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Chapter 1 Introduction 

As demands upon existing global water resources increase, the accurate measurement of water 

availability assumes greater importance. The efficient management of future water supplies will 

demand a clear understanding of the many interactions within the hydrological cycle, in 

particular the impact of climate variability upon the spatial and temporal distribution of rainfall. 

Interactions between various global climate phenomena produce protracted wet and dry cycles, 

a characteristic referred to in this work as hydrological persistence. Knowledge of the likely 

timing, duration and severity of persistent low rainfall periods will likely assist in reducing 

possible social and economic impacts. In this context, there is a clear requirement for statistical 

models that improve both the identification and the explanation of coherent patterns within 

rainfall and streamflow records. This thesis demonstrates the efficacy of hidden Markov models 

(HMMs) to encapsulate hydrological persistence primarily at monthly time scales. 

1.1 The influence of climatic persistence 

The climate of Australia experiences high interannual variability, with rainfall being sensitive to 

anomalies in climate modes such as the El Niño Southern Oscillation (ENSO) and ocean-

atmospheric interactions across both the Indian and Southern Oceans. Although slowly-varying 

global circulation phenomena are known to have strong teleconnections with hydrologic 

observations, many stochastic models designed to simulate and forecast such data fail to provide 

a useful description of these climate influences. The supposition of the broader climate having a 

tendency to fluctuate between a discrete number of stable regimes (or “states”) has a long 

history in meteorological studies. This concept lends itself directly to a rationalisation of 

hydroclimatic persistence.

The natural persistence of wet and dry spells within Australian hydrology is illustrated in Figure 

1.1 using reconstructed natural flows for the River Murray. These time series demonstrate 

deviations from median values for records of both annual totals and monthly variates that are 

produced by removing annual seasonality from the record of monthly flows. Extended periods 

either side of these median thresholds are apparent at each time scale, however this 

characteristic is ostensibly more dramatic in the 10-year sample of monthly variates. Within this 

sample period, a protracted two-year period during which monthly variates remain below the 

long-term median is followed shortly after by a wet period of similar duration. Characteristics 

such as these are apparent across a wide range of hydrologic data for Australia, revealing an 

underlying tendency towards hydrological persistence, particularly at a monthly time scale.  
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Figure 1.1 Deviations from median values of reconstructed natural flows in the River Murray 

evaluated for annual totals (x103 Gigalitres, top) and deseasonalised monthly variates (bottom) 

The design and management of water resource infrastructure requires accurate simulations of 

monthly rainfall and streamflow totals. Furthermore it is important that stochastic rainfall 

models also replicate observed patterns of wet and dry spells. The design of hydrological time 

series models however raises a number of questions. Firstly, are prominent features within 

hydrologic records predictable over the long-term? Secondly, can the relationship between these 

features and climatic fluctuations be substantiated?  

Temporal changes in climate proxies, such as sea surface temperature and atmospheric pressure 

records, are used to classify variations in the broader climate. Although these variations may 

also indicate changes in rainfall observations, clear linkages between these hydroclimatic 

variables are often concealed through the influence of atmospheric instabilities. Even if the 

magnitude and structure of climate anomalies were similar across each climate event, the 

hydrologic response to each would differ. Furthermore statistics of localised weather conditions 

are poorly represented within simulations and seasonal forecasts of atmospheric global 
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circulation models (GCMs). Therefore rather than attempting to use the output of such broad-

scale models to produce hydrologic simulations, an alternative approach is to design time series 

models that capture localised hydroclimatic oscillations. 

Hidden Markov models (HMMs) have enjoyed extensive use across a wide range of scientific 

fields. Within these parsimonious models, the probability of localised rainfall at a monthly scale 

is conditioned upon a small number of discrete weather states that are unobserved (i.e. 

“hidden”), yet estimated through the calibration of this model to observed data. HMMs offer an 

improved conceptual approach to describing hydrologic responses to broader-scale climatic 

oscillations than linear time series models such as ARMA models. 

HMMs have been promoted as suitable time series models for hydrological persistence at an 

annual scale (eg Thyer and Kuczera, 2000; Srikanthan et al., 2002b), yet rarely for the 

description and simulation of monthly data, which is a more appropriate time scale with regard 

to the dominant climate frequencies. Moreover the analysis of monthly data provides an obvious 

increase in sample size than the analysis of annual totals. In order to improve the application of 

HMMs, many aspects of their structure can be developed, using a rigorous statistical framework 

to quantify uncertainties in both the observation data and the calibration. 

1.2 Objectives of Thesis 

The main goal of this thesis is to develop stochastic approaches to assist in the identification and 

explanation of hydrological persistence within observed data setes measured at a range of time 

scales. This goal comprises the following objectives: 

• To use a rigorous statistical framework to identify hydrological persistence in over 

various time scales, and to reconcile this persistence with climatic fluctuations 

• To analyse distinctions between hydrological persistence and standard time series 

definitions of persistence and investigate models that are specific to the former 

• To develop hidden Markov models (HMMs) to provide adequate descriptions of 

hydrological persistence at a monthly scale 

• To reduce the reliance of conventional HMMs on assumptions concerning the 

parametric form of conditional observations 

• To analyse hydrological persistence within various observed data 

• By using an explicit framework for hydrological persistence, to produce accurate 

simulations of monthly rainfall data that would assist in numerous water resource 

applications 
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1.3 Outline of Thesis 

Chapter 2 provides the background to the analysis of hydroclimatic persistence, summarising 

interactions between sources of climate variability and their teleconnections with hydrologic 

observations across a range of time scales. By reviewing previous studies into the dominant 

sources of climate variability, this chapter develops relationships between climate fluctuations 

and hydrological persistence. Climate indices are introduced as one possible approach to relate 

changes in dominant atmospheric circulation modes to hydrological variability. 

Chapter 3 focuses upon the theory of hydrological persistence, defining this in terms of spells 

analysis. A range of statistical tests used to quantify hydrological persistence are introduced, 

alongside the interpretation of mathematical persistence revealed as the Hurst phenomenon. 

Existing approaches to the stochastic modelling of hydrologic data are then presented together 

with a discussion of the inadequacy of such models to provide a clear description of temporal 

persistence. Against this discussion, the benefits of the HMM approach is reviewed alongside 

the rigorous statistical methodology that can be embraced to fully account for parameter 

uncertainty. Previous applications of both the HMM approach and the Bayesian paradigm to 

stochastic hydrology are discussed. 

Chapters 4 and 5 present a clear case for modelling persistence in Australian hydrologic series. 

Using spatially-averaged rainfall data and streamflow records from across the country, evidence 

for significant persistence at a monthly scale is presented through various runs statistics. 

Sources of climate variability, characterised through various indices, are shown to modulate 

these hydrologic data. The hydroclimatic influence of global circulation modes is further 

demonstrated through the analysis of various arid-zone hydrological data series. Relationships 

between climate indices and statistics derived from spells analyses show evidence that sources 

of broad-scale climate variability explain some of the persistence in hydrologic data that is 

modelled encapsulated with HMMs. Importantly the Hurst phenomenon, an alternative 

interpretation of persistence, is shown to be inconsistent with a spells-based interpretation of 

hydrological persistence. This provides further a further demonstration of the applicability of 

HMMs for modelling time series displaying significant clustering of hydrologic data. 

Chapter 6 describes the calibration of HMMs to annual rainfall data for six mainland capital 

cities of Australia, together with Alice Springs, and the spatially-averaged data for the 

meteorological district surrounding Sydney. By improving the statistical approaches used in 
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previous investigations of persistence in these data, the results in this chapter demonstrate that 

there is insufficient data at the annual scale to identify significant persistence. The 

circumstances under which the construct of persistence in HMMs becomes redundant are 

developed, in the process presenting a straightforward method to identify persistence accurately. 

Using these results, HMMs are then calibrated to monthly data (with intra-annual variability 

removed) in Chapter 7, and illustrate statistically significant persistence at this time scale. The 

monthly scale is consistent with the dominant frequencies of climatic persistence, and is 

suggested to be more appropriate than an annual scale for investigating hydrological 

persistence. Importantly, previous studies into the usefulness of HMMs to describe persistence 

have not investigated the calibrations of these models to monthly rainfall or streamflow data. 

Chapter 8 focuses upon a novel development of the conventional HMM formulation, a non-

parametric approach in which assumptions about the form of state conditional distributions are 

relaxed. This model provides an unbiased description of persistence, and adapts existing 

methods for HMM calibration. The robust and flexible structure of this model is illustrated 

through its calibration to hydrologic data from across Australia, with results being consistent 

with spells analyses as well as climate observations. The ability of this non-parametric HMM to 

be calibrated to both discrete and continuous-valued data is illustrated through an analysis of 

persistence in both monthly rainfall totals and time series of monthly rain-days. The 

identification of persistence in related data including short-duration pluviograph data provides 

further evidence for hydrological persistence at a monthly scale. 

The conventional structure of parametric HMMs is developed in Chapter 9 through the 

relaxation of certain statistical assumptions. Related statistical models such as hidden semi-

Markov models (HSMMs) and autoregressive hidden Markov models (ARHMMs) are 

described, and calibrated to the monthly rainfall totals for Sydney. These results demonstrate the 

efficacy of these models to describe hydrological persistence, although such application has 

been rarely described. Furthermore a novel hierarchical HMM, which describes persistence at 

monthly and annual frequencies simultaneously, is introduced and calibrated to monthly rainfall 

data. Chapter 10 provides a more thorough investigation into the nature of persistence in 

Australian hydrology, combining the capabilities of both parametric and non-parametric HMMs 

to provide estimates for underlying probability distributions in various persistent data. These 

results demonstrate the benefit of Bayesian model selection methods to identify the most 

appropriate models for monthly data series.  
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Finally, Chapter 11 illustrates how the calibration of HMMs can be adapted in order to generate 

multiple simulations of monthly hydrological data, the accuracy of which is measured against 

simulations from conventional linear models. These results demonstrate the efficacy of the 

HMM approach to describe monthly persistence and to provide accurate simulations of 

hydrologic data at a range of temporal aggregations. Furthermore, statistics describing 

characteristics of persistence are simulated accurately with HMMs. Catchment-scale rainfall 

simulations from HMMs are assessed in terms of reservoir reliability, demonstrating another 

useful application of this modelling approach in stochastic hydrology. The final chapters of this 

thesis summarise the main conclusions, and discuss possible avenues for future research. 
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Chapter 2 Identifying persistence within the 

global climate 

Stochastic models for hydrologic processes have rarely incorporated the influence of slowly-

varying climate modes. Hydrologic observations reveal extended periods of above and below-

average values, and oscillations between such periods are closely related to low frequency 

climate phenomena (eg Kiem et al., 2003). Protracted dry periods may develop into drought 

conditions that can ultimately place increased risk upon water resources. The analysis of wet 

and dry sequences has long been the focus of hydrologic studies, and time series models that 

incorporate climatic persistence may improve simulations and forecasts, both of which are 

fundamental to risk assessment in water resource management. The focus of this thesis is on the 

identification and modelling of hydrological persistence. In order to recognise the prevalence of 

this persistence, it is important to illustrate the mechanisms through which fluctuations in global 

climate modes impact upon the hydrological cycle. This chapter presents the context for the 

wider study by examining the complex hydroclimatic interactions that produce persistence in 

rainfall and streamflow observations. A thorough review of literature that examines global 

circulation modes is included here, along with descriptions of techniques used to quantify 

climatic changes. 

2.1 Observed modes of climatic persistence 

The global climate system contains modes of variability that persist over characteristic periods. 

Oscillations within these modes have substantial impacts upon precipitation and temperature 

across the world. Major circulation phenomena have large-scale teleconnection patterns (Allan

et al., 1996); the best known is the El Niño Southern Oscillation (ENSO), which develops in the 

Pacific Ocean yet impacts globally. Other modes include the North Atlantic Oscillation (NAO) 

and the Pacific Decadal Oscillation (PDO), both of which affect primarily regions of the 

Northern Hemisphere, and oscillations in the tropical Atlantic that influence climatic variability 

across South America and western Africa. In order to analyse persistence within hydrologic 

records it is important to focus upon the climatic source of this persistence.  

Time series indices that describe these oscillatory phenomena tend to show prolonged periods of 

above- or below-average values. This feature demonstrates an intrinsic pattern of climatic 

persistence at a range of time scales. Lockwood (2001) described the climate system as a 

dissipative, non-linear system, with many sources of instabilities. Slowly varying surface 

conditions, such as sea surface temperatures and land surface moisture levels, can act as 

boundary conditions that significantly influence the climate of the atmosphere (Arnell, 2002). 
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Feedback mechanisms between the atmosphere and these surface boundary conditions can 

amplify anomalous values into persistent cycles. In some years, regional climates may therefore 

display a certain array of characteristics and in other years a different set. 

The climate of Australia includes numerous modes of variability. Anomalous conditions in the 

Pacific, Indian and Southern Oceans, which surround this continent, contribute to variability 

within the surface climate. Baines (1998) used Cerberus, the name of a three-headed dog of 

Greek mythology, to describe the three major sources of variation in the Australian climate. The 

El Niño Southern Oscillation, the Indian Ocean dipole and the Antarctic Circumpolar Wave 

interact over different time scales to augment and to moderate their individual effects. The 

interaction of climate modes produces a forcing mechanism in the hydrological cycle that is 

revealed through persistent periods of high and low observations. In order to elucidate the 

influence of these different climate modes upon persistence in Australian hydrology, an 

overview of their characteristics is presented. 

2.1.1 El Niño Southern Oscillation (ENSO) 

The El Niño Southern Oscillation (ENSO) is the primary source of global climate variability 

acting over the 2- to 7-year time scale (eg Ropelewski and Halpert, 1987; Katz, 2002; Viles and 

Goudie, 2003). Its cyclic patterns of warming and cooling in the surface waters of the tropical 

Pacific produce prominent global teleconnections with regional rainfall and temperature patterns 

(Hamlet and Lettenmaier, 1999). The quasi-periodicity of ENSO, which sees the appearance of 

warm or cool water in the equatorial eastern and central Pacific at intervals of 3 to 5 years, is 

one of its most fundamental aspects (Graham and White, 1988), and is intimately linked with 

the conservation of latent heat through the waters of the Pacific.  Importantly, ENSO is the most 

prominent source of variability within rainfall and streamflow records across much of Australia. 

There is a range of interpretations in the literature on the use of the terms El Niño, La Niña and 

ENSO. The term El Niño has evolved in its meaning over the years, being originally applied to 

the appearance of a warm current flowing southward along the Pacific coast of South America 

each year around Christmas. However as a result of the frequent association between South 

Pacific ocean temperatures and interannual basin-wide equatorial warm events (McPhaden et 

al., 1998), the term has become synonymous with larger-scale climatically significant ocean-

atmosphere interactions, which are significant features of the global climate. The El Niño 

coastal warming is actually part of a broad weather system that affects both the Pacific and 

Indian Oceans, and the oscillation of high pressure cells across the Pacific to which it is related 

is the true cause of the global climatic phenomenon (Diez, 2004). The opposite conditions to El 

Niño, termed La Niña events, consist of basin-wide cooling of the tropical Pacific, with the 

coupled ocean-atmospheric processes termed the El Niño Southern Oscillation (ENSO).  
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Figure 2.1 (after McPhaden et al., 1998) provides an overview of ocean and atmospheric 

changes that occur with El Niño events in the Pacific. Under “normal” conditions shown at the 

top of this figure, the warmer surface layer of the tropical Pacific created from atmospheric heat 

gain flows westward under the influence of easterly trade winds. This piling up of warmer water 

creates a large sea surface temperature (SST) gradient along the equatorial Pacific, and an east-

west contrast in atmospheric pressure across the Pacific that has lower surface pressures over 

the warm pool in the west. This “see-saw” in atmospheric pressures across the Pacific (Chiew et 

al., 1998) is the Southern Oscillation (SO). The convective loop of atmospheric circulation that 

is known as the “Walker Circulation” sees warm moist air rise in the west, move to the east and 

subside in the high-pressure zones of the eastern Pacific. 

Figure 2.1 Mechanisms of ENSO (after McPhaden et al., 1998) 

El Niño events, shown in the lower diagram of Figure 2.1, are characterised by a large-scale 

weakening of the trade winds, easterly movement of surface waters and the subsequent warming 

of the eastern and equatorial Pacific (McPhaden et al., 1998). The easterly acceleration of 

surface currents helps to depress the thermocline to the east, and causes anomalously warm 

SSTs to be observed near the coast of South America. The area of anomalously warm surface 

water at the peak of an El Niño episode can reach 30 million km2 (Rial et al., 2004), so it is 
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clear that the size of the latent heat exchange at the ocean-atmosphere interface is large enough 

to alter global climate patterns. Temporal changes in SSTs and atmospheric pressures are 

incorporated into a range of climate indices that define the ENSO phenomenon, and these are 

described further in Section 2.2. 

The approximate periodicity of the ENSO phenomenon has long been recognised (eg Bjerknes, 

1969), with recent evidence suggesting its quasi-cyclic behaviour is due to the action of a 

natural coupled oscillator of the ocean-atmosphere system (Graham and White, 1988; 

Tziperman et al., 1994; Wang, 2001). In such a model, warm and cool episodes are regarded as 

alternate phases of a self-sustaining cycle (Graham and White, 1988), rather than discrete 

episodes overlying a mean background state. Tziperman et al. (1994) view the irregular 

oscillations as those of a low-order chaotic system, driven by a seasonal cycle. 

The global ENSO signal consists of a global standing mode in covarying sea level pressure 

(SLP) and SST anomalies (White and Annis, 2004), evolving in association with the intense 

warm SST anomalies in the eastern equatorial Pacific termed El Niño episodes. Recent 

observations of ENSO show that the global standing mode associated with the El Niño cycle is 

superimposed upon an eastward propagating global ENSO wave (GEW) (White and Cayan, 

2000). Tourre and White (1997) identified the GEW through interannual SST and SLP 

anomalies originating in the western tropical Indian Ocean, and propagating slowly eastward 

through the Indian and Pacific Oceans, taking 4 to 6 years to circle the globe. The GEW can 

then provide a positive feedback to El Niño and La Niña events in the eastern equatorial Pacific 

(White and Cayan, 2000), supplying an additional source of tropical ENSO variability. 

