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SUMMARY

In 1967 Strocchi esfabllsﬁed that the quantlisation of the electro-
magnetic fleld using a vector potential is impossible within the con-
text of conventlional fileld theory. Although this result Is frequently
referred to its signlficance Is laroely misunderstood. The fact that
the electromagnetic field cannot be described in conventional field
theory reflects more upon conventional field theory than theories of
the electromagnetic field.

A reappralsal of electromagnetic field theories should therefore
be made. 1+ could well be that features of these theories that have
been previous!y regarded as deficiencies are not really deficiencles
at all. This thesis Is an account of the radlation gauge, Gupta-
Bleuler and Fermi methods of quantising the electromagnetic fleld
from that point of view.

The radlation gauge and Gupta-Bleuler methods are well established
schemes. Our dlscussion does not yleld any results concerning these
methods that cannot be found elsewhere. 1t does, however, serve to
place them in a wider context. The Fermi method Is little understood
and hence most of this work is concerned with it.

Even though the various formulations of field theory are by no
means equivaient, they all eventually reproduce traditional fleld
theory. Thus If we only require that the theory be rigorously formu-
lated for such examples as the neutral scalar fleld it does not matter
which formulation we chooss.

The differences are, howevar, important for applications to the
quantisation methods of the electromagnetic field. The formuiations
have to be modified and the point at which such modlfications must be
made and their nature depends on both the general formulation ahd the

quantisation method,



The formalism that provides the most sultable framework for a
rigorous formulation of the Fermi method turns out to be the C*
algebra formula+lon of Segal. Following Segal, the Weyl algebra of
the vettor potential Is constructed. The Faormi method is then
related to a certain representation of the algebra. The representa-
tlon is speclflied by a generating functional for a state on the
algabra.

Usually, dynamical and kinematical fransformations are repre-
sented by unitarily imptementabla automorphisms of the algebra. We
prove that this is not always true In the representation given by the
Fermi method. The Weyi algebra of the physical field iIs then con-
structed as a factor algebra. Difficulties with both the Ferml and
Gupta-Bleuler methods can bhe attributed to the need to use a factor
algebra.

The canonical commutation relations {xu,pv] = - 9y BFe formu-
lated as a Weyl algebra. We study the Schrodinger representation of
the algehra and find that the Fermi method 1s Just the generallisation
of this representation fo an infinite numher of degreas of freedom.
Further analoqgies are also possible. We can cdns+ruc+ factor algebras
from the Weyl algebra. The machanics of such procedures can he
studied without the additional complications of an infinite number of
degrees of freedom. The Schrodinger representation of the Fermi
method Is then constructed.

We conciude with a discussion of the results that have been

obtained and an indication of ways In which the work might be extended.
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CONVENT IONS

We adopt tho diagonal metric tensor 9}\” (A, = 0,1,2,3)

with ggg = - 911 = = Q22 = =~ g3g = 1.



CHAPTER 1

DISCUSSION OF THE RADIATION GAUGE, GUPTA-BLEULER
AND FERM! QUANTISATION METHODS

1.1 An Historical Perspective

The original formulation of the quantum theory of fields was
developed by Dlrac, Jordan, Helsenberg and Paull tn the years
1927-1929., The scheme for quantising the electromagnetic flald
that has come to be known as the radiation gauge method was first

used for the quantum theory of the pure radliatlon fleld by Dlrac(1)

<2). Helsenberg and PaulI(S) presented the

and Jordan and Pauli
tirst general account of flald theory. As an application of the
general princlples that they had formulated, they set up the
theory of quantum electrodynamics In radlation gauge.

The prescription for quantising a field In the Helsenbery
and Paull approach was to introduce commutation relations Into
classical fleld theory by identlfying the canonically conjugate
coordinates to which commutation rules couid be applled. These
were determined from a Lagranglan which was formally taken over

from the classical theory. From classical electrodynamics the

Lagrangian is
- A BAv
L=~-%F F where F = -—, (1.1)
Lok Lkt axv 3xu
With that Lagrangian, they found that the momentum conjugate to
the zero component of the fleld Ao(x) was identically zero. Hence,
Ao(x) had to be eliminated before the quantisation rules could be
applied. The longitudinal and scalar components were therefore

removed by a gauge transformation leaving the transverse components

to be then quantised.
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Ferml(4) suggested a modification to the Lagranglan to enable

all four components of the field to be quantised:

M2
A0 (1.2)

L=-4F FV -y (5

w X

The physical states of the theory were then chosen to be those

which satisfied the supplementary condition

A"

" l>=0 . (1.3)

ax

Both these schemes were considered to be unsatisfactory for
the foliowing reasons. In radiation gauge, the procedure of only
quantlsing the transverse parts of the potential destroyed the
Lorentz four vector structure of the theory al+ﬁough the theory
Itself was relativistically Invariant. Also, for computational
purposes, for examplie radiation phenomena, it would have been
simpler to have been able to treat all four components symmetri-
cally rather than dividing the fleld Into a transverse part and
Coulomb Interaction.

The undesirable features of the Fermi method that were
Immedlately apparent were,

(1) The Ham!ltonian was not positive definite.

(2) The field equations were different from Maxwell's

equations.

However, choosling the physical states of the theory to be the
solutiorsof (1,3) seemed to remove these difficulties because It
was found that the Hamiltonlan became positive definito and that
the field equations were reduced to Maxwell's equatiors when res-
tricted to those states. The physlcal states, therefore, pléyed
a central role in the Fermi method. Hence, the method fell into

disrepute when those states became mathematically questionable.
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I+ was discovered, on expliicitly introducing a HIlbert space
structure to the theory, that the Fermi physical states, being
non normalisable, did not lle in the Rilbert space(S).

Gupta and Bleuler(s) suggested a quantisation scheme In which
all four components of the vector potential could be quantised.
Dirac had observed(7) that for the Fermi methoed the commutation
relations were satisfied by reversing the roles of the emission
and absorption operators for the scalar photons. Gupta reallzed
that i+ was possible to maintain the usual roles for the absorption
and emission operators for the scalar photons and satisfy the com-
mutation relations providing that an Indefinite metric was used In
the state vector space.

He took the physical states of the theory to be those which

satisfied the supplementary condition

Ly =0, (1.4)

He then showed how a probabllistic interpretation for the physical
photons might apply to those physical states even though the

orlginal state vector space was not a Hllbert space.

1.2 The Present Evaluation of the Theorles

The situation Yoday Is that while both the radlation gauge
and Gupta-Bieuler methods have become standard procedures for

quantising the slectromagnetic field, (see for instance Bjorkan

(8) (9)

and Drell and Schweber "), the Ferml method Is more frequently

relegated to an historical foot-note.

STrocchl(10)

proved a result which suggests that i+ Is im-
possible to construct a theory of photons with a four-vector

potential within the context of conventional field theory. His



4.

result has been widely misunderstood. |t only proves that If a
Lorentz covariant four vector potential is fo be used then the
axioms of conventional fleld theory must necessarily be violated.
Strocchi was hence incorrect In claiming that his result showed
that the Fermi method had to be Inconsistant. He would first
have to show that the Ferml method was a quantisation procedure
that satisfled the axioms of conventlonal field theory. Since
the Ferml physical states are known to be non normalisable it
would seem most [lkely that the Ferml method would not satisfy
the axtoms of conventional fleld theory.

For both the radiatlon gauge and Gupta-Bleulsr methods,
however, the developments In the formalism that have occurred
have gone a long way in resolving the objections that were origin-
ally raised agalnst them. In particular we shal!l refer to speclflic
developments that have occurred in Fock-space techniques, axiomatic
fleld theory, and the representation theory of the Poincaré group
and wave equations,

The Fock~Cook, occupation space representation of fleld
theory was introduced by Fock(11) In 1932. Thls representation
then became the standard representation of fleld theory. Its

U2) 1h 1953, Investi-

mathematical structure was settled by Cook
gatlions Into the foundaltions of $tsid thoory Is the concern of
axiomatic fleld theory. The relatlonshlp between axlomatlic field
theory and Fock-space that we shall be concerned with Is that the
axiomatic schemes that have been proposed for the free field have
a Fock-Cook representation. Thus, when we construct a quantum
fleld theory explicltly I+ Is natural to construct many particle

states from one particle states and then "second quantise" i.e,

construct the Fock~Cook representation,



The Hilbert space of states In the Fock-Cook representation
is thus a direct sum of subspaces of states with exactly n

particles

H(n) ]

0

]
it
n &g

n
Furthermore, by constructing a field theory by this method, we
can readily draw upon ‘the great body of work +that has been done
on the representation theory of the Polincaré group, The one
particle states of the Fock-Cook representation are connected
with group theory In the following way. For a fleld of free
particles of a glven kind they are a representation space for the
irreducible unitary representation of the Polincard group that Is
assocliated with the particles under considoration.

The study of these representations Is a fleld in I+self.
I+ would be Impossible here to survey adequately the many references.
WTgner(13) Is a general account.

The Irreducible representations of the Polncaré group that are
relevant for this discussion are therefore those which describe
tho physical photons. These are the mass zero, *1 hellclty repre-
sentations. We also need to know the connection betwaen these
representations and wave equations because the one particle space
will be reallzed as a Hilbert space of wave functions.

If we want to construct a fleld theory with a vector potential
then one solution Is to take one particle wave functions, A, with

components Au which satisfy the wave equations:

O Au(x,f) =0 p=20,1,2,3 (1.5)
where 2
D:L—_y—z
at2

is the D'Alember+tian operator.



The representation of the Poincaré group on thess wave

functions will be given by
- - - A" "1 -
A+A A‘J (x) = Au Av(A (x - a)) (1.6)

for the Polncaré transformation with parameters (a,A). To estab-
Fish contact with conventional field theory we then have to con-
struct from this representation the *1 helicity representations
of the Poincaré group.

We can classify the representation of the Polincard group
that (1.6) gives by looking at the representation of the little
group T @® E(2). That Is, we conslder that the representation
Is Induced from the representation of T & E(2). The theory of
induced representations has been a powerful Yool for classifying
all the irreducibie unltary representations of the Polncars group.

I+ is Implicit In Wigner's original work('4), and the general

theory was established by Mackey(15).

In this application, the problem of classifying the repre-
saentation of the Poincaré group that (1.6) defines, Is therefore
reduced to determining the representation of an E(2) subgroup of
The defining representation of SL(2,0). 1t turns out that this
representation of E(2) is Indecomposable 1.e. there Is an in-
variant subspace, but the representation Is not fully reduclble(Ie).
By contrast, consider massiva wave functions. In that case, the
IT++le group is T* @ SU(2). We therefore consider an SU(2) sub-
group of SL(2,C). This representation of SU(2) is reduclbla. It
is the direct sum of irreducible unitary representations. Hance
we can project onto the irreducible representation of the Polncard

group which Is of Interest by plicking out the appropriate SU(2)

representation through the wave equations,



Since E(2) Is non compact Its finite dimensional Trreducible
unitary reﬁresen+a+ions will be one dimensional. Thus to construct
Irreducible unitary repraesentations of the Poincaré group we must
develop a procedure for extracting the appropriate irreducible
unitary representation of E(2) from +he glven Indecomposable repre-
sentation.

McKerrel\(17) glves an account of the construction of a ¢lass
of covariant massless fleld theories. The approach that he used
was equivalent to developing a method for constructing Irreducible
unitary representations of the Polincaré group from the representa-
tions defined on tensor wave functions. Therefore the techniques
that he used can be placed In a more general context from an ap-
preclation of their group thecretic origins. A reformulation of
his results In the language of Induced representations and Indecom-
posable representations of E(2) has been achleved to a certain
extent as psople have come to recognize the power of these mefhods(ts)'

For the particular repraesentation that we are concerned with,

the four vector wave function, Shaw(lg)

ortginally showed how to
construct the #1 hellclty representations with an approach which
also can be given a group theoretic interpretation.

These considerations have implications for a field theory con-
structed by Fock-Cook methods. |If we start with four vector wave
functions for our one particle states then the Gupta-Bleuler method
necessarily follows. The indefinite matric, physical states satis-
fying the Lorentz conditlon and restricted gauge transformations

are therefore necessary from the point of view of representation

theory to single out the *1 hellcity representations.



The Gupta-Bleuler method is certainly a description of photons
since we flnally manage to extract the appropriate representation
of the Poincaré group. It Is mathematically well defined because
once the one particle theory is correct Cook's analysis applies.

A similar analysis Is also appropriate for the radiation gauge
method. The proofs of the relativistic invariance of the theory
are cqulvalent to establishing that the representation of the
Poincaré group that the one partlicle states carry are the #1
hellcity representations. The Fock~Cook construction therefore
can be used.

We have already polnted out that only the transverse com-
ponents of the fleld are quantised In the radlation gauge method.
This means that the transformation law s not that of a four vector
but contains an addltional gauge term. Explicitly, for the Polncard

transformation with parameters (a,A) the transformation law Is

ATA
Af=0 AT=A"--LUYT.A (1.7
O - - V2 - -
where
;‘2" f{x) = ~ Z-‘j dx” T;"l——;(—r[‘ f(x”)
and

Py - AY "'1 -
Au (x) Au Av (A (x ~a)) .,

Thus the theory 1s not manifostly covariant.

The relativistic Invariance of the radiation gauge method
means that the mappings given by (1.7) are Implemented by operaters
that are a continuous unltary representation (a,A) + U(a,A) of the
Polncaré group. The mapping in (1.7) 4 + 4~ can therefore be
written as

A, Gx) > Uta,) A 6) Uta,M)"t . (1.8)



The fact that the radlation gauge method as a description of
photons 1s just as effective as any other field theory can be taken
as evidence that Lorentz covariance as an Invariance princlple Is
not as fundamental as relativistic invariance.

