Chapte

Introduction

IOLOGICAL systems can be considered as complex systems, where com-
Bplexity is not defined as merely complicated but in terms of the overall
behaviour being unpredictable from understanding the component parts.
This chapter defines what is meant by the term “complex systems”, how the
biological systems studied in this thesis are complex systems, and how com-
plex systems analysis provides useful techniques to further human knowl-

edge of these biological systems.
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1.1 Introduction

Complex systems are ones in which the system shows emergent, nonlinear behaviour—
they are dynamic open systems in which the behaviour of the whole is greater than the
sum of the parts. This emergence may be weak emergence, in which one could theo-
retically reduce the behaviour into the sum of the parts, but this may be too difficult
and more suitable would be a simpler rule for the overall behaviour. It may also be
strong emergence, in which the behaviour of the whole is irreducible into that of the
behaviour of the component parts considered in isolation or in other combinations. To

quote from Anderson (1972),

...it seems to me that one may array the sciences roughly linearly in a hierarchy
according to the idea: The elementary entities of science X obey the laws of sci-
ence Y.... But this hierarchy does not imply that science X is “just applied Y.” At
each stage entirely new laws, concepts and generalizations are necessary, requiring

inspiration and creativity to just as great a degree as in the previous one.

Complex adaptive systems are complex systems in which adaptation occurs—that is,
they change in response to their environment (including other agents). This can occur
at one or more levels of a complex system. For example, this may take the form of
selection, in which agents, or groups of agents, pass on their traits with a higher fre-
quency than agents that are less fit according to some measure. Agents can also learn,

given feedback on their performance, and hence modify their behaviour.

Biological systems consist of tiny parts (for example nucleic acids, proteins, sugars,
and other organic molecules) that through complex interactions form cells. These cells
in turn aggregate to form other complex systems such as humans, and these in turn
form larger complex systems, communities, in a heirarchy of complex systems inter-
acting at the boundaries of the levels. How then to deal with this complexity? There
are a number of different and interrelated approaches labelled with the overarching
title of “complexity science” including statistical mechanics, agent-based modelling,
evolutionary programming, cellular automata and nonlinear techniques. These can be
considered either as ways of modelling behaviour in complex systems or as approaches

to describing the behaviour using various statistics.

My thesis tackles the following complex biological systems:

1. The evolution and analysis of DNA sequences
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Chapter 1 Introduction

2. Mutations in DNA sequences
3. Viruses and memes
4. Drosophila (fruit fly)

5. The gene network around the p53 gene, and how this relates to the development

of cancer
6. Modelling of the development of tumors and cancer
7. The human brain during sleep

8. Analysis of metabolites from various biological systems under different condi-

tions (Metabolomics)

Topics 2, 3, and 6 all involve computer simulation and mathematical modelling of bio-
logical systems, exploring the overall behaviour of the system from the rules governing
the interacting parts. Topics 1 through 8 all involve statistical analysis of data from real
biological systems. The remainder of this chapter summarises each of the main chap-

ters of my thesis.

1.2 Analysis of DNA sequences

There are a number of tools provided by complex systems analysis, in particular those
based around (or related to) correlations and information. These two methods are
shown to be interrelated. Also considered are some other signal processing techniques,
since they offer us information on a complex system: not just the proteins encoded as

genes in DNA, but other sequences of biological function (such as binding sites).

1.3 Mutations in DNA sequences

Mutations arise in DNA sequences through a number of physical and chemical pro-
cesses. These mutations play a critical role in such complex systems as population
genetics of viruses as they spread through a population, in gene networks such as
Drosophila (fruit fly) and cancer. Chapter Three details this research into both the evo-

lution and analysis of mutations.
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1.4 Viruses and memes

Viruses consist of short genetic sequences, in either DNA or RNA, which are then en-
capsulated into a protein “shell”. Those with RNA sequences are known as “retro-
viruses” as first the genetic sequence has to be translated back into DNA before it
can be incorporated into the DNA sequence of the host cell. The virus then instructs
the cell to make more copies of the virus, unless it remains dormant as some viruses
do. Viruses that affect bacteria are known as bacteriophages, and operate in a simi-
lar fashion, hijacking the normal host cell processes in order to replicate. Viruses in
and of themselves, while certainly complicated systems, are not typically classified as
complex systems. There are two well-known ways in which viruses act within com-
plex systems—as part of the host cell’s genetic regulatory network, and in terms of
transmission on a social network. Both gene networks (Kauffman 1993) and social net-
works (Clauset and Moore 2003) are well studied complex systems, exhibiting emer-

gent behaviour.

1.5 Drosophila

Drosophila melanogaster, commonly known as fruit fly, is an organism with a long his-
tory of very detailed genetic study. This facilitates exploration of the gene network in
Drosophila larvae that sets up a pattern of stripes, which later develop into segments in
the larval stage and then various body parts in the adult fruit fly. A cellular automaton
was used to explore this gene network to gain new insights into the gene interactions

and the robustness of this system.

1.6 The p53 gene

As a step between the gene networks in Drosophila and modelling of the growth of
cancer, it is important to look at a very detailed level of a critical cancer gene, p53, and
its associated network. This topic also links back to the chapter on mutations in DNA
sequences, since p53 plays a role in the detection and repair of mutations in DNA
sequences. This gene is also involved in a number of other critical pathways in the
cellular gene network, including control of the cell cycle and programmed cell death,

or apoptosis.
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1.7 Cancer

Cancer is a complex system with a very large number of interacting parts. This in-
cludes not only the gene networks, but also groups of individual cells within the cancer
playing heterogeneous roles in the overall cancer pathology. Chapter Seven presents
a model of the growth of cancer, focussed at a general level on genetic changes that
occur. The work on p53, while worthwhile, offers little in the way of quantitative re-
sults, and it is only possible to look at this in depth because the gene network is so
well studied. There are many other gene networks involved in cancer that aren’t as
well studied. The complexity of cancer also arises from the emergent behaviour of the

interacting parts, so this is another reason to use complex systems approaches.

1.8 The human brain during sleep

The human brain consists of large numbers of neurons (around 10M), wired with a

0% synapses (connections), and is one of the best examples of a complex

staggering 1
system. The emergence of consciousness is no less than amazing. The work in Chapter
Eight, analysing the brain during sleep, was carried out with researchers from a num-
ber of universities and the Adelaide Women’s and Children’s Hospital’s sleep unit.
Tools from complex systems research were applied, and showed that significant non-
linear and linear behaviours are present in the brain during sleep. It is also shown how

computers can learn to spot overall trends from this extremely complex system.

1.9 Metabolomics

Rather than worry about individual details of gene expression, or even cellular inter-
actions and (higher still) organs of the body, one can analyse the system as a whole
through analysis of metabolic output of both groups of cells and organisms as a whole.
Metabolomics is the study of metabolic output of biological systems to analyse their
inner workings. In the same way that smoke in the exhaust could mean the oil needs
to be changed or that the steering wheel shaking might mean the wheels need align-
ing, so too outputs of a biological system can give information about its innards. The
system can be a cell or an organism, and the innards need not be understood in detail.
That this is an important complex systems approach is detailed by Bino et al. (2004)

who write,
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1.9 Metabolomics

For a holistic understanding of the biological behavior of a complex system, it is
essential to follow, as unambiguously as possible, the response of an organism to a

conditional perturbation at the transcriptome, proteome and metabolome levels.
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Chapte

DNA analysis

Number of complex systems signal processing and statistical methods
Acan be used in analysing DNA sequences. These techniques can be
used in a number of ways, from finding genes in DNA to determining phy-
logenetic trees that show relationships between living organisms. Signal
processing methods such as spectrograms provide useful new tools in the
area of genomic information science. In particular, fractal analysis of DNA

“signals” provides a new way of classifying organisms.
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2.1 Introduction

The Human Genome Project (international 2001), together with a number of other
projects, has produced the DNA sequences for a large number of organisms, from hu-
mans and mice, to zebrafish, yeast, and over eighty bacteria. There has been a great
deal of work carried out in applying signal processing and statistical methods to DNA
recently(Anastassiou 2001, Yu et al. 2001, Anastassiou 2000, Yu and Anh 2004).

In the field of DNA analysis, techniques such as the discrete Fourier transform (Anasta-
ssiou 2001) and multifractal analysis (Yu et al. 2001) have been explored. This chapter
contains new applications of these methods to the areas of sequence analysis (Fitch
and Sokhansanj 2000) and phylogenetic trees, those showing the relationships between
organisms (Brown et al. 2001), respectively. This chapter also contains two complex
systems approaches, mutual information and fractals, that can be used to analyse mu-
tations. The application of these approaches are in Chapter Three, in order to analyse

a method for modelling mutations in genes.

2.1.1 Novel contributions

The novel contributions contained in this chapter are:

1. Combination of multifractal measure distances with minimal-span tree algorithm
to generate phylogenetic trees of bacteria, as compared with the correlation-based,

neighbour-joining method used by Yu and Anh (2004).

