MOLECULAR CHARACTERISATION, REGULATION AND EVOLUTIONARY ANALYSIS OF UROPLAKIN 1B: A TETRASPANIN FAMILY MEMBER

Andrea Erica Varga

A thesis submitted for the degree of Doctor of Philosophy (PhD)

Presented to the Department of Surgery, The Queen Elizabeth Hospital, in the Faculty of Health Sciences, The University of Adelaide, South Australia

-June, 2003-

The important thing is not to stop questioning. Curiosity has its own reason for existing. One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the marvellous structure of reality.

Albert Einstein.

Every moment of your life is infinitely creative and the universe is endlessly bountiful.

Mohandas Karamchand Gandhi.

Curiosity is, in great and generous minds, the first passion and the last.

Samuel Johnson.

Errata

Chapter 1 Data is used in the singular, instead of datum.

Chapter 2 (Page 58) Sterile M<u>i</u>lliQ – spelling correction.

Chapter 3 and Appendix A *Homo sapien* is used, instead of *Homo sapiens*.

Chapter 5 (Pages 142B, 143, 143B, 146D and 146E) Bisulfite should be used, instead of bisulphite.

Figure 5.14 (Page 147A) TE-N clones in the table should be 1 through 12. The last two clones were accidentally both named 10.

Table of Contents

TABLE OF CONTENTS	i
LIST OF FIGURES	vii
LIST OF TABLES	ix
SUMMARY	X
DECLARATION OF ORIGINALITY	xii
ACKNOWLEDGEMENTS	xiii
LIST OF ABSTRACTS AND PRESENTATIONS	xiv
ABBREVIATIONS	xvi
SOME VARIATIONS OF CORRECT NOMENCLATURE	xvii

CHAPTER 1: LITERATURE REVIEW11.1GENERAL INTRODUCTION21.2GENERAL INTRODUCTION2

1.2	GF	ROWTH ARREST, TGF β , AND THE CLONING OF TI-1 IN MINK	
	LU	JNG EPITHELIAL CELLS	2
1.3	BI	ADDER STRUCTURE AND FUNCTION	4
	1.3.1	Diversification of waste excretion in a range of organisms, the urinary	
		system, and the role and function of the bladder	4
	1.3.2	-	
	1.3.3	The Asymmetric Unit Membrane (AUM), plaques, and uroplakins	6
		Patterns of expression of uroplakins in non-urothelial tissues	
1.4	TR	ANSITIONAL CELL CARCINOMAS AND THEIR ASSOCIATION	
	W	ITH UROPLAKIN 1B EXPRESSION	10
	1.4.1	Population incidence and associated risk factors	10
	1.4.2	Primitive urothelium differentiation, formation of TCCs and TCC	
		stages	11
	1.4.3	Molecular genetics of TCCs	12
		4.3.1 The tumour suppressor genes p53 and Rb	
		4.3.2 The tumour suppressor genes p15 and p16	
		Uroplakin 1B and other uroplakins in bladder cancer	
1.5		IE TETRASPANINS	
	1.5.1	Members of the tetraspanin family	26
		1.5.1.1 Tetraspanin CD81	
		1.5.1.2 Tetraspanin KAI-1/CD82	
		1.5.1.3 Tetraspanin CD9	
		1.5.1.4 Tetraspanin CD63	
		Tetraspanins in bladder cancer	
1.6		MS OF THIS STUDY	37

CHAPTER 2: MATERIALS AND GENERAL METHODS 40

<u>41</u>
45
52
52 52
52
ssue
53
53
53
53
53
54
54
55
55
55
57
57
58
58
58
58
58
59

