to reduce the
sample spacing below some nominal minimum value. Unfortunately, this minimum
sampling distance is dependent on the geological material being examined and cannot be
known prior to investigation. Common practice is to begin sampling with a relatively
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coarse grid and then to in fill with a repeatedly finer grid, as discussed in Chapter 4, until
the sample spacing no longer influences the resultant experimental semivariogram.

In 85.5.2, two case studies will be used to demonstrate the effect of sample spacing on the
observed nugget.

55.1.3 Trend Removal from Data

The applications of the theories of both random fields and geostatistics are greatly
simplified by stationary data. The ACF, ACVF and the semivariogram are each dependent
on the stationarity of the data set and, as a result, so too is the nugget effect and, hence, the
random measurement error, obtained from each.

As detailed in 82.5.1.2, in both random field analysis and geostatistics, it is common
practice to transform a non-stationary data set to a stationary one by removing a low-order
polynomial trend, which is usually estimated by means of the method of ordinary least
squares (OLS). Agterberg (1970) asserted that OLS assumes that the data are random and
uncorrelated, which is inconsistent with spatial variability analyses which, having removed
some trend determined by OLS, subsequently examine the correlation structure of the
residuals. Li (1991) suggested that a technique basegéneralised least squares (GLS)

should be used as an alternative to OLS and the more complex methods suggested by
Matheron (1973) and Delfiner (1976). Kulatilake (1991) stated that, while in general
agreement with Li (1991), the GLS technique has significant drawbacks when applied in a
practical sense. Furthermore, Ripley (1981) found that the trend produced by GLS varied
only slightly from that produced by OLS.

Regardless of which method is used to evaluate the trend component within a non-
stationary data set, the nugget effect is significantly influenced by the stationarity of the
data, as will be seen in the following section.

55.2 Case Sudies

The following two case studies examine the influence of trend removal and sample spacing
on the nugget effect, as well as their effect on the spatial variability paramgtar<C,

andC. The first case uses vertical CPT data from sounding C8 and measured at the South
Parklands site, whereas the second case examines horizontal CPT data obtained from the
Keswick site.
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5,5.2.1 Senditivity of Vertical Spatial Variability
(1) Effect of Trend Removal

Firstly, the effect of trend removal is examined by removing a series of polynomial trends

from the measurements of g. from CPT C8, which were shown previously in Figure 5.8.

The results of the random field and geostatistical analyses performed on the original data,

as well as each of the detrended data sets, are summarised in Table 5.22; as are the results

of Kendall's T tests performed on each of the data sets. As detailed in §2.5.1.1, the
coefficient of determination?, is a measure of how well the regressed curve fits the data.
The sample ACF, which pertains to the original data set with no trend removed, and the
sample ACF, obtained by removing the OLS linear trend, are shown in Figure 5.86. The
sample ACF, obtained after removing the OLS quadratic trend, was given previously in
Figure 5.10.

As shown by the results in Table 5.22, the ACF nudgggtdetermined using Baecher's
approach, varies substantially, from 5% to 22% and, as a result, depends greatly on the
degree of trend removed from the data. In fact, all of the paramgters, R, a, C, and

C, are sensitive to the level of trend removed from the data, particularly so when the data
are non-stationary as indicated by Kendall®est. As one would expect, as the degree of
polynomial trend increases, the corresponding values afida decrease. This is due to

the fact that as the regressed polynomial trend better fits the data, as indicetethby
characteristics of the residual noise component change and the correlation distance
decreases. Hence, the correlation distance is dependent on the degree of polynomial trend
removed from the data, as well as the extent of differencing. Therefore, it is particularly
important that this be included in the definition of the correlation distance. While the
literature is not specific in this regard, due mainly to the scant data on which the evaluation
of the correlation distance is based, it would appear that the correlation distance should be
defined asthe distance, given by the sample ACF, which is derived from data transformed

by the lowest degree of polynomial trend that satisfies data stationarity and, in particular,
Kendall's 7 test This is in general agreement with Kulatilake and Ghosh (1988), who
suggested that the lowest order polynomial be used to detrend the data, such that the
residual s satisfy the stationarity assumption. It can be seen from Table 5.22 that, for the C8

data, the lowest polynomia trend that satisfies data stationarity is of degree 2.
Accordingly, the correlation distance is 240 mm.
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Table522 Summary of data stationarity analyses (vertical spatial variability - C8).

Random Field Theory

Degree of Kendall's | Degree ACF
Polynomial Trend T of Fit, "o " fo Nugget,
Removed from Data| Test 2 | (mm) R,
None x - 765 0.95 0.95 5%
1 x 0.088 | 680 0.94 0.94 6%
2 v 0.719 | 240 0.88 0.88 12%
3 v 0.730 | 190 0.88 0.88 12%
4 v 0.774 | 190 0.87 0.87 13%
5 v 0.818 | 110 0.86 0.86 14%
6 v 0.846 85 0.78 0.78 22%
Geostatistics
e I b FEW IR IO RS
Removed from Data Test r? (mm) - (MPa’) (MPa’)
None x - * 0 * *
1 x 0.088 * 0 * *
2 v 0.719 | 285 | 1.77x10%| 2.25 x 10? 7.3%
3 v 0.730 | 300 |1.56x10°| 2.25x 10* 6.5%
4 4 0.774 | 300 |1.56x10°| 1.94 x 10? 7.4%
5 v 0818 | 170 |1.14x 10%| 1.53 x 10* 6.9%
6 v 0.846 145 | 1.38x10%| 1.33x 107 9.4%
Note: * The linear model, y, = 0.00045y, best fits the experimental semivariogram;
x Failed Kendall'st test;
4 Passed Kendall's test.
(i) Effect of Sample Spacing

In order to test the sengitivity of the nugget with respect to sample spacing, the origina data
set of g, measurements, sampled at 5 mm, was modified to provide sets of data at different
sample spacings. Data sets at different sample spacings were obtained by removing
intervening rows of data. For example, to obtain a data set with g, measurements at 10 mm
spacings, every second row was removed. This provided two data sets of measurements
spaced at 10 mm intervals - one from 1,100 mm and the other starting from 1,105 mm to
5,055 mm. This process of removing intervening rows was used to provide several data
sets of g, measurements at spacings of 10, 20, 50, 100 and 200 mm. The generation of
each of the data sets was simplified by the use of the computer program, CPTSpace,
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discussed previously in 85.2.3. By removing the quadratic trend from each of these data
sets, the residuals were obtained in order to determine the sample ACFs. Each of the
detrended data sets passed Kendall'est. Again using the procedure proposed by
Baecher (1982), the ACF nugget was evaluated by extrapolating the sample ACF back to
lag,k = 0. The results for each of the data sets are summarised in Table 5.23. Examples of
two sample ACFs are shown in Figure 5.87.

Table5.23  Summary of sample spacing analyses (vertical spatial variability - C8).

Random Field Theory

Sample s r, r ACF Nugget,

Spacing (mm) (mm) R,

5 240" 0.90" 0.90 10%

10 200, 208 0.84, 0.86 0.89, 0.90 10% to 11%

20 180 to 196 0.76 t0 0.81 0.93t00.95 5% to 7%

50 135to 179 0.48 t0 0.64 0.76 to 0.97 3% to 249

100 90 to 176 0.26 t0 0.49 0.40 t0 0.82 18% to 60%

200 100 to 160 -0.03*t0 0.29 0.38t0 0.97 3% to 62%
Note:. @ Separate data sets examined;

*

Not possible to sensibly extrapolate R, whenr, < 0.

Geostatistics
Sample a C C
Spacingp(mm) (mm) M I;)az) (MPa? CO/ (C " CO)
5 330 1.77x 10° 2.31x 107? 7.1%
10 260, 339 1.96x 103 2.02,2.23x 10% | 8.1%, 8.8%
20 310 to 328 1.92x 10° 2.26 - 2.3 10% | 7.5% to 7.8%
50 335t0 488 | 0.96 - 8.35¢ 10° | 1.91 - 2.74x 102 | 3.4% to 30.3%
100 500 to 658 | 4.35-13.2<10° | 1.03 - 2.58< 102 | 14.4 to 56.2%
200 375t0 750 | 0-1.91x10° *_453x% 102 0% to 100%
Note: @ Separate data sets examined;
* One of the cases yielded a pure nugget model, with C, = 1.91 x 107,

It can be seen from Table 5.23, that the calculated ACF nugget obtained from vertical
spatial variability analyses is significantly dependent on the spacing of the samples and can
vary between 3% and 62%. In addition, the spatial variability paramgteasC, andC,

appear to be somewhat insensitive to sample spacing when the spacing is less than the
correlation distance. However, once the sampling interval is equal to, or greater than, the
correlation distance of the material, the values,o, andC vary substantially, as one
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would expect. The parameter r;, on the other hand, appears to be more robust than a in
this regard. Furthermore, it should be noted that as the sample spacing increases, the
reliability of the sample ACF and experimental semivariograms decreases because of the
reduction in the number of samples. This factor also affects the parametersr, a, C, and C.

5.5.2.2 Senditivity of Horizontal Spatial Variability

In order to investigate the sensitivity of the horizontal spatial variability of soils, with
respect to the factors described in 85.5.1, data from the horizontal CPT performed at the
Keswick site, were analysed. Firstly, the effect of trend removal is examined by
subtracting a series of polynomial trends from the measuremegqtswhich were shown
previously in Figure 5.31. Secondly, the influence of sample spacing is also examined.

(1) Effect of Trend Removal

The results of the random field and geostatistical analyses performed on the original and,
each of the detrended data sets, are summarised in Table 5.24. The sample ACF obtained
after removing the OLS quadratic trend was shown previously in Figure 5.33.

Table 5.24 shows that the value Rf determined using Baecher’s technique, varies only
marginally from 3% to 4%. There is little difference in the valueRpfobtained by
removing the OLS linear trend, as compared to that obtained by removing the OLS
quadratic, or higher order trends. The values afe significantly different when no trend,

a linear and a quadratic trend are removed from the data. However, there is little difference
in the value of; when higher than order 2 trends are removed. The valwge<pandC,

again appear unaffected by trend removal. This is due mainly to the fact that the
polynomials of degree 3 to 6 provide only a marginally better fit to the data, than that
provided by the quadratic trend. Hence the characteristics of the residual noise component
appear to remain the same. Had the higher orders of polynomial trends provided
significantly better fits, one would have expected to obtain results similar to those obtained
in the vertical spatial variability example, given in the previous section.

(i) Effect of Sample Spacing

Again, in order to test the sensitivity of the calculated ACF nugget with respect to sample
spacing, the original horizontal CPT data, which were sampled at 5 mm intervals, were
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Table5.24 Summary of data stationarity analyses (horizontal spatial variability).

Random Field Theory

Degree of Kendall's | Degree ] ] r ACF
Polynomial Trend T of Fit, 8 ! 0 Nugget,
Removed from Data | Test 2 | (Mmm) R,
None x - 1,075 0.97 0.97 3%
1 v 0.047 655 0.97 0.97 3%
2 v 0.184 135 0.97 0.97 3%
3 v 0.297 110 0.97 0.97 3%
4 v 0.379 100 0.96 0.96 4%
5 v 0.384 100 0.96 0.96 4%
6 v 0.394 95 0.96 0.96 4%
Geostatistics
Degr f Kendall's | Degr
Polyngr?niztle?rend ) cTia ) O?IQ:iEe 2 Co 2 - 2 Go/(C+C,)
Removed from Data| Test r? (mm) | (MP&’) | (MPa’)
None x - 190 | 0001 | 0.068 1.5%
1 v 0.047 190 0.001 0.068 1.5%
2 v 0.184 190 0.001 0.068 1.5%
3 v 0.297 190 0.001 0.068 1.5%
4 v 0.379 190 0.001 0.065 1.5%
5 v 0.384 190 0.001 0.065 1.5%
6 v 0.394 190 0.001 0.065 1.5%
Note: % Failed Kendall'st test;
4 Passed Kendall's test.

modified to provide data sets with spacings of 10, 20, 50, 100 and 200 mm between
adjacent measurements of ¢, in the same way as for the vertical spatia variability case,
described previously. By removing the quadratic trend from each of these data sets by the
method of OLS, the residuals were obtained and the sample ACFs determined. Two such
sample ACFs are shown in Figure 5.88.

Again, using Baecher’'s procedure, the ACF nugget is determined by extrapolating the
sample ACF back to lag,= 0. The results of a number of the horizontal CPT data sets are
summarised in Table 5.25. As is indicated by the results shown in this table, the calculated
ACF nugget varies significantly, from 3% to 50%, and again indicates that the ACF nugget
depends greatly on the sample spacing of the data. Furthermore, for a spacing of 200 mm,
3 of the 5 data sets examined, yielded values t&ss than zero, making it impossible to
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Table525 Summary of sample spacing analyses (horizontal spatial variability).

Random Field Theory

Sample s r, r ACF Nugget,
Spacing (mm) (mm) R,
5 140W 0.97 0.97 3%
10 130, 135@ 0.95, 0.95 0.97,0.97 3%
20 120 to 130 0.881t0 0.90 0.95 5%
50 110 to 115® 0.62 10 0.64 0.90t0 0.92 81010%
100 100 to 110 0.20t00.29 0.50t0 0.67 33 to 50%
200 100 to 160 -0.28* t0 0.20 ?100.82 18%to ?
®. Separate data sets examined;
* Not possible to sensibly extrapolate R whenr, <0;
?: Unknown value of R sincer, <0.
Geostatistics
Sample a C C
Spacingp(mm) (mm) M I;)az) (MPa? Co/ (C ¥ CO)
5 190 0 6.80 x 1072 0%
10 195, 205@ 0 6.68, 6.78 x 102 0%
20 190 to 195% 0 6.64-6.90 x 10~ 0%
50 195 to 2109 0 6.22-7.06 x 10 0%
100 *(9) 435-132x10° * 100%
200 *(®) 5.64-6.64 x 107° * 100%
. Separate data sets examined;
* Only possible to fit a pure nugget model to the experimental semivariogram.

extrapolate a positive value of R,. In addition, as indicated in Table 5.25, the spatial
variability parametersry, a, C, and C, are relatively insensitive to sample spacing. When

the sampling interval is equal to, or greater than, the correlation distance of the geological

material, the values of a, C, and C, obtained by fitting a model to the experimental
semivariogram, vary substantially, as one would expect. As was evident with the previous

case study, the parameter r, appears to be more robust than a with respect to sample
spacing. Again, as in 85.5.2.1((ii)), at large sample spacings there are insufficient data to
adequately define the ACF and semivariogram models.
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553 Conclusions

This section has examined the sensitivity of the method proposed by Baecher (1982) for
separating the spatial variability component of the geotechnical material from the random
measurement error of the test, as well as the sensitivity of the spatial variability parameters
rs, & C, and C, with respect to the influence of trend removal and sample spacing. The
conclusions which relate to each, are given below.

1. Baecher’'s Method

It has been shown that conclusions made, regarding the random measurement error
associated with a particular test, depend greatly on: (i) the spacing of the samples in the
data set; and (ii) the stationarity of the data. In fact, the ACF nugget, R,, is a combination
of: random measurement error; small-scale variability of the soil; sampling errors; and non-
stationarity errors. It is not solely random measurement errors associated with the
particular test, as several authors have incorrectly assumed.

Severa sample ACFs were obtained by removing no trend, as well as a series of OLS
polynomial trends, from vertical and horizontal CPT data sets. Examination of these ACFs
indicated that the calculated ACF nugget in Keswick Clay can vary by as much as 3% to

22% depending on which, if any, trend is removed. These results imply that the ACF
nugget is significantly dependent on the degree of trend removed from the data. In
addition, it appears that once stationarity has been achieved, as indicated by Kendall's
test,R, is less sensitive to the degree of polynomial trend removed from the data.

By varying only the sample spacing of a data set, in increments of 5 mm up to 200 mm, it
has been shown that the calculated ACF nugget can vary between 3% and 62% for vertical
spatial variability, and between 3% and 50% for horizontal spatial variability. Since the
majority of the information published, regarding random measurement errors associated
with various tests, has been based on ACFs derived from samples taken at spacings well in
excess of 200 mm, one must question the validity of their conclusions.

As a result of the data and analyses presented in this section, it is likely that the random
measurement error associated with the cone penetration test is less than, or equal to, 3%.
Table 5.3 presented the results of random field analyses performed on 30 of the 222
vertical CPTs obtained at the South Parklands site. The valug$oofeach of these 30

CPTs were given in this table and, as showynaries between 0.753 and 0.984, with a
mean of 0.909 an@V = 7.2%. HenceR, varies between 1.6% and 24.7%, with a mean of
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9.1% and CV of 7.2%. Unfortunately, as stated by Soulié et al. (1990), it is extremely
difficult to separate random measurement error from the micro-variabilities of the material
being tested. As a consequence, it is not possible to separate its component parts of
random measurement error and soil micro-variability. However, since the minimum value
of R, was found to be 1.6%, it is likely that the random measurement error associated with
the CPT is less than, or equal to, 1.6%. This result compares well with the conclusion
made by Campanella et al. (1987), that the random measurement error of the CPT may be
as low as 1%.

2. Spatial Variability Parameters

It has been shown in this section that the spatial variability paramgtesisC, andC, are
influenced by data stationarity; particularly so when the data are non-stationary, as
indicated by Kendall'st test. In addition, it has been seen thgta, C, and C are
relatively insensitive to sample spacing. However, when the spacing is greater than or
equal to the correlation distance of the mateaalC, and C vary substantially, as one
would expect. The parametgy, on the other hand, appears to be more robustahan

this regard.

5.6 SUMMARY

In summary:

1. It has been shown in this chapter that both random field theory and geostatistics provide
adequate models for describing the spatial variability of the cone tip resistance of the
Keswick Clay. Using these models it is possible to: estimate measured values; predict,
or forecast, values at unsampled locations; and generate any number of simulated data.
It has been shown that, while these models produce adequate descriptions of the spatial
variability of the undrained shear strength of the Keswick Clay, much of the detail fails
to be satisfactorily modelled. This is a limitation of using simple linear estimators and
can only be rectified by using more complex models and estimation procedures. Such
models and techniques have yet to be developed fully. This aspect is discussed in
greater detail in Chapter 9.