2. Discovery of a microsatellite region in Staphylococcus aureus (Mu50 strain) using

a colour spectrogram, generated by a discrete Fourier transform-based method.

3. Developing a way of applying the Higuchi fractal measure to genetic sequences.

2.2 Introduction to DNA analysis

Genetics is concerned with the physical characteristics of organisms that are passed on
from one organism to another through the use of deoxyribonucleic acid (DNA), con-
sisting of a sequence of nucleotides on two strands. The nucleotides are the chemical
bases adenosine, thymine, cytosine, and guanine that are denoted using the alphabet

{A,T,C,G}. Those on one strand are paired in a complementary fashion with those on
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the other strand, where adenosine matches with thymine, and guanine with cytosine.
Groups of three bases are called codons, and these encode the twenty amino acids that
combine to form proteins, the building blocks of life. In a nutshell, the central dogma
of molecular biology states that “DNA makes RNA makes protein”. This is encapsu-
lated in Figure 2.1. The DNA is transcribed into complementary messenger ribonucleic
acid (mRNA). In RNAs, the alphabet is {A, T, U, G} where uracil plays the same role
that cytosine does in DNA, as it pairs with guanine. Sections of the mRNA that do
not code for proteins are removed, and a “poly-A tail”—a sequence composed entirely
of adenosine bases—is added to (chemically) stabilise the sequence. The mRNA then
acts as a template for protein synthesis. Transfer RNAs (tRNAs) bind to an amino acid
on one end, and a complimentary set of three bases on the mRNA template. A 1D
sequence of amino acids forms and is then detached from the tRNAs and folds into
a 3D structure. This sometimes occurs by itself and sometimes with the aid of other
proteins, either immediately or at a later date in the life of the cell. DNA that binds to
an mRNA sequence is complimentary to this sequence and is explicitly called cDNA.

This principle is used in microarray technologies as described later.

DNA is transcribed to mRNA is translated to Protein

Figure 2.1. The central dogma of biology. The central dogma of molecular biology states that
“DNA is transcribed into messenger RNA, which is then translated into protein.” This
diagram also shows DNA replication, which is carried out with the aid of a number of
proteins. At the mRNA stage, introns are spliced out from the sequence, leaving only
the protein coding exons. This dogma is of course vastly simplified, for example there
is added complexity through splicing, RNA-only genes, RNA-RNA interactions, prions,
and other details (Nature 2002, Caporale 2003). But in its essential form this does

describe the flow of information in a cell.

Not all regions of DNA code for proteins—some of these non-protein-coding regions
have known functions, such as the XIST gene (Clerc and Avner 1998), which codes for
a ribonucleic acid (or RNA) molecule that deactivates one of the two X chromosomes
in female mammals. These RNAs may play an important role in the complexity of
organisms such as humans (Mattick 2001). There are also promoter regions around

genes that act as targets for gene activation or deactivation (Boyd et al. 2003). Other
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2.2 Introduction to DNA analysis

non-coding regions appear to only be “junk” DNA left over from the biological past,
with little or no use—or perhaps have a yet undiscovered function. Biologists have
suggested that “junk” regions may act as a form of isolation between coding regions
and may also act as error-robust locations for sexual recombination. This is described
further in Harmer et al. (2001), where it is conjectured that these effects could be mod-
elled in game-theoretic terms. It is possible that non-(protein)-coding regions in introns
could contain information. As a very simple example of this, it has been shown that
increasing the intron length can decrease the probability of (or in other words, the final

amount of protein) containing the exon immediately after that intron (Bell ef al. 1998).

Signal processing is the use of mathematical techniques to analyse any data signal.
This data could be an image, a sound, or any other sequence of data, such as a se-
quence of nucleotides. The sequences of interest could be protein coding regions, re-
peating elements that may be associated with various diseases—such as Huntington’s
disease (Rubinsztein et al. 1994)—or regions rich in some set of complementary bases,
such as A and T, which can give information on evolutionary history including lateral

gene transfer in bacteria (Worning et al. 2000).

An area where signal processing techniques have enjoyed wide usage is in microarray
processing (Fitch and Sokhansanj 2000). In microarray analysis, effects on gene expres-
sion (as ascertained through mRNA levels) can be tested, for example the effect of a
drug. Two-colour microarrays are a coloured grid of spots (typically one colour for
the control, the other for the cells under test) with spot intensity and colour showing
the expression levels for the gene associated with that spot. Affymetrix microarrays
only consider one gene and a gene control in a paired-spot arrangement. The control
spots control for non-specific hybridisation and background signals. The use of only

one flourescent dye removes bias caused by differences in fluorescent dye tagging.

The analysis of the sequences produced has come under intense focus as an area where
signal processing could be used to solve a number of important problems such as the
nature of non-coding DNA and distinguishing coding DNA from non-coding DNA.
Methods such as the discrete Fourier transform (Anastassiou 2001, Anastassiou 2000)
and multifractal analysis (Yu et al. 2001) have been applied to the problem, comple-
menting more traditional techniques that often use hidden Markov models (Durbin et
al. 1998, Lukashin and Borodovsky 1998); these are detailed later. A good overview
of Fourier transform methods and wavelet transforms, not discussed in this chapter,

and a more in-depth discussion of cellular neural networks can be found in Zhang et
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al. (2002). Here the focus is on other applications of Fourier methods, and also the
application of hidden Markov models and other mathematics to general problems in

genetics.

Signal processing is not just a human enterprise. Even individual cells process signals
in the form of mRNA, protein, and more general chemical levels (Kholodenko et al.
2002, Tyson et al. 2003, Thattai and van Oudenaarden 2001, Barabasi and Oltvai 2004)—
for example sugars in the environment. As with conventional computers, cells can be
genetically programmed to process signals (Kobayashi et al. 2004, Hasty et al. 2002,
Ozbudak et al. 2002). As in electrical circuits, switching elements can be built in, and
positive and negative feedback loops are present, enabling a range of behaviours to
be “programmed”, such as chemical oscillations of a predetermined frequency. Such
engineered “gene circuits” could have important applications in gene therapies that

modify or augment the existing protein and cellular interactions in an organism.

2.3 Analysis of regions in DNA using spectrograms

Colour spectrograms are a useful tool in visualizing aspects of signals occurring in
time. For example, one can see the noise present in the audio recording of the moon
landing and then design an efficient filter to remove it, using only the visual informa-
tion provided in the spectrogram to determine the noise. Colour spectrograms assign
a colour (or brightness) value based on the Fourier transform amplitude or phase at
a particular location in frequency and in time—a sliding, short, non-overlapping win-
dow of time is taken from a longer time sequence of data, and the discrete Fourier
transform is evaluated over the short period of time, over a range of frequencies, at the

location in time at which that segment is taken.

Distinguishing coding from non-coding regions is an important problem in genetics.
Galvén et al. (2000) have explored entropy-based methods for separating the coding
from the non-coding regions. Can colour spectrograms give a visual guide to these
regions? The following are some new results using existing methods that further illus-

trate that this is possible.

Anastassiou (2001) has explored the use of colour spectrograms in analysing DNA

sequences. For a sequence of bases numbered 1, ...,n,..., N, he defines the following
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2.3 Analysis of regions in DNA using spectrograms

sequences:
x,[n) = 5 Qur[n] — uc[n] - ugln]),
xgn] = Y8 (ucln] — ugn)), @.1)
xp[n] = 3(Bualn] — urln] — ucln] —ug[n]),
where ux[n] = 1 if the base at position n is X, or zero otherwise. The sequences

Xr, Xg, X, are used in generating red, green, and blue colour components of pixels (the
squares) in the spectrograms. The mapping of a base at position 1, from the set {4, t,¢, g}
onto the sequences x;, xg, X}, is done to maximise the differences between the sequences
at that position n, which results in more vivid colourings of the spectrogram. To colour
the spectrogram, compute the discrete Fourier transform (DFT)

1 N-1 )
— = Z X —Zn]nk/N, (2.2)

where x(n) is the sequence of data (n = 0,...,N — 1), j = \/—1, k is the discrete fre-
quency, and X (k) is the discrete Fourier transform at frequency k. For DNA sequences,
one must transform the DNA sequence s() into a numerical sequence x(1), or in some
cases several numerical sequences x;(1). One such transformation is that used by Sil-
verman and Linsker (1986). To a sequence of bases, denoted by s = 5(1)s(2)...s(N), a

vector x(i) is assigned to each base s(i),

(1 0), s(i) = A,

(i) = (—1/3,0,2v2/3), s(z:) =, 03
(—=1/3,—v6/3,—v2/3), s(i) =G,
| (-1/3,V6/3,-v2/3),  s(i)=T.