The absence of Lorentz covariance does lcad to differences In
description. 1In accounts of the radiatlion gauge method 1+ is some-
times stated that there exists a set of preferred Lorentz frames in
which the time component of each polarization vector vanishes. This
description Is misleading. The time component is actually zero In
every Lorentz frame. I+ Is just that since we do not have manifest
Lorentz covariance the polarization vectors are not Lorentz four
vectors. Statements that require a Lorentz four vector structure
cannot be made within a Theory that never claims to have that
structure in the first place.

The reason lLorentz covariance 1s demanded is that In practice
it often provides useful prescriptions. For example, 1+ Is hard
to see how Interaction could, in general, be introduced without I+,
Nevertheless, it should be emphasized that the fundamental invari-
ance principle Is relativistic Invariance. Thus 1f a theory Is
constructed without Lorentz covarlance but is In every other res-
pect satisfactory then 1+ should not be regarded as deficient.

The Impression that the radiation gauge method is deficient could
easlly be galned from reading accounts of i+ In the Iliterature,
For example, manifest covariance is consldered to be "abandoned"
rather than simply absent.

In fact, 1+ 1s possible +6 make Lorentz covariant statements
about radiation gauge providing that the class of representations
of the Lorentz group which we are willlng to consider s broadened

to Include infinite dimensional representations.



10.

Bender showed(ZO)

that the spatial components Ai cah be con-
slderaed to be components of an Infinite component fleld which trans-
forms as the (1,1) & (1,«1) non unitary representation of the Lorentz
group. The notation that we are using to characterize the representa-

tions is taken from Gel'fand, Mintos and Shapiro(21).

This infinite
component fleld has only two degrees of freedom and hence Its frans<
formation properties are completely spocified by (1.8).

An alternative method for arriving at the Lorentz covariance
of the potentlal In radiatlon gauge has recently been drawn to our
attention 227,

The potentlal In radiation gauge is completely speclfied.

Hence we can solve the equations

Y = MY -~ aVaM | (1.9)
We obtain,
I _ ¢9y=1 Lol
A= RO (1.10)

The representation of the Lorentz group to which AI belongs

can therefore be regarded as the direct product of two representa-

tions. The operator (5%3“1 , sultably Interpreted, Is an "expansor".
The transformation propertles of expansors were flrst studied by
Dlrac(23>.

Thus from Lorentz covariance considerations 1+ would seem to
be more natural to regard the vector components AI as arising from
the electromagnetic fleld tensor by (1.10) rather than a Lorentz
four-vector.

To summarlze, therefore, we have Indicated the develiopments
that have helped to explain the nature of some of the fundamental

difficulties In both the radiation gauge and Gupta-Bleuler methods.
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Wo have seen that these difficulties can be related to Poincaré
invariance considerations,

It should be emphasized that by Strocchi's result these methods
are necessarily Inconsistent with the axioms of conventional field
theory. His result should be regarded as fundamental In explatning
why dlifficulties in each guantisation scheme must occur; it can~
not however characterize the nature of the difficulties. Thus
since all methods will violate the axioms of fleld theory the cholce
of one over the other might be governed by some particular advantage
To be galned in solving the problém at hand.

Strocchi's result makes the systematic discusslon of the electro-
magnetic fleld a difficult proposition. |t would be an enormous task
to discuss first the implications that would result from changing the
axiomatic structure of conventional fleld theory In the fundamental
way that seems necessary to cope with the quantisation of the electro-
magnetic fleld. Thus the discussion proceeds in the opposite direc-
tlon. 1+ begins with the quantisation schemes themselves. We have
seen how the most fundamental difficulties with both the Gupta-
Bleuler and radiation gauge methods have been resolved. We shall

attempt to do the same for the Ferml method.
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CHAPTER TWO

A WEYL ALGEBRA FOR THE ELECTROMAGNETIC FIELD

The basic mathematical object In an algebraic formulation of

field theory is often taken to be an abstract C* algebra. Segal's

suggestion for this algebra(24)

(25}

, the Weyl algebra, 1s only one of a
number that have been made

The Hilbert space of traditional field theory, ‘togather with
the operators that act on 11, come out of the algebralc version in
the following way. They are the representation space and represen-
tors in a certain representation of the baslic C* algebra of the
algebraic formulation. Thus traditional field theory Is obtained
from algebraic fleld theory simply by identifying the appropriate
representation of the C¥ algebra.

The speclfication of representatiornsof C* algebras 1s hence
highly relevant to the discussion. In this conhection we mention
the GNS cons+ruc+|on(26’27). By this construction a cyclic repre-
sentation of the C¥* algebra can be associated to each positive
linear functional on the aigebra.

The last remark of a general nature that will be made concerns
guantum phenomenclogy and C* algebras. In the C* algebra approach,
the states of the system are regular states (a state belng a
positive linear functlonal which maps the Identity to 1) on the
algebra and the kinematica! and dynamical transformations are
* automorphisms of the algebra. These automorphisms play the role
of the unitary transformations In the Hilbert space approach in
that they preserve spectral vatues and expectation values In

s+a+es(27).
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2.1 The Weyl Algebra Formalism

We shall recall first of all some of the details of the usual
formulations of field theory which will enablie us to appreciate
the sIghiflcance of the entities which appear in Segal's definition
of the Wey! algebra.

Consider +the neutral scalar field. In heuristic formulatlions

the field opera+or,<ﬂ“(x), 15 a solution of the equation
(- m2ysb (x) =0 . (2.1)

The canonical commutation relations (CCRs), first given by Jordan

and Pauli(Z), are

[ 0, (X)) = ialx = x7) . (2.2)
In axiomatic field theory, the flield operator Is found to be

meaningful only when smeared. Formally we bave,
ACE) = j d¥x f(x) dF (x) . (2.3)
The comutation relations are
[A(f), Alg)] = io(f,q) , (2.4)
o(f,q) = J dx d*x” Alx - x*) f(x) g(x) . (2.5)

f Is a test function belonging to GF, the set of real-valued,
infinitely differentiable functions of fast decrease, defined over
space~time. Furthermore, the singular function A(x - x”) can be

8}

rigorously defined(2 as a distribution on F . We shall specify

AMx -~ x”) as the solution of the differential equation,
(0 - m2) Adx - x*) = 0 (2.6)
which has the Cauchy data at tlme + = Q,

A(x,0) =

t
(]

(2.7)

A (x,1)

e IV §(x) . (2.8)
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(29)

We now put the CCRs into the Weyl form . We define the Weyl
operator,
utey = oM (2.9)
The Weyl relation for these operators will therefore be
Ut) Utg) = o /2 98) s h gy (2.10)
Let
¢ = A*f (2.1
where
A¥F = J d¥% Alx - x7) f(x*) (2.12)
l.e. A*f 15 a convolution.

Then since f belongs to df, ¢ will also belong to and will be a

solution of the wave equation,
(O -m2)p =0 . (2.13)

A is thus a projection operator to the subspace N of S, of real
solutions of (2.13),
Also

o(a*f,a%g) =07 (f,9) . (2.14)

In axiomatic fleld theory, test functions thal have the same

(30). We can

projection by A*are mapped onto the same operators
therefore consider A(f) as the operator value of a mapplng from
an equivalence class of test functions. The equivalance relation
Is glven by

fzg If AW = A%g . (2.15)

Furthermore, we can deflne a linear t=1 map from these equlvalence
classes to ¥ . We therefore can consider A(f) = A(4) to be operator-

valued distributions over .



15,

Also, the restriction of the bllinear form o‘+o Mis non-
degenerate, 1.e. (f,9) = 0 for all g e N Implies f = 0.

We shall now glve the baslc formalism of tho Weyl algebra
formulation of fleld theory. We begin with a generallsatton of
the definition of the Weyl representation of the CCRs.

Deflnition 2.1 (Wey! System over (M,B))(31)

Suppose that M Is a real, linear, fopological vector space
and B(z,z "% a symplectic form (i.e. B Is non degenerate, anti-
symmetric, real and bllinear) on M continuous in the glven topology.
Then we have a Weyl system over (M,B) 1f to each z,z” belonging to
M there corresponds W(z) and W(z”) acting on a Hilbert space K and
satlsfying

-1/2 B(z,z7)

W(z) W(z") = e Wiz + z°) . (2.16)

Furthermore, we require W(+z) to be a contlnuous function of +, for
any flxed z.

This generalisation was clearly designhed to meet the needs
of fleld theory. 1In that application M Is a suitable class of
wave functlions, B 1s the commutation relation and W are the Weyl
operators.

For finite dimensional M we know that Weyl systems exist

because the Schrodinger representation of +he CCRs Is a Weyl system.

Definition 2.2  (Schrddinger Representation as a Weyl System)

Let the vectors s fl (t = 1,...,n) be a symplectic basls for
the finlte dimensional (2n) vector space F and symplectic form o
defined over F. We therefors have that,
‘}

gle,,0,) = o(f ,f.) =0, (2.17)
(R J

o(e‘,fj) = - c(fJ,e]) = G'J . (2.18)
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Suppose that the coordinates of z € F with respect to the symplectic

basls are (a',b’), l.e,
z=1I, a 8, + b f, . (2.19)

Conslder the Hilbert space of complex-valued, Lebasgue square
integrable functions over Rn' Then the Schrddinger representation

will be defined by

Ula) :+ fix) » fix + a)

Vib) @ f(x) + e

W(z) = U(a) V(p) o 1/2(2sB) (2.20)

For finite dimensional M, the Weyl system Is unique In the

sense of the von Neumann *heorem(BZ).

Theorem 2.3  (Uniqueness of Weyl Systems)
If F is finite dimensional then any Weyl system over (F,B) Is
unitarily equivalent to a direct sum of coples of the Schrodinger

representation over (F,B).

Deflinition 2.4  (The von Neumann Ring G(F,B))

We dofine the ring of operators GUF,B) fo be the set of all
finite linear combinations of W(z), belonglng to a Weyl system over
(F,B), and their limits in the weak topology.

This definition 1s Tndependent of the Wey! system chosen
because the previous theorem Implies that there 1s a 1-1 corres-
pondence between the weak closures in any two different representa-

+lons,

Definition 2.5  (C* Algebra)

Let U be a complex (or real), associative, involutive normed

algebra which is complete Tn the topology induced by 1ts porm. |f
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for all elements u ¢ WU Hul? = lu*ull, where Nlul denotes the norm;
then WU is a C* algebra,

C* algebras were flrst characterized by Gel'fand and

Naimark(26),

Definltion 2.6 {Weyl Algsbra over (M,B))(24)

Suppose that for (M,B) there cxists a system S, of finite-
dimensional subspaces such that S Is partially ordered, absorbing
(l.e. M = UFeS F) and the restriction of the symplectic form B to
any element of S is non degenerate. Then the Weyl algebra over
(M,B) 1s the C* algebra obtalned as the norm completlion of the

(33) of all von Neumann rings R (F,B) where F is

Inductive 1imit
an element of S. We shall denote the Weyl algebra over (M,B) by
H(M,B),

By the GNS construction we can assocliate a cyclic representa~-
tion to each state on the algebra. The representation obtained,
however, 1s not necessarlly a Weyl system, since W(Az) need not

be a continuous function of X. The following theorem classifies

those states which give rise to Weyl systems.

Theorem 2.7 (Generating Functional for Regular States)
Suppose that p 1s a complex~valued function on M such that

o

(1) pt0) = 1, ptzi= Plz)
inite
(11) plz) is contlnuous when restricted to arbltrary{dimenzinn=!
subspaces of M

(it1) for arbitrary z, In M and complex numbers “l
- o, @
Xl,jeF p(zl ZJ) o, aj 0

where F 1s a finite Index set,
then p(z) uniquely determines a state, E(W(z)), on #(M,B). This

state, by definition, is regular. Regular states give rise to
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representattons of “W'M,B) such that W(rz) are contlnuous functions
of A for real A and fixed z, and conversely. Also In the representa-
tlon E 1s a vector state, i.e. EMW(2)) = (W(2)v,v),fer some V.

Thus In expliclt representations of quantum fields the genera-
ting functional 1s the physical vacuum to physical vacuum expecta-
tion value of the operator W(z). We recall that M is the manifold
of real, Infinltely differentiable solutions of (2.13) for the
neutral scalar field. For the Fock-space representatlion of that
flald by explicit calculation %,

+
RNV

p(¢) = (2.21)

where "¢+“ls*m3nonm of thepositive energy solution ¢+ which Is
assoclated to each real solution ¢ In the following way. The three-
dimenslonal Fourfer transformation, éﬁ, Is deflned by

3/2 ]
o) = (G J a3k F) of KX (2.22)

If ¢(x,T) is In M then since 1+ Is a solution of (2.13) It can
be written as
+ K e—i(k+-gy5) +

o

ot o Bl(k'f‘-_li‘*g(__))

(2,23)
where k= VK2 +m2 .
(2.23) then defines the relationship betwean real solutlions and

posltive energy solutions. Expllicitly, at time tos
st =& Tt o7 KTy (2.24)

In the Segal formalism this connection Is taken to be of
fundamental slgnificance because I+ can be exploited to Impose a
Hilbert space structure % on M which secms relevant and entlirely

natural.
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Let ¢(x,*) be in M. We define a repressntation of the Poincard

group on M in the usual fashion
6+ 67 1 67(x) = oA (x = a)) (2.25)

for the transformation with parameters (a,A). Then thls repre-
santation can be thought of as inducing the representation on the
positive energy solutions through (2.23). On the positive energy
solutions the representation is unitary with respect fo the scalar
product

A ————__———

(ot = J a3k o 0 vhw . (2.26)

Thus the func+ion5(§ obtained from elements of M by Q.24) form a
pre~Hilbert space with respect to the scalar product given by (2.26).