2. In general, the technique of geostatistics has a number of advantages over random field
theory. Geostatistics: provides a framework for 2D and 3D estimation; allows volumes
of variable size to be estimated; enables interpolation forecasts to be performed; and
allows missing data to be readily included in the modelling and estimation procedures.
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While 2D and 3D forecasting regimes for random fields have been established
theoretically (Vanmarcke, 1983), their use in the geotechnical engineering community
has been extremely limited.

3. It has been shown in this chapter, that, in general, the spatial variability parameters of
d,, I's, a, C, and C, are dependent on the stationarity of the data, as well as the spacing
of the samples. Furthermore, it has been observed that this dependence is associated
with the relationship between the sample spacing and the correlation distance of the
material under investigation. As a consequence, it is paramount that data used to assess
the spatial variability of geotechnical materials be obtained at sample spacings less than
the correlation distance of the material. Since the correlation distance is often unknown
prior to testing and is often the subject of investigation itself, the data acquisition
process may involve testing at two different stages, using two separate sampling
intervals. Otherwise, data from published research can be used to give an indication of

preliminary correlation distances, which will enable the sample spacing to be chosen.

4. The random measurement error associated the CPT has been found to be less than, or
equal to, 1.6% and, as a consequence, the CPT provides a high level of reliability.

5. As a consequence of the analyses presented in this chapter, it is suggested that the
correlation distance be defined as “the distance given by the sampledACE or a,
which is derived from data transformed by tbeest degree of polynomial trend that
satisfies data stationarity and, in particular, Kendaltest.”

6. In addition, it has been observed that the scale of fluctu&tjpas originally defined by
Vanmarcke (1977a, 1983), is equivalent to the correlation distance, that is, the distance
over which the property in question exhibits strong correlation. This contradicts the
definition of correlation distance as proposed by Diaz Padilla and Vanmarcke (1974)
and Vanmarcke and Fuleihan (1975), who suggested that the correlation distance is the
distance at which the ACF is equalki® (0.3679).

7. Finally, the assessment of data stationarity is often a subjective one. A number of
guantitative tests have been proposed in the literature, however, none of these have been
entirely successful on their own. The most useful appears to be Kendahlts though,
it has been found that, in some instances, the test fails to reject apparently non-stationary
data. This has been observed in only a few of the data sets examined; in particular,
when n was approximately equal to 50. The runs test was also examined for its
suitability in detecting non-stationary data and it appears that the test may be an
inappropriate measure of the stationarity of CPT data, particularly whandn, are
large, say greater than 50. Used in conjunction with other more subjective methods, for
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example; eyeballing the data scatterplot, and examination of the sample ACF and the
experimental semivariogram; Kendaltgest; and the runs test, can provide additional
information regarding the assessment of the stationarity of a data set. It must, however,
be emphasised that none of these techniques should be used in isolation.

The following chapter discusses the development of a data KES#ICK, which was
compiled in order to provide data for the quantification of the large-scale spatial variability
of the Keswick and Hindmarsh Clays.



Chapter Six

Compilation of a Data Base of
Geotechnical Properties of the Keswick
and Hindmarsh Clays

6.1 INTRODUCTION

In order to model both the small and large-scale spatia variability of geotechnical
materials, alarge volume of dataisrequired, as mentioned in Chapter 2. The acquisition of
such a large quantity of geotechnical information requires a significant outlay of both
resources and time. A large body of geotechnical information, with respect to the Keswick
and Hindmarsh Clays, already exists as a result of many site investigations, performed in
Adelaide, for numerous and varied developments. The mgority of these test results are
unpublished and reside in the archives of the offices and laboratories of the geotechnical
engineering consultants and Government instrumentalities of Adelaide. It was decided
that, in order to enable a model for the large-scale variability of the Keswick and
Hindmarsh Clays to be derived, a data base of existing geotechnical test results be
compiled from these consulting and government bodies. This chapter discusses this
compiled data base, known as KESWMCK, compares it with other data bases discussed in
the literature, and presents results derived from it.

6.2 GEOTECHNICAL DATA BASES DISCUSSED IN THE
LITERATURE

GEOSHARE (Wood, 1980; Wood et a., 1982; Wood et al., 1983; Day et a., 1983) is a
data base compiled in Britain to address a desire by the Construction Industry Research and
Information Association (CIRIA) to disseminate information stored in site investigation
reports (Tuckwell and Sadgrove, 1977). In addition, GEOSHARE was compiled to:
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investigate the feasibility of developing a computer dedicated storage system, which was
seen as being an economically efficient means of storing large quantities of factual site
investigation information; and to investigate the geology of estuarine deposits in the
Thames Basin (Wood et a., 1982). The information stored in GEOSHARE is summarised

in Table6.1.

Table6.1 Information stored in GEOSHARE.
(Adapted from Wood et al., 1983 and Day et al., 1983).

Data type

Numeric data

Borehole reference data

Sample and test data

Soil descriptions

Genera comments

Grid reference (National grid)

Ground surface height (with respect to an assumed datum)
Date of drilling

Borehole diameter

Casing limits

Depths of strata

In Situ test results

Sample recovery

Laboratory test results

Water level data

Descriptive data

Consistency/compaction

Colour

Structure and organic content
Primary soil type

Secondary soil type

Formation name/geological origin

50 characters per borehole

These data were stored on a Commodore PET personal computer with 32 kb of RAM, an
extremely modest amount of storage by today’s standa@SOSHARE uses a BASIC
interpreter to interrogate the information, upon input to the data base, and also to generate
output. As an example of its flexibility, Wood et al. (1982) u&DSHARE to plot
contours of the surface of the London Clay. While the information stored in the data base
is assumed to be a record made in good faith of the soil conditions encountered at that
particular location, Wood et al. (1982, 1983) concluded that computer storage of data
derived from site investigation reports is an efficient and effective means of data collection.
In addition, Wood (1980) and Wood et al. (1982) stated that such a data base provides the

facility for improving the planning of future site investigations.
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Severa authors have used data bases to examine correlations and trends that may exist
between various data. From published literature, Mayne (1986) compiled a data base of 42
different sites world-wide, in order to develop a relationship between the OCR of clay soils
and CPT and piezocone test data. Using the data base, Mayne (1986) concluded that . isa
useful index for developing profiles of in situ OCR with depth, and that the piezocone can
be also used to evaluate the degree of preconsolidation. Mayne et al. (1990) collected data
from 83 different clay sites tested using the piezocone. By means of this data base, the
authors were able to show that porewater pressures, during cone penetration in clay soils,
are significantly affected by the position of the porous element, the size of the element and
severa other factors. Several additional trends and observations were a'so made by Mayne
et a. (1990), by means of the data base. Chen and Kulhawy (1993) developed two data
bases to examine correlations and trends that may exist between the undrained shear
strength of CIU and UU tests, and from CIU and UC?® tests. Again, by using data bases,
the authors were able to show that good correlations exist between the undrained shear
strengths obtained from CIU, UU and UC tests.

More recently, a number of authors have used computer-stored data bases for various
aspects of geotechnical engineering. These include: shallow foundations (ASCE Shallow
Foundations Committee, 1991); tunnelling (Hawkes, 1991; Touran and Martinez, 1991);
soil classification using CPT data (Chan and Tumay, 1991); and reliability analyses (Favre
et a., 1991). Each of the authors has found that the compilation of data on computer is
both an efficient and effective means of data storage and information retrieval.
Furthermore, a significant advantage of data bases is that they provide the facility to enable
improved planning and decision making (Wood et a., 1982; Touran and Martinez, 1991).

As can be seen from the preceding treatment, data bases and, particularly, computer based
data sets, provide valuable tools for the assessment of trends and correlations that may exist
between various geotechnical properties. The following section details the formulation of
the KESWM CK data base.

6.3 FORMULATION OF THE KESWICK DATA BASE

In order to provide the data necessary for spatial variability analyses of the undrained shear
strength of the Keswick and Hindmarsh Clays, a variety of information is needed, which
includes:

* Measurement of shear strength;

% ynconfined compression (triaxial) test
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* Insitu or laboratory test method used to determine shear strength;

* Location of shear strength measurement - coordinates in three dimensions;
» Soil type or unit to which the shear strength measurement refers,

» Date of sampling for laboratory testing, or date of testing for in Situ tests;
» State of the soil - moisture content, dry density, total soil suction;

» Siteinformation - for internal and cross-checking purposes.

To enable three-dimensional modelling of the spatial variability of the undrained shear
strength of the Keswick and Hindmarsh Clays, it was necessary to develop a three-
dimensional coordinate system for each test location. It was decided to use the standard
Australian Map Grid (AMG) coordinates for the plan surface; that is, eastings and
northings, and distances above the Australian Height Datum (AHD) for elevations above
the plan surface. The AMG is a standard map grid established by the National Mapping
Council of Australia and derived from a Transverse Mercator projection of latitudes and
longitudes, the coordinates of which, are in metres (National Mapping Council of
Australia, 1986). As mentioned in Chapter 4, the AHD is a standard datum surface,
adopted by the National Mapping Council, to which all vertical control for mapping is
referred. An important and useful outcome of using AMG and AHD coordinates, is that
the KESMCK data base conforms to standard Australian topographic and cadastral maps.
This enables results obtained from the data base to be transferred directly to these maps. In
addition, as will be seen in the next section, these topographic and cadastral maps will be
used to determine the three-dimensional coordinates for each site and test location.

6.4 DESCRIPTION OF THE KESWICK DATA BASE

A number of private consulting practices and Government instrumentalities were
approached in order to collate as much data as possible, for the purpose of quantifying the
large-scale variability of the Keswick and Hindmarsh Clays. All private consulting
practices and Government departments approached responded positively and allowed their
files and reports to be inspected, and the data within to be recorded. Seven consulting
firms and one Government department participated in this research, each of which are
listed below.

*  ACER Wargon Chapman (SA) Pty. Ltd. (formerly Hosking Oborn Freeman and Fox);
» Coffey Partners International Pty. Ltd.;

* Connell Wagner (SA) Pty. Ltd.;

» Golder Associates Pty. Ltd. (formerly Woodburn Fitzhardinge Geotechnical);

* Kinhill Engineers Pty. Ltd,;

» Koukourou and Partners,
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* Rust PPK Consultants Pty. Ltd.;
* SACON.

The KESMCK data base includes test results from site investigations conducted within the

Adelaide city area. The data set consists of approximately 160 site investigations carried

out within the Adelaide city area since the early 1960’s. In t6iBEMCK contains
approximately 380 separate boreholes and 10,140 measurements. Figure 6.1 shows the
locations of the boreholes included in the data base.

Data were compiled over the period December 1989 to October 1991 and the following
information was recorded:

» Subsurface profile data: Depth to top of Keswick Clay (m);
Depth to top of Hindmarsh Clay Sand Member (m);
Depth to top of Hindmarsh Clay Member (m);
Depth to base of Hindmarsh Clay (m);
Reduced level of ground surface (m AHD).

These data enable the thicknesses of the Keswick Clay, Hindmarsh Clay Sand member
and Hindmarsh Clay member, and the depths to the surface of each layer, to be
determined.

» Stateof Clay/Sand: Moisture contentw (%);
Dry density,p, (t/m°);
Total soil suctionu (pF);
Instability Index,l , (%).

These data provide information regarding the state of the soil from which other
parameters can be evaluated, such as: the bulk unit wgigtty unit weight,y,;
saturated unit weighty,; void ratio,e; porosity,n; and degree of saturatio8, of the

soil.

 Test Type: Cone penetration test (CPT);
Consolidated drained triaxial test (TCD#) with #
stages;
Consolidated undrained triaxial test (TCU#) with #
stages;

Direct shear test (DST);

Self-boring pressuremeter test (SBPT);
Screw plate load test (SPLT);
Standard penetration test (SPT);
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Unconfined compression test (TUC);
Unconsolidated undrained triaxial test (TUU#) with #
stages.

This information specifies the type of test associated with the shear strength

measurement.

Test Depth

The depth at which an in situ test is carried out, or the depth of the upper surface of a
sample obtained for laboratory testing.

Geotechnical Properties:

Shear strength, c,, ¢’ (kPa);

Internal angle of friction, @,, ¢ (degrees);
Young’s modulus of elasticitfs (MPa);
Confining pressureg,, for triaxial tests (kPa);
Standard penetration numbat;,

Coefficient of earth pressure at res,

These data define various geotechnical properties associated with the soils tested, in
particular, the shear strength, internal angle of friction and Young's modulus of

elasticity.

Site Infor mation:

Site location;

Job number;

Borehole number;

Borehole location plan;

Australian Map Grid (AMG) coordinates (m);
Date of sampling;

Additional comments.

This information provides details relevant to the site and its location; the date soil
samples were obtained; internal referencing details, such as job number and borehole
number; and additional comments relevant to the data recor#eétSim CK.

For ease of data storage, manipulation and presentation, the data were prepared in
spreadsheet format using MicrosBftcel 4.0°%°. A portion of the KESWMCK data base, in
spreadsheet format, isincluded in Appendix C.

In order to determine the three-dimensional coordinates for each test location, it was
necessary to transfer spatial information from the borehole location plan to 1:2,500 scale

2 Excd isa registered trademark of Microsoft Corporation, One Microsoft Way, Redmond, WA, USA, 98052-6399.
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topographic/cadastral maps of the Adelaide city area; 8 in all. Each map has an Australian
Map Grid superimposed on it at spacings of 100 metres in both the north and east
directions, as well as contours a 2 metre intervals. By referring to the surveying
measurements indicated on the origina borehole location plan, obtained from the site
Investigation reports of the consultants, the locations of the boreholes were plotted on the
relevant topographic/cadastral maps. For each borehole location, the AMG coordinates
were then obtained by scaling from these plans, with reference to the superimposed
Australian Map Grid. An example of this procedure is shown in Figure 6.2. Where the
reduced levels of the ground surface of the boreholes were not measured by the
geotechnical engineer, the elevations were scaled from the plans by interpolating the AHD
level from the contours. In this way, each test location was assigned a three-dimensional
coordinate as shown in Figure 6.3.

Using the process described above, it is conservatively estimated that the accuracy of the
scaled coordinatesis:

Eastings and Northings (AMG coordinates) +10 metres;
Reduced Levels (AHD) +1 metre.

In terms of generally accepted surveying errors, the uncertainties associated with these
coordinates are relatively high. These errors arise from the fact that, in general, most of the
site investigations, which are referenced in the data base, contain site information based on
relatively elementary surveying measurements, with limited control. However, in order to
reduce these errors further, a significant amount of resources would be necessary, and
would involve repeating the entire sampling and testing programme of each site
investigation referred to in the data base, or conducting one of similar scope from the start.
Naturally, such an exercise would be impractical and unwarranted.

In addition, the inherent measurement errors associated with the geotechnical properties
and depths to each soil layer, are assumed to be those that could reasonably be expected to
be obtained by a competent geotechnical engineer and testing authority, using appropriate
standards of practice. Thisassumption is similar to that made by Wood et a. (1981, 1982)
and is an inherent, and often unstated, assumption of all data bases using information
obtained from third parties.

As a consequence of the large number of laboratory and in situ test results incorporated
within the KESMCK data base, several trends and correlations can be established. The
following section details the application of the data base to a number of situations, and
examines the relationships and trends that can be derived from such applications.
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6.5 APPLICATION OF THE KESWICK DATA BASE

This section makes use of the data within the KESMCK data base, in order to establish
general relationships and trends with respect to: (i) contours of the surface of the Keswick

Clay, Hindmarsh Clay Sand Member and the Hindmarsh Clay Layer; (ii) moisture and
density variations with depth; (iii) specific gravity and degree of saturation; (iv) shear
strength; (v) Young's modulus of elasticity; (vi) SPT number; (vii) soil suction; and
(viii) contours of undrained shear strength. Each of these are treated separately below.

6.5.1 Contoursof Layer Surfaces

As described in 86.4, theESMCK data base contains information regarding the depth
below the ground surface at which the Keswick Clay, Hindmarsh Clay Sand Member and
Hindmarsh Clay Layer were encountered in each of the 380 boreholes of the data base. In
addition, KESMCK also contains the height above mean sea level (AHD) to the ground
surface associated with each of these boreholes. As a result, it is possible to plot contours
of the depth below ground, as well as the height above the AHD, to which the surface of
each of these layers are expected to be encountered, within the Adelaide city area. Figures
6.4, 6.5 and 6.6 show the variation, with the depth below ground, of the surface of the
Keswick Clay, Hindmarsh Clay Sand Member and Hindmarsh Clay Layers, respectively,
within the Adelaide city area. Figures 6.7, 6.8 and 6.9, on the other hand, show the
variation of the surface of the Keswick Clay, Hindmarsh Clay Sand Member and
Hindmarsh Clay Layers, respectively, in relation to the AHD. Each of these figures were
generated using thurfer® and DeltaGraph®° graphical presentation packages. Firstly, a

series of estimates was generated over a 25 x 25 grid spanning the Adelaide city area, using

Surfer’'s GRID program. The grid estimates were obtained using the inverse distance
squared procedure, which is examined in some detail in 87.4.2. Finally, these gridded
estimates were then entered into hetaGraph package, which subsequently created
Figures 6.4 to 6.9.

It should be noted at this point, that, since aKBEWM CK'’s boreholes lie within, or on the
boundary of, the Adelaide city area, values which lie outside the study region are obtained
by extrapolation during the contouring process. As a consequence, these values should be
treated with caution and are included only as a guide. Furthermore, the presence of gilgais,
particularly within the Keswick Clay, as well as lenses and pockets, which are evident in
the Hindmarsh Clay Sand Member, result in considerable depth variation within a

% DeltaGraph is aregistered trademark of DeltaPoint Inc., 2 Harris Court, Suite B-1, Monterey, California, 93940.
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particular site, as well as between sites. As a consequence of this, the contours given are a
somewhat ‘smoothed’ version of the true distribution of these soils.

