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Chapter 6 Problems with the calibration of 

Gaussian HMMs to annual rainfall 

Hidden Markov models (HMMs) were introduced in Section 3.3 as a method to incorporate 

climatic persistence into stochastic models for hydrologic data. The spells analyses of Chapter 4 

demonstrated statistically significant persistence within monthly rainfall and streamflow data 

from across Australia. In this chapter however, HMMs are calibrated to time series of annual 

rainfall totals. Annual rainfall from various capital cities have been previously analysed in the 

studies of Thyer (2000), Srikanthan et al (2002c) and Frost (2003), each of which concluded 

that these series demonstrated multi-decadal persistence. The accuracy of these previous studies 

is analysed here, with a reassessment made of the inherent persistence in these data. The 

modelling approach is illustrated with time series of rainfall observations from six mainland 

capital cities in Australia; Adelaide, Brisbane, Darwin, Melbourne, Perth, and Sydney, and also 

from Alice Springs. The calibration of HMMs to data from a single rainfall gauge in Sydney 

(Observatory Hill, BOM identification 66062) is then compared to the calibration to a series of 

spatially-averaged rainfall totals that correspond to the meteorological district in which this 

gauge is located (BOM District 66). The inclusion of this latter series clarifies persistence in the 

Sydney rainfall data; for the two-state Gaussian HMMs to identify true climatic persistence, 

evidence should be available in each of these series. 

6.1 Statistics of annual rainfall series 

In this chapter HMMs are calibrated to eight time series of annual rainfall totals, aggregated 

over different water years. Monthly data from Adelaide and Perth, which have winter-

dominated rainfall regimes, are aggregated over January-December periods, whereas the 

summer-dominated rainfall of Darwin is aggregated over July-June periods. Annual 

aggregations of the monthly rainfall for Alice Springs commence in September, which has the 

lowest monthly average. The monthly data from Brisbane, Melbourne and the two Sydney 

gauges are aggregated using April-March water years, consistent with the period over which 

annual scale variability in ENSO is generally observed (eg Chiew et al., 1998). These eight 

series, which represent the various rainfall regimes across this country, show considerable 

variability as illustrated by the statistics of Table 6.1.  
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Table 6.1 Statistics for the eight annual rainfall series 

Rain gauge 
BOM 

number 
Period of 

record 
Mean  
(mm) 

Median 
(mm) 

Standard 
Deviation 

Skew 

Adelaide 23034 1956-2001 454.0 467.4 103.2 0.15 
Alice Springs 15590 1942-2001 285.2 272.7 149.4 1.83 
Brisbane 40214 1860-1993 1155.6 1164.6 366.5 0.72 
Darwin 14015 1870-1941 1538.8 1552.4 281.8 -0.15 
Melbourne 86071 1856-1999 657.1 659.1 126.1 0.27 
Perth 09034 1876-1991 868.4 854.2 162.4 0.10 
Sydney 66062 1859-2001 1222.8 1203.4 330.5 0.56 
District 66 66 1913-2002 1146.4 1092.2 308.0 0.87 

The spatially-averaged data for District 66 is investigated alongside these various point-rainfall 

series, as it allows further analysis of persistence in the Sydney region. If the calibration of 

HMMs identifies persistence that is similar to that revealed within the point-rainfall data, 

evidence for such persistence representing true underlying climatic features will become more 

persuasive. The time series of the Sydney and District 66 samples are shown in Figure 6.1. The 

district-averaged series closely resembles data from the single gauge, with this relationship 

reinforced by the significant linear correlation of 89.0=r  for the 88 values over the common 

period of 1913-2000.  
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Figure 6.1 Time series of annual rainfall for the Sydney and District 66 data 

An interesting feature of Figure 6.1 is the tendency for lower annual totals (with reduced 

variability) during a 45-50 year period ending in 1948 than periods either prior to or subsequent 

to this. The significance of this period of lower rainfall is investigated is investigated by first 

dividing the Sydney record into three sub-series: (1859-1900), (1901-1948) and (1949-2000), 

and using 2-sample t-tests to determine whether the means of each adjoining sub-series are 

statistically different. Although the positions of these breakpoints have been chosen prior to 
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testing, these tests show the middle period to have a sample mean (1092) that is lower at 

significance levels of 010.0=p  and 001.0<p  to the sample means of the first (1268) and 

third (1307) periods respectively. Furthermore, Levene’s test (Brown and Forsythe, 1974) 

demonstrates that the variance of the middle period is significantly lower )025.0( =p  than the 

preceding period. These hypothesis tests suggest that climate conditions around Sydney may 

have underwent a transition at the turn of last century, and again in the mid-1940s, a feature that 

would significantly impact upon the hydrological regime. Although there is a possibility that a 

feature such as this is reflective of changes in data recording methods, an apparent change in 

climate state of the mid-1940s is consistent with observations of previous studies as noted in 

Section 2.1.2. A multi-decadal dry period in the time series of annual rainfall suggests a period 

of hydrological persistence, precisely the feature represented by the HMM framework. 

The annual rainfall series for Sydney and District 66 are shown on Gaussian probability plots in 

Figure 6.2. The former series plots as an approximate straight line, suggesting consistency with 

random draws from a Gaussian distribution. The higher skew of the latter series suggests that 

this might be too heavy in its upper tail to be consistent Gaussian variates, which is reinforced 

through the calculation of Anderson-Darling goodness-of-fit statistics. Samples of length 100 

are rejected as Gaussian at a significance level of 05.0=α  for AD statistics less than 0.754. 

The annual data from Sydney show a goodness-of-fit statistic of 0.632, although annual rainfall 

for District 66 produces a value of 1.059.  

Figure 6.2 Gaussian probability plots showing the distribution of annual totals of Sydney (on left) 

and District 66 (on right) 

The Anderson-Darling goodness-of-fit statistics from fitting Gaussian distributions to each 

annual rainfall series are presented in Table 6.2, with series that are not rejected as Gaussian at a 

5% level shown in bold. The two series that are inconsistent with random Gaussian variates are 

District 66 and Alice Springs, which also have the highest skewness of these eight data series. 

The suitability of HMMs to describe these data is analysed in the following section. 
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Table 6.2 Anderson-Darling goodness-of-fit statistics from calibrating Gaussian distributions to the 

various annual rainfall records, with values significant at a 5% level shown in bold 

 AD statistic 
Adelaide 0.411 
Alice Springs 2.764 
Brisbane 0.753 
Darwin 0.377 
Melbourne 0.595 
Perth 0.376 
Sydney 0.632 
District 66 1.059 

6.2 Calibration of two-state Gaussian HMMs to annual rainfall 

In the calibration of two-state HMMs to these annual rainfall series, state conditional 

distributions are assumed to be Gaussian, an assumption that is consistent with the approximate 

form of the marginal distributions. This modelling assumption was also used by Thyer and 

Kuczera (2000) and Frost (2003) to define long-term hydroclimatic persistence in annual 

Australian rainfall, and advocated by Srikanthan et al. (2002b) for the stochastic generation of 

data at this time scale. Furthermore, the assumption of Gaussian distributions for annual rainfall 

totals, aggregated from high frequency data, is justified in terms of the central limit theorem. 

Two-state Gaussian HMMs are described by six model parameters. Maximum likelihood 

estimates (MLEs, θ̂ ) for these parameters are obtained from the SCE algorithm. Using θ̂  as the 

starting estimates for each of 6 independent Markov chains in the Adaptive Metropolis 

algorithm, posterior distributions Yp |(θ ) are estimated using 10,000 samples for each chain. 

The convergence of the HMM simulations from calibrating this model to the annual Sydney 

rainfall data is analysed using the variance ratio method as described in Section 3.4.2. Table 6.3 

shows the convergence diagnostic for each HMM parameter that is estimated (subscripts denote 

climate states), for a selection of aggregation lengths up to a maximum of 3000. By taking the 

average of convergence diagnostics at each aggregation length, it is apparent that this statistic 

approaches unity as the number of samples increase, indicating that each of the 10 sets of 6,000 

simulated values are close to the target (posterior) distribution. Therefore it can be assumed that 

the combination of 6,000 samples taken from 10 independent Markov chains produces estimates 

that are representative of the stationary posterior distributions of the model parameters. 
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Table 6.3 Convergence diagnostics from using the variance ratio method to analyse 6,000 samples 

from 10 Adaptive Metropolis chains to obtain estimates of posterior distributions for a two-state 

Gaussian HMM calibrated to annual Sydney rainfall  

 100=n  500=n  1000=n  1500=n  2000=n  2500=n  3000=n

WDP 2.210 1.117 1.183 1.082 1.020 1.018 1.029 

DWP 1.523 1.635 1.261 1.228 1.143 1.080 1.062 

Wµ 1.313 1.398 1.349 1.248 1.124 1.089 1.053 

Dµ 1.638 1.310 1.217 1.121 1.073 1.060 1.042 

Wσ 2.009 1.553 1.261 1.138 1.048 1.059 1.043 

Dσ 1.894 1.258 1.149 1.031 1.048 1.060 1.066 
Average 1.764 1.378 1.236 1.141 1.076 1.061 1.049 

In order to investigate the influence of a higher number of samples being taken from a smaller 

number of independent Markov chains, posterior distributions for the Sydney data are now 

estimated from 10,000 samples from 6 chains. Table 6.4 shows convergence diagnostics for a 

range of aggregation lengths up to 5000. As with Table 6.3, these results indicate that by the 

time 10,000 samples have been obtained from each chain, the within-chain variance dominates 

between-chain variance, which suggests that each chain is close to the target distribution. It is 

clear that the Adaptive Metropolis algorithm identifies the true posterior distributions associated 

with the calibration of a two-state Gaussian HMM to the annual rainfall data for Sydney. 

Although not shown, similar convergence results to the Sydney data were obtained for each of 

the other annual rainfall series, using both combinations of numbers of Markov chains and 

samples, demonstrating the suitability of this modelling approach for investigating posterior 

distributions of HMM parameters. 

Table 6.4 Convergence diagnostics from using the variance ratio method to analyse 10,000 samples 

from 6 Adaptive Metropolis chains to obtain estimates of posterior distributions for a two-state 

Gaussian HMM calibrated to annual Sydney rainfall 

 100=n  500=n  1000=n  2000=n  3000=n  4000=n  5000=n

WDP 3.555 1.374 1.036 1.014 1.059 1.023 1.011 

DWP 2.313 1.205 1.292 1.115 1.096 1.056 1.028 

Wµ 1.620 1.912 1.030 1.156 1.096 1.042 1.022 

Dµ 1.243 1.282 1.135 1.055 1.092 1.058 1.030 

Wσ 2.461 1.196 1.082 1.119 1.027 1.072 1.066 

Dσ 2.577 1.210 1.173 1.075 1.047 1.047 1.028 
Average 2.295 1.363 1.125 1.089 1.069 1.049 1.031 

The posterior distributions for the HMM transition probabilities estimated from each rainfall 

series are summarised in Table 6.5 with posterior medians and 90% credibility limits. These 

posteriors are obtained from 6,000 samples taken from 10 chains. The posterior median 
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provides a superior point estimate for posterior distributions than the mean, as it remains 

unaffected by extreme values in the posteriors. In a two-state Markov chain, the expected 

residence time in each model state is calculated as the inverse of the probability of moving out 

of that state. Using the posterior medians as estimates for the two transition probabilities, the 

Sydney data have an expected residence time of 5 years in a dry state but less than 2 years for 

the wet state. Such results are inconsistent with long-term persistence, and suggest that this 

model fails to simulate the multi-decadal dry epoch suggested by the time series of Figure 6.1.  

Table 6.5 Medians of posterior distributions for HMM transition probabilities, with 90% 

credibility intervals from the calibration of two-state Gaussian HMMs 

WDP DWP

Adelaide 0.605 
(0.068, 0.967) 

0.035                 
(0.003, 0.806) 

Alice Springs 0.350 
(0.097, 0.727) 

0.088                 
(0.030, 0.208) 

Brisbane 0.663                 
(0.117, 0.975) 

0.090                 
(0.019, 0.441) 

Darwin 0.390                 
(0.022, 0.939) 

0.538                 
(0.033, 0.956) 

Melbourne 0.668                
(0.114, 0.963) 

0.313                 
(0.008, 0.911) 

Perth 0.376                
(0.008, 0.944) 

0.504                 
(0.010, 0.942) 

Sydney 0.530                 
(0.139, 0.922) 

0.200                 
(0.030, 0.880) 

District 66 0.516                 
(0.194, 0.908) 

0.150                 
(0.038, 0.521) 

The calibration results for the other annual rainfall series also fail to show evidence of long-term 

persistence. Results for the Adelaide, Alice Springs and Brisbane data show estimates for DWP

that are much lower than WDP , which suggests that a majority of years are in a dry climate state. 

This result does not reflect strong two-state persistence in these annual rainfall series, especially 

with the Adelaide and Brisbane data, which show an average wet state duration of less than 2 

years. Furthermore the WDP  estimates for these series are associated with wide credibility 

intervals, indicating that the length of available data in these series may be too short for accurate 

parameter estimation. Although transition probability estimates for the other series are closer in 

magnitude, these are too high to reflect long-term persistence and have 90% credibility intervals 

that are spread over much of the (0, 1) interval.  

The posteriors for parameters of the HMM conditional distributions from each annual rainfall 

series are summarised in Table 6.6. These results tend to reflect transition probability estimates, 

such as the parameters of the wet state distributions for the Adelaide and Brisbane data being 
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poorly defined. For the other series, the upper bound of the 90% credibility interval for the dry 

state means are generally lower than the lower bound for the wet state mean, indicating that 

these posteriors are well-separated. This suggests that the Gaussian HMM estimates two distinct 

conditional distributions in these annual rainfall series, although transition probability estimates 

show little evidence for multi-decadal persistence. Estimates for the HMM parameters are 

similar between the Sydney and District 66 series, which highlights a similar pattern of 

persistence between these two series. 

Table 6.6 Medians of posterior distributions for parameters of HMM conditional distributions, 

with 90% credibility intervals 

Wµ Dµ Wσ Dσ

Adelaide 753.3            
(454, 2630) 

446.1            
(402, 475) 

274.9            
(52, 898) 

103.3            
(77, 134) 

Alice Springs 520.4            
(364, 700) 

239.5            
(219, 262) 

219.8            
(140, 368) 

79.9             
(65, 101) 

Brisbane 1490.6           
(1200, 2127) 

1098.8           
(1028, 1159) 

496.1            
(331, 801) 

303.3            
(258, 358) 

Darwin 1589.8           
(1511, 1778) 

1469.1           
(1105, 1565) 

270.2            
(127, 442) 

285.7            
(78, 512) 

Melbourne 715.5            
(656, 953) 

631.9            
(590, 664) 

131.5           
(68, 216) 

108.3            
(67, 138) 

Perth 895.5            
(853, 1811) 

828.5            
(596, 879) 

162.4            
(109, 327) 

156.3            
(88, 410) 

Sydney 1425.7           
(1238, 1848) 

1143.7          
(979, 1218) 

362.8           
(274, 520) 

271.2           
(189, 338) 

District 66 1442.3           
(1208, 1860) 

1066           
(997, 1148) 

366.6           
(251, 533) 

223.9           
(172, 287) 

Posterior distributions for each of the HMM parameters estimated from the Sydney rainfall 

series are shown as histograms in Figure 6.3. The large uncertainty around each parameter is 

evident, particularly for the two transition probabilities, which make it difficult to interpret 

significant two-state persistence. 
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Figure 6.3 Posterior distributions from the calibration of a two-state Gaussian HMM to the annual 

rainfall data for Sydney 

The MLEs of the HMM parameters are used to generate the probability of being in a wet state 

for each year in the Sydney data, shown alongside the time series of annual rainfall totals in 

Figure 6.4. These two series are strongly correlated )001.0,80.0( <= pr  and display the 

intuitive result of years with high annual totals also showing high probabilities of having been 

generated from a wet model state. An interesting feature of the state series is the high 

probability that the model remains within an extended dry state from 1901 until a sharp 

transition to a wet state in the late 1940s, corresponding to the sharp increase in annual rainfall 

recorded at the gauge during 1948/9. Although transition probability estimates suggest that a 

multi-decadal dry epoch is unlikely, this feature is still apparent in the posterior state series. 

This result was exploited by Thyer and Kuczera (2000) as support for the hypothesis of the 

HMM being suitable for modelling long-term persistence in annual rainfall time series. The 

strongest correlation between annual rainfall data and HMM state series is from Alice Springs 

)001.0,82.0( <= pr . 
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Figure 6.4 Time series of annual rainfall for Sydney shown alongside the posterior state series 

associated with parameter MLEs after the calibration of a two-state Gaussian HMM 

The relationship between persistence in the Sydney and District 66 series is shown clearly 

through the posterior state series derived from parameter MLEs for each series in Figure 6.5. 

These state series have a linear correlation of 84.0=r  ( 001.0<p ), which shows that over the 

period 1913-2001, two-state Gaussian HMMs identify similar wet and dry persistence. The two 

state series shown a sharp transition to a wet state in 1948/9, and identify comparable climate 

state features after this time. The district-averaged rainfall series is derived from various point 

rainfall records, so the fact that posterior state probabilities from this series are similar to those 

from the single Sydney gauge record suggests that the HMM identifies true climatic features. 
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Figure 6.5 Posterior state series associated with parameter MLEs after the calibration of a two-

state Gaussian HMM to the annual rainfall for both Sydney and District 66  

The posterior state series is a useful output from the HMM calibration, as it provides a direct 

representation of persistence in each model state. However by only generating this series with 
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parameter MLEs, an evaluation of the variability around posterior state probabilities is 

prevented. It is possible though to take advantage of the Bayesian framework that was adopted 

for parameter estimation and evaluate the posterior distribution for the state probability series. 

This development of the Bayesian paradigm was not utilised by Thyer (2000) or Frost (2003), or 

indeed in other publications, yet it is vital for the accurate interpretation of the calibrated HMM. 

This presents a new approach to analysing the efficacy of HMM calibration, and provides a 

means to revisit the results of previous studies into possible persistence within annual rainfall 

data across Australia. 

In order to generate the posterior distribution for the state series, each sample of model 

parameters from the Metropolis output is used to generate a series of state probabilities. The 

60,000 state probability values at each time step are ranked to produce a posterior median state 

probability (with 90% credibility interval) for the entire series. The posterior state series is a 

manifestation of HMM parameters, and it is evident that narrower posterior distributions will 

realise narrower credibility intervals around the posterior state series. The series of posterior 

median state probabilities, termed the median state series, is interpreted here to be the best 

representation of these state probabilities. In light of this new development of analysing HMM 

state series, median state series are used in preference to the state series derived from MLEs of 

HMM parameters throughout this work. 

For the annual rainfall series from Sydney, the median state series is highly correlated to the 

MLE state series that was shown in Figure 6.4 )97.0( =r . However by showing the median 

state series for this series alongside its 90% credibility interval in Figure 6.6, it is clear that the 

HMM fails to identify a clear sequence of wet and dry states. The credibility interval tends to 

encompass most of the (0, 1) interval regardless of the median state probabilities. The wide 

credibility interval around the median state series in Figure 6.6 shows that by accounting for 

parameter uncertainty when evaluating posterior state probabilities, there is little certainty as to 

which model state generated the annual totals. The median state series suggests a high 

probability for an extended dry state remaining until 1948/9, which was interpreted as a 

persistent dry epoch. By observing parameter uncertainty, it is clear that little information can 

be inferred from the calibration of a two-state Gaussian HMM to the annual rainfall series of 

Sydney. Furthermore, the credibility bounds around posterior state probabilities for the district-

averaged data show a similar width to those shown in Figure 6.6. As inference based on the 

calibration of two-state HMMs is compromised in periods of increased uncertainty in state 

probabilities, conclusions about long-term persistence in this data series based solely upon the 

MLE state probabilities are inappropriate. It is apparent that poorly estimated transition 

probabilities such as those described in Table 6.5 lead to poorly estimated posterior state 

probabilities. 
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Figure 6.6 Median state series and 90% credibility interval from the calibration of a two-state 

Gaussian HMM to the annual rainfall for Sydney 

The calibration of two-state Gaussian HMMs to annual rainfall data from the various capitals 

produces state series that fail to reflect significant two-state persistence. However with the 

calibration of a two-state Gaussian HMM to the annual rainfall data for Alice Springs producing 

a median state series that was strongly correlated to the time series of annual rainfall, it is 

interesting to see in Figure 6.7 that this series also has tighter credibility bounds than the Sydney 

data. It is possible that this annual rainfall series, being recorded in an arid zone, more clearly 

illustrates fluctuations between persistent climate states than the Sydney record can.  
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Figure 6.7 Median state series and 90% credibility interval from the calibration of a two-state 

Gaussian HMM to the annual rainfall for Alice Springs 

The posterior state series shown in Figure 6.6 indicates that there is little evidence for two-state 

persistence in the annual rainfall data of Sydney following the calibration of a two-state 

Gaussian HMM. This result can be attributed to either the absence of hydroclimatic persistence 



126 

Chapter 6 – Problems with the calibration of Gaussian HMMs to annual rainfall data 

at an annual time scale in the Sydney data, or indeed that the available data is of insufficient 

length to provide a statistically significant description of persistence that is present. In order to 

investigate the possibility of the latter, two-state Gaussian HMMs are calibrated to simulated 

data in the following section.  