CHAPTER 3: BIOINFORMATICS: COMPARATIVE STUDIES OF UPKIB AND OTHER TETRASPANIN FAMILY MEMBERS 63

3.1 INTRODUCTION	_64
3.1.1 Evolutionary analysis	66
3.2 METHODS	_69
3.2.1 Data sets	69
3.2.2 Sequence alignments	_70
3.2.2.1 Pairwise sequence alignments	_70
3.2.2.2 ClustalW multiple sequence alignments	
3.2.2.3 AddGaps	_70
3.2.3 Hydrophilicity plots	_71
3.2.4 MP trees of cDNA sequences	_71
3.2.5 BAMBE trees of cDNA sequences	_72
3.3 RESULTS	_72
3.3.1 Human UPKIB mRNA expression and UPKIB family homologues	_72
3.3.1.1 BLAST searches for sequences that show homology to the	
human UPKIB cDNA sequence	_73
3.3.1.2 Determination of UPKIB homologues for analysis	_73
The Xenopus laevis UPKIB homologue	_74
3.3.1.3 Hydrophilicity plots of UPKIB homologues	_74

3.3.1.4	Multiple sequence alignments	
3.3.1.5	MP and BAMBE analyses of the UPKIB family	75
3.3.2 Human	n tetraspanins	
3.3.2.1	Hydrophilicity plots of human tetraspanin family members	
3.3.2.2	Multiple sequence alignments	77
3.3.2.3	MP and BAMBE analyses of human tetraspanins	77
3.3.3 Tetras	panin family members from a range of species	77
3.3.3.1	Multiple sequence alignments	77
3.3.3.2	MP analysis	78
3.3.3.3	BAMBE analysis	78
3.3.3.4	Pairwise alignments of UPKIB and closely related tetraspanin	
amino a	cid sequences	78
3.4 DISCUSS	ION	_79
	Analysis of UPKIB family members	80
	Analysis of human tetraspanin family members	
	Analysis of tetraspanins from a range of organisms	
	Tetraspanin nomenclature	88

CHAPTER 4: GENOMIC CHARACTERISATION OF UPKIB:IDENTIFICATION OF THE PUTATIVE UPKIB PROMOTERAND DETECTION OF A 500bp CpG ISLAND90

4.1 INTRODU	JCTION	91
4.1.1 Genon	nic cloning and analysis techniques	91
4.1.1.1	P1 artificial chromosomes: cloning vectors and inserts	92
4.1.1.2	Chromosome walking	93
4.1.1.3	Primer extension and 5'RACE	94
4.1.2 CpG is	slands, methylation, and acetylation of promoter sequences	95
4.2 METHOD	PS	97
4.2.1 Charac	cterisation of a P1 Artificial Chromosome (PAC) containing the	
UPKIE	B gene in the region 3q13.3-q21	97
	Bacteria and plasmids	97
4.2.1.2	Maintenance of bacterial strains and selection of PACs with	
kanamyo		97
4.2.1.3	PAC isolation: Qiagen Maxi preparations	
4.2.2 Southe	ern hybridisation	98
4.2.2.1	Restriction enzyme digestions and gels for Southerns	98
4.2.2.2		
4.2.2.3		<u> 99</u>
4.2.2.4	Purifying a UPKIB cDNA probe for Southern blotting	99
4.2.2.5	Random labelling of probes	_100
4.2.2.6	Removal of unincorporated $\alpha^{32}P$	100
	Preparation of Sephadex G-50 columns	100
	Removal of unincorporated $[\alpha^{32}P]$ -dATP	101
	Hybridisation	
4.2.2.7	Membrane washes	
4.2.2.8	Autoradiography	
4.2.2.9	Stripping the membrane for reuse	
4.2.3 Long-t		102

