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Chapter 4 Identifying hydroclimatic 

relationships 

Persistent climate modes influence global hydrological observations. Statistical tests such as 

those discussed in Section 3.1.1 can identify persistence in rainfall and streamflow time series, 

in terms of wet and dry spells. As noted previously, the El Niño Southern Oscillation (ENSO) is 

the dominant global circulation phenomenon influencing the hydrologic regime of much of 

Australia. Previous studies have shown evidence for hydrological persistence in time series of 

annual rainfall in Australia, linking this characteristic to climatic regimes such as ENSO. 

However with ENSO phases having a mean length of approximately 15 months, the impact of 

this variability on hydrologic observations will be more evident by using time series of monthly 

totals. Climate indices are used in this chapter to demonstrate the relationships between global 

climate modes and hydrologic responses. Furthermore an analysis of arid-zone hydrologic data 

is undertaken to determine the influence of ENSO fluctuations upon the timing and magnitude 

of discrete flow events. 

4.1 Hydrologic data 

4.1.1 Spatially-averaged rainfall data 

Rainfall across Australia is investigated at a monthly scale through time series that are derived 

from the spatial aggregation of point rainfall series and represent the varying climatic zones of 

Australia. Spatially-averaged rainfall data effectively describe broad-scale hydroclimatic 

variability by representing information over areas that share common seasonal rainfall regimes. 

By minimising the influence of localised sampling “noise”, these totals may provide stronger 

evidence for anomalous climate modes such as ENSO than offered by individual station records. 

Australia has extensive tropical, subtropical, and mid-latitude climate regimes that are well 

observed by a high quality national rain gauge network. The Australian Bureau of Meteorology 

(BOM) maintains up to 6000 individual rain gauges that measure accumulated rainfall totals 

over 24-hour periods. With rainfall data being crucial for a range of operational demands such 

as water storage, primary production and resource management, the use of spatially-averaged 

rainfall has become an integral part of the BOM’s rainfall monitoring program (Jones and 

Beard, 1998). In the early 1900s, the BOM divided the Australian continent into geographic 

districts of similar climatic regimes in order to detail trends in rainfall across broad areas. The 

distribution of the 107 districts across the continent is shown in Figure 4.1. 
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Figure 4.1 Map of Australian meteorological districts 

Spatially-averaged rainfall totals for each district are evaluated as the arithmetic mean of a 

sample of stations chosen to provide a reasonable geographical spread across the district. The 

reliability of data for each district are generally ensured through local knowledge (Chappel, 

1995). These spatial data provide a robust measure of the meso- to synoptic-scale rainfall 

patterns across the continent. For most districts, monthly totals are available over the period 

1913-2002, which provides 90 years of continuous values. Districts that have less than 90 years 

of continuous data are two districts in the Northern Territory, 14BC and 14F, which have 

monthly records beginning in 1925 and 1923 respectively. District-averaged series have been 

used in a variety of studies (eg Allan and Haylock, 1993; Drosdowsky, 1993a; 1993b) that 

demanded a functional description of rainfall variability across the country. 

The BOM makes it clear that the daily rainfall data provided from each of their rainfall 

monitoring sites, which have been used to generate the district-averaged data, may contain 

missing data. The BOM notes that  

“Very few measuring sites have a completely uninterrupted historical record, 

with no gaps. Such gaps or missing data may be due to many reasons, ranging 

from illness of the observer to a broken instrument. A site may have been closed, 

reopened, upgraded or downgraded during its existence, possibly causing breaks 

in the record of any particular element. The station listing provides an estimate 

of the percentage completeness of the record for each site. The majority of 
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historical rainfall records have a resolution of 0.2mm although more recent 

measurements are resolved to 0.1mm. A total that is less than 0.1 mm (originally 

0.2mm) is usually referred to as a trace. Observations are made at 9am local 

time. Daylight Saving has been used in some, but not all, states of Australia, 

since about 1973. The changeover occurs almost always in October and March 

but the exact dates vary from state to state and year to year. Thus the times that 

the totals were recorded are generally a combination of 8am and 9am times. 

None of the 107 monthly district-averaged rainfall series contain missing values, although some 

of the daily data from measuring stations that was used to derive the former may contain 

missing values. Generally these daily series have been subject to quality-control by the BOM, 

and no further quality control was undertaken following data acquisition. 

The mean monthly rainfall for the array of Australian districts ranges from 15.6mm in District 

17 up to 189.7mm in District 97. Also, the coefficient of variation for these samples, taken as 

the ratio of the sample mean to the sample standard deviation ranges from 0.47 in District 97 to 

1.69 in District 5, and the skew of monthly observations range from a minimum of 0.535 in 

District 89 up to 3.799 in District 46. These statistics demonstrate the considerable variability 

within the rainfall regime of this country. 

The Australian continent can be divided into four broad rainfall regimes; the monsoonal north 

and northeast coast with wet summers and dry winters, the Mediterranean climate of the south 

and southwest coasts dominated by wet winters and dry summers, regions to the east and south 

east that are generally wet all year, and the dry interior in which annual rainfall is low and 

highly variable. In this study, the monthly rainfall series from four meteorological districts in 

Australia are analysed. These rainfall series are indicative of the four broad rainfall regimes that 

exist across this country; with District 9A having a Mediterranean climate, 27 a tropical, 16 

experiencing low rainfall throughout the year and rainfall in 71 being consistently high across 

all twelve months. Statistics for the observed rainfall in these districts are presented in Table 

4.1, which demonstrates the varying characteristics of these four climate regimes. 

Table 4.1 Sample statistics for selected district-averaged monthly rainfall series 

District 
Mean rainfall 

(mm) 
Median rainfall 

(mm) 
Standard 
deviation 

Skew 

9A 73.94 58.55 61.53 0.968 
16 16.15 11.2 17.04 2.255 
27 122.30 30.2 155.62 1.256 
71 72.19 65.0 44.71 1.003 

Rainfall records from these four climatic regimes display characteristic seasonal patterns, which 

are demonstrated in the distribution of monthly averages in Figure 4.2.  
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Figure 4.2 Distributions for monthly rainfall in selected meteorological districts 

Prior to comparing these monthly data to sources of climate variability, the seasonal 

nonstationarity demonstrated in Figure 4.2 is removed. Monthly rainfall anomalies are produced 

by subtracting monthly means from observed values and dividing by the monthly standard 

deviations. This produces time series of zero mean and unit variance. These deseasonalised data 

are then scaled to produce time series of positive values, which is necessary to show the 

deseasonalised monthly variates on lognormal probability plots. This scaling is achieved by 

multiplying each deseasonalised value by a constant and then adding a second constant. The 

magnitudes of these constants are only important through the positive shift on the distribution 

that is produced. After completing this scaling procedure on each of the four monthly series, 

Anderson-Darling (AD) goodness-of-fit statistics (from Stephens, 1974) are evaluated and 

shown in Table 4.2.  

Table 4.2 Anderson-Darling statistics for various probability distributions fitted to deseasonalised 

monthly rainfall 

District 
Gamma 

distribution 
Lognormal 
distribution 

Gaussian 
distribution 

9A 5.238 1.705 17.608 
16 8.572 1.312 48.368 
27 17.494 8.977 32.657 
71 0.387 1.660 14.227 

For time series of length 1080, AD values less than 0.787 are consistent ( 05.0=p ) with data 

having been drawn from the selected parametric distribution. It is apparent that the 

deseasonalised monthly rainfall for Districts 9A and 16 are best approximated by lognormal 

distributions, with District 71 monthly anomalies being consistent with random draws from a 

gamma distribution. The scaled deseasonalised monthly values of District 27 are better 
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approximated by a lognormal distribution than either gamma or Gaussian distributions, although 

the goodness-of-fit statistic well exceeds levels of significance. The three-parameter log-

Pearson III (LPIII) distribution produces an AD statistic of 6.093, which is superior to a 

lognormal distribution, although still exceeding a value corresponding to significance level of 

05.0=α . 

