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ABSTRACT

In the past few years, several studies have explored the topology of interactions in different complex systems.
Areas of investigation span from biology to engineering, physics and the social sciences. Although having different
microscopic dynamics, the results demonstrate that most systems under consideration tend to self-organize into
structures that share common features. In particular, the networks of interaction are characterized by a power
law distribution, P (k) ∼ k−α, in the number of connections per node, k, over several orders of magnitude.
Networks that fulfill this propriety of scale-invariance are referred to as “scale-free”. In the present work we
explore the implication of scale-free topologies in the antiferromagnetic (AF) Ising model and in a stochastic
model of opinion formation. In the first case we show that the implicit disorder and frustration lead to a spin-
glass phase transition not observed for the AF Ising model on standard lattices. We further illustrate that the
opinion formation model produces a coherent, turbulent-like dynamics for a certain range of parameters. The
influence, of random or targeted exclusion of nodes is studied.
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1. INTRODUCTION

Systems composed of many parts that interact with each other in a non-trivial way are often referred to as
complex systems. An intriguing issue concerns the role played by the topological structures in the dynamics of
these systems. Recent empirical studies focusing on the properties of interactions in different biological, social
and technological systems have made it possible to shed some light on the basic principles of structural self-
organization. A few examples include food webs,1–3 power grids and neural networks,4, 5 cellular networks,6, 7

sexual contacts,8 Internet routers,9–11 the World Wide Web,12, 13 actor collaborations,4,5, 12, 14 the citation
networks of scientists15, 16 and the stock market.17, 18 Although different in the underlying interaction dynamics
or micro-physics, most of the empirical studies have shown a tendency of the networks to self-organize in struc-
tures that share common features. In particular, the number of connections, k, for each element, or node, of
the network follow a power law distribution, P (k) ∼ k−α. Networks that fulfill this property are referred to as
scale-free networks (SFN). In addition many of these networks are characterized by a high clustering coefficient,
C, in comparison with random graphs.19 The clustering coefficient, C, is computed as the average of local
clustering, Ci = 2yi/(zi(zi − 1)), where zi is the total number of nodes linked to the site i and yi is the total
number of links between those nodes. As a consequence both Ci and C lie in the interval [0,1]. The high level
of clustering found, supports the idea that a herding phenomenon is a common feature in social and biological
communities. Numerical studies on SFNs have demonstrated how the topology plays a fundamental role in
infection spreading10 and tolerance against random and preferential node removal.20–22 A detailed description
of the progress in this emerging field of statistical mechanics can be found in recent reviews.23, 24

In the following section we briefly describe the algorithm used for generating the SFN, that is the Barabási-
Albert model with tunable clustering. We then study the implications of a SFN topology in two different complex
systems. The first one, Sec. 3, in the antiferromagnetic (AF) Ising model while the second, Sec. 4, is a stochastic
model for opinion formation.
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2. THE BARABÁSI-ALBERT MODEL WITH TUNABLE CLUSTERING

The Barabási-Albert model12 is based on two main assumptions: (i) linear growth and (ii) preferential attach-
ment. In practice the network is initialized with m0 disconnected nodes. At each step a new node with m edges
is added to the pre-existing network. The probability that an edge of the new node is linked with the ith node
is expressed by Π(ki) = ki/

∑

j kj . The iteration of this preferential growing process yields a scale free network,

P (k) ∼ k−α where the degree distribution parameter α = 3.