A convenient way of parametrising M Is to specify each solu-
tion by I+s Cauchy data at some time which we will take for con-

venlence to be 0. Suppose that
$(x,0) = 0(x) and 6(x,0) = d(x) . (2.27)

Then at time +o = 0 we can write the correspondence given by (2,24)
as
. i -4 .
olx, 1) = (6(x),00x)) ++(= V)% a(x) + 1(- ¥2)" §(x) = 6(x) .
(2.28)
A
The operators (- v2)* are defined as the non local operators
which multiply the Fourier transforms by ki*. For a dliscusslon ¢f
thelr propertlies see Ka+o(35).

The scalar product induced by (2.26) is

(0,¥)

I

wh,ehH

t

J ddx 2(x) ¥(x)

J 3% [ (- v2)F 600 (= 7% ()

+

- 92)"F §o0 (- v il

+

Halx) Pix) = d(x) pOAT (2.29)
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The symplectic form o on M given by (2.4) and (2.5) for the

solutions ¢(x,T) and ¥(x,t}) In terms of thelr Cauchy data at + = 0

is

4]

3l ), p0x, 1)) = BUS(x),6(x)), (B(x),h(x)))

J d3x (6(x) Bix) = $(x) P(x)) .  (2.30)

Thus to sach (¢(§),é(§)) Ih M there corresponds an element ®(x) in
ot such that the Poincaré transformations defined on M and at by
(2.23) and (2.25) are real, symplectic (1.e. leave B invariant)
transformations on (M,B) and at the same time unitary transforma-
tlons on gt Note that the symplectic form B is the imaglnary
part of the scalar product In 9€+. The scalar product Induces the

Invariant symmetric form S on M,
S((d(x), $(x)), (Plx), B(x))) =
J d3x ((- y2)} o (x) (= y2)* P (x)
b =927 G- v)F Gy (2.31)

‘Thus we can write the generating functional for the free representa-

+lon as

p((¢(§),$(;)) - e—ﬁS((¢(5),¢(5)),(¢(5),¢(§))) ' (2.32)

There exists another fnvarlant Hilbert space structure o€~
for M obtalned by putting real solutions and negative energy solu-
tions Into correspondence. We then have that

d3k
2vk

b () o (Kke) Otk x)

+ ¢ (k) e

3/2
; .

- (L
(2,.33)

The effect therefore Is the same as complex ccnjugation of the vectors
in ®". Hence the scalar product in 887 will be the complex con-

jugate of the scalar product In M. Therefore B will be the
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negative of the Imaginary part of the scalar product in %L~ . This
difference In the relationship between M and "2 and M and o€~
turns out to be crucial in the application of the formalism to the
electromagnetic fleld.

We obtained the generating functional for the Fock-space
representation of the scalar field by calculating 1+. We would
hope, however, that the generating functional should come out of
the formalism. The first guess at a possible characterisation for
the generating functional turned out to be incorrect.

In the Weyl algebra approach, the automorphisms of the algebra
representing physical transformations are Tnduced by symplectic
transformations in M. On the generating functional the mapping
is given by

p“(z) = p(Tz2) . (2,34)

For the scalar field, symplectic transformations on M, unttary
transformations onﬁﬂﬂ+, the Invariant scalar product In st and the
invariant generating functional are inter-related and hence it was
appealing to think that the requirement of Invariance of a state on
the algebra under the group of all unitary transformations em

would be sufficlent to characterise uniquely the generating
functional for the free representation. |+ turns out, however,
that continuousiy many such states exis+(36). The characterisation
of the generating functional that s used In the formalism arises

from the following theorem.

Theorem 2.8/

Suppose that we have a Weyl system over (M,B). M is alsc a
Hllbert space H with B the imaginary part of the scalar product.

Let Ufa), for all real a, be a continuous one parameter unitary
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group on H with positive generator. Then there is only one state E
on the Weyl algebra for which U(a) induces a unitary group with
positive generator In the representation space associated wlth E.
This state is characterised by the generating functional

plz) = emHZ"2

Hence the Fock-space representation Is obtalned by requiring
that some one parameter unitary group has a poslitive generator.
The obvious group to take Is the group representing time trans-
tations, That group 1s generated by the energy operator and hence
the Fock-space representation can be singled out as the representa-
tlon for which a positive energy operator Is defined. Alterna-
tively, we could require that the number operator be positlve,

One flnal result that we need Is the criterion glven by

Shale(SG) for determining whether a class of automorphisms of the
Weyl algebra will be Implemented by unitary transformations in the
Fock-space representation. In general, relatively few of the

automorphisms of the Wey! algebra are Tmplemented by unitary +rans-

formations In a given representation of the algebra.

Theorem 2.9

Let (M,B) and H be glven as In theorem 2.3. Then In the
Fock-space representation of 944(M,B), the automorphism of the
algebra fnduced by

We(z) = W(Tz) o T2

is unitarily implemertable If and only if
(1) f(z) Is a real-valued contlinuous real~|inear functional
on H.
(2) T 1s a symplectic transformation on H (1.e. leaves B

invartant) such that T*T - | = Hilbert-Schmidt operator.
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2.2 The Wey!l Alaebra of the Vector Potential

We now put the usual formallsm for the quant!sation of the
electromagnetic field with a vector potential into the language
of Weyl algebras.

We therefore write the commutation relations tn the Weyl form
as in (2,16). In heuristic formulatiors the CORs for the field

operators are
[ J*u(x). CA-v(x'>1=-1 Gy DX = X7 (2.35)

where D(x - x7) is equal to A(x - x”) In (2.6) withm = 0. Llet ¢
wlth components fu {(p = 0,...,3) be a real test function In

130 J (. Then the CCRs for +he smeared flelds AGF) (formally
=0

J d“xzﬁikx)fu<x>> will be

[AGE), A = 1o(F,F") (2.36)

o(F,F”) = - J d*x a7 Blx = x IO () (2.37)
Let

UtE) = o AR (2.38)

then the CCRs in Wey! form are
UEY UE") = & /2 9FFD) yp s pey (2.39)

The operators U(F), just as for the scalar fleld, are really mappings
from equivalence classes of functions. We therefore ldentify these

equivalence classes with real solutions of the wave equations

b =0 (w=0,...,3) (2.40)

by
. * =
Fog o f >0% =9 . (2.41)
We define
W) = UF) . (2.42)
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The bilinear form o Induces the symplectic form B on the spacs of
real solutions of (2.40)

o(F,F*) + Blg,é")

3 “(x)  9aM(x)
= - J dn*(x) (¥ (x) —H o - ) (2.43)
n ax ah M

where n is a space~-like surface. This form is independent of n and
s usually written in terms of the Cauchy data for the solutions.
If the real solution ¢u(59+) at time fo has Cauchy data ¢u(5) and

&u(ﬁ), then (2.32) can be written In the fam!liar form
B($,") = - ] d3x (4" (x) &u'(g) - é:?z) 6, 7(0) . (2.44)

We can now define the Wey! algebhra of the vector potential for
the electromagnetic fleld. We use definition 2.5. We only need
to specify the appropriate M and B. B comes from (2.43) and we
take M to be the set of real-valued Infinltely differentliable
solutions of (2.40), definaed over space-time.

A representation of the Poincaré group is deflined on the

solutions In M by
- . - = A "'1 -
b >é” ¢u (x) Au ¢v(A (x - a)) . (2.45)

The symplectic form B is Invariant under these transformations and
hence the transformation W +~ W” Induced by ¢ - ¢“ Is an auto-
morphism of the algebra. We have that W"($) = W(¢$~") and hence
~1/2 B{d, ) Wl + )

Our analysls so far applies equally well fo both the Fermi

W W) = e

and Gupta-Bleuler methods of quantisation. The same abstract
Weyl algebra 1s assoclated with sach method and furthermore corres-
ponding physical transformations in each thecry are glven by the

same automorphisms of the abstract Wey! algebra.
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However, in applying the rest of the Weyl a gebra formallsm
we shall need to distinguish between the two methods of quantisa-
tlon. We have yet to consider those aspects of the formalism that
refer to representation theory. Once the abstract Wey! algebra
has beesn characterised the traditlonal theory of free flelds Is
reproduced when the appropriate free field representation of the
algebra is given. Ths characterisation of that representation Is
therefore an Important part of the formalism. We know from
Strocchl's result that the usual formallsm for free flelds cannot
be appllied without modification. In the part of the Wey! algebra
formatism that 1s concerned wlth representation theory these
modl fications are not the same for the fwo methods of quantisation.
The representation of the abstract Weyl algebra is different for
the two methods. Thus, In this formallsm we would attribute the
vastly different appearance of the two theoriss to the fact that
different representations of the Weyl algebra are belng used.

The representation of the algebra given by the Gupta-Bleuler
method does not arise from a regular state. We can see this
immedlately from an examination of the Weyl operator. In this
case It Is not a unltary operator acting on a Hllbert space and
hence the Gupta-Bleuler representation 1s not a Weyl system. We
therafore cannot use theorem 2.7 for characterlsing the representa-
tion. For this reason, the formalism is not really sultable for
discussing aspects of the Gupta-Bleuler method that depend on an
expllcit knowledge of the particular representation that i1s being
used.

On the other hand, we find that the formallism Is well sulted

to the Ferml method. In a |ater chapter, we shall show that in



26,

some sense the Ferm! method is a more natural representation of
the Weyl algebra.

Therefore we shall now calculate the generating functional
for the regular state that characterises the Fermi representation.
We do this by a treatment which closely paralieis the treatment
given for the neutral scalar field.

In that case, the generating functional arose from the scalar
product In the Hilbert space of positive energy wave fuictions.
So, we begin here by associating real! solutions with positive

energy solutions in the usual fashion.

__ 1372 [ &3k, + -1 (kt-kex) 0 T (kt=kex)
¢u(5,+) = oy J o7 (¢u (k) e + ¢u (k) e )
(2.46)
The Poincaré tnvariant form on 9€+ is then
+ +. - - 3 u+ +
(.;p ,cp ) Id k ¢ (k) ¢u (k) (2.47)

B4,4°) 1s certainly the imaginary part of (7,67 ) but since this
form Is Indefinite 3% Is not a Hilbert space. Thus the usual
formalism breaks down for the quantisation methods of the electro-
magnetic fleld at this point. However, for the Ferm! method, the
formalism needs only to be adapted In a manner which is mathematic-
ally quite trivial.

We recall Dirac's observaflon(7) that the CCRs are satisfied
by reversing the roles of the annihiiation and creation operators
for the zero component of the field operator. Thls means that “he
zero component of the one particle wave functions will have negative
energy. Hence In the Fermi method we ldentify the zero component

of a real solution of (2.39) with a negative energy solution. The

mapp Ings between M and‘aeF will therefore be given by
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3/2 3
b 061 = J Lh (4 Fy ot KEkex)

vk !

o g0 o (KR 10y 2,3
3/2 ————
1 a3k ¢ -y i (kb-kex)
¢ _(x,*) = J-—-—— $_ (Kle ==
o) (2m) 2/k ( o
+o Tt o KRR (2.49)

In 927 we define the Inner product

< ¢ > = J % 13800 6T 0+ 67K 4 Y. (2,50
121 [ o ~ Yo
Then just as for the scalar field, B($,6") Is the Imaginary part of

a scalar product.

The generating functional for the Fermi representation Is

F
o) = o P > (2.51)

Polncaré transformations on ebmanTs:JerF wlll be defined
by (2.34) and (2.38). Hence the scalar product In 9@F wil! not be
Invariant under Poincaré transformatlions and therefore the genera-
t+ing functional witl aiso not be invariant. Now the vector state
that generates the representation in the GNS construction is the

vacuum state Qo.

1W(z)
ﬂo) . (2.52)

p(z) = E(W(2)) = (ﬂo, e
We can distinguish two possibitities for the vacuum that could
result from the non-invariance of the generating functional. The
first possibillity Is that the new state can be represented as a

vector state In the original representation

GFW(Z)Q “Y
o]

p”(2) = p(T2) = (Qo’,
no‘ Is then the new vacuum.
The second possibility Is that the new state cannot be repre-

sented by a vector state in the original representation. Then the
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vacuum for the new represenfation will be orthogonat to the old
vacuum. Thus in both cases, the new vacuum wlll be different from
the origlinal one.

We now prove that the second possibility holds In the Fermi

representation,

Jheorem 2.10

In the representation of the Wey! algebra over (M,B) with M
and B glven by (2.3 and (2.83) characterised by the generating
functional (2.:‘) the automorphisms of the algebra induced by the
Poincaré transformations (2.45) are only implemented by unitary
transformations when the transformations are spatial rotations.
Proof

Let X(a,A) be defined by

¢$° = X(a,M)d

with @* and ¢ glven by (2.45). Then wlth respect to the scalar
product induced in M by the scalar product (2.33); (We shall
fdentity M with 925

X" (a,0) X(a,M = ATAd .
Supposa that A = A(Ly) where A{2y) Is a Lorentz transformation in
the direction of the x; axis. If tanh u Is the relative veloclty

of the two frames the vector ¢~ = (A1(2;) A(%y) - 1) will have

Eomponenfs
8, (k) = 2 sinhZu ¢ (k) - 2 sinh u cosh U ] (K)
+- _ - 2 +
¢1 (k) = 2 sinh u cosh u 9 (k) + 2 sinh®u ¢3(k)
62" (W) = 0
83t ) =0 .