2.1.2 Low frequency climate variability and abrupt climate changes 

The interannual scale of climate variability that is associated with ENSO is widely recognised, 

however the global climate contains various other circulation phenomena that have a range of 

frequencies and durations. The combined influence of these different modes of variation is 

expressed as a forcing mechanism upon regional climates, and is revealed through a tendency 

for stable conditions over extended periods. Coherent patterns of variability at multi-decadal 

time scales are observed in a range of climate data, with low frequency changes in the behaviour 

of ENSO shown to coincide with changes in global SST patterns. In spectra of globally-

averaged SST and night-time marine air temperature for the period 1856-1981, Folland et al.

(1984) found peaks at periods of 16 years and 21 years.  These low frequency effects reflect 

circulation phenomena that modulate the influence of shorter period modes such as ENSO on 

regional climates. Importantly, these longer period climate patterns rapidly change phase, which 

in turn influences the persistent patterns of hydrologic variables. 
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Extensive literature has discussed the widespread changes in the Pacific climate during the late 

1970s (Graham, 1994; Trenberth and Hurrell, 1994; Mantua et al., 1997), that produced an 

extended ENSO-like warming of the tropical Pacific and cooling in the North Pacific (Arblaster

et al., 2002). Over the period since, SST-based indices display a tendency toward higher values. 

Of the various recorded examples of multi-decadal SST variability, climatic shifts that occurred 

around 1976 were the most widespread (Yonetani and Gordon, 2001), with Francis and Hare 

(1994) noting that abrupt changes in sea level pressure and surface air temperature occurred 

across the Pacific. These abrupt changes in different aspects of the Pacific climate have been 

termed a “regime shift” (Zhang et al., 1997), which introduces a notion of stable climate states. 

At an atmospheric scale, Christiansen (2003) showed evidence for two such stable regimes in 

stratospheric circulations of the Northern Hemisphere, with an abrupt and statistically 

significant shift between these identified in the latter half of the 1970s. 

Alongside distinct shifts that occurred in physical indices around 1976-7, evidence for 

widespread ecological changes has been presented (Mantua et al., 1997), including dramatic 

shifts in marine and terrestrial ecosystem variables detected in the western Pacific through the 

mid 1970s. Reid et al. (1998) showed that implications of oceanic regime shifts for fisheries and 

oceanic CO2 uptake are profound with significant changes in North Atlantic phytoplankton 

levels occurring over the second half over last century. Scheffer et al. (2001) also present time 

series of various marine ecosystem variables that show “conspicuous” jumps between apparent 

states, suggesting that climate state shifts may be reflected more consistently by biological data.  

From observing consistent changes in a range of climate variables, it appears that the Pacific 

climate underwent a major transition during the 1970s and remained in a quasi-stable state for 

multiple decades. Although these changes might be interpreted as an abnormal fluctuation of a 

generally stable climate system, results presented by Mantua et al. (1997) suggest that the 

regime shift of the mid 1970s was not unique. Signatures of interdecadal climate variability are 

in fact widespread and detectable in various climate and ecological systems of the Pacific basin, 

at a number of times throughout recorded history. For example, similar abrupt changes occurred 

during the 1920s and 1940s. Zhang et al. (1997) note the climatic changes in the Pacific that 

occurred during the mid-1970s were analogous, but in the opposite direction, to those observed 

during around 1942-43. These authors showed that three independent indices, derived from 

SLP, air temperatures and SST data, displayed increases in mean values around 1976-77, also 

decreases during the 1940s. Wide-scale climatic changes during the 1940s were not confined to 

the Pacific however, with Allan et al. (1995) showing evidence for Indian Ocean mid-latitude 

SSTs to be consistently warmer over the period 1942-1983 than for the period 1900-1941. 

Krishna Kumar et al. (1995) demonstrate the significance of this change by showing that 
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correlations between all-India summer monsoon rainfall and seven climatic predictors were 

insignificant until the early 1940s, after which point they become significant.  

Abrupt regime shifts in the regional climate of Australia are manifested through step changes in 

dependent hydroclimatic variables, such as significant increases in summer and annual rainfall 

across New South Wales (NSW) during the 1940s (Cornish, 1977). Franks (2002b) tested the 

annual maximum discharges from 40 gauged streams in NSW for evidence of single step 

changes, interpreted as evidence for distinct climate states in the flood records. The results of 

this study indicated that 19 of the 40 gauges showed single step changes that were significantly 

different at a 99% level, with 16 of these changes occurring during the 1940s. By deriving a 

regional index of flood frequency, Franks also demonstrated a dramatic change in flood risk 

corresponding to 1945. 

Scheffer et al. (2001) suggest a range of nonlinear mechanisms that explain rapid shifts between 

regimes. Abrupt changes, particularly through the mid-latitude atmospheric circulation, may be 

triggered through enhanced convective activity associated with persistent warm SSTs through 

the tropics (Graham, 1994). Latif and Barnett (1994) however suggest that the coupled ocean-

atmosphere interaction is the true cause of inter-decadal variability in the North Pacific. Using 

this hypothesis, a study by Yonetani and Gordon (2001) showed that decadal variability 

simulated by a coupled general circulation model (GCM) contained abrupt climate changes, 

which are likely to influence hydrological cycles dramatically. 

In light of the abundant evidence that suggests wide-scale dramatic changes to have occurred in 

the climate at various times, it is important to note the uncertainty associated with interpreting 

low-frequency variability in short time series. Using over 100 physical and biological time 

series, Hare and Mantua (2000) developed a composite analysis to argue definitively that a 

regime shift occurred through the North Pacific in 1976. However, with the lengths of many of 

these records being approximately 20 years, Rudnick and Davis (2003) suggested that there was 

simply not enough data to adequately confirm the existence of nonstationarity, expressed 

through significant regime shifts. To illustrate this, Rudnick and Davis (2003) simulated 

multiple independent and stationary time series, with frequency content identical to a low 

frequency series obtained from principal component analysis of Pacific SST data. By analysing 

20-year spans of these simulated series in an identical manner to Hare and Mantua (2000), 

Rudnick and Davis (2003) showed that comparable regime shifts are detected about half the 

time. These authors found that the composite analysis used by Hare and Mantua (2000) 

identified changes in regime that were at a higher frequency than those simulated. 

The danger in interpreting characteristics such as stable regimes in short climate records that 

display low-frequency behaviour is also addressed by Wunsch (1999), who noted that the purely 
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random behaviour of stationary processes can appear “visually interesting” with regards to 

regime-like patterns, particularly over short periods. In particular, high serial correlation can 

produce stochastic trends such as random walks. Furthermore an assumption that climate data 

are non-normally distributed (typified in physical processes such as tropical rainfall) could 

explain regime-like nonstationarity. By increasing the resolution of observed data, such as 

through the analysis of monthly totals rather than annual totals, finer modes of nonstationarity 

may be identified. ENSO periods remain for an average of 15 months, and these periods would 

be difficult to identify through the use analysis of annual totals. Other persistent climate modes 

are discussed in the following sections. 

2.1.3 Antarctic Circumpolar Wave (ACW) 

The Southern Ocean is the only body of water that encircles the globe and contains a strong 

eastward flow known as the Antarctic Circumpolar Current that moves at a rate of 

approximately 0.01 m/s (Baines, 1998). It is the unifying link for exchanges of water masses 

between the major ocean basins (White and Peterson, 1996), and therefore expected to play a 

major role in the transmission of climate anomalies across the globe. Associated with this 

current is a recently discovered system of coupled sea-surface temperature anomalies, termed 

the Antarctic Circumpolar Wave (ACW), consisting of two large regions of relatively warm 

water alternating with regions of relatively cooler water, as shown in Figure 2.2. These 

anomalies propagate eastwards with a period of 4 to 5 years, and are allied with significant 

interannual variations in sea-level pressure, wind stress and sea-ice extent across the Southern 

Ocean (White and Peterson, 1996). The ACW occurs concurrently with the slow eastward 

propagation of the global ENSO wave (GEW), taking approximately 8 years to circle the globe 

(White et al., 2002). Qiu and Jin (1997) showed the ACW to be independent of the GEW, based 

on their different zonal average speeds, although White et al. (2002) found the two phenomena 

to be linked in selected longitudinal domains.  

ACW anomalies originate in the western Pacific, spreading to the south and east in the Southern 

Ocean. Therefore the slow eastward propagation of the ACW around the Southern Ocean is 

influenced by tropical ENSO in the central and southeastern Pacific (White and Cherry, 1999). 

The GEW reinforces the ACW in the eastern Pacific and western Atlantic sectors of the 

Southern Ocean (White et al., 2002), such that this imposed GEW signal is propagated 

throughout the Southern Ocean. The warm SST anomalies of the ACW influence the local 

Australian climate of Australia when flooding into the Great Australia Bight and surrounding 

Tasmania. Southerly winds across the continent during these periods tend to be warmer and to 

carry more moisture than average, such that the rainfall regime of southern Australia is likely to 

be influenced by the ACW. 
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Figure 2.2 Schematic diagram of the ACW (after Baines, 1998) 

Various studies have identified decadal, interdecadal and multi-decadal modes of variability in 

the ACW (eg  Carril and Navarra, 2001). Low frequency changes in the ACW observed during 

the second half of the twentieth century may have occurred in response to similar changes in the 

central tropical Pacific and Indian Oceans. As described previously, the evolution of El Niño 

has been fundamentally different since 1976/7, consistent with its multi-decadal modes of 

variability. White and Annis (2004) showed that the evolution of the ACW to be fundamentally 

different before and after this time, suggesting a connection of climate modes with SST changes 

across the Indian and Pacific Oceans.  

White (2000) examined the influence of three separate sources of climate variability on 

interannual precipitation anomalies across Australia; the ACW south of Australia, the northern 

branch of the ACW in the Indian Ocean and the GEW in the tropical north of Australia. In 

association with these sources of variability, covarying anomalies in SST and tropospheric 

moisture flux over interannual time scales were found to propagate eastward across the Indian 

Ocean, taking 2-3 years to progress from Africa to Australia. White (2000) developed a 

statistical climate prediction system that could significantly predict precipitation anomalies at 

lead times of 1-2 years. Eastward propagation of SST anomalies in the ACW south of Australia 

and the north branch of the ACW west of Australia can predict more than 50% of the total 

interannual variance over Western Australia, Victoria and New South Wales south of 20oS. In 

an earlier study, White and Cherry (1999) found autumn-winter temperature and precipitation 

records from across New Zealand, which appear to be independent of ENSO, to fluctuate with a 

3-6 year mode of variability that was associated with the ACW. This ocean circulation 
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phenomenon is an important influence upon the rainfall regime of Australia, producing 

interannual variability that is distinct from the effects of ENSO. 

2.1.4 Indian Ocean Dipole (IOD) 

Apart from internal modes of variability that have been identified in both the Pacific and 

Atlantic, a pattern of ocean-atmospheric interaction causing interannual climate variability in 

the Indian Ocean was recently distinguished (Saji et al., 1999). A dipole mode in the Indian 

Ocean, with anomalously low SSTs off the coast of Indonesia and high SSTs in the western 

Indian Ocean is associated with wind and precipitation anomalies across the Indian Ocean basin. 

During ENSO events, basin-scale SST anomalies cover the tropical Indian Ocean, with this 

mode explaining up to 30% of the total SST variability. The dipole mode appears independent 

of ENSO and accounts for about 12% of the variability in this region (Saji et al., 1999).  

The positive phase of the IOD leads to decreased rainfall over the southeastern Indian Ocean 

(being linked to drought patterns across Indonesia) and increases in rainfall over the western 

Indian Ocean including tropical eastern Africa. Various studies have linked changes in Indian 

Ocean SSTs to east African rainfall variability (eg Landman and Mason, 1999), and the results 

of the Saji and Yamagata (2003) study indicated that the IOD accounted for over 40% of rainfall 

variability across parts of eastern Africa. The negative dipole mode is associated with a reversal 

of these anomalous conditions, with warmer waters around the Indonesian archipelago and a 

large pool of cooler water across the southeastern Indian Ocean, as represented in Figure 2.3. 

Negative dipole events are correlated with rainfall events across Australia, being associated with 

the development of northwestern cloud bands (Kuhnel, 1990) which are the principle source of 

rain to the dry centre and to the southeast of this country.  

Figure 2.3 Schematic diagrams of the positive phase (on left) and negative phase (on right) of the 

Indian Ocean dipole (after Rao, 2005) 

This section has described a number of global circulation phenomena that produce characteristic 

spatio-temporal signatures on the Australian climate. The persistence of these climate modes 
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produces clear patterns of variability within time series of hydrologic observations. The 

simulation of hydrologic series should therefore incorporate similar climatic shifting patterns. 

2.2 Measuring changes in the Pacific climate 

The identification of coherent patterns of hydroclimatic persistence is dependent upon the 

computation of climatic variability. Climate proxies such as atmospheric pressures and sea 

surface temperatures are a means to quantify temporal climate changes. These indices reveal 

modes of persistence in the broader climate, and the most significant of these in Australia are 

described in this section. 

2.2.1 ENSO indices 

Physical changes in ENSO can be monitored through variables that are associated with ocean-

atmospheric interactions across the tropical Pacific. One of the more commonly-used measures 

of ENSO variability is the Southern Oscillation Index (SOI), which quantifies east-west 

differences in sea-level pressure across the Pacific, in turn signifying variations in equatorial 

winds. The Troup SOI (Troup, 1965) standardises monthly differences in this atmospheric 

pressure gradient between Tahiti and Darwin by long-term values for each month. El Niño 

events are characterised by extended periods of negative SOI values, with extended positive 

values related to La Niñas. Although the SOI is widely-used to define ENSO events, the fact 

that it is derived from observations at only two stations leaves this index susceptible to 

numerous small-scale and high frequency atmospheric phenomena that influence pressures yet 

do not reflect the Southern Oscillation (Trenberth, 1997).  

Sea surface temperature changes in the eastern equatorial Pacific provide an alternative method 

for detecting ENSO variability. Indeed, SST-based indices are seen as a more direct measure of 

the temperature anomaly related to El Niño events (Kiem and Franks, 2001), although there is 

some uncertainty as to the regions of the Pacific Ocean that provide the most relevant 

information. One of the more widely used SST-based indices is the NINO3 index of 

temperature anomalies in the region between 5oS to 5oN in latitude and 90oW to 150oW in 

longitude, termed the “Niño-3” region. SST anomalies in this region are the major ENSO-

related quantity to be predicted by models verified with observed data (Trenberth, 1997), with 

warm SSTs in this region indicating El Niño events.  

A more recently developed indicator is the Multivariate ENSO Index (MEI: Wolter and Timlin, 

1993), which uses data from a number of different variables and is therefore able to better 

reflect the complex nature of the ocean-atmospheric interactions involved (Kiem and Franks, 

2001). The variables used in its calculations include sea-level pressure, sea surface 
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temperatures, zonal and meridional components of the surface wind, surface air temperature and 

total cloudiness fraction of the sky. After spatially filtering of these variables into clusters, the 

MEI is then calculated through Principal Component analysis. All seasonal values are 

standardised to the 1950-1953 reference period. Extended positive values of the MEI indicate El 

Niño periods, similar to SST-based indices, however reliable values for this index are only 

available from 1950 onwards. The quasi-periodicity of ENSO is demonstrated in Figure 2.4, the 

spectral density for the time series of monthly MEI. A major peak is shown to extend over a 

periodicity of between 2 to 4 years, highlighting the dominant frequency of ENSO events in the 

Pacific, although error bounds are large due to the relatively short length of this record. 
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Figure 2.4 Power spectrum for monthly MEI totals (solid line), with 95% confidence limits (dashed 

lines), using averaged periodogram method 

Although El Niño events are generally characterised by positive SST anomalies (and higher 

atmospheric pressures) in the eastern equatorial Pacific, there is much conjecture over the most 

suitable definition for individual ENSO events. Some scientists restrict this to the original 

coastal phenomenon of South America, whereas others extend a definition to include Pacific-

wide characteristics (Trenberth, 1997). Glantz (1996) attempted to define El Niño in the manner 

of a dictionary description, however this lacked a quantitative basis and is therefore inadequate 

for use in calculations. The complex mechanics of ENSO clearly impede the development of a 

single definition of events, although classification methods based on changes in ENSO 

anomalies have been advocated from a variety of sources. The method of Ropelewski and 

Halpert (1996) uses five-month running-means (5-mrm) of monthly SOI values, defining El 

Niño events as any year when this 5-mrm remains below -0.5 standard deviations for a duration 

of 5 months or longer. La Niña events were defined as periods of 5 month duration when the 5-

mrm remains above 0.5 standard deviations. Rather than using running-means of monthly SOI 

values, Chiew et al. (1998) employed 12-month average values of this index, taken over the 

April-March period. ENSO classifications by these authors were then based on average monthly 
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SOI values over annual periods either above 5 or below -5. By stratifying rainfall and runoff 

time series across Australia based on ENSO phases as defined with various indices, Kiem and 

Franks (2001) showed that the MEI out-performed both the SOI and NINO3 indices for 

discriminating ENSO effects. 

The Japan Meteorological Agency (JMA) produced a working definition of ENSO events that 

was based on SST anomalies in the Niño-3 region. By comparing individual ENSO events 

obtained from the JMA definition with those obtained from other classification methods, 

Trenberth (1997) suggests SST anomalies in the “Niño-3.4” region (5oN-5oS, 120o-170oW), 

provide a superior description. Under this classification, periods during which the 5-mrm of 

monthly SST anomalies are at least +0.4oC for at least six consecutive months are El Niño 

events, with La Niñas defined with a threshold of –0.4oC for the same duration. The 5-mrm of 

SST anomalies are used in order to smooth out the possible intra-seasonal variation of the 

tropical ocean (Trenberth, 1997). A time series plot of 5-mrm values of Niño-3.4 SST anomalies 

since 1950 is shown in Figure 2.5, with values exceeding thresholds of ±0.4oC shaded. 