4.1.2 Streamflow data 

Once again focusing upon a monthly scale, the flow records for a range of Australian rivers are 

also analysed for evidence of persistence. This investigation used rivers that represent a range of 

catchment sizes, being located across a range of climate zones, an indication of relationships 

between sources of climatic variability and streamflow persistence are presented. 

The Murray-Darling basin (MDB) is the largest river basin in Australia, draining 1.073 million 

km2 of 14% of the entire land mass, as shown in Figure 4.3. The basin includes the country’s 

two longest rivers, namely the Darling, rising in sub-tropical Queensland, and the Murray, rising 

in southeastern New South Wales. The MDB covers a range of climatic regimes; 80-90% of its 

area is arid or semi-arid with most of its runoff generated from rainfall and snowmelt in the 

eastern catchments. Total runoff in the MDB is merely 4% of annual rainfall, the remaining 

96% being lost through evapotranspiration and infiltration. The MDB has extensive agricultural 

demands, and the flow regimes of the Murray and Darling rivers have been altered dramatically 

over the past century to support this. Estimated natural monthly flows in both rivers have been 

obtained with the Murray-Darling Basin Commission’s Monthly Simulation Model. Flows are 

calculated through the addition of observable flow and diversions and losses associated with 

upstream storages, with estimated natural flows obtained by setting diversions from the system 

and the storages to zero. Total flows for the MDB are estimated at Lock 10, immediately 

downstream of the confluence between the Darling and Murray at Wentworth, New South 

Wales, and Darling flows are estimated at Burtundy. Murray flows above Lock 10 are estimated 

by subtracting Darling flow from total Murray-Darling flow at Wentworth. Time series of 

reconstructed natural monthly flows in both the Murray and the Darling are available for 108 

years from January 1892 to December 1999. 



76 

Chapter 4 – Identifying hydroclimatic relationships

Figure 4.3 Map of the Murray-Darling basin (source: Murray-Darling Basin Commission) 

The time series of natural flows in the Murray and Darling represent the runoff from a very 

large catchment area that covers various geographical regions of Australia. Runoff from this 

basin may represent either widespread or localised rainfall events. In order to investigate 

whether climatic persistence influences flows from smaller catchments, monthly streamflows 

from two rivers in southeastern Queensland, within the headwaters of the MDB are also 

analysed. The hydrology of both rivers is highly variable, being dominated by a summer rainfall 

regime. The Dumaresq River is located within the Border Rivers catchment, west of the Great 

Dividing Range on the Queensland-New South Wales border, and has a sub-catchment of 

approximately 10,000 km2. Monthly flows in this river are available for the period (1954-1987). 

The Condamine River catchment is located to the north of the Dumaresq, and is bordered by the 

Great Diving Range to the east and the north, covering an area of over 13,000 km2. The 

Condamine is the source of the longest continuous stretch of river in the MDB, extending over 

3750 km to its mouth in South Australia. Monthly flow records for the Condamine are available 

for the period (1947-2003).  

The flow records for two rivers in the Lake Eyre basin of Australia, shown in Figure 4.4, are 

also investigated. This basin covers over 1.1 million km2 of the generally arid central zone of 

Australia, having a mean annual runoff that is the lowest of any major drainage basin in the 

world (Kotwicki and Allan, 1998). The Diamantina River and Cooper Creek display a high 

variability in the duration and volume of discharges that is characteristic of arid zone rivers. The 

Diamantina River is located in southwestern Queensland and its catchment covers 

approximately 120,000 km2. Monthly flow records for the Diamantina at the Queensland town 

of Birdsville, 10 km from the northern border of South Australia, are available over the period 
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(1966-2002). Cooper Creek has a larger sub-catchment, covering an area of approximately 

306,000 km2, most of which is located upstream of the Cullyamurra gauging station in South 

Australia. Monthly flow records are available over 29 years during the period (1973-2001). 

Figure 4.4 Location of the Lake Eyre basin (after Parliament of Australia Library, 2001) 

The sixth flow record analysed is for the Burdekin River, located in tropical Queensland. This 

river flows over 700km before discharging in the Pacific Ocean near the town of Ayr, through a 

catchment of 130,000 km2 that also has a summer-dominated rainfall regime. Monthly flow data 

for the river are available at the gauging station of Sellheim over the period (1947-2004). 

Details for these seven monthly streamflow series are presented in Table 4.3.  

Table 4.3 Summary statistics for the monthly flow records of the seven rivers analysed 

River 
(Site no.) 

Area 
(km2) 

Latitude Longitude 
Record 
period 

Mean 
(GL) 

SD 
(GL) 

Skew 

Murray 1082.6 1105.5 2.25 
Darling 

1057000* 34o6’S 141o55’E (1892-1999) 
166.8 208.6 2.27 

Cooper 
(003501) 

230000 27o42’S 140o50’E (1973-2002) 136.3 669.3 9.59 

Diamantina 
(002101) 

120000 25o54’S 139o22’E (1966-2002) 117.3 483.1 8.82 

Burdekin 
(120002c) 

36260 20o0’S 146o26’E (1947-2004) 373.7 1138.8 5.68 

Dumaresq 
(416308a) 

8755 28o44’S 152o17’E (1954-1987) 48.5 97.0 4.77 

Condamine 
(422316a) 

7795 27o33’S 151o13’E (1947-2003) 29.8 92.1 6.59 

* Area for Murray and Darling is approximate area of entire MDB, and coordinates are for Wentworth gauge  

Time series of the seven monthly flow records are shown in Figure 4.5, with the high variability 

in the two arid zone rivers clearly apparent. 
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Figure 4.5 Time series of monthly flows for the seven rivers analysed, shown over 10-year periods  

The statistics for flow records in each month are displayed in Table 4.4 and Table 4.5. These 

statistics show that each monthly streamflow series is characterised by seasonal nonstationarity 

that is removed to produce series with zero mean and unit variance prior to analysing the 

relationship with climate indices.  