It can be seen from Figures 6.4 and 6.7 that the River Torrens has partially, or completely,
removed the Keswick Clay within an erosion valley which extends over a lateral extent
much greater than it presently occupies. This supports the conclusions made by Selby and
Lindsay (1982).

It is evident from Figures 6.5, 6.6, 6.8 and 6.9 that the Hindmarsh Clay Sand Member and
the Hindmarsh Clay Layer have also been partially, or totally, removed by the River
Torrens. It appears that both of these soils remain in a wide band which runs in a north-
westerly direction from the south-east corner of the Adelaide city area. This conflicts with
the direction of elongation suggested by Selby and Lindsay (1982), mentioned previously
in 82.3.2.1(ii). This is probably due to the fact thatkiES\WM CK data base incorporates a
larger number of boreholes which intercept the Hindmarsh Clay Sand Member, as well as
including a larger section of the Adelaide city area.

The Hindmarsh Clay Layer may extend over regions not shown in Figures 6.6 and 6.9.
This is due to the fact that, when the Hindmarsh Clay Sand Member is absent from the
subsurface profile, it is difficult to distinguish between the Keswick Clay and the
underlying Hindmarsh Clay Layer. As a result, many of the boreholes may have
encountered the Hindmarsh Clay Layer, which was not identified by the logger.
Furthermore, many of the boreholes within KEESMCK data base may not have extended

to a depth large enough to intercept the Hindmarsh Clay or Sand layers. Nevertheless,
Figures 6.5 to 6.9 provide useful information for the preliminary design of geotechnical site
investigations.

6.5.2 Moisture and Density Relationships with Depth

As mentioned previously, it is useful to establish trends and relationships of various
geotechnical parameters, particularly with depth. Figures 6.10 and 6.11 show two such
parameters; namely moisture content,and dry densityp,, respectively. These are
plotted against depth for the Keswick Clay, Hindmarsh Clay Layer and undifferentiated
Keswick Clay-Hindmarsh Clay Layer. It can be seen from these figures that, for each soil,
no consistent trend exists for either parametaror p,, with depth. On the contrary, both

w and p, seem to fluctuate considerably with depth. In addition, it is not possible to
support the conclusions made by Cox (1970) that the moisture content of the Hindmarsh
Clay Layer is much less than that of the Keswick Clay.
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Some statistics associated with w and p,, for each of the soil layers contained in the
KESWICK data base, are given in Table 6.2. It should be noted that the skewness (skew.) is

a measure of symmetry of the distribution of the data. A skewness of zero suggests a
symmetrical distribution, a positive value indicates a right-hand skew, and a negative value

implies a left-hand skew. The kurtosis (kurt.), on the other hand, is a measure of the
‘peakedness’ of the data distribution, a normal distribution having a value equal to 3.0. A
kurtosis less than 3 indicates a flattened curve, whereas a value above 3, implies a more
sharply-peaked curve.

It can be seen from Table 6.2 that the statistics associatedwatid p,, for both the
Keswick Clay and the undifferentiated Keswick Clay-Hindmarsh Clay Layer, are very
similar, implying that much of the undifferentiated material is likely to be Keswick Clay.
Table 6.2 and Figures 6.10 and 6.11 are useful in that they provide general information
regarding the most likely value for bathandp,, the mean, as well as indicating ranges of
values for which each of these parameters are likely to lie within. The recorded moisture
content for each of these soils lies in the range of approximately 15% to 45%, which
compares well with the 15% - 40% range given by Cox (1970). On the other hand, the dry
density lies between 1.2 and 1.9%m

Table 6.2 Statistics associated with w and p, of the various soil layers stored in

KESWICK.
Soil No.of | Min. | Max. | Mean | Std. CV | Skew. | Kurt.
L ayer Data Dev. | (%)
Moisture Content, w (%)
Keswick Clay 451 1441 42.2| 30.97 4.1 13.2 -1.13| 2.65

Undiff. Keswick 271 15.1 41.1| 30.43 4.4] 14.% -0.93| 1.68
Clay-Hind. Clay

Hindmarsh Clay Sand | 11 9.0 21.0| 14.4q9 3.86 26.1 0.2] -0.92

Member
Hindmarsh Clay 62 15.9 37.11 27.33 5.65 20.15 -0.33| -0.85
Layer
Dry Density, p, (t/m°)
Keswick Clay 451 1.27 1.92] 1.464 0.094 6.4 1.79 5.43
Undiff. Keswick 268 1.25 192 1.478 0.10L 6.8 1.4P 3.45
Clay-Hind. Clay
Hindmarsh Clay Sand 11 1.56 191 1.794 0.108 5.8 -1.24| 1.66
Member
Hindmarsh Clay 62 1.34 1.84| 1.550 0.14p 9.2 0.5/ -0.78
Layer
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6.5.3 Specific Gravity and Degree of Saturation

It is useful to plot the moisture content, w, of a soil against its dry density, p,. By using
Equation (2.1) and assuming a suitable G, it is then possible to estimate the degree of
saturation of the soil. Figure 6.12 shows one such plot, obtained from 451 separate tests
performed on samples of Keswick Clay from various locations throughout the Adelaide

city area (shown previoudy in Figure 6.1), and assuming G, = 2.70 (Cox, 1970).
Superimposed on Figure 6.12 are the 80%, 90% and 100% degree of saturation lines. Of

the 451 pairs of w and p, data, 64, or 14%, lie above the zero air voids line, or 100% degree

of saturation. Thisis physically not possible, as a soil is not able to have a volume of water
greater than its volume of voids, or a volume of air less than zero. This implies, as a
consequence, that either the measured values of w and p, may be in error, or the assumed
‘average’ value of the soil'&, may be inappropriate. As a result of this, as well as an
estimation based on the mineralogy of the Keswick Clay, Jaksa and Kaggwa (1992)
suggested that a more appropriate value for the av&agkethe Keswick Clay would be
2.75+ 0.02. By assuming @, of 2.75, only 13 of the 451 data pairs, or 3%, plot above the
100% degree of saturation line, as shown in Figure 6.13.
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Figure6.12 Relationship between w, p,, and S, for Keswick Clay with G, = 2.70.
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Figure6.13 Relationship between w, p,, and S, for Keswick Clay with G, = 2.75.

Li (1992), in response to Jaksa and Kaggwa (1992), performed a Monte Carlo simulation
assuming true values of w = 30%, p, = 1.45 t/m®, G, = 2.70 and CV = 2%, implying a very
precise level of measurement. After carrying out 1,000 redlisations, Li found that
approximately 13% of the results yielded degrees of saturation greater than 100%. Li
(1992) argued that errors associated with the measurement of w and p, will invariably
cause S to rise above 100%. This is especially so considering that Lee et a. (1983)
reported that the CV associated with the measurement of w may vary by as much as 6% to
63%, and the CV for the measurement of density, between 1% and 10%. However, the
values of CV quoted by Lee et a. (1983) contain, not only measurement error, but also the
natural, or spatial, variability of the material. As a result, the CVs that account for the
measurement errors of each of the tests are expected to be somewhat lower than the values
suggested by Lee et al. (1983).

It is apparent, therefore, that errors are inevitably associated with the reported values of w

and p, contained in the KESWMCK data base. It is unrealistic, though, to assume that the

average value of G, accounts for these uncertainties. In reality, the errors associated with

the measurement of w and p,, as well as inappropriate values of G, contribute to errorsin

the calculation of §. However, as described in §2.3.2.5, tests performed by Islam (1994)
indicate that there may be some justification for increasing the ‘average’ value@fdhe
Keswick Clay. Perhaps a value between 2.73 and 2.75 may be a more reasonable estimate
than the value of 2.70 suggested by Cox (1970). In addition, Figures 6.12 and 6.13 show
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that the majority of the Keswick Clay is saturated or very close to being saturated, which is
in agreement with Cox (1970), Stapledon (1970), and Jaksa and Kaggwa (1992).

Using the methodology suggested by Jaksa and Kaggwa (1992), the relationship between w

and p,, for samples of undifferentiated Keswick Clay-Hindmarsh Clay Layer, is shown in

Figure 6.14, assuming G, = 2.75. The relationship for the Hindmarsh Clay Layer, is shown

in Figure 6.15, assuming G, = 2.77. Based on the results shown in these figures, it seems
reasonable to assume that the average values of G, for undifferentiated Keswick Clay-
Hindmarsh Clay Layer and the Hindmarsh Clay Layer, are 2.75 and 2.77, respectively.

Again, there is uncertainty associated with these assumed ‘average’ values, due to the
errors inherent in the measurementwoéndp,; however, it is difficult, if not impossible,

to quantify this uncertainty.
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Figure6.14 Relationship between w, p,, and S, for undifferentiated Keswick Clay-
Hindmarsh Clay with G, = 2.75.

Figure 6.16 shows the relationship between the degree of saturation of the Keswick Clay
and depth below the ground surface. As in the previous section, there appears to be no
trend or relationship betweé&and depth.
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6.5.4 Shear Srength

The main purpose of creating the KESMCK data base was to provide information
regarding the large-scale spatial distribution of the undrained shear strength of the Keswick
and Hindmarsh Clays. As a result, the mgority of the data contained within KESMCK
relates directly to the undrained shear strength, s,, of these soils. This section examines
relationships and trends associated with s,.

Figures 6.17 to 6.20 show the relationship between s,, obtained from the first stage of
unconsolidated undrained triaxial tests (UU) performed on samples of the Keswick Clay,
undifferentiated Keswick Clay-Hindmarsh Clay, Hindmarsh Clay Sand Member and the
Hindmarsh Clay Layer, respectively. Superimposed on these graphs are lines representing
S,= 0, ands,=20,. Ingenera, from Figures6.17, 6.18 and 6.20, the clay soilsindicate a
trend of s, increasing with depth, with the majority of each of the s, values lying between
0, and 20,,. Figure 6.19, on the other hand, suggests that there is no such relationship for
the Hindmarsh Clay Sand Member. The small number of data points implies, however,
that such a conclusion may be inappropriate. Figures 6.18 and 6.20 indicate that a number
of samples of the undifferentiated Keswick Clay-Hindmarsh Clay, and the Hindmarsh Clay
Layer, exhibited undrained shear strengths lower than o, as well as values of s, greater
than 20,,. The values of s, which are lessthan o,,, are likely to be associated with failures
along fissures or joints.

Table 6.3 summarises the statistics associated with the undrained shear strength of the

various clay layers contained in the KESMCK data base, and Figure 6.21 shows the
histograms of s, for these clay soils.

Table6.3 Statistics associated with s, (kPa) obtained from UU tests.

Sail No.of | Min. | Max. | Mean | Std. CV | Skew. | Kurt.
Layer Data Dev. | (%)
Keswick Clay 150 50 352 | 1489 | 553 37.1 0.78 0.92

Undiff. Keswick 229 31 567 163.2 | 74.8 45.8 157 412
Clay-Hindmarsh Clay

Hindmarsh Clay 46 50 676 | 2839 | 1105 | 389 | 088 | 2.60
Layer

Again, it can be seen from Table 6.3 and Figure 6.21 that the statistics and distribution of s,
of the Keswick Clay and the undifferentiated Keswick Clay-Hindmarsh Clay are very
similar, further confirming that much of the undifferentiated material is in fact Keswick
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Figure6.17 Undrained shear strength, s,, of the Keswick Clay
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Figure6.19 Undrained shear strength, s,, of the Hindmarsh Clay Sand Member
obtained from thefirst stage of UU tests.
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Figure6.21 Histograms of the undrained shear strength, s,, of the Keswick Clay,
undifferentiated Keswick Clay-Hindmarsh Clay and the Hindmar sh Clay L ayer
obtained from thefirst stage of UU tests.

Clay. In addition, Table 6.3 and Figure 6.21 show that the mean value of s, for the
Hindmarsh Clay Layer, as well as the scatter of the data which is measured by the standard
deviation, are somewhat larger than those for the other two soil types.

Figure 6.22 shows a plot of measurements of s, against depth, obtained from a variety of in
Situ tests carried out in the Keswick Clay, undifferentiated Keswick Clay-Hindmarsh Clay
and the Hindmarsh Clay Layer. As was evident with the plots obtained from the triaxial
tests, the in situ measurements also indicate that s, increases with depth, the majority of the
values, again, lying between o,, and 20,,,.

Figures 6.23 and 6.24 show measurements of the undrained shear strength of the Keswick
Clay, undifferentiated Keswick Clay-Hindmarsh Clay and the Hindmarsh Clay Layer,
plotted against moisture content and dry density, respectively. As one would expect,
Figure 6.23 suggests that, as the moisture content of the soils increase, s, decreases. Figure
6.24, on the other hand, indicates a positively increasing trend; that is, as the dry density
increases, so too doess,. However, there is considerable scatter about these trends and, as
aresult, it would be unreasonable to fit regression lines to these data.



Chapter 6. Compilation of KESWMICK Data Base 309

0
) - Keswick Clay
E =0 | o O Undifferentiated Keswick-Hindmarsh Clay
- 4 Fa, - D A
-]
-E' §:.> % X Hindmarsh Clay Layer
= 6 s
= . " - —
= 8] S | %i‘_zcd Screw Plate Load Test
s 10 ] o) o Self-Boring Pressuremeter Test
=
0= ] ©® Cone Penetration Test
i 12
£ X |°
& 144
= i X ~
£ N
184 5= 0o
20 . T T L T i L i T L T T L

0 100 200 300 400 500
Undrained Shear Strength, s, (kPa)
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700

= Keswick Clay
600 0 Undifferentiated Keswick-Hindmarsh Clay
X Hindmarsh Clay Layer

500

Ll
X
X

400

300

200

e

100

Undrained Shear Strength, 5_{kPa)

©
0 L L L L L L L L L O I BB

0 5 10 15 20 25 30 35 40 45

Moisture Content, w (%)

Figure6.23 Relationship between s, and w for the Keswick Clay, undifferentiated
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Figure6.24 Relationship between s, and p, for the Keswick Clay, undifferentiated
Keswick Clay-Hindmar sh Clay and the Hindmar sh Clay Layer
obtained from thefirst stage of UU tests.

Figure 6.25 presents the results of the undrained shear strength of the Keswick Clay,
undifferentiated Keswick Clay-Hindmarsh Clay and the Hindmarsh Clay Layer, plotted
against the triaxia confining pressure, o,. The graph suggests, as one would expect, that,
as g, increases, so too does 5,. Again, however, considerable scatter is exhibited in the
shear strength measurements for each of the soil layers, and it would be inappropriate to
suggest any single regression line. Instead, Figure 6.25 indicates the ranges within which a
UU measurement can be expected to lie.

It is often convenient to normalise s, with respect to the overburden pressure, o,,. Figure
6.26 shows the relationship between values of s,/0,, and depth below the ground surface.
The plot confirms the observation that the Keswick Clay, as well as the undifferentiated
clay soil, are overconsolidated as a result of desiccation. This is evidenced by values of
s,/0,, grester than unity close to the ground surface, and decreasing towards unity at
depth. It can be seen from Figure 6.26 that, as expected, the Hindmarsh Clay Layer does
not exhibit such behaviour.

Figure 6.27 shows the relationship between s, and o, for tests performed on samples from

the Hindmarsh Clay Sand Member. It can be observed from this figure that a somewhat
tenuous trend exists between these two parameters; that is, as o, increases, so too doesss;.

Particularly for a sand soil, one would expect to observe such atrend. However, the data
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Figure6.27 Relationship between s, and o, for the Hindmarsh Clay Sand Member
obtained from up to three stages of UU tests.

set only consists of 28 tests and, as a result, it is inappropriate to draw general conclusions
from this plot. The reason that so few triaxia tests have been included in the KESWMCK
data base is due to the fact that a limited number of tests have been performed on samples
from the Hindmarsh Clay Sand Member. This is because the vast mgjority of geotechnical
engineering consultants and government bodies use the standard penetration test (SPT) to
measure the undrained shear strength of the sand. The results of these tests will be
examined in 86.5.6.

6.5.5 Young’s Modulus of Elasticity

Another very important parameter, also included in the KESMCK data base, is the
undrained Young’'s modulus of elasticiy,. Figure 6.28 showg, plotted against the

depth below the ground surface. Superimposed on Figure 6.28 are two lines representing
E, = 500y, z andE, = 2006, z. It can be seen from this figure thgtexhibits considerable
scatter with respect to depth, and that a trend may exist, suggestikg itheteases with

depth below ground.
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Figure6.28 Relationship between E, and depth below ground for the Keswick Clay,
undifferentiated Keswick Clay-Hindmarsh Clay and the Hindmar sh Clay L ayer
obtained from thefirst stage of UU tests.

Table 6.4 summarises the statistics associated with the undrained Young’s modulus of the
various clay layers contained in tieESMCK data base, and Figure 6.29 shows the
histograms oE, for these clay soils. It can be seen from this table and figure that, once
again, the Keswick Clay and the undifferentiated material exhibit similar properties. In
addition, the Hindmarsh Clay Layer appears to be slightly stiffer than the other two soil types.

Table6.4 Statistics associated with E, (M Pa) obtained from UU tests.

Sail No.of | Min. | Max. | Mean | Std. CV | Skew. | Kurt.
L ayer Data Dev. (%)
Keswick Clay 89 9 79 32.6 14.8 45.2 0.99 0.5b

(8]

Undiff. Keswick 129 2 102 28.3 154 54.3 1.13 3.7
Clay-Hindmarsh Clay

Hindmarsh Clay 28 9 91 43.1 20.3 47.0 0.51 -0.25
Layer

A graph ofE, plotted against depth below the ground surface, for measurements obtained
from the screw plate load test (SPLT) and the self-boring pressuremeter test (SBPT), is
given in Figure 6.30. It should be noted that each of these two tests nigasudéferent
directions: the SPLT measuriiig in the vertical direction; and the SBPT measuring in the
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Table6.5 Statistics associated with E, (M Pa) obtained from SPLT and SBPTs.