It is worth noting that the Barabási-Albert model cannot produce a high clustering coefficient. In fact, the
value of this coefficient depends on the total number of nodes, N , in the network23 and in the thermodynamic
limit, N → ∞, C → 0. In principle the observed local clustering can play an important role in the opinion
formation of groups of people, independent of their total number. In order to account for this, we introduce a
further step in the growth process, namely the triad formation proposed by Holme and Kim.25 In this case, if
the new added node is linked with an older node, i, having other links, then with a certain probability, θ, the
next link of the new node, if any remain, will be added to a randomly selected neighbour of node i. This method
of introducing friends to friends, while preserving the scale-free nature of the networks, generates high clustering
coefficients that do not depend on the number of nodes in the network. The only tunable parameter that changes
the value of the clustering coefficient is the clustering probability θ. All the simulations in the present work have
been carried out using θ = 0.9, providing to an average clustering coefficient of C ∼ 0.39, close to the value
found in many real systems.23

3. SPIN-GLASS BEHAVIOUR OF THE ANTIFERROMAGNETIC ISING MODEL
ON SCALE-FREE NETWORK

The ubiquity of SFNs in nature has inspired physicists to investigate the dynamics of standard models in the new
case where the interactions between elements are described by complex interactions. These include the study of
various magnetic models such as the Ising model. An intriguing issue concerns how the unusual topology acts
to influence the cooperative behaviour of the spins. Studies of the ferromagnetic (FM) Ising model on a SFN,
using several theoretical techniques26–29 including the Monte Carlo (MC) method,29 have found the robustness
of ferromagnetic ordering against thermal fluctuations for the degree distribution exponent α ≤ 3.

The robustness feature is naturally expected as SFNs have large connectivities. This is analogous to the FM
Ising model on a regular lattice above the lower critical spatial dimension, dl = 2. There the ordered phase is
very robust against thermal fluctuations. However, for the antiferromagnetic (AF) case with a SFN, the situation
is different.

Two factors come to play a central role in the dynamics of the AF-SFN model; namely the competition
induced by the AF interaction in the elementary triangles of the network and the randomness related to the
non-regular connections. The abundance of elementary triangles in the network leads to frustration, as, for
example, only two of the three spins can be anti-aligned. More generally, frustration refers to the inability of the
system to remain in a single lowest energy state (ground state). These ingredients lead the AF SFN to belong
to a class of randomly frustrated systems commonly referred to as spin glasses (SGs).

Most studies of SGs have been performed on regular lattices. These studies have shown that frustration and
randomness are the key ingredients for SG behavior, characterized by a frozen random spin orientation at low
temperatures.30 A study of the AF Ising model on a SFN is of great theoretical interest since, in fact, it does
possess all the characteristics of a SG. Reviews on SG can be found in Refs..30

We consider the AF Ising model on a Barabási-Albert network with a tunable clustering coefficient, as
described in Sec. 2. We illustrate that the AF model undergoes a SG transition. Such a transition is not
observed on a regular triangular lattice where, for the AF Ising model, the spins are fully frustrated.

3.1. Model and Simulation Method

On each SFN constructed at the beginning of the simulation, we assign to each vertex an Ising spin, and to each
link an AF interaction. The Hamiltonian can be written as follows

H = −
∑

〈ij〉

Jij si sj . (1)



Here the summation is performed over the connected spins si and sj occupying sites i and j, respectively. The
coupling interaction Jij = J < 0 is AF. As previously mentioned, each vertex with the local cluster coefficient
Ci > 0 together with its neighbours, compose elementary triangles. Due to the AF interactions the local system
is frustrated.

It is worth pointing out that C is related to the degree of frustration of each network. Due to the probabilistic
algorithm used for their construction, the value of C fluctuates from one network to the next. This property
is not shared by other algorithms which use recursion formulas to generate scale-free structures, such as, for
example, the Apollonian networks.31

As a random system, each realization of a network of size N will differ in the “structure” of connectivities.
Therefore, in order to have reliable statistics, we average over many realizations of the SF network for each
specified size. In general, one takes into account more realizations for small system sizes and less for large system
sizes as the latter tend to self-average. The system sizes that we simulate are N = 1024, 2048, 4096, and 8192.
Since the self-averaging of physical quantities for larger system sizes are interfered by the increase of ground
state degeneracy, we did not take less realizations. Instead all physical quantities of interest for each system size
are averaged over 1000 network realizations.