Table 4.4 Summary statistics for the seven flow records from January to June 

  Jan Feb Mar Apr May Jun 
 Mean 716.0 384.9 291.5 315.4 469.9 712.1 

Murray SD 586.6 235.7 170.9 227.8 368.8 550.8 
 Skew 1.89 1.30 1.28 2.46 2.66 3.31 
 Mean 146.0 140.6 157.1 183.1 183.5 149.0 

Darling SD 179.5 170.4 160.2 187.6 209.2 219.1 
 Skew 1.73 2.36 1.06 1.33 1.73 3.03 
 Mean 90.1 415.5 264.7 197.8 287.0 207.4 

Cooper SD 283.6 1706.3 753.7 403.9 1036.0 673.3 
 Skew 4.76 5.21 3.49 3.03 5.06 3.68 
 Mean 154.4 415.6 454.2 178.0 74.2 50.9 

Diamantina SD 406.1 1241.2 807.5 383.7 180.1 150.7 
 Skew 3.59 4.82 1.87 2.72 3.03 3.81 
 Mean 1172.5 1446.1 1137.5 233.7 117.1 48.2 

Burdekin SD 2391.5 1935.1 1667.9 332.0 249.2 96.8 
 Skew 3.22 2.20 2.23 1.98 4.05 4.17 
 Mean 82.5 88.4 50.5 24.3 30.6 29.9 

Dumaresq SD 150.2 202.3 82.2 44.4 62.0 60.9 
 Skew 3.49 3.33 3.03 3.21 3.16 3.62 
 Mean 44.1 59.6 34.1 35.2 44.8 29.8 

Condamine SD 93.4 135.8 68.1 156.3 153.2 83.3 
 Skew 2.68 3.41 3.30 7.18 4.56 3.99 
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Table 4.5 Summary statistics for the seven flow records from July to December 

  Jul Aug Sep Oct Nov Dec 
 Mean 1096.7 1560.8 1997.6 2172.2 1929.3 1344.1 

Murray SD 765.1 1070.5 1312.6 1370.3 1363.1 1115.1 
 Skew 3.24 2.72 1.78 1.18 1.42 1.66 
 Mean 132.5 165.1 190.2 202.9 189.4 161.8 

Darling SD 203.8 220.1 230.5 245.9 245.9 207.7 
 Skew 3.08 2.43 2.43 2.39 2.23 1.71 
 Mean 96.2 35.1 11.8 3.3 13.9 13.3 

Cooper SD 280.0 84.1 27.6 8.0 60.2 29.0 
 Skew 3.59 3.76 3.13 3.48 5.31 3.08 
 Mean 22.6 8.9 2.4 0.7 7.8 37.3 

Diamantina SD 61.7 20.6 6.8 2.0 20.3 148.4 
 Skew 4.84 2.99 4.00 4.18 3.61 5.66 
 Mean 21.7 12.7 12.1 8.8 62.9 211.1 

Burdekin SD 30.3 15.2 39.5 13.6 152.4 323.0 
 Skew 3.53 2.89 7.04 2.37 5.12 2.76 
 Mean 45.4 28.1 42.5 54.0 51.4 54.9 

Dumaresq SD 72.1 32.4 67.4 94.1 66.5 86.8 
 Skew 2.49 2.06 2.83 3.10 1.75 2.50 
 Mean 22.4 11.2 6.7 17.9 19.8 31.8 

Condamine SD 57.4 24.4 16.4 49.9 38.0 78.0 
 Skew 3.83 3.65 4.00 3.48 2.64 4.59 

4.2 Relationships between hydrology and climate indices

4.2.1 Influence of ENSO upon rainfall 

The impact of ENSO on the synoptic conditions of Australia is demonstrated through the 

influence of its variability upon the mean value of monthly rainfall anomalies. Monthly totals 

are used here in preference to annual aggregations due to the average duration of ENSO events 

being 15 months, thus annual totals may conceal the influence of this ENSO signal. 

The five-month running mean (5-mrm) values of the NINO3 index is used to classify months as 

being either La Niña, ENSO neutral or El Niño, using thresholds of ±0.4oC. For the 1080 

months (1913-2002) over which district-averaged rainfall is available, 320 months are defined 

as being El Niño, 267 La Niña and the reminder classified as neutral. Deseasonalised rainfall 

totals in El Niño months are compared to values associated with La Niña months. An 

independent 2-sample t-test can determine whether the opposite phases of ENSO are associated 

with statistically significant differences in the mean value of rainfall in each district, when the 

population standard deviations of each phase are unknown. A significance interval around the 

difference in sample means is obtained together with a p-value associated with this test statistic. 

The significance of the difference in mean is tested at a 5% level. 

The results from fitting 2-sample t-tests to the various deseasonalised monthly rainfall series are 

shown in Table 4.6. The results are shown alongside the linear correlations between monthly 

values of the NINO3 index and the monthly rainfall anomalies, together with the significance 
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probabilities for both statistics. The four district-averaged series are all significantly correlated 

to the monthly NINO3 series, and show significantly higher means during La Niña periods, with 

District 27 having the strongest correlations with NINO3 and also the greatest modulation 

between ENSO phases. These results suggest that the hydrologic influence of ENSO is not 

limited to the eastern coastal regions of Australia. 

Table 4.6 Results for 2-sample t-tests and linear correlations between deseasonalised monthly 

rainfall and monthly NINO3, with associated probabilities, for four district-averaged rainfall series 

District 
Mean difference   

(95% CI) 
Probability 

Correlation to 
NINO3 

Probability 

9A 0.419   (0.589, 0.249) < 0.001 -0.123 < 0.001 
16 0.242   (0.406, 0.078) 0.004 -0.080 0.008 
27 0.583   (0.738, 0.428) < 0.001 -0.199 < 0.001 
71 0.213   (0.376, 0.049) 0.011 -0.101 0.001 

The linear correlations shown in Table 4.6 are very small, with the NINO3 series explaining less 

than 4% of the variability in these monthly rainfall series. However it is likely that this 

hydroclimatic relationship will underlie stronger correlations in streamflow data, which is 

investigated in Section 4.2.4. It is possible though to investigate the seasonality in the 

interaction between ENSO and district-averaged rainfall, by calculating linear correlations for 

each calendar month, as shown in Figure 4.6. These district-averaged rainfall data have 90 

values in each calendar month, and correlations over this sample size that have absolute 

magnitude greater than 0.208 are statistically significant at a 5% level. The correlations in 

Figure 4.6 show a slight tendency towards ENSO having a stronger influence on rainfall in 

Districts 16, 27 and 71 throughout the summer months as opposed to winter months. This 

seasonal bias is less apparent in District 9A. 
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Figure 4.6 Linear correlations between NINO3 values and deseasonalised rainfall for the four 

districts calculated for each calendar month (multiplied by -1), with solid line indicating the 

magnitude of statistically significant correlation 
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To further understand the relationship between Pacific climate variability and rainfall across 

Australia, relationships between the NINO3 index and the 107 district-averaged rainfall series 

are now established. This investigation shows 90 of the 107 districts (84%) to have statistically 

significant correlations )05.0( <p  between deseasonalised monthly rainfall totals and the 

monthly NINO3 index. These districts are shaded in Figure 4.7. The areas failing to show 

significant correlation are the low rainfall areas of Western Australia and the west coast of 

Tasmania. Hydrologic processes in these two regions may be modulated to a greater degree by 

climatic influences derived from either the Indian or Southern Oceans (eg Kuhnel, 1990). 

Although the monthly rainfall series for 90 districts are significantly predicted by NINO3, it is 

important to note that for the rainfall series that is best predicted (District 27 in north 

Queensland), this index can explain only 4% of total variability. This demonstrates that various 

other climate phenomena may be at least as important for explaining variability in monthly 

rainfall.  

Figure 4.7 Districts that show statistically significant linear correlation between deseasonalised 

monthly rainfall and monthly NINO3 values 
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Figure 4.8 Districts that show a statistically significant difference in monthly mean rainfall between 

La Niña and El Niño months 

After categorising months as El Niño and La Niña, 2-sample t-tests are again used to determine 

the significance of mean differences in monthly rainfall anomalies between the opposite 

extremes of ENSO. The districts that demonstrate a significant difference in mean )05.0( <p

are shaded in Figure 4.8 and their location closely matches the regions that display significant 

correlation to NINO3. From this analysis, 88 districts (82%) show a significant increase in the 

mean rainfall anomaly for La Niña months as opposed to El Niño months. Furthermore, 

opposite ENSO phases produce statistically significant differences in monthly rainfall 

variability for 54 of the Australian districts (52%). This suggests that ENSO influences monthly 

rainfall across Australia, through modulating both the expected value and the variability of 

rainfall in a majority of meteorological districts.