			Reaction mix for PCR	102
			Cycling conditions for PCR	102
			Analysis of PCR products and WIZARD purification	103
4	4.2.4	Isolati	on of RNA from RT112 cells, RT-PCR and primer extension	103
		4.2.4.1	Isolation of RNA from RT112 bladder carcinoma cell line	103
		4.2.4.2	RT-PCR of RT112 RNA	103
			Labelling 5' ends of 5'1-UPKIB primer and molecular size	
		marker	SPP1/EcoRI with T4 polynucleotide kinase for subsequent	
		primer e	xtension	104
		4.2.4.4	Primer extension using Superscript II reverse transcriptase	104
			Annealing and extension	104
			10% PAGE gel	105
4	4.2.5	5' RA(CE (Rapid Amplification of cDNA Ends)	105
			Cycling conditions for 5'RACE PCR	106
			Analysis of 5'RACE PCR products	
4	4.2.6	Compu	uter-based methodologies	106
		4.2.6.1	BLAST, GenBank, ClustalW and GeneDoc alignments	106
		4.2.6.2	Transcription factor binding motif prediction programs	107
4.3	R	ESULTS	5	_107
4	4.3.1	Genon	nic assembly of UPKIB and identification of the UPKIB	
		promo	ter	107
		4.3.1.1	PAC clones and hybridisation screening	107
		4.3.1.2		108
			Comparison with contig AC083800 enzyme sites	
		4.3.1.4	Long-template PCR	109
4	4.3.2	Primer	extension	110
4	4.3.3	5'RAC	CE (5'- Rapid Amplification of cDNA Ends)	111
4	4.3.4	UPKII	B putative transcription factor binding motifs	114
4	4.3.5		PKIB CpG island	115
4.4	Γ	ISCUSS	ION	_116

CHAPTER 5: THE ROLE OF PROMOTER METHYLATION IN REGULATION OF EXPRESSION OF THE UPKIB GENE 122

5.1 INTRODUCTION	123
5.1.1 Imprinting in development and relevance to cancer	124
5.1.2 Methylation changes in cancer	125
5.1.2.1 An overview of CpG methylation in cancer	125
5.1.2.2 Aberrant methylation in bladder cancers	126
5.1.3 Techniques for analysis of methylation status	127
5.1.3.1 Southern hybridisation and restriction enzyme analyst	s to
detect CpG methylation	128
5.1.3.2 Bisulfite modification and PCR-based strategies	128
5.1.3.3 5-Aza-2'-deoxycytidine (5-Aza-CdR) experiments	130
5.2 METHODS	132
5.2.1 Histological examination of tissue samples	132
5.2.1.1 Normal and tumour tissue samples	132
5.2.1.2 Poly-L-Lysine coating of slides for histological analyses	133

			OCT sectioning and Haematoxylin & Eosin (H&E) staining of	
		tissue sa	mples	<u>133</u>
	5.2.2	RT-PC	CR of UPKIB, PBGD and GAPdH mRNA	134
			Isolation of RNA from bladder carcinoma-derived cell lines	
		and tissi	ie samples	134
		5.2.2.2	Reverse transcription and PCR	<u>134</u>
	5.2.3	Analys	sis of methylation status of the UPKIB CpG island	<u>135</u>
		5.2.3.1		
		lines		_135
		5.2.3.2	Extraction of DNA from tissue samples	135
		5.2.3.3	J J J J	<u>135</u>
		5.2.3.4	Bisulfite modification of small DNA amounts isolated from	
		patient t	issues	<u>1</u> 36
		5.2.3.5		<u>1</u> 36
		5.2.3.6	PCR of bisulfite-modified DNA	137
			Reaction mix for PCR	137
			Cycling conditions for PCR	137
			Analysis of PCR products	
		5.2.3.7	SSCP gels with PCR amplified bisulfite-modified DNA	
			Gel preparation	138
			Gel loading	138
			Gel running conditions	138
		5.2.3.8	Sequencing of PCR amplified bisulfite-modified DNA	139
		5.2.3.9	Cloning of PCR amplified bisulfite-modified DNA tissue	
		samples		139
		-	Competent JM109s	139
			Ligation	139
			Transformation of competent JM109 bacterial cells	140
			Isolation and identification of colonies containing PCR	
			products	140
	5.2.4	Re-act	ivation of UPKIB mRNA expression with 5-Aza-CdR	
		5.2.4.1		
		5.2.4.2	Serum starvation	141
		5.2.4.3	5-Aza-CdR treatment of serum starved cells	141
5.3		ESULTS		_142
	5.3.1	Primer	design for bisulfite methylation studies	142
			gation of UPKIB methylation in TCC cell lines	
		5.3.2.1		142
		5.3.2.2	Direct sequencing	143
		5.3.2.3	SSCP analysis	143
			MDE (0.5x) gel with 327bp PCR fragments	144
			MDE (0.5x) gel with 239bp PCR fragments	
	5.3.3	Investi	gation of UPKIB mRNA expression in TCC cell lines	145
			methylation in normal and TCC patient samples	
		5.3.4.1	Haematoxylin & Eosin staining and micro-dissection of 8 TCC	-
		tissue sa	mples	145
			<i>RT-PCR analysis of normal urothelial and colonic samples</i>	
		5.3.4.3		-
			m normal urothelium, colon and TCC samples	146
			Direct sequencing of patient samples	