6.3 Calibration of two-state Gaussian HMMs to simulated data 

The wide credibility bounds around HMM state probabilities for the time series of annual 

Sydney rainfall suggests at first that the Gaussian HMM is unsuitable for these data. However 

with a length of only 142 years, there is the danger that the observed series is too short for the 

two-state Gaussian HMM to estimate adequately the model parameters. In order to determine 

whether this model identifies correct model parameters in a series of this length, a time series is 

first simulated from a two-state Gaussian HMM with parameters equal to the posterior medians 

shown in Table 6.5. After simulating this series of 142 values, a two-state Gaussian HMM is 

then calibrated using the same method as described earlier. Model parameters are estimated and 

then compared with the values that were used in simulation. This process is then repeated with a 

series length of 1000, with posterior state series generated from both simulations.  

The posterior estimates from these two simulations are summarised in Table 6.7, and it is 

evident that true parameter values are contained within 90% credibility intervals for both 

simulations. The widths of these credibility intervals however are large considering the correct 

model was fitted. This is particularly apparent for the two transition probabilities of the shorter 

simulation. It is important to note though that the accuracy of transition probability estimates 

increase dramatically for the longer simulations, with a contraction in credibility intervals. 

Table 6.7 Parameter estimates for simulated series of lengths 142 and 1000, with posterior median 

and 90% credibility intervals shown 

Parameter Simulated value 
Estimates for 

simulation length 142 
Estimates for 

simulation length 1000 

WDP 0.513 0.528
(0.068, 0.947) 

0.519
(0.254, 0.788) 

DWP 0.200 0.457
(0.014, 0.951) 

0.198
(0.077, 0.477) 

Wµ 1426 1248
(1156, 1597) 

1437
(1308, 1696) 

Dµ 1144 1090 
(947, 1178) 

1171
(1124, 1209) 

Wσ 363 294 
(200, 444) 

366
(295, 421) 

Dσ 271 253 
(136, 329) 

266 
(220, 292) 
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The effect of wide posteriors on the estimation of posterior state probabilities for the shorter 

simulation is clearly displayed in Figure 6.8. This figure shows the median posterior state series, 

together with 90% credibility limits, with circles representing the state sequence of the original 

simulation. Posterior medians are centred on a value of 0.5 over the entire series, which 

demonstrates an inability to identify wet and dry states. A superior HMM calibration would be 

characterised by median state probabilities that are closer to either 0 or 1, hence Figure 6.8 

suggests a very poor fit to the simulated series. The credibility interval around the median state 

series for the shorter simulation has a similar width to the interval obtained for the original 

Sydney series. Although this series was simulated with known state transitions, the calibration 

results suggest that a length of only 142 values is possibly too short to obtain meaningful 

inference. 
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Figure 6.8 Median state series and 90% credibility interval from the calibration of a two-state 

Gaussian HMM to series of length 142 simulated from a two-state Gaussian HMM 

The improvement in model calibration that is achieved with a longer data series is now 

demonstrated through the posterior state series associated with the longer simulation, shown in 

Figure 6.9. Posterior state probabilities for a sequence of only 142 values are shown here for the 

purpose of comparison to Figure 6.8. This median state series is characterised by credibility 

intervals that are significantly narrower than obtained for the shorter series. The average width 

of the 90% credibility limits over this sample length is reduced from 0.922 in the shorter series 

to 0.516 in this series, indicating a more precise HMM calibration. 
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Figure 6.9 Median state series for 142 values and 90% credibility interval from the calibration of a 

two-state Gaussian HMM to series of length 1000 simulated from a two-state Gaussian HMM 

These two simulations show the inability of a two-state Gaussian HMM to identify clear 

transitions between model states within time series of similar length to annual rainfall series. 

Although these series have been generated with explicit persistence within states, the available 

information is inadequate to allow for accurate parameter estimation. As a result, it is clear that 

any conclusions made about the persistence structure of this observed series may therefore be 

misleading. Consequently monthly records may offer a more appropriate source of information 

for identifying hydrological persistence with a HMM, providing that a suitable parametric form 

of the model can be established. It is worth noting here that hidden states can be identified in the 

absence of two-state persistence, where such “states” represent the components of a mixture 

distribution. In the following section, the relationships between HMM transition probabilities 

under these conditions are investigated. 

6.4 HMMs degenerating to mixture distributions 

A mixture of two normal distributions can often closely approximate a skewed marginal 

distribution. A HMM includes a mixture as the special case of state transitions being 

independent of the current state, which in the two-state case is represented as 

DDWD PP =  and WWDW PP =  (6.1) 

The stationary distributions of the Markov chain, wetP  and dryP , which are equivalent to the 

proportion of time that the HMM spends in the wet and dry states respectively, satisfy 
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and 1=+ drywet PP . If WWDW PP = , this becomes  

WWDWwet PPP ==  (6.4) 

Therefore, this condition is equivalent to 

1=+ DWWD PP  (6.5) 

If state transitions are independent of the current state, the construct of distinct climate states is 

redundant, and the model can be interpreted as merely a mixture distribution. If there is a 

tendency for the model to persist in either state, the sum of WDP  and DWP will be less than unity. 

A sum of transition probabilities greater than 1 corresponds to a tendency for weak persistence 

within states. A Bayesian credibility interval for the sum of transition probabilities can be used 

as an indicator for persistence. If the upper limit of the 90% credibility interval is less than 1, 

evidence for hydrological persistence is claimed, yet if the interval includes 1, there is no 

convincing evidence to dismiss the possibility of the HMM being merely a mixture. 

Alternatively, a tendency towards persistence can be expressed as the sum of self-transition 

probabilities ( DDWW PP + ) being greater than unity; a relationship that can be generalised to 

more than two model states. This is discussed further in Section 7.3. 

The model calibration for the various annual rainfall series is now examined for evidence of 

significant two-state persistence. The posterior distributions for the two transition probabilities 

are used to obtain a posterior distribution for DWWD PP +  in each case. Figure 6.10 is a 

histogram of the posterior distribution for the sum of transition probabilities from the calibration 

of a two-state Gaussian HMM to the annual rainfall data for Sydney. This posterior has a 

median of 0.830, but with a wide 90% credibility interval (0.336, 1.401) that includes 1, the 

possibility of this model degenerating to a normal mixture cannot be rejected. This reinforces 

the suggestion from the posterior state series that a two-state Gaussian HMM fails to identify 

persistence in this annual rainfall series. 
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Figure 6.10 Posterior distribution for the sum of transition probabilities from the calibration of a 

two-state Gaussian HMM to the annual rainfall data for Sydney with median shown 

The posterior distributions for the sums of transition probabilities from the calibration of two-

state Gaussian HMMs to the various annual rainfall series are summarised in Table 6.8. These 

results demonstrate that the Alice Springs data is the only series that shows statistically 

significant evidence for two-state persistence. These conclusions are consistent with inference 

gained from the posterior state series associated with each rainfall series that suggested little 

evidence for two-state persistence in any of these series apart from Alice Springs. In light of 

these results, it is unlikely that HMMs with more than two conditional model states would 

identify significant persistence in annual rainfall data, and subsequently these are not calibrated. 

Table 6.8 Posterior medians with 90% credibility intervals for the sums of transition probabilities 

from the calibration of two-state Gaussian HMMs to the various annual rainfall series 

DWWD PP +

Adelaide 0.749 
(0.127, 1.425) 

Alice Springs 0.449 
(0.162, 0.862) 

Brisbane 0.806 
(0.169, 1.201) 

Darwin 0.919 
(0.354, 1.588) 

Melbourne 0.995 
(0.391, 1.590) 

Perth 0.912 
(0.217, 1.548) 

Sydney 0.830 
(0.336, 1.401) 

District 66 0.666 
(0.320, 1.176) 
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6.5 Summary of chapter 

Throughout a number of previous studies, HMMs have been described as suitable models for 

persistence in time series of annual rainfall in Australia. In this chapter, a more thorough 

statistical analysis of two-state Gaussian HMMs that are calibrated to annual rainfall across 

Australia has presented little evidence for two-state persistence in these data. A simple statistical 

test, based on estimates of HMM transition probabilities, has been developed to estimate the 

significance of persistence. This test reinforces previous results that indicate either an absence 

of hydrological persistence at an annual scale, or that annual data is of insufficient length to 

identify this feature accurately. Through simulation studies, it was shown that fluctuations 

between states are difficult to identify within time series of equivalent length to annual rainfall 

series.  

This chapter has shown that a two-state Gaussian HMM is unable to identify two-state climatic 

persistence within the time series of annual rainfall from cities across Australia. In their 

investigation of long-term persistence in Australian point rainfall, Thyer and Kuczera (2000) 

suggested that the calibration of a two-state Gaussian HMM to these data supported their 

modelling assumptions and identified strong persistence. The time series of annual rainfall for 

Sydney suggests a multi-decadal period of below-average values. However the calibration of a 

two-state Gaussian HMM to this series was unable to provide credible evidence for a continuous 

dry state existing over this period. Although this result may be due to the short duration of the 

annual record, the modelling assumption of the two-state Gaussian HMM may also be 

inappropriate for observing persistence at an annual scale. As a result it is pertinent to 

investigate whether the calibration of two-state HMMs to time series of higher frequency data, 

such as monthly values, is an acceptable alternative. Persistence in monthly rainfall is 

investigated in the following chapter. 
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Chapter 7 Using parametric HMMs to 

identify persistence in monthly 

rainfall 

The previous chapter showed that calibrations of Gaussian HMMs are unable to provide 

statistically significant evidence for persistence in the annual rainfall records of Australia. 

Probable causes for such observations are either the lack of significant climatic persistence at 

this scale, or indeed that there is insufficient data. An alternative approach to the investigation 

of annual persistence that examines both these possibilities is to calibrate HMMs to time series 

of monthly rainfall data. Sampling hydrologic data at monthly time scales not only provides 

more information concerning interactions between climate processes and rainfall observations, 

but was shown in Chapter 5 to identify significant persistence in spatially-averaged rainfall. In 

previous studies such as Thyer and Kuczera (2000) and Frost (2003), the calibration of HMMs 

focused solely upon rainfall observations aggregated over annual periods. HMMs have not 

previously been described as appropriate time series models for monthly rainfall, and their 

suitability is investigated in this chapter. Through monthly data from the sites introduced in 

Chapter 6, a clear comparison of persistence observed at both frequencies is achieved. 

7.1 Statistics of monthly rainfall data 

In this chapter, two-state HMMs are calibrated to time series of monthly totals from the seven 

point rainfall and one spatially-averaged rainfall series. Statistics for these series of monthly 

observations are shown in Table 7.1. The monthly record from each gauge has higher skew than 

the corresponding series of annual totals, a characteristic that is shared by many monthly rainfall 

records. These statistics demonstrate large variability in the rainfall regime of Australia. 

Table 7.1 Statistics for the eight series of monthly rainfall totals 

Rain gauge 
BOM 

number 
Period of 

record 
Mean 
(mm) 

Median 
(mm) 

Standard 
Deviation 

Skew 

Adelaide 23034 1956-2001 37.8 33.1 28.4 0.84 
Alice Springs 15590 1942-2001 24.0 9.7 40.3 3.48 
Brisbane 40214 1860-1993 96.1 66.8 99.4 2.78 
Darwin 14015 1870-1941 128.3 53.4 162.1 1.31 
Melbourne 86071 1856-1999 54.8 49.3 33.6 1.20 
Perth 09034 1876-1991 72.4 46.5 74.8 1.23 
Sydney 66062 1859-2001 102.0 74.4 93.3 1.92 
District 66 66 1913-2002 95.0 69.1 87.6 2.13 
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The monthly time series from Sydney and District 66 are highly correlated over the period 

1913-2001 )96.0( =r , demonstrated by the 10-year time series plot shown in Figure 7.1 that is 

indicative of the entire series. The close relationship of these time series reflects the association 

between the series of annual rainfall totals from these two gauges described in Figure 6.1. 
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Figure 7.1 Time series of monthly rainfall observations from Sydney and District 66 over the period 

1980-1989 

The seasonal nonstationarity in these two data sets is demonstrated in Figure 7.2, with mean 

monthly totals alongside historical 90% limits around these means. The two time series display 

a minimum monthly average rainfall in September, with maxima recorded in March. The large 

positive skews of the long-term statistics in Table 7.1 are evident in the 90% limits that tend 

towards values higher than the mean. 
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Figure 7.2 Mean monthly rainfall totals with bars showing 90% of monthly values for Sydney and 

District 66 
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In order to analyse persistence within these monthly rainfall records, it is necessary to first 

remove the seasonal nonstationarity. In a similar approach to that used with the district-averaged 

data in Chapter 4, this is achieved through first subtracting the arithmetic mean for samples in 

each month from the original values. Through dividing by the sample standard deviation for that 

month, this process produces a time series of zero mean and unit variance.  

The eight time series of deseasonalised monthly values are then scaled to produce series of 

scaled positive anomalies. A convenient method for this scaling is to multiply deseasonalised 

values by the observed standard deviation from a particular month and then add the mean value 

from this same month. By plotting the scaled positive anomalies on lognormal probability plots, 

it is apparent that deseasonalised values from many of these both series approximate random 

draws from lognormal distributions. This is demonstrated by the Anderson-Darling goodness-

of-fit statistics shown in Table 7.2, which show that lognormal distributions are more 

appropriate (providing lower AD statistic) than either Gaussian or gamma distributions for each 

monthly rainfall series.  

Table 7.2 Anderson-Darling goodness-of-fit statistics from the calibration of various distributions 

to the scaled positive anomalies of each monthly rainfall record 

 Gamma 
distribution 

Lognormal 
distribution 

Gaussian 
distribution 

Adelaide 1.16 0.79 7.48 
Alice Springs 24.74 13.40 57.91 
Brisbane 15.45 2.92 64.89 
Darwin 20.86 14.49 33.85 
Melbourne 1.46 1.17 24.99 
Perth 9.02 2.43 26.63 
Sydney 9.06 0.90 67.31 
District 66 10.22 0.43 45.91 

As an example of this scaling procedure, the Sydney and District 66 data are scaled so that they 

have a mean (104.31) and standard deviation (77.44) equal to those of the observed January data 

for Sydney. The distributions of these scaled variates are displayed on lognormal probability 

plots in Figure 7.3. Although these distributions deviate slightly from straight lines at the tails, 

such deviation is insufficient to suggest that lognormal distributions are inadequate. 
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Figure 7.3 Lognormal probability plots showing scaled deseasonalised monthly rainfall for Sydney 

(left) and District 66 (right) 

The scaled deseasonalised series for Sydney and District 66 are now compared in Figure 7.4 

over the same 10-year period that was used in Figure 7.1, and once again their close relationship 

is apparent. Persistence within the eight deseasonalised monthly rainfall series is investigated in 

the following section using parametric HMMs. 
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Figure 7.4 Time series of scaled deseasonalised monthly rainfall for Sydney and District 66 over the 

period 1980-1989 

7.2 Calibration of two-state HMMs to monthly rainfall 

7.2.1 Calibration of two-state lognormal HMMs 

Results in the previous section indicated that the conditional state distributions for 

deseasonalised monthly rainfall series approximate lognormals. These observations can be 

exploited in the initial calibration of HMMs. By assuming that the physical processes that 
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distribute monthly rainfall anomalies lognormally are conditioned upon underlying climate 

states, the HMM state conditional distributions are also assumed to comprise random lognormal 

variates. Furthermore as shown in Section 6.4, an assumption of Gaussian conditional 

distributions may result in the calibration of a Gaussian mixture, which weakens the supposition 

of hydroclimatic persistence. The calibration of a two-state lognormal HMM requires six model 

parameters to be estimated; )|( j
tt syP  is lognormal such that ),()|)(ln( 2

jj
j

tt NsyP σµ≈ . 

Once again the SCE algorithm is used to obtain MLEs for these parameters, with posteriors 

inferred through 6,000 samples from 10 Markov chains in the Adaptive Metropolis algorithm. 

Variance ratio diagnostics indicate that these numbers of samples are sufficient to obtain 

accurate estimates of the posterior distributions for each of these monthly rainfall series. 

The posterior distributions for the HMM transition probabilities estimated from each rainfall 

series are summarised in Table 7.3 by posterior medians and 90% credibility limits. These 

results show that Adelaide, Darwin and Sydney are the only series that have transition 

probability estimates that are approximately equal.

Table 7.3 Medians of posterior distributions for HMM transition probabilities, with 90% 

credibility intervals from the calibration of two-state lognormal HMMs 

WDP DWP

Adelaide 0.198 
(0.041, 0.588) 

0.309 
(0.049, 0.656) 

Alice Springs 0.915 
(0.731, 0.992) 

0.079 
(0.047, 0.136) 

Brisbane 0.028 
(0.015, 0.051) 

0.660 
(0.445, 0.911) 

Darwin 0.208 
(0.167, 0.256) 

0.403 
(0.336, 0.475) 

Melbourne 0.090 
(0.021, 0.299) 

0.575 
(0.228, 0.914) 

Perth 0.049 
(0.033, 0.075) 

0.824 
(0.684, 0.923) 

Sydney 0.343 
(0.214, 0.490) 

0.379 
(0.215, 0.506) 

District 66 0.031 
(0.010, 0.093) 

0.654 
(0.413, 0.954) 

As suggested in Section 6.2, HMM calibrations identifying large differences in estimates of 

WDP  and DWP  diminish the possibility of these data showing long-term hydroclimatic 

persistence. Intuitively with monthly data, residence times in the two model states should be 

similar, as dominant climate modes such as ENSO persist in each of their phases for 

approximately equal durations. The posterior medians of transition probabilities from the 

monthly Brisbane data suggest residence times of approximately 35 months in a wet state, yet 
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only 1.5 months in a dry state. Similar features are apparent in the calibrations of two-state 

lognormal HMMs to the deseasonalised monthly data for Alice Springs, Melbourne, Perth and 

District 66. These results suggest that two-state lognormal HMMs are inappropriate models for 

monthly-scale persistence in these data. 

The full posteriors from the calibration of a two-state lognormal HMM to the deseasonalised 

monthly rainfall series for Sydney are shown in Figure 7.5 as histograms. The estimates of the 

two monthly transition probabilities have much tighter credibility intervals than was achieved 

through the calibration of a two-state Gaussian HMM to the annual data. Posterior medians of 

transition probabilities suggest similar residence times in the two model states, which are on 

average between 2.5–3 months. The two-state persistence identified by the lognormal HMM is 

clearly of a frequency that cannot be identified with annual rainfall totals. This calibration 

identifies conditional distributions with well-separated means, suggesting that the monthly time 

scale appropriately describes hydroclimatic persistence. 

Figure 7.5 Posterior distributions, with median values, from the calibration of a two-state 

lognormal HMM to deseasonalised monthly rainfall for Sydney, with the state conditional means 

and standard deviations of the natural logarithms of monthly data shown 

The series of posterior state probabilities provides a method for comparing the calibration of a 

two-state lognormal HMM to the deseasonalised monthly rainfall data with HMM calibrations 

at an annual scale. Figure 7.6 shows the posterior state series for the former together with its 

90% credibility interval from calibration to the deseasonalised monthly rainfall of Sydney. A 
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10-year period has been chosen here to allow clearer presentation of the entire series, although 

the tight credibility intervals through this period are indicative of the full record. The 

uncertainty bounds of this state series are much narrower than for the median series derived 

from the annual rainfall totals. A line at probability of 0.5 is used to divide the posterior state 

series between likely wet months and likely dry months. This 10-year period has regular 

intervals during which the entire 90% credibility bounds are either side of the dividing line at a 

probability of 0.5, showing a clear two-state persistence pattern. The improved identification of 

persistence at this scale over annual totals is shown by the credibility intervals in Figure 7.6 

having average width of 0.393 as opposed to 0.753 at the annual scale. 
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Figure 7.6 Median state series and 90% credibility interval from the calibration of a two-state 

lognormal HMM to the deseasonalised monthly rainfall for Sydney 

The median state series for the monthly rainfall is now shown in Figure 7.7 alongside the time 

series of scaled monthly anomalies over the same 10-year period. Over these 120 months, most 

large positive anomalies are shown to exist in a wet state, which is an expected result. For the 

entire series (1859-2000), deseasonalised monthly values from Sydney are significantly 

correlated with the median posterior state probabilities )82.0( =r . This relationship is better 

expressed through a non-parametric rank correlation, which reduces the influence of the median 

state probabilities being constrained over the (0, 1) interval, having magnitude 97.0=r .  
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Figure 7.7 Time series of deseasonalised monthly rainfall for Sydney (red line) shown alongside the 

median state series following the calibration of a two-state lognormal HMM 

The calibration of a two-state Gaussian HMM to the time series of annual rainfall was shown to 

degenerate to a mixture of Gaussians. Therefore it is pertinent to investigate whether the two-

state lognormal HMM identifies significant two-state persistence in the series of deseasonalised 

monthly totals. In a similar manner to that described in Chapter 6, this investigation relies upon 

an analysis of the posterior distribution for the sum of HMM transition probabilities, 

summarised by the histogram in Figure 7.8. This distribution has a median value of 0.715, with 

a 90% credibility interval (0.588, 0.826) that rejects the possibility of this model degenerating to 

a mixture of lognormal distributions. 