A final measure of the association between ENSO and the variability of monthly rainfall across 

Australia is the relationship between the 2-sample t-test statistics and the monthly coefficient of 

variation )( vC  for each district. By defining vC  as the ratio of the sample standard deviation to 

the sample mean for the observed monthly rainfall from each district, the rank correlation 

)34.0( =r  between these values and the t-test statistics across the 107 districts is highly 

significant )001.0( <p . 
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Districts showing the greatest variability in monthly rainfall have a tendency for large 

differences in mean rainfall between El Niño and La Niña episodes. These results concur with 

numerous published results that indicate an association between ENSO phase and a widespread 

and substantial modulation of rainfall across much of Australia. It is clear that persistence 

within ENSO phases influences the rainfall regimes of Australia. 

4.2.2 Influence of IPO upon rainfall 

The importance of climate modes other than ENSO in the modulation of Australian rainfall is 

now investigated with the low frequency IPO index. By using thresholds of ±0.5 to define the 

positive and negative phases of the IPO (consistent with Power et al., 1999a; Kiem et al., 2003), 

the difference in mean monthly rainfall between opposite phases is analysed through 2-sample t-

tests. Confidence intervals around the mean monthly difference for each district-averaged series 

are shown in Table 4.7 with significance probabilities. Together with these results, Table 4.7 

shows the linear correlation (and p-values) between monthly rainfall and monthly IPO, where 

IPO values are constant for 3 consecutive months. Although Table 4.6 demonstrates a 

significant relationship between ENSO phase and monthly rainfall variability, the results in 

Table 4.7 fail to show a similar relationship for opposite IPO phases. This is an expected result 

as these rainfall series are 90 years in length, and IPO has multidecadal cycles. Furthermore, 

correlations between deseasonalised monthly rainfall and IPO are weaker than corresponding 

correlations to NINO3, with only District 16 being statistically significant at a 5% level.  

Table 4.7 Results for 2-sample t-tests and linear correlations between deseasonalised monthly 

rainfall and monthly IPO values, with significance probabilities 

District 
Mean difference   

(95% CI) 
Probability 

Correlation to 
IPO 

Probability 

9A 0.026  (0.129, -0.181) 0.739 -0.037 0.233 
16 0.109  (0.050, -0.267) 0.179 -0.062 0.044 
27 0.152  (0.327, -0.010) 0.065 -0.056 0.073 
71 0.120  (0.272, -0.032) 0.120 -0.054 0.079 

Although monthly rainfall in these four districts was not significantly influenced by IPO, the 

importance of this source of climatic variability on the various rainfall regimes is now 

investigated using deseasonalised monthly totals. From using 2-sample t-tests, a majority of 

districts across the continent show a bias towards higher monthly rainfalls during IPO negative 

phases. Although 11 districts show a tendency towards lower rainfall during these periods, 

including Districts 4, 7, 7A, 8, 9, 10, 10A, 11 and 12 in Western Australia and 32 and 34 in 

Queensland, in only District 11 is this difference statistically significant. The 60 districts that 

show statistically significant difference in monthly rainfall due to opposite IPO phases are 

shaded in Figure 4.9. 
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Figure 4.9 Districts that show a statistically significant difference in monthly mean rainfall between 

IPO+ and IPO- months 

The influence of both IPO and ENSO upon the regional climate of Australia is clearly shown 

from the fact that 52 of the 60 shaded districts in Figure 4.9 also have a significant difference in 

monthly rainfall between El Niño and La Niña months. With IPO persisting in each phase for 

extended periods before undergoing rapid phase changes, it is clear from these results that there 

will be a tendency for higher or lower rainfall over multi-decadal periods. Superimposed upon 

this long-term persistence in rainfall are shorter-duration fluctuations due to oscillations 

between ENSO phases. 

4.2.3 Influence of non-Pacific climate modes upon rainfall 

Many existing prediction systems for Australian rainfall focus primarily upon the influence of 

the tropical ENSO, with little regard given to the influence of interannual SST variability in the 

Indian and Southern Oceans. The Australian BOM utilise the link between Pacific SST 

anomalies and precipitation anomalies across Australia to generate predictions over 60-90 day 

lead times. The Queensland Department of Primary Industries analyse phases of SOI to predict 

precipitation anomalies over northeast Australia (eg Stone et al., 1996). In a different approach, 

White (2000) focused upon the eastward propagation of covarying SST and moisture flux 

anomalies though the Indian and Southern Oceans to predict interannual precipitation changes. 

This latter study demonstrated that ocean-atmospheric changes surrounding Australia can 

influence the distribution and magnitude of precipitation.  
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The role of anomalous changes in Indian Ocean SSTs, particularly those associated with the 

IOD, in the modulation of Australian rainfall is now investigated by assuming independence 

from ENSO. Partial correlations can highlight relationships between dependent variables (in this 

case a time series of monthly rainfall anomalies) and a predictor variable from which a second 

predictor has been partialled. This method was utilised by Saji and Yamagata (2003) to detail 

impacts of the IOD on seasonal rainfall totals across the globe. The partial correlation between 

the dependent variable Y  and the first predictor variable 1X  is calculated as: 
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where 1,Yr  is the linear correlation between the dependent variable and first predictor variable, 

and similarly for other terms. The square of this quantity, 2
1p , describes the amount of variance 

in the dependent series not already explained by 2X , that is explained by 1X . 

In this analysis, monthly values of the NINO3 and the Indian Ocean dipole index (DMI) are 

used as predictors for the deseasonalised monthly rainfall series for the four meteorological 

districts. The correlation between the DMI and the deseasonalised monthly rainfall from which 

NINO3 is partialled is compared to the correlation between NINO3 and rainfall from which 

DMI is previously partialled. This allows the influences of both oceans upon Australian rainfall 

to be analysed separately. Partial correlations between monthly rainfall anomalies and the 

NINO3 and DMI series are displayed in Table 4.8. The DMI is shown to explain four times the 

variability in the monthly rainfall anomalies of District 16 than the NINO3 series, and slightly 

more of the variability in District 71 rainfall. In Districts 9A and 27 however, the effect of DMI 

is negligible once ENSO effects are removed.  

Table 4.8 Partial correlations between deseasonalised monthly rainfall and monthly NINO3 when 

allowing for DMI and deseasonalised monthly rainfall and monthly DMI values when allowing for 

NINO3 

District Partial correlation to NINO3 Partial correlation to DMI
9A -0.116 -0.013 
16 -0.052 -0.103 
27 -0.160 -0.050 
71 -0.076 -0.086 

By repeating this analysis with deseasonalised monthly rainfall in each Australian district over 

the period 1913-2002, 43 districts of Australia (those shaded in Figure 4.10) show the DMI to 

be a more significant predictor than the monthly NINO3. The spatial distribution of these 

shaded districts favours the southwestern half of the continent, with no district in either the 
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Northern Territory or Queensland, and only a few districts in New South Wales having a 

relationship to the IOD that improves the relationship to ENSO. Importantly, the shaded 

districts throughout Western Australia correspond to regions that did not show significantly 

lower rainfall in El Niño periods as opposed to La Niña episodes. These results show that each 

of the ocean basins surrounding Australia have important influences upon the variability of 

Australian climate. Furthermore, these results are consistent with empirical evidence that shows 

the IOD to influence Australian rainfall through a modulation of cloud bands that deliver 

rainfall in a northwest-southeast direction across the continent. 