Sequences exceeding six months in duration are then defined as El Niño and La Niña events. 

5-month running means for SST anomalies in Nino-3.4 region
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Figure 2.5 Time series of five-month running means of monthly Niño-3.4 values 

Using this quantitative assignment of ENSO events, it is apparent that over the time period 

shown in Figure 2.5 (658 months), there are 178 months classified as El Niño (27%) and 193 

months classified as La Niña (29%). Consequently, for 56% of the months on record, either El 

Niño or La Niña conditions occur. Using an extended period of SST data from 1856-2004 (1786 

months), the same classification procedure identifies 488 El Niño months (27%) and 509 La 

Niña months (29%). This relates to 34 El Niño events and 31 La Niñas, therefore a total of 65 

ENSO events, leading to a mean event length of approximately 15 months. 
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The Indian Ocean dipole is characterised by a strong reversal in sign for basin-wide SST 

anomalies. This sign reversal forms the basis for a simple time series index that describes the 

temperature difference between the tropical western Indian Ocean (50oE-70oE, 10oS-10oN) and 

the tropical southeastern Indian Ocean (90oE-110oE, 10oS-Equator). This series is available over 

the period 1869-2002, and explains 36% of the variance of rainfall across southwestern 

Australia (Saji and Yamagata, 2003). Although correlations between the dipole mode index 

(DMI) and monthly ENSO indices are significant, ENSO explains less than 25% of the variance 

of the former series. A significant proportion of IOD events have occurred independently from 

ENSO, with a significant proportion of ENSO episodes occurring in the absence of IOD events 

(Saji and Yamagata, 2003). To illustrate this independence, the significant dipole mode events 

of 1961, 1967 and 1994 coincided with an ENSO neutral, a La Niña and a weak El Niño event 

respectively. Following this, it is likely that the IOD is generated by ocean-atmospheric 

interactions inherent to the Indian Ocean, and correlation between ENSO and IOD represents 

mutual interaction with neither climatic mode being the dominant. 

The analysis of fluctuating El Niño and La Niña episodes, together with IOD phases, 

demonstrates strong persistence within the dominant modes of interannual climatic variability. 

In Chapter 4, ENSO is shown to produce strong hydrologic responses across Australia. These 

interactions are therefore a clear mechanism for persistence in the broader climate to produce 

persistent characteristics within time series of hydrologic totals. Moreover, these hydroclimatic 

interactions underlie the requirement for stochastic models for such series to have capabilities 

for replicating such persistence. 

2.2.2 Quantifying multi-decadal Pacific variability 

Section 2.1 outlined evidence for possible climate shifts in the Pacific climate at multi-decadal 

intervals. Using Pacific-wide SST data, Pierce et al. (2000) showed that low-frequency 

variability was not confined to the tropics in the manner of the higher-frequency ENSO, rather it 

has significant expression in the mid-latitudes. This point is important as it suggests that this 

source of variability may influence regional climates around the entire Pacific. Power et al.

(1999a) used the term Interdecadal Pacific Oscillation (IPO) to describe the coherent pattern of 

Pacific SST variability acting over decadal to interdecadal periods, although Mantua et al.

(1997) had used the term Pacific Decadal Oscillation (PDO) for the same feature. Rial et al.

(2004) described the IPO as an atmosphere-ocean phenomenon associated with persistent, 

bimodal climate patterns in the Pacific Ocean. 

Indices for inter-decadal variability in the Pacific climate regime have been derived from a 

variety of sources (eg Mantua et al., 1997; Zhang et al., 1997; Folland et al., 1998), using 

Principal Component (PC) analysis of various SST data sets. The indices are clearly related to 
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ENSO signatures, both temporally and spatially, such that the PDO and IPO can be viewed as 

“ENSO-like” interdecadal climate variability. The PDO index of Mantua et al. (1997) is 

calculated as the leading PC of monthly mean SST data for the tropical and northern 

Hemisphere extra-tropical regions. This spatial bias is revealed with its signature being more 

clearly observed in the wintertime surface climate record of North America than any other 

continent (Latif and Barnett, 1994). The PDO index is similar to an index calculated by Zhang

et al. (1997) from annual mean anomalies of unfiltered global SST data. The IPO index of 

Folland et al. (1998) is obtained from near-global data sets of seasonal SSTs, using a low-pass 

filter with half-power at a period of 13.3 years, which produces a smoothed time series. This 

filter scale eliminated the variability of not only the ENSO signal, but also a decadal-scale mode 

of variability in the North and tropical Atlantic (Folland et al., 1998). This latter index is taken 

as being representative of the IPO throughout the remainder of this work, as it provide 

continuous seasonal data extending to 1857 and is furthermore likely to represent a Pacific-wide 

manifestation of Mantua’s PDO index (Houghton et al., 2001). Folland et al. (1998) also 

provide a multi-decadal index derived from monthly air temperature anomalies, however this is 

likely to be less accurate and susceptible to localised variations than SST-derived indices 

(Power et al., 1999a).  

The four indices discussed here are significantly correlated, although seasonal averages of IPO 

have linear correlation of only 0.57 with seasonal averages of the monthly PDO index. Cross-

correlations are not as strong at any other time lags. The interdecadal component of variability is 

common amongst these three indices, and since they have different geographical extents it is 

likely that they represent true climate variability (Power et al., 1999a).  

-4

-3

-2

-1

0

1

2

3

4

1857 1867 1877 1887 1897 1907 1917 1927 1937 1947 1957 1967 1977 1987 1997

S
ea

so
na

l I
P

O
 a

nd
 m

on
th

ly
 P

D
O

 in
di

ce
s

Figure 2.6 Time series of seasonal IPO values (blue) and monthly PDO values (red) 

Seasonal values of the IPO index are displayed in Figure 2.6, showing the IPO to experience 

three major phases during the 20th century: positive phases between 1922-1944 and 1978-1998 
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and a negative phase between 1945 and 1977. The unfiltered monthly PDO series is shown 

alongside the IPO values, and it is clear that the major phases visible in the latter series are not 

as apparent in the former, although there is a clear tendency for negative PDO values during the 

IPO negative phase between 1945 and 1977. 

When the IPO is in a positive phase, temperature anomalies in the tropical Pacific are positive, 

whilst those both near New Zealand and over the North Pacific are negative (Salinger et al., 

2001). ENSO indices are correlated with the IPO (and therefore PDO), such that El Niño 

conditions tend to coincide with years of positive polarity (Mantua et al., 1997). It is important 

to note that the transition from negative to positive phase of the IPO occurred in the mid-1970s, 

the same period noted for dramatic changes in various Pacific climate indicators. The time 

series of IPO represents a shifting low frequency pattern in Pacific SSTs, such that its 

fluctuations reflect persistence inherent in the broader climate. 

Hydrologic responses to oscillations in both the IPO and ENSO are discussed in Section 2.3.3, 

and although the former series identifies climatic persistence over a multi-decadal time scale, it 

is unlikely that persistence at a similar frequency will be observe in time series of monthly 

rainfall and streamflow totals. A more likely scenario is that the IPO modulates the frequency of 

ENSO oscillations, in the process influencing the frequency and magnitude of monthly 

hydrological persistence.  

2.2.3 Stable climate states 

Climate indices quantify fluctuations in global circulation phenomena, and provide a means to 

evaluate hydrologic responses to these fluctuations. The indices detailed here, which reflect 

different aspects of the complex ocean-atmosphere interactions operating on a global scale, 

show oscillations between different phases with characteristic periodicities. Climatic changes of 

varying magnitude can be observed on a variety of time scales. For instance, the low frequency 

variability identified through the IPO and PDO indices suggests that the Pacific climate 

switches repeatedly on multi-decadal scales to seemingly different climate modes. It is therefore 

important to investigate whether such changes reflect an underlying forcing mechanism in the 

atmosphere to oscillate between stable climate states. Time series of hydrologic variables may 

respond in a similar manner if the characteristics of these states reflect changes in rainfall-

generating mechanisms.  

An investigation such as this can be approached though monitoring the tendency for the 

atmosphere to exist within persistent modes (“states”) of circulation. From an atmospheric 

perspective, stable circulation patterns are generally regarded as quasi-stationary on a large 

scale, superimposed upon which are various smaller (localised) disturbances (eg Charney and 

DeVore, 1979). Although such a description enables qualitative explanations for many observed 
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features of the atmosphere, it cannot explain the existence of persistent or recurrent regional 

weather patterns. Baur (1951) raised the notion many decades ago that persistent or recurrent 

regional weather patterns (which he termed grosswetter) should be the primary focus of long-

range weather forecasting. Lorenz (1963) showed theoretical results that supported the views of 

Baur, by suggesting that atmospheric circulations may contain more than one equilibrium flow 

regime. Charney and DeVore (1979) followed this through evidence of multiple stationary 

states in atmospheric circulation regimes. Hansen and Sutera (1995) investigated the amplitude 

of planetary-scale atmospheric pressures, and identified two modes in the probability density 

function (pdf) of such amplitudes, where a minimum in the pdf implies a source of instability. 

Therefore this bimodality, corroborated with simulations from an extended general circulation 

model (GCM), indicates a tendency for the atmosphere to exist in at least two stable regions.  

The supposition of multiple stable regimes in the climate can also be tested through the 

identification of relatively rapid and sharp transitions in various indices. Schwing et al. (2003) 

note that the atmospheric teleconnection between the North Atlantic and North Pacific appears 

to have multiple modes, and oscillations in the standing wave patterns of this teleconnection 

would then lead to abrupt changes in indices such as the NAO and PDO. Christiansen (2003) 

presented further evidence for two regimes in the interannual variability of the stratosphere, and 

furthermore an abrupt shift between these to occur in the mid-to-late 1970s. The statistically 

significant regime transition in the atmospheric field lends support to the notion of changes in 

IPO and PDO indices reflecting major climatic shifts. Christiansen (2003) also notes that this 

regime shift is coincident with a change in the relationship between the atmosphere and solar 

radiation, the primary forcing mechanism for the climate system. 

These observations substantiate the assumption that the hydrological cycle is influenced by 

oscillations between stable regimes, as suggested by the action of persistent climate processes 

described earlier. The following section demonstrates the impact of this persistence upon 

rainfall and streamflow observations. 

2.3 Hydrological impact of climatic persistence 

Over recent decades, many studies have attempted to describe hydrologic variability, both 

within catchments and across regions, in terms of climate anomalies (Arnell, 2002). Global 

climate anomalies are characterised by the recurrence of distinct precipitation, temperature and 

atmospheric pressure patterns. ENSO is the most prominent mode of climatic variability, 

affecting weather patterns around the world due to its displacement of various significant 

atmospheric features, such as the speed and direction of ocean currents and the winds that drive 

them, and the surface temperatures of the ocean. From a hydrological perspective, the 
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cumulative effects of these changes can be extensive. The quasi-periodicity of the ENSO 

phenomenon impacts upon the seasonal patterns of rainfall and temperature across many regions 

of the world, leading to a tendency for above and below average values over extended periods. 

This natural source of persistence links climate anomalies to observed hydrologic variability, 

and has important implications for the management of water supplies. 

2.3.1 Relationships between ENSO and rainfall variability

Relationships between the SO and precipitation were first explored early last century, beginning 

with the seminal work of Sir Gilbert Walker (1923; 1924), who linked global pressure 

anomalies to Indian monsoons. Although each warm ENSO episode is distinctive, precipitation 

and temperature anomalies appear to characterise all El Niño events (Viles and Goudie, 2003), 

and teleconnections between ENSO and regional climates are the basis for long-range forecasts 

of rainfall and streamflow across many parts of the world (Chiew et al., 1998). Nicholls (1988) 

showed that areas influenced by ENSO displayed substantially higher variability in annual 

rainfall, and Linacre and Geerts (1997) noted that the role of ENSO in modulating Australian 

rainfall variability may be at least as important as its role in moderating the rainfall mean. 

Ropelewski and Halpert (1987) documented large-scale patterns of above- and below-average 

precipitation patterns being associated with both phases of the ENSO. These results were 

expanded upon in a later study (Ropelewski and Halpert, 1996), in which shifts in the 

distribution of rainfall associated with extremes of the SO were identified in various parts of the 

world. The most extreme case of such a shift was found in the central Pacific, where the 90th

percentile of seasonal spatially-averaged rainfall during high SOI periods was far less than the 

10th percentile during low SOI episodes. Warm ENSO episodes lead to an increase in rainfall in 

the tropical eastern Pacific, although reduced rainfall is found to the east and west of this 

equatorial wet anomaly (Diaz et al., 2001). Within the 19 regions studied by Ropelewski and 

Halpert (1996), El Niño periods were also related to increased seasonal precipitation in parts of 

southwestern North America, including the Great Basin region and the Gulf of Mexico, parts of 

southern India and Sri Lanka, and parts of South America, including Peru and Chile. 

Conversely, warm ENSO extremes are related to anomalously dry conditions over southeastern 

Asia and northern and eastern Australia. The variable influence of ENSO on African 

precipitation (Lindesay, 1988; Mason, 2001) has been extensively documented, with El Niño 

events being associated with reduced rainfall in the wet season (May-Sept) of tropical Africa, 

and enhanced rainfall during the rainy season (Oct-Feb) south of the Equator. El Niño 

conditions suppress the development of tropical storms and hurricanes in the Atlantic, yet 

increase the numbers of tropical storms over the eastern and central Pacific Ocean (Viles and 

Goudie, 2003). 
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The strong relationship between the SO and precipitation across Australia has been the focus of 

several studies (eg McBride and Nicholls, 1983; Kiladis and Diaz, 1989; Allan, 1991; 

Ropelewski and Halpert, 1996). El Niño episodes tend to be accompanied by reduced rainfall 

across the interior of eastern Australia, especially during the winter, whereas La Niña episodes 

are generally associated with periods of higher rainfall. Chiew and McMahon (2003) used 

monthly rainfall and streamflow data over a period of 98 years from 284 catchments across 

Australia to demonstrate that El Niño generally leads to dry conditions across Australia in the 

latter half of calendar years.  

Figure 2.5 indicated a high degree of variability in the magnitude of the SST anomalies 

associated with individual ENSO events. Furthermore, the teleconnection patterns between 

ENSO events and regional climate variability also display a highly irregular behaviour. This 

irregularity can be illustrated by comparing the impact of the two most recent El Niño events 

(disregarding the period of warm SSTs occurring at the end of 2004) in 2002/03 and 1997/98. 

Although time series of both SST anomalies and SOI values show the more recent El Niño 

event to be much weaker than the 1997/98 event, these two events had markedly different 

effects on the Australian climate. The latter El Niño had a very strong impact across the country, 

leading to rainfall deficiencies over the period from March 2002 to January 2003, with severe 

drought conditions affecting almost all of Australia. These deficiencies are demonstrated in 

Figure 2.7, produced by the Australian Bureau of Meteorology, which shows accumulated 

rainfall for the 2-year period ending January 2003 to be amongst the lowest on record. In 

contrast to this, the considerable increases in tropical SSTs and associated changes in 

atmospheric pressure during the earlier event failed to translate into similarly dry conditions.  

Figure 2.7 Rainfall deficiencies across Australia during 2002/3 

The mild impact of the 1997/98 El Niño episode was not confined to Australia though, with a 

number of other regions around the globe, in which climate variability is well correlated to 
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ENSO events, experiencing climate conditions that could not be considered typical (Kane, 

1999). Dry conditions across southern Africa experienced during earlier El Niño events were 

not experienced at this time, and the typically wet conditions brought by El Niño to Peru 

remained from this event throughout the following (dry) La Niña period of 1998/99. 

Table 2.1 Comparison of the strength of the most recent 10 El Niño periods and their impacts upon 

the hydrology of Australia (source: Bureau of Meteorology) 

El Niño event Strength as measured by SOI and SSTs Overall impact on Australia 
2002/2003 SOI: Weak,  SST: Weak to Moderate Very Strong 
1997/1998 SOI: Strong,  SST: Very Strong Weak 
1994/1995 SOI: Strong,  SST: Weak to Moderate Strong 
1991/1992 SOI and SST: Moderate to Strong Strong 
1987/1988 SOI: Weak,  SST: Weak to Moderate Weak 
1982/1983 SOI and SST: Very Strong Very Strong 
1977/1978 SOI: Moderate,  SST: Weak Moderate to Strong 
1972/1973 SOI: Moderate,  SST: Moderate to Strong Strong 
1969/1970 SOI and SST: Weak Weak 
1965/1966 SOI: Moderate to Strong,  SST: Moderate Moderate 

The irregular impacts upon the Australian climate shown in the two most recent El Niño 

episodes are compared with the 10 most recent episodes in Table 2.1. Summarising detailed 

analyses of the Bureau of Meteorology, this comparison provides an overall impact of each El 

Niño upon reductions in rainfall across Australia. These analyses show that the disparities 

between changes in climate indices and the impacts upon Australian rainfall for the 2002/2003 

and 1997/1998 El Niños were more extreme than any of the preceding eight episodes. In 

seeking to explain observations such as these, Mason and Goddard (2001) assert that even if the 

magnitude and structure of SST anomalies were identical from one climate event to the next, the 

general problem of inherent unpredictability within the atmosphere would lead to differences in 

the climate anomalies observed during each event. This notion underlies the importance of a 

stochastic approach that incorporates oscillations within hydrologic time series without reliance 

upon climate index values. Further analysis on this topic is presented in Section 3.2. 