Figure 7.8 Posterior distribution of the sum of transition probabilities from the calibration of a two-

state lognormal HMM to deseasonalised monthly rainfall for Sydney with median shown 

This result demonstrates that HMMs identify underlying persistence in the Sydney monthly 

rainfall record, independent of annual seasonality, with an assumption that state conditional 

distributions are lognormal. It is important to now investigate whether this same model can 

identify significant persistence in other time series of deseasonalised monthly rainfall. 
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The posterior distributions for the sums of transition probabilities from calibrating two-state 

Gaussian HMMs to the various monthly rainfall series are summarised in Table 7.4. The three 

series that had approximately equal transition probability estimates, Adelaide, Darwin and 

Sydney, each have 90% credibility intervals around the sum of transition probabilities that are 

contained within (0, 1) intervals. This indicates that the two-state lognormal HMMs also 

identify significant monthly-scale persistence in the Adelaide and Darwin rainfall data. For the 

other monthly series, posterior medians of transition probabilities showed that a single state was 

favoured through the calibration of two-state lognormal HMMs. This characteristic reflects an 

absence of long-term persistence in these data. Although Table 7.4 shows that Alice Springs is 

the only series with a 90% credibility interval of DWWD PP +  that exceeds unity, the upper 

bounds of these intervals for the other series are close to 1. This suggests that the possibility of 

these HMMs degenerating to mixtures of lognormal distributions cannot be rejected at an 

approximate 10% level.  

Table 7.4 Posterior medians with 90% credibility intervals for the sums of transition probabilities 

from the calibration of two-state lognormal HMMs to the deseasonalised monthly rainfall series 

DWWD PP +

Adelaide 0.559 
(0.306, 0.905) 

Alice Springs 0.996 
(0.811, 1.088) 

Brisbane 0.691 
(0.473, 0.939) 

Darwin 0.612 
(0.523, 0.707) 

Melbourne 0.685 
(0.392, 0.977) 

Perth 0.874 
(0.736, 0.976) 

Sydney 0.726 
(0.588, 0.826) 

District 66 0.695 
(0.448, 0.985) 

The calibration results summarised in Table 7.4 show little evidence for two-state persistence in 

the monthly rainfall of various locations across Australia. However these results were obtained 

through assuming that the deseasonalised monthly rainfall data are lognormally-distributed in 

each model state. Before assumptions about the influence of climatic persistence at this time-

scale are made, it is pertinent to investigate the role that assumptions concerning the parametric 

form of these conditional distributions may have upon the ability of this model to identify true 

underlying persistence. 
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The monthly rainfall data from Sydney demonstrate significant two-state persistence when 

assuming lognormal conditional distributions. In order to analyse the influence of modelling 

assumptions, these data are now calibrated with a two-state Gaussian HMM. This produces 

posterior medians of 0.618 and 0.315 for WDP  and DWP  respectively, with 90% credibility 

intervals of (0.548, 0.688) and (0.276, 0.357). The posterior for DWWD PP +  is shown as a 

histogram in Figure 7.9, and this distribution has a median value of 0.934 and a 90% credibility 

interval of (0.860, 1.006). With this interval marginally including 1, the model calibration just 

fails to reject the notion of the two-state Gaussian HMM degenerating to a mixture of Gaussians 

at a significance level of 10%. As a consequence, the assumption of lognormally-distributed 

conditional distributions appears more appropriate for identifying stable climate states in this 

particular data set.  

Figure 7.9 Posterior distribution of the sum of transition probabilities for the calibration of a two-

state Gaussian HMM to deseasonalised monthly rainfall for Sydney with median shown 

This section has clearly shown that the form of conditional distributions is a centrally important 

aspect in the calibration of HMMs to persistent data. These results have demonstrated that 

HMMs with skewed conditional distributions are adequate descriptors of persistence in various 

monthly rainfall series. It is therefore crucial that alternative forms of conditional distributions 

are now investigated; as these may provide evidence for persistence in monthly rainfall data that 

were not apparent with model calibrations in this section.  

7.2.2 Calibration of two-state gamma HMMs 

The gamma distribution is a suitable alternative to lognormal conditional distributions for the 

calibration of HMMs to deseasonalised monthly rainfall data. This distribution is defined by 

two parameters and can take a positive skew similar to the lognormal. The calibration of a two-

state gamma HMM therefore requires six model parameters to be estimated, which is similar to 

the lognormal and Gaussian models previously described. The probability density function for 

this distribution is as follows: 
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From the calibration of a two-state gamma HMM to the various deseasonalised monthly rainfall 

series, posterior distributions for transition probabilities and the sum of these probabilities are 

summarised in Table 7.5. The 90% credibility intervals for DWWD PP +  from the HMM 

calibration to monthly rainfall for Brisbane, Perth and District 66 all include a value of 1, 

indicating that these data fail to show significant persistence from assuming gamma state 

conditional distributions. Although the monthly data for Melbourne shows 90% of the posterior 

for the sum of transition probabilities having a value less than unity, which suggests evidence 

for two-state persistence at a 10% level, median estimates for the two transition probabilities 

show expected dry state durations that are 11 times the expected length of wet state periods. The 

tendency to remain in a single state for a vast majority of the data series is inconsistent with the 

hypothesis of multiple persistent climate states. Consequently the assumption that the two state 

conditional distributions are derived from gamma rather than lognormal distributions fails to 

provide an improved description of persistence in these four monthly rainfall series. 

Table 7.5 Medians of posterior distributions for HMM transition probabilities and their sum, with 

90% credibility intervals from the calibration of two-state gamma HMMs 

WDP DWP DWWD PP +

Adelaide 0.334 
(0.145, 0.615) 

0.228 
(0.075, 0.454) 

0.588 
(0.350, 0.847) 

Alice Springs 0.476 
(0.403, 0.552) 

0.330 
(0.268, 0.400) 

0.808 
(0.696, 0.921) 

Brisbane 0.449 
(0.318, 0.609) 

0.330 
(0.219, 0.462) 

0.781 
(0.576, 1.016) 

Darwin 0.354 
(0.293, 0.422) 

0.240 
(0.191, 0.297) 

0.595 
(0.505, 0.696) 

Melbourne 0.517 
(0.280, 0.807) 

0.047 
(0.010, 0.152) 

0.590 
(0.304, 0.857) 

Perth 0.610 
(0.399, 0.786) 

0.189 
(0.123, 0.311) 

0.802 
(0.597, 1.015) 

Sydney 0.426 
(0.351, 0.515) 

0.285 
(0.195, 0.401) 

0.718 
(0.606, 0.830) 

District 66 0.444 
(0.276, 0.686) 

0.423 
(0.231, 0.673) 

0.882 
(0.618, 1.191) 

An important result from Table 7.5 is that the three series that show significant persistence from 

the calibration of two-state lognormal HMMs, Adelaide, Darwin and Sydney, also show 

significant persistence from the calibration of two-state gamma HMMs. Furthermore these 

calibrations estimate similar values for the two transition probabilities, demonstrating a 

tendency for climate states to persist over similar durations. As a result the two-state gamma 
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HMM provides a suitable description of persistence in these monthly rainfall series. The final 

data series, from Alice Springs, failed to show persistence when calibrated with a two-state 

lognormal HMM. However results in Table 7.5 show that a two-state gamma HMM can identify 

two-state persistence, suggesting this latter model offers a superior description of these data. 

With the two-state gamma HMM identifying significant persistence in the monthly rainfall from 

Sydney, it is important to compare the calibrations of this model with the two-state lognormal 

HMM. Posteriors for parameters of the two conditional distributions from the former calibration 

are summarised in Table 7.6. 

Table 7.6 Medians of posterior distributions for parameters of gamma distributions, with 90% 

credibility intervals, from the calibration of a two-state gamma HMM to the deseasonalised 

monthly rainfall for Sydney 

Wa Da Wb Db
3.875 

(3.46, 4.54) 
3.632

(3.30, 3.99) 
41.34

(36.8, 46.2) 
17.47

(15.2, 20.4) 

The shape parameters of a gamma distribution are related to the mean and variance of the 

distribution through abXE =)(  and 2)( abXVar = . Using the posterior medians shown in 

Table 7.6 as estimates of the model parameters, the moments for lognormal HMM conditional 

distributions are compared to those for the gamma HMM conditional distributions in Table 7.7.  

Table 7.7 Estimated means (with standard deviations) for state conditional distributions from the 

calibrations of HMMs to the deseasonalised monthly rainfall for Sydney 

 Wet state Dry state 
Lognormal HMM 143.74 (86.33) 60.97 (38.16) 
Gamma HMM 160.19 (81.38) 63.45 (33.29) 

The moments of conditional distributions shown in Table 7.7 indicate that two-state gamma and 

two-state lognormal HMMs identify similar underlying distributions in the Sydney monthly 

rainfall. The probability distribution functions for these models that are generated from posterior 

median parameter estimates are shown alongside each other in Figure 7.10, with a higher wet 

state mean for the gamma HMM clearly apparent. 
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Figure 7.10 State conditional distributions estimated from the calibration of a two-state lognormal 

HMM (left) and a two-state gamma HMM (right) to the deseasonalised monthly rainfall for Sydney 

With the gamma HMM identifying conditional distributions in the Sydney monthly rainfall that 

are similar to the lognormal HMM, it is important to determine whether these two models 

estimate a similar sequence of monthly states within these data. In fact the linear correlation 

between the median state series for the two models is very strong ( 001.0,951.0 <= pr ), with 

these series also having a rank correlation of 993.0=r . It is clear therefore that these models 

identify similar persistence in the Sydney rainfall series.  

In order to generate Bayes Factors between each HMM variant, suitable prior distributions are 

required for each model parameter. As outlined in Section 3.4.3 conjugate priors are desirable, 

and the conjugate prior for the location parameter of a lognormal distribution is Gaussian, 

defined with the mean and standard deviation of the natural logarithms of monthly variates. 

Conjugate priors for the scale parameter of lognormal distributions are inverse chi-squared 

distributions, the shapes of which are defined with the variance of log samples. Uniform priors 

over the interval (0, 1) are also used for HMM transition probabilities. For gamma conditional 

distribution, explicit forms for conjugate priors are not available, so uniform priors defined with 

statistics of the marginal distribution of rainfall observations are used in this analysis for both 

parameters. By fitting a single gamma distribution to the marginal, maximum likelihood 

estimates for the “a” and ‘b” parameters are 1.83 and 57.13 respectively. Uniform priors are 

subsequently defined over intervals (0, 10) for the “a” parameter and (0, 100) for the “b” 

parameter. Upper bounds for these distributions were varied to test sensitivity; however it was 

assumed that the “a” parameter would always take smaller values than the “b” parameter. 

Uniform priors form vague distributions, and allow the data to dominate the posterior. Bayesian 

model selection produces an estimate of 4.0 for GLBF ,ln , which is marginally in favour of the 

lognormal distribution. 
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Table 7.8 Model selection results from the calibrations of two-state lognormal (LN) and two-state 

gamma HMMs to deseasonalised monthly rainfall series 

  Maximum Likelihood GLBF ,ln  

Adelaide Lognormal -2535.4  
 Gamma -2531.2 -140.4 
Alice Springs Lognormal -2832.7  
 Gamma -2777.8 -52.4 
Darwin Lognormal -5390.0  
 Gamma -5375.6 -42.4 
Sydney Lognormal -9389.4  
 Gamma -9391.9 4.0 

The two-state gamma HMM describes monthly persistence in Sydney rainfall in a manner 

similar to a two-state lognormal HMM. Table 7.8 shows model selection results for the four 

deseasonalised monthly series that showed significant persistence through the calibrations of 

two-state gamma and lognormal HMMs. Negative Bayes Factors in this table favour the two-

state gamma HMM over the two-state lognormal HMM. Consequently for the Adelaide, Alice 

Springs and Darwin monthly data, Bayes Factor analyses favour the two-state gamma HMM, 

suggesting that for these data, the latter model is superior in a Bayesian context. With the two 

parametric HMMs show here identifying significant persistence in certain deseasonalised 

monthly rainfall series, it is now appropriate to investigate the relationship between model states 

and other measures of physical processes that underlie hydrologic variability. 

7.2.3 Relationships between HMM states and measures of climate variability 

The El Niño Southern Oscillation has a major influence upon rainfall variability across much of 

eastern Australia, and it is likely that hydrological persistence in these regions would reflect 

changes in ENSO indices. As the posterior state series from the calibration of a two-state 

lognormal HMM to the Sydney data is highly correlated to the state series from a two-state 

gamma HMM, only the state series from the former model is analysed here. For regions of 

Australia influenced by ENSO variability, El Niño periods are generally associated with below-

average rainfall, with La Niña episodes generally producing above-average rainfall. It follows 

that two-state persistence in such regions would display higher wet state probabilities in La Niña 

months and lower probabilities in El Niño months.  

The efficacy of the calibration of a lognormal HMM to the Sydney monthly rainfall is first 

examined through relationships between posterior state probabilities and the time series of 

NINO3 5-mrm values. By classifying each month as El Niño, La Niña or ENSO neutral, using 

the method described in Section 2.2.1, 2-sample t-tests show La Niña periods being associated 

with a mean wet state probability of 0.587, significantly higher ( 001.0<p ) than the mean wet 

state probability in El Niño months (0.486). 
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The relationships between hidden climate states and alternative measures of persistence in the 

climate, such as ENSO indices, are further analysed in Table 7.9, with months segregated on the 

basis of ENSO phase and HMM state. The 5-mrm values of the NINO3 series are again used to 

classify ENSO months. Using the median state series from the calibration of the two-state 

lognormal HMM, a probability of 0.5 is then used to separate months into having been 

generated from a wet or a dry climate state. These results show a tendency for La Niña episodes 

to coincide with wet climate states, which is expected given the influence of ENSO upon 

rainfall along the east coast of Australia. The influence of El Niño episodes however are not 

revealed as clearly as La Niñas. These phases have almost equal chance of coinciding with wet 

or dry climate states, thus lacking the strong bias towards dry states that would be expected if 

the HMM was isolating the influence of ENSO in these rainfall data. This demonstrates that the 

persistence identified in the Sydney rainfall data originates from the hydroclimatic influences of 

various global climate phenomena. 

Table 7.9 Numbers of months in which most probable HMM states from the calibration of a two-

state lognormal HMM to the deseasonalised monthly rainfall for Sydney coincide with different 

ENSO phases 

El Niño ENSO Neutral La Niña 

Wet state 243 380 304 

Dry state 261 342 186 

This section has shown that two-state parametric HMMs identify persistence within 

deseasonalised monthly rainfall data, particularly from Sydney, that is revealed through 

alternative measures. It is therefore pertinent to investigate methods that extend this modelling 

approach, in order to further analyse the nature of this hydrological persistence. The following 

section investigates the possibility for multiple-state persistence in these data. 

7.3 Using HMMs to identify possible three-state monthly persistence 

A pragmatic approach to modelling hydroclimatic persistence with HMMs is to define two 

broad climate states as previously demonstrated. Although two-state models that describe 

predominantly wet and predominantly dry conditions provide a useful mechanism for 

downscaling climatic variability to hydrological persistence, HMMs are not constrained to this 

basic structure. As an example, applications of HMMs to continuous speech recognition can 

incorporate different states for individual acoustic-phonetic units, thus requiring 40-50 states to 

describe all sounds in the English language (Rabiner, 1989). An increase in the number of states 
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increases model complexity, hence the number of parameters to be estimated. This complexity 

however may allow persistence to be more clearly observed. 

The number of model states is an important aspect of model development. One approach is to 

fix this number prior to calibration in order to reflect a range of system characteristics, and 

attention then focused upon other model characteristics such as the form of conditional 

distributions. An alternative approach is to choose the number of states through model selection 

procedures in order to deliver an optimal model structure. Robertson et al. (2004) used a HMM 

to describe daily rainfall occurrence across 10 rain gauges in northeast Brazil, applying cross-

validation methods to identify the most suitable number of model states. Following the 

calibration of a 4-state model to these data, these authors used anomalies in outgoing long-wave 

radiation and surface winds to observe the meteorological characteristics associated with each 

rainfall state. Intraseasonal and interannual teleconnections were revealed in different states, and 

provided a physical basis for the predictability of daily rainfall.  

The influence of El Niño and La Niña episodes upon Australian hydrology has been previously 

noted, however between these ENSO extremes the climatic conditions of the eastern equatorial 

Pacific tend to exist in a “neutral” phase. ENSO may therefore be interpreted as a tendency for 

the Pacific climate to fluctuate between three distinct states rather than two, and it is possible a 

similar characteristic is evident in rainfall observations. Under these conditions, three-state 

persistence within monthly rainfall is justified; however the combined influence of non-ENSO 

climate modes such as the IPO and the IOD may realise an even greater number of discrete 

climate states. In the calibration of HMMs to monthly rainfall series, Bayesian model selection 

methods such as Bayes Factors may determine the most appropriate number of hidden states.  

Three-state HMMs are now calibrated to the deseasonalised monthly rainfall series introduced 

earlier, using assumptions that each state conditional distribution is either lognormal or gamma. 

In the calibration of these models, six transition probabilities require estimation, together with 

two parameters for each of the three state conditional distributions. The calibration of a three-

state lognormal HMM to the time series of deseasonalised monthly rainfall for Sydney produces 

posterior medians that approximate the state conditional distributions )|)(ln( j
tt syP  as 

)49.0,01.5( 2N , )57.0,50.4( 2N  and )58.0,93.3( 2N . These distributions are well-separated, 

with wet and dry state distributions closely matching estimates for a two-state lognormal HMM. 

For a three-state gamma HMM, the wet, neutral and dry state distributions are estimated 

respectively as )47.36,34.5(Gamma , )99.12,75.7(Gamma  and )46.10,75.4(Gamma . The 

relationships between the distributions for each model are described in Figure 7.11, and it is 

clear that the gamma HMM shows a longer-tailed wet state. 
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Figure 7.11 State conditional distributions estimated from the calibration of a three-state lognormal 

HMM (left) and three-state gamma HMM (right) to the deseasonalised monthly rainfall for Sydney 

Figure 7.11 shows that both three-state lognormal and gamma HMMs identify well-separated 

conditional distributions within the Sydney monthly rainfall series, suggesting significant three-

state persistence. To further analyse these calibrations, the posteriors for the six transition 

probabilities for the lognormal and gamma HMMs are shown in Figure 7.12 and Figure 7.13 

respectively. Vertical lines indicate the median values of these distributions, and the subscript 

N  denotes the “neutral” climate state. 

Posterior distributions for the lognormal HMM transition probabilities have greater spread than 

those from the gamma HMM. Furthermore, these distributions have wider bounds than the 

posteriors of either transition probability from the calibration of a two-state lognormal HMM to 

these data. This indicates that the three-state lognormal HMM produces inferior estimates of 

transitions between the model states. Importantly the dry state self-transition probability for 

both the three-state lognormal HMM and the three-state gamma HMM, which is the 

complement of DNDW PP + , is higher than self-transition probabilities for the other two states. 

This implies that these two models identify a majority of months in a dry climate state. 
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Figure 7.12 Posterior distributions of transition probabilities from the calibration of a three-state 

lognormal HMM to deseasonalised monthly rainfall for Sydney with medians shown 

Figure 7.13 Posterior distributions of transition probabilities from the calibration of a three-state 

gamma HMM to deseasonalised monthly rainfall for Sydney with medians shown 
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In three-state HMMs, posterior state probabilities need to be calculated separately for each 

model state. As a result it is difficult to compare the credibility intervals of the state series as 

shown previously with the calibration of two-state HMMs. However by estimating credibility 

bounds around posterior state series for wet, neutral and dry states separately, the probability for 

month t  existing in state j  is estimated by the posterior mean probability. Using this approach, 

the sequence of state probabilities from the calibration of a three-state lognormal HMM to the 

deseasonalised monthly rainfall for Sydney is shown in Figure 7.14 over a 10-year period (Jan 

1930 to Dec 1939). A majority of months in this sequence show higher dry state probabilities 

than either neutral state or wet state probabilities. The state that shows the highest posterior 

probability at each month is the most likely model state. Figure 7.15 then shows the most likely 

state sequence over this 10-year period, with a bias towards dry states clearly demonstrated. 
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Figure 7.14 Posterior state probabilities over a 10-year period from the calibration of a three-state 

gamma HMM to the deseasonalised monthly rainfall for Sydney 
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Figure 7.15 Sequence of most likely states for a 10-year period from the calibration of a three-state 

lognormal HMM to the deseasonalised monthly rainfall for Sydney, colours as used in Figure 7.14 

Figure 7.15 indicates that 52 of the 120 months are most likely to have been generated from a 

dry state distribution. Over the entire time series, 743 months are most likely to be in a dry state 
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(43.3%), as opposed to 375 months (21.9%) in a wet state and 598 months (34.8%) in a dry 

state. The ratio of the number of dry months to wet months in this three-state model (1.98) is 

much higher than for the two-state model (1.17). 