Sail No.of | Min. | Max. | Mean | Std. CV | Skew. | Kurt.
Layer Data Dev. | (%)
Keswick Clay 32 3 180 66.6 | 359 | 549 | 0.74 | 170
Undiff. Keswick 46 4 213 61.2 451 73.6 181 3.96
Clay-Hindmarsh Clay
Hind[narsh Clay 7 34 220 723 | 66.2 | 916 | 248 | 6.29
ayer*

Note: *: Small number of data and, as a consequence, the statistics should be treated with caution.

horizontal direction. This is an important consideration as many clay soils exhibit
anisotropic behaviour. Figure 6.30 again demonstrates that E, displays considerable scatter

with depth. However, from this figure, a more clearly defined trend of E, increasing with

depth can be observed. In addition, when compared with Figure 6.29, it can be seen from

Figure 6.30 and Table 6.5 that the E, measured using in situ tests, is somewhat larger than

the E, measured using laboratory based unconsolidated undrained triaxial tests. It is
unlikely that these should differ so markedly (by as much as 115%). There are at least two
possible causes for this. Either: (i) the UU tests are underestimating theEftoecause

of sample disturbance and initial consolidation influences (discussed previously in 84.5); or
(i) the insertion process, associated with in situ test devices, causes a consolidation of the
soil resulting in an overestimate of the ‘trug. |If either of these two errors are to be
isolated, calibration studies are required, as it is impossible to distinguish between them
usingkESWMICK alone.

Figure 6.31 shows the relationship betw&en normalised with respect tm, and depth

below the ground surface. As was evident in Figure 6.26, Figure 6.31 also shows that the
Keswick Clay and the undifferentiated clay are overconsolidated as a result of desiccation,
since the soils near the surface are stiffer than the material at depth.

6.5.6 SPT Number

As mentioned previously, the vast majority of the strength measurements performed on the
Hindmarsh Clay Sand Member have been obtained using the standard penetration test
(SPT). The SPT numbelN, is the number of blows required to drive a standard, 51 mm
diameter, split-spoon sampler 300 mm into the soil, using a hammer of standard weight and
drop height. If the values of relating to the Hindmarsh Clay Sand Member are plotted as

a function of depth below the ground surface, a relatively meaningless graph is obtained,
with a considerable degree of scatter apparent. Figure 6.32, on the other hand\ shows
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plotted as a function of depth below the surface of the Hindmarsh Clay Sand Member.
While a significant degree of scatter is still evident, a trend, indicating increasing values of
N with increasing depth below the surface of the Hindmarsh Clay Sand Member, can be
seen. Again, it isinappropriate to suggest aline of best fit. Rather, Figure 6.32 is useful in
that it provides ranges of expected values of N.

6.5.7 Soil Suction

One other geotechnical parameter that is worthy of investigation is the total soil suction, u.
If one is able to establish a relationship between u and, either the moisture content, w, or
the depth below ground, then it may be possible to normalise s, with respect to this
relationship. Thisis due to the fact that samples of soil, used to obtain measurements of s,
within KESMCK, were taken during different times of the year and, as aresult, at different
moisture contents. It was observed in Figure 6.23, and it is well established, that s,
depends greatly on w. Hence, if this effect can be removed from the s, data, then the entire
data set can be used to assess the spatial variability of the material itself. Thus, the entire s,
data set can be normalised with respect to w, implying that s, depends on location aone
and not w.

Figure 6.33 shows u, plotted with respect to w, for the clay soils contained in the
KESWCK data base. Figure 6.34 shows u expressed as a function of depth below the
ground surface for summer, autumn, winter and spring. Each of the 5 graphs exhibits
considerable scatter and no appropriate relationship, or trend, can be established.

This result is not unexpected. Richards and Peter (1987) found considerable scatter
between u and w and they subsequently concluded that w is not a unique variable of the
soil, and that it is difficult to measure small changes in moisture content with time. In
addition, the authors stated that correlations between w and s,, and w and E,, are generally
poor unless other soil factors, such as density and clay content, are included. Similar
correlations with u are often better, and are certainly never worse, than those made with w
(Richards and Peter, 1987).

The next section will examine the variation of s, with respect to location within the
Adelaide city area. As aresult of the preceding treatment, it is not possible to normalise
the values of s, with respect to moisture content.
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Figure6.33 Relationship between total soil suction, u, and moisture content, w,
for the Keswick Clay, undifferentiated Keswick Clay-Hindmarsh Clay and
the Hindmar sh Clay L ayer.

6.5.8 Contoursof Undrained Shear Srength

With the large volume of s, information contained within the KESMCK data base, it is
possible to examine the variation of s, across the Adelaide city area. However, as seen in
the previous sections, the majority of these data relate to the Keswick Clay and the
undifferentiated material. As a consequence, there are insufficient data to examine the
variation of the undrained shear strength of the Hindmarsh Clay soils. In addition, the s,
data pertaining solely to Keswick Clay is relatively sparse throughout the Adelaide city
area. As aresult, in order to obtain sufficient data to enable a reasonably reliable spatia
variability model to be generated, the s, data pertaining to the undifferentiated Keswick
Clay-Hindmarsh Clay has been combined with the Keswick Clay s, data. This is not
unreasonable, since it has been observed previoudly that the undifferentiated material
exhibits very similar properties to those of the Keswick Clay.

As detailed in 86.4, each measuremers, dfas a three-dimensional coordinate associated
with it. Hence, to fully describe the variability §fwith regard to location, a 3D treatment

of the data is required. Unfortunately, it is almost impossible to adequately display 3D
information on a two-dimensional (2D) medium such as this. Perhaps the only sensible
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Figure6.34 Relationship between total soil suction and depth below ground for:
(a) summer; (b) autumn; (c) winter; and (d) spring.

method would be to present 2D horizontal slices at different depths throughout the soil
mass. However, such a presentation is inappropriate in this case because: (i) there are
insufficient data within KESWMICK, at depth, across the Adelaide city area to provide
reliable detail in 3D; and (ii) the layer depths vary dramatically from site-to-site as the

result of gilgais and normal variations in stratigraphy.
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As aresult, and as a first attempt to visualise the variability of s, within the Adelaide city

area, the individual values of s, will be spatially averaged in order to present a 2D picture

of the undrained shear strength of the Keswick Clay. Consider, firstly, the general method

of pile design. Initially, a geotechnical engineer would conduct a site investigation
consisting of a series of vertical boreholes, including a programme of laboratory and/or in

situ testing. From each borehole, a series of ‘point’ estimatgsaafuld be obtained from

the testing programme. The pile would then be designed using an average of the ‘point’
estimates of, for the borehole relevant to the pile under consideration. In this way, the
depth dependent parametgris ‘averaged’ with respect to depth, essentially along a
vertical line, and a 2D point estimate f)iis established. Figure 6.35 is a representation of
such a ‘vertical averaging’ process.

An alternative, though similar approach, is to adopt the averaging process used in the
design of raft or mat foundations. Since the raft is founded on a large volume of soil,
bearing capacity failure, or settlement, requires much of the underlying soil to be
mobilised. Hence, the geotechnical engineer will often spatially average the test data
beneath the entire raft foundation. As a result, an avejag®btained for the ‘block’ of

soil within the site, whose dimensions are the plan area of the raft (often the entire plan
area of the site) by the depth of the soil affected by the imposed stresses. Figure 6.36 is a
representation of such a ‘site averaging’ process and was generated by averaging the
measured values; over the whole site.

Figures 6.35 and 6.36 are very similar, as one would expect; the latter being a slightly

‘smoother’ version of the former, as a consequence of the site averaging process. Again,
values outside the Adelaide city area should be disregarded, or treated with caution, as no
values ofs, have been measured outside of this region.

Contour maps, such as Figures 6.35 and 6.36, can provide useful tools for the preliminary
estimation of values of, for a site within the Adelaide city area. However, Figures 6.35
and 6.36 are an over-simplification of the ‘true’ variationspfacross this region. A
number of factors combine to increase the uncertainty associated with the models
represented in Figures 6.35 and 6.36. Some of these factors are listed below.

* The s, data set is a combination of Keswick Clay and undifferentiated material and,
while it has been seen that the properties and relationships of the undifferentiated clay
are very similar to those of the Keswick Clay, some of the data undoubtedly include
measurements of samples from the Hindmarsh Clay Formation.

» The variability associated with moisture content, as a function of time, has not been
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Figure6.35 Contoursof s, for Keswick Clay based on theresults of unconsolidated

undrained triaxial tests using an averaging process based on pile design.
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undrained triaxial tests using an averaging process based on raft design.
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accounted for in the model. It has been seen previously in 86.6.5.7, that no relationship
betweenw andu, or u and depth, has been able to be established and, therefore, it was
not possible to remove the moisture variability from the recorded values. of
Consequently, any spatial description of these data will not only represent spatial
variability, but will also include an uncertainty associated with moisture content and
time.

* An uncertainty often overlooked by researchers who advocate the use of data bases, is
the uncertainty associated with the data themselves. Since the data are obtained from
several sources disassociated with the individual collating the data, there can be no
guarantee that the data are accurate and that proper testing and sampling procedures
were used in measuring the parameters. In addition, this measurement error varies
between technicians and between testing authorities. So, not only is the uncertainty
associated with the data unknown, it also varies from point to point. This is a
significant and often understated limitation of using data collected from external
sources.

» The contouring process, itself, increases the uncertainty. In order to obtain the contours
expressed in Figures 6.35 and 6.36, the contouring algorithm first requires a regularly
spaced grid ofs, values. As the data withifESMCK are irregularly spaced, the
contouring package must interpolate between neighbouring points in order to generate
this regularly spaced data set. This results in a further smoothing of an already spatially
averaged data set. Figures 6.35 and 6.36 were generated usingetbe distance
squared technique, a relatively low-level procedure which weights the neighbouring
values according to the inverse of the squared distance to the point being estimated. The
inverse distance squared estimation procedure, as well as other estimation regimes, are
examined in the following chapter.

* In addition, as with any idealisation, the model is only as good as the data on which it is
based. Where no values fifhave been measured, the contouring process interpolates
between neighbouring points which may be separated by large distances, thus
introducing a further inaccuracy.

* Local perturbations, which include gilgais and structural defects, such as joints and
fissures, can also further increase the uncertainty associated with the \slabtained
at any particular point.
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6.6 SUMMARY

From the treatment given in the previous sections, it has been seen that data bases are
useful tools for examining the relationships and trends that may exist between various
geotechnical parameters. By obtaining data from third parties, one is able to acquire alarge
body of information that, if it were to be sampled and tested by a single research body,
would involve a significant commitment of resources, labour and time. The relationships
and trends can be used by the engineering community as a cost-efficient method for the
estimation of parameters, necessary for preliminary geotechnical engineering design. In
addition, individual test results can be checked against these correlations and trends, to
assess whether the measurements lie within the expected ranges. If not, the data base can
act as a catalyst for the geotechnical engineer to seek explanations for the reasons why the
results fall outside these expected limits.

Furthermore, data bases provide an archive for the retrieval of information from nearby
boreholes, which can assist in the design of site investigations in the event of a proposed
development within the vicinity of these boreholes. In addition, such a data base need not

be a closed source of information. Rather, as more data become available, the data base

can incorporate this additional information. In thisway, the archiveis continually evolving

and, hence, providing a better representation of the ‘true’ nature of the subsurface
conditions, within the region specific to the data base.

It has been shown, however, that KESMCK data base, on its own, is an inadequate
facility for expressing the variation of the undrained shear strength of the Keswick and
Hindmarsh Clays, across the Adelaide city area. For it to provide data sufficient to enable
a reliable and accurate model of this spatial variability, a far greater volume of data is
required.

While Figures 6.35 and 6.36 are a crude, first attempt at modelling the spatial variability of
s, of the Keswick and Hindmarsh Clays, they provide a mechanism for the estimation of
depth averaged and site averaged, values,ofrespectively. The following chapter
combines the spatial variability models derived in Chapter 5, with the data described in this
chapter, in order to generate a framework for estimating the undrained shear strength of the
Keswick Clay at yet untested locations.



Chapter Seven

Examination of the Large-Scale Lateral
Spatial Variability of the Keswick Clay

7.1 INTRODUCTION

In Chapter 5 it was shown that the small-scale lateral spatial variability of the undrained
shear strength of the Keswick Clay was characterised by a nested structure, which could be
conveniently modelled by the addition of two spherical semivariograms, whose ranges are
equal to 0.2 and 6 metres, respectively. This nested structure was determined by
examining CPT data obtained from the South Parklands and Keswick sites, which
consisted of measurements obtained over a maximum lateral extent of 50 metres. This
chapter examines the large-scale spatial variability of the Keswick Clay, using data
contained within the KESWICK data base and which extends across the Adelaide city area,

as detailed in the previous chapter.

1.2 INPUT DATA AND TRANSFORMATIONS

In order to assess the large-scale spatial variability of the undrained shear strength of the
Keswick Clay, measurements of S, contained within the KESWMCK data base were used.
As was described in the previous chapter, the KESMCK data base contains measurements
of s, from several different laboratory and in situ test methods. In order to assess spatial
variability, it is essential to eliminate as many alternative sources of variability as possible.
As a consequence, only measurements of S, obtained from unconsolidated undrained
triaxial (UU) tests were used to assess the spatial variability of the undrained shear
strength of the Keswick Clay. It was shown in Chapter 4 that measurements of S, obtained
from UU tests are far from ideal and are dependent on a number of factors which include:

sample disturbance; initial consolidation; strength anisotropy; and testing strain rate.

325
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Unconsolidated undrained triaxial test results were used, rather than those obtained from
other more reliable test procedures, because the majority of measurements of S,, contained
within the KESWMICK data base, were derived from UU tests. In fact, the KESMCK data
base contains too few S, measurements obtained from any other test method to allow a

reliable spatial variability model to be derived.

The measurements of S, obtained from UU tests contain greater uncertainty than
measurements obtained from other shear strength testing procedures. Furthermore, the S,
data, within the KESWICK data base, were obtained from several geotechnical engineering
practices and laboratories using different sample preparation and testing procedures,
equipment and operators. Hence, the S, data used to derive the large-scale spatial
variability model, the treatment of which is given below, contain uncertainties which are
far from trivial. As a consequence, the derived large-scale spatial variability model will
also contain significant and unquantifiable uncertainties. This needs to be borne in mind
when comparing the results of the large-scale model with those of the small-scale model,
detailed previously in Chapter 5. Nevertheless, the analyses presented in this chapter
demonstrate the usefulness of geostatistics and its application to the spatial variability of

soils and rock.

As indicated in Chapter 6, the total number of measurements of §,, within the KESWICK
data base and obtained from UU tests, is 150 for Keswick Clay and 229 for
undifferentiated Keswick Clay-Hindmarsh Clay. It was also demonstrated that the
undifferentiated Keswick Clay-Hindmarsh Clay exhibits similar properties to those of the
Keswick Clay and, hence, may be regarded as being equivalent to Keswick Clay. It is
evident from the number of S, measurements that there is an insufficient quantity of data to
allow reliable 3D modelling of the individual Keswick Clay, or undifferentiated data sets,
or even a data set obtained from a combination of the two. However, in order to generate a
series of ‘pseudo-3D’ data sets, which are similar in nature to the lateral data sets analysed

in Chapter 5, the following procedure was followed:

e The measurements of 5, for Keswick Clay and undifferentiated Keswick Clay-

Hindmarsh Clay were combined into a single data set.

» The data were then separated into 3 data sets, depending on the depth ranges below the
surface of the Keswick Clay from which the samples used to measure S, were obtained:
from 0 to 3 metres; 3 to 6 metres; or greater than 6 metres. At this stage, each data set
contained 4 columns of data, that is: Easting (m); Northing (m); depth below surface of
Keswick Clay (m); and the measured undrained shear strength, s, (kPa), from UU tests.
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* Each of the 3 data sets contained the results of several boreholes distributed throughout
the Adelaide city area, with each borehole containing one or more UU measurements at
variable sample intervals. The S, results for each borehole were then averaged in order
to yield a single estimate of S, for each borehole location. As a consequence, the

resulting data sets contained 3 columns of information: Easting (m); Northing (m); and
a ‘spatially averaged’ undrained shear strength, §, (kPa).

The subsequent O to 3 metre data set consisted of 143 estimates of §;; the 310 6 metre data
set consisted of 94 estimates of §,; and the greater than 6 metre data set consisted of 57
estimates of §,. Too few data were contained in the greater than 6 metre data set to allow
reliable spatial variability modelling to be performed. Preliminary analyses performed on
the 3 to 6 metre data set indicated that it, also, contained too few measurements to allow
reliable spatial variability modelling to be undertaken. As a consequence, only the O to
3 metre data set provided a sufficient number of measurements of S, to allow spatial
variability modelling to proceed. Hence, the analyses which follow are based solely on
observations of §, obtained from within 0 to 3 metres below the surface of the Keswick

Clay. The locations of these data are shown in Figure 7.1.

Prior to performing geostatistical analyses on these data, it is necessary to remove trends
which result in non-stationarity, as mentioned previously. There appears to be no test to
assess the stationarity of data in three dimensions, other than by eyeballing the scatterplot.
Kulatilake (1989) fitted various 3D polynomial trends and estimated their degree of fit;
that is the multiple r, in order to ascertain whether the trend was significant or not. Once
having removed the trend, Kulatilake (1989) eyeballed the residuals and qualitatively

assessed their stationarity.