	5.3.4.5 Cloning, direct sequencing and expression of UPKIB in tissues	147
5.3	5.5 5-Aza-2'deoxycytidine treatment for UPKIB mRNA re-expression in	
	T24 and J82 cell lines	149
5.4	DISCUSSION	149

CHAPTER 6: GENERAL DISCUSSION AND FUTURE DIRECTIONS 156

6.1	GE	ENERAL I	DISC	USSION	-							_157
	6.1.1	Evolution	ary	studies of	uroplak	tin 1B	amon	g the	tetraspar	ins		158
	6.1.2	Analysis	of th	e UPKIB	promot	er		_	-			159
		Analysis								samples	for	
		methylati	on o	f the UPk	KIB CpC	islar	nd		-	-		160
6.2	FU	JTURĖ DI	REC	TIONS	-							_161

APPENDICES

spanins

- **B** BAMBE Tree Data of UPKIB Homologues
- C BAMBE Tree Data of Human Tetraspanins
- **D** BAMBE Tree Data of A Range of Tetraspanins
- E Amino Acid ClustalW Alignment of UPKIB Homologues
- F Nucleotide ClustalW Alignment of UPKIB Homologues
- G Amino Acid ClustalW Alignment of Human Tetraspanins
- H Nucleotide ClustalW Alignment of Human Tetraspanins
- I Amino Acid ClustalW Alignment of Tetraspanin Family Members
- J Nucleotide ClustalW Alignment of Tetraspanin Family Members
- **K** P1 Artificial Chromosome pCYPAC2N
- L Sequence Chromatographs of Long-template PCR Products from PAC E1-06-92
- M Sequence Chromatographs of the 5'RACE Product
- N Sequence Chromatographs of the Bisulfite-treated UPKIB Promoter from TCC and SCC Cell Lines and from PBL
- **O** Sequence Chromatographs of the Bisulfite-treated UPKIB Promoter from Normal Urothelial and Colonic Epithelial Cells and from Patient TCC Samples

REFERENCES

166

CHAPTER 1: LITERATURE REVIEW

1.1	Location of Urothelial Tissues in the Body	<u>5</u> A
1.2	Histological Appearance of the Bladder	<u>5</u> B
1.3	Electron Microscopic Image of Plaques on the Asymmetric	Unit
	Membrane in Cattle	<u>6</u> A
1.4	Proposed Model of Plaque Assembly in Cattle	7A
1.5	Plaque-AUM/Cytoskeletal Interactions in Superficial Umbrella Cells_	
1.6	Pathways of Urothelial Differentiation	<u>11A</u>
1.7	Representation of the Stages of Transitional Cell Carcinoma	12A
1.8	Genetic Indicators of Progression of Transitional Cell Carcinoma	12B
1.9	Conserved Structure of the Tetraspanin Family Members	24A