2.3.2 Relationships between ENSO and streamflow variability 

Rainfall is the dominant factor in the hydrologic cycle, and year-to-year variation in its spatial 

distribution is an important characteristic of hydrologic regimes. Catchment runoff is an 

effective measure of the spatial variability in rainfall, with the intrinsic “memory” of watershed 

storage amplifying anomalous changes in precipitation input. Consequently, streamflow records 

can more clearly detect high and low cycles that are related to modes of climatic variability such 

as ENSO as opposed to rainfall records. Hydrologic responses to ENSO events may be delayed 

due to the innate lag between regional climates and variability in the Pacific Ocean, where El 

Niño and La Niña events are recorded, or simply from the hydrological response to climate 
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anomalies. For instance, in regions where precipitation is stored as snow, winter climate 

anomalies can manifest themselves in the streamflows of spring and summer (Arnell, 2002).  

Many studies have focused upon establishing links between ENSO and streamflow across the 

globe, identifying large changes between the hydrologic conditions of El Niño and La Niña 

periods. Viles and Goudie (2003) noted that the effect of ENSO on streamflow is generally 

amplified over that on precipitation, and showed the recurrence intervals of discharge events in 

areas of southwestern North America and Chile to differ greatly between ENSO extremes. An 

analysis of streamflows in these same regions by Cayan et al. (1999) supports these effects, with 

several basins being at least ten times as likely to experience extremely high flows during El 

Niño periods than during La Niñas. 

As with precipitation, ENSO is strongly linked to streamflow across much of Australia, with 

ENSO indices explaining over 20% of annual variability in the records from various 

southeastern rivers (Simpson et al., 1993). Chiew and McMahon (2003) identified clear El 

Niño-streamflow teleconnections across most of Australia, and these were almost always 

stronger than El Niño-rainfall teleconnections. The inter-annual variability in Australian 

streamflow is amongst the highest in the world (McMahon et al., 1992), and ENSO-streamflow 

and ENSO-rainfall teleconnections are also stronger in this country than in other parts of the 

world (Chiew and McMahon, 2002b; 2003). In particular, streamflow records from semi-arid 

regions can clearly show the influence of irregular atmospheric circulation phenomena 

(Puckridge et al., 2000). Hydrographs of dryland rivers are strongly influenced by aseasonal 

factors (Walker et al., 1995), with rainfall in these regions tending to be intense and very 

localised. The effects of ENSO are particularly evident in the Lake Eyre Basin of arid central 

Australia (Kotwicki and Allan, 1998), and an investigation of the flow regime for Cooper Creek 

within this basin by Puckridge et al. (2000) showed a tendency for important flood clusters to 

correspond to La Niña periods. 

Arnell (2002) provides a concise summary of the published associations between ENSO and 

streamflow across the globe, which predictably reflect the spatial influence of ENSO on 

precipitation. During El Niño events, streamflow tends to be higher than average across much of 

South America and the southwest areas of the USA, with lower than average flows observed 

across Australasia, central America, and the equatorial zone of Africa. The influence of periodic 

climate phenomena on streamflow totals has important effects upon the management of water 

supplies, with ENSO events being associated with extended periods of high and low levels in 

water storages. Figure 2.8 summarises the location of global streamflow anomalies that are due 

to ENSO, with the shaded areas indicating lower streamflows being received during El Niño 

episodes, and areas that receive higher streamflows outlined. 
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Figure 2.8 Global streamflow anomalies during El Niño (after Viles and Goudie, 2003) 

The most relevant outcome from these analyses is that climate oscillations encapsulated by the 

ENSO phenomenon provide a direct source of persistence within hydrologic data. This 

hydroclimatic interaction is stronger within streamflow time series than with rainfall 

observations, having a broad range in the strength of its modulations. The analysis of hydrologic 

totals in regions that are modulated strongly by ENSO phases are likely to benefit from a 

modelling approach that provides an explicit description of hydroclimatic persistence. 

2.3.3 Low frequency modulation of ENSO impacts 

With a broad range of ocean-atmospheric phenomena present in the climate regime of the 

Pacific, it is important to distinguish their cumulative effect upon regional climates. ENSO and 

IPO signatures are both revealed through time series of Pacific SST anomalies, and it is likely 

that the impact of individual ENSO events upon regional climates will be modulated by the 

longer period IPO. 

Observed teleconnections between ENSO and regional climates around the Pacific are 

complicated by large inter-El Niño or inter-La Niña variability (Kumar and Hoerling, 1997; 

Gershunov and Barnett, 1998), due to changes in the IPO. Although the influence of ENSO is 

significant, variability associated with this generally explains less than 25% of interannual 

variations in global mean temperature and rainfall (Diaz et al., 2001), attesting to the strong role 

played by other modes of variability. The strength of teleconnections between precipitation and 

ENSO increases with the amplitude of Pacific SST anomalies (Kumar and Hoerling, 1998), with 

stronger teleconnections expected to occur during periods when tropical Pacific SSTs display 

larger interannual variance. Diaz et al. (2001) demonstrates the influence of the mid-1970s 

climate change on ENSO teleconnections, by showing that as much as 50% of the variability in 
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North Pacific atmospheric circulation was driven by ENSO after 1977, as opposed to only 15% 

for the period 1948-1977. 

Gershunov and Barnett (1998) investigated the influence of the coherent longer-period mode of 

climate variability on North American ENSO teleconnections. Using the term North Pacific 

Oscillation (NPO) to describe the same low frequency effects that were defined as the PDO by 

Mantua et al. (1997), these authors presented evidence for El Niño signals to be strong and 

stable during high NPO phases, when North Pacific SSTs are cold. This suggests that the more 

slowly-evolving mode of variability can modulate ENSO-related climate predictability in North 

America. In light of the widespread use of ENSO-based precipitation forecasts, the decadal state 

of the climate is the best indicator of whether ENSO teleconnections can be used as reliable 

predictors of seasonal precipitation (McCabe and Dettinger, 1999).

Interdecadal periods of warm SST anomalies in the tropical Pacific are associated with a 

breakdown of interannual teleconnections between ENSO and rainfall in various other areas 

surrounding the Pacific (Arblaster et al., 2002). Power et al. (1999a) showed that the two phases 

of the IPO strongly modulate ENSO-precipitation signals across Australia, with a larger fraction 

of climate variability related to ENSO evident in periods of negative IPO regimes. These 

authors used four important climate-related variables to assess interdecadal variability in the 

influence of ENSO on Australia: continent-averaged rainfall and temperature data, 

reconstructed natural flows in the River Murray (with effects of irrigation, land changes, etc. 

removed) and an estimate of the domestic wheat crop yield. In order to observe changes in the 

relationship between these variables and ENSO, correlations with SOI were stratified by the 

polarity of the IPO index, using thresholds of IPO < -0.5 and IPO > +0.5. In periods of IPO < -

0.5, correlations between the SOI and each of the four variables were significant yet none of 

these were significant in periods where the polarity of the IPO was reversed. 

Power et al. (1999a) demonstrated that when correlations between annual SOI values and 

annual values of the four climate variables are taken over 13-year moving windows, the time 

series of correlations are strongly related to annual IPO values. This result further suggests that 

the IPO relates to the low-frequency variability in ENSO-climate relationships across Australia. 

In an earlier study, Nicholls et al. (1996) found that the relationship between the SOI and 

Australian rainfall had diminished since the mid-1970s, corresponding to the start of a positive 

IPO epoch. This demonstrates that individual ENSO events have stronger impact upon Australia 

during the negative phase of the IPO. Furthermore, Kiem et al. (2003) showed the negative 

phase of the IPO to be biased towards an increased frequency of La Niña episodes. In light of 

such observations, one approach to the analysis of hydrologic records in regions influenced by 

multi-decadal climatic persistence is to treat each IPO epoch separately. Alternatively stochastic 
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models that are formulated around the interaction of hydroclimatic modulations, at various time 

scales, offer a suitable approach.   

There is considerable uncertainty surrounding the relationship between inter-annual and multi-

decadal modes of Pacific climate variability. The results of Power et al. (1999b) suggest that the 

phases of the IPO tend to modulate the rate of occurrence and magnitude of El Niño and La 

Niña events. Meehl et al. (2001) also presented evidence for a direct modulation of ENSO 

characteristics by the IPO, showing the importance of a sharp thermocline structure in the 

eastern tropical Pacific (in the Niño-3 region) for capturing realistic ENSO variability in 

coupled models. Changes in this thermocline due to low frequency variability in ocean 

dynamics could affect the up-welling of deeper waters in this region, which in turn can alter the 

amplitude of ENSO variability.  

A second explanation for this low-frequency modulation, proposed by Arblaster et al. (2002), 

involves IPO modulating the mechanisms by which ENSO is communicated to regional 

climates. This can be explained through the accepted “delayed action oscillator” model for 

ENSO, which involves the internal interaction of oceanic and atmospheric processes in the 

eastern equatorial Pacific (Franks, 2004). Interannual variability of ENSO arises through 

anomalous perturbations in this coupled system, which can then propagate via positive feedback 

in equatorial (Walker Cell) circulations. These subsequently interfere with the location of the 

Inter Tropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ), the 

latter being one of the most important climatic features in the subtropical Southern Hemisphere 

by delivering rain-bearing cloud bands to eastern and central Australia. 

Small shifts in the location of the SPCZ can produce large rainfall anomalies (Salinger et al., 

2001), and alterations in the latitude of the SPCZ due to ENSO events in the Austral summer are 

an obvious mechanism by which ENSO alters rainfall patterns across the Australian continent. 

Warm El Niño events disrupt the propagation of the SPCZ over southern latitudes, causing 

reduced rainfall across the Australian continent. Cold La Niña periods however produce an 

enhanced southern movement of the zone, resulting in higher rainfall across Australia. Kumar et 

al. (1999) determined a southerly shift in the Walker circulation in the recent two decades to be 

the cause of a weakening in the relationship between ENSO and the Indian monsoon. Although 

these authors noted such a shift could be due to global warming, natural variability on an 

interdecadal time scale could also be related. Folland et al. (2002) reinforced this latter point by 

showing that alterations in the latitude of the SPCZ are also significantly related to multi-

decadal IPO variability, independent of ENSO influences. During La Niña events that occur in 

IPO negative epochs, the SPCZ is at its southwestern extreme, thus bringing higher amounts of 

rainfall to Australia. As Franks (2004) states, this rationalises the results of Power et al. (1999a) 

who showed the enhancement of La Niña conditions in IPO negative phases.
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Extreme hydrologic events (eg droughts and floods) in eastern Australia are generally associated 

with extreme ENSO events, with year-to-year flood and drought risk varying according to 

ENSO conditions (Franks, 2004). Kiem et al. (2003) showed that the IPO modulation of ENSO 

produced multi-decadal epochs of elevated flood risk, with state-wide flood frequency indices 

for New South Wales showing much higher flood risk during La Niña events as opposed to El 

Niño events but also during the negative phase of IPO as opposed to the positive. This insight 

further demonstrates the role of IPO and ENSO in modulating hydrologic risk, and strengthens 

suggestions that the climate can fluctuate between stable regimes at a range of time scales. 

2.4 Summary of chapter 

This chapter has summarised the major global circulation phenomena that influence the climate 

of Australia. Ocean-atmospheric interactions originating in each of the three major bodies of 

water surround this continent include persistent cycles that modulate the hydrological cycle. 

One approach to linking persistence in the climate to hydrological persistence is to analyse 

relationships between climate indices and hydrologic data. An alternative approach to the 

analysis of hydroclimatic interactions that underlie hydrological persistence is through the 

modelling assumptions of HMMs. Their hypothesis of fluctuations between small numbers of 

generally stable climate states leading to persistence in hydrologic responses is consistent with a 

substantial body of research. The following chapter investigates the quantification and 

stochastic modelling of persistence in hydrologic data. 
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Chapter 3 Hydrological persistence 

A number of studies that have attempted to quantify the relationships between large-scale 

climatic fluctuations and hydrological yield have focused upon the issue of persistence. A 

thorough review of literature on this topic is presented in this chapter, together with theoretical 

results concerning statistical interpretations of persistence. Various methods to incorporate this 

feature into hydrological time series models are also discussed, with particular attention focused 

upon hidden Markov models (HMMs). These models have a parsimonious structure that is 

intuitively better for modelling shifting levels in hydrological time series, thus presenting an 

innovative approach to the modelling of hydrological persistence. Techniques to account for 

uncertainties caused by both a lack of data and by model calibration methods are critically 

reviewed, including benefits provided to these models by using a Bayesian approach. 

3.1 Estimating persistence in hydrological time series 

Hydrologic series display important and characteristic responses to large-scale climate modes, 

with records from across Australia showing a tendency to cluster either above or below 

“normal” levels for extended periods of time. Persistence in rainfall or streamflow observations 

can be attributed to atmospheric, basin or sub-surface storage (Matalas, 1997), and has major 

implications for the design and management of water supply infrastructure. A standard time 

series definition of persistence is generally given in terms of a slow decay of the autocorrelation 

function, modelled as a hyperbolic decay. Throughout this thesis however, hydrological 

persistence is interpreted through the lengths of wet and dry periods, termed spells, exceeding a 

threshold duration that could be expected for non-persistent data (such as white noise). The 

standard time series definition of persistence is not used in the thesis for this interpretation of 

persistence. 

Studies that have focused upon spell analysis of hydrologic time series (eg Yevjevich, 1967a; 

Saldarriaga and Yevjevich, 1970; Peel et al., 2004b) have been noted for their usefulness in 

water resources planning and for investigating the stochastic and deterministic nature of 

observed data. The characterisation of spells requires the specification of threshold levels that 

divide a sample into clusters of similar values. The sample mean offers a natural choice for 

dividing wet values from dry, although the use of the sample median (as used by Peel et al., 

2004b) reduces the influence of skewed data on the length and magnitude of runs. A similar 

threshold is applied in order to undertake runs analysis throughout this work. 
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3.1.1 Statistical tests to identify persistence 

A number of statistical tests are available to estimate the occurrence and extent of persistence in 

hydrologic records. Some of these tests are designed to investigate the nature of spells, which is 

generally termed runs analysis, while other tests consider the temporal dependence of persistent 

series through techniques such as autocorrelation and spectral analysis. In their description of 

runs analysis, Saldarriaga and Yevjevich (1970) advocated the use of the mean run length of a 

sample in order to test for persistence in an observed data series. Peel et al. (2004a) developed 

an alternate summary statistic, based on the frequency distribution of run lengths to compare a 

range of observed streamflow series. The raw skew of the frequency distribution of run lengths 

in a series of length T, where m(s) is the frequency of run length s and L is the length of the 

longest observed run, is estimated by 
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Gold’s length of runs test (LORT) (Gold, 1929; Srikanthan et al., 1983) identifies persistent 

series through comparing the length of runs defined using a median threshold to lengths 

expected for observations generated from a purely random process. The LORT calculation also 

uses the frequency of run lengths m(s), with expected value of m(s) for a random process  
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is the length of runs test-statistic, distributed as a 2χ  variable with (L-1) degrees of freedom. 

Values of Q below the 95th percentile of the corresponding 2χ  variable provide statistically 

significant evidence for dependence. 

The linear dependence between any two observations in a series can be measured through the 

calculation of sample autocorrelation, with short-term dependence in a time series usually 

measured by the magnitude of low-order autocorrelation coefficients. Peel et al. (2004b) suggest 

that the significant variable in run length equations, apart from truncation level, is the magnitude 

of the lag-1 autocorrelation. The correlation between observations a distance k apart in a time 

series }{ ty , termed the autocorrelation at lag k or )(kr , can be estimated by: 
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The use of an autocorrelation function as a description of the temporal dependence in a time 

series is usually used when the distribution of residuals approximates Gaussian. If conditions of 

normality and homoscedasticity are not met, the autocorrelation function may be an unreliable 

measure and should be used with care (Sen, 1978). In order to examine the nature of sequential 

dependence in hydrologic time series, Sen (1978) developed autorun analysis as an alternative 

methodology to autocorrelation analysis. This technique is based purely upon the theory of wet 

and dry runs and is a more appealing statistic for identifying persistent processes. By using the 

variable m to describe the threshold separating high (wet) variables from low (dry), the autorun 

coefficient at lag k is given by 
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This can also be expressed in terms of the threshold exceedance probability )( myPp i >= , such 

that the median truncation level, for which 5.0=p , is a special case. Sen et al. (2003) show that 

a small sample estimate of Eq. 3.5 is given in terms of the number of joint events ( kn ), in which 

observations lag-k apart are simultaneously greater than m. The sample estimate is given as 
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Although correlations are rather insensitive to the conditional distribution of residuals, the 

calculations involved in autorun analysis are distribution-free such that the autorun coefficient 

will not distort the dependence structure of the sequence considered (Sen et al., 2003). In the 

case of a mean threshold applied to a sequence of normally distributed stochastic variables, the 

autorun coefficient is equivalent to the autocorrelation coefficient. 

3.1.2 Hurst phenomenon 

In any consideration of persistence in hydrology, it is important to consider the contribution to 

this field of Hurst, whose seminal papers (1951; 1957) followed an extensive investigation of 

the long-term characteristics of reservoir storage. Following a study of geophysical records, 

Hurst et al. (1965) described the persistence in these observations in the following manner: 



34 

Chapter 3 – Hydrological persistence 

“the persistency which exists in many natural time series as 

well as others of social origin is not well described by serial 

correlations… periods occur when on the whole values are 

above the long-term average, and others when they are below 

it, to a greater extent than is to be expected from a series of 

independent variables.” 

By using the rescaled range statistic, evaluated as the cumulative sum of departures of annual 

totals from their mean, Hurst (1951) identified a  

“definite difference between many natural time series and those 

where the terms are independent of each other”. 