The significance of state transitions identified by the three-state lognormal HMM is now 

analysed in terms of observed hydroclimatic variability. By categorising each month in the 

Sydney record by likely model state, monthly wet states are associated with an average 

deseasonalised anomaly of 222.4, which is significantly higher than the average total for neutral 

states (102.8) and dry states (45.9). This suggests that three-state persistence identified by the 

gamma HMM identifies observed modes of rainfall variability. 

By using the series of most likely states to separate monthly NINO3 values into those associated 

with wet, neutral and dry months, 2-sample t-tests show HMM wet states to have an average 

NINO3 value of -0.014, compared with a mean value in dry months of 0.165. This highlights a 

tendency towards more La Niña months coinciding with wet states and more El Niños occurring 

during dry months. A 2-sample t-test shows that the difference between average NINO3 values 

in these two states is statistically significant )001.0( <p . Similarly, neutral months are coupled 

to significantly lower NINO3 values than during dry months )002.0( =p . 

The relationship between persistence and measures of ENSO variability is further analysed in 

Table 7.10, which shows the numbers of months in which most likely climate state coincides 

with ENSO phase. This table shows a bias towards more wet state months occurring during La 

Niña episodes, and months during El Niño phases are more likely to be modelled as dry climate 

states. Both of these results are consistent with monthly persistence in Sydney rainfall reflecting 

ENSO variability. The neutral climate state fails to correspond with ENSO neutral phases 

however, which suggests either that the three-state HMM is too complex a model for this 

persistence, or that climate phenomena other than ENSO have significant roles. 

Table 7.10 Numbers of months in which most probable HMM states from the calibration of a three-

state gamma HMM to the deseasonalised monthly rainfall for Sydney coincide with different ENSO 

phases 

El Niño ENSO Neutral La Niña 

Wet state 101 149 125 

Neutral state 161 246 191 

Dry state 242 327 174 
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In order to investigate the significance of three-state persistence in the time series of the 

deseasonalised monthly rainfall for Sydney, it is necessary to analyse the calibration of the 

three-state gamma HMM. In Section 6.4, the degeneration of a two-state HMM to a mixture 

distribution was shown to occur with 1=+ DWWD PP . A 90% credibility interval for this sum 

including a value of 1 provides evidence for a mixture distribution, whereas 1<+ DWWD PP

provides evidence against this mixture. In the two-state model this inequality is equivalent to 

1>+ DDWW PP , such that a credibility interval around the sum of self-transition probabilities 

being entirely greater than 1 indicates two-state persistence. This analysis can be extended to the 

case of three or more states, in which the sum of self-transition probabilities is used as the test 

statistic. In the three-model case, the posterior distribution for DDNNWW PPP ++  is therefore 

analysed. By simplifying the sum of six transition probabilities of a three-state HMM as TPΣ , 

the sum of self-transition probabilities is calculated as )3( TPΣ− . A 90% credibility interval 

around DDNNWW PPP ++  being above unity is evidence against three-state persistence 

degenerating to a mixture of three distributions. 

To investigate whether three-state HMMs maintain persistence that is identified with two-state 

models, the distributions of the sums of self-transition probabilities for the lognormal and 

gamma models are shown in Figure 7.16 with vertical lines at posterior medians.  

Figure 7.16 Posterior distributions for the sums of self-transition probabilities from the calibration 

of a three-state lognormal HMM (left) and a three-state gamma HMM (right) to the deseasonalised 

monthly rainfall for Sydney with medians shown 

With the three-state lognormal HMM having wider posteriors for transition probabilities than 

the three-state gamma HMM, the former model also has a wider distribution for the sum of self-

transition probabilities. This distribution has a median of 1.238, with 95% of posterior samples 

greater than 0.895, contrasting to a median estimate from the three-state gamma HMM of 1.072 

with 95% of its samples lying above 0.939. Even though each three-state HMM shows values 

for the sum of self-transition probabilities to be similar to values obtained from the two-state 
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HMMs, the 90% credibility intervals for the three-state HMMs include a value of 1. 

Consequently, the possibility of these three-state models degenerating to mixture distributions 

cannot be rejected at the 10% significance level. 

The calibrations of three-state lognormal and three-state gamma HMMs to the various 

deseasonalised monthly rainfall series are summarised in Table 7.11. These results show 

significant evidence for three-state persistence in the monthly rainfall of Adelaide, Alice 

Springs, Brisbane and Melbourne from calibrating both lognormal and gamma HMMs. Monthly 

rainfall for Darwin and Perth show persistence using only one of these three-state HMMs. 

Furthermore, deseasonalised monthly rainfall for Sydney and District 66 fail to reject the notion 

of three-state persistence degenerating to either a mixture of three lognormals or a mixture of 

three gammas.  

Table 7.11 Medians of posterior distributions for the sums of self-transition probabilities, with 90% 

credibility intervals, from the calibrations of three-state lognormal HMMs and three-state gamma 

HMMs to deseasonalised monthly rainfall series 

DDNNWW PPP ++

3-state lognormal HMM 
DDNNWW PPP ++

3-state gamma HMM 

Adelaide 1.415 
(1.075, 1.745) 

1.494 
(1.030, 1.876) 

Alice Springs 1.287 
(1.117, 1.503) 

1.798 
(1.465, 2.340) 

Brisbane 1.620 
(1.357, 1.894) 

1.402 
(1.036, 1.735) 

Darwin 1.222 
(1.119, 1.348) 

1.264 
(0.850, 1.745) 

Melbourne 1.486 
(1.132, 1.910) 

1.712 
(1.407, 2.051) 

Perth 1.300 
(0.849, 1.766) 

1.347 
(1.093, 1.656) 

Sydney 1.260 
(0.915, 1.714) 

1.072 
(0.939, 1.225) 

District 66 1.340 
(0.975, 1.793) 

1.207 
(0.906, 1.522) 

With estimates of transition probabilities showing significant three-state persistence in various 

deseasonalised monthly rainfall series, it is important to investigate whether three-state HMMs 

offer superior descriptions of persistence within these monthly data than two-state HMMs. 

Bayes Factors are evaluated between two-state lognormal HMMs, three-state lognormal HMMs 

and two-state and three-state gamma HMMs using the same prior distributions as those 

described previously. This model selection process for the eight monthly rainfall series are 

summarised in Table 7.12, with the optimal models shown for each monthly series.  
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Table 7.12 Bayes factors from comparing calibrations to deseasonalised monthly rainfall series of 

two-state lognormal HMMs, to three-state lognormal HMMs and gamma HMMs  

LLBF 3,2ln  GLBF 2,2ln  GLBF 3,2ln  Optimal model 

Adelaide -68.4 -70.1 -79.2 3-state gamma HMM 
Alice Springs -23.4 -26.2 16.6 2-state gamma HMM 
Brisbane -5.6 1.9 -11.2 3-state gamma HMM 
Darwin -51.9 -21.2 -28.9 3-state lognormal HMM 
Melbourne 0.4 0.5 4.8 2-state lognormal HMM 
Perth 2.9 8.7 -1.9 3-state gamma HMM 
Sydney 1.2 2.0 2.8 2-state lognormal HMM 
District 66 10.1 1.0 -3.4 3-state gamma HMM 

After reviewing the results of both Table 7.11 and Table 7.12, there is evidence to show that 

three-state gamma HMMs are the most appropriate models for the monthly rainfall in Adelaide, 

Brisbane and Perth, whereas a three-state lognormal HMM is appropriate for the Darwin data. 

Transition probability estimates suggested significant three-state persistence in the monthly 

rainfall series of Alice Springs and Melbourne, however Bayesian model selection indicates 

these data are better described with two-state persistence. Although the three-state gamma 

HMM is the optimal model for the District 66 series, Table 7.11 shows that the possibility of 

three-state persistence degenerating to a mixture of three gamma distributions cannot be rejected 

at a 10% level. Furthermore, model selection results for this series are different to those from 

the Sydney monthly series, to which the District 66 data is closely related. This indicates that 

assumptions used in the calibrations of these models to the deseasonalised monthly rainfall for 

District 66 could be unsuitable, and this is investigated more thoroughly in the following 

section. 

7.4 Problems in the calibration of incorrect parametric HMMs  

The parametric forms of state conditional distributions are vitally important aspects in HMM 

design, and unrealistic assumptions about the form of these distributions can bias the estimation 

of transition probabilities, leading to incorrect model fitting. Difficulties posed by the need to 

define these conditional distributions are illustrated in this section, using the time series of 

deseasonalised monthly anomalies from District 66 as an example. 

7.4.1 Using monthly rainfall for District 66 to illustrate calibration problems 

In order to demonstrate the influence of parametric assumptions upon model estimation, it is 

useful to return to the results from the calibration of a two-state lognormal HMM to the time 

series of deseasonalised monthly rainfall recorded in District 66. As shown in Table 7.2, these 

data are consistent with random lognormal draws with )72.0,40.4())(ln( 2NyP t ≈ . Although 
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the calibration of a two-state lognormal HMM to the deseasonalised monthly rainfall for Sydney 

identifies strong two-state persistence in these data, the calibration of this model to the District 

66 data produces some contrasting results. Table 7.13 summarises the posteriors from these 

calibrations; a large difference between transition probability estimates suggests a tendency for 

the HMM to remain within the wet state for the entire District 66 series. Broad posteriors for the 

mean and standard deviation of dry state observations show that this model cannot accurately 

identify the dry state, further emphasising the degeneration into a single distribution.  

Table 7.13 Comparison of posterior distributions showing median and 90% credibility intervals, 

from the calibration of two-state lognormal HMMs to deseasonalised monthly rainfall in Sydney 

and District 66 

WDP DWP Wet state 
location 

Dry state 
location 

Wet state 
scale 

Dry state 
scale 

66 0.031 
(0.01, 0.09) 

0.654 
(0.41, 0.95) 

4.461 
(4.42, 4.52) 

3.437 
(2.61, 4.00) 

0.649 
(0.62, 0.68) 

0.924 
(0.69, 1.31) 

Syd 0.343 
(0.29, 0.49) 

0.379 
(0.22, 0.51) 

4.814 
(4.67, 4.97) 

3.945 
(3.80, 4.15) 

0.555 
(0.50, 0.62) 

0.575 
(0.51, 0.66) 

The differences in the calibrations of two-state lognormal HMMs to the deseasonalised monthly 

anomalies from Sydney and District 66 are striking. Although these series are strongly 

correlated, the Sydney data demonstrate clear two-state monthly persistence that is absent in the 

spatially-averaged series. The two-state lognormal HMM tends to approximate the marginal 

monthly distribution for District 66 with a single “wet state” distribution. Taking exponentials 

of a series generated from )649.0,461.4( 2N , the parameters of which equal the posterior 

medians of wet state parameters, produces a series of lognormal variates that has an expected 

value of 106.87 and theoretical standard deviation 77.34 using the standard relationships 

)5.0exp(][ 2ζλ +=XE  and )1)](exp([][ 22 −= ζXEXVar  where 461.4=λ  and 

649.0=ζ . The moments of this exponential series are very similar to the moments of the 

deseasonalised monthly series for District 66, for which the sample mean and standard deviation 

are 104.31 and 77.05 respectively. 

The behaviour of the two-state lognormal HMM is further demonstrated in Figure 7.17, the 

posterior state series for the deseasonalised monthly rainfall for District 66 shown over the same 

10-year period as used for the Sydney data in Figure 7.6. The general pattern of posterior state 

probabilities remaining close to 1 during this period is indicative of state probabilities for the 

entire 90-year series. Indeed over this period, only 18 months (1.7% of all values) have a 

median wet state probability less than 0.5. A visual comparison of this figure with the 

corresponding series from the monthly Sydney data shows two vastly different HMM state 

series, and these have a linear correlation of 40.0=r  that is dramatically lower than the 
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correlation between the two series of deseasonalised monthly rainfall )87.0( =r . Furthermore a 

dry state distribution describes only the extreme low values in the series, which is shown by the 

18 months that have a median wet state probability less than 1 (hence more likely to have been 

generated from a dry state distribution) corresponding to an average deseasonalised monthly 

value of 16.4, as opposed to an average value over the marginal distribution of 104.3. 
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Figure 7.17 Median state series and 90% credibility interval over a 10-year period from the 

calibration of a two-state lognormal HMM to deseasonalised monthly rainfall for District 66 

Together with transition probability estimates that failed to reject the possibility of the two-state 

model fitting only a mixture of two lognormals, Figure 7.17 indicates that the two-state 

lognormal HMM inappropriately describes persistence in the monthly rainfall over District 66. 

Figure 6.5 showed that the posterior state series from calibrating two-state Gaussian HMMs to 

the annual rainfall series from Sydney and District 66 are closely related, which suggests that a 

similar sequence of hidden states are estimated in these records. For the two monthly time series 

however, two-state lognormal HMMs fail to identify a common sequence of hidden states. If the 

outputs from these models are consistent with broad-scale climatic influence in the Sydney 

region, monthly-scale persistence in point rainfall would likely reflect persistence in the time 

series of spatially-averaged rainfall. 

The discrepancy apparent in these results can be explained in two ways: either that the apparent 

model states are unrelated to hydroclimatic interactions or that the parametric assumptions of 

the two-state lognormal HMM are unrealistic. However since the monthly state series for 

Sydney appeared to reflect ENSO changes described by the NINO3 series, it is clear that the 

HMM is consistent with some of the hydroclimatic influence on the Sydney monthly rainfall. 

Therefore it is important that the manner by which incorrect parametric assumptions can lead to 

inaccurate identifications of hidden climate states is now investigated, through a range of 

simulation studies in the following section. 
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7.4.2 Calibration of incorrect HMMs to simulated data 

A time series is simulated over length 1080 from a two-state Gaussian HMM, using parameter 

values that are shown in Table 7.14. This series has an arithmetic mean of 112.9, with a sample 

standard deviation of 53.0 and skew of 1.00. Taking natural logarithms of these values produces 

a series with mean 4.61 and standard deviation 0.52. A two-state Gaussian HMM is calibrated to 

this series to examine its ability to recover known parameter values. Table 7.14 summarises 

these results and indicates that the Gaussian HMM correctly identifies each model parameter 

within 90% credibility intervals. This result was expected given that the correct model 

framework was being calibrated. 

Table 7.14 Comparison of posterior distributions from the calibration of a two-state Gaussian 

HMM to a time series simulated from an identical model 

WDP DWP Wµ Dµ Wσ Dσ

Simulated 
values 

0.4 0.15 170 90 60 30 

Gaussian 
HMM 

0.438 
(0.35, 0.52) 

0.133 
(0.11, 0.17) 

182.1 
(166, 194) 

91.4 
(89, 94) 

51.7 
(44, 62) 

30.6 
(29, 32) 

The median state series from the calibration of the Gaussian HMM to these simulated data is 

shown together with a 90% credibility interval in Figure 7.18 over a period of 120 values. The 

state series used in simulation is shown with circles. The narrow credibility intervals around the 

parameter estimates from this model produce tight bounds around the median state series. 
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Figure 7.18 Median state series and 90% credibility interval for 120 values from the calibration of a 

two-state Gaussian HMM to the simulated time series of length 1080 

Now if correct forms of state conditional distributions are deemed unknown, and incorrectly 

assumed to follow random draws from two lognormal distributions, a two-state lognormal 

HMM is subsequently calibrated. The posterior distributions from this model calibration are 
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summarised in Table 7.15. These results are relevant to this analysis as firstly the transition 

probabilities indicate a tendency for the HMM to remain in a wet state for a much longer period 

than the dry state, and secondly the posterior for the wet state location parameter includes the 

mean of the series of natural logarithms within a 90% credibility interval. These two features are 

consistent with the calibration of a two-state lognormal HMM to the District 66 data.  

Table 7.15 Median and 90% credibility intervals for parameters of a two-state lognormal HMM 

calibrated to the simulated time series of length 1080 

WDP DWP Wet state 
location 

Dry state 
location 

Wet state 
scale 

Dry state 
scale 

0.033 
(0.02, 0.06) 

0.820 
(0.62, 0.95) 

4.636 
(4.61, 4.66) 

3.625 
(2.89, 4.13) 

0.460 
(0.43, 0.48) 

1.082 
(0.86, 1.34) 

The difference between the calibrations of a two-state lognormal HMM and a two-state 

Gaussian HMM to this simulated series is clearly demonstrated in Figure 7.19, which displays 

the median state series (and 90% credibility interval) from the lognormal HMM for the same 

period of 120 values as previously used in Figure 7.18. This series shows a distinctly different 

form to that estimated with a Gaussian HMM. The state sequence used in simulation is not well 

identified, with the lognormal HMM estimating (with high probability) that most values were 

generated from a single wet state lognormal distribution. 
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Figure 7.19 Median state series and 90% credibility interval for the same 120 values as Figure 7.18 

from the calibration of a two-state lognormal HMM to the simulated series of length 1080 

It is apparent that the posterior state series produced from the calibration of a two-state 

lognormal HMM to the simulated series has a similar structure to the series obtained from 

fitting this same model to the deseasonalised monthly rainfall for District 66. A single 

lognormal distribution appears to describe the majority of values, and only extreme low values 

are likely to have been simulated by the second lognormal distribution. In fact, only 31 of the 
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1080 values (2.9% of the series) have posterior state probabilities that suggest their simulation 

from a “dry state” distribution. The sum of transition probabilities for the state series has a 

posterior median of 1.009 and 90% credibility interval of (0.89, 1.08). This result provides 

strong evidence that the lognormal HMM degenerates to a mixture of two lognormals, with the 

inherent persistence that was simulated from a Gaussian HMM unable to be detected. 

Although the simulation results appear similar to those obtained through the calibration of a 

lognormal HMM to the series of deseasonalised monthly anomalies for District 66, it is 

important to note that the spatially-averaged series is not modelled sufficiently by a two-state 

Gaussian HMM. Although the model identifies two underlying distributions that are well-

separated, estimated as )88,179( 2N  and )32,68( 2N  from posterior medians of parameters, the 

sum of transition probabilities has a posterior median of 0.979, with 90% credibility interval of 

(0.89, 1.06). This indicates that the Gaussian HMM degenerates to a mixture of two Gaussians, 

and the assumption of underlying climate states is not supported.  

State conditional distributions for the series of deseasonalised monthly anomalies in District 66 

are inconsistent with random draws from either Gaussian, lognormal or gamma distributions. 

Although it is possible that a wet state conditional distribution has different parametric form to 

the dry state distribution, a more rational perspective would be that climate processes distribute 

rainfall data similarly in each discrete state. The important question of what form the state 

conditional distributions in monthly time series should assume is investigated in Chapter 8 using 

a novel approach. 

7.5 Summary of chapter 

In response to an inability to detect significant two-state persistence in annual rainfall data, 

HMMs have been calibrated in this chapter to time series of deseasonalised monthly totals. The 

monthly time scale is more appropriate given both the frequencies of dominant climate modes 

that underlie hydrological persistence across Australia, and also the increase in information over 

annual data that is obtained. However the analysis of monthly-scale persistence has not been 

previously reported in the literature. The calibration of HMMs to monthly rainfall from cities 

across Australia, after the removal of seasonal nonstationarity, identifies significant two-state 

persistence in these data that is associated with climatic fluctuations detected within time series 

of other variables. 

This chapter analysed the monthly records associated with the seven point-rainfall and one 

spatially-averaged rainfall series that were introduced analysed in Chapter 6. The District 66 

rainfall provided a comparison to the calibration results for the Sydney series. The first part of 
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these analyses involved the calibration of two-state lognormal HMMs to the eight 

deseasonalised monthly rainfall series. This parametric form of HMMs was chosen in 

preference to the two-state Gaussian HMMs used in the previous chapter as the latter showed a 

tendency to degenerate to a mixture of Gaussians, a result that weakens the supposition of 

persistent climate states. 

From the calibrations of two-state lognormal HMMs, the monthly rainfall from Adelaide, 

Sydney and Darwin showed evidence for significant persistence using the test derived in 

Chapter 6. Furthermore these calibrations estimated transition probabilities that were 

approximately equal, a feature that was deemed consistent with the assumptions of the broader 

climate fluctuating between two stable states. Calibrations of HMMs to the monthly data for 

Sydney achieved much tighter bounds around the series of posterior state probabilities than 

achieved using 12-month aggregations of these data. This clearly illustrates the benefit from the 

increase in information achieved from using hydrological data of higher frequency than annual 

totals. Importantly these calibrations identified persistence at a sub-annual scale, such that it 

could not be detected in time series of annual totals.  