Another peculiarity of SF networks regards the existence of a broad distribution of “hubs”, that is nodes
with a large number of connections, k. The energy difference in a spin flip actually depends on the number of
connections of the spin itself, ∆Ei = −2si

∑ki

j=1 sj . Thus in the AF case for the ith spin with ki connections,
the hubs are more likely to “freeze” into a particular configuration compared to the nodes with just few links.
This fact resembles the spin glass behaviour of particular alloys where some elements freeze into a particular
orientation at a higher temperature than others.

The calculation of the thermal averages of the physical quantities of interest is performed using the replica
exchange MC method,32 appropriate for systems such as spin-glass. For a given network configuration, replicas
having an associated inverse temperature, β, are created. In using this method, we define a “local” MC (LMC)
update as a MC update for each spin of each replica, either consecutively through all elements of the network
or randomly. Given that we can group the inverse temperatures in even and odd pairs, (βm, βm+1), after each
LMC update we alternate attempts to switch configurations from one temperature to the next. According to
this procedure, we define a Monte Carlo step (MCS) as a LMC plus a half (m odd or even) exchange trial.

For each network realization we run 3 × 105 MCSs after a transient period of 103 LMC updates. We take a
total of 6 × 104 measures for the thermal averages. The simulation is run down to low temperatures in a search
for the possible existence of a phase transition. All the thermal averages obtained are then averaged over the
whole ensemble of networks. In the following, we indicate 〈...〉 as the thermal average and [...]av as the ensemble
average. The statistical errors in the plots, where reported, are calculated via the bootstrap method.

3.2. Observing Spin Glass Behaviour

With the presence of frustration and randomness in the AF-SFN model, we expect to observe a spin glass
transition, i.e., a transition from a temporal disordered to a temporal ordered phase at low temperatures. A
quantity that is often used to characterize the SG state is the overlap parameter, q, defined as33

q =

[

〈
1

N

∑

i

sα
i sβ

i 〉

]

av

, (2)

where the superscripts α and β denote two copies of the same configuration of connectivity at the same temper-
ature.

In particular, for the Ising system, due to the Z2 symmetry, it is important to evaluate the absolute value

of the order parameter, |q| =
[

〈|1/N
∑

i sα
i sβ

i |〉
]

av
, to overcome the implication of the Z2 symmetry of the

Hamiltonian. That is, if the system is at thermal equilibrium and if we take quite long MCS then the usual q
should average out and give an approximately zero value. The existence of a spin glass phase is indicated by the
convergence of |q| to a finite value as we increase the network size and, at the same time, a convergence of |q| to
zero at high temperatures. In the latter case the system is in the paramagnetic phase.



Figure 1. Left: Temperature dependence of the overlap parameter, q, for different system sizes N . The increasing value
of q at low temperatures indicates a SG phase. For a given network size, 1000 realizations of the SFN are averaged over.
Right: The distribution of q at various temperatures for different system sizes, including (a) N = 1024, (b) N = 2048, (c)
N = 4096 and (d) N = 8192. The temperatures are provided in units of J/kB , where kB is the Boltzmann constant.

The temperature dependence of |q|, resulting from the simulations, is shown in Fig. 1 (Left). The existence
of a SG phase is indicated by the finite value of |q| in the low temperature region, and the approach of |q| to
zero at higher temperatures associated with paramagnetic phase. For high temperatures and large networks, |q|
is approaching zero in accord with the thermodynamic limit where |q| = 0.

The existence of these two different phases can also be observed from the distributions of q, as shown in
Fig. 1 (Right). For higher temperatures we observe simple Brownian fluctuations of the values of q, leading to
a singly peaked Gaussian distribution characteristic of a paramagnetic state. By decreasing the temperature,
the distribution starts to spread out, reflecting the increasing number of metastable disordered states reflecting
the presence of substantial frustration. At lower temperatures the distribution develops double peaks associated
with the Edward-Anderson parameter representative of the SG phase. The transition between these two phases
is roughly estimated at T ∼ 4. We note that the shape of the observed distribution is different from that of the
conventional Ising system where the double peaks approach delta-like double peaks reflecting a simple doubly
degenerate ground state.