In order to fit a 3D polynomial trend to the O to 3 metre data set, the software package
SPLUS for Windows®*! was used. SPLUS for Windows is a PC-based, graphical and
statistical data analysis system, and object-oriented programming language, that provides
the user with a wide range of statistical functions. In Chapter 5, it was observed that, in
general, removal of a second-order polynomial trend (quadratic) was sufficient to achieve
stationarity. Therefore, in order to maintain some mathematical consistency between the
small-scale spatial variability analyses and the large-scale analyses, a second-degree
polynomial trend was fitted to the data; the resulting trend is expressed in Equation (7.1)

and shown graphically in Figure 7.2.

31 SPLUSIs a registered trademark of MathSoft Inc., Seattle, Washington.
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Figure7.1 Locationsof the spatially averaged s, observations from the O to 3 metre
data set used in the large-scale spatial variability analyses.

§, =-12.264x10°E* +16.693x107°N? + 2.149E

(7.1)
~0.708N - 4.509x 10 °E. N - 76211.69

where: E is the Easting (m);
N is the Northing (m).

Regression analyses, performed by SPLUS for Windows, indicated that the second-degree
polynomial trend possessed a multiple r* that is, a goodness of fit, equal to 0.151; by no
means a significant trend. While it is possible to remove trends of higher order, such trend
removal is not warranted due to the relatively limited number of available data. As a
consequence, while the second-degree polynomial trend is not significant, and its presence
is unlikely to result in significant non-stationarity of the data set, it will be removed in
order to maintain some consistency with the lateral spatial variability models developed in
Chapter 5. In fact, it will be seen later, that this second-order trend has little influence on
the resulting estimates obtained from kriging. The following section describes the
development of a geostatistical model, that is a semivariogram, which expresses the spatial
variability of the undrained shear strength of the Keswick Clay.
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Figure7.2 Second-degree polynomial trend surface of s, (kPa) obtained by least
squaresregression of the 0 to 3 metre data set using S-PLUS for Windows.

7.3 GEOSTATISTICAL MODEL

In order to determine the 2D semivariogram of the detrended data set, the GEO-EAS
package (Englund and Sparks, 1988) was used, because of its excellent graphical interface
and post-processing facilities. Firstly, as suggested by Englund and Sparks (1988), the
data were entered into the pre-processing program, PreVar, which generates a pair
comparison file which allows the semivariogram to be calculated more efficiently. The
semivariogram was then obtained by entering the pair comparison file into the program,

Vario, which uses the convention shown in Figure 7.3 to calculate the semivariogram.

Firstly, in order to ascertain whether the undrained shear strength of the Keswick Clay
exhibits anisotropic behaviour, the North-South and East-West experimental semivario-
grams were calculated. These were obtained by means of Vario by: setting the direction
angle to 0° and the tolerance angle to 22.5°, in order to generate a North-South
experimental semivariogram; and the direction angle to 90° and the tolerance angle to

22.5°, to obtain an East-West semivariogram. These are each shown in Figure 7.4, and the
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Figure 7.3 Convention used by Vario to calculate the semivariogram.
(Pairs P1 and P5 are included in the computation for Lag 1 whereas pairs
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(After Englund and Sparks, 1988).
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Figure7.4 North-South and East-West experimental semivariograms, with
associated spherical model, of the detrended 0 to 3 metre data set.
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number of pairs associated with the computation of these semivariograms are given in
Figure 7.5. Superimposed on the experimental semivariograms in Figure 7.4 is an

appropriate spherical model, which is expressed in the following equation:

1000[ X_X 700 h
= - <
Y, qfa PP H+ whenx<a

(7.2)
Y, =1700 when x> a
where: a = 300 metres.
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Figure7.5 Number of pairsassociated with the North-South and East-West
experimental semivariograms of the detrended O to 3 metre data set.

It can be clearly seen in Figure 7.4, that considerable scatter is associated with both the
North-South and the East-West experimental semivariograms. In addition, the scatter
associated with the East-West semivariogram is greater than that associated with the
North-South semivariogram. It is likely that this scatter can be attributed, to some extent,
to the number of pairs associated with the computation of each experimental
semivariogram, as shown in Figure 7.5. For example, for the East-West semivariogram,
the number of pairs used at separation distances beyond approximately 800 metres, is quite
low; generally less than 50. In addition, as is evident from Figure 7.4, the semivariogram

values associated with these separation distances vary considerably. Furthermore, the
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North-South and East-West semivariograms indicate that there appears to be no evidence
to suggest that the variability is different from one direction to the other. On the contrary,
it appears reasonable to assume that the large-scale spatial variability of the undrained

shear strength of the Keswick Clay is isotropic.

By setting the direction angle to 0° and the tolerance angle to 90°, Vario was used to
generate an omnidirectional semivariogram. That is, an isotropic model which includes all
data pairs regardless of their direction, and which Englund and Sparks (1988) suggested,
provides the ‘best’ or ‘smoothest’ semivariogram. The resulting omnidirectional experi-
mental semivariogram, generated from the detrended O to 3 metre data set, is shown in
Figure 7.6, in addition to the same spherical model used to describe the North-South and
East-West semivariograms, as given previously in Equation (7.2). Figure 7.7 shows the
number of pairs associated with the omnidirectional experimental semivariogram. It
should be noted that the distances given by Vario, represented by X in this case, are the

average distances separating the pairs in each lag interval.

It is evident from Figure 7.6, that the omnidirectional semivariogram exhibits less scatter
than the North-South or East-West semivariograms, as expected. In addition, the spherical

model adequately represents the experimental semivariogram. However, beyond a distance
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Figure7.6 Omnidirectional experimental semivariogram, with associated spherical
model, of the detrended 0 to 3 metre data set.
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Figure7.7 Number of pairsassociated with the omnidirectional experimental
semivariogram of the detrended 0 to 3 metre data set.

of approximately 1,500 metres, there is greater divergence between the model and the
experimental semivariogram. Examination of the number of pairs associated with the
calculation of the omnidirectional experimental semivariogram, as shown in Figure 7.7,
indicates that far fewer pairs are associated with distances greater than 1,500 metres.
Hence, the uncertainty associated with the semivariogram values at these distances is
somewhat greater than with the values at distances less than 1,500 metres. As a result,
more importance should be given to these semivariogram values. While it can be argued
that uncertainty exists with the level of the sill, it is apparent from Figure 7.6 that a greater
level of confidence is associated with the nugget, C,, of 700 kPa® and the range, a, of

300 metres.

At this stage, it is possible to amalgamate the small-scale nested model, given in Chapter 5,
with the large-scale model, expressed in Equation (7.2), in order to generate a single
function which describes the spatial variability of the undrained shear strength of the
Keswick Clay. Figure 7.8 shows the large-scale model semivariogram relative to the two
small-scale models, detailed previously in Chapter 5. Combining these three models yields

the expression given in Equation (7.3), which is shown graphically in Figure 7.9.
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While the function shown in Equation (7.3) is an appropriate representation of the spatial

variability of the undrained shear strength of the Keswick Clay, it must be emphasised that

the accuracy associated with the small-scale model is quite different to that of the large-

scale model. The small-scale study was conducted under very controlled conditions; that

is, using consistent apparatus, procedures and operators, as well as under consistent

climatic conditions. The large-scale model, on the other hand, was based on data obtained

from several and diverse sources, which invariably employed different sampling, testing
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Figure7.9 Nested model semivariogram of the spatial variability of the undrained

shear strength of the Keswick Clay.
(Note: x-axisisnot drawn to scale).

and reporting procedures; all of which contribute to the inaccuracy of the model. In
addition, the large-scale variability was assessed using a great deal less data than those
employed in the small-scale model. Hence, these effects combined, result in the
uncertainty of the large-scale model being far greater than that associated with the small-
scale model. This increased uncertainty is manifested by the difference between the sill of
the y, + v, structure (i.e. C + C, = 390 kPa’) and the nugget effect of the y, + Y, + Y,
structure (i.e. C, = 700 kPa®). While this is not ideal, it is unfortunately an inevitable part
of this study, which could only be altered if the large-scale model were based on
consistent, more reliable, and more numerous data. As argued previously, such a notion
would require a significant commitment of resources and labour well beyond the scope of
this study, and it is questionable whether the outlay of such resources could ever be

justified.

The following section makes use of the nested spatial variability model, expressed in
Equation (7.3), to assess its suitability, and which forms the basis for estimation at

unsampled locations.
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1.4 ASSESSMENT OF THE GEOSTATISTICAL MODEL

The previous section presented a 2D geostatistical model which expresses, via the nested
semivariogram, the spatial variation of the undrained shear strength of the upper 3 metres
of the Keswick Clay. In order to evaluate the suitability of this geostatistical model, two
assessment procedures will be employed. Firstly, several authors (Sandefur and Grant,
1980; Englund and Sparks, 1988; Isaaks and Srivastava, 1989; Deutsch and Journel, 1991;
Olea, 1991) have suggested the use of cross validation, which enables the estimation
method to be tested at the locations of existing samples, by using the neighbouring
observations, but excluding the value of the point being estimated. Secondly, additional
measurements of §,, obtained after the KESMCK data base was compiled, are compared
with the estimates obtained by kriging, using the geostatistical model presented in the

previous section. Each of these assessments are treated separately below.

74.1 Cross Validation Analyses

Isaaks and Srivastava (1989) suggested that cross validation analyses provide useful
quantitative and qualitative information regarding the suitability, or otherwise, of a spatial
variability model, the estimation procedure and its associated parameters. GEO-EAS
provides a facility for performing cross validation calculations, by means of the program,
XValid. In order to assess the suitability of the nested semivariogram model, given
previously in Equation (7.3), the original O to 3 metre data set was input into XValid.
Cross validation estimates were then provided by XValid at each sampled location by
means of ordinary kriging, the results of which are summarised in Table 7.1, and Figures
7.10 and 7.11. In obtaining the cross validated estimates via Xvalid: (i) the search radius
was set at 1,000 metres in order to be somewhat larger than the maximum range, a,, of 300
metres; and the model semivariogram was represented by the nested model of Equation

(7.3), and specified as isotropic.

It is evident from Table 7.1 that the cross validated estimates provide similar statistics to
those of the original data. Though, as mentioned previously, the ordinary kriged estimates
yield a more ‘smoothed’ representation of the sampled data, as is evident by @, 6> and CV.
Isaaks and Srivastava (1989) suggested that a posting, or plan, of the cross validated
residuals, that is the difference between the observations and the estimates, can assist in
identifying regions of local bias within the estimation procedure. Such local bias can be
identified by clusters of overestimation or underestimation within the cross validated
results. It is evident from Figure 7.10 that the cross validation analyses yield overestimates

and underestimates which are somewhat randomly distributed throughout the Adelaide city
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Table7.1 Summary statistics of the results of cross validation analyses compared
with the original data.

Statistic Original Cross Validation
Data Estimates
Number, N 143 143
Mean, m 127.1 124.2
o 46.2 29.4
o’ 2129.8 866
Ccv 36.3% 23.7%
Skewness 0.994 0.775
Kurtosis 4.54 3.52
Minimum 31.0 66.0
25th percentile 93.8 101.7
Median 116.0 119.6
75th percentile 155.0 137.7
Maximum 316.0 219.7
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Figure7.10 Map of theresiduals obtained from the cross validation
of the 0 to 3 metre data set.
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Figure7.11 Scatterplot of theresiduals obtained from the cross validation
of the O to 3 metre data set.

area. Hence, there is no evidence to suspect that the spatial variability model yields local
bias. In addition, the scatterplot of original values versus cross validation estimates, shown
in Figure 7.11, further indicates that the overestimates and underestimates are relatively

evenly distributed.

The cross validation results, given in Table 7.1, and Figures 7.10 and 7.11, suggest that the
nested semivariogram model appears appropriate. Isaaks and Srivastava (1989) suggested,
however, that cross validation analyses have a number of limitations. Firstly, if the
original data are spatially clustered, then, so too, are the cross validated estimates and,
consequently, their usefulness is reduced. In other words, some conclusions drawn from
the cross validated residuals may be applicable to the entire map region, whereas others
may not. Secondly, since cross validation generates estimates at only the sampled
locations, it is not possible to draw any conclusions regarding the suitability, or otherwise,
of the estimation procedure at unsampled locations. Hence, while the cross validation
results suggest that the nested spatial variability model is appropriate, further assessment is
needed. The following section presents the results of ordinary kriging analyses, performed
on new data obtained after the KESWICK data base was compiled.
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7.4.2 Ordinary Kriging Analyses

A more robust assessment of the performance of the spatial variability model and the
estimation procedure, is to estimate values and to compare these with their actual
measurements. In order to achieve this, the consulting practices and government
instrumentalities, listed in Chapter 6, were again approached in order to provide additional
measurements of S, obtained from UU tests performed on samples of Keswick Clay, and
obtained from the Adelaide city area, within 3 metres of the surface of the clay. These
criteria were stipulated so that the newly acquired data could be compared with the
estimates provided by the spatial variability model, presented previously in this chapter.
However, since the KESMICK data base was last compiled, that is in October 1991, little
major construction activity has taken place in the Adelaide city area. Unfortunately, only
one geotechnical investigation performed since 1991, at the East End Market site, yielded
S, measurements which were consistent with the criteria listed above. Additional and
suitable UU test data were published by Do and Potter (1992) and van Holst Pellekaan and
Cathro (1993). In addition, the results of the UU tests from boreholes A10 and FS5,
presented previously in Chapter 4, were not included in the KESWMCK data base, nor,
consequently, the nested semivariogram model. These, together, yield 5 separate
observations of §, which may be used to assess the spatial variability model and estimation
procedure. These data are summarised in Table 7.2 and their locations, relative to the
KESWMCK data, are shown in Figure 7.12. The values of §,, for each of the 5 boreholes,
were obtained by averaging the measurements of S, within the depth range of 0 to 3 metres

below the surface of the Keswick Clay.

The geostatistical package GEO-EAS provides a facility for 2D ordinary kriging via the
program, Krige. In order to obtain estimates of the data detailed in Table 7.2, the search

radius was again set at 1,000 metres and the model semivariogram was represented by the

Table7.2 Summary of additional §, data from UU tests on Keswick Clay, used to
assessthe spatial variability model and estimation procedure.

Ref. | Easting | Northing | §, N L ocation Sour ce
No. (m) (m) (kPa)
1 81583 32664 250 1 East End Market Coffey Partners International
2 80703 32006 92 30 Victoria Square | Do and Potter (1992) & van Holst
Pellekaan and Cathro (1993)
3 80096 32407 105 8 Light Square Do and Potter (1992)
4 80022 31172 | 139 | 6 A10 Chapter 4
5 80010 31139 111 6 F5 Chapter 4

Note: N is the number of individual measurements of S, used to obtain §;.
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Figure7.12 Locations of the additional data used to obtain kriged estimates.

nested semivariogram model, detailed in §7.7.3, and was again specified as isotropic. The
results of the ordinary kriged estimation, given by Krige, as well as their associated kriging
standard deviations, 0,, using the original, non-detrended data, are summarised in Table
7.3. The results of the ordinary kriged estimation, using the detrended data, are
summarised in Table 7.4. It should be noted that, as one would expect, the number of
neighbours contributing to the ordinary kriged estimates and 0,, using the detrended data
in Table 7.4, are identical to those using the non-detrended data in Table 7.3. Brooker
(1991) suggested that, while 0, does not, of itself, allow calculation of confidence limits, it
is common, under the assumption of normality for the error distribution, to use O, to
calculate confidence limits. Hence, for the first data point (Ref. No. 1), the 95%
confidence interval is 217 + 54.7 kPa (i.e. 217 £ 1.96 x 27.9), whose limits include the
250 kPa observation.

Tables 7.3 and 7.4 clearly demonstrate that the estimates provided by the nested
semivariogram model, and the ordinary kriging process, provide very good preliminary
representations of the actual S, measurements. In addition, it is evident from the sum of the
squared differences, SSD, that the original, non-detrended data yield superior estimates to
those given by the detrended data. This is probably due to the fact that the OLS second-
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Table7.3 Summary of results of ordinary kriged estimates from Krige using
original non-detrended data.

Ref. | Original Estimate O, Neighbours | % Error SSD

No. | §,,(kPa) | s, (kPa) (kPa) Used (kPa) (kPa?)
1 250 217 27.9 16 13.2 1,089
2 92 83.4 31.2 16 9.6 74
3 105 104.4 42.1 16 0.6 0.4
4 139 116 37.9 16 16.5 529
5 111 115 40.2 13 -3.6 16

>SSh= 1,708

Table7.4 Summary of results of ordinary kriged estimates from Krige using
detrended data.

Ref. | Original Kriged OLS Retrended | % Error SSD
No. Value Estimate | Surface Estimate (kPa) (kPa%)
5, (kPa) (kPa) (kPa) 5,,(kPa)
1 250 81.2 136.0 217.2 13.1 1,076
2 92 -37.5 121.0 835 9.5 72
3 105 -3.6 103.8 100.2 4.6 23
4 139 -1.2 110.1 108.9 21.7 906
5 111 -2.8 110.5 97.7 12 177

>SSb= 2254

degree surface is not significant, and its estimation is likely to add to the uncertainty of the

overall estimate.

It is common practice in the mining industry to use other, more simplistic estimation
regimes, such as polygonal estimation, inverse distance weighting and inverse distance
squared weighting (Journel and Huijbregts, 1978; Clark, 1979; Isaaks and Srivastava,
1989; Brooker, 1991; Olea, 1991). With reference to the estimation of points, polygonal
estimation assigns the value of the nearest neighbour to the point in question; whereas the
inverse distance and inverse distance squared regimes, assign weights to the neighbours
dependent on the distance from each neighbour to the estimation point. The inverse

distance and inverse distance squared, weightings, W,, are expressed by:
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I nverse distance:

| (7.4)

where: d is the distance from the estimation point to the ith neighbour.

I nver se distance squared:

1 (7.5)

The point estimate, S, is then, simply the summation of the individual weights multiplied
by each associated observation, as shown in Equation (7.6). These estimation regimes will

be used to assess the performance of the ordinary kriging estimation procedure.

§ =) W, (7.6)
where: S is the undrained shear strength of the ith observation.