So for example the sequence ATG is represented by the sequence of vectors (1,0,0),
~1/3,/(6)/3,—/(2)/3),(=1/3,—+/(6)/3, —+/(2)/3). The next step is to compute

the power spectrum
3

P(f) =) |%

Zx(l e ]27r1f
c=1

where x(i) is the c-th component of x(i), and j = /—1. Here, N is the length of the

sequence (number of bases). A simpler method is to use indicator functions

x(i) = {LS(i) - 2.5)

0, otherwise,

(2.4)
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for some a € {A,T,C, G} (Tavaré and Giddings 1989). The power spectra of these two
methods are related (Coward 1997),

N
——|X(k)[%, k #0,

Y(R))P = NG . (2.6)
—— | X (k)[* - , k=0,

N-—-1 N-—-1

where N is the length of the sequences, c is a constant that varies with N, X(k) is
the Fourier transform of the indicator sequence, Y (k) is the average of the Fourier

transforms of the sequences of components of the vector sequence as given in Eq. 2.4.

In this work a DFT block size of N = 6000 was used since 6000 has a large number
of integer dividers, some of which correspond to common repeat lengths in DNA,
for example the frequency k = 2000 (digital frequency f; = 2 x 2000/6000 = 2/3)
corresponds to the codon length 3 = 6000/2000. Repeats of length two and six are
also common in sections of DNA, these have frequencies of k = 6000/2 = 3000 and
k = 6000/6 = 1000. These repeat lengths thus give rise to centre-cell frequencies, so

there is no sidelobe leakage for these repeat lengths.

To illustrate the usefulness of this technique in identifying regions of DNA, Figure 2.2
shows the colour spectrogram of the DNA sequence of the entire Staphylococcus aureus
Mub50 (Kuroda et al. 2001) genome. Figure 2.2 clearly shows there are differences in the
spectrogram between coding regions of DNA and a microsatellite region at approxi-
mately 1.51 Mb in the S. aureus Mu50 genome. The lack of fine-grained resolution of
the spectrograms is problematic, and prevents easy visualisation of the exact locations

of the borders between coding and non-coding regions.
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2.3 Analysis of regions in DNA using spectrograms

(o)

Freguency

15
Pasitian (Mb)

(a) Colour spectrogram of S. aureus. The left-hand side, before the microsatellite region at
approximately 1.51 Mb (million bases), is an AT-rich region of the genome, which shows
up with a brighter purple colour. The fact that most of the bacteria genome is coding can
be seen by observing the coding regions, indicated by a bright band at digital frequency
fa =2 x2000/6000 = 2/3.

16 d 18 1.3

12 1.3 14 15
Positon Mb)

(b) Enlarged version of region in S. aureus showing a microsatellite (repeat sequence) region.
The repeat length is not an integer divisor of 600, so the power splits into sidelobes, as seen

in the bright vertical bands at various frequencies.

Figure 2.2. Colour spectrograms of S. aureus..
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2.4 Multifractal analysis

One useful way to compare different organisms is by employing a multifractal method.
In these, a numerical assignment of bases is used in a set of calculations that leads to a
calculation of the Rényi entropy(Rényi 1960). The following is a summary of the fractal
method as detailed by Anh et al. (2001): to each possible substring s = s1...5¢, 5, € A
of DNA of length K, there is assigned a unique set, [x, x,), given by

K X
xl(s) = Z Z/ (27)
i=1
where .
0, s;=a,
1, s;=c,
X; = (28)
2, si=g,
3, S; — t,
and
1
xr(S) = xl(s) + 4_[(/ (29)
then )
N(s
F =_ 7 2.1

where N(s) is the number of occurrences of the substring s in the string of length L of

the whole genome. The fractal measure is then
pk(dx) = Yr(x)dx, (2.11)

where
Yi(x) = 45Fi(s), x € [x1(5), %:(s))- (2.12)

The partition sum is defined as

(
> (B, q#1,
#(B)#0
Zela) = (2.13)
Y. w(B)Inu(B), otherwise.
\ 1(B)#0
Here we run over all non-empty boxes B = [ne, (n + 1)) where e = 4 X and n =

1,...,4K — 1. Since u(B) € R and addition is commutative in the reals, the order-

ing of the pt(B ) given by Eq. 2.8 is unimportant in calculating Eq. 2.13. It is therefore
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2.5 Phylogenetic trees

unimportant in calculating the Rényi dimension D, for 4 € R, given by

(. InZc(q)
I = hme 171
D, = (2.14)
Ze(q) _
\GE(I) 11’16 ! q N 1

Note that although the method used by Yu and Anh (2004) does not show long-range
correlations in the DNA sequence, here it is the information content in the sequence
that is of interest, and not the correlations. If one considers the case where g = 1,
then the Rényi dimension D is the same as the Shannon entropy (Shannon 1993). As
differences and similarities in G+C content can indicate relationships between organ-
isms (da Silva et al. 2002), here the Rényi dimensions are used to determine if this is
reflected in a useful way in an uneven distribution of the segments—the ordering is
unimportant here, since only the unevenness of the distribution is being compared,

not properties relating to the ordering.

The multifractal D(q) plot for Campylobacter jejuni (Parkhill et al. 2000) is shown in Fig-
ure 2.3. As with the Yu and Anh (2004), it was found though trial and error that a
segment size of K = 8 works best in classifying bacteria. The near linearity of the D(g)
plot around g = 0 suggests that one can assign to each bacteria a point in R? or R®
given by (D_1,D;) or (D_1,D1,D_3). Yu and Anh (2004) found that phylogenetically
close bacteria are close in the two spaces. Here the space (D_1, D1, D_5) is used in con-
junction with the minimal-span tree algorithm (Winter 1987) to generate phylogenetic

trees in the following subsection.

2.5 Phylogenetic trees

A phylogenetic tree is a tree showing relationships between organisms, including puta-
tive ancestral relationships. For each pair (x, y) of genomes, one computes the vectors

in Euclidean IR® space

re = (D-1(x), D1(x), D_2(x)), (2.15)
and
ry = (D-1(y), D1(y), D-2(y)) (2.16)
Then compute the metric
dzy = llry — |l (2.17)
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Fractal dimension Dq vs. q for K=8

—20 —15 -10 -5 0 5 10 15 20

Figure 2.3. Multifractal plot. This is the Rényi (multifractal) dimension plot, with K = 8, for the
bacteria C. jejuni. Note that the value D is the Shannon entropy of the genome for
a symbol size of 8. The graph is relatively linear in the region (—2,1) which suggest

these values of D, can be used as elements of vectors in a Euclidean space.

and this metric can be used in the minimal-span tree algorithm (Winter 1987) to gen-
erate binary phylogenetic trees. This approach was taken to generate the phylogenetic
tree for members of the proteo-bacteria and hyperthermophile families of bacteria as

shown in Figure 2.4(a).

Another method explored herein in relation to both text and DNA is a quantitative chi-
squared method that computes a metric with lower scores indicating a closer match.
Similar to the inter-word spacing technique for text (Berryman et al. 2003a), in analysing
DNA one can compute a scaled standard deviation of spacing, in this case for codons.
For example, the spacing for the codon gat in the sequence gat agg gcg gat is two. Note
that here a sequence is broken into non-overlapping, adjacent groups of three bases,
starting at the beginning, to form codons; while not correct in the sense of the true
biology of gene reading, where introns and different reading frames (start positions)
occur, these problems are ignored as we are only interested in large scale properties of

the sequence. The scaled standard deviations are computed by

(2.18)

where the x;’s are the set of spacings for a triplet i.
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2.5 Phylogenetic trees

This gives sets of variances of codon spacings for all the genomes, {&121, e, (Aflzl P
{612], ... ,612]}, for all possible codons, labelled i = 1,..., M and genomes j = 1,...,].
Then the formula for x as given in Kullback (1968) is used on a pair of genomes (k, 1) €

{1,..., ]} x{1,...,]},

2
1 & (Nog — Neoyp)
2 ik 1
— , 2.19
I
Ny =Y o7, (2.20)
i=1
I
M:Zﬁ. (2.21)

This generates a set of x> values for each pair of genomes. As with the multifractal
metric, the chi-squared values can be combined with the minimal-span tree algorithm
to produce a phylogenetic tree. For comparison between the trees generated between

the metric, see Figure 2.4
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0000867
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(a) Phylogenetic tree obtained using the mul-

tifractal metric
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(b) Phylogenetic tree obtained using the

chi-squared metric

Figure 2.4. Phylogenetic trees of bacteria using the multifractal distance metric. The re-

sult of applying the minimal-span tree algorithm to the multifractal distance metric in

Eq. 2.17 is shown for several members of the proteo-bacteria family in Figure 2.4(a). Us-

ing the chi-squared metric in Eq. 2.19 instead results in the tree shown in Figure 2.4(b).