Figure 4.10 Districts in which the correlation between monthly DMI values and deseasonalised 

monthly rainfall from which NINO3 has been partialled exceeds the correlation between monthly 

NINO3 values and deseasonalised monthly rainfall from which DMI has been partialled 

The cumulative impact of the ENSO, IPO and IOD on the Australian rainfall regime is now 

estimated through the method of Principal Component (PC) analysis. The PC method reduces 

the number of dimensions of the prediction data such that a smaller number of uncorrelated 

variables are used. Using monthly values of the NINO3, IPO and DMI indices over their 

common period (1869-1999), the first principal component (PC1) accounting for 46% of the 

total variability in these series is evaluated as 

DMIIPONINOPC ×+×+×= 497.0508.03704.01
 (4.2) 

The first PC represents an overall impact of these three climate modes, as each coefficient has 

the same sign and is not close to zero. This is consistent with observed patterns of the negative 
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phase of each mode corresponding to increased rainfall across Australia. The evaluation of PC1

over slightly different time periods should alter the coefficients associated with each index 

although retaining the same signs. Eq. 4.2 may be used to generate a time series of monthly 

variates in order to relate with monthly rainfall anomalies. Table 4.9 compares linear 

correlations between the PC1 index and the deseasonalised monthly rainfall in each of the four 

selected districts, with correlations between rainfall and monthly NINO3 values. These results 

show that the PC1 series explains a greater amount of monthly rainfall variability in Districts 16 

and 71 than NINO3, reflecting significant relationships between these data and the IOD series.

Table 4.9 Linear correlations (and significance probabilities) between deseasonalised monthly 

rainfall and monthly PC1 and NINO3 values 

District Correlation to PC1 Correlation to NINO3
9A -0.109  (<0.001) -0.123  (<0.001) 
16 -0.106  (0.001) -0.081  (0.008) 
27 -0.180  (<0.001) -0.199  (<0.001) 
71 -0.115  (<0.001) -0.101  (0.001) 

Each of the district-averaged rainfall series from across Australia are now analysed to elucidate 

the amount of rainfall variability explained by the PC1 series. For the 81 Australian districts 

(76% of districts) shaded in Figure 4.11, linear correlations to the PC1 series are stronger than 

correlations to the NINO3 index. This clearly indicates that PC analysis provides a valuable 

summary of major climate modes that modulate the climate of Australia. 

This section has shown evidence for widespread modulation by the dominant climate modes of 

monthly rainfall data from across Australia. It is likely that the interaction of these various 

circulation phenomena will produce a forcing mechanism in the hydrological cycle, which is 

revealed as persistence within a finite number of stable climate states.  
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Figure 4.11 Districts in which the correlation between deseasonalised monthly rainfall and monthly 

PC1 values exceeds the correlation between rainfall and monthly NINO3 

4.2.4 Influence of ENSO and IPO upon streamflow 

The relationships between deseasonalised monthly flow records and the ENSO and IPO 

phenomena are explored in this section initially through multiple linear regressions using 

monthly NINO3 values and monthly values of the seasonal IPO index as predictor variables. In 

order to represent the combined influence of these two climatic modes, the significance of the 

product of the NINO3 and IPO indices (referred to as NI) as a predictor of monthly flows is also 

analysed.  

For the time series of deseasonalised monthly flows in the Murray )( ty , which has zero mean 

and unit variance, the equation having the smallest estimated standard deviation of errors is: 

NIIPONINOyt ×+×−×−−= 108.0135.03324.0121.0  (4.3) 

This equation is statistically significant )001.0( <p  using a t-test, and explains approximately 

10.7% of the variability within the time series of deseasonalised monthly flows. The addition of 

the NI term reduces the standard deviation of errors from 0.951 to 0.947 and increases the R2

value from 8.9%. Table 4.10 shows coefficients (with standard errors) for regressions of 

deseasonalised monthly flows in each river using these three predictor variables. 
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Table 4.10 Coefficients and standard errors for regression of deseasonalised monthly streamflows 

on climate indices, with R2 values, standard deviation of residuals and significance 

Constant 
(SE) 

NINO3 
(SE) 

IPO 
(SE) 

NINO3xIPO 
(SE) 

R2 S P 

Murray -0.121 
(0.053) 

-0.324 
(0.034) 

-0.135 
(0.026) 

0.108 
(0.031) 

10.7% 0.943 <0.001 

Darling 0.063 
(0.027) 

-0.337 
(0.034) 

-0.205 
(0.026) 

0.110 
(0.030) 

14.0% 0.925 <0.001 

Cooper 0.077 
(0.079) 

-0.278 
(0.093) 

-0.081 
(0.064) 

0.143 
(0.075) 

4.9% 0.982 0.001 

Diamantina 0.016 
(0.053) 

-0.137 
(0.055) 

-0.014 
(0.045) 

0.020 
(0.044) 

1.8% 0.978 0.065 

Burdekin -0.021 
(0.039) 

-0.158 
(0.044) 

-0.084 
(0.034) 

0.097 
(0.037) 

4.2% 0.943 <0.001 

Dumaresq -0.022 
(0.052) 

-0.081 
(0.059) 

-0.052 
(0.052) 

0.087 
(0.048) 

1.8% 0.981 0.067 

Condamine 0.026 
(0.042) 

-0.134 
(0.048) 

-0.041 
(0.037) 

0.045 
(0.039) 

1.8% 1.014 0.009 

The three predictor variables shown in Eq. 4.3 may not necessarily produce the optimal 

regression equations for each streamflow time series, and the results in Table 4.10 show the 

combined hydrologic impact of ENSO and IPO to vary dramatically for the different catchment 

sizes and locations. In particular flows in the Dumaresq and Condamine, located in the southeast 

of Queensland, show only weak relationships to this source of climatic variability. However, 

when principal component analysis is used to generate a series from the same predictor 

variables as Eq. 4.3, these two rivers show a stronger correlation to the PC1 series than to the 

NINO3 series. In the other rivers analysed, the PC1 series explains less variability in the 

monthly flow series than the NINO3 series can explain alone, suggesting a stronger relationship 

between ENSO and monthly streamflow.  

The modulation by low-frequency IPO variability of the ENSO impact on streamflow can also 

be analysed through a categorisation of each month in the manner shown in Table 4.11. 

Through considering the central category (representing neutral ENSO and neutral IPO) as a base 

condition, all other combinations of the El Niño, La Niña, ENSO neutral, IPO negative, IPO 

positive and IPO neutral phases are represented by 8 separate indicator categories. For each 

monthly period, the category corresponding to the specific combination of ENSO (identified by 

5-mrm of the NINO3 index) and IPO takes a value of one, with each of the other seven 

categories taking a value of zero. 
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Table 4.11 Monthly climate indicator categories based on NINO3 and IPO indices 

IPO < -0.5 -0.5 < IPO < 0.5 IPO > 0.5 
La Niña 

(NINO3-5mrm < -0.4)
1 8 7 

ENSO neutral 
(-0.4 < NINO3-5mrm < 0.4)

2 –  6 

El Niño 
(NINO3-5mrm > 0.4)

3 4 5 

Time series of the eight climate categories are used as predictors in multiple linear regressions 

of the monthly streamflow records. These categories improve regression models shown in Table 

4.10 (by increasing P-values and reducing standard deviation of residuals) for each river except 

the two located within the Lake Eyre Basin. The most significant predictors for both Murray and 

Darling flows are categories 1, 2 and 8, which represent predominantly La Niña conditions in 

IPO negative periods, a result which is consistent with the observations of Power et al. (1999a) 

described earlier.  