CHAPTER 3: BIOINFORMATICS: COMPARATIVE STUDIES OF UPKIB AND OTHER TETRASPANIN FAMILY MEMBERS

3.1	"Bronchial Tube" Diagram Showing the Evolution of a Hypothetical-gene	
	Family	<u>68</u> A
3.2	Multiple Sequence Alignment of Xenopus laevis UPKIB Sequences	_74A
3.3	Goldman/Engelman/Steitz Hydrophilicity Plots (span 19) of UPKIB Members	_74B
3.4	Consensus Maximum Parsimony Tree Based on Aligned cDNA Sequences from UPKIB Family Members	_75A
3.5	Unrooted, Consensus Maximum Parsimony Tree Based on Aligned cDNA Sequences from UPKIB Family Members	_75B
3.6	BAMBE Tree Based on Aligned cDNA Sequences from UPKIB Family Members	_75C
3.7	Unrooted BAMBE Tree Based on Aligned cDNA Sequences from UPKIB Family Members	_75D
3.8	Goldman/Engelman/Steitz Hydrophilicity Plots (span 19) of Human Tetraspanins	_76A
3.9	Consensus Maximum Parsimony Tree Based on 26 Aligned cDNA Sequences from Human Tetraspanin Family Members	_77A
3.10	BAMBE Tree Based on Aligned cDNA Sequences from 26 Human Tetraspanin Family Members	_77B
3.11	Consensus Maximum Parsimony Tree Based on Aligned cDNA Sequences from 105 Tetraspanin Family Members	
3.12	BAMBE Tree Based on Aligned cDNA Sequences from 105 Tetraspanin Family Members	

CHAPTER 4: GENOMIC CHARACTERISATION OF *UPKIB*: IDENTIFICATION OF THE PUTATIVE UPKIB PROMOTER AND DETECTION OF A 500bp CpG ISLAND

4.1	Southern	Hybridisation	of	PAC	730-E-5	DNA	Containing	UPKIB	
	Genomic	DNA with a UP	KIE	B cDNA	A Probe		-	۔ -	107A

4.2	Long-template PCR on the PAC Clone 730-E-5, Amplifying 2.5kb and 3.0kb Products110A
4.3	Sequencing and Alignment of a 2.5kb Long-template PCR Product with High Throughput Genomic Sequence (HTGS) Database Contig AC083800110B
4.4	Sequencing and Alignment of a 3.0kb Long-template PCR Product with Internet Database Entries110C
4.5	Primer Extension of UPKIB from Total RT112 mRNA, with Primer 5'1- UPKIB 111A
4.6	5'RACE Results after PCR of UPKIB cDNA from Cell Line RT112 111B
4.7	5'RACE Analysis: Identifying the Transcription Start Site and Exon 1112A
4.8	Promoter and Transcription Start Site Prediction: Identifying the
	Transcription Start Site and Exon 1 of UPKIB113A
4.9	Summary of the Proposed UPKIB Genomic Structure and Intron/exon
	Boundary Positions 113B
4.10	The Uroplakin 1B Promoter114A

CHAPTER 5: THE ROLE OF PROMOTER METHYLATION IN REGULATION OF EXPRESSION OF THE UPKIB GENE

5.1	Ms-SNuPE and COBRA: Two Techniques to Determine Strand-specific		
	Methylation Status	129A	
5.2	Flow Diagram of Methylation Studies	132A	
5.3	The UPKIB CpG Island and Primer Design	142A	
5.4	Bisulfite PCR Amplification of 327bp and 239bp Fragments	142B	
5.5	Multiple Sequence Alignments between UPKIB PCR Fragments		
	Amplified from Bisulfite-modified DNA from Cell Lines and PBL	143A	
5.6	Direct Sequencing of PCR Products Amplified from Bisulfite-modified		
	DNA from Cell Lines and PBL	143B	
5.7	MS-SSCA Analysis of TCC Cell Lines and PBL	144A	
5.8	RT-PCR Analysis of Cell Lines for UPKIB mRNA Expression	145A	
5.9	RT-PCR Analysis of UPKIB mRNA Expression in Normal Colonic		
	Epithelium, Normal Urothelium and PBL		
5.10	Haematoxylin and Eosin Staining of TCC Samples of Bladders and Ureter		
5.11	PCR Amplification of 327bp UPKIB-derived Products from DNA Treated		
	with Bisulfite, and Derived from Normal Tissues of Colonic Epithelium,		
	Urothelium and Ureteric Muscle and from TCCs		
5.12	Multiple Sequence Alignments between UPKIB PCR Fragments from		
	Patient Sample Bisulphite-modified DNA and RT112 and T24 Cell Lines_		
5.13	Direct Sequencing of PCR Amplified Bisulphite-modified DNA in Patient		
		_146E	
5.14	Diagrammatic Representation of Sequencing Results of PCR Amplified		
	and Cloned Bisulfite-modified DNA from Patient Tissue Samples		
5.15	RT-PCR Analysis for UPKIB mRNA Expression in Patient Tissues and		
= 1 (PBL		
5.16	5-Aza-2'deoxycytidine Analysis in TCC Cell Lines T24 and J82: Re-		
	induction of UPKIB mRNA Expression in T24 Cells	149A	