The miniature bug icons represent the organisms currently in existence, the circles repre-

sent the branches of the tree (where the software calculates that the species diverged),

and the numbers represent the metric scores used to separate the families of bacte-

ria at that point. Clearly the two H. pylori (Alm et al. 1999) strains group together

correctly for both metrics. A comparison with trees obtained by a detailed analysis of

proteins (Brown et al. 2001), indicates the Thermatoga maritima (Nelson et al. 1999)

and Agquifex aeolicus (Deckert et al. 1998) as also closely related, and indeed these

group together in the phylogenetic trees generated. Of the two trees, the one using the

chi-squared metric appears qualitatively more correct when compared with ones gener-

ated from the more usual metrics and tree algorithms used in the study of phylogenetic

relationships (Brown et al. 2001, Snel et al. 1999).
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2.6 Exploring correlations and mutual information in DNA

2.6.1 Mutual information functions

Another method for showing the existence of long-range correlations in DNA is to use
the mutual information function, as given in Eq. 2.22 below. This approach has been
shown to distinguish between coding and non-coding regions (Li 1992). In Chapter

Three, an application is given for the mutual information function in Eq. 2.22:

Pyg(d
M(d) =Y Y Pys(d)log, PﬁI(D ), (2.22)
wEA BEA atp

for symbols &, B € A (in the case of DNA, A = {a,t,c,g}). Pyp(d) is the probability that
symbols « and f are found a distance d apart, and P, and Py are the probabilities of
tinding symbols « and B at any location. The mutual information function is related to

the correlation function (Li 1990):

2
T(d) =YY awagPyg(d) — (Z a,XP,x> , (2.23)

xc€A BEA acA

where a, and ag are numerical representations of symbols « and B. As discussed by
Li (1990), the fact that we are working with a finite sequence means that this M(d)

overestimates the true Mr(d) by

M(d) — My(d) ~ % (2.24)

where K is the number of symbols (for DNA this is always 4) and N is the sequence
length. The shortest sequence used was the sequence of the Homo sapiens immunoglob-
ulin superfamily, member 8 gene (GenBank accession BC004108), which was N = 1750
base pairs in length. Thus for this gene the difference between the estimated and real
mutual information is ~ % = 0.002, which is a factor of ten less than the mutual in-
formation estimate for this gene. Furthermore, since the results below are comparing
the mutual information of the sequence with that of the random sequence, the inac-
curacy is effectively eliminated, since the error should be roughly the same for these

sequences of the same length N and of course the same K = 4.

The mutual information is, at least for large d, proportional to the correlation squared,
I'%2(d) (Li 1990). Even for small d, the mutual information function still provides an

estimate of the correlations. The range of 4 used (up to 1024) means that a reasonable
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Chapter 2 DNA analysis

estimate of the correlations at these larger distances is provided herein. In biological
terms, correlations within regions of genes, and between promoter regions and DNA
are being captured. This length is not sufficiently large to explore longer range correla-
tions such as those between genes—typically tens of thousands of bases—or those that
might exist between activator or silencer regions and promoters, again on the order
of tens of thousands of bases (Levine and Tjian 2003). In whole chromosome analysis
one would expect to find repeating elements and other correlations in “junk” DNA in

addition to correlations within genes.

2.6.2 Higuchi fractal measure

A method for determining correlations in sequences is the Higuchi fractal method (Higu-

chi 1988). Using this method one can compute the Higuchi fractal measure

N-—m
k—1 N-—1 L=

L(k):ngom ; |x (m +ik) —x (m+ (i—1)k)], (2.25)

for k = 1,...,1024 over non-overlapping subsequences of length 4000. The sequence

x (i) is generated by mapping the sequence of bases, s (i):

(

1.0, s(i)=a,
L) 05 ()=t
x (i) = (2.26)
—0.5, s(i)=c¢,
L0, s(i) =g.

Performing linear regression on log L (k) versus log k then gives a slope of —D, where
D is the estimate of the true fractal measure. For a high degree of correlation, one

would expect a value of D closer to one.

One can also apply the Higuchi method to the density of bases in blocks, as carried out
by Lu et al. (1998), however this does not provide a measure of correlations in the se-
quence as the authors claim, but rather correlations in the density function. In the fash-
ion in which it is used in Chapter Three, it can, like the mutual information function,
detect correlations in the actual sequence. As described above it detects correlations

up to 1024 base pairs apart.
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2.7 Conclusions

This chapter presents a number of interesting methods for analysing DNA. The colour
spectrogram method shows promise in highlighting coding versus non-coding regions,
microsatellite repeat regions, and AT (or GC) rich regions. Multifractal analysis shows
a rich amount of information when applied to whole genomes, and this was success-
fully used to classify bacteria. Results on the mutual information and Higuchi fractal
method are left for Chapter Three.

To summarise the novel contributions of this work, they were the combination of mul-
tifractal measure distances with the minimal-span tree algorithm to generate phyloge-
netic trees of bacteria, the discovery of a microsatellite repeat sequence (using a colour
spectrogram method) in a strain of S. aureus, and extending the Higuchi fractal mea-

sure to genetic sequences.
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Chapter

Mutations

HIS chapter examines two methods from Chapter Two for determining

whether long-range correlations exist in DNA: a fractal measure and a
mutual information technique. The performance of these methods and im-
plications of the results are examined in detail. They are used to compare
DNA sequences from a variety of sources. Using software for performing
in silico (simulated) mutations, evolutionary events leading to long-range
correlations are considered and analysed using the techniques presented
in Chapter Two. Comparisons are made between these virtual sequences,
randomly generated sequences, and real sequences. Correlations in chro-

mosomes from different species are also explored.
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3.1 Introduction

DNA is a structure containing a long sequence of complimentary pairing bases, de-
noted by the symbol set {4, t,c, g} (Watson and Crick 1953, Franklin and Gosling 1953).
The genetic material in DNA undergoes a variety of different mutational events (Joset
and Michel 1993, Dover 2000). These mutational events can be considered as string
rewriting rules (Durbin et al. 1998) that lead to correlations in DNA. Repeated use of
short sequences as promoters (Levine and Tjian 2003), or as intron markers (Bon et

al. 2003) can give rise to very long-range correlations.

A number of different techniques have been studied for examining long-range correla-
tions in DNA. These include Lévy walks (Peng et al. 1992), Fourier transforms (Li and
Kaneko 1992, Anastassiou 2000, Anastassiou 2001), and wavelets (Arneodo et al. 1995).
A number of researchers have attempted to explore this by considering power law
relationships in power spectra of DNA sequences. This purports to show long-range
correlations and also to show differences between regions of DNA. In this chapter long-
range correlations are explored using a mutual information technique (Li 1990), and
the Higuchi fractal method is briefly explored (Higuchi 1988).

DNA sequences contain a number of coding regions. These are regions that code for
protein and are marked with stop and start codons, although the presence of these
does not necessarily indicate a coding region. Coding regions may contain introns,
which are regions that get spliced (cut) out before translation from the RNA template
before the protein is made according to the code on the RNA template (which in turn
comes from the DNA). Non-coding regions may just be junk, or may code for reg-
ulatory RNAs (Mattick 2001), such as the XIST gene which switches off the extra X

chromosome in women (Avner and Heard 2001).

This chapter shows that long-range correlations exist for real sequences of DNA and
virtual sequences of DNA, but not random sequences of DNA. The virtual sequences
of DNA are produced by software that simulates a variety of mutational events. The
random DNA has a random sequence generated in software, so it should contain al-
most no correlations. Also explored is whether or not the power spectra show any
differences between coding and non-coding DNA, and between different species of

bacteria.
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3.1.1 Novel contributions

The novel contributions of this work are:

1. Development of software for performing in silico mutations covering a wide vari-
ety of scales, but ignoring structure (Karchin et al. 2005) and/or fitness (Dasgup-
ta et al. 2003).

2. Showing how repeated mutations of different types generate (relatively) long-

range correlations in DNA.

3. Showing that the Higuchi fractal measure provides useful information on corre-
lations in DNA.

4. Showing a relationship between the Higuchi fractal measure and a mutual infor-

mation measure on gene sequences.

This work has been cited by Dehnert et al. (2005), who found synchronisation between
related bacteria in correlation structures, and by Sadovsky (2006), who looked at the

information capacity of genomes.

3.2 Sequences examined

For exploring correlations at very large distances, the following chromosomes were
used: Homo sapiens chromosome 20 (Deloukas et al. 2001), Mus musculus chromosome
2 (Mouse 2002, Gregory et al. 2002) and Escherechia coli (Hayashi et al. 2001) (E. coli only

has one chromosome).

3.2.1 Real sequences

In order to compare correlations in real DNA with those in short random and short
virtual DNA sequences, a selection of twenty short, real gene sequences from vari-
ous organisms was chosen. Their accession numbers, and descriptions are shown in
Table 3.1.
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Table 3.1. Details of the real mMRNA sequences used. The GenBank (Benson et al.
2003) accession numbers and descriptions of the twenty short, real mMRNA
sequences used. For a discussion of messenger RNA (MRNA) see Chapter

Two

NOTE: This table is included on page 26 of the print copy of the thesis
held in the University of Adelaide Library.