Employing the Excel spreadsheet package, the same five data points, which were analysed
above, were estimated using the polygonal, inverse distance and inverse distance squared,
estimation regimes, and the results are summarised in Table 7.5. Examination of the total
SDs for each estimation procedure indicates that the inverse distance squared technique
performs very well, whereas the polygonal and inverse distance methods perform relatively
poorly. The results presented in Table 7.5, when compared with those given by ordinary
kriging (£SSD = 1,708), as shown in Table 7.3, suggest that the inverse distance squared
technique is superior to that of kriging. However, closer examination of these results
indicates that, in all but the first data point (Ref. No. 1), ordinary kriging out-performed the
inverse distance squared technique. Excluding the first data point from the evaluation of
the total SSD, yields a value of 1,037 for the inverse distance squared procedure, as
compared to 619 for ordinary kriging. It is reasonable to draw attention to the first data
point, since, as shown in Table 7.2, its value is based on only one test result, taken from a
depth of 2.6 metres below the surface of the Keswick Clay. Had this result been based on
more test samples, one would expect the average value of S, to be somewhat lower, due to
the effect of increasing S, with depth, as indicated in Chapter 6. Hence, it is justifiable to

exclude it from any assessment of the performance of estimation regimes. With this in
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Table7.5 Summary of results of estimates of §, (kPa) and sum of the squared

differences, SSD, (kPa?) from polygonal, inverse distance and inverse
distance squar ed estimation regimes.

Ref. | Original Polygonal | nver se Distance I nver se (Distance)’
No. Value Estimate SSD Estimate SSD Estimate SSD
1 250 272 484 155.2 8,989 233.1 284
2 92 89 9 121 843 106.7 215
3 105 119 196 116 121 107.3 6
4 139 103 1,296 121.9 292 110.5 810
5 111 103 64 122.5 132 113.4 6
>SSh= 2,049 10,377 1,321
> SSh* = 1,565 1,388 1,037
Note: = SSD" s the sum of the SDs excluding the first data point (Ref. No. 1).

mind, the ordinary kriging procedure significantly out-performs the other estimation
techniques, which is consistent with the geostatistical literature (e.g. Brooker, 1991). This
is not surprising, since the polygonal, inverse distance and inverse distance squared
estimation regimes do not correctly account for the variability of the material. That is,

they treat highly homogeneous materials in the same way as highly heterogeneous ones.

While the preceding kriging analyses provided preliminary estimates of §, at a given point,
it is possible to obtain an overall picture of the spatial variability of the Keswick Clay by
kriging a grid of points, and then using these estimates to generate a contour map of the
Adelaide city area. In order to achieve this, the program, Krige, was used to generate a
grid of 30 x 30 estimates of §, across the Adelaide city area, using the nested
semivariogram model, specified previously. The search radius was again specified as
1,000 metres and a minimum number of 4 points were used in the kriging process. The
ordinary kriged point estimates for the undrained shear strength of the Keswick Clay,
given by Krige, are summarised in Figure 7.13, and their associated kriging standard
deviations are given in Figure 7.14. As one would expect, Figure 7.14 demonstrates that
the uncertainty associated with the kriged estimates is greatest adjacent to the boundaries
of the Adelaide city area, whereas lower levels of uncertainty are evident towards the
centre of the estimation region.

Comparing Figures 7.13 and 6.35, it is apparent that the variability obtained by kriging is
substantially different to the variability described by standard contouring procedures; in

the case of Figure 6.35; inverse distance squared. However, it is not entirely correct to
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Figure7.13 Thespatial variation of §, of Keswick Clay, within a depth of 3 metres
below its surface, as given by ordinary kriging.
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Figure7.14 Thevariation of thekriging standard deviation, o,, associated with the
estimates given in Figure 7.13.
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compare these two diagrams, since Figure 6.35 was based on values of s, averaged over
the entire length of the boreholes, whereas Figure 7.13 was based on measurements of s,
averaged over a maximum interval of 3 metres. Figure 7.15 shows the variation of §,
across the Adelaide city area, as given by the DeltaGraph graphical package, using the
non-detrended O to 3 metre data set as input. Unlike Surfer, which was used to generate
Figure 6.35 by means of the inverse distance squared estimation regime, DeltaGraph uses
polygonal estimation. Furthermore, it should be noted that, in generating estimates,
DeltaGraph allows only interpolation, a limitation of the polygonal approach. Thus, the
contours are restricted to a triangular region of the city. It can be readily seen, from
Figures 7.13 and 7.15, that they are substantially different. Whilst polygonal estimation
has been used widely in the mining industry, it provides satisfactory results only for highly
continuous variables, and it is essentially its poor estimation performance, which largely

contributed to the development of geostatistics (Olea, 1991).
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Figure7.15 Thespatial variation of §, of Keswick Clay, within a depth of 3 metres
below its surface, as given by polygonal estimation via DeltaGraph.
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7.5 SUMMARY

In this chapter, a model has been developed which describes the small- and large-scale
spatial variability of the undrained shear strength of the Keswick Clay. It has been
observed that the model exhibits a nested structure which accounts for the spatial
variability at 3 distinct scales; that is, at 0.2, 6 and 300 metres. In addition, it has been
demonstrated that, when the spatial variability model is used in conjunction with the
ordinary kriging procedure, very good preliminary estimates of §, are obtained at
unsampled locations. Furthermore, these kriged estimates have been shown to be superior
to those obtained from other estimation regimes, such as polygonal, inverse distance and
inverse distance squared. However, it must be emphasised that, while these kriged
estimates are useful in providing an indication of the average undrained shear strength of
the Keswick Clay, within a depth range of 3 metres below its surface, considerable
uncertainty exists with these estimates. While the kriging standard deviation, G,, provides
an estimate of this uncertainty, the total uncertainty is undoubtedly greater. This is due to
the fact that the data on which the large-scale spatial variability model and the estimates
are based, contain unquantified levels of variability due to inconsistencies in sampling,
testing and reporting procedures. However, with these points in mind, it has been
demonstrated that geostatistics provides a useful means by which preliminary estimates of

undrained shear strength can be obtained.

As a preliminary design aid, Figure 7.13 provides an initial estimate of §, for the Keswick
Clay, within the upper 3 metres of the clay’s surface. A more precise estimate, at a given
location within the Adelaide city area, may be obtained by using the program, Krige, in
conjunction with the nested semivariogram model. As a consequence, two levels of

preliminary estimation of §, are provided.

The following chapter examines the significance of the spatial variability of the undrained

shear strength of soils, on geotechnical engineering design.



Chapter Eight

Significance of Spatial Variability with
Respect to Geotechnical Engineering
Design

8.1 INTRODUCTION

In Chapter 5 it was observed that the undrained shear strength of the Keswick Clay
exhibited a vertical correlation distance equal to 0.2 metres, and a lateral variability model
which was the combination of three separate structures with ranges: a, = 0.2 metres;
a, =6 metres; and a, = 300 metres. This chapter makes use of these results and
investigates the influence of both the scale of fluctuation, §,, and the range, & on
geotechnical engineering design. Two areas of geotechnical engineering design are

examined - slope stability analysis and pile design, and these are each treated, in turn, below.

8.2 SLOPE STABILITY ANALYSIS

Much of the research undertaken in the field of the spatial variability of geotechnical
materials has focused on slope stability analyses. This is due mainly to the fact that, in
general, the geotechnical engineering profession is presently unable to make reliable
predictions of slope failure events (Vanmarcke, 1977b). This is because the vast majority
of such predictions are based on a conventional design approach, where the computed
factor of safety (FOS) is sought to be maintained above some minimum prescribed value.
However, the FOS fails to make any allowance for the variability of the material and its
properties, as well as uncertainties associated with the externally applied loads. Recently,
the focus of slope stability analyses has been directed away from the FOS approach, and
has concentrated on the evaluation of the probability of failure, P;. It is in the calculation

of P, that spatial variability analyses have been primarily directed.

349
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Li (Li and Lumb, 1987) developed a computer program, PROBSN, which includes the
scale of fluctuation in the calculation of P;. The program was originally written in Fortran
77 for a mainframe computer, but was subsequently converted to operate on a PC platform
by Waddell (1988) and Mostyn and Soo (1992). PROBSN uses the first order second
moment method to determine the failure probability of a slope using the generalised
procedure of slices. The program accommodates circular and non-circular slip surfaces,
and the method is rigorous in that both force and moment equilibrium are satisfied
(Mostyn and Soo, 1992). PROBSN uses the safety margin, instead of the FOS as the
performance function, since the safety margin is more likely to be normally distributed.
The analysis procedures used by PROBSN are treated in detail by Li and Lumb (1987).

In order to assess the influence of the scale of fluctuation on the probability of slope
failure, an embankment was analysed using the program, PROBSN. The embankment
shown in Figure 8.1, while fictitious, was given realistic geometrical and soil properties
which are consistent with those of a typical slope, likely to be encountered in the Adelaide
city area. The embankment was given an overall height of 10 metres, the slope angle, O,
was varied from 20° to 85°, in increments of 5° or 10°, and the embankment material was
assumed to be Keswick Clay with geotechnical properties, mean and standard deviation,
of: undrained shear strength of 50 and 20 kPa; bulk unit weight of 18.8 and 1.9 kN/m’; and
internal angle of friction of 0° and 0°. These geotechnical and statistical properties are
consistent with those given in Chapter 6 for Keswick Clay. The undrained shear strength,
however, was chosen at the low end of the recorded values to ensure that the slope stability
analyses yielded realistic factors of safety, FOS typically less than 1.5. By setting §, = 9§,
(= 9,), and allowing 9§, to vary between 0.001 metres (representing a completely random
soil deposit), and 10,000 metres (a perfectly correlated soil profile), and by specifying a
simple exponential ACF model, the probabilities of slope failure were evaluated using the
program, PROBSN. The results of these analyses are summarised in Figure 8.2. It should
be noted that, while this figure suggests that some of the calculated values of P; were equal
to zero, this was not the case. In fact, as O, decreased, the calculated values of P,

asymptoted towards zero, as expected.

10 m

Figure8.1 Keswick Clay embankment analysed using PROBSN.
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Figure8.2 Influence of the scale of fluctuation, d,, on the
probability of slopefailure, P;.

It can be concluded, from Figure 8.2, that:

* For all but the steepest slopes (@ = 80° and 85°), P, remains low when &, < 1 metre;
* For ©<50° P,=0 when §, < 10 metres;

* For all slopes examined (© = 20° to 85°), P, is very small when &, < 0.2 metres.

On the other hand, the factor of safety, FOS is independent of §,, the model ACF and the
standard deviation of the geotechnical properties. As a consequence, the traditional
method of evaluating the FOS is not recommended, as this value gives no indication of the
probability of failure of the embankment. For example, a slope whose soil properties are
known with great accuracy, as the result of extensive testing, will possess the same FOS as
a slope with identical geometrical and soil properties, which are known with a lesser

degree of accuracy, as the result of a more limited testing programme.

It is evident from the foregoing discussion and analyses, that, for the embankment
examined, the influence of the scale of fluctuation on P is negligible when 9, is less than,
or equal to, 0.2 metres. Conversely, the scale of fluctuation only influences P; significantly
when 9, is greater than 1 metre, or in some cases 10, or 100 metres. It was shown in
Chapters 2 and 5, that several researchers have observed scales of fluctuation for §,
between approximately 0.1 and 50 metres. Figure 8.2 indicates that, for soils with scales
of fluctuation of the order of 1 metre or greater, the exclusion of 9, in slope stability
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analyses will significantly affect the results obtained. These conclusions are in general
agreement with those given by Li and Lumb (1987), Li and White (1987b), and Mostyn
and Soo (1992), who performed similar analyses. While the inter-relationship between 9,
and 9, has not been examined in the present case study, Li and White (1987b) found that P,

is slightly more sensitive to d, than to J,.

In addition, Mostyn and Soo (1992) stated that the majority of current methods, used to
determine the probability of slope failure, fail to account for the autocorrelation of the
geotechnical properties of the slope material. By excluding autocorrelation from the
analysis process, the majority of probabilistic slope techniques implicitly assume that a
random variable, for example §,, is perfectly correlated with itself over infinite distances.
As shown in Figure 8.2, such an assumption often yields extremely conservative estimates

of P;, which are often several orders of magnitude in error.

In summary, soils with small scales of fluctuation, say less than one metre, will yield lower
probabilities of slope failure than soils with large scales of fluctuation. The traditional,
deterministic approach of evaluating the FOS of the slope is unaffected by, and takes no
account of, the uncertainty and autocorrelation structure of the soil properties of the slope
material. Such analyses are not recommended as the single parameter, FOS gives no
indication of the likelihood of failure of the slope. In addition, the majority of probabilistic
slope stability techniques fail to account for the autocorrelation of the soil properties of the
slope material. Such analyses assume perfect correlation, which yield unrealistically high
estimates of P;. While such estimates are conservative, Mostyn and Soo (1992)
recommended that these analyses should not be used in economic assessments, but only to

provide a ranking of preferred options.

8.3 PILE DESIGN

The main objective of pile foundations is to transfer any loads present at the surface, to the
underlying strata; both safely and economically. Ideally, full-scale pile load tests should
be performed at the locations of the proposed piles. However, such pile load tests are
extremely expensive, and hence are impractical for most situations. An alternative
approach is to use mathematical models to predict the behaviour of pile foundations under
load. Many such techniques have been developed for this purpose, however, their accuracy
1s directly influenced by the quality and quantity of the data on which their predictions are
based. As mentioned in Chapter 2, the CPT was originally developed to facilitate the
design of pile foundations. Furthermore, in §2.4.4, it was demonstrated that, of all of the
axial pile capacity techniques which are based on CPT data, the LCPC Method has been

shown to provide the best estimates. The following section briefly details this technique.
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831 LCPC Method

The LCPC (Laboratoire Central des Ponts et Chaussées, France) Method is used to predict
the ultimate axial capacity of a statically loaded pile, Q,, and is given by the following

equation (Bustamante and Gianeselli, 1982):
Q =Q:+Qs  (kN) (8.1)

where: Qs is the resistance due to the base of the pile (kN);
Qs is the resistance due to the shaft of the pile (kN).

For a multi-layered soil, Bustamante and Gianeselli (1982) suggested that Qg and Qg may

be determined from the following relationships:

Qe =duk. A, (kN) (8.2)
where: Oca is the clipped average cone tip resistance at the level
of the pile base (kPa);

K. is the penetrometer bearing capacity factor;
A, is the area of the base of the pile (m?).

and:
Q= z 0sC, & (kN) (8.3)
1=1
where: Og is the limit unit skin friction of the ith layer (kPa);
G, is the circumference of the pile shaft (m);

t

is the thickness of the ith layer (m).

Bustamante and Gianeselli (1982) suggested that the limit unit skin friction, g4, may be

determined from the following equation:

gy = ¢ (8.4)

where: 1) is a constant which allows for the nature of the soil

and the pile construction and placement techniques.

Bustamante and Gianeselli (1982) provided tabulated values for ) dependent on the soil
type and the pile construction method. In addition, the authors suggested maximum values

for g, to account for: the presence of localised hard elements; non-compliance with
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standard penetration rates; poor condition of cones; excess porewater pressures; and
deviation of the CPT rods from the vertical.

The clipped average cone tip resistance, (., 1s calculated using the following procedure
(Bustamante and Gianeselli, 1982):

1. As shown in Figure 8.3, the intermediate parameter, q,, is determined by averaging the
measured values of g, over the length, L, —a, to L, +a,, where: L is the length of the
pile; and a, is equal to 1.5 XD, (where D, is the width of a pile, or in the case of a

circular cross-section pile, its diameter).

q, %a

0.7q.,+ 1.3q

2

Pile
Depth

A i

?
a | —d__ —
V-—"1 | —2>» - —T

Qo{<: Y = | <
v : b
a,= 1.5 xD, :\

Figure8.3 Theprocedureused to calculateq,.
(After Bustamante and Gianeselli, 1982).

TN

(9]
X

qC measurements

2. The measured values of g, are then clipped to remove local irregularities, such that g is

in the range: 0.7¢., < g4 <1.3Q., .

3. The clipped average cone tip resistance, ¢, 1s then determined by averaging the
clipped values of q,, over the length, L ,—a,to L+ a,.

Finally, Bustamante and Gianeselli (1982) recommended that the allowable design axial
load, Q,, that can safely be placed on the pile, is given by the following equation:

2, Q

Q=7+ N (83)
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It can be seen from the preceding treatment that the LCPC Method makes use of only the
g. measurements; that is, sleeve friction measurements are not used in the prediction of the
static axial load capacity of the pile. This is an advantage over other methods, since this
reduces the computational effort required, as well as the uncertainty associated with the
prediction itself. However, the use of clipped data may tend to result in underestimation of
the pile capacity.

The following section details hypothetical field problems used to assess the influence of
spatial variability on the design of pile foundations. The two field problems were based on
piles driven into Keswick Clay. Bustamante and Gianeselli (1982) recommended that, for
precast piles driven into a compact to stiff clay, k, = 0.55, ¢ = 40, and Qg = 80 kPa,
where the piles are constructed with minimal disturbance to the soil in contact with the pile
shaft, otherwise Qg = 35 kPa. These values will be used when applying the LCPC

Method to the case studies presented below.

8.3.2 Hypothetical Field Problems

In assessing the influence of the spatial variation of the undrained shear strength of clay
soils on the design of pile foundations, two case studies will be presented. Firstly, the CPT
information obtained at the South Parklands site will be considered, and secondly, a series

of simulated data will be examined. These are each presented separately below.