The influence of ENSO upon monthly streamflow records is also analysed by comparing mean 

flows in El Niño months with mean flows in La Niña months using 2-sample t-tests. In each of 

the deseasonalised monthly streamflow time series, there is significant serial correlation, as 

shown in Table 4.12. In time series that have such characteristic, it is important to adjust the t-

test to take this into account. The standard t-test would determine the difference in means of two 

samples ( 1y  and 2y ) by evaluating the statistic shown in 
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where 2
1s  and 1n  are the variance and numbers of values in sample 1, and same for sample 2. 

Where there is significant serial correlation in these samples, the test statistic has to be varied 

using the value of the first-order autocorrelation coefficient, r(1), such that  
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The results of these modified t-tests are shown in Table 4.12, and demonstrate that mean 

monthly flows four of the seven rivers analysed are significantly influenced (at a 5% level) by 

opposing ENSO phase. 
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Table 4.12 Mean difference in deseasonalised monthly streamflows between opposite ENSO phases, 

with 90% interval for the difference and associated significance level 

River 
First-order autocorrelation 

coefficient 
Mean difference between 

La Niña and El Niño episodes 
P 

Murray 0.885 0.550
(0.001, 1.099) 

0.025 

Darling 0.882 0.727
(0.196, 1.258) 

0.004 

Cooper 0.543 0.452 
(-0.105, 1.009) 

0.057 

Diamantina 0.508 0.122
(-0.191, 0.435) 

0.223 

Burdekin 0.455 0.513 
(0.237, 0.790) 

<0.001 

Dumaresq 0.433 0.287
(-0.116, 0.690) 

0.082 

Condamine 0.293 0.485
(0.166, 0.804) 

0.002 

4.3 Relationships between arid zone hydrology and climate indices 

As shown in the previous section, the relationship between ENSO variability and streamflow 

responses are almost always stronger than its relationship to rainfall (eg Chiew and McMahon, 

2003). Flow events from arid zone streams are now analysed, as these may provide the most 

detectable response to ENSO modulation. The hydrology of arid zones is particularly 

interesting, with flow regimes characterised by high seasonal variation and periods of zero or 

very low flows. Other factors, including those associated with irregular atmospheric circulations 

such as ENSO have been shown to strongly influence arid zone flow patterns (eg Puckridge et 

al., 2000). Indeed, the highly variable flow regimes of these regions potentially amplify the 

ENSO teleconnections observed in the less-extreme flow records of other rivers.  

4.3.1 Flows in the Todd River 

In this section, the flow data from the Todd River are examined. Located at the northwestern 

edge of the Lake Eyre basin (see Figure 4.4), the sub-catchment of the Todd River above Alice 

Springs covers 450 km2. Daily flows are available for a period of 37 years (1962-1998). This 

river is characterised by periods of very low or zero flow, which separate distinct flow events 

that continue for an average of 41 days. The distinctive pattern of flow in the Todd River is 

shown in Figure 4.12 using a two-year sample of daily flow. 
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Figure 4.12 Daily flows in the Todd River (1994-1996) 

In this study, flow events are referred to as spates, defined as a continuous sequence of days 

over which non-zero flow is recorded. Annual summary statistics of this flow record are 

presented in Table 4.13, with water years beginning October 1st. Daily flow exceeds the sample 

average for approximately 3% of the time, with 49% of months recording zero flow. 

Table 4.13 Summary flow statistics for the Todd River 

Total annual flow (x106 m3) Number of annual spates 
Minimum Median Mean Maximum Mean Variance 

0 6 11 94 3.27 4.65 

The strong seasonal pattern of flow is shown in Figure 4.13, with average monthly flows 

expressed as a percentage of average annual flow. With large intra-annual variability, in which 

flows in January to March are much larger on average than flows in July to September for 

example, it is more appropriate to analyse variability in the annual flow regime. 
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Figure 4.13 Average monthly flows in the Todd River expressed as percentages of annual average 
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As the available data extends over the period (1962-1998), it is possible to assess the variability 

in the ENSO signal through MEI data, which is only available from 1950 onwards. The method 

used to classify ENSO events with the MEI follows Kiem and Franks (2001) with values over 

six-month periods from October to March distinguishing annual ENSO phases. Kiem and 

Franks (2001) claim that this method is the most robust for identifying ENSO variability over 

the time period being investigated. In this manner, El Niño years are characterised by six-month 

MEI averages beginning the previous October being above 0.5 and La Niña events as years in 

which this average is below –0.5. Six-month averages of the IPO, provided in seasonal totals, 

are also used. The initial stage of this analysis is to use multiple linear regressions to relate 

ENSO phase to total annual flow. The total variability attributed to ENSO in the time series of 

annual flow is established through regressing flows on the MEI and IPO. Table 4.14 gives the 

coefficients (with standard errors) for regression models with the lowest standard deviation of 

residuals (in quantities of 1 x 106 m3). The addition of a IPOMEI ×  term improves the 

regression, reducing the standard deviation of residuals from 17.73 to 16.02.  

Table 4.14 Coefficients and standard errors (SE) for regression of total annual Todd flows on 

climate indices, with R2 values, standard deviation of residuals (S) and overall P-values 

Constant 
(SE) 

Coefficient of 
MEI (SE) 

Coefficient 
of IPO (SE) 

Coefficient of 
MEI x IPO (SE) 

R2 S P 

9.80
(2.96) 

-2.62       
(2.85) 

-2.93   
(2.64) 

6.64           
(2.27) 

24.3 % 16.02 0.025 

The next aspect of this study is to investigate the influence of ENSO upon discrete flow 

episodes. If the random processes underlying spate flows are considered the same from one year 

to the next, the distribution of annual spates would follow a Poisson distribution. The alternative 

considered is that the underlying processes depend on slowly varying global climate conditions 

that result in greater variability in the number of annual spates than are expected from a Poisson 

distribution. Table 4.13 indicates that the number of annual spates in the Todd is indeed 

overdispersed, with the ratio of variance to mean being 1.42. This overdispersion can be 

modelled through various approaches, the first of which through a Poisson regression function, 

including explanatory variables such as the MEI and the IPO. In this model, it is assumed that 

the dependent variable Y  has a Poisson distribution given the independent variables 

mXXX ,...,, 21 , that is 
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where µ  is the mean of the Poisson process. The logarithm of this mean value is assumed to be 

a linear function of the explanatory variables, i.e.  
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mm XXX ααααµ ++++= ...)ln( 22110
 (4.7) 

The choice of a logarithm as the link function to relate the mean of the process to its predictor 

variables has the result of ensuring fitted values of µ  remain positive. The deviance is a 

measure of the variability of Y , and if Y  has a Poisson distribution, the expected value of the 

deviance will equal the degrees of freedom. Substantially larger values are evidence for Y

being over-dispersed. Therefore, a best model is selected on the basis of smallest deviance. 

By representing annual climate conditions as the average of climate index values over October 

to March periods, the model with the lowest deviance of residuals was 

IPO×+= 174.0104.1)ln(µ  (4.8) 

This equation, which was not improved by the inclusion of the MEI, produces a residual 

deviance of 54.41 on 35 degrees of freedom. As a result, for the time series of annual spates in 

the Todd, the MEI and IPO predictors are unable to sufficiently explain excess variability.  