3.2.2 Random sequences

To compare the mutual information in real and virtual sequences, twenty random se-
quences of 10 000 bases in length were generated, where all four bases have equal
probability of appearing in each position. This equiprobability is not exactly true in
general, but it does not matter for the purposes of generating virtual sequences, what
matters is a reasonable model of the types of mutations.
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3.2.3 Virtual sequences

The twenty virtual non-coding regions are generated by the latest version of my soft-
ware for exploring mutations in DNA (Berryman et al. 2003b). It implements the fol-

lowing in silico operations:

e Base substitutions, where one base pair has been replaced with a different base
through some mechanism (such as UV irradiation with an absent or partly un-

successful repair process).
e Additions, where a base pair has been added to the sequence.
e Deletions, where a base pair has been removed from the sequence.
¢ Flips, where part of a sequence has been replaced by its reverse complement.

e Fills, where a sequence of repetitive elements (of length 1 to 4) has been inserted
up to 50 times. The exact number of repetitions is chosen at random from a uni-

form distribution, as is the length.

e Copies, where part of a sequence (up to 100 bases in length) has been copied. As

with the fill operations, the length is chosen from a uniform random distribution.

The flip, fill, and copy operations are illustrated in Figure 3.1. These operations are
meant to simulate small scale general mutations, and larger scale ones of the type that
occur in non-coding DNA. A more detailed discussion of the biology can be found in
Chapter Six (Section 6.1), but for the purposes of this model, this can safely be ignored,
as the base mutation frequencies and specifics of large scale processes do not change
the overall trends modelled herein. In each run of the simulator one of the random
DNA sequences was taken and up to 30 (the exact number chosen from a uniform
random distribution) of each of the above mechanisms were used to generate long-
range correlations in the DNA sequences. With some experimentation it was found
that, as one would expect, the fill and copy mechanisms are the primary drivers in

creating long-range correlations.

Page 27



3.2 Sequences examined

Fill:

ATTG ATTG ATTG ATTG
Copy:

ATGGCCGATTATT

ATGGCCGATTATT ATGGCCGATTATT
Flip:

ATGCCCGATTATT

AATAATCGGCCAT

Figure 3.1. Mutation operations. This figure shows the three operations: fill, where a sequence
of repetitive elements of length 4 (in this case) is added; copy, where a part of the DNA
sequence is copied; and flip, where part of the DNA sequence is replaced by its reverse

complement.
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3.3 Results

3.3.1 Short DNA sequences

To analyze the short DNA sequences (real, virtual, and random) using the mutual in-
formation function (Eq. 2.22), one can compare the mutual information plot with the
average * standard deviation plot of the mutual information function. This is done for
100 randomised sequences with the same base distribution, but in random order, thus

eliminating correlations. Examples of this are shown in Figure 3.2.

The maximum distance at which significant correlations were present was determined,
up to the maximum distance studied of 1024. The results of this for the 20 real, virtual,
and random sequences are shown in Table 3.2. No long-range correlations are present
in the benchmark random sequences as one would expect, however correlations up
to distance d > 1024 are present in the virtual sequences, and even longer range cor-
relations of distance d > 1024 can be found in real sequences. Because the mutation
process used to generate the virtual sequences was random, there was a significant
variation in the length of correlations present. This corresponded well to the num-
ber of repeated elements and copy mutations, in particular with the copy mutations.
Future work will attempt to quantify the mutual information values with a directed
model of evolution where real sequences are taken and mutation operators applied in
a realistic fashion. For example, point mutations are much more likely to be seen in
the “wobble” positions of codons than elsewhere, and this in turn is much more likely

than insertions and deletions.

The results of using the Higuchi fractal method are shown in Table 3.3. Note that these
estimates are relatively independent of the choice of mapping of bases onto numbers—
several different mappings were tried with variations on the order of 0.001—and the
numbers are in fact overestimates of the true fractal dimension. The fractal dimensions
appear unrelated to the mutual information distances, thus illustrating the fact that
the mutual information function is a better characterization of the distances at which

correlations are present.

Page 29



3.3 Results

Table 3.2. Approximate distance in base pairs at which there is no significant mutual in-

formation. This table shows the approximate (£50) distances at which the mutual
information function drops down to the level of the uncorrelated sequences of the same
base distribution. The numbering of the real sequences matches the ordering they are
given in Table 3.1. The numbering of the virtual sequences corresponds to the random
sequence which was mutated to produce that virtual sequence, but bears no relationship

to the numbering of the real sequences.

Sequence number | Random | Virtual Real
1 0 0 > 1024
2 0 0 > 1024
3 0 > 1024 700
4 0 100 800
5 0 50 0
6 0 0 > 1024
7 0 850 > 1024
8 0 0 > 1024
9 0 0 > 1024
10 0 800 > 1024
11 0 0 > 1024
12 0 > 1024 | > 1024
13 0 100 950
14 0 > 1024 600
15 0 > 1024 | > 1024
16 0 0 > 1024
17 0 0 > 1024
18 0 0 > 1024
19 0 > 1024 | > 1024
20 0 0 > 1024
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(a) This figure shows the plot of the
mutual information function M(d) in
Eq. 2.22 against base distance d for the
sequence of the MAP kinase-activated
protein kinase 2 gene from Mus muscu-
lus, shown in a darker line style, com-
pared with the set of 100 randomised se-
quences of the same base distribution,
the lighter band. The graph of mu-
tual information in the MAP kinase gene
mostly sits about the “noise floor” of
the randomised sequences, in which the

correlations have been destroyed.

107

(b) This figure shows the plot of the
mutual information function M(d) in
Eq. 2.22 against base distance d for
the virtual DNA sequence number 14,
shown in a darker line style, compared
with the set of 100 randomised se-
quences of the same base distribution,
shown as a lighter band. The graphs
mostly overlap, indicating few signifi-
cant correlations in the virtual sequence
when compared with the randomised
sequences containing little to no corre-

lations.

Figure 3.2. Plots of mutual information for real and virtual DNA sequences. This figure
show the plots of the mutual information function M(d) in against base distance d for
(a) a real sequence and (b) a virtual sequence. At larger distances, there are fewer
symbols at that distance that are available for computing the mutual information, so

the over-estimates increase in value, producing a slight slope to the graphs
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Table 3.3. Estimate of fractal dimension of DNA sequences. This table shows the estimates

of the fractal dimension as ascertained using the Higuchi method described by Eq. 2.25.
The numbering of the real sequences matches the ordering they are given in Table 3.1.
The numbering of the virtual sequences corresponds to the random sequence which was

mutated, but bears no relationship to the numbering of the real sequences.

Sequence number | Random | Virtual | Real
1 1.104 1.103 | 1.098
2 1.103 1.094 | 1.095
3 1.104 1.094 | 1.118
4 1.104 1.086 | 1.110
5 1.103 1.086 | 1.092
6 1.102 1.094 | 1.103
7 1.105 1.100 | 1.105
8 1.103 1.102 | 1.087
9 1.102 1.093 | 1.080
10 1.103 1.099 | 1.099
11 1.103 1.089 | 1.087
12 1.104 1.103 | 1.098
13 1.103 1.099 | 1.098
14 1.104 1.091 | 1.055
15 1.104 1.100 | 1.101
16 1.103 1.103 | 1.090
17 1.102 1.102 | 1.097
18 1.102 1.091 | 1.094
19 1.102 1.099 | 1.099
20 1.103 1.099 | 1.091
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Table 3.4. Average Higuchi fractal dimension over whole chromosomes. This table shows
the average Higuchi fractal dimension D over blocks of length 4000 in the chromo-
somes listed, along with the variance, and the distance d at which correlations exist as

determined by mutual information function in Eq. 2.22

Sequence mean (D) var (D) d
Eschercia coli K12, complete genome | 1.10039 | 2.07 x 107° | > 1024
Mus musculus chromosome 2 1.09691 | 7.59 x 1075 | > 1024
Homo sapiens chromosome 20 1.089 0.00991 > 1024

3.3.2 Whole chromosome sequences

The results of analyzing chromosomes from E. coli, M. musculus, and H. sapiens using
both the Higuchi fractal measure, D, and the mutual information function, M(d), in-
dicate the presence of correlations up to the maximum length explored (1024). This is
shown in Table 3.4. There is less variation in these measures for E. coli, which has a
greater proportion of gene-coding DNA than other sequences. These gene-coding re-
gions allow less room for repeating elements due to evolutionary and size constraints,

and thus have a lower correlation distance.

3.4 Conclusions

This Chapter showed that long-range correlations are present in short sequences of real
DNA, “virtual” DNA, and throughout whole chromosomes. The simulation of genetic
mutation events in “junk” DNA with fill, copy, and mutate operations also produces
long-range-correlations approaching 1024 bases in length. The negative test, with com-
puter generated random sequences, succeeds in that no significant long-range corre-
lations were found. These results confirm that mutational events in non-conserved

regions of DNA can give rise to long-range correlations.