Although two-state lognormal HMMs identified significant persistence in various monthly 

rainfall series, a number of variations to this model were also introduced in this chapter to offer 

improved descriptions of persistence. The first variation was to explore alternative parametric 

forms for conditional distributions, with two-state gamma HMMs shown to be superior in a 

Bayesian context to lognormal HMMs for certain monthly rainfall series. Subsequently the 

number of model states was also investigated, and three-state lognormal HMMs and three-state 

gamma HMMs were also shown to be suitable models for hydrological persistence in these 

monthly rainfall data. Three-state models were not previously investigated as possible models 

for persistence in annual rainfall by Thyer and Kuczera (2000) or Srikanthan et al. (2002d), 

however Bayesian model selection identifies these as a suitable modelling approach. In later 

chapters, certain hydrological data are shown to have strong three-state persistence, which 

demands this very approach. 

Analyses in this chapter made it apparent that model selection results cannot be used in isolation 

from model calibration results. The need for correct interpretation of modelling results was 

illustrated with the spatially-averaged monthly rainfall from the meteorological district 

surrounding Sydney. Although these data are highly correlated to the point rainfall data from 

Sydney, calibrations of two-state and three-state parametric HMMs to the two series produced 

very different results. Two-state lognormal and gamma HMMs tended to describe the entire 

District 66 series with a single distribution, whereas the Sydney data demonstrated persistence 

of similar strength in two climate states. 
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Furthermore although model selection results showed that a three-state lognormal HMM was 

the best model for the District 66 data, transition probability estimates indicated that there was 

only weak evidence for three-state persistence in these data. Through simulation studies, it was 

shown that incorrect assumptions about the form of state conditional distributions can lead to 

inaccurate estimates of both transition probabilities and underlying model states. This leads to 

the requirement for the form of conditional distributions to be assumed prior to HMM 

calibration. This poses a potentially difficult problem, however the next chapter introduces a 

technique that remedies this dilemma. 
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Chapter 8 Non-parametric hidden Markov 

models 

A non-parametric (NP) HMM is developed in this chapter as an alternative to parametric HMM 

that have been utilised throughout the preceding two chapters. This model has been termed non-

parametric, as no assumptions concerning the underlying state distributions are made. The non-

parametric approach offers a more robust and flexible interpretation for HMMs, effectively re-

sampling observed values to estimate state conditional distributions. This model provides 

unbiased estimates of state transitions, and is therefore a valuable method for identifying 

persistence within hydrologic observations. 

8.1 Model structure 

8.1.1 Background to the NP HMM 

The procedure used to calibrate the NP HMM to a known data series is summarised in the 

following manner. Let },...,2,1,{ Ttyt =  represent the observed data in time order, such that ty

is the datum at time t , with Tt ≤≤1 . Now let }{y  be the data sorted into ascending order. A 

transform into the (0, 1) interval is defined by 
)1( +

→
T

m
yτ  where m  is the rank of τy  when 

the observations are sorted. Define 
)1( +

=
T

m
uτ , then },...,,{ 21 Tuuu  is the time series 

transformed into the (0, 1) interval. The hidden model states are identified within this 

transformed time series. The sorting procedure that generates the transformed time series can be 

undertaken on both discrete and continuous variables, such that the NP HMM can be fitted, 

without modification, to time series of either type. 

Using the same model states as the parametric two-state HMMs described previously, it is 

assumed that a value τu  has arisen from either a wet state (W) or a dry state (D) and that the 

higher values of τu  are more likely to be from the former. For a given value of tu , Tt ≤≤1 , 

the probability of that value having arisen from a wet state is complementary to the probability 

of that value having arisen from a dry state 

1)|()|( ==+= tttt uDxPuWxP (8.1) 

Transitions between states are defined in the same way as for the parametric HMM. The states 

of the transformed series are then represented geometrically by the partition of a unit square 
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having tu  on the abscissa and ),|( θt
j

t usP  on the ordinate (where DWj ,= ). The parameter 

vector θ  is included here as a conditional vector of unknown quantities, which includes the 

HMM transition probabilities and a relationship governing the partition between the two states. 

This partition divides the square and defines the probabilities of tu  having been generated from 

either state. Figure 8.1 shows the unit square of the NP model, with a partition curve separating 

the wet and dry states. 

Figure 8.1 An example of the partition of a unit square into wet and dry model states 

8.1.2 Partitioning the unit square 

The partition of the square on which the NP HMM is based can take a variety of shapes 

dependent upon underlying state distributions. At one extreme, if the distributions are well 

separated, the partition will be a vertical line with areas either side corresponding to the 

proportion of the marginal series that is derived from each distribution. To illustrate this, data 

from a simulation of 10,000 draws are taken both from a wet state distribution )200,2000( 2N

and from a dry state distribution )200,1000( 2N , and placed into ascending order. The 

complimentary histograms in Figure 8.2a show the proportion of data from the dry and wet 

distributions for tu  bin widths of 0.01.  

At the other extreme, the partition will be horizontal, with areas either side of the partition 

corresponding to proportions of the data from either distribution. As an illustration of this, 

10,000 draws are taken from wet state and dry state distributions, both of which are 

)200,2000( 2N , and placed into ascending order. Figure 8.2b shows complimentary histograms 

with the proportion of data from both distributions for tu  bin widths of 0.01. With the ratio 

between the states approximately 1 within each histogram bin, this simulation indicates that 

there is equal probability for any value of tu  to have been generated from either model state. 
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DRY 

P(xt=W | ut) 
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To illustrate a partition that is between the horizontal and the vertical, data from a simulation of 

10,000 draws are taken from two distributions )200,2000( 2N  and )200,1500( 2N , and placed 

into ascending order. Complimentary histograms from this simulation are shown in Figure 8.2c 

to change over the tu  values over the (0, 1) interval. These histograms show the proportion of 

data from wet and dry distributions using tu  bin widths of 0.01. 
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Figure 8.2 The estimated separation of unit squares from three simulated HMMs into wet and dry 

distributions, in equal proportion, that are a) well separated, b) identical, and c) overlapping 

a) 

b) 

c) 
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8.1.3 Approximating the partition 

The division between the wet and dry histograms in Figure 8.2 can be characterised by a 

continuous curve. However, rather than specify a functional form of such a curve, a continuous 

division is effected by a discrete number of contiguous line segments. The approximation of a 

curve of partition by three segments, constrained at points (0,0) and (1,1), is determined by the 

coordinates of two points P1 and P2 as shown in Figure 8.3. A maximum likelihood procedure 

can determine the location of these two points, under the constraint that the coordinates of P2 are 

greater than P1. In this way, a wet state is identified as lying below these segments. 

Figure 8.3 A two-point division of a unit square for a two-state NP HMM 

It is possible to generalise the NP HMM to include more than two states. In the model 

illustrated here, two independent states are defined by one partition. Extending the model to 

allow for three model states requires two partitions and the locations of four points to be 

identified, as shown in Figure 8.4.  

Figure 8.4 A two-point division of a unit square for a three-state NP HMM 

In the three-state formulation, an orthogonal line through any point on the abscissa must pass 

firstly through a wet state (state 3 in Figure 8.4) before a neutral state (state 2) and then dry state 
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(state 1). It is a straightforward procedure to extend the model further to allow for more than 

three states. An alternative two-state model approach is to approximate the partition curve by a 

greater number of line segments. For example, ten contiguous lines are separated by nine points, 

which can be equally spaced along the abscissa. A maximum likelihood procedure determines 

the coordinates of these nine points, under the constraint that the distance of each point from the 

abscissa is not less than that of the preceding point. This possible “nine-point” model is shown 

in Figure 8.5, with the ten line segments again constrained at points (0,0) and (1,1). 

Figure 8.5 A nine-point division of a unit square for a two-state NP HMM 

In both the “two-point” model and the “nine-point” model, the segment of a line through the 

point tu  between the abscissa and the partition curve is ),|( θtt uWxP = , and the length of this 

line above the partition is ),|(1 θtt uWxP =− , or ),|( θtt uDxP = . The parameter vector θ

includes the locations of the points that define the partition curve. The two-point and nine-point 

models can be compared through the Bayesian model selection techniques described in Section 

3.4.3. Applications of the NP HMM in this thesis are focused on two-point divisions only. 

8.1.4 Likelihood function for the NP HMM  

In the likelihood function of the conventional HMM described in Section 3.3.4, the probability 

density function (pdf) of observations is represented by ),|( θj
tt syp  when showing a 

conditional relationship to unknown model parameters. This density is related to the density of 

the NP HMM through the uniform transformation. The non-parametric HMM pdf in state j

),( DWj =  at time t is represented as ),|( θj
tt sup , which can be expressed using Bayes’ 

theorem as 

)|(

)|(),|(
),|(

θ

θθ
θ

j
t

tt
j

tj
tt sP

upusP
sup

×
= (8.2) 
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Here, ),|( θt
j

t usP  is the probability of tu  being in state j  at time t , which is also the distance 

from the abscissa to the partition at that point. Also )|( θtup  is the marginal pdf for tu , which 

is equal to unity since the transformed series is mapped to a uniform distribution. Furthermore, 

)|( θj
tsP  is the marginal probability of each state (the steady-state probabilities wetP  and dryP ) 

given the shape of the partition curve. These marginal probabilities are equal to the proportions 

of the uniform distribution described as wet or dry by the partition and are related to the 

transition probabilities. The marginal state probabilities are associated through drywet PP −=1 , 

such that only one transition probability in the NP HMM requires estimation, with the other 

being described through the location of the partition. 

A three-state HMM is described by six transition probabilities; WNP , WDP , NWP , NDP , DWP  and 

DNP  using N  as an abbreviation for the neutral climate state. If the sum of these six 

probabilities is simplified as TPΣ , the three steady-state probabilities are described as

TP

PP
P DWNW

wet
Σ

+
=

TP

PP
P DNWN

neutral
Σ

+
=

TP

PP
P NDWD

dry
Σ

+
=

(8.3) 

These probabilities lead to the relationship 

dry

NDWD

neutral

DNWN

wet

DWNW

P

PP

P

PP

P

PP +
=

+
=

+
(8.4) 

Rearranging this equality produces 

DWDNWN
neutral

wet
NW PPP

P

P
P −+= )(   (8.5) 

and 

WDDNWN
neutral

dry
ND PPP

P

P
P −+= )(  (8.6) 

Using these relationships, it is clear that in a three-state NP HMM, only four transition 

probabilities need to be estimated, with others being described through the locations of the two 

partitions. 
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By using Bayes’ theorem, the partition is scaled to form a pdf that can be incorporated into the 

standard HMM likelihood function of Section 3.3.4. The SCE algorithm is used with the NP 

likelihood function to identify maximum likelihood estimates of model parameters, given 

suitable prior distributions. MCMC procedures are utilised as with the parametric HMM in 

order to estimate the posterior distribution of unknown parameters )|( TUp θ  where TU

represents the entire series of transformed observations. 

8.1.5 Identification and estimation of state conditional distributions 

Following the identification of the partition, state conditional distributions are estimated with a 

Monte Carlo sampling procedure that is summarised in the following four steps 

– A uniform random number is generated, relating to a value τu  and its corresponding 

position on the abscissa of the NP HMM unit square 

– A corresponding value )( τy  from the original un-transformed time series is 

interpolated from the transformed value τu . 

– A second uniform random number )( τp  is generated and yields a distance along the 

orthogonal line through τu  on the square. 

– If τp  lies above the partition, then the value of τy  is assigned to the dry state 

distribution, and vice versa for the wet state. 

Estimates of the two underlying state distributions are obtained by repeating this sampling 

procedure multiple times (2,000 repetitions are used to obtain the results shown throughout this 

work, unless otherwise noted). These distributions are guided only by the location of the 

partition line, which is identified through a maximum likelihood procedure. In this way, 

assumptions about the underlying state distributions in the two climate states are prevented. This 

is the key advantage of the non-parametric HMM methodology, which avoids deficiencies of 

the modelling approach described in Chapter 7 that impeded the calibration to monthly rainfall 

data. Estimates of state conditional distributions are made using maximum likelihood estimates 

and posterior medians of the partition location parameters. 

8.2 Calibration of NP HMMs to various simulated data series 

The accuracy of the NP HMM to identify two-state persistence in a range of continuous and 

discrete data is demonstrated through the calibration of the model to time series generated from 

a range of stochastic models. Before interpreting results from the calibration of the NP HMM to 
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observed data, it is useful to have familiarity with the accuracy of the NP HMM to identify 

known model parameters from simulated time series. The simulated series used in these 

analyses share a common length of 1000 values, approximating the length of continuous 

monthly rainfall series analysed previously. 

8.2.1 Time series simulated from two-state Gaussian HMMs 

A time series of length 1000 was simulated from a two-state Gaussian HMM with conditional 

distributions )200,1500( 2N  and )200,1000( 2N , and transition probabilities 20.0=WDP  and 

20.0=DWP . After calibrating the NP HMM to these data, wet and dry distributions are 

estimated, using posterior medians of partition parameters, to have means 1510.4 and 1026.6 

and standard deviations 207.3 and 209.4 respectively. Furthermore these estimated distributions 

approximate a series of Gaussian-distributed variables as shown in Figure 8.6. Posterior 

distributions for the two transition probabilities, WDP  and DWP , have median values 0.214 and 

0.200 with 90% credibility intervals of (0.179, 0.252) and (0.167, 0.235) respectively. The NP 

HMM identifies the known transition probability values within 90% credibility intervals, and 

estimates accurately the parameters of the state conditional distributions. 

Figure 8.6 Gaussian probability plot showing estimates for conditional model states for a simulation 

of length 1000 

For comparison, a Gaussian HMM was calibrated to the same simulated series and posterior 

estimates for the HMM parameters are shown in Table 8.1. As the assumptions of the 

parametric model are valid, it is expected that the intervals around transition probability 

estimates would be narrower than for the NP HMM. However the influence of sample error on 

the simulation of the HMM series leads to inaccuracies in parameter estimation, such that 

transition probability estimates are less accurate for the parametric model. These results indicate 

that the NP HMM is an accurate and efficient implementation of the HMM framework for 

modelling two-state persistence. 
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Table 8.1 Posterior medians and 90% credibility intervals for parameters of a two-state Gaussian 

HMM fitted to the series simulated from a two-state Gaussian HMM 

WDP DWP Wµ Dµ Wσ Dσ

0.215 
(0.178, 0.254) 

0.191     
(0.159, 0.225) 

1483.3     
(1459, 1505) 

966.2        
(947, 987) 

208.1        
(194, 224) 

188.3        
(177, 201) 

The influence of the length of the input series upon the ability of the NP HMM to identify 

parameters accurately is now investigated by simulating a second time series, using the same 

parameter values as earlier, yet over the shorter length of only 100 values. This length reflects 

annual rainfall time series. This calibration produces posteriors for WDP  and DWP  that have 

medians 0.192 and 0.272, with 90% credibility intervals of (0.037, 0.466) and (0.088, 0.698) 

respectively. The large uncertainty around these parameters demonstrates that shorter time 

series create difficulties for the NP HMM to identify accurately the underlying series of model 

states. This has obvious implications for the identification of climatic persistence within annual 

rainfall time series. The increase in parameter uncertainty is associated with inferior estimation 

of state conditional distributions, as indicated in Figure 8.7. 

Figure 8.7 Gaussian probability plot showing estimates for conditional model states for a simulation 

of length 100 

The following simulation investigates the performance of the NP HMM to identify known 

model states that are associated with skewed conditional distributions. 

8.2.2 Time series simulated from a two-state lognormal HMM 

For this simulation, a time series of length 1000 was simulated from a two-state HMM with 

transition probabilities 3.0=WDP  and 1.0=DWP , such that the stationary distribution of the 

Markov chain will have a majority of values in the dry state. Random samples for the wet and 

dry states are initially drawn from )35.0,5.7( 2N  and )25.0,8.6( 2N , with exponentials of these 

samples then taken to produce two conditional lognormal distributions. After calibrating a two-
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point NP HMM to these data, posterior distributions for estimates of WDP  and DWP  have 

respective medians of 0.254 and 0.082, with 90% credibility limits of (0.188, 0.332) and (0.061, 

0.109) that contain the values used in simulation. Although the assumptions of parametric 

models are infringed by the NP framework, transition probabilities are nonetheless estimated 

accurately by this model. The state conditional distributions, estimated from posterior medians 

of location parameters, approximate random draws from lognormal distributions, as 

demonstrated in Figure 8.8. Taking logarithms of these estimates produces wet and dry 

distributions that have means 7.457 and 6.805, and standard deviations 0.373 and 0.249 

respectively. These results indicate that the NP HMM estimates accurately the underlying 

skewed distributions; a useful result for modelling persistence in monthly hydrologic data. 

Figure 8.8 Lognormal probability plot showing estimates for conditional model states for a 

simulation of length 1000 

8.2.3 Time series simulated from a two-state HMM having one Gaussian and one 

lognormal conditional distribution 

For this third example, a time series of length 1000 is again constructed from a two-state HMM 

with transition probabilities 20.0== DWWD PP . Random samples in a dry state were drawn 

from )200,1000( 2N , with wet state samples being the exponentials of random draws from 

)35.0,5.7( 2N . Therefore, this simulation allows the form of state conditional distributions to 

vary, and tests the ability of the NP model to estimate these changes and identify accurately 

HMM transition probabilities. 

Calibrating the NP HMM to this series produces posterior medians of 0.215 and 0.199 for WDP

and DWP  respectively, with 90% credibility intervals of (0.172, 0.263) and (0.162, 0.238). This 

result indicates that a series with state conditional distributions of two different parametric 

forms fails to negatively impact upon the NP HMM estimation. The two state conditional 
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distributions are estimated with posterior medians of partition parameters and shown in Figure 

8.9. These plots illustrate dry state samples approximating a series of random draws from a 

Gaussian distribution with mean 1017.3 and standard deviation 224.4. Wet state samples 

approximate a series of lognormally-distributed variates with their logarithms having mean 

7.512 and standard deviation 0.362. Estimates of underlying conditional distributions are 

consistent with the simulated series, departing from expected distributions most distinctly in 

their tails. The dry state distribution has a tendency for a slightly heavier upper tail than would 

be expected for a series of Gaussian variates. The ability of the NP HMM to estimate discrete-

valued conditional distributions accurately is analysed in the following simulation. 

Figure 8.9 Estimated conditional distributions for dry state shown on Gaussian probability plot 

(left) and wet state shown on lognormal probability plot (on right) 

8.2.4 Time series simulated from a two-state Poisson HMM 

In this fourth example a discrete-valued series is simulated from a two-state HMM, with random 

samples in a wet state being drawn from Poisson distribution with a mean of 13 and dry state 

samples being drawn from a Poisson distribution with mean 8. Again, this simulation was 

undertaken with transition probabilities 20.0== DWWD PP . The marginal distribution of this 

simulated series is shown in the histogram of Figure 8.10. 

Figure 8.10 Marginal distribution of a series simulated from a two-state Poisson HMM 
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After calibrating the NP HMM to this series, 2000 random samples around posterior medians of 

partition locations were used to generate estimates of the two conditional distributions, 

displayed in Figure 8.11. These wet and dry distributions have means 13.05 and 8.16, and 

variances 13.20 and 8.46 respectively. The estimates of the variances are consistent with 

Poisson distributions for which the mean equals the variance. The posteriors for WDP  and DWP

have median values of 0.182 and 0.219, with 90% credibility limits of (0.126, 0.249) and 

(0.158, 0.298). These two credibility intervals contain the values used in simulation. 

Figure 8.11 Histograms showing state conditional distributions for the wet state (on left) and dry 

state (on right) 

When a two-state HMM with Poisson state conditional distributions is calibrated to this series, 

posterior distributions for WDP  and DWP  have median values of 0.179 and 0.229, with 90% 

credibility limits of (0.131, 0.240) and (0.172, 0.292) that are marginally narrower than those 

estimated by the NP HMM, which is expected for models having valid parametric assumptions. 

The wet and dry state means are estimated with posterior medians of 13.03 and 8.12 

respectively, with 90% credibility intervals of (12.62, 13.50) and (7.68, 8.56). 

8.2.5 Time series simulated from a three-state Gaussian HMM 

The various simulations described in this section have shown the NP HMM to be suitable for 

identifying underlying two-state persistence in a range of data. To determine the efficacy of this 

model to identify three-state persistence, a time series of length 1500 is now simulated from a 

three-state Gaussian HMM with distributions )300,1500( 2N , )200,1000( 2N , )100,500( 2N , 

and transition probabilities 3.0== DNWN PP , 1.0== DWWD PP  and 25.0== NDNW PP . Three-

state parametric and non-parametric HMMs are calibrated to this series. 

The posterior distributions of transition probabilities from the calibration of a three-state 

Gaussian HMM to this series are summarised in Table 8.2. These results indicate that the 

parametric model correctly estimates the six transition probabilities within 90% credibility 

intervals; hence it identifies the three-state persistence in this simulated series.  
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Table 8.2 Posterior medians and 90% credibility intervals for transition probabilities of a three-

state Gaussian HMM calibrated to the series simulated from a three-state Gaussian HMM 

WNP WDP NWP NDP DWP DNP

0.287     
(0.25, 0.33) 

0.082        
(0.06, 0.11) 

0.246      
(0.21, 0.28) 

0.245     
(0.21, 0.29) 

0.101      
(0.07, 0.13) 

0.339     
(0.28, 0.40) 

The posterior distributions for estimates of the conditional state distribution parameters from 

this model calibration are summarised in Table 8.3. Once again, the three-state Gaussian HMM 

accurately estimates each parameter within 90% credibility intervals, which is expected as the 

modelling assumptions are justified.  