The evaluation of the rescaled range statistic requires the estimation of the adjusted range 

),( ktR  for subsets of the time series }{ ty  that start at t  and have size )1( +k . The mean value 

of this subset is  
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and the corresponding standard deviation is 
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By defining ),,( mktD , where km ≤≤0 , as 
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the adjusted range ),( ktR  is then calculated as the difference between the maximum and 

minimum values for ),,( mktD . The rescaled range is found as ),(/),( ktSktR , simplified to 

SR / , and is repeated for randomly chosen values of t  and k . Hurst showed that if the }{ ty

were purely random and thus drawn without serial dependence, the expected value of the 

rescaled range for a large data set is given by 
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where A  is constant. Exponents of )(Ak  significantly exceeding 0.5 are evidence against 

independence. After taking logarithms, Eq. 3.10 is rewritten as 
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kHASRE log]/[log +≈ (3.11) 

Hurst et al. (1965) analysed many geophysical time series to determine a range of values for the 

exponent of )(Ak , referred hereafter as H, that would be expected to occur in nature. The 

results of this study showed H  to have a mean value of 0.72 and standard deviation of 0.09, 

thus significantly exceeding the theoretical 0.5. The characteristic for natural series to produce 

0.15.0 << H  has been termed the Hurst phenomenon, with H  termed the Hurst exponent. In 

double logarithmic plots of ),(/),( ktSktR  against k , Hurst behaviour is revealed as a straight 

line arrangement of points corresponding to the size of different subsets, the slope of which is 

the Hurst exponent. A range of heuristic methods to estimate the Hurst exponent H have been 

suggested in the literature, including the semi-variogram, a double logarithmic plot of the 

correlogram and least squares regression in the spectral domain (see Beran, 1994), although the 

rescaled adjusted range statistic is perhaps the best known. Recently, Abry and Veitch (1998) 

described a wavelet-based tool that provides a natural, statistically and computationally efficient 

estimator of the Hurst exponent. 

An intuitive explanation for the adjusted range is derived in terms of its original application in 

reservoir storages, as discussed by Borgman and Amorocho (1970) (cited in Bras and 

Rodriguez-Iturbe, 1993). Suppose ty  is the total inflow to a reservoir during period t , with 

water flowing out of the reservoir at a constant rate, being such that the total amount of water in 

the reservoir at time )( kt +  is the same as at time t . ),( ktR  is then the minimum capacity of a 

reservoir such that it will not overflow during this period, calculated as the difference between 

the largest surplus and greatest deficit. Statistical behaviour of the rescaled range provides 

insight into the volumes that need to be maintained (Bras and Rodriguez-Iturbe, 1993). 

Extensive literature has been devoted to explaining the Hurst phenomenon, which has been of 

great interest to statisticians, hydrologists and geophysicists in the years since its discovery. A 

range of possible explanations have been presented, suggesting that it cannot be attributed to 

one physical cause. One line of thought is that the Hurst phenomenon is a transitory behaviour, 

and that series of hydrologic observations are not long enough to test the steady-state behaviour 

of the adjusted range, which will approach 0.5. A second theory stated by Klemes (1974) 

involves the possibility of low-frequency variability in the underlying mean of the process. The 

third dominant theory proposed in the literature suggests that the Hurst phenomenon is derived 

from stationary processes having very large memory, such that their autocorrelation functions 

decay very slowly in time. Bras and Rodriguez-Iturbe (1993) note that in the limit, such an 

argument claims infinite memory for natural processes. 
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The Hurst phenomenon is a puzzling attribute of geophysical time series, and although it 

describes a natural long-term characteristic, it is not analogous to the interpretation of 

persistence taken in this work. The characteristic for Hurst exponents exceeding 0.5 is referred 

to in this work as mathematical persistence in order to differentiate it from the characteristic of 

various hydrologic data that show extended periods in stable regimes, which is termed 

hydrological persistence.  

Mathematical persistence, also referred to as long-range dependence or long memory, is 

revealed through correlations that slowly decay at a hyperbolic rate with α−≈ kkr )(  as k  tends 

to infinity, such that the dependence between events at distant time points diminishes slowly as 

this distance increases. The relationship between the Hurst phenomenon and this hyperbolic 

decay of autocorrelations is shown through the relationship 21 α−=H . Beran (1994) notes 

that the condition of hyperbolic decay of autocorrelations is essentially equivalent to the spectral 

density having a pole at zero. The characteristic of long-range dependence is in contrast to the 

short-range dependence shown by ARMA and Markov processes, in which the asymptotic 

decay of autocorrelations is exponential such that kkr α≈)( . 

In a frequency domain, long-range dependence of a series is revealed when its spectral density 

is unbounded at the origin. The low frequency power spectra of these series display power-law 

behaviour α−f  that is consistent with the time-domain characteristic of slowly-decaying 

autocorrelations. In frequency-domain models for mathematically persistent time series, this 

feature is referred to as “ f/1 ” noise (Bak et al., 1987), which can be observed over vastly 

different time scales. It is important to note that mathematical persistence (hence the Hurst 

phenomenon) is an asymptotic quality, providing an indication of the rate of convergence but 

not the magnitude of autocorrelations or frequencies. With correlations at specific lags for long-

range dependent series not specified, Beran (1994) makes the point that the detection of this 

feature in finite samples is difficult. Furthermore even though ARMA models display an 

asymptotic value of 5.0=H , finite realisations from such processes can show estimates for the 

Hurst exponent of 15.0 << H . 

The Hurst phenomenon describes a statistical phenomenon that is not examined closely in the 

remainder of this thesis. This work is focused upon the identification and estimation of time 

series displaying short-term dependence and fluctuations between “stable” regimes, rather than 

a slow decay of autocorrelations (or frequencies) or high values of the Hurst exponent. A range 

of suitable time series models for hydrological persistence are described in Section 3.2. 
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3.1.3 Previous studies of persistence in hydrology 

A considerable number of hydrological and climatological studies have used runs analysis to 

evaluate the impact of persistence in hydrologic records. The most common application of this 

method is in drought studies, which use thresholds to define periods of consecutive dry years 

that are consistent with drought conditions. Although there are various definitions for drought 

(eg Dracup et al., 1980; Wilhite, 2000), runs analysis provides a tool for investigating the 

associated water deficit. 

Yevjevich (1963; 1964; 1967b) provided much of the early investigations into the importance of 

runs analysis in hydrology. Through these early studies, drought severity was defined as the 

sum of negative deviations from a threshold for given dry spell lengths. As a result, run length 

and run magnitude become important parameters for investigating the impact of drought 

conditions. Peel et al. (2005) cites many papers that investigate the expected frequency and 

average recurrence interval of wet and dry periods of certain magnitude and severity, noting that 

in comparison to run length, run magnitude has received considerably less attention in the 

hydrologic literature. Peel et al. (2004b; 2005) produced extensive analyses into runs of annual 

precipitation and streamflow on a global scale. These investigations showed run lengths defined 

by median values to be similar across all continents and Köppen climate zones, expect for arid 

and tropical North Africa, which tends towards longer (more persistent) runs. Annual run 

magnitude was closely related to interannual variability in rainfall and streamflow observations, 

with continental differences consistent with differences in interannual variability. 

Importantly, most hydrologic studies using runs analysis have investigated wet and dry 

fluctuations at annual time scales. There has been little focus upon wet and dry spells at a 

monthly scale, or of drought impact at sub-annual intervals. This forms a major focus of this 

current work, which although not following previous investigations in merely identifying 

hydrological persistence, describes valuable results that demonstrate the importance of runs 

analysis. The economic and social stresses that accompany drought conditions are a major 

consequence of hydrological persistence, and with this feature being a significant aspect of 

global hydrologic regimes, it is vital that it is incorporated into stochastic time series models. 

The following section examines approaches to model hydrologic series, and also methods to 

incorporate wet and dry spells into such models. 

3.2 Stochastic modelling of hydrological time series 

Stochastic modelling plays an important role in hydrology, with data generation and forecasting 

being used extensively in the planning and management of water resources. Synthetic hydrology 
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is an approach to counter limitations presented by historical hydrologic inputs, through the 

generation of random hydrologic sequences that retain correct probabilistic behaviour (Bras and 

Rodriguez-Iturbe, 1993). The generation of synthetic streamflow or rainfall series for use in 

simulation studies arose through a dissatisfaction with earlier techniques of hydrologic design 

(Jackson, 1975a). The development of formal stochastic modelling in hydrology began during 

the 1960s with the application of autoregressive (AR) models to time series of annual 

streamflows (Salas and Boes, 1980). The earlier parts of this chapter have described persistence 

within the different aspects of the hydrological cycles, and it is therefore vital that a method to 

produce accurate simulations of persistent processes is available. 

Stochastic models play a major role in testing aspects of physical systems, so the foundations of 

these models must therefore preserve the overall physical relevance of such systems in order to 

gain the correct perspective from modelling results. The hydrological cycle is the environmental 

system describing the distribution and circulation of water in all its forms (Hipel and McLeod, 

1994) so when modelling parts of this cycle, such as rainfall or streamflow time series, it is 

desirable that the key physical characteristics of the entire system are adequately described. 

Physically founded models can explicitly account for interactions within a watershed, and Salas 

and Smith (1981) state that it is  

“desirable that… physical considerations be used for aiding in 

the identification of the type of model”. 

This view is shared by Sen et al. (2003), who state that one way of decreasing uncertainty 

between true and estimated models is by selecting a stochastic model that best represents the 

physical reality of the system. 

The development of alternative models for stochastic hydrologic simulation needs to be made 

with regard to whether the model has physical and/or operational justification (Salas and Boes, 

1980). Jackson (1975a) addresses this question by outlining a distinction between descriptive

and prescriptive hydrologic models; the former being those models that seek to describe a 

process or system, hoping to provide insight into its “actual operation”, with the latter intended 

only to extract results for planning use. In this way, Jackson (1975a) states that prescriptive 

models are not intended as “phenomenological” descriptions as they do not profess to accurately 

model the actual workings of a system, and assumptions made for the model are not necessarily 

in accordance with real physical phenomena (Salas and Boes, 1980).  

The issues surrounding the development of probability models are also confronted by Cox 

(1990), who introduced the term substantive to represent Jackson’s descriptive models, and 

empirical to represent Jackson’s prescriptive models. In many ways, the most appealing models 

are substantive models that connect directly with subject-matter considerations, and attempt to 
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explain the observed system in terms of its mechanisms, often with variables that are not 

directly observed. While substantive models have a descriptive endeavour, there is no 

requirement for such models to have a complex structure. To illustrate this, Cox (1990) cites the 

formulation of simple five-parameter schemes for high frequency rainfall series (see Rodriguez-

Iturbe et al., 1988), assuming Poisson cluster processes for individual rain cells. Although such 

models are highly idealised, they offer a means by which a complex physical process can be 

represented in a parsimonious manner, using parameters of physical significance. Conversely, 

empirical models such as multiple regression models are not based on any specific subject-

matter considerations, rather aiming to preserve certain characteristics of the original time 

series. In seeking to develop suitable stochastic models for hydrological persistence, it is 

desirable that the physical context for this variability is maintained. A range of approaches to 

modelling hydrologic time series are presented in the following section, with their justification 

in terms of observed persistence also discussed. 

3.2.1 Univariate time series models 

The main concern in the early development of stochastic models was the preservation of 

observed values for the mean, standard deviation, skew and serial correlation coefficients, and 

to incorporate these into stationary linear time series models (Salas and Boes, 1980). These are 

termed short-memory (or short-dependence) models as their correlation functions decay rapidly 

as lags increase. The correlations of long-memory models decay more slowly. The family of 

stationary linear models that includes autoregressive (AR), moving average (MA) and mixed 

autoregressive moving average (ARMA) process are intuitively appealing, and have been 

applied in a range of different fields. The mathematical definitions and properties of these 

models have been investigated thoroughly by various authors (eg Box and Jenkins, 1970; 

Chatfield, 1996), and only a brief description is presented here.  

Models that specify first-order correlation coefficients, termed autoregressive models of order 

one or AR(1) models, are perhaps the most common model of time-series simulation and 

forecasting. The AR(1) process, which is commonly called a Markov process, or the Thomas-

Fiering model in hydrology, can be represented in terms of a zero mean process as 

ttt zyy += −11φ  (3.12) 

where tz  is a white noise sequence with zero mean and variance 2
zσ . To ensure stationarity, the 

serial correlation parameter is required to maintain the condition of 1|| 1 <φ . The autocorrelation 

of the process }{ ty  at lag k is related to the serial correlation parameter by kkr 1)( φ= . 

Furthermore, the variance of the process is related to both the lag-1 autocorrelation and to the 

variance of the white noise sequence by 
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In hydrologic applications, the AR(1) model is often expressed in terms of the central moments 

of a random process (Bras and Rodriguez-Iturbe, 1993),  

txtt wrxrx 5.02
1 ))1(1())(1()( −+−=− − σµµ  (3.14) 

Here, µ  is the stationary mean of the process }{ tx , and )( µ−tx  is ty  in Eq. 3.12. The 

random term tz  is replaced by a term containing tw , a zero mean normally distributed variable 

with unit variance, with 5.02 ))1(1( rx −σ  being the standard deviation of }{ tz . The spectra of 

AR(1) processes with positive parameters are dominated by low-frequency fluctuations, while 

negative parameters see high frequencies dominate. The Markov process with a single φ

parameter is a special case of autoregressive models. A process }{ ty  is said to be an 

autoregressive process of order p, abbreviated to AR(p), if 

tptptt zyyy +++= −− φφ ...11  (3.15) 

A stationary linear process, termed a moving average process, can be described in terms of 

current white noise terms, as well as one or more previous innovations (Hipel and McLeod, 

1994). Given that }{ tz  is a purely random process with zero mean and variance 2
zσ , a process 

}{ ty  is said to be a moving average (MA) process of order q, abbreviated to MA(q) if 

tqtqtt zzzy +++= −− ϕϕ ...11  (3.16) 

The MA(q) process is assumed stationary regardless of the values of the ϕ  parameters, as ty  is 

formed from a finite linear combination of the tz  terms. However, by imposing the restriction 

that 1|| <qϕ  for all q , invertibility of the process is ensured. 

A key principle to follow in time series modelling is to have as few parameters as possible. 

When fitting stationary linear models, it may be advantageous to combine AR and MA 

processes to form a mixed autoregressive/ moving average (ARMA) process. The importance of 

these mixed processes lie in the fact that a stationary time series may often be described by an 

ARMA model involving fewer parameters than a pure MA or AR process by itself (Chatfield, 

1996). An ARMA(p, q) process containing p AR terms and q MA terms, is expressed as 

qtqttptptt zzzyyy −−−− ++++++= ϕϕφφ ...... 1111  (3.17) 
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It is clear that an ARMA(p, 0) is identical to an AR(p) process, and an ARMA(0, q) process can 

also be written as MA(q).  

Although linear autoregressive models have been presented as physically based models for 

stochastic hydrology (eg Yevjevich, 1963), their benefit in this context is closer to a prescriptive 

or empirical sense. These models are intended to preserve only certain characteristics, such as 

the mean, standard deviation and the correlation structure, and do not attempt to model nature 

exactly. Notwithstanding this, Fiering (1967) showed through a conceptual watershed 

representation that by using ARMA models for simulating annual precipitation, a physical basis 

for describing annual streamflows is produced. By considering this earlier work, Salas and 

Smith (1981) derived the correlation structure of annual streamflow as a function of the 

correlation of annual rainfall. If the latter process is assumed independent, or described by an 

AR(1) model, annual streamflow and groundwater storage will be described by ARMA models. 

This result is important, as it demonstrates an attempt to relate the stochastic behaviour of 

different processes of the hydrologic cycle. However, this result remains dependent upon the 

ARMA framework being a suitable description for precipitation variability at an annual scale, 

and fails to provide a physical interpretation for such an assumption. 

The seemingly abstract nature of standard Markov models to describe hydrologic processes (for 

example why should total rainfall in a certain year depend only upon the rainfall in the 

preceding year?) is improved somewhat with a stationary alternative termed the double Markov

process. Landwehr and Matalas (1986) defined such processes as  

10;)1( ≤≤−+= AvAAuy ttt  (3.18) 

where tu  and tv are the outcomes at time t of two independent Markov processes. Although 

Landwehr and Matalas (1986) interpreted these processes as being the local and regional 

components that contribute to tree growth, it is possible to adapt such a model to a hydrologic 

context. In this way, ty  can represent streamflow or rainfall derived from both local climate 

conditions tu , and regional controls on atmospheric conditions tv . Models such as this are a 

step closer to providing a link between at-site stochastic behaviour to irregular climate forcings 

at a range of scales (Koutsoyiannis, 2004). 

Salas and Boes (1980) question the application of ARMA models from an operational rather 

than conceptual point of view. The inability of such models to reproduce historical drought 

periods, including the magnitude of ranges and runs, is considered the central deficiency for 

hydrologic applications. This view is shared by Bras and Rodriguez-Iturbe (1993), who state 

that it is quite common for simulated streamflow and precipitation series lacking droughts and 

floods of the magnitude present in historic sequences. Mandelbrot and Wallis (1968) introduced 
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terms such as “Noah” and “Joseph” effects to describe low flows in historical records. These 

authors suggested that in order to simulate these effects accurately, either models that consider 

more durable after-effects (such as multiple lag models) or indeed self-similar models (as 

discussed in the following section), needed to replace ARMA models in stochastic hydrology. 

The structure of ARMA models that interprets climate effects linearly, focusing only upon the 

reproduction of statistics may produce inaccurate estimates of persistence in hydrologic 

observations. Autoregression is difficult to interpret in the context of hydrologic variability, as it 

fails to associate climate fluctuations to hydrologic responses. By interpreting the processes of 

the hydrological cycle in statistical models that better reflect physical interactions, more 

accurate simulations of persistence can result. The following section discusses methods by 

which persistence in hydrology can be more explicitly modelled. 

