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Abstract

You can’t solve a problem with the same kind of thinking that created it.

Albert Einstein (1879-1955)
Theoretical Physicist

HE next generation of reusable launch vehicles (RLVs) require significant improve-

ments in guidance methods in order to reduce cost, increase safety and flexibility,
whilst allowing for possible autonomous operation. Research has focused on the ascent
and hypersonic re-entry flight phases. This thesis presents a new method for trajectory
design, optimisation and guidance of RLVs during the terminal area flight phases. The
terminal area flight phase is the transitional phase from hypersonic re-entry to the ap-
proach and landing phase.

The trajectory design, optimisation and guidance methods within this thesis are
an evolution of previous work conducted on the ascent and re-entry flight phases of
RLVs. The methods are modified to incorporate the terminal area flight phase through
the adaption of the problem definition and the inclusion of the speed brake setting as
a steering parameter.

The methods discussed and developed in this thesis are different to previous meth-
ods for the terminal area flight phase as they encompass optimisation, trajectory design
and guidance based on the definition of the steering parameters. The NLPQL non-
linear optimiser contained within the International Mathematics Standards Library
(IMSL) is utilised for trajectory design and optimisation. Real-time vehicle guidance is
achieved using the restoration steps of an accelerated Gradient Projection Algorithm
(GPA).

The methods used are evaluated in a three degrees of freedom (3DOF) simulation

environment. To properly evaluate the programs and gain a better understanding

XX1
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Abstract

of the terminal area flight phase, two different vehicles are utilised within this study.
These vehicles are the German sub-orbital Hopper concept vehicle, a previously pro-
posed replacement for the Ariane series of launch vehicles and the recently cancelled
joint National Aeronautics and Space Administration (NASA) and Lockheed Martin
sub-orbital test bed vehicle, X-33. The two vehicles each have a terminal area flight
phase, but their mission profiles and vehicle characteristics are significantly different.
The Hopper vehicle is a winged re-entry vehicle, whereas the X-33 vehicle is a lifting
body.

The trajectory design method takes into account the initial and final conditions, in-
flight restrictions such as dynamic pressure and vehicle loads as well as safety margins.
The designed trajectories are evaluated to analyse the terminal area flight phase and to
assist in the development of the guidance program.

The guidance method is evaluated utilising an program consisting of two parts,
a real world simulator with high order models and a representation of the on-board
guidance computer, the predictor, which uses low order models for computational effi-
ciency. The guidance method is evaluated against a variety of off-nominal conditions
to account for dispersions within the high order real world models and common errors
experienced by re-entry vehicles. These off-nominal conditions include atmospheric
disturbances, winds, aerodynamic, mass, navigation, steering and initial condition er-
rofrs.

The results of this study include a detailed analysis of the terminal area flight phase
highlighting the major influences for vehicle and trajectory design. The study also
confirms the applicability of the non-linear programming method utilising the vehicle
steering parameters as a viable option for trajectory design and guidance. A compari-
son to other available results highlights the strengths and weaknesses of the proposed

method.
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