Table 8.3 Posterior medians and 90% credibility intervals for other parameters for a three-state 

Gaussian HMM calibrated to the series simulated from a three-state Gaussian HMM 

Wµ Wσ Nµ Nσ Dµ Dσ

1521        
(1473, 1560) 

232         
(208, 263) 

1010       
(994, 1028) 

156         
(142, 172) 

502         
(493, 512) 

106          
(99, 113) 

The three-state NP HMM, which makes no assumptions about the form of state conditional 

distributions, is now calibrated to this simulated series. Posterior distributions for the six 

transition probabilities are summarised in Table 8.4, which shows that the correct value of three 

of these probabilities are identified within 90% credibility intervals. These posterior 

distributions have slightly wider credibility intervals than those summarised in Table 8.2, which 

is an accepted consequence of using the non-parametric approach.  

Table 8.4 Posterior medians and 90% credibility intervals for transition probabilities of a three-

state NP HMM calibrated to the series simulated from a three-state Gaussian HMM 

WNP WDP NWP NDP DWP DNP

0.210        
(0.16, 0.26) 

0.096     
(0.06, 0.14) 

0.167      
(0.12, 0.22) 

0.247     
(0.20, 0.30) 

0.132      
(0.09, 0.17) 

0.189     
(0.13, 0.25) 

After taking 3000 random samples around posterior medians for partition locations, estimates of 

the three conditional distributions from this calibration are shown in the probability plot of 

Figure 8.12. These 3000 samples are divided in a wet: neutral: dry ratio of 813: 1169: 1000, 

which contrasts to the expected value of 923: 1154: 923 obtained from the steady-state 

probabilities of each state. In Figure 8.12, the wet and neutral state distributions more closely 

approximate straight lines, with some high values in the dry state producing a much heavier tail 

than would be expected for a Gaussian distribution. The estimated wet and neutral distributions 

have sample means of 1488 and 1038 and sample standard deviations 293 and 235 that are 

slightly greater than values used in simulation. Their respective Anderson-Darling goodness-of-
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fit statistics of 3.90 and 10.34 are much lower than the 62.31 of the dry state distribution, 

indicating a closer approximation to series of Gaussian variates, although these are still greater 

than would be expected for series of Gaussian variates. Interestingly of the 1000 points in the 

dry state estimate, the 919 that have a value below 800 have a sample mean of 503 and sample 

standard deviation of 105, with an AD statistic of 0.62 that is consistent with a series of 

normally-distributed variates. This illustrates that accurate estimation of state conditional 

distributions may be limited in certain NP HMM applications. 

Figure 8.12 Gaussian probability plot showing estimates for conditional model states from the 

calibration of a three-state NP HMM to a simulated series of length 1500 

The series of most likely states from the calibration of both the three-state NP HMM and three-

state Gaussian HMM closely match the true state sequence (correlations 90.0=r  in each case). 

Furthermore the state series from the two models are also highly correlated )97.0( =r , so 

without making assumptions about the form of conditional distributions, the NP HMM can 

identify the correct three-state persistence. 

This point is further illustrated through the calibration of a two-state NP HMM to this series, 

and evaluating the Bayes Factor relative to the three-state NP HMM. This model comparison 

obtains 4.20ln 2,3 =NPNPBF , which demonstrates a superiority of the three-state model. This 

example has shown that the three-state NP HMM can correctly identify three-state persistence 

within a simulated time series. In the following section, both two-state and three-state NP 

HMMs are calibrated to monthly rainfall data from across Australia. 

8.3 Calibration of NP HMMs to Sydney and District 66 rainfall 

Having demonstrated that NP HMMs provide accurate estimates of HMM parameters and state 

conditional distributions within simulated data, these models are now calibrated to the Sydney 

and District 66 rainfall. The distribution of the sum of transition probabilities is used as an 
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unbiased test of the hypothesis that annual and monthly rainfall data are influenced by persistent 

climate states. 

8.3.1 Calibration of two-state NP HMMs to annual rainfall data 

The two-state NP HMM is calibrated to the time series of annual rainfall totals from both 

Sydney and District 66. The results shown in Section 6.4 suggested that a two-state Gaussian 

HMM degenerated to a mixture of two Gaussian distributions when calibrated to both series, 

with 90% credibility intervals around estimates of DWWD PP +  including a value of 1 in each 

case. Figure 8.13 shows state conditional distributions from the calibration of the NP HMM to 

the Sydney annual rainfall series, obtained from 2000 random samples around posterior medians 

of the partition locations. These distributions are approximate straight lines on a Gaussian 

probability plot, indicting that the assumption of a two-state Gaussian HMM is valid. 

Figure 8.13 Gaussian probability plot showing estimates for conditional model states from the 

calibration of a two-state NP HMM to the annual rainfall for Sydney 

Table 8.5 shows a comparison of transition probability estimates obtained from the calibration 

of both the two-state Gaussian HMM and two-state NP HMM models. The NP HMM estimates 

for the point data are similar to those for the spatial data, although wide credibility intervals 

mean that the sum of transition probabilities includes a value of 1. Consequently, even through 

the removal of modelling assumptions for state conditional distributions approximating a series 

of Gaussian variates, the annual rainfall series fails to demonstrate significant two-state 

persistence. 
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Table 8.5 Posterior medians and 90% credibility intervals for transition probabilities from 

calibrating two-state Gaussian HMMs and NP HMMs to annual rainfall series 

  WDP DWP DWWD PP +

Gaussian HMM 0.530          
(0.139, 0.922) 

0.200          
(0.030, 0.880) 

0.833           
(0.334, 1.415) 

Sydney 
NP HMM 0.383          

(0.089, 0.752) 
0.491          

(0.112, 0.935) 
0.944           

(0.276, 1.443) 

Gaussian HMM 0.516          
(0.194, 0.908) 

0.150          
(0.038, 0.521) 

0.705           
(0.320, 1.176) 

District 66 
NP HMM 0.361          

(0.090, 0.760) 
0.323          

(0.087, 0.905) 
0.738           

(0.235, 1.462) 

The effect of high uncertainty around estimates for the transition probabilities in the Sydney 

data is illustrated through the posterior state series shown in Figure 8.14. High median estimates 

for WDP  and DWP  in Table 8.5 manifest themselves in a tendency for the state series to have 

alternating high and low values, indicative of a lack of persistence in either model state. 

Moreover the large interval around these state probabilities indicates uncertainty about the most 

likely model state at each time step. The posterior state series for District 66, although not 

shown, has a general form that is similar to Figure 8.14. The median state series for District 66 

is significantly correlated )85.0( =r  to the median state series for Sydney. 
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Figure 8.14 Median state series and 90% credibility interval from th calibration of a two-state NP 

HMM to the annual rainfall for Sydney 

Whereas Figure 6.6 showed the posterior median probabilities from the calibration of a two-

state Gaussian HMM to the annual rainfall series for Sydney remaining in a dry state for a 

majority of years, this construction is not apparent in the state series derived from the NP HMM. 

If this multi-decadal dry period was a dominant feature of persistence in the climate that 

influences Sydney, it is likely that this would also be evident in the state series of the NP HMM, 
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which estimates state conditional distributions to approximate random Gaussian draws. 

Consequently Figure 8.14 provides further evidence against significant climatic persistence at 

an annual time scale. As runs analyses suggested, the monthly time scale may be more 

appropriate for identifying persistence in time series such as Australian rainfall. 

8.3.2 Calibration of two-state NP HMMs to monthly rainfall data 

The two-state NP HMM is now calibrated to the deseasonalised monthly rainfall series for 

Sydney. The lognormal HMM is suitable for identifying two-state persistence in these data, 

although when calibrated to the time series of district-averaged observations, this model 

identified a wet state distribution with parameters that matched the marginal. Transition 

probabilities showed the lognormal HMM to remain in this single wet state, with an estimate of 

DWWD PP +  showing the model degenerates to a mixture of two lognormal distributions. The NP 

HMM is now used to determine whether relaxing assumptions about the form of conditional 

distributions improves the identification of persistence within these series. Posterior samples are 

estimated from 6,000 samples taken from 10 Markov chains in the Adaptive Metropolis 

algorithm. Convergence diagnostics using the variance ratio method are summarised in Table 

8.6, indicating that this combination of independent Markov chains and samples is sufficient to 

obtain accurate estimates from the posterior distributions. 

Table 8.6 Convergence diagnostics from using the variance ratio method to analyse 6,000 samples 

from 10 Adaptive Metropolis chains to obtain estimates of posterior distributions for a two-state 

NP HMM calibrated to deseasonalised monthly Sydney rainfall 

 100=n  500=n  1000=n  1500=n  2000=n  2500=n  3000=n

DWP 2.434 1.087 1.035 1.034 1.042 1.020 1.009 
a1 1.362 1.109 1.031 1.059 1.060 1.038 1.014 
a2 1.467 1.282 1.078 1.071 1.025 1.034 1.019 
b1 1.926 1.173 1.041 1.049 1.047 1.023 1.009 
b2 1.486 1.205 1.035 1.034 1.022 1.013 1.009 

Average 1.735 1.171 1.044 1.049 1.039 1.026 1.012 

Table 8.7 compares posterior estimates of transition probabilities from the calibrations of both 

the NP HMM and the lognormal HMM to the Sydney monthly rainfall series. These results 

show estimates of transition probabilities to be similar for both the NP HMM and lognormal 

HMM, with neither model showing credibility intervals of DWWD PP +  including a value of 1. 

This is a useful result, as the NP HMM would be expected to identify the two-state persistence 

previously isolated with the lognormal HMM. 
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Table 8.7 Comparison of posterior distributions for transition probabilities, showing medians and 

90% credibility intervals, from the calibration of a two-state lognormal HMM and two-state NP 

HMM to the deseasonalised monthly rainfall of Sydney 

WDP DWP DWWD PP +

Lognormal HMM 0.343            
(0.294, 0.490) 

0.379            
(0.215, 0.506) 

0.726            
(0.588, 0.826) 

NP HMM 0.301            
(0.208, 0.406) 

0.420            
(0.305, 0.539) 

0.728             
(0.592, 0.841) 

The posterior state series derived from calibrating the NP HMM to the Sydney monthly rainfall 

is shown in Figure 8.15, using the same 10-year period as in Figure 7.6 to show the lognormal 

HMM state series. These figures show that the state series from both models are closely related, 

and over the 1716 months of this monthly rainfall series, the series of median state probabilities 

from both models are strongly correlated )995.0( =r . State estimation with the NP HMM is 

slightly better than that achieved with the parametric model however, with the 90% credibility 

bound around the posterior state series having an average size of 0.306 as opposed to an average 

of 0.393 for the lognormal HMM. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

P
(m

o
n

th
 is

 is
 w

et
 s

ta
te

 | 
al

l m
o

n
th

s)

Figure 8.15 Median state series and 90% credibility interval for a 10-year period from the 

calibration of a two-state NP HMM to the deseasonalised monthly rainfall for Sydney 

The strong relationship between estimates from the NP and lognormal HMMs for transition 

probabilities and the median state series suggests that the assumption of lognormal conditional 

distributions in this series is appropriate. This is further demonstrated through observing 

estimates for these distributions, as shown in Figure 8.16. After the calibration of the NP HMM 

to obtain posterior medians for the partition locations, 2000 random draws were used to estimate 

wet and dry state distributions. These distributions (with 1186 values in the wet state and 814 in 

the dry) are approximate straight lines in the lognormal probability plot of Figure 8.16. With 
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both distributions having low values for the Anderson-Darling (AD) goodness-of-fit statistic 

(1.47 for wet and 0.75 for dry), it is clear that the assumption of lognormal distributions is 

consistent for this series. 

Figure 8.16 Lognormal probability plot showing estimates for conditional model states from the 

calibration of a two-state NP HMM to the deseasonalised monthly rainfall for Sydney  

After taking logarithms of the two conditional distributions, the wet state distribution in Figure 

8.16 is approximately distributed as )56.0,78.4( 2N  with the dry state distributed as 

)57.0,88.3( 2N . These estimates are similar to the posterior medians from the calibration of the 

lognormal HMM to the Sydney data, suggesting these models identify comparable two-state 

persistence. This is a clear benefit of the NP HMM, by which it can identify suitable parametric 

families from which state conditional distributions can be simulated. The use of the NP HMM, 

which makes no assumption about climate state distributions, provides a clear advantage over 

parametric models in the identification of these distributions in hydrologic data. The possible 

loss in efficiency in using a non-parametric model is compensated for by using the results of its 

calibration to fit a suitable parametric HMM. 

The NP HMM is now fitted to the deseasonalised monthly rainfall series for District 66. With 

the lognormal and gamma HMMs both shown to be inappropriate descriptors for these data, the 

NP HMM can determine whether the assumption of parametric forms for the state conditional 

distributions masks significant two-state or three-state persistence. Table 8.8 shows estimates 

for the two transition probabilities from calibrating both a lognormal HMM and a NP HMM to 

the District 66 data. These results show that the NP HMM identifies a very different persistence 

structure within these data. 
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Table 8.8 Comparison of posterior distributions for transition probabilities, showing medians and 

90% credibility intervals, from the calibration of a two-state lognormal HMM and two-state NP 

HMM to the deseasonalised monthly rainfall for District 66 

WDP DWP DWWD PP +

Lognormal HMM 0.040            
(0.008, 0.193) 

0.642            
(0.347, 0.959) 

0.706            
(0.450, 1.014) 

NP HMM 0.248            
(0.108, 0.387) 

0.460            
(0.317, 0.627) 

0.721             
(0.521, 0.873) 

The posterior medians for WDP  and DWP  from the calibration of the NP HMM show that on 

average, 65% of months are in a wet state with 35% in the dry. This is a vastly different result 

than that achieved from the calibration of a two-state lognormal HMM, which estimated 94% of 

months to be in a wet state. Importantly, the sum of transition probabilities has a 90% interval 

that does not include 1, thereby rejecting the notion that the HMM degenerates to a mixture 

distribution at a 10% significance level. Furthermore with the median value of DWWD PP +  being 

very close to the value estimated from the Sydney monthly series; a similar pattern of 

persistence is identified in these two series. This result is consistent with a hidden climate 

indicator influencing hydrologic observations across the Sydney region, and this is expected as 

the district-averaged series is derived from point rainfall data that includes the Sydney gauge. 

The posterior state series for the District 66 data identified by the NP HMM is shown in Figure 

8.17 over the same 10-year period that was used for the Sydney data. It is clear that this state 

series identifies a different pattern of persistence to that obtained from the calibration of a 

lognormal HMM in Figure 7.17. While the lognormal HMM state series showed months being 

predominantly within a wet state, the NP HMM state series has various changes in state that 

parallel the changes identified within the Sydney data. Over the period 1913-2001, the median 

state series identified by the NP HMM for the Sydney and District 66 data are strongly 

correlated )938.0( =r , providing further evidence for consistent two-state persistence. The 

two-state persistence of the district data is less accurate than the point rainfall series however, 

with credibility intervals being slightly wider (average interval 0.393). 
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Figure 8.17 Median state series and 90% credibility interval for a 10-year period from the 

calibration of a two-state NP HMM to the deseasonalised monthly rainfall for District 66 

With the NP HMM identifying hydrological persistence in the District 66 data, it is important to 

investigate reasons for the inefficiency in assuming lognormal state conditional distributions. 

Figure 8.18 shows the estimated state conditional distributions from the District 66 data that are 

obtained using 2000 random samples around posterior medians for partition parameters. From 

these random samples, 1376 were estimated to be in a wet state and 624 in a dry, producing a 

ratio of 0.69:0.31 that is close to the stationary distribution of the Markov chain. Although these 

two states seem to plot as straight lines, the dry state is weaker in its lower tail than would be 

expected for a series consistent with random draws from a lognormal distribution. This lighter 

tail produces a slightly higher Anderson-Darling goodness-of-fit statistic in the dry state than for 

the wet state (3.77 as opposed to 3.64), both of which are slightly higher than expected for a 

series of lognormal variates of this length. 

It is possible that the two conditional distributions are better modelled by gamma distributions, 

and this can be determined by calculating the AD statistic using parameters for gamma cdfs 

estimated from the conditional samples. This shows that although the dry state samples have a 

lower AD statistic (2.81) for a gamma distribution, this value remains higher than would be 

expected for a series of gamma variates. Conversely, the wet state samples are closer to a series 

of lognormal variates, with an AD statistic (22.77) from a gamma cdf that is significantly 

higher. Although the lognormal is a better overall choice than the gamma as the single 

parametric form to describe the two conditional distributions in the District 66 data, the 

goodness-of-fit statistics show that this assumption may still be inaccurate, and this may explain 

the misleading results that are obtained through the calibration of a two-state lognormal HMM. 
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Figure 8.18 Lognormal probability plot showing estimates for conditional model states from the 

calibration of a two-state NP HMM to the deseasonalised monthly rainfall for District 66  

The relationships between the persistent climate states identified in the Sydney monthly rainfall 

data and measures of broad-scale climate fluctuations previously described are now analysed. 

Using the 5-mrm values of the NINO3 index to define each month as being in El Niño, La Niña 

and ENSO neutral phases, Table 8.9 shows the numbers of months in which these regimes 

coincide with HMM states. A posterior median state probability of 0.5 is used as a threshold to 

categorise each month during the period of the Sydney record as being in a wet or dry state. 

These results indicate a tendency for a lot of months in which the climate is most likely within a 

wet state to coincide with La Niña periods, which generally lead to increased rainfall in the area 

surrounding Sydney. The inclination for the HMM calibration to identify El Niño months as 

being in dry states is only modest however, with a majority of El Niño months having wet state 

probability greater than 0.5. This result may indicate that ENSO is not the sole global 

circulation phenomenon that influences rainfall variability in Sydney. This is further 

demonstrated through the rank correlation between the median state series from this calibration 

and the monthly NINO3 series. Although this correlation is significant )001.0( <p , the NINO3 

series only explains approximately 1.5% of the variability in the state series )121.0( −=r . 

Table 8.10 shows similar results from the calibration of a two-state NP HMM to the 

deseasonalised monthly rainfall for District 66. As with the Sydney data, the District 66 rainfall 

shows a bias towards wet states coinciding with La Niña periods. Also there is little evidence 

for dry states to occur during El Niños, reinforcing the observations in Table 8.9. 
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Table 8.9 Numbers of months in which most probable HMM states from the calibration of a two-

state NP HMM to the deseasonalised monthly rainfall for Sydney coincide with ENSO phases 

El Niño ENSO Neutral La Niña 

Wet state 280 429 334 

Dry state 224 293 156 

Table 8.10 Numbers of months in which most probable HMM states from the calibration of a two-

state NP HMM to the deseasonalised monthly rainfall for District 66 coincide with ENSO phases 

El Niño ENSO Neutral La Niña 

Wet state 225 378 206 

Dry state 95 115 61 

Two-state NP HMMs are now calibrated to the various deseasonalised monthly rainfall series 

from across Australia, with results summarised in Table 8.11. These results show evidence for 

significant two-state persistence in the monthly rainfall series of Adelaide, Alice Springs, 

Brisbane and Melbourne, together with the Sydney and District 66 data. These are important 

observations, as neither two-state gamma nor two-state lognormal HMMs showed persistence in 

the Brisbane or Melbourne data. With the monthly rainfall for Perth, the NP HMM was unable 

to reject the notion of two-state persistence degenerating to a mixture of two distributions. 

Table 8.11 Medians of posteriors for HMM transition probabilities and their sum, with 90% 

credibility intervals from the calibration of two-state NP HMMs to deseasonalised monthly rainfall 

WDP DWP DWWD PP +

Adelaide 0.232 
(0.081, 0.457) 

0.323 
(0.169, 0.548) 

0.578 
(0.346, 0.819) 

Alice Springs 0.274 
(0.122, 0.475) 

0.068 
(0.027, 0.211) 

0.348 
(0.159, 0.644) 

Brisbane 0.214 
(0.147, 0.292) 

0.252 
(0.158, 0.412) 

0.472 
(0.348, 0.643) 

Darwin 0.388 
(0.112, 0.796) 

0.558 
(0.220, 0.865) 

0.954 
(0.550, 1.334) 

Melbourne 0.328 
(0.108, 0.539) 

0.373 
(0.173, 0.581) 

0.727 
(0.422, 0.911) 

Perth 0.402 
(0.122, 0.741) 

0.551 
(0.215, 0.869) 

0.976 
(0.621, 1.222) 

Table 8.11 shows that the posterior distribution of DWWD PP +  from the calibration of a two-

state NP HMM to the Darwin data fails to provide significant evidence for two-state persistence. 
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Table 7.4 and Table 7.5 however demonstrated two-state persistence in the Darwin rainfall 

through assuming lognormal and gamma conditional distributions respectively. With the two-

state NP HMM identifying monthly-scale persistence effectively, the presence of three-state 

persistence in these monthly rainfall observations is now investigated in the following section 

through the calibration of three-state NP HMMs. It is possible that the Darwin data is better 

described as three-state persistence. 