A more accurate evaluation of the phase transition is done through the Binder parameter defined as follows

gL =
1

2

(

3 −

[

〈q4〉
]

av

[〈q2〉]
2
av

)

, (3)

where 〈q2〉 and 〈q4〉 are respectively the second and the fourth cumulant moment of q and 0 ≤ gL ≤ 1. At high
temperature, when the thermal fluctuation overcomes all cooperative interaction, the system is expected to exist
in the paramagnetic phase where there is no spatial nor temporal autocorrelation. As a result, the distribution
of q should be Gaussian centered at q = 0. In this case the ratio of the cumulants, 〈q4〉/〈q2〉2 → 3, resulting
in gL → 0. At low temperatures, the cooperative interaction becomes dominant and the ratio of the cumulants
approaches unity so that gL = 1.

Fig. 2 (Top) displays the temperature dependence of the Binder parameter for a variety of network sizes. A
spin glass state is observed for lower temperatures where the Binder parameter deviates from zero, and increases
with the system size. In the thermodynamic limit, we expect gL → 1 just below the critical temperature. A
crossing point in the size dependence of gL indicates that the critical temperature for the SG phase transition
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Figure 2. Top: Scaling behaviour of the Binder cumulant, gL, for different system sizes. Each system size is averaged
over 1000 realizations of the network configuration. Bottom: Scaling plot of the data illustrated above (Top), fit to Eq. 4.

is T ∼ 4.0. For temperatures above T ∼ 4.0 the Binder parameter, while remaining always above zero, does
indeed order in an opposite manner indicative of a genuine crossing of the curves and in accord with a genuine
spin glass transition at finite temperature.

A more reliable estimate of the critical temperature, Tc, for finite size systems can be given by using scaling
arguments. For a SG system, the Binder parameter depends on the system size L as

gL = g̃L [(T − Tc)L1/ν ] , (4)

with ν > 0. At Tc the Binder cumulant does not depend on L. For the SFN, the system size scales logarithmically
with the number of nodes N ,23 and therefore we take L = log(N). The parameters Tc and ν are determined by
constraining the temperature dependence of the Binder parameter for each network size to lie on a single curve.
The curves following the scaling bahaviour of Eq. (4) are shown in Fig. 2 (Bottom). ¿From this fit we estimate
the critical temperature Tc ∼ 4.0(1) and the exponent of the SG correlation length ν ∼ 1.10(2). It is important
to underline that this kind of behaviour is not observed for an AF system on a regular triangular lattice.

4. STOCHASTIC MODEL OF OPINION FORMATION ON A SCALE-FREE
NETWORK

We turn now our attention to the role played by the SFN on a model of stochastic opinion formation. In this case,
once the scale-free network has been built, we randomly assign the spin values, ±1, to every node. These values
correspond to a Boolean kind of opinion while the bonds of the networks represent the interactions between
agents.

The dynamics of the spins follows a stochastic process that mimics the human uncertainty in decision mak-
ing.34, 35 Values are updated synchronously according to a local probabilistic rule: σi(t+1) = +1 with probability
pi and σi(t + 1) = −1 with probability 1 − pi. The probability pi is determined, by analogy with heat bath
dynamics with formal temperature kBT = 1, pi(t) = 1/(1 + e−2Ii(t)), where the local field, Ii(t), is

Ii(t) = aξ(t)Ñi
−1

Ñi
∑

j=1

σj(t) + hiηi(t)r(t). (5)
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Figure 3. Left: Time series of the average opinion, r, for different values of the group interaction strength parameter
a: (i) a = 0.8, (ii) a = 1.5, (iii) a = 1.8 and (iv) a = 2.3. The parameters used for the simulations are: N = 104 nodes,
clustering probability θ = 0.9, initial nodes and links per new node m0 = m = 5 and we take the upper bound of the
distribution of personal response strengths equal to the group interaction strength, that is κ = a. The results involve 10
realizations of the scale free network each displayed for 5000 time steps. For values of a greater than 1 a turbulent-like
state, characterized by large fluctuations, starts to appear in the process of opinion formation. Right: PDFs of the time
series relative to the time series in (Left). The shapes of the distributions converge to a Gaussian for small values of the
group interaction strength a = κ. A Gaussian distribution is also plotted for comparison. All the PDFs in this paper are
obtained over 50 realizations of the SF network. In order to compare the fluctuations at different scales, the time series in
the plot have been normalized according to r(t) → r(t)−r̄

σ
, where r̄ and σ denote the average and the standard deviation

over the period considered respectively.