List of Tables

CHAPTER 2: MATERIALS AND GENERAL METHODS

2.1	List of Primers	56	
2.2	Computer Software Tools	60	
IDEN	APTER 4: GENOMIC CHARACTERISATION OF UN NTIFICATION OF THE PUTATIVE UPKIB PROMO DETECTION OF A 500bp CpG ISLAND	PKIB:	
4.1	Comparison of Some Common Cloning Vectors	92	
CHAPTER 5: THE ROLE OF PROMOTER METHYLATION IN REGULATION OF EXPRESSION OF THE UPKIB GENE			
5.1	Patient Samples Used in Methylation Analyses	133	

Summary

Uroplakin 1B (UPKIB) is an integral structural protein interacting with uroplakins 1A, 2 and 3 to form hexameric plaques along the bladder lumen in the asymmetric unit membrane of urothelial umbrella cells in humans and other mammals. UPKIB mRNA expression is deregulated in transitional cell carcinomas (TCCs), however the mechanisms of regulation of *UPKIB* have not been established.

Using genome databases, a *Xenopus* UPKIB homologue was identified. Maximum Parsimony and BAMBE (Bayesian Analysis in Molecular Biology and Evolution) data support a close evolutionary relationship between mammalian and amphibian UPKIB mRNA. Using Unigene, UPKIB human expressed sequence tags were identified in tissues including brain, skeletal muscle and liver, suggesting the relatively widespread distribution of this membrane protein. The UPKIB genomic structure was also deduced using genome databases. Contig AC083800, identified in a high throughput genomic sequence database, spanned *UPKIB* and 9 exons and 8 introns were defined.

A 67bp 5' untranslated region was identified using 5' rapid amplification of cDNA ends. This product was sequenced and a putative UPKIB promoter and transcription start site was deduced. Contig AC083800 spanned the transcription start site and putative promoter. Transcription factor binding motif prediction programs detected no TATA box, but did predict a CCAAT box and several binding motifs including 4 Sp-1 sites and a NF_KB site. A weak CpG island was identified within a 0.5kb region including the putative promoter, exon 1 and intron 1, which was 54% GC rich with CpG:GpC ratio of 0.46, containing 15 CpG dinucleotides. Seven TCC cell lines and five peripheral blood lymphocyte samples were analysed for UPKIB expression using RT-PCR and two cell lines expressed UPKIB transcripts. Eleven CpG sites in the putative promoter were investigated for methylation using bisulfite modification analysis in normal PBL, TCC cell lines and patient TCC samples. An inverse correlation was established in TCC cell lines between UPKIB mRNA expression and degree of methylation. 5-Aza-2'deoxycytidine induced UPKIB mRNA expression in T24 cells, previously observed not to express UPKIB. Sequence analysis of patient samples revealed more complex CpG methylation patterns, reflecting tumour heterogeneity. In summary, the uroplakin 1B gene has been characterised and one mechanism of regulation of gene expression involves methylation. The work in this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text of the thesis.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Barr Smith library, being available for photocopying and loan when accepted for the award of the degree.