Although climate indices failed to be significant indictors of spate flows, ENSO impact is 

identified by expressing the modulation of ENSO phase by IPO through the nine climate 

categories shown in Table 4.11. For each annual period, the category corresponding to the 

specific combination of MEI and IPO in that year takes a value of one, with each of the other 

seven variables taking a value of zero. Poisson regressions for the time series of spates are now 

fitted with the eight indicator series, with Table 4.15 comparing the best models from using only 

the indices as predictors, with the best models obtained from fitting category indicators (shown 

in bold). The Akaike Information Criterion (Akaike, 1974) is used to compare the fit of each 

model, and shows that category predictors provide improved regression models than those based 

solely on climate indices. Although category predictors fail to explain all the excess variability 

in this time series, categories one and two represent La Niña conditions in IPO negative periods, 

and this is again consistent with results presented by Power et al. (1999a). This highlights that 

ENSO variability is responsible for most of the clustering of spates. 

Table 4.15 Comparison of optimum Poisson regression models for number of annual spates in the 

Todd using six-month averages of MEI and IPO values as indicative of annual totals, and category 

indicator variables (shown in bold) as predictors 

Best predictive models for )ln(µ with 

standard errors of coefficients in brackets 
Residual 
deviance 

Degrees of 
freedom 

AIC 

 1.104  +  0.174 x IPO 
(0.104)   (0.088) 

54.409 35 160.23 

 1.317  –  1.066 x (ONEorTWO) 
(0.094)   (0.345) 

45.508 35 151.33 
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4.3.2 Flows in African arid zone rivers 

Analysis in the previous section demonstrated that ENSO variability influenced the occurrence 

and volume of discrete flow records in an arid-zone river in Australia. McMahon et al. (1992) 

demonstrated that the most variable flow regimes across the world were located in both 

Australia and southern Africa, so the flow records for two neighbouring arid zone rivers in the 

latter are now investigated. Cigizoglu et al. (2002) developed point process models to 

characterise the discrete flow episodes in the Omatako and Omaruru rivers in Namibia, although 

the roles of large-scale climatic regimes on such episodes were not considered. These rivers 

have flow conditions that are more extreme than those observed in the Todd, such that the 

influence of global climate fluctuations may be more clearly observed. 

The Omatako and Omaruru Rivers are both located in the Kalahari Sandveldt of Namibia, 

southern Africa, as shown in Figure 4.14. Annual runoff rarely exceeds 10mm. Each river 

originates in the high central plateau of the country, with the Omatako flowing northeast as a 

tributary of the endoreic Okavango Basin, and the Omaruru flowing west to the Atlantic. 

Figure 4.14 Locations of the Omatako and Omaruru rivers, together with their sampling sites 

shown as triangles (after Cigizoglu et al., 2002) 

Namibia has a subtropical desert climate, with ephemeral flow events in the Omatako and 

Omaruru confined generally to the wet season between January and April, which are also the 

hottest months. Mean daily flows are available for periods of 29 years (1962-1990) for the 
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Omatako River recorded at Ousema and 22 years (1965-1986) for the Omaruru recorded at the 

town of Omaruru. Summary statistics of these flow records are presented in Table 4.16. 

Table 4.16 Summary flow statistics for the Omatako and Omaruru Rivers 

River Catchment Total annual flow (x106 m3) Number of annual spates 
 (km2) Minimum Median Mean Maximum Mean Variance 

Omatako 4970 1 20 35 144 4.45 5.61 
Omaruru 2520 0 23 28 110 2.59 4.54 

Periods of very little or zero flow in the Omatako and Omaruru are more exaggerated than in the 

Todd, with flow events having average durations of only 8.5 and 5.5 days respectively. The 

distinctive patterns of flow and the close association between these two rivers are shown in 

Figure 4.15 using two-year samples of daily flow. 
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Figure 4.15 Daily flows in the Omatako and Omaruru Rivers (1983-1985) 

Multiple linear regressions are used to relate ENSO phases to total annual flows in these two 

rivers, with the best regression models for each river summarised in Table 4.17. Although 
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ENSO indices fail to provide a significant description of annual flows in the Omaruru, a 

regression of the Omatako flows on the MEI explains over 20% of the variability in this series. 

Neither model was improved by the addition of a IPOMEI ×  term. 

Table 4.17 Coefficients and standard errors (SE) for regression of annual flows in the Omatako and 

Omaruru on climate indices, with R2 values, standard deviation of residuals (S) and P-values 

River 
Constant 

(SE) 
Coefficient of 

MEI (SE) 
Coefficient 
of IPO (SE) 

R2 S P 

Omatako 35.49
(6.48) 

-17.43     
(6.53) 

– 20.9 % 34.89 0.013 

Omaruru 28.63
(6.12) 

-9.46        
(6.42) 

8.06   
(5.86) 

13.3 % 28.60 0.259 

The linear correlation of residuals from regression models of the Omatako and Omaruru (1965-

1986) is 0.586, which is statistically significant )006.0( =p . The regression of annual flows in 

both the Omatako and Omaruru on ENSO indices is now analysed in order to investigate the 

regional influence of ENSO, with a bivariate distribution describing the residuals. Therefore the 

natural logarithms of total annual flow in river i, )ln( iy , is assumed to follow the relationship 

iiiii eIPOMEIy +++= ,2,1,0)ln( ααα  (4.9) 

where the residuals ie  are generated from a bivariate normal distribution. This equation uses the 

MEI and IPO as predictors of annual flows, although different coefficients for these predictors 

are estimated for each of the two rivers. The natural logarithm of flows produces marginal 

residuals that more closely approximate a series of random Gaussian variates. Table 4.18 shows 

coefficients for the best regression model from using combinations of predictor variables, 

together with the estimated correlation of the errors. This model has a regression constant and 

MEI coefficient that are identical for the two regression models, although different IPO 

coefficients are estimated. Importantly, this model explains more variability in these flow data 

than a standard bivariate normal distribution on the logarithm of flows. 

Table 4.18 Coefficients and standard errors (SE) for optimum regression model of bivariate flow 

records, with bivariate normal distribution fitted to residuals for Omatako and Omaruru rivers 

River Correlation Constant (SE) Coefficient of MEI (SE) Coefficient of IPO (SE) 

Omatako -0.309 (0.207) 

Omaruru 

0.785 
(0.105) 

11.300 
(5.740) 

-0.458 
(0.221) -0.209 (0.412) 

This result shows that annual flow volumes in these arid zone rivers are modulated by global 

circulation phenomenon. Although flow characteristics vary dramatically across these rivers, 

with the Omatako and Omaruru showing much shorter flow episodes and longer dry periods in 
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between such episodes than the Todd, ENSO still explains a large amount of flow. Furthermore, 

with the bivariate analysis providing an improved description of the relationship between 

streamflow and climate variability, it is evident that the regional extent of ENSO is important.  

Modelling of spate flows in the two African rivers provides further evidence for the role of 

ENSO in modulating flow episodes in arid zones. Similar to the Todd, the numbers of annual 

spates in the Omatako and Omaruru are overdispersed, with the ratio of variance to mean being 

1.26 in the Omatako and 1.75 in the Omaruru. By again representing annual climate conditions 

as the average index values over October to March periods, the model with the lowest standard 

deviation of residuals from fitting these predictors to the Omatako record was 

MEI×−= 284.0456.1)ln(µ  (4.10) 

This equation, which was not improved by the inclusion of the IPO, produces a residual 

deviance of 26.96 on 27 degrees of freedom, consistent with the hypothesis of a Poisson 

variable. This can be compared with a residual deviance of 36.38 on 28 degrees of freedom for a 

null model without climate predictors, and corresponds to an R2 of 25.9%. Consequently, the 

regression of MEI averages on the number of Omatako spates is regarded as a suitable fit, with 

this index alone explaining the excess variability in the Poisson-distributed response. 