The first term on the right-hand side of Eq. (5) represents the time dependent interaction strengths between
the node i and his/her Ñi information sources, which are the first neighbours in the network. The second term

instead reflects the personal reaction to the system feedback, that is the average opinion, r(t) = 1/N
∑N

j=1 σj(t),
resulting from the previous time step. The terms ξ(t) and ηi(t) are random variables uniformly distributed in the
interval (-1,1) with no correlation in time nor in the network. They represent the conviction, at time t, with which
agent i responds to his/her group (common for all the agents) and the global opinion of the network respectively.
The strength term, a, is constant and common for the whole network, while hi is specifically chosen for every
individual from a uniform distribution in (0,κ) and are both constant in the dynamics of the system. By varying
the parameter κ we can give more or less weight to the role of feedback in the model. The strength coefficients
a and hi in the local field, Ii, characterizing the attributes of the agents, play a key role in the dynamics of
the model. They represent the relative importance that each agent of the network gives, respectively, to his/her
group and to the variation of the average opinion itself. While a is a parameter associated with the network, hi

is specifically chosen for each individual at the beginning of each simulation.

4.1. Numerical Simulations

At first we investigate the importance of the group strength a by fixing κ = a. In this case the dynamical
behaviour is similar to that found in the stock market context in Refs..34–36 For a<̃1 the resulting time series
of average opinion is largely uncorrelated Gaussian noise with no particularly interesting features, as illustrated
in Fig. 3(i) (Left).

As soon as we exceed the value of a ≈ 1 a turbulent-like regime sets in, characterized by large intermittent
fluctuations, Fig. 3(ii → iv) (Left). These large fluctuations, or coherent events, can be interpreted in terms of a
multiplicative stochastic process with a weak additive noise background.34, 37 For a > 2.7 we observe that the
bursts of the time series begin to saturate the bounds −1 ≤ r ≤ 1.



In Fig. 3 (Right) we plot the probability distribution functions (PDFs) associated with the time series of
Fig. 3 (Left). The large fluctuations, for a greater than ≈ 1, are reflected in the fat tails of the relative PDFs.
Decreasing the value of a, and so the number of coherent events, the PDF converges to a Gaussian distribution
generated by a random Poisson process.

In order to test the relevance of the network structure on the process of opinion formation, the previous
simulations have been repeated, with a large number of nodes, N , and κ = a, for different values of the clustering
parameter, θ, and the node-edge parameter, m. While varying θ, does not lead to any substantial difference
in the dynamics of the model, the increase of the average number of links per node, k̄ = 2m, has a dramatic
effect in the turbulent-like phase, which deviations from a Gaussian regime increase dramatically: large scale
synchronizations are more likely to occur for large m. This behaviour is intrinsically related to the model of
Eq. (5). In fact, the turbulent-like regime is a consequence of the random fluctuations of the interaction strengths
between agents around a bifurcation value separating the ordered and disordered phase.

It is also worth pointing out that an increase of k̄ is related to a decrease in the average path length between
nodes; that is, the network “shrinks” and becomes more compact. In relation to our previous discussion, the
more compact the network is the more the dynamics of our system approaches to the mean field approximation.
It becomes easier for the agents to synchronize. This characteristic of compactness, referred to as the small world
effect,19, 23, 24 is actually very common in both real and artificial networks.