Andrea Varga 21st of June, 2003

With deep gratitude I acknowledge the support, guidance and patience of my Supervisor Dr Prue Cowled in the Department of Surgery during the course of this degree. Dr Cowled's advice on my experimental work and her constructive comments during the writing process were much appreciated. I would also acknowledge the assistance and support of Professor Guy Maddern, Dr Claudia Fazeli, Ms Sue Millard, Mrs Lefta Leonardos and others within the department.

With deep gratitude I thank Dr Graham Webb from the University of Adelaide Departments of Obstetrics and Gynaecology and Animal Sciences for his continuing support and mentorship over the past few years. It was through his thoughtfulness and assistance that the evolutionary chapter was initiated. Dr Webb introduced me to Dr Hugh Campbell from the Department of Evolutionary and Molecular Genetics at the Research School of Biological Sciences, ANU, Canberra, with whom I had the pleasure of studying evolutionary biology and hydrophilicity profiles. With many thanks, I also acknowledge the continued support of Dr Rory Hope, Mr Scott Spargo and Mr David Wheeler from the Department of Molecular Biosciences at the University of Adelaide for their assistance with Chapter 3 and with Maximum Parsimony and BAMBE analyses.

From the Department of Haematology and Oncology, the assistance and advice of Dr Alexander Dobrovic, Dr Tina Bianco, Ms Tanya Sanders, Dr Sally Stephenson and Dr Jenny Hardingham were highly valued in the design and implementation of the methylation analyses in Chapter 5.

With deep gratitude, I acknowledge the support of several other valuable persons. Initially, I thank Mr Andrew Leppard for his friendship and encouragement during this PhD. Last, but not least, with much heart-felt gratitude I thank my mother Mrs Erika Varga and my father Mr István Varga for their continued love, patience, understanding and support during the course of this PhD.

List of Abstracts and Presentations

2003	ComBio 2003 (Abstract) <i>Melbourne, Victoria, Australia</i> Methylation Regulates Expression of <i>Uroplakin 1B</i> in Normal Tissues and in Bladder Cancer <u>Varga A.E.</u> , Leonardos L., Cowled P.A.
2002	North Western Adelaide Health Services Research Day (Oral) Adelaide, South Australia, Australia Identification of the Promoter for Human Uroplakin 1B Varga A.E., Cowled P.A.
	Australian Society for Medical Research Conference (Oral) Adelaide, South Australia, Australia Correlation Between Expression of Uroplakin 1B (UPKIB) and Methylation of the Promoter Region Varga A.E., Sanders T., Dobrovic A., Cowled P.A.
	 14th Lorne Cancer Conference (Poster) Lorne, Victoria, Australia Methylation of CpG Sites in the Uroplakin 1B Promoter Correlates with Loss of mRNA Expression in Bladder Cancer Cell Lines A.E. Varga, T. Sanders, A. Dobrovic, <u>P.A. Cowled</u>
2001	 North Western Adelaide Health Services Research Day (Oral) Adelaide, South Australia, Australia Methylation of CpG Sites in the Uroplakin 1B Promoter Correlates With Loss of mRNA Expression in Bladder Cancer Cell Lines Varga A.E., Sanders T., Dobrovic A., Cowled P.A. Australian Society for Medical Research Conference (Oral) Adelaide, South Australia, Australia Genomic Organisation of UPKIB: a "Multi-Task" Approach Varga A.E., Cowled P.A.
	Genetics Society of Australia Conference (Poster) Adelaide, South Australia, Australia Evolutionary Analysis of Uroplakin 1B (UPKIB), a Member of the Tetraspanin Group of Proteins. <u>Varga A.E.</u> , Campbell H.D., Cowled P.A.

22nd Lorne Genome Conference (Poster)

Lorne, Victoria, Australia Evolutionary Analysis of Uroplakin 1B (UPKIB), a Member of the Tetraspanin Group of Proteins. <u>Varga A.E.</u>, Campbell H.D., Cowled P.A.