3.2.2 Modelling the Hurst phenomenon 

The results of Hurst’s investigations led the scientific community to time series models that 

could replicate this long-term phenomenon, which appeared to be the rule rather than the 

exception in historic time series (Klemes, 1974). Linear autoregressive models failed to produce 

the 72.0≈H  behaviour identified by Hurst and therefore a range of alternative time series 

models were developed. This effort came despite the difficulties associated with obtaining 

accurate estimates for H in short hydrologic time series using statistics such as the rescaled 

adjusted range. These difficulties are illustrated in Figure 3.1, which shows realisations from an 

AR(1) process, which does not satisfy the definitions of mathematical persistence. These 

realisations show a tendency for 1→H  as 11 →φ , although this bias reduces as sample length 

increases. In this figure estimates of H are obtained using the rescaled adjusted range statistics 

for 1000 simulations each of length 100 using a range of autocorrelation coefficients. The bias 

in estimates for H due to sample length is further investigated in Section 5.2, which shows that 

the identification of the Hurst phenomenon within hydrologic time series is obstructed by 

insufficient record lengths. 
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Figure 3.1 Variation in Hurst exponent with variation in autocorrelation from Monte Carlo 

simulations of AR(1) models showing median and 90% of samples 

Notwithstanding these results, a breakthrough in efforts to devise new stochastic approaches for 

replicating sample estimates of H was achieved in the 1960s. Mandelbrot and van Ness (1968) 

and Mandelbrot and Wallis (1968), amongst others, proposed a model that could explicitly to 

preserve the Hurst phenomenon. Rather than starting with a defined model structure then testing 

the ability of its extrapolations to replicate observed statistical characteristics, these authors 

instead began with the specification of the rescaled range results, and then moved “backwards” 

to design an appropriate model. The Hurst phenomenon was shown to arise through a class of 

processes termed fractional Brownian noises (fBn’s) that displayed infinite memory, a 

characteristic by which the value at any time step is dependent, to some degree, on all previous 

values. These models are stationary and display the property of self-similarity, in which short 

sequences have the same statistical features as rescaled long series. Infinite memory cannot arise 

in any physical context, yet it provides a useful device for a mathematical representation of a 

physical process. 

Fractional noise models were developed through a desire to reproduce the geometric patterns of 

historic series mathematically (Klemes, 1974). This signalled a major departure from existing 

modelling techniques, described by Mandelbrot and van Ness (1968): 

“…we selected fractional Brownian motion so as to be able to 

derive the results of practical interest with a minimum of 

mathematical difficulty” 

Since the introduction of fBn’s, other models capable of reproducing the Hurst phenomenon 

have also been introduced, including fractional autoregressive integrated moving average 

(fARIMA) models (Hosking, 1984) and broken line processes (Rodriguez-Iturbe et al., 1972), 
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both of which are directly related to fBn’s. Fractional ARIMA models are a novel development 

of the standard ARIMA process, in which the degree of differencing takes a non-integer value 

that is related to the Hurst exponent as 5.0−= Hd . These models reproduce the asymptotic 

quality of mathematical persistence, and their representation of both short-term and long-term 

persistence produces a flexible modelling approach. Realisations of fractional noise processes 

reflect oscillatory movements of longer periodicities than Markov processes (Matalas, 1997), 

with the infinite sum of serial correlation coefficients for such processes being unbounded. 

Despite this lack of understanding and the large sampling errors of statistics used to estimate the 

Hurst exponent, these long-memory models produced great excitement in the scientific 

community. Indeed the conviction of these early authors in the mathematical precision of their 

stochastic developments was summarised by Wallis and O'Connell (1973), who stated that 

“to emphatically state that hydrologic records do not exhibit 

long-term persistence demands either a very naïve 

understanding of statistics or a monumentally large data base” 

In order to provide some justification for the use of long memory self-similar models that can 

explicitly simulate the value of the Hurst coefficient in hydrologic analysis, various authors 

have attempted to compare their performance against more established short-memory models. 

Young and Jettmar (1976) sought to provide reservoir operational guidelines to assist in the use 

of either modelling approach for the simulation of inflows. These simulation studies preserved 

the covariance structures of historic observations, rather than specific statistics such as the first 

order autocorrelation or Hurst coefficient. A least squares analysis was used, in which the 

squared error for a correlogram of both Markovian and self-similar models was minimised for 

monthly streamflows. These results suggested minimal difference between short- or long-

memory models, such that little design loss was encountered with incorrect model assumptions.  

The applicability of long-memory models for hydrologic simulation was also investigated by 

Klemes et al. (1981), who undertook a comparison of Markovian and broken-line models for the 

simulation of annual stream flows. These authors also undertook a reservoir reliability 

investigation with each model using simulated monthly flows, obtained through the 

disaggregation of simulated annual values, as input sequences. Once again, the differences in 

reliability that resulted from replacing one model for the other was small when compared both 

to the level at which the socioeconomic impact of changes could be measured and to the 

accuracy of reliability estimates. In light of these results, the replacement of short-memory 

models with more complex long-memory models for hydrologic simulation was unjustified. A 

further word of caution in describing models for apparent long-range dependence is provided by 

Beran (1994), who noted the possible influences of aggregating various time series upon the 

dependence structure. In particular the conditions through which the aggregation of independent 
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AR(1) processes can artificially induce long-term memory are described. Although this may 

provide a possible explanation for mathematical persistence, it also highlights the difficulty 

posed in identifying genuine mathematical persistence in an observed time series. 

Subsequent to the development of stochastic models designed to replicate the Hurst 

phenomenon during the late 1960s and early 1970s, Klemes (1974) noted that the analysis and 

modelling of hydrologic time series during this time lost its hydrologic context. Although 

approximations to fractional noise models provide simulations that exhibit the Hurst 

phenomenon, these models do not necessarily provide a suitable physical explanation. Klemes 

(1974) warns against mathematically-derived hydrologic models dominating those derived from 

predominantly physically-based sources: 

“(the hydrologist’s) mission is to view the series in its physical 

context, to seek explanations of its peculiarities in the 

underlying physical mechanism rather than to postulate the 

physical mechanism from a mathematical description of these 

peculiarities” 

This point is significant, not only in the context of the Hurst phenomenon, but also to the wider 

scope of hydrologic modelling. Mathematical precision of stochastic simulations is imperative; 

however time series models should be promoted and used within the boundaries of physical 

reasoning. Although it is vital that stochastic models replicate the statistical characteristics of 

historical series, it is somewhat more important that the relevance of such statistics is 

maintained. The Hurst phenomenon demonstrates the complexity and unpredictability of 

hydrologic processes, yet its somewhat abstract nature means that to design and promote 

stochastic models based on their ability to replicate its features is inappropriate. 

It is well known that long-memory models such as fBn’s have an impressive and flexible 

operational framework. However, again taking the words of Klemes (1974) 

“the ability to simulate, and even predict, a specific 

phenomenon does not necessarily imply an ability to explain it 

correctly” 

From this perspective, successful operational models may, in fact, be unacceptable from a 

physical perspective. The aim of this thesis is to develop stochastic models that have a stronger 

physical basis for the identification and simulation of hydrological persistence. The Hurst 

phenomenon is without doubt an important characteristic of geophysical time series, however it 

is also clear that persistence is not the exclusive and indispensable (Klemes, 1974) feature of a 

process exhibiting the Hurst phenomenon. Rather it is argued here that the impact of 

hydrological persistence can be more reliably assessed through the direct analysis of wet and 
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dry spells. Stochastic models designed to replicate explicitly the characteristics of observed 

spells are therefore preferable to models designed to reproduce solely the feature demonstrated 

in Hurst’s double logarithmic plots of the rescaled range statistic. 

3.2.3 Shifting level (SL) models 

The Shifting Level (SL) model was first introduced to the field of hydrology by Boes and Salas 

(1978), and further developed in subsequent papers (eg Salas and Boes, 1980) as a method to 

simulate time series displaying sudden shifts in the mean, such as observed in some 

hydroclimatic processes. Salas and Boes (1980) suggest that these are capable of reproducing 

historical drought characteristics, which provides an advantage over linear ARMA models for 

operational hydrology.  

A series of observations },...,2,1,{ Ttyt =  are considered to be realisations of two independent 

stochastic processes, as 

ttt zmy +=  (3.19) 

The tm  term corresponds to the latent mean of the observation at time t, whereas the tz  term is 

white noise with variance 2
zσ . The mean levels are normally distributed as ),( 2

µσµN , such that 

µ=][ tyE  and 22]var[ zty σσ µ += . The mean level remains constant for epochs, with the 

duration of such periods assumed to follow a geometric distribution, leading to the }{ tm

process shown to be a Markov chain. 

Salas and Boes (1980) showed that the autocorrelation of the SL model is identical to that of an 

ARMA(1,1) model, for which 

1)1()( −= krkr φ  (3.20) 

where )1(r  is the first serial correlation coefficient and φ  is the AR parameter. Even if 

observations are independent within each epoch, the random shifts in the mean level create 

dependence between observations. This feature is consistent with various hydrologic 

observations with Hurst et al. (1965) noting that the mean annual volume of the Nile River at 

Aswan for the period 1870-1898 was 110x109 m3, while during 1899-1957 was 83x109 m3. 

Hurst et al. (1965) further noted the serial correlation for the first period to be 0.11 and 0.12 for 

the latter period, however over the whole period this increases to 0.49, suggesting that a change 

in mean level can increase correlation. 

Sveinsson et al. (2003) showed that SL models may preserve the mean, variance and the 

autocorrelation of a range of historical annual streamflow and climate series, as well as 
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generating sequences with abrupt changes that are similar to historical patterns. When observing 

drought and storage-related statistics however, simulations from SL models failed to provide a 

significant improvement over simulations from the traditional ARMA(1,1) model. Fortin et al.

(2004) extended the applications of SL models from the simulation of hydrologic data through 

the development of a forecasting algorithm. By fitting the SL model to annual flows in the 

Senegal River, Fortin et al. (2004) concluded that point forecasts from this model were inferior 

to those obtained from a linear ARMA(1,1) model. These results were explained through the 

fact that linear models can provide a good approximation of non-linear time series where there 

is excessive “noise”. 

Advantages of SL models include their ability to retrospectively identify multiple shifts in a 

time series, and to simulate such series, thereby relating hydrologic series to changes in the 

regional climate. The SL model is stationary and forecasts will converge towards the mean. 

Fortin et al. (2004) suggest that a method to test whether observed streamflows are stationary 

could involve the comparison of the SL model with a nonstationary model that also provides for 

shifts in the mean. Suitable nonstationary models include segmentation or change-point models 

that assume single shifts in the process mean to occur in the period of a record, assuming this 

shift to be permanent and therefore altering conditions of the process. The application of 

change-point models to hydrological persistence is discussed in the following section. 

3.2.4 Segmentation models 

The SL model described in the previous section is related to a more general family of stochastic 

models that can incorporate heterogeneity into hydrologic time series. Segmentation models are 

designed to identify blocks of contiguous data (segments) within observed time series, such that 

each segment retains homogeneity. Time series segmentation can be considered a particular 

form of clustering (Kehagias, 2004), under the constraint that the linear order of the sampled 

data is retained.  

There is extensive literature focused upon the segmentation of hydrologic time series, most 

work focusing upon detecting the location and magnitude of a single change in a time series of 

hydrologic observations. Various studies (eg Kiely et al., 1998) have relied upon standard non-

parametric statistical tests to detect the most significant change point in observed series. 

Perreault et al. (1999) described a Bayesian method to detect a single change in the mean level 

of a time series, thus dividing an observed time series into two series of random variables, 

operating at two different mean levels. Although the model formulation of Perreault et al.

(1999) assumes no shifts in the variance of the time series, this aspect of model structure is 

considered in the later study of Perreault et al. (2000a). Bayesian model selection was then used 
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by Perreault et al. (2000b) to investigate the applicability of a range of different models that 

take into account changes in mean and variances around a single change point. 

The effect of having multiple abrupt changes in the statistical parameters of a time series to 

divide an original time series into a number of smaller segments was considered by Hubert 

(2000). This multiple change-point procedure can be defined in the following way: 

Given a time series of length T },...,2,1,{ Ttyt = , a series 21,, iiiyi =  (where 11 ≥i  and 

Ti ≤2 ) constitutes a segmentation of the initial series. The division of an initial series into m

segments constitutes an m-order segmentation of this series. The length of segment 

mkik ,...,2,1, =  can be noted as 1−−= kkk iin , with the local mean of the segment defined as: 
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The quadratic deviation (sum of squared departures from the mean) for each segment is given as 
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is the quadratic deviation between the whole series and the considered segmentation. Hubert 

(2000) provides an algorithm to determine, for a given order of segmentation, the optimal 

segmentation of a series such that this deviation is minimised. Hubert (2000) applied this 

multiple-segmentation procedure to a range of annual rainfall series, although various 

drawbacks were identified. The “branch-and-bound” optimisation routine can only be applied to 

time series of up to 100 values, after which it becomes too computationally inefficient. The 

analysis of monthly rainfall records is therefore beyond the capability of such an algorithm. This 

optimisation routine was improved by Kehagias (2004), such that much longer time series 

containing multiple change points could be analysed efficiently. 

Rasmussen (2001) outlined a procedure that combined a Bayesian approach with the generalised 

linear model to analyse changes in statistical parameters of hydrologic time series. By first 

specifying models for the processes either side of a change, this Bayesian change point analysis 

focuses upon locating where the change occurred and also the size of such a change. 

Segmentation procedures provide explicit methods for detecting spells within time series of 
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observations, using these to infer details of persistence. Notwithstanding this, extensions to the 

original SL model formulation proposed by Fortin et al. (2004) provide a method to define wet 

and dry spells and also to detect abrupt changes in the local mean of a process, thereby 

generalising the segmentation procedure of Hubert (2000). Although such models are 

promising, it is argued here that hidden Markov models (HMMs) provide a better alternative, 

and are the focus of the following section. 

3.3 Hidden Markov models (HMMs) 

Hidden Markov models (HMMs), also known as Markov switching models or Markov mixture 

models, provide a similar modelling structure to the SL model. However rather than focusing 

upon shifts in the mean of a process, HMMs estimate shifts in the state of a process, with 

observations then conditional upon model state. This modelling approach therefore describes 

hydrologic totals in terms of fluctuations between discrete climate states. HMMs have been used 

successfully in a broad range of scientific applications, including speech recognition (Juang and 

Rabiner, 1991), image classification (Li et al., 2000), modelling of biological sequences 

(Churchill, 1989; Le Strat and Carrat, 1999) and econometrics (Ryden et al., 1998). In the field 

of hydrology, both discrete-valued and continuous-valued HMMs are prevalent, the former 

through modelling of daily precipitation data (eg Zucchini and Guttorp, 1991) and the latter 

with annual totals of both rainfall and streamflow observations. 

One of the first applications of HMMs to modelling continuous-valued hydrologic data was by 

Jackson (1975a) who described a two-state HMM for annual streamflows, terming this a 

Markov mixture model. This model was advanced as a method for generating streamflows that 

produced drought lengths observed in historic records. With drought length as the model 

parameter of primary concern, the author hypothesised that these states represented low and 

normal streamflow conditions, with annual flows in each state being random Gaussian variates. 

Jackson (1975a) suggested extensions to this model such as incorporating correlation between 

flow values in successive time steps, with correlation values depending upon model state. 

Parameter estimation for the Markov chain transition probabilities was undertaken separately 

from the parameters describing conditional state distributions, and relied upon estimating values 

that would explicitly reproduce historical drought lengths. Little attention was paid however to 

defining the flow levels that constituted drought years. 

The methodology introduced by Jackson (1975) was a novel approach to a hydrologic 

simulation study and improved simulations achieved from simpler Markov models. Bayazit 

(1982) extended this methodology to incorporate three-state Markov models. These were argued 

to preserve the run properties of flow series related to extreme periods and also the phenomenon 
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of differential persistence, in which low flows persist longer than high flows. More recently, 

Thyer (2000) and Thyer and Kuczera (2000) introduced two-state HMMs to the modelling of 

climatic persistence within annual totals of rainfall. Using the hypothesis that climatic 

fluctuations led to multi-year persistence in hydrologic observations, these authors argued that 

the modelling structure of HMMs provided a superior description of interannual variability than 

could be achieved using linear models such as an AR(1) model. Thyer and Kuczera (2003a; 

2003b) extended this work to consider observations at multiple sites, with Frost (2003) adopting 

multivariate two-state HMMs to incorporate interannual persistence into a rainfall model of six-

minute resolution. In light of these recent studies however, there has been minimal use of 

HMMs for describing persistence in time series of monthly hydrologic totals. An annual scale 

may be too coarse to identify accurately the dominant modes of variability, typified by ENSO 

periods having an average length of 15 months. Therefore a higher frequency such as the 

monthly scale may more clearly reveal this climatic persistence.  

Various authors have used the structure and optimisation routines of HMMs to re-formulate 

existing stochastic models. In particular, Fortin et al. (2004) recently revisited the SL model, 

formulating it as a HMM and developed procedures for the retrospective analysis and 

segmentation of streamflow time series, and also for producing forecasts. Also, Kehagias (2004) 

used a HMM formulation of the segmentation procedure of Hubert (2000) to detect multiple 

change points in hydrological and environmental time series. With these two studies showing 

the SL and segmentation models belong to the broader HMM family, it is appropriate to focus 

on the latter as a candidate modelling approach for persistent hydrological series. Furthermore, 

since the Markov property is a simple and mathematically tractable relaxation of the assumption 

of independence (MacDonald and Zucchini, 1997), discrete-time Markov chains on a finite state 

space are an appropriate method to represent fluctuations between dominant modes of climatic 

persistence. Methods for the calibration of HMMs, and their inference, are described here. 

3.3.1 Fundamentals of HMMs 

Discrete-time hidden Markov models (HMMs) are described in terms of a pair of processes 

)},{( tt yx . These are models for a time series of observations },...,2,1,{ Ttyt = , with a 

probability distribution determined by the state tx  of an unobserved k-state Markov chain. In 

the case of 1=k , the HMM degenerates to a series of mutually independent random variables. 