To summarise the novel contributions of this work: they are the development of soft-
ware for performing in silico mutations on a variety of scales, how these mutations
generate correlations, and relationships between the Higuchi fractal and mutual infor-

mation measures in studying these correlations.
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Chapter

Viruses and memes

IN this chapter a variety of network models describing transmission

across a network are explored. In particular there is a focus on trans-

mission across composite networks, or “networks of networks”, in which

two or more separate networks are interconnected.

In a disease context, the introduction of two interrelated viruses to hosts in
a network is simulated, in order to model the infection of hosts in a class-
room situation, with high rates of infection within a classroom due to close

contact of longer duration, and lower rates of infection between classrooms.

The hosts can be either Susceptible to infection, Infected, or Recovering
from each virus (an SIR model). During the infection stage and recovery
stage there is some level of cross-immunity to related viruses. The effects of

immunizing sections of the community are explored

In a share market context, memes, or “viral ideas”, are introduced into a
virtual agent-based model of a share exchange. By varying the parameters
of the individual traders and the network structure, emergent behaviour

can be demonstrated, including boom and bust cycles.
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4.1 Introduction

4.1.1 SIRS model

An SIRS “household” model describes the spread of an infectious agent through a

network with two types of connections between infectable agents (Ball 1996):

1. Local connections within a household that have a high probability of infection

transmission.

2. Connections between households that have a low probability of infection trans-

mission.

The three states of an SIR model are:

1. Susceptible to infection.
2. Infected.

3. Recovered or removed (by death or quarantine).

The agents modelled in this chapter are people, but they could be any organism sus-
ceptible to any type of infection. In an SIRS model, agents then move back into a
susceptible state due to the introduction of new strains of the virus from an external
source or to the existing virus evolving within the network. In the model presented,
hosts are not permanently removed through death as only the common cold is con-
sidered as passing through an otherwise healthy population. Further, since a rapidly
mutating virus is considered, hosts are not considered as removed through having per-
manent immunity to a virus. Quarantine is also not considered, however this is not as
good an assumption as the previous two, since in the data compared with, there are a

number of students absent when sick due to their infection.

SIS (where the R state is ignored) and SIR household models have been used to ana-
lyze infections within sexual networks (Liljeros 2004, Jones and Handcock 2003) and
computer networks (Leveille 2002). Typically, mean field analysis is used to determine
the behaviour of the systems under varying parameters (Ball 1999, Ball 2001, Ghoshal
and Sander 2004). More recent analytical work by Rand (1999) and Keeling and Rand
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(2001) takes a stochastic differential equation approach. Specifically, the authors de-
velop correlation equations which describe the time evolution of low-order correla-
tions. The particular form of the correlation equations are called pair approximations
because they are stochastic differential equations for the second-order moments (pair
numbers). These better capture the spatial nature of epidemics in which local corre-
lations matter. A related perspective is the work of Koplik et al. (1988), which covers
transport and dispersion in random networks. One could consider the initial infection
of an agent as an “injection” into a random network and consider the spread of the

virus in terms of its diffusion and transport through the network.

4.1.2 Memes

The term “meme” comes from Dawkins (1989), and refers to “a unit of cultural trans-
mission, or a unit of imitation.” A meme can perhaps best be defined as “a viral
idea” (Gaiman 2005), and this is the one used here. In this chapter a meme is con-
sidered to be an idea about the value of a company (as reflected in its share price) and
these memes are spread through a network. The spread of memes and their effect on
the share market has been explored by Frank (1999), who based his memes’ values
(and hence efficiency of spread via imitation) on the share price return. He found that
if the meme value is based on the return, then only long term fluctuations can be ob-
served, with no explanation of shorter term fluctuations (such as those seen in “day
trading”). Here these fluctuations are studied, and hence memes’ values are based on

their immediate effect on generating profits (or losses).

4.1.3 Novel contributions
The novel contributions of this work are:

1. Development of a model for examining the transmission of viruses in a primary
school, with a variety of different social interactions: for example separate sci-
ence classes and lunchtime versus classroom interaction of teachers and children

among other things.

2. Development of a model of social interactions between sharemarket traders, with
a spread of viral ideas (memes) about share prices, and exploration of the net-

work structure on the share market (price) fluctuations.
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4.2 Model

4.2.1 Viruses

An entire school of children with grades {g} and classes for each grade {c, } was mod-

elled. It had several types of (social) network connections:

1. Connections within a classroom, such as in Figure 4.1 where the squares denote
students, along which there is a high probability p; of infection due to large

amounts of time together in close contact.

2. Connections between friends, both within and between classrooms, but not be-

tween students in different grades.

3. Connections between a science teacher and all students of each grade that has

separate science classes.

4. Connections between all teachers of the school.

Connection types 2-4 are modelled with the same probability p, of infection due to the

similar amount of time (a science class or lunch time) spent together.

The type of connection networks used in the modelling herein are either fully con-
nected networks, in that every person within a classroom is connected to every other
person, or connected in terms of a Moore or von Neumann neighbourhood as typi-
cally used in cellular automata. These are shown in Figure 4.1. When these two types
of neighbourhoods are used, the students are arranged in square classes of size x =
L\/Nscgj where N, is the size of class ¢g. For N # x? an extra row of size N — x? < x
can be created to make the class square in size. The probabilities used are shown in
Table 4.1 and have largely been taken from the literature (Gwaltney 2000, Gwaltney et
al. 1967). Probabilities p; and p, have been estimated from the data by solving equa-
tions 4.1 and 4.2 simultaneously and repeatedly over the set of times t (thus we gain

an understanding of the time evolution of the probabilities). These equations are

1) L) 1) L) I(t+1)—I()+R(t+1)
PN PN @) PN O N () T N - R ()~ (D @)
and
I(t+1) L (t+1) I(t+1) L (t+1)

NG+ TN R PN GEF )N, (1)
CI(t4+2)—I(t+1)+R(E+2)’
CON(#+1)—R(t+1)—I(t+1)

(4.2)
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(a) Von Neumann neigh- (b) Moore neighbour-
bourhood. hood.

Figure 4.1. Neighbourhoods typically used in cellular automata. Cellular automata have
the concept of a neighbourhood, which defines the connections between a cell to
its neighbouring cells. In the Von Neumann neighbourhood (a), every square at
position (x’,y) is updated based on the states of the cells in the neighbourhood
{(x,y): |x—=x'|+ ]y —y'| <1}. In the Moore neighbourhood (b), every square at
position (x’,y’) is updated based on the states of the cells in the neighbourhood

{(x,y) s max (|x = o], [y —y']) <1}.

Table 4.1. Table of probabilities used for the simulation of school data. These are the proba-

bilities of going between infection states. All variables have a possible maximum range

of0<p<1.

Variable | Description Default value/range explored
p1 Probability of infection being transmitted from a neighbour in the class X

P2 Probability of infection being transmitted for other connections y

PIR Probability of going from an infectious state to recovered 0.2

PRS Probability of going from the recovered state to susceptible 0.1

pr Probability of a person being friends with another person in the same grade | 0.2

7 Individual immunity to a virus [0,1) in steps of 0.05

where [ is the number of children infected in the class, I, is the number of children in
the other classes in the grade, N is the total number of people in the class, and R is the

number of children in the recovery state.

There is a high probability of infection within a class, in line with studies of transmis-

sion between children in close contact in a hospital setting (Goldmann 2001).

The total probability of a node being infected by virus i in a single time step is given
by
psiti = min (1, 1p1; + fupai) 1 =) [ ] (1 - <5st + (5sz> “ij) , (4.3)
i#]
where a;; is the surface protein similarity between viruses i and j, I}; is the number

of local neighbours (within the class) in the infected state for virus i that the node is

Page 39



4.2 Model

connected to, f7; is the number of friends (in other classes) in the infected state for virus
i that the node is connected to, and Jsx is the Kronecker delta function,

1, s=X
Osx = (4.4)

0, otherwise.

The surface proteins of the virus act as recognition targets for the immune system, and
thus having a high « means that acquiring one of the viruses means the immune system
has a high probability of recognising the other virus. The matrix [«;;] is a symmetric
matrix with a;; = a;; Vivjand a;; = 1 Vi
Levels of immunity # vary with the age of the person. Students within each grade g
are treated as having a fixed general level of immunity 7. The model was compared
with data from an actual school with grades K4, K5 and 1-7. Here, K4 and K5 are
kindergarten classes containing only four and five year olds respectively, the other
grades contain students of a mix of ages (roughly a year apart). Values of immunity
used are x4 = 0.0, 77x5 = 0.05, Heachers = 0.6 and for grades 1 to 7 the immunity is
given by

Ny =005+ F, x€1,...,8, 4.5)

where x is the grade, which seems to be a fit for the school data provided.