29,

For an arbltrary basis of M (e3,ep,...), The series

o]

) “(AT(RI)A(QI)A££}4 - 1) enll2 will not be convergent, since
n=1

we can easily find a basis In which B(AT(R1IARY) = 1) e 170 as
n-+«, The operator (X*(a,A(Ql)) X{a,A (1)) = 1) is therefore
not Hilbert-Schmidt on M since an operator O is Hilbert-Schmidt If
and only 1f the series

o

Z 10e 02
n=1 n

converges for an arbitrary basls (el,ez,...)(38).

Then by theorem 2.9, the automorphism induced by A(%;) is not
implementable by a unitary transformation.

If A is a spatial rotation, than (RTRwl) = 0 is obviously
Hilbert-Schmidt and hence Induces an automorphism that Is unltariiy

implementable.

We can parametrize every lorentz transformation in the form

A= A(RDIA(RIA(R,)
where A(R;) and A(R,) are spatial rotatlons. Hence every Lorentz
transformation that Is not purely spatial induces automorphisms
that cannot be Implemented in the Ferml representation.

Therefora, while observers can construct the free representa-
+ion by the Ferml method in the manner Indicated, only for the case
in which the frames of reference are connected by spatial rotations
can the representation spaces on which the operators act be connected
by a unitary transformation.

This calculation shows that the Fermi representation is signifi-
cantly different from other free fleld representations. However,
the particular feature just demonstrated results from the representa-

tion of the Weyl algebra that Is used in the Fermi method. |t does
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not come from the algebralc structure of the theory. We know from
other considerations that the Gupta-Bleuler method is a we!l defined
theory of the electromagnetic field. Hence the basic abstract Weyl
algebra must be appropriate. The Fermi method is just another
representation of this abstract Wey! algsbra. We should expect
pecuflar features In each method because of Strocchi's resuit, How~
ever, In this formalism we can pul these features into two categories,
those that result from the algebraic structure and those that result
from the representation chosen for the algebraic structure. Theorem
(2.10) is a feature of the Fermi representation only and Is an

example of the latter category.

2.3 The Weyl Algebra of Physical Photons

In descriptions of the Gupta-Bleuler and Fermi methods the
field operator is often interpreted In terms of annihilation and
creatlion operators for physical and unphysical photons. Such an
Interpretation is, however, misleading because strictly speaking
operators for physical photons only emerge after supplementary
conditions and indefinite metric (in the case of the Gupta-Bleuler
method) have been applied.

In order to demonstrate this we shall show that the Weyl

algebra of the physical photons Is a factor algebra of a subalgebra

of the original abstract Weyl algebra. The proof in no way depends
on the representation of the Wey!l algebra and hence the results

will apply to both methods. For both these methods It Is therefore
inappropriate to Identify any operators as physical photon operators.
This identification should only be used If the algebra of the physical

photons were a subalgebra of the origlinal algebra.
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The subalgebra of the Weyl algebra associated with the so called
"physical photons™ will be denoted by A, We shall define & as an
algebra generated (with the term "generated" appropriately generalised)
by the elements, W(h), of W where ¢ befongs to the subspace, S, of M

consisting of wave functions which satisfy
¢ =0, Ve =0 . (2.53)
Thus S Is the set of wave functions with transverse components only.

For any wave function, #, in M we can projJect out the transverse

components by the following procedure. The Lorentz transformation

ky? kiksp ky
BTy Koy« °
kikg kp? ko
" .
Ky ko K3
* —_— -— 0
0 0 0 1

maps the vector (kj,ks,kz,k) into (0,0,k,k) and Is also Its own

Inverse. We therefore apply the projector

1
p’ = ( L )
0 o

to the vector Ad and then perform the inverse transformation.
Suppose that we cal! the vector obtained by this method ¢°. Then we

find that &° will have components ¢u‘ given by

¢O‘(x) =0,
$7(x) = lx) = —%—Vz;gjx). (2.55)
)

An equivalent procedure for obtaining ¢f is fo eliminate the un-
wanted components from~¢ by a sultable gauge transformation. Then

» "1
$°=Ud U, . (2.56)
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This second procedure Is usually given as the prescription for
obtaining the transverse components.
From a mathematical polint of view, both procedu-es are possible
because the transformation ¢ - $~ can be defined either by (2.56) or
d° = P , (2.57)

where
F’

AP°N

This Is analogous to the mapping ¢ + & under Poincaré trans-
formations. These two ways of defining the transformation law
express the Lorentz covariance and relativistic Invariance of the
theory. We recall the confuslion that has resulted from the failure
to distinguish clearly between the two.

In describing the second procedure we use the term "eliminate™
rather than "project out™ deliberately. The gauge transformation
fs not a projection operator in the mathematical sence. |+ does
not satistfy UA2 = U, . If Is the operator, P, that Is the projec-
tion operator.

The Weyl algebra, W, was constructed as the norm completion
of the iInductive timit of the von Neumann rings ® (F,B), where F
was an element of a certaln set of finite-dimensional subspaces
of M. For the construction of the subalgebra, ﬁé ., we define the
subspace, F”, of F such that F” = SAF, Then If F belongs to a
system of finite~dimensional subspaces which spans M with properties
given In definition 2.6, F” will belong to a system which spans S

also with those properties.

Definition 2,11

in the weak topology of the von Neumann ring {R, (F,B) des-
cribed in definition 2.6 we form the closure, é},S(F), of the

algebra generated by the elements W(¢$) where ¢ is In F”. Then o)
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is the norm completion of +he tnductive Iimit of the algebras,
®.7 (F), formed from all rings R (F,B).

We discussed the transformation properties of the subspace S
In Chapter 1 1n describlng radiation gauge. When Poincaré trans-
formations on S are given by (2.45) +hen S is not invariant. Hence
the automorphisms of “W induced by these Polncaré transformations
In M, l.o.

W~ W where W'($) = W) , (2.58)

will not feave # Invariant. Thus we cannot use 7 as the algebra
of the physical photons and maintain the Lorentz covariance of the
theory.
The two subspaces of M that are Invariant under the Polncaré
transformations (2.45) are the subspace, N, of eolements that satisfy
2"
=0, (2.59)
1
Ix
and the subspace, T, of elements that are derived from scalar

functions, f.e. the set ¢ with components @Aﬂ_. The subalgebras ./’
X

and J are defined in the same way that & was defined.

Note that It is not strictly necessary for the rings & (F,B)
to be considered in constructing the algebra & . We only nesded
to consider a system of subspaces F~ because the billnear form B Is
stil} non degenerate when restricted to elements of F*. However,
the bilinear form is degenerate in the subspaces N and T and hence
we have to construct first the rings (R (F,B) to construct oV’
and .

Since S and T are subspaces of N, # and ¥ are subalgebras
of M. Furthermore, we can write N =S @& T by the following

procedure. For all 4 in N the components in S are the transverse
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componenTs of # given by (2.55). The scalar component In T Is
-“-2~ V=9 . Usling this decomposition of N we can write the algebra,
v

t’R/N(F), as the weak closure of ’KS ®::R‘,T. In that sense N is

the “elosure" of 1(7@ :7

Proposition 2.12

4 Is the contre of oV,
Proof

Let ¢ and¢” be elements of N. Then
LW, W] = - J a3 (4" -H- -EL-¢ S

tf we require W(¢) to commute with all W($”) then choosing ¢~

with components:

. _ 9A . _ 0OA . -
¢17 = -B—y- , o7 = -5;- » 03”7 = (bO = 0 glves

¢ ¢
924 4 oA 2 3Ny
J 4 (01 3 a+ay - 2 5%~ G ay ot ) =0

o (LM e ey
By ax 7 9t  jat “dy 3% )

Since this must be true for arbltrary A

9y 2
PV el
By sultably choosing §” we can show that V. x ¢ = 0. Since ¢ Is
also in N it must therefore be a vector with components q>u = Mu—
IX

Thus a nescessary condition for [w<¢),w<¢')1 = 0 is for ¢ to be In T,

It is also sufflcient since

SH 2
ax? atax*
=- | g3 (3“ a(bol L ¢ MR g
= x Gy 3 TS L ot L)

- 3 B geg” 2 .
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3 32¢O‘ 2
- j @O~ + AT ¢0) ,

=0 .

Hence & will be the centre of .
 will be called the algebra of the supplementary condition

coperators. For suppose that (formally)

Wep) = oA
where
Alp) = j d¥% FY ) £ (x) with b = A¥F (2.60)
u W !
For ¢ in T,
ARY = J dix o Yooy XL gy p e ey
X ax"

On Integrating this formal expression by parts we obtaln

| U
= E‘f gy L) Ly

’
asc! X

which Is the supplementary condition operator. We therefore relabel

the operators In & . We define

xm) = A
ax™
and
sty = wiEy | (2.61)
ax"

4 is then the Invariant subalgebra of W’ of Lorentz gauge trans-
formations.

Let ™ be the homomorphism oV + .0 defined for the elements
of NMin HRY by DY -+ @ . The elements of A not
in &®Y are limits In the topology induced by the norm of
elements that are 1imits tn the weak topology of the rings % (F,B)
of eloments of O ® & .| The homomorphism for those elements Is

therefore defined by continuity in the relevant fopology.
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Let the kernel of the mapping, 7, be denoted byg? . Then for
any element, s, in & the set of d?’,v-1(s),ls an equivalence class
In A” with respect to the ideal & . The algebra of these equiva-
fence classes Is the factor algebra, %¥ , and the ldent!flcation of
s with the equivalence class of elements in o’ mapped onto s defines
an isomorphism between %?— and & .

(39)

Corollary 1.8.3 In Dixmier » provides a mathematically

rigorous justification for these assertions.

Theorem 2.13  (Corcllary 1.8.3 in Dixmier)

Suppose that A and B are C* algebras, ¢ is a homomorphism
A~ B and | the kerne!l of ¢. Consider the canonical decomposition
of ¢,

A L
A+T -—-+¢(A)+B.

Then | is closed in A, ¢(A) is closed In B and ¢ Is an Isometric
Isomorphism between the C* algebras %-and d<(A).

The equivalence classes In /" can be generated by choosing
an alement, n, that does not belong +to g and forming the sat of
elements n+l for all 1 In & . We denote the equivalance class
generated In thls way by {n +%$} . Distinct elements in & will

betong to distinct equivalence classes and from the isomorphism

between % and %;1 the set of equivalence classes
s=1{s+J1} (2.62)

will be a dense set in %? .

We shall now consider the automorphismsof the algebra, 4y ,
glven by 2.58, 1.e. the automorphisms induced by Poincaré trans-
formations In M. From previous consliderations the algebras K
and Y are invariant. Now the elements s ® +, where s Is a fixed

element of Qb and t Is any element of o4 , form a dense set In
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the equivalence class {s + # 3. Hence the ldeal, }? , witl also be
Thvariant under automorphisms of %® given by 2.58,

We can define automorphisms of %f from automorphisms of W
that leave both o' and & invariant In the following way.

If n =+ n” under an automorphism of W* +hen

h+dt> +J} ="+ ¢ (2.63)
will be an automorphism of ~%¥ .
Consider the effect of automorphisms of ‘g; defined by 2.63

and 2.58 on the equivalence class,
S={s+ & 1} with 5in D .

The subalgebra, £ , will not be invariant. Suppose that

s+ s”°® +. Then

{s+9 N1 =1{s®++ F1 (from 2.63)
{s" + é? }

= ;‘,’
in particular, this automorphism for the alements,
N(g) = W) + § ) where ¢ Is In S

will be glven by

W (e) = (Wp) + F 3, (from 2.63)

W + &}, (from 2.58)

In the direct product decomposition of W($~“), the component
in & wlll be W($~"*) where $°” is the component of §~ In S, I.e.
the *ransverse components of 4 . (see 2.55).

Hence

H

{Wi$") + g1,
W) (2.64)

W ()
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Thus by adopting the scheme of labelllng the esquivalence classes

by the element of £ that they contaln we can eas!ly ldent!fy the
algebra fg? with the Wey! algebra associated with the radlation gauge
method,

From 2.64 we sec that the Weyl algebra, 4V°‘, associated with
the radiation gauge method could be constructed as a Weyl algebra
over (M”",B”) using definition 2.6 with
l SBT

T

- N _
M7 ===

and B” the restriction of B to S. The automorphisms of ¢~ repre-
senting physical transformations wili be Induced by Poincaré +rans—h‘
fbnna+lons in M". These transformations in M” will be defined from
the Poincaré transformations in M since N and T are invariant sub-
spaces of M,

I+ was this algebra, 4{", that SegaI(SI) constructed in
applylng the Weyl algebra formalism to the electromagnetic fleld.