In hydrologic applications, }{ ty  can represent rainfall or streamflow totals at discrete-time 

intervals (for example monthly or annual totals), with }{ tx  characterising a set of climate states 

that influence the hydrological cycle. This provides a straightforward method for modelling the 

interaction between persistent climate regimes and hydrologic responses.  
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Suppose now that tx  can be described at any time t ),..,1( Tt =  as being in one of a set of k

distinct states },...,,{ 21 ksss . As a result, },...,2,1,{ Ttxt =  is the state series, and in the case of a 

two-state model, its value 1s  may represent a predominantly wet state and 2s  the dry state. The 

joint distribution of a first-order Markov chain satisfies 

)|(),...,,|( 1121 itjtahtitjt sxsxPsxsxsxsxP ======= −−−  (3.24) 

If it assumed that )|( 1 itjt sxsxP == −  depends only on ),( ji  and is thus independent of time, 

the model is assumed stationary, with  

)|( 1 itjtij sxsxPa === −  (3.25) 

being the set of one-step transition probabilities with 1
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The kk ×  matrix }{ ijaA =  is termed the state transition probability matrix. The self-transition 

probabilities for each state is  are then expressed as }{ iia , where ∑
≠

−=
ij

ijii aa 1 . The 

unobserved process tx  being in state is ( )ki ≤≤1  at time t  is expressed as tis , . In this model, 

the sequence of model states }{ tx  is not directly observed (i.e. “hidden”), rather observed 

through the second set of stochastic processes }{ ty . The relationship between the observed 

series and the hidden state sequence is formally defined by the assumption 

)|(),|( ,1 titttt syPYXyP =−  (3.26) 

where 1−tY  is the sequence of observations from time 1 to time 1−t , { }121 ,...,, −tyyy , and 

similarly for tX . The observed process may be either discrete valued or continuous, and is 

described as conditionally independent random variables. For continuous ty , )|( ,tit syP

represents the height of a probability distribution function. As the state-dependent distributions 

of HMMs can follow any discrete- or continuous-valued distribution, a wide variety of time 

series can be modelled. The joint distribution of hidden and observed variables is summarised: 
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Therefore, the complete specification of a HMM requires specification of two parameters (T and 

k), together with three probability measures:  

1. Initial state probabilities )( 1xP

2. Transition probabilities )|( 1−tt xxP  and 

3. Output (observation) probabilities )|( tt xyP

If initial state probabilities are defined as 

)()( 1,1 ii
i sPsxP ===π  (3.28) 

then }{ iππ =  is the initial state distribution.  

Although given a particular state, the observed sequence is not assumed to share the Markov 

property, and consequently HMMs are a special case of state-space models (eg Kitigawa, 1987). 

HMMs are also a generalisation of mixture models, and if the model states are assumed to be 

independent on time instead of Markovian, a mixture model is obtained exactly (Hughes and 

Guttorp, 1994). Markov chains are known as “memory-less” models, as change in their model 

structure is only dependent upon their current state. An inherent characteristic of Markov chains 

is that the durations in each hidden state are exponentially-distributed. The discrete-time 

analogue of this, the geometric distribution, is demonstrated by showing that the probability of 

observing d consecutive periods of a model remaining in state is , having self-transition 

probabilities iia , is 

)1()()( 1
ii

d
iii aadp −= −  (3.29) 

A probabilistic framework for movement between the HMM states produces an explicit model 

to account for persistence. Higher values of self-transition probability iia  produce a model with 

a tendency to remain in state is  for longer periods. 

Transitions between states can reflect fluctuations in the broader climate, in effect reproducing 

the inherent persistence of climatic phenomena. The strength of this persistence is measured by 

the sum of self-transition probabilities. This view is supported by MacDonald and Zucchini 

(1997), who note that in some applications of HMMs, the states of the Markov chain may have 

a useful substantive interpretation. In applications of HMMs to hydrologic variables (eg 

Zucchini and Guttorp, 1991; Thyer and Kuczera, 2000), climate states may correspond to 

meteorologically defined weather states. Furthermore, even if HMMs are not substantive 

models, they may still provide a useful empirical model. This is similar to ARMA models, 

which while having little association to subject-matter, provide valuable empirical resources. 
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3.3.2 Moments of HMMs 

In order to derive succinctly the general moments of a HMM, assume that observations in each 

model state are drawn from Gaussian distributions, such that 

ttjtjty εσµ ,, +=  (3.30) 

where tε  is a standard normal variate, and tj,µ  and tj,σ  are the mean and standard deviation of 

state j assuming the model is in state j at time t. 

Using the results of Timmermann (2000), the centred moments of the observation sequence are 

derived from the following formula, assuming µ  to be the unconditional mean of the sequence: 
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where the last expression is obtained from the binomial formula (after Rasmussen and Akintug, 

2004). An expression for the expected value (unconditional mean) of the observations is then 

derived as: 
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since 1=∑ j jπ  by definition. The notation for the state means in the last line of this 

expression is modified to take into account the independence of the mean value from the time 

order of observations. Likewise the variance of the observation sequence 2
σ , which is the 

second centred moment, is shown by 

∑
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(3.33) 
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In addition to the variance, an expression for the autocovariance of the observations needs to 

also be specified to provide necessary information about the second moments of the 

observations sequence. The autocovariance at lag τ , )(τγ , can be specified as  
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assuming that the model is in state j at time t and state i at time )( τ+t . The last line of this 

expression is attained by noting that all product terms involving tε  or τε +t  become zero after 

taking expectations (Rasmussen and Akintug, 2004). The expectation term in the last line is  
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using the result that the stationary distribution of model states equals initial probabilities. The 

probability of a transition between model states in τ  steps is derived from the one-step 

transition probabilities. For the case of 2=τ , a transition between model states is established 

∫ +++++ = 11122 )|()|()|( ttttttt dxxxPxxPxxP (3.36) 

And likewise for 3=τ

21112233 )|()|()|()|( ++++++++ ∫ ∫= tttttttttt dxdxxxPxxPxxPxxP (3.37) 

This formula can then be generalised for all τ  by multiplying the transition probabilities and 

integrating τ  times. Rasmussen and Akintug (2004) provide a concise representation of Eq. 

3.37 that makes use of this basic property of Markov chains, thereby removing the double 

summation. By defining )...( 21 kµµµ=Μ  as the vector of state conditional means and Π  as the 

diagonal matrix containing stationary probabilities kπππ ,...,, 21 , Eq. 3.37 is expressed for a lag 

of τ  as 

T
jiE ΜΜΠΑ= τµµ ][  (3.38) 

using the transition probability matrix Α  defined earlier. The HMM autocovariance function 

for the HMM can then be expressed as 
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2
µ−ΜΜΠΑ= Tτ

τγ  (3.39) 

The autocovariance function can be standardised by the variance of the process, 2/σγρ ττ = , 

in order to produce the autocorrelation function (acf) at lag τ . The ARMA(1,1) model was 

shown in Section 3.2.1 to have an acf of the form  

1)1( −= τ
τ φρρ  (3.40) 

with )1(ρ  the first serial correlation coefficient and φ  the autoregressive parameter. This is an 

example of an exponentially-decaying acf, which is characteristic of short-memory models. In 

the case of the HMM, it is clear that the ratio of 1/ −ττ ρρ  will be constant for all 2>τ , and it 

follows that the acf will decay at the exponential rate of τ
τ αβρ =  similar to that of an 

ARMA(1,1) model. The importance of this result is clear when observing the context into which 

these models are presented. As discussed in the previous chapter, these stochastic models are 

being developed for time series displaying hydrological persistence, which is unrelated to other 

interpretations of long-memory characterised by an acf decaying at a rate approximating 

β
τ ατρ −=  where )1,0(, ∈βα . Such models need to show autocorrelations that decay 

exponentially. The HMM is therefore inappropriate for modelling long-range persistence as 

defined by Beran (1994), yet is consistent with the representation of hydrological persistence. 

3.3.3 HMM modelling assumptions 

The two main assumptions to be made in the calibration of a HMM are the number of model 

states and the form of state conditional distributions. The simplest implementations are two-

state models, which in the context of hydrological persistence reflect a tendency for the climate 

to produce predominantly wet (W) and predominantly dry (D) conditions. This assumption is 

justified in light of the evidence presented in Section 2.2.3 that suggests that broad-scale 

atmospheric conditions fluctuate between two stable regimes. The two-state (binary) modelling 

structure is defined by two transition probabilities, )|( 1 WxDxP tt == −  and 

)|( 1 DxWxP tt == − , abbreviated to WDP  and DWP  respectively. These probabilities are 

complementary to the two self-transition probabilities, such that 1=+ DDDW PP  and 

1=+ WWWD PP . An example of a two-state (binary) HMM is shown in Figure 3.2, adapted from 

Elliott et al. (1995), which demonstrates that the state fluctuations of a two-state Markov chain 

tends to be concealed when observed through noise. 
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Figure 3.2 Schematic diagram of a binary HMM (adapted from Elliott et al., 1995) 

In the standard representation of a HMM, the observed series is a random output dependent on 

the value of the current state, through an emission distribution function that usually follows an 

assumed probability distribution. In the application of two-state HMMs by Thyer (2000) and 

Thyer and Kuczera (2000), the state conditional distributions for annual rainfall were assumed 

to be Gaussian. The marginal distribution of hydrologic totals aggregated over shorter time 

scales (eg monthly or seasonal totals) generally have higher positive skew than annual totals. 

The modelling of such data may therefore demand alternative modelling assumptions. 

Given the form of HMMs presented in the previous section, Rabiner (1989) outlines two main 

problems of interest that need to be solved in real-world applications of these models. The first 

problem is that when presented with a sequence of observations }{ ty  and a modelling 

framework, how is the probability of this sequence given the model )|( θTYP  computed 

efficiently? This can be termed an evaluation problem, which calculates the probability that a 

specific sequence was generated by the model. Associated with this is the requirement to 

maximise this probability to some optimality criteria. The second problem is one in which 

details of the hidden part of the model is estimated. Given the observation sequence and model, 

how is a sequence of model states that best “explains” the observations identified? Methods to 

solve each of these modelling problems are presented in the following section. 

3.3.4 Evaluating HMM likelihood 

Fitting a HMM to an observed sequence requires evaluating the probability that the sequence 

was produced by the specific model, )|( θTYP . More specifically, as HMM model-fitting 

reduces to the task of estimating a set of unknown model parameters θ , the evaluation problem 
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can be re-formulated in terms of these parameters. The likelihood function is the probability of 

the observed data given the parameter vector θ , )|( θTYP . This probability is defined without 

regard to the state sequence such that TX  can be incorporated in the following manner 
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The maximum likelihood estimates (MLEs, θ̂ ) of the parameters are the values of θ  that 

maximise )(θTL . The simplest method for estimating unknown model parameters is by the 

direct numerical maximisation of the likelihood function (Zucchini and MacDonald, 2002), 

however this may be computationally intractable. As an alternative, efficient algorithms such as 

the Baum-Welch algorithm (Baum et al., 1970) facilitate the calibration of a HMM to 

observation sequences. This algorithm is also known as the Forward-Backward procedure and 

has been used in many HMM applications (eg Juang and Rabiner, 1991). In fact, this method 

can be interpreted as an early example of an algorithm of EM type (see Dempster et al., 1977). 

In this algorithm, the joint probability of a partial observation sequence tY  and the value of the 

model state at the end of such a sequence )|,( , θtjt sYP  is evaluated. This probability, referred to 

as a forward variable, is further defined in terms of the recursion: 
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This recursion is initialised with iji syPsyPi πα )|(),()( 1,11,11 == . The basic idea of this 

algorithm is to successively pass each of the multiple summations in the likelihood as far to the 

right as possible (Hughes and Guttorp, 1994). It follows that the likelihood of the sequence is 

readily computed as 

∑∑
==

==
k

i
T

k

i
TiTT isYPL

11
, )()|,()( αθθ (3.43) 

using only the forward variables at the terminal position in the observation series. 
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In a similar manner, a backward variable can be considered as the probability of a partial 

observation sequence from time )1( +t  to the end, conditioned on the model state at time t . A 

recursive procedure for this calculation, again omitting conditional dependence on unknown 

model parameters, is as follows: 

∑

∑

∑

=

+++

=

++++

=
+++++

++

=

=

=

=

k

j
ttjtij

k

j
ttjttitj

k

j
tjTttjttitj

tiTttt

jsyPa

jsyPssP

syyPsyPssP

syyyPi

1
11,1

1
11,1,1,

1
1,21,1,1,

,21

)()|(         

)()|()|(         

)|,..,()|()|(         

)|,...,,()(

β

β

β

 (3.44) 

The initialisation step to this recursion subjectively defines 1)( =iTβ  for all i.  

Results from Eq. 3.43 and Eq. 3.44 are used to evaluate the “optimal” state sequence associated 

with the observation sequence and the model assumptions. This is a useful result from HMM 

calibration, as it provides important information about the role of model states. Given the 

observation sequence },...,2,1,{ Ttyt = , the probability of the model in state js  at time t is 
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The normalisation factor )( TYP  has the result of ∑ =
i t i 1)(γ . The most likely state at each 

time, tq , will then be the state js  that maximises the term )( jtγ ,  

)]([maxarg
1

iq t
ki

t γ
<<

=  (3.46) 

Although this provides the most likely state at each time step t through maximising the expected 

number of correct states, problems may arise when the system has more than two states. When 

some HMM transition probabilities are equal to zero, the most favourable state sequence may 

not even be valid. One solution to this problem is to find the best state sequence by maximising 

the probability of a sequence of states. A formal method for achieving this is the Viterbi 

algorithm (Forney, 1973), which is similar to the forward recursion except that the summation 

procedure in the latter is replaced by a maximisation over previous states. 
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3.3.5 Global optimisation routines 

The calibration of HMMs relies upon identifying parameter values that maximise the HMM 

likelihood, with parameter estimates θ̂  that maximise the likelihood taken as optimal values. 

This is an important aspect in the application of HMMs, and it is useful to discuss methods to 

obtain the most favourable point estimates of HMM parameters. 

The calibration of HMMs to hydrologic time series may present a complex optimisation 

problem, with optimal parameter values being difficult to identify if the multi-parameter space 

contains many local minima. Global optimisation routines present a method of function 

minimisation that rarely suffers from convergence problems in the presence of multiple optima 

that can affect local-type direct search optimisation methods such as the simplex method 

(Nelder and Mead, 1965).  

The shuffled complex evolution (SCE) algorithm introduced by Duan et al. (1992; 1993) is a 

robust, effective and efficient strategy for function maximisation/ minimisation. This algorithm 

combines four concepts that have each proved successful for global optimisation: a combination 

of probabilistic and deterministic approaches, the concept of clustering, systematic evolution of 

a complex of points across the parameter space, and the utilisation of competitive evolution. Gan 

and Biftu (1996) noted that these four features represented the best features of several 

optimisation methods. This algorithm was constructed around the controlled random search 

(CRS) method described by Price (1983), using its best features such as global sampling and 

complex evolution, and incorporated the powerful concepts of competitive evolution and 

complex shuffling. These latter features allow the sample information to be thoroughly 

exploited in order to find global solutions.  

The SCE algorithm is initiated by sampling a random set of parameter values from the feasible 

parameter space. This set of points, termed a population, is then partitioned into a number of 

smaller groups (complexes), each of which can evolve independently according to a competitive 

complex evolution strategy, adapting the deterministic simplex method of Nelder and Mead 

(1965). This method of evolution allows each complex to search the parameter space in 

different directions. The complexes are periodically shuffled to enable information sharing, and 

at random locations new parameter values are introduced to the complexes to ensure the process 

of evolution does not get trapped by unpromising regions (Duan et al., 1992). This method is 

repeated until sufficient convergence is achieved, with the population moving towards globally 

optimal values. By combining competitive evolution and complex shuffling, the SCE algorithm 

ensures that information about the parameter space obtained by each complex of samples is 

shared across the entire population, which allows an efficient search of the feasible parameter 

space. 
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Duan et al. (1992) demonstrated that the SCE method efficiently and effectively identifies the 

global optima for parameters of a conceptual rainfall-runoff model. Thyer et al. (1999a) 

presented a comparison of the SCE algorithm with another global optimisation routine, the 

three-phase simulated annealing (SA) algorithm. Both algorithms were used to calibrate an 

identical conceptual rainfall-runoff model, using the same data sets and objective function, with 

performance measured through robustness and efficiency. Although the two algorithms had a 

similar level of robustness, interpreted as the probability of finding the same optima from a 

series of independent trials, the efficiency of the SCE was at least six times that of the SA 

algorithm. Thyer et al. (1999a) attributed this superiority to the use of multiple complexes in the 

SCE, which provides this algorithm with more information about the response surface. The SCE 

algorithm is used in this work to evaluate maximum likelihood estimates for HMM parameters. 

3.4 Bayesian modelling framework 

The calibration of HMMs in this thesis is developed in order to produce a statistical description 

of the uncertainty in model output. Although the SCE method provides an effective means to 

find an optimal set of parameters according to the criterion of the HMM likelihood function, the 

uncertainty associated with these estimates is not addressed. This is a limitation in the 

calibration of many hydrologic models, as large uncertainty around estimated maximum 

likelihood values relates directly to uncertainty in the model itself. 