2000

North Western Adelaide Health Services Research Day (Oral)

Adelaide, South Australia, Australia Use of a P1 Artificial Chromosome in the Genetic Cloning of Uroplakin 1B, A Urothelial Protein. <u>Varga A.E.</u>, Cowled P.A.

Australasian Surgical Research Forum 2000 (Oral)

Surgical Research Society of Australasia Adelaide, South Australia, Australia Use of a P1 Artificial Chromosome in the Genetic Cloning of Bladder Uroplakin 1B, a Urothelial Protein. Varga A.E., Cowled P.A.

5'RACE	5' rapid amplification of cDNA ends
$[\alpha^{32}P]$ -dATP	α -deoxyadenosine phosphate labelled with ³² P
Amp	ampicillin
AUM	asymmetric unit membrane
	base pair(s)
bp °C	1 ()
	degrees Celsius
cDNA	complementary DNA
DEPC	diethyl pyrocarbonate
DMEM	Dulbecco's modified Eagle's medium
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
dNTP	2'-deoxynucleoside-5' triphosphate
EST	expressed sequence tag
$[\gamma^{32}P]$ -dATP	γ -deoxyadenosine phosphate labelled with ³² P
GenBank	nucleic acid and amino acid world-wide sequence resources
	compiled and maintained by NCBI
IPTG	isopropyl-β-D-galactosidase
Kan	Kanamycin
kb	kilobase(s)
kDa	kiloDalton(s)
LB	Luria Bertani media
LOH	loss of heterozygosity
μJ	micro Joule(s)
μl	micro litre(s)
mM	milli Molar(s)
MS-SSCA	methylation-sensitive single strand conformation analysis
NCBI	National Centre for Biotechnology Information, the National
	Library of Medicine, USA
nt	nucleotide(s)
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PBGD	porphobiliglobin deaminase
PBL	peripheral blood lymphocytes
PCR	polymerase chain reaction
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute
RT-PCR	reverse-transcription polymerase chain reaction
SCC	squamous cell carcinoma
SDS	sodium dodecyl (laurel) sulphate
SSCP	single-strand conformation polymorphism
TCC	transitional cell carcinoma
U	units
UPK	
V	uroplakin volts
v v/v	
	volume per volume
w/v	weight per volume

A. Uroplakin nomenclature

Several forms of nomenclature have been used for the uroplakin members, both in the literature and in the various Internet-based databases. These include (i) differences in 'uroplakin' abbreviation to 'UPK' or 'UP', (ii) differences in the uroplakins 1 through 3 numbering with Roman (I-III) or Arabic (1-3) numbering, and (iii) in the casing of a, A, b and B. For uniformity in this thesis, uroplakins 1 through 3 are numbered UPKIA, UPKIB, UPKII and UPKIII for all species.

B. Species abbreviations

Several names are used in simplified form for organisms. The organisms are:

Caenorhabditis elegans: Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; Peloderinae; *Caenorhabditis, elegans*. Abbreviated to *C. elegans* or *Caenorhabditis*.

Drosophila melanogaster: Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Ephydroidea; Drosophilade; *Drosophila, melanogaster*. Abbreviated to *Drosophila*.

Manduca sexta: Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Sphingiodea; Sphingidae; Sphinginae; *Manduca, sexta*. Abbreviated to *Manduca*.

Schistosoma haematobium, Shistosoma japonicum, and Schistosoma mansoni: Eukaryota; Metazoa; Platyhelminthes; Trematoda; Digenea; Strigeidida; Schistosomatoidea; Schistosomatidae; Schistosoma. Abbreviated to Schistosoma.

Xenopus laevis: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Amphibia; Batrachia; Anura; Mesobatrachia; Pipoidea; Pipidae; Xenopodinae; *Xenopus, laevis*. Abbreviated to *Xenopus*.

C. Genetic terminology: homologous versus homoeologous

In Chapter 3 the word homologous is used; however, this is more exactly homoeologous if between different species. The term homoeologous is not often used in molecular biology.