8.3.2.1 South Parklands Site

When designing a pile foundation it is necessary to obtain an estimate of the undrained
shear strength, s, of each of the soil layers within the substrate. When based on
laboratory testing, it is common practice to drill a borehole adjacent to the proposed pile,
and to obtain sufficient undisturbed samples, from which, S, is determined by means of a
series of triaxial tests. It is becoming increasingly more popular to design piles on the
basis of CPT data, as mentioned in §8.3. Again, it is common practice to perform a CPT
adjacent to the proposed location of the pile. Often, however, limited budgets mean that at
most only a few CPTs are performed at any one site, and piles are designed on the basis of
CPT data obtained some distance away from the actual location of the pile. The CPTs
obtained at the South Parklands site provide a useful data set for quantifying the effect of

spatial variability on the design of pile foundations.

Suppose that a building is to be constructed at the South Parklands site. For a typical

design situation, it is likely that a geotechnical investigation of the site would consist of a
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CPT at each of the corners of the building, and perhaps one in the centre; being a total of 5
CPTs. Suppose that the structural layout of the proposed building requires a pile to be
located at the centre of the site; that is, at location F5. Recall from Chapter 4, that 6 CPTs
were performed in the vicinity of F5; that is, E54, F44, FSA, F5, F501 and F51, as shown
in Figure 8.4. These 6 CPTs, when used together, provide a good description of the soils

in the immediate vicinity of the proposed pile.

[ ]
E54 A
1.0
® O o .H
F44 F5A F5 F501
1.0
Py Y
F51
e@L—>
05 05 1.0

Figure8.4 CPTsadjacent to F5.

Since each of the CPTs was driven to a maximum depth of 5 metres below the ground
surface, it is only advisable to design piles up to 5 metres in length. As a consequence, let
us assume that the proposed pile is to be a driven, precast concrete pile, 0.3 metres in
diameter and 4.5 metres long. The LCPC Method recommends that to evaluate the base
capacity of the pile (Qg), CPT data over the depth range 1.5 x D, above and below the
base of the pile, are to be used. However, little information is available regarding the

lateral extent over which S, of a clay soil contributes to the shaft capacity of a pile (Qy).

Since a driven pile behaves in a similar fashion to the insertion of a cone penetrometer into
the subsoil profile, it is possible to make some estimate of the radius of the cylinder of soil
which contributes to the axial capacity of a pile. This can be achieved by means of the
chart developed by Teh and Houlsby (1991) using a finite element analysis, and shown
previously in Figure 2.10. Using a, = 0.15 metres, 3 = 60° and |, = 67.4 (the average value
of |, determined in Chapter 4) as input, the radius of the elastic zone, r, = 1.0 metre, and
the depth of the base of the elastic zone, below the tip of the pile, z, = 0.54 metres. The

value of r, compares well with the diameter of 2 metres suggested by Poulos (1995). In
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addition, the value of 0.54 metres for z, compares favourably with the 1.5 x D, = 0.45
metres, suggested by the LCPC Method. As a consequence, the axial bearing capacity of a
0.3 metre diameter by 4.5 metre deep pile is assumed to be influenced by a cylinder of soil,
2 metres in diameter and 4.95 metres in height. Hence, since the 6 CPTs shown in Figure
8.4, are contained within this soil cylinder, it would be expected that the average of these 6
CPTs would provide a very good representation of the axial capacity of the proposed pile
at F5, with a relatively low level of uncertainty. Figure 8.5 shows the measurements of g,
from each of these 6 CPTs, as well as their mean, which was obtained using the global
statistics feature of SemiAuto.

Cone Tip Resistance, g, (M Pa)

0 5 10 15
() | I I I | I I I I | I I I I

1000 -

2000 -

3000 -

4000 -

5000 | I
1 —— Mean

6000

Depth Below Ground {(mm)

Figure8.5 Datafromthe6 CPTsadjacent to F5, including their mean.

In order to facilitate the calculation of the allowable axial capacity of a statically loaded
pile, Q,, by means of the LCPC Method, an Excel spreadsheet was developed. By
entering the mean ¢, profile of the 6 CPTs into the Excel spreadsheet, Q, was found to
equal 106.4 kN. However, as mentioned above, a typical geotechnical investigation would
involve, at most, a single CPT adjacent to the proposed pile. Suppose that such a CPT was
performed along the centreline of the pile, that is, at F5 itself. Substituting the
measurements of q,, from CPT FS5, into the Excel spreadsheet yields an estimate of Q,
equal to 102.8 kN, a 3.4% underestimate; assuming 106.4 kN to be the ‘true’ value.
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In order to assess, further, the influence of spatial variability on pile design, let us suppose
that the budget for the geotechnical investigation did not allow a CPT to be performed at
F5, but at some distance away from the pile location. How does the distance of the CPT,
away from the location of the proposed pile, influence its design estimate? It is possible to
assess this by examining the other CPTs performed at the South Parklands site. For
example, for a radial distance of 1 metre, 4 CPTs; that is, E54, F501, F51 and F44, were
drilled at the site, and by entering these into the Excel spreadsheet, it is possible to
determine the error.

Figure 8.6 shows the envelope of the maximum percentage error between the value of Q,
obtained by using a single CPT, as a function of the radial distance from F5, compared
with the ‘true’ value of Q,, given by the mean of the 6 CPTs, as detailed above. A
positive percentage error indicates an overestimation, whereas a negative percentage error
indicates an underestimation. It can be seen from Figure 8.6, that a maximum
overestimation of 3%, and a maximum underestimation of 8%, may be obtained when the
location of the CPT, used to design a pile, is some 35 metres away from the location of the
proposed pile itself. Such errors would be quite acceptable to a geotechnical design
engineer. However, much of the spatial variability of the CPT data is ‘masked’ by the
LCPC Method itself. For instance, Figure 8.6 was obtained using O, = 35 kPa, which
tends to limit the variability of Qg, and as a result, Q,. Figure 8.7 presents the same
results as Figure 8.6, with Qg set to 80 kPa; and Figure 8.8 shows the same results, but

with an unlimited Qg -
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Radial Distance from F5 (m)

Figure8.6 Relationship between the percentageerror of Q, and theradial distance
of the CPT, used to determinethe pile at F5, using gy, = 35 kPa.
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Figure8.7 Relationship between the percentageerror of Q, and theradial distance
of the CPT, used to determine the pile at F5, using gy, = 80 kPa.

It is evident from Figure 8.7 that, with Osimay) = 80 kPa, the maximum overestimation is 6%,
and the maximum underestimation is 36%. The 6% overestimation, again, would be of
little concern to a geotechnical design engineer, and, while the underestimation error is
relatively large, the resulting estimates of Q, are conservative, and hence, would result in
overdesign, rather than compromising safety. Figure 8.8 demonstrates the spatial
variability ‘masking effect’, or the inherent conservatism, of the LCPC Method. By not
using a Qg ), the variability in the CPT data indicates a maximum overestimation error of
45%, and a 38% underestimation error. An overestimation of 45% could result in an
unsafe design. However, by setting O, = 35 kPa, or 80 kPa, the LCPC Method reduces
the impact of spatial variability on the allowable axial capacity of the pile, particularly in
regards to overestimation, and hence, unsafe design values. However, in soft soils, where
0., and hence gy, will invariably be low and generally less than Qg,,, the influence of
Os(ray Will be minimal. In soft soils, therefore, the LCPC Method will result in less

conservative designs than those given by stiffer soils.

In conclusion, this field problem has demonstrated that the spatial variability of the
undrained shear strength of soils has a relatively minor influence on the design of pile
foundations. However, the influence of spatial variability has been greatly reduced by the
LCPC Method itself, which incorporates a maximum limit unit skin friction, Osi (e » of

either 35 or 80 kPa. The above study has been confined to the axial capacity of a single,
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Figure8.8 Relationship between the percentageerror of Q, and theradial distance
of the CPT, used to determinethe pile at F5, using an unlimited gg -

relatively shallow, pile located at the South Parklands site. It remains to be seen whether
the same results would be observed at other sites, using different pile dimensions, and
different pile design criteria, such as settlement.

8.3.2.2 Simulated Data

The previous field problem examined the influence of spatial variability on the design
capacity of a statically-loaded shallow pile, using CPT data measured at the South
Parklands site. However, these data were derived from a soil mass with fixed spatial
variability parameters; that is, O, and the range, a. The situation presented in this section

examines the influence of a on the design capacity of the same pile considered in §8.3.2.1.

In order to carry out such an assessment, it is necessary to generate a large number of
realisations of three-dimensional data. At present, there are no readily available
procedures for generating 3D simulated data based on random field theory, and hence the
influence of §, cannot be examined. Geostatistics, on the other hand, provides several
techniques for simulating data in three-dimensions. These techniques include: the turning
bands method, lower-upper (LU) decomposition, sequential Gaussian elimination,
sequential indicator simulation, and simulated annealing (Journel and Huijbregts, 1978;
Olea, 1991; Deutsch and Journel, 1991). The geostatistical software library, GSLIB,

provides generic Fortran code for each of these simulation techniques. However, the latter
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three provide the facility for simulating conditional data, that is, where the measured
values are honoured, as well as the histogram and model of spatial variability (Deutsch and
Journel, 1991; Olea, 1991).

In order to assess the influence of the range, a, on the design axial capacity of the same
pile examined in §8.3.2.1, g, data were simulated using a grid layout as shown in Figures
8.9 and 8.10. The extent of the grid was determined by: the dimensions of the pile; the
requirements of the LCPC Method; and the 2 metre lateral extent of the cylinder of soil,
explained in the previous section. Hence, the overall grid dimensions were set at 2.0 by
2.0 metres in plan dimensions, by 5.0 metres in depth. The resolution of the grid, that is
the spacing between adjacent data points, was chosen as a compromise between the
following criteria: (i) to provide sufficient data to enable reliable modelling to be carried
out; (i1) to ensure that the total number of simulated data did not exceed computer array
and memory limitations; and (iii) to provide reasonable computer solution times. The
resulting grid resolution was set at 0.1 metres in each of the three directions, which
resulted ina 21 x 21 x 50 grid, representing a total of 22,050 data points.

As mentioned previously, at best, a typical geotechnical investigation may include a single
CPT performed along the centreline of each proposed pile. The uncertainty arises as to
how well this single CPT represents the ‘true’ strength of the soil mass associated with the
pile, and whether this CPT is influenced by the variability of the soil mass itself. In
addressing these concerns, the case study presented in this section will be based on the

following procedure:

1. The ‘true’ strength of the soil mass, which influences the behaviour of the pile, is
assumed to be the spatial average of the simulated data within the 21 x 21 x 50 grid. It
has been argued previously, that the behaviour of many geotechnical engineering
systems is governed, not by local parameters, but by spatially averaged characteristics.
This is the case with the slope stability of embankments, as shown in §8.2, as well as
with pile foundations. As a result, this spatially averaged strength is obtained by
averaging the values associated with each depth level. That is, each horizontal plane,
which consists of a 21 x 21 point grid, or 441 simulated values of ¢, is averaged to
provide an estimate of the ‘true’ spatially averaged strength corresponding to that
particular depth. The end result is 50 averaged values of (., with each one

corresponding to a depth from 0.1 metres to 5.0 metres below the ground surface. That
is: (0.1, Gy), (0.2, ), (0.3, Gg3)s - »(4.9, Qoyo), (5.0, Geso)-

2. The ‘true’ design axial capacity of the pile, Q,, is then determined by substituting these
data into the LCPC Method.
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Figure8.9 Plan view of thegrid layout used for the smulated 3D data.

3. The centreline CPT, as shown in Figures 8.9 and 8.10, is obtained by identifying the
simulated values associated with the central grid point corresponding to each depth
level; that is, at grid coordinates (11,11), as shown in Figure 8.9. Again, the end result
is 50 data values, each one associated with a depth from 0.1 metres to 5.0 metres below
the ground surface.

4. An estimate of the design axial capacity of the pile, Q,, based on the CPT
measurements, is then made by substituting these centreline data into the LCPC
Method.

5. The two values of Q, and Q, are then compared, and the percentage error, Eo,, 18

determined by:

o :%x 100% (8.6)

A

E

6. This procedure is subsequently repeated for several different ranges, a.
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Figure8.10 Isometricview of the grid layout used for the ssmulated 3D data.

In choosing a suitable simulation procedure, it is important that realistic and non-negative
values of ¢, are generated. This can be achieved by using conditional simulation.
However, this is not desirable in this situation, since the measured values were derived
from a soil deposit with a finite, and consistent, spatial variability structure. As mentioned
previously, this field problem seeks to determine the influence of the range, @, on the

design axial capacity of a single pile. Hence, if measured values of g, were used to
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condition the simulated data, the spatial variability model of the measurements, and their

associated values of a, would unduly influence the simulated data.

As a consequence, it was decided to use the unconditional turning bands simulation
technique (Journel and Huijbregts, 1978), which generates standardised data; that is, data
which follow a Gaussian distribution, and which have a mean of zero, and a variance of
unity. These standardised simulated values, g.(i), can then be de-standardised to g (i) by

the following relationship:
0.(1) =00 (i) +m (8.7)

In this way, the simulated values honour a normal distribution with a mean of m, and a
standard deviation of O.

GSLIB provides a facility for simulating data via the turning bands method, by means of
the TB3D program. In order to simulate data, TB3D requires: an input semivariogram
model - either a spherical or exponential model; and a seed which is used to randomise the

simulation process.

In order to generate realistic simulations, it was decided that the simulated data should
honour the mean and variance of the CPT measurements, obtained at the South Parklands
site. Two scenarios were assessed: (i) the pile is founded, exclusively, within the Keswick
Clay; and (i1) the pile is founded within the soil horizons present at the South Parklands

site.

With respect to the first case, 50 CPT data files, which had previously been edited, so that
each file included only values of g, measured within the Keswick Clay (as detailed in
§5.3.1), were entered into SemiAuto in order to determine the global mean and variance of

these data. The results are shown in Table 8.1.
The global statistics associated with the second scenario; that is, pertaining to all of the q,

measurements obtained at the South Parklands site, excluding CPTs CDI1 to CD50; were

Table8.1 Global statistics of measurements of g, within the Keswick Clay, as well
as all soilsencountered at the South Parklands site.

Soil Type Mean, m (MPa) | Variance, o° (MPa?

Keswick Clay Only 2.495 0.4078

All Soil Horizons, including Keswick Clay 2.953 3.017
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shown previously in Table 5.1, and are also included in Table 8.1.

In order to investigate the influence of the range, &, on the design axial capacity of a single,
statically-loaded pile, it was decided to model the variability structure of the two soil types
by means of an isotropic spherical semivariogram, and to allow a to vary between 0.001 (a

completely random soil) and 2,000 metres (a perfectly correlated deposit)*.

In order to simplify and expedite the simulation process, a pre-processing and post-
processing program for TB3D, LCPCSm, was written using the Visual Basic programming
environment. LCPCSm performs the following tasks for n simulations, for each of the
ranges: 0.001; 0.01; 0.1; 1.0; 10; 100; 1,000; 1,500 and 2,000 metres:

1. Reads the TB3D parameter file.
2. Generates a random seed between 0 and 10,000.

3. Writes the random seed, and the range, @, to the appropriate location in the parameter
file.

4. Executes TB3D, which reads the parameter file as input, and subsequently writes the
results to the output file t b3d. out .

5. Readst b3d. out.

6. Spatially averages the 50 sets of 21 x 21 simulated data.

7. Identifies the 50 centreline (F5) data values corresponding to the CPT.

8. The two data sets of (|, values are then substituted into the LCPC Method, and values
of 0., Qg Qg Qs, Qy, and Q, are determined for each data set. It should be noted
that the LCPC Method, as incorporated in LCPCSm, uses: Oy, = 35 kPa; k. = 0.55;
and Y = 40, as specified in §8.3.1.

9. The percentage error, E , is evaluated assuming that the spatially averaged strengths

indicate the ‘true’ strength of the soil mass which influences the behaviour of the pile,
and the centreline data correspond to measurements that would have been obtained

had a CPT been performed at the location of the centreline of the proposed pile.

10. The results are written to an output file for subsequent examination.

32 1t was originally intended to examine data simulated using values of a between 0.001 metres (a completely random
soil deposit), and 10,000 metres (a perfectly correlated soil profile). However, limitations associated with the TB3D
program, meant that data could only be simulated with a maximum value of a equal to 2,000 metres.
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A typical screen from LCPCSmis shown in Figure 8.11.

= LCPC Simulations =<

| Enter Data Begin Simulations | E xit

Range [m]: Up Tn:nf _ simulations.

What | am Doing: [Reading TB3D.out |

Results: Bange [m): Min. Error:  Max. Error:

Last Seed: 0.001 |—25 | |2I5i.?

- & tandardisation—— R |_25 | |25_?
Mean: o1 |-25 | |ZE.?
Yariance: . _|]| | |

10| |

| Time Delay

Limik: x5 zec. 1I]I]| ||
Up To: |:|:r.53&-::. 1l]l]l]| ||

1500/ |
[ Save Semivariogram 2I]I]I]| ||

Figure8.11 A typical screen from LCPCSim.

In addition, LCPCSm allows the user the option of saving the de-standardised data to a
file, whose format is suitable to enable the GSLIB program, GAM3, to calculate the three-

dimensional experimental semivariograms of the simulated data.

In order to assess the validity of these data, a limited number of simulations were entered
into the GAM3 program. The results of two such analyses are shown in Figures 8.12 and
8.13. It can be observed from these figures that the experimental semivariograms of the
simulated data are adequate representations of the model semivariogram, which was
specified as input to LCPCSmand TB3D.

In order to examine the influence of the range, a, of the material on the percentage error,

E, , it is desirable to quantify the maximum and minimum errors after n simulations,

Q’
rather than the error resulting from only one simulation. This is due to the fact that, since
the simulations are random realisations of a stochastic process, it is not possible to draw
any conclusions from a single simulation at each range level. In order to increase the
reliability of the conclusions, many realisations at each range level are desirable. As a

compromise between the reliability of the results and computer execution time, it was
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decided to generate 100 simulations at each range level, for both scenarios. The results
generated by LCPCSm and TB3D are summarised in Figures 8.14 and 8.15.