A persuasive method to assess parameter uncertainty is to adopt a Bayesian approach. Bayesian 

inference considers the vector of unknown model parameters θ  as random variables rather than 

fixed values (Perreault et al., 1999), using a statistical distribution to expresses the uncertainty 

about θ . Prior to collecting data, the knowledge of these parameter values given the assumed 

model M  is summarised by a density known as the prior distribution )|( MP θ . Prior 

knowledge of the model system can then be integrated through this prior. Bayes’ theorem is 

used to combine the model being considered with the observed data to update the prior 

information. This produces a posterior distribution ),|( MYP θ  from which statistical inference 

of unknown model parameters can be made. Bayes’ theorem is summarised by: 

)|(

)|(),|(
),|(

MYP

MPMYP
MYP

θθ
θ =  (3.47) 

The generalised probability distribution ),|( MYP θ  is the likelihood function of the data 

sequence, with the denominator being the marginal likelihood for this model, defined as 
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∫= θθθ dMPMYPMYP )|(),|()|(  (3.48) 

Since the marginal likelihood of the model is independent of θ , Bayes’ theorem is often 

simplified to 

)()()|( θθθ PLYP ∝  (3.49) 

The prior distribution reflects beliefs about model parameters prior to model fitting, with the 

posterior indicating the updated beliefs after observing sample data, thereby containing all of the 

available information about the parameter vector θ . Whereas other calibration methods may 

focus upon maximisation procedures to generate a single vector of parameters, the focus of 

Bayesian modelling is the entire posterior distribution, and Bayesian statistical inference 

therefore reduces to summarising this distribution (Campbell et al., 1999). Bayesian inference 

has been a controversial aspect of statistical modelling (Raftery, 1995), due to its reliance upon 

prior distributions subjectively determined by the user. In large samples however, the prior has 

very little influence upon the posterior. 

3.4.1 Markov chain Monte Carlo (MCMC) methods 

In HMMs, as with many complex models, it is not possible to derive an analytical expression 

for the posterior distribution. When it is not possible to evaluate this explicitly, numerical 

integration or analytical approximation techniques are often required (Brooks, 1998). The 

Markov chain Monte Carlo (MCMC) method provides an alternative, through the construction 

of aperiodic and irreducible Markov chains that have stationary distributions approximating the 

posterior distribution of interest. The key idea of MCMC procedures is to start with arbitrary 

values of θ  and then conduct a random walk through the state space of parameters (Campbell et 

al., 1999) by generating a sequence of dependent values from a Markov chain. Under certain 

conditions, these samples will converge to the stationary posterior distribution.  

In recent years, a number of studies have applied MCMC methods to the calibration of 

hydrologic models, such as conceptual rainfall-runoff models. The Gibbs sampler (GS) method 

(see Casella and George, 1992) has been used in a range of hydrologic studies, including 

Adamson et al. (1999) and Barreto and de Andrade (2000), who used this MCMC algorithm for 

flood analysis and monthly streamflow forecasting respectively. Combining MCMC with the 

HMM framework, Thyer and Kuczera (2000; 2003b) published two studies that used GS in the 

calibration of a two-state HMM to annual rainfall at a single site (2000) and at multiple sites 

(2003b). Lu and Berliner (1999) also applied GS to estimate the parameters of a HMM used to 

simulate daily streamflow forecasts. The Metropolis algorithm (Metropolis et al., 1953) is 

perhaps the broadest implementation of MCMC methods, used by Kuczera and Parent (1998) 

for the parameterisation of watershed rainfall-runoff models. Frost (2003) utilised the more 
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general Metropolis-Hastings (MH) algorithm in the calibration of a multi-site HMM to annual 

rainfall in order to condition the parameters of a high frequency rainfall model. Marshall et al.

(2004) presented a comparative study of the Metropolis-Hastings and Adaptive Metropolis 

algorithms in their application to conceptual rainfall-runoff models. This study followed the 

work of Bates and Campbell (2001), who had earlier demonstrated the efficacy of the MH 

approach to this calibration problem.  

The posterior distribution of the model parameter vector θ of size p is sampled with the 

Metropolis algorithm in the following manner: 

1. An initial estimate of θ0 is made from the parameter space, with maximum likelihood 

estimates often chosen 

2. For i=1,2,…

a. A proposed value for θ* is made from a proposal density π(θ*|θi-1). The form, 

location and covariance of this density need to be estimated, with parameters 

generally depending on previous samples. The original application of 

Metropolis et al. (1953) used a multivariate Gaussian for the jump density, 

although this was generalised by Hastings (1970) to allow for non-symmetric 

distributions. 

b. The proposed value θ* is accepted as the new value θi with a probability α

calculated as 
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Here, p(Y|θ*) is the likelihood function associated with the new samples, with 

p(θ*) being their prior distribution. 

c. This acceptance/rejection step is repeated multiple times, until the sequence of 

samples obtained converges to a stationary distribution that is the posterior.  

An important aspect of MCMC algorithms is the specification of starting points for sampling. A 

range of rigorous methods have been proposed in the literature for selecting such points (eg 

Gelman and Rubin, 1992), although more straightforward methods such as using maximum 

likelihood estimates are also suitable. As a consequence, optimisation routines such as the SCE 

algorithm may provide useful starting points. One of the contentious issues (Brooks, 1998) of 

MCMC algorithms is whether to use a single Markov chain for sampling the posterior, or to use 

numerous shorter chains in parallel. Although using a single long chain may produce samples 

that are closer to the target distribution, taking a number of parallel chains can guard against 

portions of the sample space remaining unexplored. Such chains can be initiated in different 
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regions of the sample space, or alternatively all can start at the maximum likelihood estimates 

θ̂ . In order to use Metropolis samples as being representative of the posterior, it is important 

that for a given starting value θ0 and proposal density, the sequence of θi samples converges to a 

stationary distribution. It is important that chains are run over a “warm-up” period, the samples 

during which are then discarded so that the influence of the starting values is not too high. 

As noted earlier, a multivariate Gaussian distribution is a suitable choice for the proposal 

density. The notation π(θ*|θi-1) describes a distribution centred at the current sample location, 

with an initial estimate of the covariance being based on the Hessian around the sample mode 

(Frost, 2003). Using previous samples, this covariance can also be updated throughout the 

sampling process. The size of the covariance is an important parameter of this algorithm, as it 

directly affects the acceptance rate of the sampling procedure and its coverage of the posterior 

distribution. Recently, Haario et al. (2001) proposed the Adaptive Metropolis (AM) algorithm, a 

variation of the standard Metropolis algorithm in which the covariance of the proposal density is 

updated at each iteration based on all information obtained up to that point. By using all of the 

previous states of the Markov chain to calculate the covariance, the AM algorithm loses the 

Markovian nature of the standard Metropolis algorithm, although Haario et al. (2001) showed 

that it retains the correct ergodicity properties allowing its samples to converge to the stationary 

posterior distribution. The advantage of the AM method lies in the fact that the size and location 

of the proposal distribution need not be chosen, and that it begins to accumulate information 

from the beginning of the simulation. The proposal distribution for the candidate point θi is a 

multivariate Gaussian distribution with mean at the current point θi-1 and covariance iC  given 

by Rsp , where R  is the covariance matrix based on all samples up to state θi-1 and ps  is a 

scaling parameter depending only on the dimension p  of the parameter vector. Haario et al.

(2001) suggest a value for ps  as p/)4.2( 2 , as this will optimise the mixing properties of the 

Metropolis search in the case of Gaussian target distributions and Gaussian proposal 

distributions. The computational cost of the covariance calculation is quite small, as it satisfies 

the following recursion formula 
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with iθ  the sample mean up to iteration i  and ε  a small-valued constant. The AM algorithm is 

straightforward to use and its rapid start allows the search to be more effective at early stages of 

simulation than the traditional Metropolis algorithm. This method is used throughout the present 

work to evaluate the posterior distributions for unknown model parameters. 
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3.4.2 Convergence of MCMC algorithms 

Monte Carlo Markov Chain (MCMC) algorithms have become extremely popular in the field of 

Bayesian analysis, offering a method to iteratively simulate posterior distributions of model 

parameters (Cowles and Carlin, 1996). The essential idea of iterative simulation is to draw 

values of a random variable x from a sequence of values that converge to the desired target 

distribution of x (Gelman and Rubin, 1992). However, one of the most important 

implementation problems of MCMC algorithms remains the difficulty in deciding when such 

simulations have indeed reached this target distribution. Due to the transient phase of Markov 

chains, which is the time taken until the chain settles down to stationary behaviour (Brooks and 

Roberts, 1998), there is need for a method to determine at what point it is reasonable to assume 

that samples are representative of the underlying stationary distribution of the Markov chain, 

which is the posterior distributions of the model parameters. Samples taken during the transient 

phase, also termed the “burn-in” period, are discarded. 

Various specialised techniques exist to a priori determine required burn-in lengths for Markov 

chains (eg Meyn and Tweedie, 1994), however as Brooks and Roberts (1998) note, in general it 

is difficult to apply such results to MCMC algorithms. Consequently, it is necessary to perform 

statistical analysis on MCMC output in order to assess convergence. Brooks and Roberts (1998) 

provide a comparative review of various approaches to assess MCMC convergence, which can 

be broadly categorised as being either methods that are based on monitoring selected output 

from the Markov chains, or methods that exploit aspects of the theoretical properties of the 

algorithm. Techniques of the former category are the simplest to implement, requiring only the 

output from MCMC simulations and little or no knowledge of the mechanism used to generate 

the output. 

The convergence assessment technique of Gelman and Rubin (1992) is based upon normal 

theory approximations to exact Bayesian posterior inference (Cowles and Carlin, 1996), and 

requires the analysis of m independent sequences to form a distributional estimate of the 

variance of the random variable (Brooks and Roberts, 1998). This analysis provides a basis for 

an estimate of how close the Markov chains are to stationarity. The method of Gelman and 

Rubin (1992) is based upon estimating the variance of the target distribution from the model 

output. The estimator that is used, V̂ , is constructed from a weighted average of the between-

chain variance and within-chain variance, such that similar variances indicate that all chains 

have escaped the influence of their starting points and have traversed all the target distribution 

(Cowles and Carlin, 1996). Brooks and Roberts (1998) summarise this method by first defining 

B/n, the variance between the m sequence means, where 2n is the desired number of MCMC 

iterations, as: 
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Once this estimator is obtained for a given number of iterations and sequences, it would be 

beneficial to monitor the ratio of V̂  to the variance of the true posterior distribution to 

determine how close to convergence the iterations have reached. Unfortunately the variance of 

the underlying target distribution is unknown, so convergence must be monitored with the factor 

by which the estimator might shrink if sampling were continued indefinitely (Cowles and 

Carlin, 1996). This is achieved through: 
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where the correction term is needed to produce an estimator that approximates a Student t

distribution. Large values of cR  suggest either that the estimate of the variance V̂  can be 

decreased through more simulations, or that more samples will increase W, as the simulated 

sequences have not explored all of the target distribution. If cR  is close to 1, Gelman and Rubin 

(1992) suggest that each of the m sequences of n values are close to the target distribution. 

The variance ratio method described here provides a straightforward convergence diagnostic 

that requires only the output from MCMC iterations, although it is clear that for some higher 

dimensional problems or models that have highly correlated parameter values, alternative 

approaches may be required to assess convergence. Diagnostic methods based on the spectral 

density of MCMC samples, or indeed methods that also use the form of the transition 

distribution that drives the Markov chain are amongst the alternative approaches. The latter 

approach may provide a more reliable diagnostic (Brooks and Roberts, 1998) due to the 

additional information provided by knowledge of the mechanism generating the output. For 

results presented throughout this thesis, the variance ratio method described is utilised to assess 
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the convergence of posterior estimates for HMM parameters that are generated from the 

Adaptive Metropolis algorithm. 

3.4.3 Bayesian model selection 

In later chapters, the standard HMM formulation is extended in various ways to provide 

different models for persistent time series. When presented with statistical models that represent 

different statistical theories, it is necessary to identify the most appropriate model for each 

specific data set. Bayesian model selection provides a means by which the performance of 

different models can be compared, and its main characteristics summarised here. 

The theory of model selection describes the problem of using data Y  to select one model iM

from a list of candidate models ),...,( 1 kMM . A Bayesian solution to this problem is to 

compute the posterior probability )|( YMP i , which provides a numerical summary of the 

evidence in favour of model iM  (Wasserman, 2000) and to then select the model that 

maximises this probability. Prior knowledge about two models iM  and jM  is expressed 

through the ratio of prior probabilities in favour of iM , )(/)( ji MPMP . Evidence in favour of 

one model over another is also measured by the posterior odds of one model versus the 

alternative, evaluated as the ratio of the respective posterior probabilities: 

)|(/)|( YMPYMP ji . The ratio of posterior odds in favour of iM  to prior odds in favour of 

iM  produces a more commonly used measure of evidence known as the Bayes Factor )( ijBF : 
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By using Bayes’ theorem, it is clear that  

)|(

)|(

j

i
ij MYP

MYP
BF =  (3.57) 

where )|( iMYP  is the termed the marginal likelihood for model iM . 

As a consequence, the value of ijBF  describes the extent to which the data changes the evidence 

in favour of one model over an alternative (Wasserman, 2000). In many cases the prior evidence 

for each model is assumed to be equal, under which circumstance the Bayes Factor reduces to 

the posterior odds. The Bayes Factor summarises evidence provided by the data in favour of one 

scientific theory, such that a value of 10=ijBF  indicates that model iM  is ten times more 
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likely to have generated the data than model jM . Values of 1<ijBF  are interpreted as 

evidence for model jM  over iM  with ijji BFBF /1= .  

In order to evaluate ijBF  it is necessary to estimate the respective marginal likelihoods for each 

model. These densities are obtained by integrating over the parameter space, such that 

∫= iiiiii dMPMYPMYP θθθ )|(),|()|(  (3.58) 

where iθ  are parameters drawn from model iM , ),|( ii MYP θ  is the likelihood function and 

)|( ii MP θ  the prior density. The marginal likelihood is also termed the predictive probability 

of the data, which Kass and Raftery (1995) describes as being the probability of seeing the data 

that actually were observed, calculated before any data became available. 

The integral may be evaluated analytically, although for most cases it is intractable and needs to 

be computed through numerical methods. Gelfand and Dey (1994) introduced an unbiased and 

consistent estimator of the marginal likelihood that also exploits MCMC routines. By defining 

)(θτ as any proper density such that ∫ =1)( θθτ d , Bayes’ theorem is adapted to produce the 

relationship 

∫ =1
)|(),|(

)|(),|(
)( θ

θθ

θ
θτ d

MpMYP

MYpMYp

ii

ii
 (3.59) 

A rearrangement then produces 
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By taking m  posterior samples from the Metropolis output, a sample estimate becomes 
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Gelfand and Dey (1994) note that a natural choice for τ  is a multivariate normal with means 

and covariance computed from the posterior samples of each parameter. In this computation, it 

is necessary to specify prior distributions associated with the parameters of model iM . The 

prior probability is a marginal probability, and describes the knowledge of a variable before 

evidence is considered. Prior information about parameters may come from other data or from 

the subjective knowledge of experts (Kass and Raftery, 1995) however the formulation of priors 

is always problem-specific. If specific details about a variable are known a priori, such as fairly 

precise scientific information, this can be expressed in a Bayesian framework through the use of 



68 

Chapter 3 – Hydrological persistence 

informative priors. However in many cases, little knowledge of the behaviour of model 

parameters may be known a priori, or only general information is desired to be included in the 

modelling process. Under these conditions it may be suitable to choose neutral or reference 

priors, interpreted as representing the views of a modeller lacking strong beliefs about the nature 

of model parameters, such that the posterior distribution is dominated by the likelihood. 

Kass and Wasserman (1996) address the concept of selecting prior distributions by convention, 

as a standard of reference, describing the theory behind formal rules to select these priors that 

was developed by Jeffreys (1967). Under the algebraic convenience known as conjugacy, 

certain prior distributions (known as conjugates) have the same form as the posteriors. For 

example when a binomial distribution describes a series of samples, the Beta distribution model 

is a conjugate prior for the unknown proportion of successes. Throughout this work, the method 

of Gelfand and Dey (1994) is used as a method for Bayesian model selection. In response to 

large numbers produced, the natural logarithms of Bayes Factors are generally provided. The 

posterior distributions for model parameters obtained from the AM algorithm are used to 

generate the multivariate normal density τ  that is centred on the posterior means, using the 

covariance of posterior samples. Conjugate priors for unknown parameters are developed for the 

different models, and it is ensured that each prior is proper. This provides a technique to assess 

the suitability of various stochastic models for describing hydrological persistence. 

3.5 Summary of chapter 

This chapter has discussed the various issues that underline the stochastic modelling of 

hydrological persistence. This phenomenon results from complex interactions between climate 

processes on a range of time scales and different aspects of the hydrological cycle. Persistence is 

an important factor in water resource planning and management, and it is vital that the 

characteristics of wet and dry spells are reproduced in both simulations and forecasts of 

hydrologic observations. 

Attention is focused upon hidden Markov models (HMMs) as an appropriate method to 

represent persistence in hydrologic data. These models are parsimonious, and by being 

dominated by regimes with different mean values, can adequately describe temporal persistence 

within generalised climate conditions. This modelling framework has been applied to a range of 

scientific problems, however with regard to the representation of hydroclimatic persistence 

previous uses have been limited to modelling time series of annual rainfall and streamflow 

totals. Hydrological persistence is intimately linked with quasi-periodic climate systems such as 

the El Niño Southern Oscillation (ENSO), which fluctuates at an average frequency of 4 years, 

having an average duration of 15 months. Given these durations, it is more appropriate for 
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persistence within hydrologic observations to be analysed using sub-annual time scales such as 

monthly totals, which also provide the benefit of additional data from which persistence can be 

identified. 

In light of persistence within rainfall and streamflow time series, HMMs provide a conceptually 

superior model structure than alternative stationary time series models such as autoregressive 

moving average (ARMA) models that enjoy wide use in hydrologic simulation studies. The 

Bayesian methodology of the Markov chain Monte Carlo (MCMC) approach provides a useful 

method to evaluate parameter uncertainty in model estimation, and the Adaptive Metropolis 

(AM) algorithm was chosen for this work due to its computational simplicity. Posterior 

distributions of model parameters are utilised further through Bayesian model selection, with 

methods for evaluating Bayes Factors through the Gelfand-Dey estimator described. Other 

measures of interest from the calibration of HMMs, such as the time series of hidden state 

probabilities have been presented, and these are used extensively in later chapters to 

demonstrate the close relationship between climate states and the phases of global circulation 

phenomena.  
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