8.3.3 Calibration of three-state NP HMMs to monthly rainfall data 

Three-state NP HMMs are now calibrated to the deseasonalised monthly rainfall from Sydney 

and District 66. In Section 7.3, the possibility of a three-state HMM with lognormal conditional 

distributions degenerating to merely a mixture distribution when calibrated to either series could 

not be rejected at a 10% significance level. 

In order to investigate whether the estimation of three-state persistence in these two monthly 

rainfall series is biased by the assumption of the form of conditional distributions, three-state 

NP HMMs are now calibrated to both series. The posterior distributions for the sums of self-

transition probabilities from these calibrations each have medians values well in excess of unity 

(1.322 for Sydney and 1.346 for District 66), and more importantly the 90% credibility intervals 

around these estimates remain above a value of 1. As stated in Section 7.3, this condition is 

consistent with credible three-state persistence; hence the possibility of the NP HMM 

calibration degenerating to a mixture distribution is rejected at a 10% level. By removing the 

assumption of lognormal conditional distributions, evidence of three-state persistence in these 

data is more clearly identified. 

After calibrating the three-state NP HMMs to these deseasonalised monthly rainfall series, 3000 

random samples are taken around posterior medians of the partition locations to estimate the 

state conditional distributions. The estimated distributions for the Sydney rainfall series are 

shown on a lognormal probability plot in Figure 8.19. The three distributions plot as 

approximate straight lines, which suggest that these are consistent with random draws from 

lognormals, supported by low Anderson-Darling goodness-of-fit statistics (1.922 for the wet 

state, 0.683 for the neutral state and 1.282 for the dry state).  
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Figure 8.19 Estimates of state conditional distributions from the calibration of a three-state NP 

HMM to the deseasonalised monthly rainfall for Sydney 

The estimated conditional distributions from the calibration of a three-state NP HMM to the 

District 66 series, again using 3000 random samples, are shown in the lognormal probability 

plot of Figure 8.20. These distributions approximate straight lines, with the neutral distribution 

consistent with random draws from a lognormal distribution (AD statistic 0.535). The slightly 

higher goodness-of-fit statistics for the wet state (2.301) and dry state (3.208) may lead to the 

assumptions of the three-state lognormal HMM being inadequate.  

Figure 8.20 Estimates of state conditional distributions from the calibration of a three-state NP 

HMM to the deseasonalised monthly rainfall for District 66 

In order to investigate the relationship between hidden climate states in the Sydney monthly 

rainfall and ENSO phases, Table 8.12 shows the numbers of months in which predominantly 

wet, neutral and dry states coincide with El Niño, La Niña and ENSO neutral regimes. These 

results demonstrate that a majority of months during La Niña periods are most likely to be 

identified within wet climate states. However Table 8.12 shows little tendency for months 

within El Niño periods to be identified as dry states, suggesting that the ENSO signature is not 

revealed clearly in the Sydney monthly rainfall through NP HMM calibration.  
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Table 8.12 Numbers of months in which most probable HMM states from the calibration of a three-

state NP HMM to the deseasonalised monthly rainfall for Sydney coincide with ENSO phases 

El Niño ENSO Neutral La Niña 

Wet state 216 378 268 

Neutral state 68 110 66 

Dry state 220 288 156 

Table 8.13 shows the results from the calibration of a three-state NP HMM to the 

deseasonalised monthly rainfall for District 66. An interesting aspect of these results is that a 

majority of all months in this series (55% of months) are identified as being most likely 

generated from a wet climate state. This underlies the fact that each of the three ENSO phases 

are most likely to coincide with wet hidden states as opposed to either neutral or dry climate 

states. Such results demonstrate that the significant three-state persistence identified in both the 

Sydney and District 66 data is not influenced solely by ENSO variability. 

Table 8.13 Numbers of months in which most probable HMM states from the calibration of a three-

state NP HMM to the deseasonalised monthly rainfall for District 66 coincide with ENSO phases 

El Niño ENSO Neutral La Niña 

Wet state 168 260 162 

Neutral state 68 127 50 

Dry state 84 106 55 

Model selection results show that two-state NP HMMs are superior to three-state NP HMMs for 

both the Sydney and District 66 data than with Bayes Factors of 0.6ln 3,2 =NPNPBF  and 

7.6ln 3,2 =NPNPBF  respectively. Table 8.14 summarises the calibrations of three-state NP 

HMMs to the various deseasonalised monthly time series. These results indicate significant 

three-state persistence in each time series, with the exception of Melbourne and Perth. These 

latter series show credibility intervals around DDNNWW PPP ++  that include unity. By observing 

Bayes Factors that compare the calibrations of two-state NP HMMs to the calibrations of three-

state NP HMMs, it is clear that the simpler model is favoured for each series apart from Darwin. 

The failure of the two-state NP HMM to identify persistence in the Darwin time series suggests 

that its weak persistence is indeed better modelled by a three-state NP HMM.  
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Table 8.14 Medians of posterior distributions for the sums of self-transition probabilities, with 90% 

credibility intervals, from the calibrations of three-state NP HMMs to deseasonalised monthly 

rainfall series, with Bayes Factors comparing these calibrations to two-state NP HMMs 

DDNNWW PPP ++ NPNPBF 3,2ln  

Adelaide 1.616 
(1.198, 2.017) 4.6 

Alice Springs 1.662 
(1.200, 2.265) 5.4 

Brisbane 1.785 
(1.312, 2.133) 6.3 

Darwin 1.391 
(1.271, 1.530) -1.5 

Melbourne 1.380 
(0.973, 1.804) 6.5 

Perth 1.167 
(0.752, 1.617) 5.8 

Notwithstanding the results shown in Table 8.14, the three-state NP HMM is a suitable 

approach for the identification and modelling of hydroclimatic persistence. The benefits of both 

two-state and three-state NP HMMs are further examined in the following section, in which the 

persistence of monthly hydrologic data from across Australia is examined. 

8.4 Calibration of NP HMMs to Australian hydrologic data 

In this section, the non-parametric HMM approach is used to investigate the spatial extent of 

persistence in the hydrology of Australia. Two-state and three-state NP HMMs are calibrated to 

various spatially-averaged rainfall and monthly streamflow data to obtain an understanding of 

the role of hydrological persistence, and its relationship to broad-scale climate fluctuations 

identified through a range of indices. 

8.4.1 Spatially-averaged monthly rainfall for New South Wales 

The NP HMM is an unbiased method to elucidate hydrological persistence within rainfall 

observations from the Sydney region. The El Niño Southern Oscillation (ENSO) phenomenon 

strongly modulates hydrologic responses in this region; however it is pertinent to investigate 

whether similar persistence is identified throughout regions in which the influence of ENSO is 

weaker. Two-state NP HMMs are now calibrated to spatially-averaged rainfall across various 

meteorological districts of New South Wales. In order to determine whether persistence 

identified by the NP HMM is consistent with variability within rainfall observations, monthly 

data for districts along a transect from Sydney towards the northwestern corner of the state are 

used. This transect is shown in Figure 8.21 to pass through seven meteorological districts. The 
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two-state NP HMM is calibrated to the deseasonalised monthly rainfall for each of these seven 

districts, with monthly persistence in each district compared.  

Figure 8.21 Meteorological districts in New South Wales, with arrow showing the transect from 

Sydney to northwestern corner of the state 

Along this transect in a direction away from the coast, districts show a gradual reduction in 

mean monthly rainfall, as described in Table 8.15. This same relationship between rainfall in 

each district is also maintained when observing median monthly rainfalls. Following the 

calibration of two-state NP HMMs to the deseasonalised monthly rainfall in each of these 

districts, transition probability estimates are also summarised in Table 8.15.  

Table 8.15 Mean and median monthly rainfall for various meteorological districts in New South 

Wales, together with the posterior median and 90% credibility intervals for the sum of transition 

probabilities from calibrating two-state NP HMMs to deseasonalised monthly rainfall  

District Mean monthly rainfall Median monthly rainfall DWWD PP +

66 96.0 69.1 
0.708 

(0.525, 0.858) 

67 69.5 50.0 
0.683 

(0.500, 0.820) 

63 74.6 63.2 
0.524 

(0.326, 0.702) 

65 50.1 42.7 
0.444 

(0.281, 0.643) 

50 39.8 31.0 
0.417 

(0.279, 0.569) 

48 29.6 20.6 
0.349 

(0.231, 0.503) 

46 19.2 10.4 
0.247 

(0.142, 0.421) 
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The posterior medians for DWWD PP +  show a pattern that is consistent with mean monthly 

rainfalls, with regions of lower rainfall showing stronger hydrological persistence. Furthermore, 

in each of these districts, HMM calibrations reject the notion of persistence degenerating to 

mixtures of distributions. 

The calibrations of two-state NP HMMs to these monthly data are utilised further to investigate 

the relationships between persistence and rainfall observations along this transect. Linear 

correlations between monthly rainfall in each of these districts and the monthly series from 

District 66 provide an indication of the spatial distribution of rainfall. These correlations are 

presented in Table 8.16, and show weaker correlations associated with districts located further 

from District 66. Alongside these values in Table 8.16 are linear correlations between the series 

of median state probabilities from NP HMM calibrations to each district and District 66. These 

results show that the NP HMM preserves underlying relationships in the rainfall regime of New 

South Wales, with monthly persistence closely linked to spatial rainfall variability. 

Table 8.16 Linear correlations between the monthly rainfall in each district and the monthly 

rainfall in District 66, and between the median state series for each district and the median state 

series in District 66 from calibrating two-state NP HMMs to the deseasonalised monthly rainfall 

District Correlation of monthly 
rainfall to District 66 

Correlation of median state 
series to District 66 

67 0.847 0.858
63 0.670 0.680
65 0.403 0.468
50 0.385 0.449
48 0.307 0.355
46 0.179 0.222

8.4.2 Spatially-averaged monthly rainfall across Australia 

Following the calibrations of two-state NP HMMs to deseasonalised monthly rainfall across 

New South Wales, this modelling approach can now be employed to ascertain monthly 

persistence across the whole country. A useful approach to determining Australia-wide 

characteristics of persistence is to use the spatially-averaged rainfall data for each of the 107 

meteorological districts. The district-averaged rainfall data provides a spatially-consistent set of 

monthly rainfall, and each series (apart from two) has an identical length of 1080 months.  

There are three main benefits from calibrating NP HMMs to the monthly rainfall for each 

district. Firstly, the magnitude of the sum of transition probabilities from the calibration of two-

state NP HMMs to the monthly rainfall in each district provides a measure to highlight areas of 

strongest (and weakest) persistence, with Section 8.4.1 showing regions of lower rainfall to 

demonstrate stronger persistence. Secondly, credibility bounds around posterior estimates for 
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DWWD PP +  highlight districts in which the calibrations of two-state NP HMMs degenerate to 

merely mixture distributions. This quantity can then be used to evaluate the number (and 

location) of districts that fail to show evidence of statistically significant persistence. The third 

benefit of the NP HMM is that posterior state series are produced for each district. These series 

can be analysed to determine whether HMMs preserve spatial relationships between 

hydrological regimes across Australia. It is expected that for two-state (or three-state) 

hydrological persistence to reflect broad-scale climatic fluctuations, the hydrology of 

neighbouring meteorological districts would be similarly influenced. As a consequence, it is 

expected that the posterior state series from the calibrations of NP HMMs to monthly rainfall of 

neighbouring districts would be closely related. This was shown with the Sydney data and the 

spatially-averaged rainfall for the meteorological district in which Sydney is located, District 66.  

Statistical tests described in Chapter 4 suggested significant two-state persistence in the spatial 

rainfall across Australia. Two-state NP HMMs are now calibrated to these spatial rainfall data, 

and Bayesian credibility limits for posterior estimates of DWWD PP +  show evidence for two-

state persistence in the monthly rainfall data for 103 of the 107 districts. Of the remaining 4 

districts that have 95th percentiles of this sum being greater than 1 (Districts 8, 10 and 10A in 

Western Australia and 99 in Tasmania), District 8 has the highest value at 1.084, which only 

marginally exceeds unity. These results demonstrate that two-state hydrological persistence is 

prevalent across Australia at a monthly scale. 

The posterior medians for DWWD PP +  are now analysed to determine the varying extents of 

persistence across Australia. The 107 districts are initially ranked in increasing order of the 

magnitude of posterior medians for DWWD PP + , and then divided into four groups: 

4.0<+ DWWD PP , 5.04.0 <+< DWWD PP , 6.05.0 <+< DWWD PP  and 6.0>+ DWWD PP . The 

18 districts sharing the darkest shade in Figure 8.22 represent the “most persistent” group, with 

increasingly lighter shades representing comparatively weaker persistence.  
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Figure 8.22 Spatial distribution of the magnitude of persistence from the calibration of two-state 

NP HMMs to the deseasonalised monthly rainfall for each district 

A comparison of Figure 8.22 with Figure 5.1 shows that 14 of the 28 districts that failed to show 

persistence with each of the four runs tests described in Chapter 4 are also included in the least 

persistent group of districts (having the lightest shade) in Figure 8.22. Furthermore there is a 

slight tendency for the strongly persistent districts to correspond to the lower rainfall regions of 

Australia, with none of the districts in the most persistent group located along the generally 

wetter eastern coast of the country. 

The consistency between persistence identified with the NP HMM approach and the results of 

spells analyses is now investigated. The series of 107 DWWD PP +  values from the calibrations of 

two-state NP HMMs are correlated to the series of 107 LORT probabilities, run skews, mean 

and maximum run lengths, and lag-1 autorun statistics in Table 8.17. Each correlation shown 

here is significant; indicating that NP HMMs identify similar persistence characteristics to those 

demonstrated with spells analyses. This is an important result, as it justifies the use of the non-

parametric HMM approach for representing hydrological persistence. Furthermore the series of 

DWWD PP +  estimates fail to demonstrate significant correlation to the series of monthly Hurst 

exponents ( 077.0,182.0 == pr ). 
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Table 8.17 Rank correlations (with p-values in brackets) between various runs statistics and 

posterior medians for the sums of transition probabilities from the calibration of two-state NP 

HMMs to deseasonalised monthly rainfall in each district 

 LORT Run skew Mean runs Lag-1 autorun Max. runs 

DWWD PP + 0.542 
(<0.001) 

0.614 
(<0.001) 

0.437 
(<0.001) 

0.470 
(<0.001) 

0.410 
(<0.001) 

In order to demonstrate that the NP HMM identifies climatic features in the hydrology of 

Australia, spatial relationships between the monthly rainfall of each district should be conserved 

in the output of HMM calibrations. The spatial signature of persistence across Australia is 

analysed through a comparison of the median state series from each district to the median state 

series of District 66. For broad-scale climate influences to be revealed in HMM calibrations, 

districts surrounding 66 should demonstrate similar sequences of wet and dry months. Figure 

8.23 shows rank correlations between the median state series for each district and the series 

from District 66. Alongside these correlations are the rank correlations between the 

untransformed monthly observations in each district with those from District 66, which reflect 

variability within the spatial rainfall data of Australia. Figure 8.23 shows a very close 

relationship across the 107 districts between correlations from observed monthly totals and 

correlations from posterior state probabilities. This indicates that two-state NP HMMs retain the 

inherent variability in the Australian climate. Furthermore regions that have state probabilities 

that are most strongly correlated to the state series of District 66 are districts within close 

proximity. This further supports the notion that the two-state NP HMM identifies underlying 

persistence within spatially-averaged rainfall data. 
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Figure 8.23 Rank correlations between monthly rainfall for each district and monthly rainfall of 

District 66 (blue), and rank correlations between the median state series for each district and the 

median state series for District 66 (orange) from the calibrations of two-state NP HMMs to the 

deseasonalised monthly rainfall for each district 
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Non-parametric HMMs demonstrate clear two-state persistence in the spatial rainfall data of 

Australia. The three-state NP HMM that was introduced in the previous section is now 

calibrated to the deseasonalised monthly rainfall for each district to analyse three-state 

persistence. Credibility bounds around the sums of self-transition probabilities from these 

calibrations indicate that 102 of 107 districts have significant three-state monthly persistence. 

Of the five remaining districts (Districts 6, 8, 9A, 10 and 10A all in Western Australia), three 

also fail to show significant two-state persistence.  

The ranked order across the 107 districts of the posterior medians for sums of self-transition 

probabilities from calibrations of three-state NP HMMs is significantly correlated to the ranked 

order from calibrating two-state NP HMMs )82.0( =r . This provides further evidence that the 

NP HMM identifies true modes of climatic persistence in these spatial rainfall series. Although 

the NP HMM approach provides an overwhelming justification for three-state persistence in 

monthly rainfall across Australia, Bayesian model selection suggests that these hydroclimatic 

features are better modelled as two-state persistence. In fact, 96 of the 107 districts have 

positive values of NPNPBF 3,2ln , illustrating that the two-state NP HMM is superior to the three-

state NP HMM (in a Bayesian context) for the various deseasonalised monthly rainfall series. 

The eleven districts better modelled by three-state NP HMMs are shaded in Figure 8.24. 

Figure 8.24 Districts in which three-state NP HMMs are superior models for monthly rainfall than 

two-state NP HMMs using Bayes Factors 
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Interestingly the meteorological districts in which monthly rainfall is better modelled through a 

three-state NP HMM are located in the tropical north of the country, except for District 96 in 

Tasmania, which also demonstrates the strongest three-state persistence of all districts. Once 

again, the spatial distribution of persistent districts shows apparent uniformity, further 

supporting previous findings that the NP HMM approach identifies underlying patterns of 

hydroclimatic persistence. 

8.4.3 Monthly streamflows 

The previous section showed that the unbiased NP HMM identifies widespread monthly 

persistence in the spatial rainfall data across most of Australia. Following these results, it is 

likely that streamflow data from across Australia will also demonstrate persistence through 

calibration of these models. Spells analyses described in Section 5.1 showed evidence for 

persistence in seven flow series that was stronger than the persistence shown in the various 

monthly rainfall series. Table 8.18 summarises the calibrations of two-state NP HMMs to the 

deseasonalised monthly rainfall series from each of the 107 districts.  

Table 8.18 Comparison of posterior distributions for transition probabilities from the calibration of 

two-state NP HMMs to time series of deseasonalised monthly streamflows, with posterior medians 

and 90% credibility intervals shown 

WDP DWP DWWD PP +

Murray 0.085              
(0.070, 0.102) 

0.091             
(0.077, 0.108) 

0.177             
(0.148, 0.209) 

Darling 0.116              
(0.099, 0.137) 

0.109             
(0.093, 0.126) 

0.225             
(0.193, 0.260) 

Cooper 0.244              
(0.181, 0.308) 

0.115             
(0.082, 0.151) 

0.359             
(0.271, 0.449) 

Diamantina 0.268              
(0.207, 0.330) 

0.086             
(0.066, 0.109) 

0.354             
(0.276, 0.436) 

Burdekin 0.153             
(0.098, 0.212) 

0.102             
(0.070, 0.141) 

0.254             
(0.175, 0.344) 

Dumaresq 0.199              
(0.142, 0.274) 

0.096             
(0.058, 0.159) 

0.298             
(0.210, 0.409) 

Condamine 0.182              
(0.141, 0.225) 

0.236             
(0.115, 0.297) 

0.416             
(0.272, 0.506) 

Table 8.18 shows strong two-state persistence in the monthly flows from these seven rivers, 

with each series characterised by low values for the posterior medians of DWWD PP + . The least 

persistent series is the Condamine River; however the median estimate of DWWD PP +  from this 

series is still lower than that observed in the monthly rainfall records of 80 meteorological 

districts, illustrating a tendency towards stronger persistence in streamflow data. The 90% 

credibility intervals for estimates of DWWD PP +  are all well below unity, indicating that 
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persistence in each river is strongly significant at a 10% level. The monthly flows from the 

Murray and the Darling show the strongest two-state persistence, which reflects spells analyses. 

The calibrations of three-state NP HMMs showed significant three-state persistence in the 

monthly rainfall of many districts. To investigate this characteristic in monthly streamflows, 

three-state NP HMMs are now calibrated to the seven flow series, with results summarised in 

Table 8.19. 

Table 8.19 Posterior distributions for the sums of self-transition probabilities from the calibration 

of three-state NP HMMs to time series of deseasonalised monthly streamflows, with medians and 

90% credibility intervals shown, and Bayes Factors comparing the calibrations of two-state NP 

HMMs to the calibrations of three-state NP HMMs 

DDNNWW PPP ++ NPNPBF 3,2ln

Murray 2.520               
(2.463, 2.570) -175.4 

Darling 2.447               
(2.377, 2.511) -142.1 

Cooper 1.767               
(1.549, 2.119) 3.7 

Diamantina 1.883               
(1.566, 2.197) 4.0 

Burdekin 2.499               
(2.338, 2.631) -11.4 

Dumaresq 2.225               
(2.009, 2.429) -6.9 

Condamine 1.812               
(1.657, 1.972) -19.6 

The Bayesian credibility intervals shown in Table 8.19 are well above unity for each flow 

series, indicating significant three-state persistence in each case, which is consistent with results 

from spatial rainfall data. Whereas a majority of these latter series were better modelled by the 

simpler two-state NP HMM, Bayes Factors indicate that three-state NP HMMs are superior 

models for five of the seven monthly flow series. Monthly data from the Murray and the 

Darling, which showed the strongest two-state persistence, have the clearest preference for the 

three-state model. The two flow series better modelled by two-state NP HMMs are the two arid 

zone rivers; the Cooper and Diamantina, which also showed the weakest persistence from the 

spells analyses summarised in Chapter 4. Monthly persistence is a major feature within the 

different flow series analysed here, and is clearly more prevalent than within monthly rainfall 

observations. This outcome is consistent with the influence of catchment storage in rainfall-

runoff transformations. 



