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ABSTRACT 

 

2D and 3D basin models have been constructed of the southern and central parts of 

the Vulcan Sub-basin, which is located in the Timor Sea, north-western Australia. This 

work was carried out in order to better elucidate the petroleum migration and 

accumulation histories and exploration potential of the region. The study area 

extended from the southern limit of the Swan Graben in the south-west to the northern 

part of the Cartier Trough in the north-east. The results from the basin modelling have 

been compared with the seafloor bathymetry and physiography, the spatial 

distributions of hydrocarbon related diagenetic zones (HRDZs) in the region, as well as 

the distribution of other leakage and seepage indicators. A new method for identifying 

potential HRDZs using seismic data has also been developed. 

 

The 2D/3D modeling results from the Swan Graben indicate that horizontal and 

downward oil expulsion from the source rocks of the Late Jurassic Lower Vulcan 

Formation into the upper Plover Formation sandstones was active from the Early 

Cretaceous to the present day. Oil migration from the Lower Vulcan Formation into the 

Late Cretaceous Puffin Formation sands in the Puffin Field was simulated via lateral 

migration along the bottom of an Upper Vulcan Formation seal and by vertical 

migration above the seal edge. Modelling also indicates that Late Jurassic sequences 

over the Montara Terrace are thermally immature and did not contribute to the 

hydrocarbon accumulations in the region. On the other hand, 3D modelling results 

indicate that the Middle Jurassic Plover Formation in the Montara Terrace became 

thermally mature after the Pliocene and hence it could have contributed to both the 

specific hydrocarbon accumulations and the overall hydrocarbon inventory in the area. 

 

In the southern Cartier Trough, the Lower Vulcan Formation is typically at a lower 

thermal maturity than that seen in the Swan Graben, due to a combination of a 

relatively recent (Pliocene) increased burial and a thinner Lower Vulcan Formation. 

Here, horizontal and downward oil/gas expulsion from the Lower Vulcan Formation into 

the Plover Formation sandstone was active from the Late Tertiary to the present day, 

which is significantly later than the timing of the expulsion in the Swan Graben. 

 

In the central Cartier Trough, the areal extent of both generation and expulsion 

increased as a result of rapid subsidence and deposition from about 5.7 Ma to the 

present day.  This Pliocene loading has resulted in the rapid maturation of the Early to 

Middle and Late Jurassic source system and expulsion of oil very recently. 
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Oil migration from the Lower Vulcan Formation into the Jabiru structure, via the Plover 

Formation carrier bed, was simulated in both the 2D and the 3D modelling. In particular, 

the 3D modelling simulated oil migration into the Jabiru structure, both from the 

southern Cartier Trough (after the Miocene) and also from the northern Swan Graben 

(in the Early Cretaceous). Early gas migration, and the attendant formation of a gas 

cap, was also simulated. Importantly, this result provides a potential alternative 

interpretation for the formation of at least some of the residual zones in the Timor Sea, 

as well as in other areas.  

 

Traditionally, most of the residual zones within the Timor Sea have been attributed to 

fault seal reactivation and failure. However, the simulated early gas cap in the Jabiru 

structure has formed as a result of gas exsolution as the migrating hydrocarbons 

entered the Jabiru trap (and its shallow flanks), which was then only located a few 

hundred metres below the surface. The rapidly decreasing pressure allowed the gas to 

form a separate phase, with the result that in the Early Cretaceous, in the 3D model, 

the Jabiru trap was composed of a relatively large gas cap with a thinner (“black oil”) oil 

leg. Progressive burial through the Tertiary, and the attendant increase in pressure, 

resulted in the gas going back into solution. The associated decrease in the bulk 

volume of the hydrocarbon accumulation produced a “residual” oil zone at the base of 

the column, purely through a change in phase, rather than through loss of 

hydrocarbons from fault seal failure, for example.  

 

The processes outlined in this scenario would be essentially indistinguishable from 

those produced by fault seal failure when assessing traps using fluid history tools such 

as GOI. Such a process could be critically important in the case of shallow, low-relief 

traps, where only the exsolved gas could be trapped, with the “black oil” component 

displaced below the spill of the trap. Small, sub-commercial gas fields would thus be 

located around the periphery of the source depocentres - though these would be the 

result of an early, rather than late, gas charge.  Small black oil accumulations could be 

developed inboard from such gas fields. 

 

A new method to extract HRDZs from 3D seismic data has predicted the location of 

new HRDZs in the northern Vulcan Sub-basin. Further investigation is needed to 

confirm/refine the method but it has the potential to significantly aid HRDZ mapping 

(and seal assessment and hydrocarbon migration studies). A workflow for future 

studies is proposed which includes inputs from basin modelling, leakage and seepage 

mapping, and fault seal and fault reactivation studies. Implementation of this workflow 

should ultimately allow a more reliable estimation of GOR prior to drilling. 
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