We have already indicated that the Gupta~Bleuler and Fermi
methods are different representations of the Weyl algebra W,

We can Infer from other consTderaTions(40)

that In the Gupta-Bleuler
representation of the algebra, 4 , the representation of the factor
algebra “%ﬁ is constructed on a Hilbert space of states that are
equivalence classes of states satisfylng the supplementary condition.
The Indefinite metric Is the mechanlsm for constructing such equiva~
lence classes. We shall show that 1+ is possible to Interpret the
unorthodox procedures of the Ferml method as also belng prescriptions

for obtaining a representation of %gf .
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CHAPTER THREE

CANONICAL COMMUTATION RELATIONS FOR FOUR DEGREES OF FREEDOM

To show how the Weyl algebra formallsm applies in a familiar
situation we shall obtaln the abstract Wey! algebra that is associated

with the CCRs for four degrees of freedom,

[qu’pv] = o~ i gu'\) . (3.1)

This example Is particularly relevant to the present discussion as
we shall find that various features that we found dlsturbing in The
Wey!l algebra formulation of the Gupta-Bleuler and Fermi methods, are
also present In a Weyl algebra formulation of this algebra of opera-

tors.,

3,1 The Abstract Wey! Algebra

We shall discuss first of all the usual Schrodinger representa-

+ion of (3.1),

Definitlon 3.1 (Schrodinger Representation)

Consider the Hilbert space, L?(Ry,d*x), consisting of equive-
lence classes of Lebesque square Integrable functions over Ry. Then

the Schrodinger representation of the CCRs in (3.1) is

q, fix) ~» X, f(x) ,

‘ Aaf(x)
pi t fx) - - ax.  ? i=1,2,3,
i
af(x)
p. ¢+ flx) > i — , (3.2)
0 on

on some domaln Tn L2, x s the vector (x_,Xy,xz,X3) In Ry.

Wo now consider +he operators,

-i g . .ap
U(a) = o RV

-1 g ..bq
Vip) = MWV MY, (3.3)
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Thelr action on functions In L2 wiil be

UWa) f(x) = fix + a) ,
-1 g b x
Vip) f(x) =e MV H Vex) (3.4)
The Wey! opsrator W(a,b) is then
i/2 g va,P
W(a,b) = Ua)V(p) e Y HY (3.5)

Therefore, we see that

-i/2 g _(ab “~a "b )
W(a,_b__)W(g_‘,_b_‘) = @a v v [TREAY)

W(a + a’,b+ b") . (3.6)

This is the Weyl relation. The symplectic form on Rg for vectors

¢ = (a,b) Is therefore

Bl(c,c”) =g (ab

w au ) bv) . 3.7

v u
This form 1s Invarlant under the transformations ¢ + c¢” defined

by ¢’ = (Aa,Ab) (3.8)

where A Is a Lorentz transformation. These symplectic transformations

induce automorphisms of the algebra which will be given by
W(a,b) + W*(a,b) = W(Aa,Ab) . (3.9

In terms of the operators q and p thess automorphisms are

q -+ A*1q and p -+ A‘Ip ’ (3.10)
since
IvPu Py = 3Py
and
guvb; v = guvbuqs

Hence we can use definition 2.6 to define the abstract Weyl
algebra of CCRs In (3.1). In this case M Is Rg and In a symplectic
basls the symplectic form for the vectors ¢ = (a,b) and ¢ = (2°,b")

1s given by (3.7).
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I+ 1s well recognised that the Weyl operators are technlcally
more convenient to handle than the unbounded operators p and q. For
the same reason it Is easler to discuss the automorphisms of p and g

given by (3.10) within the framework of Wey! algebras.

3.2 Representations of the Wey! Algebra

The Schrodinger representation defined In deflinltion (3.1) Is
obviously a representation of the Weyl algebra. We need only
consider the Schrodinger representation to study representations
of the algebra that are Weyl systems because of the von Neumann
result (theorem 2.3).

We shall calculate the generating functional for the state on

the Weyl algebra that generates the Schrodinger representation.

it ts
p(W(a,b)) = (QO,W(gJQ)QO) . (3.11)
In the Schrodlinger representation we will take the vacuum to be
2
Qo(xo,xl,xz,x3) = %-e_%zuxu . (3.12)
W(Q,Q)QO _ ;_e-igw(xu%au)bv e-iz(xu+au)2 '
and
(QO,W(QJQ)QO)
1 J o e-—lgw(xu+%au)bv e—gzu<<xu+au)2+xu2> '
n2

We change the variables 1o Yy = %y + %au +o perform this Integration.

1

We obtaln -3 (a 24p 2)
(0_,W(a,b)a.) = o L (3.13)

This result Is hardly surprising. 1+ Is another way of looking at

+he von Neumann uniqueness theorem. 1f we put

d,(a,b) = @ Wan) (3.14)
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then dp(ng) is the only normalised product measure Invariant under
the group of all unitary transformations on Rg. In fact, von Neumann
used this measure in the orlginal proof of his result.

Consider the effect of automorphisms of the algebra on the
generating functional. The automorphism of the algebra In which
X - A_1x, is induced by the transformation (a,b) + (Aa,Ab) in the
parameter spacc, Therefore, under these automorphisms o + p” will Be
given by

p"(W(a,b))

o (W(Aa,Ab))

-4Z_(Aa) 2+(Ab) 2
=g H "M M ,

# o(W(a,b)) .

An analogous slituation occurred with the generating functional
for the Ferml method. It was also found not fo be Invariant under
transformations fnduced by automorphisms of the algebra. The analogy
s not complete, however, as the representation of the Weyl algebra
gensrated by the new generating functional In this case is necessarily
unttarily squivalent to the old representation by the von Neumann
uniqueness theorem.

The new generating functional Is the new vacuum to new vacuum

expectation value of the Weyl operator, i.e.
p”(W(a,b)) = (Qé,W(ng)Qé) .
The vacuum is not invariant under transformations induced by auto-

morphismsof the algebra. We have that 96 = UQO. Explicitly, In

+he Schrodinger representation

1

Q (Aﬂlx) ,

0 =1,
-1r (A %)
=el-l 1-!’

02 (x)
o)

Ug (x) .
On——
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Consider the relatlonship between the operators X0 Py and the
annlhifation and creation operators a Ev . In the Schrodinger

representation with vacuum defined In (3.12) we have that

. 3
a, = " (xu + 5;; ),
= 1 3
a ==——{x ~-—). (3.15)
U /7 H Bxu

By combining (3.15) and (3.2) we obtain

L - = L :
Tly= (qo lpo) y o8 = Ji'(qi + npi) ,

(2]
i]

it

a

L S B -
= (9, +Ip,) , 3 = e (g, = Ipy), 1=1,2,3, (3.16)

]

In the Schradlnger representation. However, because of the von Neumann
uniqueness theorem, we must always be able to flnd operators which
satisfy (3.16) in any Wey! system for the algebra.

These annlhilation and creatton operators transform as a palr
of four vectors under automorphisms of tho algebra given by (3.10).
The two sets of four vectors from (3.16) will be (ao,éi) and (Eo,ai).
I'f wo think of the representation of the CCRs as coming from annihila-
tion and creation operators from (3,16) then we would say that because
annihilation and creation operators are mixed by Lorentz transforma-
tlons the vacuum will not be invariant and hence the generating
functional for the representation wiil not be Invariant,

Another way of regarding thlis analysis is to start with four
sets of annihilation and creation cperators and to show that the only
possible way of combining annihilation and creation operators to form
two four vectors is with one vector (30:5‘) and the other as (So,at).
I+ Is Impossible to malntaln the commutation relations and the
adJointness condition under automorphlsms of the algebra by Lorentz

+ransformations with any other combinations.
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We would then argue that tf we require that the operators
Au“qv and Aﬁvpv generate unITaky groups of transformations for all
Lorentz transformations A, then we must choose the representation
glven by (3.16). Thls line of argument is only a restatement of the
von Neumann uniqueness theorem.

From (3.16) we note the difference between the representation
of Po and pI in terms of annihitation and creation operators. We
recall, once again Dirac's remark(7) concerning the Ferm! method,

We see that in the Fermi method the CCRs are satisfied by precisely
the same representation of the field operators in fterms of annthlla-
tlon and creation operators. Dirac's remark was that the reality
condition for the field was satisfied by reversing the rotes of the
annlhllation and creatlion operators In the theory for the zero com-
ponent of the field. We often think of Fock space as being bullt up
of states formed by creation operators acting on a vacuum state. |+
would therefore be more appropriate to think that the roles of the
annthilation and creatlion operators are maintained and that i+ Is
the representation of the fleld operator that 1s different so that
the commutation relations can be satisfled.

In this context, the non unitary Implementability of Lorentz
transformations in the Ferml representation is yet another example
of the exlistence of Inequivalent represen+a+lons(41) of the annthila-
tion and creation operators for an Infinite number of degress of
freedom.

The representation of the Weyl algebra that Is analogous to the
Gupta-Bleuler method can also be constructed.

The representation of the operators 9% and P fn terms of

annihliation and creation operators Is
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-l-(a -7

vz °

9 = (3.17)

On the Hilbert space Lz(Rq,d“x) the operators ¢an be explicitly

given by
C]‘)'[X y P+ Ao
o} o) 0 on
q, + x > ] (3.18)
s P Py B, :
Then

a » L (x + —) ,
o

3o ¥

a, > —L-(x. + —§~) .
| | X

V3 8%,

The vacuum state in this representation wil!| therefore be

- x 2
Tt

Q (x) = l-e
o = ™

In this representation of the Wey! algebra the vacuum will be Invariant

. \Y]
under automorphisms of the algebra gliven by q, - Au Ayr Py Au Py,
since from
2 . - (ix )2
zuxu E‘x‘ (:xo) ,
we have
-ia p
oo -
e f{x) = f(xo - |ao,x1,x2,X3) ,
-1b X boxo
e °°%fw) =0 £(x) . (3.19)
Hence the representation of the Weyl operators W(a,b) will be
~i/2 g _ab. (b x+1E b x,)
W(a,b)f(x) = e WY reTo flx, = la Xy
+ ay,xs + az,Xs + az) . (3.20)

This represontation Is not unitary. The "Gupta-Bleuler" representa-
tion Is not a Wey! system, [.e. the Weyl operators are not mapped

onto unitary operators on L2(Ry,d*x) .
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In discussions of the Gupta-Bleuler method an Indefinite metric
is used from the outset. The Indefinlte metric, however, does not
arise from the mathematics of the representation of the abstract
Weyl aigebra. It comes about as part of the prescription for obtain-

ing a representation of the factor algebra.

3.3 Factor Algebras of tha Weyl Algsbra

The representatiors of the Euclldean group, E(2), contained in
the finite dimensional representations of the Lorentz group are
lndecomposable(16). I we choose E; = Ny = Mg, Es = Np + My for
the generators of E(2) where M‘ and NI are the generators of the

pure rotations and boosts respectively, then explicitly on Rg we

shall have
E] O E5 © M3 O
Ey = ( 1 ) » Eg = ( 2 ) » M3 = ( 3 ) ’
0 Ef 0 E; 0 M3
0 0 - 1 0 0 0 O / 0O I 0 O
. 0 0 - 0 - | . - 0 O
E{ = s E3 = 0 i y M3 = 0
10 0 0 1 00 0
1o 0 o 1 ooo}
(3.21)

Let N, T and S be subspaces of Rg of vectors of the form
(a1,a2,a,a,by,bs,b,b), €0,0,a,2,0,0,b,b) and (ay,a3,0,0,b1,b2,0,0)
respectively. Then on vectors in the subspace T, the generators of
E(2) are zero. Hence the group E(2) acts trivially on T. The sub-
space N Is also Invariant under E(2) but S Is not. A simllar situa-
tion occurred in the parameter space of the Weyl algebra of the
potentials.

We define the algebras ¢/, / and @ to be the set of
elemeonts of “W” that are finite combinations of W(a,b) or thelr

fimits in the weak topology of a Weyl system for the algebra with
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(a,b) tn N, T and S respectively. Then N 1s the closure in the
weak topology of £ @7/ . The algebras A and “ are Invariant

under automorphisms of 4 i{nduced by the group E{(2) in Rg:
Wla,b) + W"(a,b) = W(Ga,Gb) . (3.22)

) \ 1
Just as before, we can set up the factor algebra %%‘ where Vf is the
kernel of the homomorphism, 7, in which " + & . Since A @Y
is dense in oI” in the topology of (R (M,B) the homomorphism is well

defined as the mapping & %57 - @ .

For example, under this mappling,

W(al,az'a,a,blybl'z,b,b) - W(al,az,o,o,bl,bz,0,0) . (3.23)

]
The factor algebra, "# , Is then Invariant under automorphisms

tnduced by E{(2) transformations In the parameter space.
We shall conslder once agaln the Schrddinger representation of
the Weyl algebra given in definition (3.1). Any reallzation of a
Hitbart space as a space of functions over a locally compact space
can be considered as a representation of an abstract Hilbert space
In the form of a dlirect integral. Hence we can think of the
Schrodinger representation as the direct Integral with respect to
the Lebesque measure of one dimenslonal Hiibert spaces assigned to
each polint on the real line. Furthermore, to each direct Integral
of Hllbert spaces there corresponds a commutative weakly closed
algebra of bounded |Inear operators containing the ldentity operaTor(42).
The algebra that corresponds to the direct integral decomposition for
the Schrodinger representation 1s the weakly closed algebra generated
by W(o,b). Alternatively, It Is a representation of this algebra
by essentially bounded measurable functions over the operators Gy
Suppose that we decompose a Hflbert space Into a direct integral

3, = [ dA éulh. Then, If R Is the algebra corresponding to the
T
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direct Integral decomposition, any operator on 9C that commutes
with all elements of R is reducible to "dlagonal® form, i.e.
T={T)} .

We can apply these conslderations to the subalgebras cnf)and

ﬁf . Since o is a commutative weakly closed algebra, there will

exist a direct Integral decomposition of the Hilbert space with
respect to ff . Also, since all the elements of NP commute with
all the elements of ff we can reduce elements of dV" to ""diagonal
form".

We shall construct this direct decomposition explicitly.