For the time series of annual spates in the Omaruru, the MEI and IPO predictors are unable to 

sufficiently explain excess variability, with residual deviance remaining in excess of the number 

of degrees of freedom. The best models from climate index predictors are now compared to 

Poisson regressions using the eight climate category series, with results summarised in Table 

4.19. For the Omaruru, the best regression model on index values was not improved by the 

inclusion of the cross product of MEI and IPO, and the optimum model from fitting climate 

categories used a single one index that combined categories four, five and six. Categories four 

and five represent El Niño conditions, which is a similar result to that gained from the Omatako 

record. This again highlights that ENSO variability can explain most of the clustering of spates 

when arid zone rivers are modelled as individual series. 
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Table 4.19 Comparison of optimum Poisson regression models for number of annual spates in the 

Omatako and Omaruru Rivers using six-month averages of MEI and IPO values as indicative of 

annual totals, and category indicator variables (shown in bold) as predictors 

River 
Best predictive models for )ln(µ with 

standard errors of coefficients in brackets 

Residual 
deviance 

Degrees of 
freedom 

AIC 

Omatako 
1.456  –  0.284 x MEI 

(0.091)   (0.094) 
26.962 27 124.37 

1.585  –  1.026 x FIVE 
(0.091)   (0.389) 

26.834 27 124.24 

Omaruru 
0.935  –  0.259 x MEI  +  0.237 x IPO 

(0.135)   (0.154)               (0.127) 
38.241 19 95.87 

0.606  +  0.616 x (FOURorFIVEorSIX) 
(0.212)   (0.272) 

36.993 20 92.62 

The regional influence of ENSO upon isolated flows in these arid rivers will be more apparent if 

the observations from two rivers in the region are considered together. With the Omatako and 

Omaruru located in close vicinity, both rivers will be under similar climatic influences, and thus 

spate models may be improved by considering bivariate responses. A plausible model that 

allows for dependence within this pair of rivers is the bivariate Poisson distribution, as this 

retains a Poisson assumption for the number of annual spates recorded in each river, together 

with dependence between flows. A bivariate framework is fitted to annual spates in the African 

rivers over their common period (1965-1986), and allows for dependence between the Poisson-

distributed variables 1Y  and 2Y , which have the expected values )()( 3111 λλµ +==YE  and 

)()( 3222 λλµ +==YE . The dependence between the variables is included in the model by the 

parameter 3λ , which is the covariance between 1Y  and 2Y . If 3λ  equals zero, the model reduces 

to the product of two independent Poisson distributions. The joint density of the bivariate 

Poisson distribution, as presented by Karlis and Ntzoufras (2003) is 
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The influence of ENSO on the spate occurrence is now incorporated by allowing the natural 

logarithm of the expected number of observations in river i, )ln( iµ , to be a linear function of 

climatic predictors as shown in Eq. 4.12. This assumption is thus consistent with the univariate 

Poisson regression model. 

IPOMEI iiii ,2,1,0)ln( αααµ ++= 2,1=i (4.12) 

The dependence parameter 3λ  is estimated by the covariance between the annual numbers of 

spates in the two rivers, with remaining parameters fitted by a method of maximum likelihood. 
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Alternatively, the expectation-maximization algorithm developed by Karlis and Ntzoufras 

(2003) could also be used for parameter estimation. The Adaptive Metropolis algorithm (Haario

et al., 2001), described in Section 3.4 is also employed to evaluate parameter uncertainty in the 

form of posterior distributions for the set of unknown parameters.  

The results from these bivariate Poisson calibrations are compared to those from independent 

models. The results in Table 4.20 show the optimum bivariate models from fitting ENSO 

indices, with Table 4.21 showing optimum models from using category predictors. Bayes 

Factors are included in each table comparing the optimum models to bivariate Poisson models 

with constant parameters. To maintain consistency with the results in Table 4.19, the category 

predictor for the Omatako and Omaruru combines categories four, five and six. These results 

indicate that the categories provide a slightly improved description of spate flows than the 

climate indices. Therefore models of bivariate flow patterns in both arid regions are improved 

by using indicators of ENSO variability and its multi-decadal modulation.  

Table 4.20 Coefficients and standard errors (SE) for optimum bivariate Poisson models, using 

climate indices as predictors, and Bayes Factors from comparing to fixed parameter models 

River Constant (SE) Coefficient of MEI (SE) Coefficient of IPO (SE) BFln
Omatako 1.465  (0.106) -0.214  (0.111) -0.144  (0.099) 
Omaruru 0.936  (0.135) -0.266  (0.150) 0.234  (0.126) 

1.78 

Table 4.21 Coefficients and standard errors (SE) for optimum bivariate Poisson models, using 

climate categories as predictors, and Bayes Factors from comparing to fixed parameter models 

River Constant (SE) Coefficient of categories (4 or 5 or 6) (SE) BFln
Omatako 1.660  (0.125) -0.419  (0.211) 
Omaruru 0.608  (0.208) 0.632  (0.272) 

4.75 

4.4 Summary of chapter 

This chapter has investigated relationships between large-scale climatic variability, as identified 

by various climate indices, and variability in both rainfall and streamflow data. Deseasonalised 

monthly hydrologic data were used in these analyses, as the monthly scale was useful in the 

detection of the dominant frequency of ENSO fluctuations. 

Using spatially-averaged rainfall data, it is apparent that monthly rainfall across much of 

Australia is modulated by the opposite phases of both the ENSO and IPO phenomena. 

Inevitably those districts in which monthly rainfall is not modulated significantly by Pacific 

climate modes, show a significant relationship to variability in Indian Ocean SSTs. Correlations 

between monthly rainfall and the first principal component from the NINO3, IPO and DMI 

series were stronger than correlations to the NINO3 alone in a majority of meteorological 
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districts, indicating the usefulness of this technique to represent an overall impact of these three 

climate phenomena.  

Monthly streamflows demonstrated stronger relationships to climate indices than the spatially-

averaged rainfall data, with the NINO3 being a more significant predictor than the PC1 series in 

data from the longest rivers, suggesting a strong relationship between ENSO and streamflow. 

These correlations are stronger than those observed with rainfall due to the aggregation that 

occurs in rainfall-runoff transformations. The combined influence of ENSO and IPO were also 

analysed through the use of monthly climate indicator categories, and importantly the dominant 

category reflected La Niña episodes in IPO negative epochs. Flow data from three arid-zone 

rivers are also analysed, with results demonstrating clear teleconnections with ENSO variability. 

With both the rate of occurrence and the volume of short flow episodes in arid zone rivers being 

influenced by ENSO, existing hydrological models for such rivers may be improved through 

incorporating both the ENSO and the IPO predictors. An alternative explanation for the 

overdispersion of spate numbers is through persistence in the annual flow regime that is related 

directly to low-frequency climate variability. This chapter demonstrates that climate indices are 

a useful mechanism to represent changes within persistent climate modes, and to relate climatic 

persistence to hydrological data. In the following chapter, the relationship between persistent 

climate modes and hydrologic data is examined further through spells analysis. 
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