These results confirm that the critical topological characteristic leading to herding behaviour in the framework
of stochastic opinion formation is the presence of mean field effects enhanced by small-world structure. The more
information (links) that an agent has, the more likely it is for him/her to have an opinion in accord with other
agents.

4.2. The Influence of Indecision

We now extend our model in order to include the concept of indecision. In practice a certain agent i, at a time
step t, may take neither of the two possible decisions, σi = ±1, but remain in a neutral state. Keeping faith to
the spirit of the model, we address this problem introducing an indecision probability, ǫ: that is the probability
to find, at each time step, a certain agent undecided. This is equivalent to introducing time dependent failures
in the structure of the network by setting σ = 0.

Focusing on the turbulent-like regime, the shape of the PDF in the opinion fluctuations changes according
to different concentrations of undecided persons. The results of the simulations, in Fig. 4 (Left), show how
the dynamics of the model move from an intermittent state for ǫ = 0 toward a noise state for ǫ ≈ 0.6. The
convergence to a Gaussian distribution is obtained only for quite high concentrations of undecided agents at
about 60%. The robustness of the turbulent-like behaviour is related to the intrinsic robustness of SF networks
against random failures.20–22 In fact, because there is a large absolute number of poorly connected nodes, related
to the power law shape of P (k), the probability of setting one of them to inactive is much higher compared to
the “hubs” that are relatively rare.

We can claim that, in large social networks governed by stochastic reactions in their elements, large fluc-
tuations in the average opinion can appear even in the case in which a large part of the network is actually
“inactive” provided that the structure is scale free and the indecision is randomly distributed. The existence of
large hubs provides for the survival of extended sub-networks in which synchronization can give rise to coherent
events. The structure of the network itself supplies the random indecision.

Now we address the question of how the dynamics may change if we do not choose randomly the inactive
nodes but we target the nodes having the most links. What we do in practice is to sort the nodes according
to their number of links and then deactivate the nodes having the largest number of links in decreasing order.
Fig. 4 (Right) illustrates how the fragmentation process is much faster and the noise regime is reached already
when only the 10% of the hubs are deactivated. As emphasized in Ref.,20–22 the hubs have a great importance
in the structural properties of SF networks and specifically targeting these nodes can lead to sudden isolation of
a large fraction of the nodes of the network.
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Figure 4. Left: Transition from coherent bahaviour, indecision probability ǫ = 0, to noise using a random selection for
the inactive agents. For ǫ ≈ 0.6 we reach a noise-like behaviour. The parameters used in the simulation are: N = 104

nodes, θ = 0.9 for the clustering probability, m = m0 = 5 for the links of each new node, a = 1.8 and κ = a for the
group and global opinion response respectively. Right: In this simulation we progressively turn off the largest hubs in the
network. Once we have turned off about the 10% of agents, N = 104, the coherence in opinion formation disappears.

5. DISCUSSIONS AND CONCLUSIONS

Motivated by recent empirical findings for complex systems interaction topologies, we have explored the implica-
tions of a Barabási-Albert SFN topology in two different models of complex systems. In particular we have found
that the random frustration introduced by this topology of interactions induces a transition from a paramagnetic
state to a spin glass state for an AF Ising model at a finite temperature. The critical spin glass phase transition
temperature is estimated to be Tc ∼ 4.0(1). Such behaviour is not observed for the AF Ising model on regular
lattices.

The SFN topology also has important consequences in our model for opinion formation. In this case, we
discovered that the “hubs” of the network are more likely to synchronize due to mean field effects. Conversely,
these effects are not strong enough to synchronize the poorly connected nodes. Moreover, introducing inactive
agents and spreading them randomly on the network, does not spoil the turbulent-like state, even for high
concentrations of “gaps” up to approximately 60% of agents. This is a consequence of the implicit robustness of
SF networks against random failures. If instead of selecting randomly the undecided individuals, we aim directly
to the “hubs” of the network then the situation changes. In this case the network is disaggregate, composed
of very small sub-networks and isolated nodes. Synchronization cannot significantly effect the resulting global
opinion and the time series approximates Gaussian noise.
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