I f
-ig_fa p +b q ]
W(a,b) = ¢ HVE Y Y

Is In 57 then

g *bq,) =2, - py)+blg, ~a3),

uv(aupv uv

3 3
la (5ot ax3)+ blx, = X3) -

Therefore, we seek a unlitary mapping of these operators such that

2 9 \
s(-é;;+ —5;3—) + Ay and (x - x1) g . (3.24)

This Is achieved with the unitary mapplng
U
f{x_sX1,X2,X3) — g(X1,X2,A1,32) ,

where

e[u)q/z f(%(u + AZ)’xl’xz,f{U ")»2)) .

g(xy,X2,21,A2) ='J— J du
v
(3,25)

For (a,b) in N with components (aj,ap,a,a,by,bs,b,b)

W(Q;D_) Q(X1 ;XZ))‘I l)‘2)

-1 (aXxytbhy) T (byxy+boxp+i(ajbytagbs))
= 8 e g(xy + ag,x; + az,AI,Az) .

(3.26)
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We write

W = [ A dhg” Ayt Ap” .

We have therefore represented @€ = L2(R,,d%x) as a direct integral
f ol rd f

of spaces “A;” Ay = (2(Ry,d% ). All the elements in i are in

"diagonal” form, T.e. 1f Te V* then T = (T(h"0,"} . 1fg is

‘ /)P - -~ - 2

n @ then g = {gA1” Ay Iwhere gA1”"A, " Ts the component of g in

’J.:?)C;\]_‘xz’o

Let the mapping IIA;” A5° be defined by

where T(X17,X,°) Is an operator acting on Q{kl"kz’. Then the
oparators T(X1%,137) are an irreducible representation of +he algebra
N . In this decomposition the fact that JI° can be considersd as
the direct product of the algebras £ and {_71 is clearly evident.
The reducible representation of c/vj can be considered to be con-
structed as a direct Integral of the direct product of Irreducible
reprasentations of ?é and f/ .

The mapping T + T(0,0) is a mapping of a representation of N
to a representation of the factor algebra %Yj . This follows from
the way In which the factor aigebra f!g‘f/rwas defined. I+ was defined
from a homomorphism of N onto the subalgebra & . The elements
of \_r! are the equivalence classes of elements In A that are mapped
onto a gliven element of S By inspection, the mapping T - T(0,0)
is a homomorphism of a representation of N > representation of &

ol

and hence a representation of -3- .
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Although the operators T(0,0) act only on £¥Zoo we can ldentlfy
them with operators acting on 8¢ in the following way. The opera-
tors T(0,0) are ah irreducible representation of the algebra 2 .

We therefore tdentify the operator T(0,0) with an element T which
belongs to the subalgebra Q&. Explicitly, consider the element
W(a,b) given in (3.26). éhioo = L2(Ry,d"x} and under +he mapping

T+ T(0,0), W(a,b) + W(a,b)(0,0), where

W(2,0) (0,00g(xy,xp) = ef P1X1¥baxabilarbitagba) o ooy

(3.27)
Therefore, we can Tdentify W(a,b)(0,0) with W(a”,b”) acting on %
with (a;,bs) = (ay,a2,0,0,b;,b5,0,0). Tha operators are of the
same form in bo+h'9{«and 2&00' However, while 1t does not matter
whether we think of the oparators of the factor algebra %g?as act-
Ing on elther W or ”5%%0 we cannot identify vectors in éuloo and
ELZ . The vectors In ngo are not normalisable with respect to the
measure in 94.. The function g(xj,xa) can be an element of 11200
but I+ will certainly not be an element of g¥u It witl not be

normalisable with respect to the measure d*x.

Suppose that we solve the eigenvalue problem

(pO - p3)f Q

(3.28)
0 , for functions In 9@.

i

(qO - qS)f'

Then the operators p, - P3 and 9, ~ 43 will be zero on the

golufion of (3.28). Therefore, T will be mapped on the subalgebra
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of T which Is Isomorphic to T(0,0), The actual form of +he apera~
tors will be identical. The difference between them is that they

act on different Hllbert spaces. Explicitly, the set of solutions

of (3,28) will be

glxy,%x9)8(X1)6(A,) where g 1s defined in (3.25).

These vectors are not normalisable and hence do not lle in
3 . However, we can ldentify them with vectors in (ngo by
simply dropping the § functions. We then would interpret the
operators as the operators T(0,0) rather than the subalgebra of T
wlth which they are formally identical.

The operators Py = P3 and g, - ds are the analogues of the
supplementary condltion operators In the Fermi method. The functions
a{xy,x2)8(X1)8(X;) are therefore the analogues of the Ferml physical
states. Thus, the difficulty of the nonnormalisability of the Fermi
physical states can be overcome by re-interpreting them as states In
Qﬁ,oo. We also obtain a representation of the factor algebra %?be
this method and it is this algebra that Is the algebra of the physical
photons.

Alternatively, we can remaln In the Hilbert space Qﬂ, and Just
map the operators T onto the subalgebra of T which is formally

identical to T(0,0).
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CHAPTER FOUR

WEYL ALGEBRAS, FOUR-VECTOR AUTOMORPHISMS, THE SCHRODINGER
REPRESENTATION AND AN INFINITE NUMBER OF DEGREES OF FREEDOM

The principle alm of this chapter Is to construct the
Schrodinger representation for the Ferml method. The expressions
for t+he Weyl operators that we shall give are natural generalisa-
tions of the expressions obtalned for four degrees of freedom.

We shall also discuss the example of the CCRs for an infinite
number of four vector operators,

k k%
[qu,pv] =~ Gkk' Iy 4.1)

4.1 QUANTUM FIELDS AND ANALYSIS IN FUNCTION SPACE

We recall that the elements of the representation space, K,
for the Schrodinger representation of a quantum mechanical system
of n degrees of freedom are equivalence classes of functions over
Rn that are square Integrable with respect to the Lebesgue measure.
The canonlcal operators, 9> (k=1,...,n) are multiplicative operators
in this representation. Each point of Rn is therefore a set of
eigenvalues for the operators, 9 and the elements of K are thus
functions over the spectrum of these operators.

The representation space for the Schrodinger representation of
a quantum field similarly consists of functlions deflned over the
spectrum of the field operator at a given time. A fisld has an

infinite number of degrees of freedom and hence each point In the
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spactrum of the field operator will be a vector in some infinite
diménsiona| linear space V. In contrast to the finlte dimensional
case, the measure on V used for tha Schrodinger representation is
not translationally Invariant.

The general theory of analysis over infinite dimensional
spaces is now a sufficiently well developed subject for the con-
ciusion to be drawn that the theory of the franslationally in-
variant measure, 1.e. the Lebesque measurs, cannot be extended to
infinite dimensional spaces. Thus the use of non-translationally
Invariant measures for the Schrodinger representation of a fleld
Is Inevitable.

The general properties of the measures that are used for the
Schrodinger representation are much weaker than those of tha
Lebesque measure. They will also depend on the precise mathematica!
structure of V.

von Neumann(43)

was the flirst to define a representation space
for the Schrodinger representation. He showed how to construct a
completely additive Gaussian measurs on the adjolnt of a pre-Hilbert
space, The result, however, was not published until 1961 and hence
the flrst mathematically complete account to appear in the |itera-

(44). In his formulation, the Infinite dimensional

ture is Segal's
space is a real Hilbert space. The Schradlnger representation can
also be set up on functions defined on the adjoint space of a nuclear

space. For an account of the mathematical properties of nuclear
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(45)
. In

spaces and their adjoints see Gel'fand and Vilenkin
practice, V Is most frequently chosen to be the adjoint space to
a real Schwartz space, |.e. the space of tempered distributions.
We shall now briefly discuss some mathematical aspects of
infini+e dimensional spaces that are relevant to the Schrddinger
representation. Firstly, we shall show how the Borel sets are
constructed for a certaln class of infinlte dimensional spaces
and then we shall give the definitions for the measures that will
be used In the Schrddinger representation. Finally, we show how
Integration on a Hilbert space can be defined.
Suppose that V” Is the adjoint space to a Iinear topological
space V. Then the Borel sets on V” are constructed Ih the follow-

(45)

ing way First of all the cylinder sets are constructed.

Definition 4.1 (Cylinder Sets)

Let F be a finlte dimensional subspace of V and F° the sub-
space of V* consisting of those elements, f, of V” for which
f(v) = 0 for all v in F. We decompose V” Intc cosets by putting

functionals Into +he same coset 1 thair difference lles In FO. A

-

linear mapping, V* =+ 25-, Is defined by mapping each functional +o
F.‘

+he coset which contalns it. |f B is a subsat of !B-Then the set
F

of elements of V* that are mapped Into elements of B by the mapping

v +'!é-ls called a cylinder set A with base B and generating sub-
F

space F°,
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We shall only be considering locally convex topological spaces

»

for which Ma-ls the adjoint of F. Also, the base B will be a Borel
F .
set.

Definltion 4.2 (Borel Cylinder Set)

Let (vl,...,vn) be a baslis for a finlte dimensional subspace
F of V. Then if B ls a Borel set In Rn’ the set of elements, f,

of V* that are mapped to points of Rn e B under the mappling,
f - (f(vl),f(vz),...,f(vn)) s

is called a Borel cylinder set based on F. (A full dlscussion
of the relationship between this definftion and definition 4.1 can

(45)‘)

be found In Gel'fand and Vilenkin
For the special case in which V Is a real Hllbert space, V
and V” can be identifled. The cylinder sets can then be defined

In the following way.

Definition 4.3 (Cylinder Sets In a Hilbert Space)

Suppose that P Is a finlte dimensional projection and B a
Borel set In the range of P. Than the subsat of the real Hilbert
space, H, consisting of all elements of H with projection In B
Is a cylinder set.

Thus the cylinder sets of a Hilbert space are squivalent +to
the tame subsets, Tntroduced by Segal(44).

The Borel cylinder sets form a ring and hence generate an

g~ring of sets. This ring is defined as the smallest class of
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sets which contalns the Borel cylinder sots and is closed under the
operations of countable union and complementation. The members of
this &-ring are the Borel sets in V-.

The most useful measures on inflinlte dimensional space are
those which are reasonably behaved on tho Borel sets. The cylindet
set measures, providing that they also satisfy mild continuity con-

ditions, are examples of such measures.

Definition 4.4 (Cylinder Set Measure)

A cylinder set measure In the space V” Is a function, u(B),
dofined on the family of all Borel cyllinder sets, B, such that

(1Y o0<u(B)<1 for all B.

(2) w(v7y =1

{(3) 1f B ls the unlon of a sequence By,Bs,... of non-inter-

secting Borel cylinder sets based on the subspace, F, then

W = § oue) .
n=1

For a Hilbert space, the "weak distribution" Introduced by

(44)

Segal is an equlvalent notion to the cylinder set measure.

We shall now conslder the Measures, P, Induced 1n !B-by
F’

cylinder set measures, u, In V’ . A cylinder set measure Induces
a measure on the Borel sets in every factor space in the following

way. If X Is a Borel set in M6~+hen we take the Borel cylinder
F
set, Z, based on F and set

pF(X) = u(Z) . (4.2)
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Definition 4.5 (Compatibility Condltion)

Suppose that {pF} Is a system of Bore! set measures in the

-

Vv
factor spaces e Then these measure are said to be compatible 1f

F
P = pa (T (x0) (4.3)
for v Borel set yo -
ery Borel set, X, in 5 Wwhenever Fy C Fp where T Is the
F
. vﬂ V)
natural mapping of ~--(-)--om“o -
Fa F1

»

The measures, Pp» ON the factor spaces, ME" induced by the
F'

cylinder set measure, u, in V” by (4.2) are compatible,

Conversely, the compatibility of measures on the factor spaces,

!%; » Is sufficlent to ensure the existence of a cylinder set
F

measure on V-7,

Theorem 4.6(45)

£ bF} Is a system of regular, In the sense of Caratheodory,

normalised positive measures In the factor spaces, ia', satisfylng
the compatibility condition (definition 4.5), then

w(Z) = pp(X)
ls a cylinder set measure in V~.

This theorem gives a practical method for constructing

cyl Inder set measures.
The measures used for the Schrodinger representation are
cyl inder set measures, They can be refated to certain measures over

finite dimensional spaces in the following way.
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We first rocall the definitions of equivalence and quasi-

Invariance of measures from measure thaory on finite~dimensional

spaces.

Definition 4.7 (Equivalence of Measures)

Two measures are equivalent or alternatively, mutually

absolutely continuous, 1f they have the same family of null sets.

Definition 4.8 (Quasi-invariance of Measures)

Let V be a linear topological space on which a measure, u,
is defined. Then u Is sald to be quasi~invariant 1f it has the
propaerty that every translate of a set, X, of u-measure zero is

also a set of u-measure zero. That is

u(X) = 0 =uly + X) =0
for all y in V,

Note that these definitions apply without modification to
infini+> dimensional spaces.

Now it is not necessary to use the Lebesque measure to set
up a representation of the CCRs for a finite number of degrees of
freedom on functions over the spectrum of the operators qg. We
can use any regular quasi-invariant measure. The Hilbert space
then consists of square !ntegrable functions with respect to that
measure,

By the von Neumann unlquensss theorem (theorem 2.3) all these

representations are unttarily equivalent. In this context this
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theorem Is equivalent to the result implicit In Plessner's work(46)

that all regular quasi-invarlant measures are equivalant to the
Lebesgue measure.

The measures used for the Schrodinger representation of a fleld
are Infinite dimensional analogues of those quasi-invariant measures.
The existence of distinct equivalence classes of these measures on
Infintte dimensional spaces is consistent with The‘exis+ence of
Inequivalent representations of the CCRs.

