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Abstract

A direct numerical simulation study has been conducted to examine the flow that
develops on long circular cylinders that are aligned, or nearly aligned, with the free-
stream. Results are presented for turbulent boundary layers and vortex-shedding
yawed flow. Although flows of these types occur in a range of engineering applica-
tions, they remain relatively unexplored compared with flat-plate flow.

The numerical scheme employed for solution of the governing Navier-Stokes
equations is similar to that used in some previously published simulations, but here
rather different boundary conditions are adopted. At the outer edge of the cylindrical
computational domain, the imposed boundary conditions confine the vorticity field
within a finite radius while allowing the continuous velocity field to converge to the
free-stream velocity at large distances from the cylinder.

Axial flows are considered with radius Reynolds numbers in the range 311 to
20800, ratios of boundary layer thickness to cylinder radius in the range 0.15 to 27.5,
and boundary layer thicknesses of between 160 and 800 viscous units (v/u,). The
mean-flow and turbulence statistics for axisymmetric boundary layers are found to
differ significantly from flat-plate results when the boundary layer is strongly curved,
that is when the boundary layer is thick in relation to the cylinder radius. The effects
of curvature are mainly observed in the outer flow except when the cylinder radius
in viscous units is small. Particular attention is given to the assessment of similarity
scaling relations for the mean velocity profile, velocity fluctuation statistics and
temporal wall-pressure spectra.

Structural features of axisymmetric turbulence are examined by inspection of in-
stantaneous flow fields, correlation functions and conditionally-averaged flow struc-
tures. In very thick boundary layers on thin cylinders, the simulations reveal ev-
idence of large-scale fluid motion across the cylinder, although the mechanisms of
turbulence generation do not appear to be significantly different from those in flat-
plate flow.

Simulations of turbulence in near-axial flow over cylinders are considered with

radius Reynolds numbers up to 674 and yaw angles up to 0.5 degrees. No previous

M. J. Woods, Ph.D. thesis, 2006 Xi



xii Abstract

flow simulations of this kind are reported in the literature. The mean-flow and
turbulence statistics are found to depart rapidly from axisymmetry as the yaw angle
increases. The quality of the calculated results suggests that the computational
procedure is suitable for use in a more comprehensive investigation of near-axial
flow over cylinders.

For cylinders inclined at sufficiently large yaw angles to the free-stream, turbu-
lent boundary layer flow gives way to oblique vortex-shedding from the cylinder.
Simulated flow fields corresponding to a radius Reynolds number of 311 and a yaw
angle of 3 degrees are examined to reveal the three-dimensional structure of the
flow. The results suggest that the oscillating flow fields in the cylinder wake have
the character of a wave travelling in the axial direction at the same speed as the

axial component of the free-stream.
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