A number of conclusions can be inferred from these figures:

* Unlike the previous case study, considerable overestimates, that is, up to 27%, as well
as significant underestimates, up to —25%, can be observed. This implies that the
conservatism, which is part of the LCPC Method, has less of an effect when the range
decreases; that is, when the randomness of the material increases.

* [t should be emphasised that the maximum and minimum errors indicated in Figures
8.14 and 8.15, are exactly that, and in many individual simulations the observed error
was significantly lower. As a consequence, one must be aware that there is a
probability of occurrence associated with each of the maxima and minima shown in
Figures 8.14 and 8.15. By performing many more simulations than have been carried
out in this study; that is, many hundreds of simulations, it would be possible to quantify

these probabilities, and associate a risk to each of them.

* Figures 8.14 and 8.15 clearly demonstrate that there is a strong relationship between the

range, &, and the observed error, E, . As one would expect, for a very homogenous or

highly correlated material, the error between the design axial capacity of the pile (as
indicated by the central test) and the ‘true’ pile capacity is relatively low; both in
overestimation and underestimation. That is, the test measurements provide a good
representation of the ‘true’ strength. However, as one would expect, as the randomness
of the material increases, represented by a decreasing range, the central test
measurements fail to adequately represent the spatial average of the soil mass, and
consequently, the observed error increases. What is surprising from Figures 8.14 and
8.15, however, is the magnitude of the errors and the degree of homogeneity associated
with these errors. In Chapters 2 and 5, it was shown that several researchers have
measured ranges, or scales of fluctuation, for §,, between approximately 0.1 and
50 metres. The errors associated with these ranges can be as large as 20% or more, in
both underestimation and overestimation, which is a significant error and compromise

of safety, with respect to engineering structures.

* In addition, Figures 8.14 and 8.15 demonstrate that, as the variance of the simulated

data increases (that is, the extent of the variability of the soil profile), the error, EQA’

also increases, as expected. As a result, if the variance associated with a particular site
is greater than 3.017 MPa® (as given in Figure 8.15), one may expect somewhat larger

errors than those indicated by Figures 8.14 and 8.15.
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» [t is significant that relatively reliable and acceptable errors are associated with only
highly correlated materials; that is, soils where a = 500 metres. Since the Keswick Clay
was observed to exhibit a range, a,, equal to 300 metres, one would expect the observed
error to be relatively low. Figure 8.15 suggests an error of + 10%, which compares well

with the observed error of between 4% and 8%, shown in Figure 8.6.

* Figures 8.14 and 8.15 indicate that the observed error increases with increasing
randomness of the soil mass. This suggests that, in order to reduce the error as the
randomness of the material increases, more testing is needed to adequately quantify the
soil mass, as one would expect. For example, more than one CPT may be required to

satisfactorily estimate the spatial average of a relatively heterogeneous soil mass.

* Finally, it should be noted that the results presented in Figure 8.14, inherently assume
that the measurements recorded along the centreline of the pile were obtained with zero
measurement error. While the measurement error associated with the CPT was shown
in Chapter 5 to be extremely small, other test procedures do possess non-trivial
measurement errors, and had these been included in the simulation process, somewhat

larger errors would have been observed.

8.4 SUMMARY

This chapter has examined the influence of spatial variability on the design of earth
embankments, and the design of pile foundations. In the former case, it has been observed
that soils with small scales of fluctuation, say less than one metre, yield lower probabilities
of slope failure than soils with large scales of fluctuation. The traditional, deterministic
approach of evaluating the FoS of the slope, makes no allowance for the uncertainty and
autocorrelation structure of the soil properties of the slope material. Such analyses assume
perfect correlation, which yield unrealistically high estimates of P;,. While these estimates
are conservative, Mostyn and Soo (1992) recommended that they should not be used in

economic assessments, but only to provide a ranking of preferred options.

In the case of pile foundations, it has been observed that spatial variability can have a
considerable effect on the results obtained. This is particularly so for materials with ranges
of influence less than approximately 100 metres. This is significant since no soils, other
than the Keswick Clay which exhibits a nested structure, have been found to exhibit a
range, or correlation distance, greater than about 50 metres. The observed error between
the ‘true’ design capacity of the pile, and that indicated by measurements, can be as high as

25%, both in underestimation - resulting in a more costly design; or more significantly in
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overestimation - resulting in underdesign, which compromises the safety of the overall
structure.

In addition, it has been observed that the LCPC Method of pile design, regarded by many
as being the most reliable CPT-based pile design technique, can substantially reduce the
effect of spatial variability, and as a consequence, results in a more conservative design
solution. However, significant errors, both in underestimation and overestimation, can
occur when the LCPC Method is applied to soft soils, or to soils which are moderately to
highly uncorrelated; that is, a <200 metres.



Chapter Nine

Summary and Conclusions

9.1 SUMMARY

This study has quantified the spatial variability of the Keswick and Hindmarsh Clays, and
has examined the significance of spatial variation on geotechnical engineering design. In
addition, a methodology has been provided, which enables preliminary estimates of the
undrained shear strength of the Keswick Clay to be obtained.

In Chapter 2 it was shown that the Keswick and Hindmarsh Clays are: relatively
homogeneous, from an external appearance point of view; significantly fissured, both in the
micro- and macro-scales; highly plastic; extremely expansive; overconsolidated, as a result
of desiccation; and exhibit remarkably similar properties to those of the well-documented,
and internationally significant, London Clay. It was also observed that several researchers
have indicated that the cone penetration test (CPT) is an extremely useful measurement
device, which exhibits the lowest measurement error of any in Situ test procedure in
common use, along with the Marchetti flat plate dilatometer. Furthermore, it was observed
that, since the early 1970's, spatial variability research has focused on two stochastic
techniques: (i) time series analysis, or random field theory when applied to geotechnical
engineering; and (ii) geostatistics - the former being used to a far greater extent than the
latter. In addition, the available literature demonstrated that these two techniques provide
adequate frameworks for quantifying and estimating the spatial variability of geotechnical
engineering properties. Finally, it was observed that the vast majority of spatia variability
analyses, performed to date, have been based on limited data and on data obtained at
relatively large sample spacings. This is particularly so in studies dealing with the lateral
variability of geotechnical properties.

Chapter 3 described a micro-computer based data acquisition system for the CPT,
developed in order to provide an efficient, reliable and accurate means of recording CPT

372
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data, and in particular, to measure these data at relatively close spacings of 5 mm.
Calibration tests performed on the data acquisition system indicated a low level of
measurement error, which conformed to criteria specified by international and Australian
codes of practice.

Chapter 4 described the experimental programme which consisted of: 222 vertical CPTs,
performed to a typical depth of 5 metres, at the South Parklands site; and a single,
7.62 metre, horizontal CPT, performed at the Keswick site. Together, they provided the
data for the small-scale examination of the spatial variability of the Keswick Clay. In order
to reduce the tota measurement error, these tests were carried out in relatively constant
climatic conditions, using consistent procedures and equipment, and using a single operator.
In addition, it was observed that unconsolidated undrained triaxial tests, performed on
undisturbed samples of Keswick Clay, and obtained from the South Parklands site, were
inconclusive. As a consequence, subsequent spatial variability analyses were based on
measurements of cone tip resistance, g, rather than on estimates of undrained shear
strength, s,.

Chapter 5 detailed the spatial variability analyses performed on the CPT data, obtained from
the South Parklands and Keswick sites. Due to limited measurements associated with the
Hindmarsh Clay, these analyses focused on the undrained shear strength of the Keswick
Clay. Both random field theory and geostatistics were employed to model these data, from
which a number of conclusions were derived. These include:

Using random field theory, and in particular the sample autocorrelation function (ACF),
it was observed that the undrained shear strength of the Keswick Clay has a vertical scale
of fluctuation, d,, of approximately 150 mm, with a coefficient of variation, CV, of 30%.

By means of geostatistics, and specifically the semivariogram, it was found that the
undrained shear strength of the Keswick Clay exhibits a lateral variability structure which
comprises two separate scales of variability. It was shown that these structures could be
satisfactorily represented by a nested spherical model, with ranges of influence, a, = 0.2
metres, and a, = 6 metres.

By comparing the results given by random field theory and geostatistics, it was observed
that, while d, and a essentially express the same quantity (that is, the distance over which
the relevant parameter exhibits significant correlation), some differences existed between
the results of the two parameters. By means of regression analysis, the following
relationship between d, and a was obtained:

d, = 2.559a° with r>=0.829,
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In al of the anayses, it was found that the distance indicated by the sample
autocorrelation function (ACF) and the +2/+/N line, referred to as Bartlett's distance,
rs, yielded almost identical valuesto those of d,. Since r, is computationally, somewhat
easier to evaluate, it was recommended that r, be used to estimate d,.

Cross-correlation analyses performed on measurements of q,, and seeve friction, f,,
indicated that, statistically, the most appropriate value for the shift distance associated
with the Keswick Clay is approximately 120 mm, both horizontally and vertically. These
analyses demonstrated the usefulness of the cross-correlation function.

Random field theory model formulation, forecasting and data simulation, indicated that
CPT data, detrended by means of an ordinary least squares (OLS) quadratic trend, were
best modelled by an autoregressive process (AR) with up to 8 parameters. In contrast,
first-differenced CPT data were most appropriately modelled by means of an integrated
moving average (IMA) process with up to 5 parameters. When used to simulate CPT
data, it was observed that the AR models, when recombined with the OLS quadratic
trend, yielded more robust simulations than those given by the first-differenced IMA
models.

It was demonstrated that geostatistics provides a more flexible framework for the
prediction of values at yet-to-be tested locations, than does the technique of random field
theory. In a one-dimensional prediction sense, it was observed that kriging provided as
good estimates as those given by random field theory, and in some cases, the predictions
were significantly better.

It was shown that the random measurement error associated with a particular test
procedure, as well as the spatial variability parameters d,, a, the sill, C, and the nugget
effect, C,, are extremely sensitive to sample spacing and the degree of trend removed;
particularly when the data are non-stationarity, as given by Kendall's t test. Analyses
which fail to include these aspects may yield mideading results. For example, it was
demonstrated that by varying the sample spacing and the degree of trend removed from
the data, Baecher’s method for determining the random measurement error associated
with a particular test method, yielded significantly different results.

Finally, by means of Baecher’s method, it was shown that the random measurement error
associated with the CPT is extremely low; that is, of the order of 2%, or less.

In Chapter 6, the KESWMCK data base, which was used to examine the large-scale spatial
variability of the Keswick Clay, was described. It was observed that data bases are useful
tools for examining the relationships and trends that may exist between various geotechnical
parameters. In addition, it was found that, on its own, the KESWMCK data base is an
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inadequate facility for quantifying the spatial variability of the undrained shear strength of
the Keswick Clay.

By combining the results obtained from Chapter 5, as well as the data from the KESMCK
data base, Chapter 7 detailed the modelling of the large-scale lateral spatial variability of the
undrained shear strength of the Keswick Clay, using geostatistics. It was found that the
lateral variation of s, of the Keswick Clay exhibits a nested structure at 3 distinct scales of
variability. It was shown that the variahility structure could be satisfactorily represented by
a nested spherical model with three ranges of influence: a, = 0.2 metres; a, = 6 metres; and
a, = 300 metres. Furthermore, it was demonstrated that the geostatistical process of kriging
yielded very good preliminary estimates of the undrained shear strength of the Keswick Clay
at untested locations. These were superior to the polygonal, inverse distance, and inverse
distance sguared weighting estimation regimes. Chapter 7 described two methods of
predicting the undrained shear strength of the Keswick Clay, within the Adelaide city area,
and the upper 3 metres of the surface of the clay. Firstly, a contour map (Figure 7.13) gave
the gross variability of s, across the study area, within a resolution of 25 kPa. The second
method utilised the nested spherical model, and the kriging process, to describe a technique
for estimating s, a any given easting and northing within the Adelaide city area, with
increased precision. It was noted that a significant advantage of geostatistics is, that it
guantifies the error associated with any particular estimate, via the kriging variance, or the
kriging standard deviation, s, .

Finally, Chapter 8 examined the influence of spatial variability on the design of earth
embankments and pile foundations. It was pointed out that the traditional methods of sope
stability analyses, which are based on a factor of safety approach, take no account of
uncertainty and autocorrelation structure of the soil properties of the sope material, and
hence assume that the soil is perfectly correlated. While this assumption results in
conservative designs, such analyses may yield unredlistically high estimates of the failure
probability, P;; particularly when d, is relatively low. With regard to pile design, it was
observed that spatial variability can have a considerable effect on the results obtained. To
some extent, the LCPC Method of estimating the ultimate axial capacity of a single pile,
provides conservative estimates. However, it was shown that as the randomness of the
material increases; that is, as a and d, decrease; the error between the ‘true’ design axial pile
capacity and that estimated from limited testing, can be unacceptably high. These errors can
result in unacceptable over-conservatism, or an unacceptable compromise in the level of
safety of the structure.
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9.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The spatial variability analyses presented in this thesis focused on two stochastic
frameworks, namely, random field theory and geodtatistics. While the results of these
analyses were encouraging, the quality of their estimates was restricted by the relative
smplicity of the linear models incorporated in each of the respective theories. One would
anticipate that somewhat more accurate predictions would result by incorporating a more
complex combination of the neighbouring observations in the relevant theories. Recently,
more advanced time series analysis procedures have been developed which better model
non-stationary or non-linear data, which may include sudden fluctuations, or discontinuities.
These models, known as time-variable parameter (TVP) models, are based on random
fields which incorporate five separate components, namely: trend; stochastic perturbation;
signal; seasonal; and white noise (Ng and Y oung, 1990). Applications of these models have
yielded encouraging results (Ng and Y oung, 1990; Young, 1994). In addition, other forms
of kriging, notably universal kriging, have yet to be applied to the data presented in this
thesis. Furthermore, neural networks, an estimation regime which has recently gained
momentum and, which has only very recently been applied to geotechnical engineering
problems (e.g. Goh, 1994; Hawtin and Lim, 1994), has the ability to model complex
interactions between many parameters, and may be applicable to the estimation of undrained
shear strength. All of these techniques need evaluation to ascertain whether any one, or
more, of these methods can provide superior results to those presented in this study. In
addition, tractable random field theory estimation procedures remain to be developed for
two- and three-dimensions.

The application of random field theory and geostatistics presented in this thess, has
incorporated trend estimation based on ordinary least squares (OLS). As mentioned in
Chapter 5, OLS is based on the assumption that the data are random and uncorrelated. This
IS inconsistent with spatia variability analyses which, having removed some trend
determined by OLS, subsequently examine the correlation structure of the residuals.
Li (1991) suggested that a technique based on generalised least squares (GLS) be used as
an aternative to OLS, and that the trend may be modelled using a number of different
mathematical functions; for example, cubic splines. It was demonstrated in Chapter 5 that
data stationarity, or the type of trend removed from the data, can significantly influence the
resulting spatial variability parameters. Research is needed to investigate the extent to
which spatial variability parameters, and the subsequent estimates, are sensitive to the type
of trend used in the modelling process.

The examination of spatial variability, presented in this study, has focused on the undrained
shear strength of the Keswick Clay. Other geotechnical engineering design parameters,
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such as: internal angle of friction, f; Young's modulus of elasticity, E; coefficient of earth
pressure at rest, K,; and coefficient of consolidation, c,, may, and are likely to, have
different correlation distances to those of the undrained shear strength. In addition, only
one soil type, a stiff, overconsolidated clay, has been examined. Several other soil types,
including loose and dense sands, soft clays, sits, calcareous deposits, and organic soils,
remain to be investigated in detail. As a consequence, a number of carefully controlled test
programmes, with data measured at close-spacings, are needed to quantify the spatia
variability of these geotechnical design parameters, in a variety of well-documented soil
deposits.

In Chapters 5 and 7, spatial variability models were developed based on the parameters d,,
d, and a, and data obtained from the CPT. The question arises as to whether these results
are test dependent or not. In other words, would the same results have been obtained if the
analyses were based on measurements of s, from triaxial tests, vane shear tests, or self-
boring pressuremeter tests? One would hope that the results are not test-dependent.
However, while Chiasson et al. (1995) have shown that data, from vane shear tests and
piezocone soundings, yielded the same spatial covariance and statistical distribution, more
work is needed in this area.

By definition, the scale of fluctuation, d,, and the range of influence, a, are measures of the
correlation distance; that is, the extent over which a parameter exhibits significant
correlation. 1t was shown in Chapter 5, from an experimental view point, that random field
theory and geostatistical analyses yielded comparable, though on the whole, different
quantities for d, and a. Research is needed to identify the theoretical similarities and
differences between these two parameters. In addition, the term correlation distance,
appears to be somewhat loosely defined, and research is needed to theoretically determine
the similarities and differences between it and the quantities d, and a.

It was evident from the treatment given to the design of pile foundations, in Chapter 8, that
there is little information regarding the lateral extent over which the undrained shear
strength of a soil deposit contributes to the load-carrying capacity of a pile. Research effort
is needed in this regard. Furthermore, the assessment of the influence of spatia variability
on the design of pile foundations, focused on the axia capacity of a single pile. It remains
to be shown whether the same results would have been obtained using piles of different
dimensions, or using different pile design criteria, such as pile settlement.
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9.3 CONCLUSION

From the analyses presented in thisthesis, it can be concluded that:
the CPT has a very low random measurement error, of the order of 2%, or less;

from closely-spaced data acquired from the CPT, nested structures have been observed
within the Keswick Clay;

the scale of fluctuation, d,, and the range of influence, a, essentially measure the distance
over which properties exhibit strong correlation; that is, the correlation distance;

the LCPC Method, for the estimation of the ultimate axia capacity of a statically-loaded
pile, tends to under-predict the capacity, and hence, is conservative,

the spatial variability of the undrained shear strength of a soil mass can greatly influence
the axial capacity of a pile foundation. In particular, as the variability of the soil
increases, so too does the error associated with the estimated capacity of the pile. Ina
very variable soil deposit, the estimated capacity of a pile foundation may result in an
unsafe design.