Tho appropriate measures for the Schrodinger representation on
functions are defined on the adjoint space, 4°, of a nuclear space,
¢, are the almost quasi-Tnvariant measures.

(45)

Deflinition 4.9 (Almost Quasi-lInvariant Measure)

A measure, u, on the conjugate space, ¢°, of the nuclear space,
¢, Is almost quasi-invariant if 11 has the property that w(y + X) = 0
for every element ¥ £ ¢ (we have Identiflied elements of ¢ with
olements of ¢°) and every set X such that u(X) = 0,

This definition colnclides with the definition of quasi-
Invariant measures for a Hilbert space.

For our application, the measures will also be Gausslan.

Definltion 4,104

Let V be a locally convex linear topological space and B(u,v}
a non-degenerate, continuous scalar product. We deflne the Gaussian
measure onh the cylinder sets in the following way. Let F be a finite

dimensional subspace of V and F° the subspace of V” of slements, f,
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of V° for which f(v) =0, |fY is a subset of F then

2
v = (9 J e PV,
- Y

where dv is the Lebasque measure in F correspgdeng to the scalar
&nd a=dim.

product, B(v,v), Is a Gaussian measure on 5{ Since F and M-are

rO

isomorphic there will correspond to the measure, Ve In F the

measure, v;, in MS-. Now the system of measures, {vﬁ}, can be
F

shown to be compatible and hence from theorem 4.5 are Induced by a
measure on the cylinder sets in V7. This measure Is the Gaussian
measure.

When V is a Hilbert space, H, we can define a Gaussian measure
on the cylinder sets of H by the scalar product. For the cylinder
set, A, dofined as the Inverse Image of Borel set, B, In the range

of a finlte dimensional prolection the measure will be given by

4

N

1

n(A) = &ﬂ j oV Vyy
B

where (v,v) Is the scalar product in the finite dimensional space
Induccd by the produet Tn H and dv Is the corresponding Lebesgue
measure.

We shall now Indicate how a theory of Integration over in-
finlte dimensional real Hilbert spaces can be formulated. The
approach that we shall give closely follows Gross(47).

The fdea on which the formulation is based Is to assoclate
a probabillty space (X,m) with the Hilbert space in an invariant

(44)
fashion. This association was first suggested by Segal .
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For example, 1f H is the square Integrahle real functions on ths
Interval (2,1) then the probabllity space may ba taken to be
Wiener space.

Firstly, the cylinder functions are defined.

Definition 4.1 (cylinder Function

A function on H Is a cylinder furction If f(x) = f(Px) where
P is a finite dimensional projection on H. The function, f, is
then sald to be based on the rangs of P.

Lot ¥ be the algebra of bounded, continuous, complex-valued
cylinder functions on H that are measurable with respect to some
cylinder set measure or the uniform !imit of such functions. With
the sup norm this algebra is a comutative C* algebra. Also, the
Iintegral of the cylinder functions on H with respect to the
Gausslan measure defined by the scalar product is a linear
functlional., Since this !inear functional is continuous in the
sup norm [t can be extended to all of 4 as a continuous |lnear
functional.

Thus the algebra,#ﬁ , Is isomorphic to C(X) where X Is a
compact Hausdorff space. |f we denote the integral of F by 1(f)
then since | Is a posltive linear functional on < 11 1s represen-

tod as a countable addlitive measure on X. We have that
l(f)=J ¥ an
X

where f ~ ¥ denotes the isomorphism batween 5 and C(X).
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I+ can be shown that this Isomorphism Is completety deter-
mined by the map on the linear functionals thus establishing
contact with Segal’s original suggestion for assoclating a
Hilbert space with a measure space through tinear mappings of
elements of the Hilbert space onto eauivalence classes of functions
detined on a probability space. Thus Friedrich's space(48) is
Just a concrete realization of (X,m).

We can therefore Identify L2(H) with L2(X,m). It should be

noted that not all elements of L2(H) can be renresented as square

integrable functionals over H but onily the limlt of them.

4.2 The Schrodinger Representation for the Farml Method

In section 2.1 we discussed how a complex space Is associated
with a space of real solutions of the wave equation. We found
that for the Ferm! method the pre-Hilbert space consisted of both
positive enoray and negative energy solutions.

For the Fermi method, the compliex solutions of the wave
aquations 2.40 assocliated with the rea! solutions are glven by
2.49, We shall parametrize this complex space in an analogous
fashion to the parahe+riza+lon of the spacs of scalar wave functions
given by 2.28.

I f the Cauchy data for the real sofution, §, of 2.40 at some
fixed time, t_, Is denoted by (¢u(§), Qu(gj) then the complex
wave functlon assoclated with the real solution, ¢, will he given

by, #, where § has components, 2, satistying
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‘. - L]
2,60 + (- ¥2)F ¢ 6o+ 1= ¥ § o)

' (4,4)
. L g2y il o2ytE g
3, 0x) > (- 92) ¢o(5) (= v2) ¢O(5)
The scalar product is then
o= I o (x) ¥ : ,
(3,9 =03 J dix e () ¥ () (4.5)

Hence the Hilbert space, H, assoclated with the real solutions Is
a space of complex-valued functions over Rg.

The Schrodinger representation can now be set up on L2(H",du)
where H” is the real subspace of H. H” Is therefore related to
the collection of soluttons with &i(ﬁ) = 0 at +O. The measure,

u, Is a Gaussian cylinder set measure obtained from the scalar
product In H”,

Suppose that A Is the cylinder set consisting of all x in H”

such that P(x) is In B, where P Is a finite dimensional projection

and B is a Borel set In the range of P. Then
n

2 )2
w(n) = (9 oV 4y (4.6)
g

where dv denotes the Lebesgue meoasure on the range of P and n is
the dimensionsd of the range.

A cylinder function Is called a polynomial if it Is a poly-
nomial of linear functionals. Tha polynomials are dense In

(47 'y Therefors, the action

L2(H”,du). (See, for examplo, Gross
of the canonical operators on elements of L2(H”,du) will be defined

once It is given for the polynomials.
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If £ Is & polynomial in L2(H",u) then +he operators, U(yy)

and V(yp), are defined by

Ulp): F@) » Fly + @) o P2 WL)

(4.7)
Vipp): () » fd) o W2
where
<o, > = I- d3x (Zi=1,3 ¥y (0 by (0 - 11)0(35_) b, (X)) .
Then 1f i
5 <1P'2s'l}i1>
Wopp ) = Ulyy) Vi) o2 (4.8)
we can check that
W(‘WI:“’Z) W(IPI,J‘VZJ) = |
~5 (<1, ">y 7 gp>)
W(l#l + ul]’,\pz + %’.) e . (4.9

Now 1f 4 and W" are real solutions with components wu and wu‘
which have Cauchy data at some fixed time, TO,

&

= (. U2y~
wu(g_- (~ V%) :pm(g_)
(4.1
. Celo2 !
wu(g_) = (-9%<) wZU(gg)
then
<Py, W >~ <*1”,q,2> = <yl,,;p‘> - <.i;,q;"> R
Hence if we define
\;I(\p) W((- VZ)’\‘ pix), (- Vz)'* \i:(_)i)) (4.11)
4.9 can be equlvalently written as
. ) 7 Bly,y)
Wigd Whp”) = W + 97) o (4.12)

(B(y,¥*) is defined in 2.44).
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We have therefore verified that the Weyl relation is satlisfled
and hence that the representation is indeed a representation of the
Wey!l algebra of the potentials.

For the Weyl algebra for four degress of fresdom, we decom-
posed the Hilbert space L2(R,,d*x) into a direct Integral with
respect to an Invariant commutative subalgebra. We can do the
same for L2(H”,du). The subalgebra s the algebra, Cj, given in
section 2,3. Then we can reduce the elements of e¥also des~
cribed In section 2.3) to "diagonal® form.

We proceed in precisely the same way as we did in chapter 3,
Wo must first, however, obtain the transverse components. Thls
can caslly be done for each real solution, @, In d’by using the
Halmholtz decomposition for the three-vector part of the vector,

é, In H associated with ¢ by (4.4), Also, by using the Helmholtz

{49)

decomposition In the form given by Moses we can decompose

Into vectors §I1, §L and § that are orthogonal in H.
From Moses, we introduce the vectors, x%(gjg), where,

32 |

X x|k =& e Q, (k) A=1,L
with
Q, (k) =~ k/[kl
s [ralkn + 1hk2) kolky + 1AKp) 1 Ky + ng}
Qi =~ [ KK T hg) " 1 TR F Ry A

for A =%1, (4.12)
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Then the three-vector components of tha vectors §11 and @L will

be glven by

{ 43k ¥, (x]10) g, (k)

Rl
>

e
gl
i

= J d*k x, x|k} g (k) (4.13)

where

»
g, (k) = J Oy, xlk) » 20x) .

The time component of these vectors Is zero. The onlv non zero
component of the vector, @o, is the time component which will ba
given by

- =0 . (4.14)

Now we can write the operators defined in 4.7 In the form

1<P >
Uiy =
¥ (4,15)
Vig) = o Q8>
The proof is given In Segal(44).
Wea write
P = PLOD + PL G+ Pttt - PO00)
(4.16)
Q4> = 016D + 0 (L )+ oheh) -0y .
We therefore will have on some domain
QLEe): TR » (4,0]) Fap)
Qo) Fp = 0" @) (4.17)

QO (#): ) » (6,4°) £0¢) .
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Now
1 . - - -
- [QL(w) - Qo(w)] : f(d) = 5 (w,¢L ¢O) f ()

1 . = L
—-{QL(zp) + Qo(xp)] 2 fld) = v (q;,q)L + ¢O) i) .

2
Thus under the unltary transformation, Uy, In L2(H”) defined by

the change of variables

¢A = ':;__; ((bl_ - ¢O)
- L
¢B = VE_(¢L + ¢o) (4.18)
wa will have
e - 1 o)
/E'[QL(w) Oo(w)j + QA(w)
1
— 10 () + 0_(YI + Q. ()
VA ° B (4.19)
L - 1
y [PL(W) Po(w), + PA(w)
1
;E;[PL(w) + P W]+ Pa(y) .
Now we can symbollcally write
P y) as - 1 oo+ 1 Q ()
L)@ 50, () L
and (4.20)
e
F’O(lb) as i aoo(w) -1 Qo(lp) ’
+hen under the change of variables 4.18
PA(w) ¥ -] 3Q3<w) + | QB(w)
(4.21)

9
PB(IP) I | W-J- ] QA(IIJ) .
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(44)

Consider now the Wiener transformation, U,, on L2(H") (see Segal )

by which

0gle) > - E i 3_5.3-(‘5—5-4- i chﬂ
and (4.22)
- -5-5-;—@—)-—+ P 0gle) » 0 () .
Thus 1f we tet U = Uyly then the operators In At be'dlagonal ised”,
The situation Is completely analogous to that discussed In chapter 3.
We have a direct intogral decomposition of L2(H”,dn) as before. The
discussion of the direct Integral decomposition of LZ(Ry,d%x) applles

in this case.

4,3 A Reallzation of the CCRs for an Infinite Number of Degrees of
Freadom

We shall construct a representation of the CCRs

kK k- Skk'

u* Py I == S , k=1,2,.,. (4.23)

f{q

using a Fermi type representation,

The ropresentation space will be constructed from a sector of
the infinite tensor product space, H‘zlﬁb Hy ,(50) where H, 1s the
Hilbert space of compiex~valued functions over Ry that are square

Integrable with respect to the Gausslan measure,

L6512+ ) 24 5 24 e 21

1 k .k , k , Kk
duK = ;;-e dxo dxy dx; dxg
Let A be the vacuum vector in Hk' In the realization of the

CCRs that we shall give 3, will be the function identically 1. The

o

tensor product a =1 ® By determines ‘the complete tensor product
i=1

space In the following way.
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Suppose that bk Is In Hk“ Then we can form the tensor products,
b = (I & bk) (I & ak) . (4.24)
k=1 k=n+1

The scalar product between such tensor products is +then deflned
to be .
{b,b") = Hk(bk’bﬂ)‘

Only a finite number of factors will differ from unity. With
respect to this scalar product the set of tensor products glvaen by
(4.24) 1s an Incomplete Hilbert space., We then complete i+ and
denote the result as the infinite dlirect product of (Hk”ak)’

In this case, the tensor products wil! just be square integ-
rable functions that only depend on & finlte numbaer of variables xﬁ.

The vacuum state of H Is the function which is [dentically 1.
Henca on some suitable domain the annihllation operators, ak, will

be represented by

a +*o_ . (4.25)

Tha creation cperators are the adjoint operators of at and hence

will be given by

g, L2y dﬁ'xt . (4.26)

To satisfy the CCRs, (4.23), we use a Fermi construction.

We put _
qk = -L-(ak + a

vz

k

i .

-

= - ~— (a

] 3
P
/7 o’
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ke LR ogky o (L2l L WKk
po—fé(ao ao)-r(axk N (4,27)
O

Consider now the automorphism of the algebra induced by a

Lorentz boost L.

Let

then

one.

Lo
Ty = by 9y
(4.28)
Jo v
Py =t Py
[ coshu =-sinhu O O]
v ~-sinh u coshu 0 O
L® = (4.29)
s 0 0 10
L 0 0 0 1]
Sk k k
9 = cosh u Xo = slnh u x3
q‘§ = - sinh u xg + cosh u x¥
p'g = 1 [%osh u [—QE-- xg] + sinh u (_QF ~ x?)]
ax axl
o
. 3 k ) k
py =~ | [%inh u (=7 - %) + cosh u (= - xl]]
X 33
0
q; = 9y PyT = Py 1=2,3 .