4.2.2 Memes

The model market that the memes influence consists of a number of agents (traders),

each with the following attributes:

e A bank balance in cents, that is discretised in units of cents.
¢ A portfolio of shares, detailing how much share of each company the agent holds.

o A set of memes, with a maximum of one per listed company per agent.
Each meme contains the following information:

e Stock price in cents, discretised in units of cents. There is a minimum price of
1c and no maximum price. The initial share price is set to a random number
(uniform distribution) in the interval,

[max (1, Ssharename (0) — 100), Sgharename (0) + 100] where Sy (t) is the share price

of share x at time t.
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e Volume of shares to trade in. This is initially assigned a number in the range

0-1000 inclusive, at random with a uniform distribution.

e A counter c to keep track of how many successes the meme has generated for
the agent in the share exchange. This is incremented each time an agent makes
a profit and decremented each time it makes a loss. It has a minimum value of

Zero.

In order to transmit memes, three things need to be defined: a network structure, a
probability of transmission of meme along links in the network, and the specific mech-
anism of copying. Initially, a simple network structure was considered where the net-
work nodes (traders) were initially connected via directed links with probability p of
a directed link from node A to node B. The memes spread only in the direction of the
link. The set of p values used for networks were {0,0.5,1} for networks consisting of
a single subgroup of 300 agents. These are illustrated in Figure 4.2.2. Also considered
is a scenario where the set of 300 agents was divided into two halves and one half was
connected with probability p1; = 0.5, the other group with probability py; = 1.0 (that
is, fully connected) and connections from members of the first to the second group and
second to the first group with probabilities p1; = pr1 = 0.2. The copying is done by
replacing an existing meme for share x with a new meme copied along the link with

probability
1

ple) = 1+exp(6—c)’
where c¢ is the counter of the success of the meme as defined above. The function is a

(4.6)

simple sigmoid function, and is thus constrained to be in the range [0, 1] as is required
for a probability, and is a low probability for low values of ¢ and high for high values
of c. The (6 — ¢) term is there to shift the function such that it is almost zero probability

for a zero counter, ¢ = 0.

o O
o O

@p=0 (b)p=05 @p=1

Figure 4.2. Networks of share exchange traders. This shows a very simple network of four share
exchange traders, with varying probabilities p of the formation of directed links between

pairs of traders in the initial network construction.
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4.3 Methods

4.3.1 SIRS model

To ensure the model captures important aspects of real infections in a school situa-
tion it was compared with actual school data from the Colegio Nueva Granada in
Bogota, Colombia, collated by the Universidad de los Andes. The data consisted
of reports of infections in students from grades (that is years, or forms) 1-7 and K4
and K5. Given the duration and severity of infections, it is most likely the infections
were caused by rhinoviruses (Gwaltney 2000, Gwaltney et al. 1967) and not bacteria or
the influenza virus (Goldmann 2001). Further, the common cold is much more often
(30-50% of cases) caused by a rhinovirus than an influenza virus—around 5-15% of
cases (Heikkinen and Jarvinen 2003). The classes were approximately 20 students and
there were on average 6 classes per grade. The model directly produces information
on the number of infections per person per ten week period and the numbers of people

in each state in each time step.

4.3.2 Memes

My computer simulated the share market for 100 time steps (or “ticks”), using 300
agents. In the first simulation, each agent was given a random bank balance between
1c and $100. Since inflation was observed and this obscured the other trends (as dis-
cussed further below), the bank balance was restricted to be in the range 1c to $10 in
order to contain inflationary pressure. To simulate different dynamics, various connec-
tion probabilities (including having two subgroups) were used to observe the effect of

network structure and the spread of memes in different networks.

4.4 Results

4.4.1 SIRS model

Figures 4.3 to 4.6 show the number of people in each state over a 10 week period, from
the data and the model with parameters chosen so that the plots are as close (by visual
inspection) as possible. A fully connected network is used, and there is only one virus

being spread through the network. As you can see, the results are similar but different
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in many ways. This could be due to a number of different causes such as inability to
easily quantitatively match the model parameters to the real data set, the inability to

assess the true network structure, or simply the stochasticity of the model.

4.4.2 Memes

The results with a connection probability p = 0.5 and bank balances set at random
(uniform) in the range 1c-$100 are shown in Figure 4.7. One can clearly see inflation
occurring, due to a high level of free cash injected at time t = 0. Note that although
there are three shares used in all the simulations, only results for the MSFT share (not
the one on the New York Stock Exchange) are shown. The range was reduced to 1c-
$10 and the connection probability was varied from p = 0 (Figure 4.8) to p = 0.5
(Figure 4.9) and finally p = 1 (Figure 4.10). Comparing the one at p = 0.5 to the infla-
tionary scenario demonstrates how reducing the amount of free cash in the economy
significantly reduces inflationary pressure, and allows other stochastic meme effects to
be more visible. When the connection probability is reduced to 0, there is no spread
of memes and therefore no chance of any boom effects. When this is increased to 0.5 a
boom effect is noticable, and finally with a connection probability p = 1 we are seeing
some interesting dynamics with higher boom effects but also some significant falls in
the share price. The change from one main group to two subgroups of traders fur-
ther as described in Subsection 4.2.2 accentuates the different dynamics possible in the
spread of memes, and competition between memes gives rise to the sharp boom and
bust cycles shown in Figure 4.11. A diagram showing the spread of memes can be seen
in Figure 4.12. This shows that the different subgroups have different dynamics. In-
vestigation of the time-changes of the distributions of memes (not shown) reveals that
one meme usually builds in popularity in one subgroup before spreading to the other

subgroup, by which time the meme has already evolved in the first subgroup.
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(a) SIRS stages in kindergarten 4 over a 10 week period in
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(b) Actual data of SIRS stages from kindergarten 4 over

a 10 week period.

Figure 4.3. Plot of infections for K4 kindergarten classes. Plot of number of people in S, I,
and R stages over a 10 week period in the data and model for K4 (kindergarten, age 4)
classes. Time is in days for the model, and weeks for the actual data (10 weeks = 70

days total).
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(a) SIRS stages in kindergarten 5 over a 10 week period in

the model.

1101
100 -
901
801
701
60
50
40
301
201
101

SIR Kindergarden 5

5 6 7 8 9 10 11 12
Week

(b) Actual data of SIRS stages from kindergarten 5 over a 10 week

period.

Figure 4.4. Plot of infections for K5 kindergarten classes. Plot of number of people in S, |, and

R stages over a 10 week period in the data and model for K5 classes.
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(a) SIRS stages in grade 7 over a 10 week period in the
model.
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(b) Actual data of SIRS stages from grade 7 over a 10 week pe-

riod.

Figure 4.5. Plot of infections for grade 7 classes. Plot of number of people in S, |, and R stages

over a 10 week period in the data and model for grade 7 classes.
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(a) SIRS stages in grade 8 over a 10 week period in the

model.
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(b) Actual data of SIRS stages from grade 8 over a 10 week pe-
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Figure 4.6. Plot of infections for grade 8 classes. Plot of number of people in S, |, and R stages

over a 10 week period in the data and model for grade 8 classes.
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Figure 4.7. Share market graphs showing inflation. Graphs of the share price and volume traded

when the initial bank balance is in the range 1c—$10. Observe that inflation occurs,

compared with the other graphs that show either flat price trends or varying degrees of

booms due to the spread of memes.
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Figure 4.8. Share market graphs for totally disconnected network. Graphs of the share price

and volume traded when the initial bank balance is in the range 1c—$10 and the social

network is totally disconnected (p = 0). Thus no memes spread and there are no booms

or busts, merely fluctuations about the initial share price.
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Figure 4.9. Share market graphs for partly connected network. Graphs of the share price and
volume traded when the initial bank balance is in the range 1c—-$10 and the social
network is partly connected (p = 0.5). Thus memes can spread and there is a boom
occurring, with some fluctuations. At the end there is a period where no trades occur

due to non double auctions clearing, and thus the price remains static.
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Figure 4.10. Share market graphs for totally connected network. Graphs of the share price
and volume traded when the initial bank balance is in the range 1c=$10 and the social
network is fully connected (p = 1). The social network is large enough that differing

sets of memes can start to occur and we see bust cycles in addition to boom cycles.
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Figure 4.11.
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Share market graphs for a network with two subgroups of traders. The two
subgroups (of 150 traders each) are connected with probability p = 0.2 of links from
each group to the other. The differences in memes between the subgroups can diverge
such that while one group has a buy meme, driving the share price up, the other
can initiate selling, driving the share price down to the point where the other meme
becomes unsustainable and then a “bust” or crash occurs. One can also see a region
where the memes are too diverse, which means in the double auction market that no

trades occur. Trading is still occurring in the other listed shares (graphs not shown).
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Figure 4.12. Distribution graphs for a network with two subgroups of traders. This figure

shows the histograms of the distribution of meme prices, meme volumes, and bank

balances at time step 40 (of 100) for the two subgroups of different connection prob-

abilities. The vertical line in the graphs of the price distributions is the current market

price. The two subgroups (of 150 traders each) are connected with probability p = 0.2

of links from each group to the other. Here you can see there are two distinct sets of

memes forming.
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4.5 Conclusions and future work

4.5.1 SIRS model

The model plots show qualitatively similar features to the actual data, in that the
viruses quickly reach a steady state from just a few infections at the start of each term,
with oscillations as the virus spreads from class to class and back again. This is due to

the network structure, which is captured as accurately as possible.