199 

Chapter 8 – Non-parametric hidden Markov models 

8.5 Investigating persistence in alternative hydrological variables 

The investigations described in this chapter have demonstrated that hydrological persistence is 

most clearly observed at a monthly scale, primarily due to the frequencies of dominant climate 

processes, and also the increase in information available over annual records. The approach 

used up to this point has relied upon time series of total monthly rainfall or streamflow within 

which intra-annual seasonality is removed. In this section, other sources of hydrologic data that 

are associated with total monthly rainfall in Sydney are analysed, to provide evidence towards 

the most suitable scale of persistence. The benefit of the NP HMM to provide an unbiased 

estimate of persistence in a variety of hydrologic data is revealed through these analyses.  

8.5.1 Analysing persistence within the number of monthly rain-days 

In order to obtain a clearer depiction of monthly persistence in the hydrology of Sydney, 

alternative sources of hydrologic information are now considered. The number of days in each 

month during which rain is recorded provides a discrete-valued alternative to the continuous-

valued total rainfall data, and is the focus of this section. These data sets describe a different 

aspect of the hydrological cycle; the number of rain-days interpreted as a representation of the 

number of rain events passing the observation point in Sydney and total monthly rainfall 

interpreted as the total amount of atmospheric moisture. Persistence in the broader climate is 

likely to influence each characteristic. 
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Figure 8.25 Time series of monthly rainfall observations for Sydney (blue line with points) and the 

number of days on which rainfall was recorded each month (red line) over a ten-year period 

Figure 8.25 shows the time series of total monthly rainfall alongside the number of monthly 

rain-days over a ten-year period, demonstrating that the latter series identifies features similar to 

those shown with monthly rainfall totals. For the 1716 values over the 1859-2001 record, these 

two time series have significant linear correlation )61.0( =r , which increases to 68.0=r  for 
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non-parametric rank correlation. Although these time series represent diverse aspects of the 

hydrologic cycle, their significant relationship indicates that common sources of climate 

variability affect each series. 

The seasonal nonstationarity in the total monthly rainfall data was demonstrated in Figure 7.2, 

with a minimum monthly average rainfall in September, and maximum in March. This 

nonstationarity is compared with the intra-annual variability in the series of monthly rain-days 

in Figure 8.26 through the ratios of monthly averages to annual averages of each data series. 

The latter series shows similar nonstationarity, with a maximum monthly average again in 

March and minimum in August. 
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Figure 8.26 Seasonal variations in the ratio of monthly averages to annual averages for total 

monthly rainfall and number of rain-days in each calendar month for Sydney 

As previously described, a benefit of the NP HMM is its ability to be calibrated to both 

continuous and discrete-valued time series. Consequently this model provides a suitable 

approach to investigating both two-state and three-state persistence in the series of monthly 

rain-days. However in order to maintain consistency with the analysis of persistence within the 

series of monthly rainfall totals, it is important to remove the seasonal nonstationarity in the 

discrete series prior to the calibration of NP HMMs. The discrete-valued time series of monthly 

rain-days is subsequently transformed to a series of deseasonalised monthly variates having zero 

monthly mean and unit standard deviation through subtracting the average number of rain-days 

in each month and dividing by the monthly standard deviation.  

The calibration of two-state NP HMMs to the time series of deseasonalised number of rain-days 

each month identifies stronger persistence than that shown in the time series of deseasonalised 

monthly rainfall totals. Transition probabilities from the calibrations of NP HMMs to each 

series are summarised in Table 8.20, with posterior medians demonstrating two-state persistence 

within the former series that is approximately twice as long as in the latter. 
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Table 8.20 Comparison of posterior distributions for transition probabilities, showing medians and 

90% credibility intervals, from the calibration of two-state NP HMMs to the deseasonalised 

monthly rainfall of Sydney and the deseasonalised number of monthly rain-days 

WDP DWP DWWD PP +

Monthly rainfall 
totals 

0.301            
(0.208, 0.406) 

0.420            
(0.305, 0.539) 

0.728             
(0.592, 0.841) 

Number of rain-
days per month 

0.231            
(0.144, 0.343) 

0.121            
(0.052, 0.234) 

0.361             
(0.205, 0.547) 

Figure 8.27 shows a further comparison of the calibration of NP HMMs to the two monthly 

series, with a time series plot of the two median state series over a ten-year period. The state 

series associated with the number of rain-days shows stronger persistence through reduced 

variability between consecutive months. Over the entire 143-year record, the two median state 

series are significantly correlated )62.0( =r , providing further evidence for underlying climate 

persistence that influences not only monthly rainfall totals but also the number of rain events. 
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Figure 8.27 Median state series from the calibrations of two-state NP HMMs to the time series of 

deseasonalised monthly rainfall totals for Sydney (blue line with points) and deseasonalised variates 

of the number of monthly rain-days (red line) 

The calibration of NP HMMs suggests that the time series of deseasonalised variates of the 

number of monthly rain-days more clearly identifies the influence of broad-scale climate 

fluctuations than the time series of monthly rainfall totals. Furthermore rank correlations 

between median state series and monthly NINO3 values show that the influence of ENSO is 

reflected almost twice as strongly )21.0( −=r  as the series of total monthly rainfall )13.0( −=r . 

It is important to investigate whether the time series of monthly rain-days also demonstrates 

significant three-state persistence. The calibration of a three-state NP HMM produces a sum of 

self-transition probabilities that has a posterior median of 1.931 and a 90% credibility interval 
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(1.548, 2.313) that is well in excess of 1. Bayesian model selection identified the simpler two-

state NP HMM as a superior model for total monthly rainfall through 0.6ln 3.2 =NPNPBF . Bayes 

Factors show a similar result for the number of monthly rain-days, with strong evidence for the 

simpler model presented through 5.6ln 3,2 =NPNPBF . This analysis of monthly rain-days 

reinforces the significance of monthly-scale persistence in the hydrology of Sydney. For other 

series these discrete analogues of total monthly rainfall may provide a more useful description 

of hydrologic variability. 

8.5.2 Analysing monthly persistence in rainfall extremes 

The previous section indicated that the time series of monthly rain-days for Sydney preserves 

the two-state hydrological persistence observed in the time series of total monthly rainfall. It 

was noted that data such as these were representative of the number of rain events, as opposed 

to the total amount of atmospheric moisture. An alternative source of hydrological data to now 

investigate for similar persistence is extreme rainfall events, which are analysed through rainfall 

intensities over various durations. These data provide important information in the design and 

management of water resources infrastructure, such that the accurate modelling of hydroclimatic 

interactions that underlie their variability is a vitally important concern. The unbiased NP HMM 

is now calibrated to these rainfall extremes in order to investigate persistence. 

Using pluviograph records from the same Sydney gauge, it is possible to extract time series of 

maximum rainfall intensities for each calendar month over durations of 6 minutes, 1 hour and 

24 hour. Continuous data are available for a period of 960 months (1921-2000), with three 

months during this period missing. Monthly mean values were then used for these months to 

infill the record. The statistics of these observed data are shown in Table 8.21. 

Table 8.21 Sample statistics for maximum rainfall intensities for Sydney over selected durations 

Mean intensity 
(mm/hr) 

Median intensity 
(mm/hr) 

Standard 
deviation 

Skew 

6-minute maxima 37.92 30.2 28.85 2.013 
1-hour maxima 13.63 10.295 11.82 2.663 
24-hour maxima 1.77 1.28 1.64 2.232 

These three time series of extreme rainfall are closely related, indicated by the linear 

correlations shown in Table 8.22 alongside correlations between each series and the total 

monthly rainfall over the period (1921-2000). Each of these correlations is significant, with 

001.0<p  in each case. The two strongest correlations are firstly between 6-minute maxima and 

1-hour maxima, and secondly between 24-hour maximum intensities and total monthly rainfall. 

The latter suggests that months having extreme day-long rain events are likely to produce large 

monthly totals, which is an expected result. 
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Table 8.22 Linear correlations between time series of maximum rainfall intensities for Sydney over 

selected durations and total monthly rainfall for the period (1921-2000) 

 1-hour maxima 24-hour maxima Monthly totals 
6-minute maxima 0.810 0.569 0.560 
1-hour maxima – 0.728 0.641 
24-hour maxima – – 0.849 

The seasonal nonstationarity in the time series of total monthly rainfall and also the number of 

monthly rain-days for Sydney, as shown in Figure 8.26, is also apparent in the series of extreme 

rainfall intensities. Figure 8.28 shows the ratios of average monthly intensities to annual 

averages for the three time series alongside the ratios for the total monthly rainfall taken for the 

period (1921-2000). It is clear that the close relationship between the two shorter duration 

intensities and also between the 24-hour intensities and monthly totals that were highlighted 

previously are maintained within these ratios. These four time series each show maximum 

monthly averages in March. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
at

io
 o

f m
o

n
th

ly
 a

ve
ra

g
e 

to
 a

n
n

u
al

 a
ve

ra
g

e 6min maximum

1hr maximum

24 hr maximum

Monthly totals

Figure 8.28 Seasonal variations in the ratio of monthly averages to annual averages for maximum 

rainfall intensities for Sydney recorded over various durations, and total monthly rainfall 

To maintain consistency between the calibrations of NP HMMs to the extreme rainfall data and 

the monthly totals previously described, the seasonal nonstationarity in each series must first be 

removed through subtracting the average intensity in each month and dividing by the monthly 

standard deviation. Once again, this produces three series of zero mean and unit variance. The 

first stage of investigating hydrological persistence in these rainfall extremes is to calibrate two-

state NP HMMs to each deseasonalised monthly series. The results of these calibrations are 

demonstrated through the following three figures, in which the median state series for each data 

set is compared to the median state series obtained from the calibration of a two-state NP HMM 

to the time series of total monthly rainfall for Sydney that is deseasonalised over the period 
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(1921-2000). This latter state series differs slightly from the series of median state probabilities 

obtained from calibrating NP HMMs to the time series of monthly totals deseasonalised over the 

longer period (1859-2001) as used previously in this thesis, although over the period (1921-

2000) these state series are strongly correlated )99.0( =r . The median state probabilities from 

these calibrations are displayed in the following figures over identical 10-year periods. 
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Figure 8.29 Median state series from the calibrations of two-state NP HMMs to the time series of 

deseasonalised monthly rainfall totals for Sydney (blue line with points) and deseasonalised 

maximum rainfall intensities for each month recorded over 6-minute durations (red line) 
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Figure 8.30 Median state series from the calibrations of two-state NP HMMs to the time series of 

deseasonalised monthly rainfall totals for Sydney (blue line with points) and deseasonalised 

maximum rainfall intensities for each month recorded over 1-hour durations (red line) 



205 

Chapter 8 – Non-parametric hidden Markov models 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

P
(m

o
n

th
 is

 in
 w

et
 s

ta
te

 | 
al

l m
o

n
th

s)

Figure 8.31 Median state series from the calibrations of two-state NP HMMs to the time series of 

deseasonalised monthly rainfall totals for Sydney (blue line with points) and deseasonalised 

maximum rainfall intensities for each month recorded over 24-hour durations (red line) 

The preceding three figures demonstrate that the two-state persistence observed in time series of 

monthly rainfall totals is also clearly observed in the time series of maximum monthly 

intensities. In particular the median state series from the 24-hour maxima appears very similar 

to the median state series from deseasonalised monthly totals. The relationships between the 

median state series from these four data sets are also described through linear correlations 

shown in Table 8.23. These correlations indicate that through the calibrations of HMMs, 

relationships between these four observed series are retained.  

Table 8.23 Linear correlations between median state series obtained from calibrating two-state NP 

HMMs to the time series of deseasonalised maximum monthly rainfall intensities for Sydney over 

selected durations and deseasonalised monthly rainfall totals for the period (1921-2000) 

 1-hour maxima 24-hour maxima Monthly totals 
6-minute maxima 0.859 0.683 0.668 
1-hour maxima – 0.818 0.760 
24-hour maxima – – 0.887 

The magnitude of two-state persistence in the time series of maximum rainfall intensities is 

analysed through the transition probability values shown in Table 8.24. These results indicate 

that these three data series reveal two-state persistence that is similar to the persistence in the 

series of monthly totals, with transition probabilities having similar posterior medians. Although 

the two-state persistence in the time series of extremes is not significant at a 10% level (with 

95th percentile of sums of transition probabilities slightly exceeding unity), these are significant 

at level slightly exceeding 10%. By comparing the transition probability estimates for the time 

series of monthly rainfall totals deseasonalised over the period (1921-2000) with estimates 



206 

Chapter 8 – Non-parametric hidden Markov models 

obtained from calibrating two-state NP HMMs to the related time series that is deseasonalised 

over the period (1859-2001), it is clear that the shorter series has wider posteriors. This 

demonstrates the influence of data series length on the ability of the NP HMM to identify 

accurately underlying persistence. As a result, it is apparent that hydrological persistence 

observed in the time series of monthly totals is also evident in time series of monthly extreme 

rainfall intensities. Results such as these have not been previously reported in the literature. 

Table 8.24 Posterior distributions for transition probabilities, showing medians and 90% credibility 

intervals, from the calibration of two-state NP HMMs to the time series of deseasonalised maximum 

monthly rainfall intensities for Sydney over selected durations and deseasonalised monthly rainfall 

totals for the period (1921-2000) 

WDP DWP DWWD PP +

6-minute maxima 0.343            
(0.073, 0.601) 

0.377            
(0.137, 0.757) 

0.793             
(0.257, 1.044) 

1-hour maxima 0.363            
(0.103, 0.634) 

0.460            
(0.180, 0.802) 

0.855            
(0.516, 1.069) 

24-hour maxima 0.342            
(0.132, 0.601) 

0.497            
(0.257, 0.745) 

0.861             
(0.596, 1.048) 

Monthly totals 0.300            
(0.142, 0.519) 

0.463            
(0.255, 0.677) 

0.783             
(0.553, 0.967) 

The next part of this investigation into persistence within the time series of maximum rainfall 

intensities is to calibrate three-state NP HMMs, and to compare these results to those obtained 

from calibrating two-state NP HMMs. Table 8.25 shows correlations between the series of most 

likely climate states from the calibrations of three-state NP HMMs to the four monthly time 

series. Although each of these correlations is statistically significant )001.0( <p , all six 

correlations are weaker than those shown in Table 8.23. While such a result does not imply that 

the three-state models are inferior for these data, it does suggest that the relationships between 

observed data are not observed as strongly in the output of these models.  

Table 8.25 Linear correlations between series of most likely states from calibrating three-state NP 

HMMs to the time series of deseasonalised maximum monthly rainfall intensities for Sydney over 

selected durations and deseasonalised monthly rainfall totals for the period (1921-2000) 

 1-hour maxima 24-hour maxima Monthly totals 
6-minute maxima 0.762 0.567 0.562 
1-hour maxima – 0.665 0.634 
24-hour maxima – – 0.799 

In order to investigate whether persistence in the time series of monthly maximum rainfall 

intensities is better modelled with three climate states, transition probabilities from the 

calibrations of three-state NP HMMs are now analysed. Table 8.26 presents the sums of self-
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transition probabilities together with Bayes Factors comparing the calibrations of three-state NP 

HMMs to two-state NP HMMs. The 90% credibility intervals for posteriors of 

DDNNWW PPP ++  include a value of unity for each series, suggesting that there is no evidence 

at a 10% level for significant three-state persistence in these data series. This is similar to the 

results from calibrating two-state NP HMMs, which failed to support evidence for two-state 

persistence at 10% levels. The results for the monthly totals here show that with fewer data 

points the three-state NP HMM is unable to detect the significant three-state persistence that 

was evident in the longer time series of monthly totals (1859-2001). The Bayes Factors shown 

in Table 8.26 demonstrate that the persistence in each data set is better modelled with a two-

state NP HMM, and Bayes Factors of similar magnitude provide further indication that 

hydrological persistence is evident in a similar fashion through these four time series. 

Table 8.26 Posterior medians and 90% credibility intervals for the sums of self-transition 

probabilities from the calibrations of three-state NP HMMs, and Bayes Factors comparing the 

calibrations of two-state NP HMMs to the calibrations of three-state NP HMMs 

DDNNWW PPP ++ NPNPBF 3,2ln  

6-minute maxima 1.289            
(0.881, 1.748) 

6.0 

1-hour maxima 1.249            
(0.804, 1.720) 

5.9 

24-hour maxima 1.140            
(0.801, 1.570) 

5.7 

Monthly totals 1.146            
(0.814, 1.649) 

5.6 

This section has provided further evidence for significant underlying persistence in the 

hydrological regime of Sydney. The investigations of persistence in hydrological variables such 

as the number of monthly rain-days and maximum monthly rainfall intensities are novel 

developments that have not been previously reported in the literature. Although persistence in 

the maximum rainfall intensity data was weaker than observed with monthly totals, it was 

apparent that by having to analyse fewer data of this type, the accuracy in identifying 

persistence was compromised. It is indeed possible that if pluviograph data was available for the 

same period as available for the record of monthly rainfall totals, persistence of similar 

magnitude may be observed. 

With significant two-state persistence being observed within time series of monthly rain-days, it 

is clear that persistent climate states modulate the number of rain events that pass the 

observation point each month. This suggests that these persistent climate states may influence 

either the speed of upper-level winds that guide the movement of cloud formations or the rate at 

which evaporative processes produce atmospheric moisture. Furthermore, with significant two-
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state persistence identified within time series of extreme short-duration rainfall events, it is clear 

that within each of these rain events, the level of moisture in each rain event is modulated. A 

wet climate state is therefore associated with both an increased number of rain cells passing the 

observation point, and also an increased level of moisture within each rain cell, which leads to 

an amplification of the intensity of short-duration rain bursts. It follows from these suppositions 

that the persistence observed in time series of monthly rainfall totals in an artefact of persistence 

in both the number of monthly rain-days and the intensity of extreme rain events each month.  

8.6 Summary of chapter 

This chapter has presented a thorough analysis of a novel non-parametric HMM for modelling 

persistence in hydrological records. Without relying upon assumptions that concern the 

parametric form of underlying state conditional distributions, this model provides unbiased 

estimation of persistence, such as transition probabilities and statistics of underlying conditional 

distributions. This model retains the parsimonious nature of conventional parametric HMMs, 

and it was shown to be easily extended to more than two model states. 

One of the strengths of the non-parametric modelling approach is its ability to identify 

persistence in hydrologic records, and to provide unbiased estimates of the comparative strength 

of persistence across a range of data series. The advantage of this approach over conventional 

parametric HMMs is illustrated with its calibration to the monthly rainfall data from both 

Sydney and its associated meteorological district. The difficulty shown by parametric HMMs to 

identify significant two-state persistence in this latter series is in contrast with results shown in 

this chapter that demonstrate similar patterns of persistence within these closely related series. 

Using the NP HMM, an Australia-wide analysis using spatially-averaged rainfall indicated 

widespread hydrological persistence within monthly data. Slight tendencies were shown 

towards stronger persistence in the low rainfall areas of the country, with significant correlations 

observed between the strength of two-state persistence and the results of various runs statistics. 

Importantly, the spatial signature of persistence identified with NP HMMs preserved the 

relationships between different rainfall series. Furthermore, persistence at an annual scale is not 

prevalent in the rainfall data of Australia, likely due to the insufficient data available from 

aggregating at this level. Monthly streamflow data demonstrated much stronger persistence than 

monthly rainfall data, reflecting the results of spells analyses described in Chapter 5. 

The final investigations in this chapter focused upon persistence within alternative hydrological 

variables. The advantages provided by the NP HMM were demonstrated in the analysis of the 

discrete number of days each month upon which rainfall was recorded in Sydney, Australia. 
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This analysis provided evidence for underlying persistence at a monthly scale that was stronger 

than persistence observed in the time series of total monthly rainfall at this gauge. Furthermore, 

the NP HMM demonstrated that significant two-state persistence was also apparent in time 

series of rainfall extremes, an interesting result that was obtainable through calibrations with 

this model. These latter two sets of results indicate that persistent climate states modulate both 

the number of rain events that pass the observation point in question and the quantity of 

moisture contained within such rain events. The combination of these effects is then observed 

through persistent within time series of monthly rainfall totals. 

The NP HMM is a valuable development of conventional parametric HMMs, allowing unbiased 

estimates of the strength of persistence within hydrologic data. This model can be calibrated to 

both continuous-valued and discrete-value data, and in Chapter 11, is shown to provide accurate 

simulations of monthly hydrologic data. 
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