This representation of the CCRs s insquivalént to the original

For suppose that we try to determine the vacuum state for this

representation. The new annihilation operators will be given by
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a’g =L [?osh u —j%; + sinh u (*E%;=~ ZXT)
/2 on Xy
a’§ = -l~[%|nh u (~QE - 2 ) + cosh u —QF] (4.31)
/2 ax x|
o
I I ST T
- k 3= k
/2 IXp V2 3 X3
The solution of the equations
2 £ oSt o ) = 0 W=0,...,3 (4.32)

‘s KK k k
K k Kk k 2sinhu coshu x xy~sinh2ullx ) +(x1)?)

f(x sX1,%0,%X3) = A @

The vacuum for each Hk is therefore
2sinhu coshu xkxT sinhzu((x )2+(x 2)

u, = e
k

{u k,uk) = 1

The new vacuum is therefore u =1n{§§uk. However, Hkﬁﬁlﬁ(is hot
a vector in H. A necessary and sufficlent condition for u to lie

In H is that the product Hk(uk,ak) converges.

Now
1 K 2sinhu coshu xgxq—coshzu((x§)2+(x§)2)
(uk,ak) = ;'J dxo dxy e
- 1
cceshu °
For u # 0, Hk(uk,ak) therafore will not converge. The new repre-

sentation does not have a vacuum state. Hence it is Inequivalent

to the original one.
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From the point of view of analysls In function space we would

say that the Jacobian for the transformation of variables,

x’g = cosh u x: = sinh u x?
’ (4.33)
x’? - sinh u xg + cash v x?

is zero when k ts Infinite,

Hance we can attribute the non implementabl!ity of automorphisms
of the Weyl algebra of the potentials induced by Lorentz boosts, In
the Ferml representation to the fact that we have a system with an

infinite number of degress of freedom.
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CHAPTER FIVE

DISCUSSION AND CONCLUS [ONS

5.1 The Role of the Supplementary Condition Operators in the
Fermi Method

We shall begin by re-expressing the formallsm that has been
given for handling the Fermi method, in a manner which more
closely follows the way In which I+ was actually buflt up. |+
should be clearly evident from this reformulation that Hurs+'s(51)
treatment of the supplementary condition in quantum electrodynamics
was the source of many of the ideas that contributed +o +he develop-
ment of our approach.

The formallsm was developed mainly by finding a mathematically
rigorous presentation of the heuristic descriptions. However,
because the requirements of mathematical rigor may have obscured the
underiying motivations, a description of how the formallsm actually
developed may be helpful. In particular we would |ike to show how
the Ferml method is related to the Intultive pictures we have of
conventional fleld theory.

The starting point of our analysis was the idea that the key
to the understanding of the Fermi representation was the recognition
of the role played by the supplementary condition operators,

3 i M%)
IR
in order to restrict the algebra of operators acting on the repre-

, In The theory. The Fermi physical states were consldered

sentation space to a smaller algebra of operators (which would be
the desired physical operators) acting on a space spanned by these
states. The real point of the original approach was to eliminate
some superfluous and undesirable quantities that the formulation in

terms of vector potentials seems to entail.
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If it Is desired to restrict an wigebra of operators, A, to
act on a common eigenspace of a particular set of operators, S,
then the only operators which should be considerad are those from
the subalgebra, B, of A that commutes with S. Such a restrictlon
would be considered as a homomorphism of the subalgebra, B, into
Itself. The algebra of operators belonging to the range of this
homomorphism Is then lsomorphic to the factor algebra, %-, where
I Is the kernel of the homomorphism.

This interpretation of the mathematics of the Fermi method
was thought to be appropriate not only because It could avoid the
difflcultles of non normalisability but also because it could be
shown to be conslistent wlth considaerations of Lorentz Invarliance.
Hence the slianiflicance of the Fermi phvsical states Is not thelr
non normalisability but rather that they are the eigenstates of
the supplementary condition operators with eigenvalue zero., By
restricting the operators to these eigenstates a unitary representa-
tion of a factor algebra of operators Is obtained.

The well known difficulty Is that because the supplementary
condition operators in the Fermi reprasentation have a continuous
spectrum the eigenstates corresponding to particular eigenvatues
cannot be normalised., The Ferml physical states, therefore, cannot
belong to a subspace of the orlglnal representation space.

Now t+he original representation space can be expressed as a
direct Integral of Hilbert spacesover the spectrum of the supple-
mentary condition operators with each Hllbert space in the direct
Integral decomposition belng labelled by some point In the spectrum.
Although states in the Hilbert spaces which occur In a direct

Integral decomposition need not be normalisable with respect ta the
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original representation space nevertheless they can be considered
as sensible states In thelr own right. Hence *o resolve the prob-
tem of the non normalisahility of the Ferml physical states It was
suggested that thay be Interpreted as states in that Hilbert space
which is labelled by the elgenvalue zero In a direct integral de-
composition of the origlinal representation space, without reference
to the larger space in which they are "embedded".

tn attempting to find a mathematlicaltly rigorous formulation
for the direct Integral of spaces over the spectrum of the supple-
mentary condition operators, It would seem reasonable that we
should consider the Schrodinger reprasentation of the free fleld.
In fact this problem Is closely analogous to the problem of an
sigenstate of the position opsrator x. The algebralc formulation
of fleld theory that |s most closely associated with the Schrodinger
representation is Seqal’'s Wey! algebra formalism and hence it was
natural to use the Segal formalism and not some other algebralc
formulation. This formalism has proved sufficliently powerful for
our purposes, but we do not exclude the possibility of alternative
approaches once the consistency of the Ferm! method has been
demonstrated.

Perhaps the most Inferesting feature of the Ferml method that
was found was the result that In this representation of the algebra
of the electromagnetic fleld, automorphisms qf the algebra corres~
ponding to Poincaré ftransformations are not necessarily Implement-
able by unitary transformations. The corollary to this result is
that we cannot define an Invartant vacuum state. In all the
approaches to quantum electrodynamics that start with a vector

potential, there Is some price that has to be pald. For Gupta-Bleuler
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it is the Indefinite metric, for radliation gauge I+ is the lack of
manifest covariance, and here It is the non invariant vacuum.

An analogous situation occurs In the example given in section
4.5, In this example, suppose that A and B are observers in two
frames of reference connected by the Lorentz transformation (4.29).
If we take the observables corresponding to the observer A to be

the set, (qs,pﬁ), then those corresponding to B will be the set,

ko Tk “k
{q u,p u), with g "

Suppose that A sets up the Schrodinger representation of +the

and p‘ﬁ alven by (4,28),

CCRs given by (4.27), i.e. the Fock space representation with a
vacuum state. |f we take the representation of the observables
of B to be that given by (4.30) then the representation does not
have a vacuum state. In other words, the state that A claims to
be the vacuum state would appear to B to contain an infinite
number of particles.

Another way of looking at this situation is to cgnsider the
set of all elementary Lorentz transformations (4.28) and with sach
value of the parameter o to associate a separable Hilbert space.
Then 1f we form the dlrec+ sum of this continuous Infinity of
spaces, these elementary lLorentz transformations can be represented
by permutation operators which permute the terms in tha direct sum
according to the rules by which the correspondence has been set up.
The vector potentlals will be in block diagonal form as a direct
sum of inequivalent representations. The spatial rotations and
space~time translations will also be in the generallsed dliagonal
form and may be faken to be equivalent. Each Hilbert space In
the direct sum will be the space of states as described by an

cbsarver at rest In the appropriate frame of reference, and of
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course can carry a Fock space representation with an associated
vacuum state, which the observer could regard as the vacuum. But
this vacuum state would not be the one obtained by a Lorentz trans-
formation, because, as already mentioned, the representation of the
vector potential is not unitarily Implementable and so the vacuum
Is not Lorentz invariant.

Now although one cannot therefore deflne a mapping between
the constituent Hilbert spaces which provides a unitary repre~
sentation of the Lorentz group, nevertheless it Is possible to do
this in a small enough "subspace" namely that corresponding fo the
supplementary condition. 1in other words, no matter which repre-
sentation of the vector potential one starts with, the physical
states so obtained are all unitarily equivalent, and so may be
regarded as identical., By so ident!fying them the superstructure
of the non-separable Hilbert space may be dispensed with., [+ Is
sufficlent to start with one of the constituent (separable)
spaces, with the knowledge that the final outcome has no trace left
of its superficially non Invariant origins.

Consider again the example in section 4.3. |f we restrict
“
transformations to the E(2) subgroup as we did in chapter three,

the automorphisms of the operators, {qs,p , Induced by Lorentz

then the analogues of the supplementary condition operators are

Jk f'k .‘k -
the operators, (af - af,pf - p§) and (4 5 - ¢ B.p £ - p 6)
respectively.
Suppose that observers A and B each set up Fock space represen-

tations over the variables xﬁ and X ﬁ respectively as In (4.27).

Then the states which satisfy the supplementary condition will be,

k k
1 1 k k . k k ~Ixgx%
fA(xz,xa,...,xz,xg,...) L) §{xg - x1) e 071
and Kk “k
. . “k ‘K “k ky, =Ix gox
fgix ;,x reeeX 2,X 3,000 M 8(x g - X Ty e % 0%1
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Hence the physical states for each observer would be the functions

k k g Ed
fA(xé,xé,...,xz,xs,...) and (X 2,X 5,00 0,X K X K,..). The
. k k -TXEXT
significance of the function, M, 8(xy - x3) e , s to ensure

k

that the zero eigenvalue of the supplementary condition operators

Is taken. The observables of A acting on the original representa-~

tion space were functions of the operators xk and 1 . As we
ax

il
have previously indicated, we can think of the restriction of
these operators to the eigenstates of the supplementary condition

operators as a representation of a factor algebra of observables.

This representation will be in the form of functions of the
k Kk 3 )
operators xj,x3, -E~>and e
X p 9% 3

In section 4.3 we showed that In general the change of
variables xﬁ > X S cannot be achieved by a unitary mapping. On
the other hand, suppose that the restriction of these operators

to elgenstates of the supplementary condition operators Is given

by

x’g = f(x%,xg)
and

x‘§ = g(xg,xg)

Then this change of variables can be represented by a unitary
transformation. Therefore even though we cannot connect the
algebra of observables by a unitary transformatlon the application
of the supplementary condlition enables us to do so for a factor

algebra.
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5.2 The Fermi Representation and Peorturbation Theory

The discusslion that we have given so far has only referred
to the free flald. However, calculations have been performed by
Belinfan+e(5) in perturbation theory using the Fermi representa-
tion. We shall not reproduce them here as the only comment that
needs to be added to his account is the mathematical justification
for his handling of the inflnite normalisation factor of the wave
functions. He quite rightly observed that this factor could be put
consistently equal to one. The mathematical Justiflication for
this procedure is that this normalisation is appropriate for
states belonging to the Hilbert space in the direct integral
decomposition of the orfginal Hilbert space with respect to the
supplementary condition operators.

Now the physical scattering amplitudes In quantum electrodynamics
are Invariant under gauge transformations of the photon propagator.

72) In the followling form.

This result was first proved by Feynman(
He showed that transition amplitudes obtained directly from
Feynman diagrams are not influenced by any terms proportional to
elther ku or kv In the photon propagator. However, as Blalynlcki=-
BIrula(SB) has pointed out the question is more compllcated than
t+his and, strictly speaking, Feynman's result is only valid in the
lowest order of perturbation theory.

Without going Into fine details, the heuristic reason why the

Feynman propagator, Iy D(k2), ts equivalent fo the exchange of

t+ransverse photons only is because we can write

= -mm o~ mm
g kunv + nukv m

§v TRV uov
- 9onal )
where K ,nu,mu,m]_i are four orthomsmms nuill vectors satisfying
u
Mo - —nm
kun = 1 numu s

and all other products zero.
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For then, if the propagator describes the exchange of a photon
of 4 momentum k between two conserved currents, the terms in guv
which Involve k will disappear because of current conservation
kuju(k) = 0.

For the Fermi method, the choice of physical states for the
photon states, or equivalently the restriction to the subalgebra
of transverse operators (the algebra # ) means that the propagator
calculated (a symmetric second rank tensor) cannot contain any
terms in n, as they would imply a violation of the suppliementary
conditlon and any fterms In k“ would disappear for the same reason
as above. Hence only terms in mu and ﬁu survive and these are
the usual transverse terms.

This explanation is only intended to be a formal explanation
of why such calculations as Belinfante's lead to the usual resul+s,
and a complete resclution would require an Investigation of all

t+he problems of divergences and their associated inconsistencies.

5.3 Concluding Remarks

The most significant aspect of our work is that it challenges
the viewpolint that the Ferml method of quantising the electro-
magnetic fleld is Inconsistent. This viewpoint is so widely
accepted that people never think of considering the Ferml repre-
sentation in their Investigations.

Hence we first remark that the Ferm! method should be con-
sidered in conjunction with the other quantisation schemes in any
investigation of a general nature.

Secondly, we remark that the Ferml method may well prove fo
be a convenient representation for particular applications. We

have shown that the Fermi representation is easily Included in the
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Segal formalism and hence should be better adapted than the
Gupta-Bleuler representation for applications requiring the tech-
niques of C* algebras.

Finally, we remark that our formuiation needs to be extended
to include interaction. An Indication of the way in which this

might be achieved can be found 1n Hurst's accoun+(51).
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