It is difficult to determine causation for the trends between grades at the moment. One
would like to show that immunity increases with age. This seems to be a slight trend
in the actual data when matched with the current model. The current model does
not match accurately enough the initial conditions of class size and number of classes
per grade—the effects one can observe could simply be due to this. Furthermore, the
structure of the friendship cliques could be changing. One could try and determine
this from patterns of infection within a grade, although the data is limited and this
fact presents general problems for drawing strong conclusions. The data for grade K4,

Figure 4.3(b), and seventh grade, Figure 4.5(b), show an interesting cycling pattern.

Both the frequency data and the SIR data suggest a similar trend in progressing from
grade K4 to grade K5 and grade 7 to grade 8 but there is no discernible trend in pro-
gressing from grade K4 all the way up to grade 8. Perhaps there is a separate virus that
moves through the higher grades that have immunity to the first one. Or perhaps the
grades are just simply too “disconnected”, or maybe the data too incomplete? Another
consideration is simply better hygiene through education; education on prevention
strategies has been shown to correlate with transmission of viruses (Vandemoortele

and Delamonica 2000). Items for future work include:

1. Adding an incubation state (E) (Earn et al. 2000). Rhinoviruses have a 8-12 hour
incubation period during which a person is infected but incapable of passing on
the virus (Harris and Gwaltney 1996). This is not captured in the SIRS model.

. Make «;; a function of time. One possible method is to increment a;; if virus i
2. Make a;; a functi f ti One possibl thod is to i t o if vi
performs worse than the “best” virus j, as measured by total number of infections

by virus j.

3. Exploring analytical solutions using the correlation (stochastic differential) equa-
tion approach (Rand 1999, Keeling and Rand 2001).
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4. Explore the methods developed by Koplik et al. (1988) and extend them to the

spread of viruses in random networks.

4.5.2 Memes

Clearly this model shows the effects of cash in inflation, and that reducing spending
power is an effective way of reducing inflation. Boom effects still occur, however, as the
price is governed by memes that have no relation to the underlying dynamics of busi-
ness but rather to the success of memes. Similar effects are, of course, seen in real life
such as the recent IT share boom where the price of the shares bore little-to-no relation
to the underlying value, and the continual buying of share meant more people making
money, a pattern copied until eventually it was unsustainable and prices crashed. This
could be built in to the model, where the value of the meme is a function of how the

other person is succeeding as a whole. Other ideas for future work include:

e “Pump and dump” nodes, where one trader actively spreads a meme influencing

other traders to buy, in order to sell their own share at a higher price.

e Agents that spread memes to many other traders, yet they do not trade them-

selves, thus mimicking newspapers and other mass media.

o Algorithms as memes—where rather than the memes being simply information,

instead they contain distinct trading strategies (or mixes of multiple strategies).

4.5.3 General conclusions and future work

Different network structures have clear implications for the spread of both viruses and
memes, and this is an area that needs further investigation. General statistical methods
need to be applied to the data, with more simulation runs performed, in order to verify

the effects seen, and also for a more quantitative comparison with real data.

To summarise the contributions of this work they were: the development of models
for the spread of viruses in a school and the spread of ideas (about share price) in
a sharemarket, and interesting results on the impact of (social) network structure on

these systems.
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N this chapter a cellular automaton for exploring gene interactions in seg-
mentation of Drosophila (fruit fly) larvae is presented. Beginning with the
expression levels of maternally expressed genes such as bicoid, this simple
model successfully produces the distinctive expression pattern of the even-
skipped gene in developing larvae. This work highlights how complex gene
interactions in a developing organism can nonetheless be modelled using

simple rules.
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5.1 Introduction

In this chapter a cellular automaton is presented for exploring the segmentation of
Drosophila melanogaster, commonly known as the fruit fly. The development of seg-
ments is controlled by a number of morphogens, proteins that act to control and regu-
late the development and shape of an organism (Wolpert et al. 1998). Although partial
differential equations have been used to explore morphogenesis (Turing 1952, Hol-
loway et al. 2003), it can be argued that cellular automata offer a more powerful, flex-
ible approach for capturing the key features of morphogenesis, of which the segmen-
tation of Drosophila is one example. To quote John Holland (the inventor of genetic

algorithms),

Turing (1952) did manage to use PDE’s to design a model that started from sym-
metric initial conditions, but produced an asymmetric variegated pattern, much
like the colour pattern of a Holstein cow. Even this simple formulation was mathe-
matically intractable: Turing could observe specific examples of the dynamics, but
he could derive no general consequences from the mathematical model. In fact,
he depended on a computer-based version of the model to exhibit the dynamics
of asymmetric pattern formation. Little has been done mathematically since then,

and the problem remains much as it was. (Holland 1995)

Turing’s work on morphogenesis has, however, proven useful, including successes in
describing Drosophila (Holloway et al. 2003). Here an alternative, cellular automaton
approach is introduced, which is naturally suited to describing interactions within and
between cells. Cellular automata allow for a larger set of rules governing the time-

evolution of local protein gradients than PDEs.

5.1.1 Novel contributions

The novel contributions of this work are:

1. Development of a cellular automaton for the modelling of a gene network in
Drosophila, with reproduction of some of the segmentation pattern that occurs in

Drosophila larvae.

2. Exploration of the robustness of the gene network in Drosophila, in terms of vari-

ation of this segmentation with different threshold sensitivities.
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5.2 Gene expression in Drosophila

5.2.1 Overview

The set of genes involved in Drosophila form a complex network with both positive and
negative feedback and branching and converging pathways across and between levels in a
multilevel network (Nijhout 2003). Although the network may appear simple (see Figure
5.1), such simplicity can give rise to highly nonlinear behavior (Nijhout 2002, Holland
1998). Here a subset of genes from the maternal, gap, and pair-rule classes is considered.
The extensive research that has been undertaken into their interactions is reviewed in this

Section.

NOTE: This figure is included on page 57 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.1. Network of Drosophila gene interactions. This figure, from Nijhout (2003),
shows a network of some of the maternal, gap, pair-rule, and segment polarity class
genes. Observe the branching both within and between layers, which gives rise to
complex, nonlinear behaviours.

The maternal genes are those that are transcribed in the mother, and the mRNAs are then
transported to the oocyte (egg) where they are expressed. These then in turn regulate the
expression of the gap genes, which then regulate expression of the pair-rule class of
genes. In the following sections, a simple model is built that includes these interactions
and show how this leads to the expression of even-skipped stripe two — where the term
stripe two refers to the second of seven stripes that appear in the later stages of normal
(wild-type) embryo development, in the formation of a segmented body. In the remainder
of this Section, key genes involved in this segmentation formation are discussed, and

these are all used in the model.
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5.2.2 Bicoid

Bicoid is a morphogen translated from maternally expressed mRNA (messenger ri-
bonucleic acid), the first step in determining the anterior-posterior (AP) axis (Houch-
mandzadeh et al. 2002). The expression of bicoid is also affected by other maternal
effect genes called exuperantia, swallow, and staufen (Fronhofer and Volhard 1987,
Stephenson et al. 1988, St. Johnston et al. 1989). Localization of bicoid mRNA begins
during oogenesis, and is controlled by a number of genes including homeless (Ray
and Schiipbach 1996). As can be seen in Figure 5.2, bicoid expression follows an expo-

nential decay curve.

5.2.3 Nanos

Another morphogen translated from maternally expressed mRNA that helps deter-
mine the posterior region of the Drosophila larva is nanos (Wang and Lehmann 1991).
Although other maternally expressed genes are involved in setting up the posterior
formation, such as oskar and cappucino (Lehmann and Volhard 1986, Manseau and
Schiipbach 1989) , nanos plays a critical role in setting up the posterior region by re-
pressing expression of hunchback and bicoid (Wang and Lehmann 1991, Lehmann and

Volhard 1991). Figure 5.3 shows the expression of nanos in a Drosophila larva.

5.2.4 Staufen

Another maternally expressed morphogen is staufen (St Johnston et al. 1991). This
is expressed in the pattern shown in Figure 5.4. Staufen regulates the expression of
hunchback, although it is unclear if this is through directly regulating the expression

of hunchback or the expression of bicoid.
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NOTE: This figure is included on page 59 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.2. Wildtype expression of bicoid. This figure, from Houchmandzadeh et al.
(2002), shows the wildtype (wt) expression of the bicoid protein in a Drosophila larva.
The top image shows the expression level using a grayscale intensity. The bottom image
shows the numerical values of the intensity as a function of normalised length,
determined from the image, and an exponential decay curve fitted to the data. The

AX
exponential curve takes the form | = e-  where | is intensity, x is position, and A = VD/w
for D the diffusion coefficient and w the protein degradation rate.

NOTE: This figure is included on page 59 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.3. Maternal expression of nanos mRNA. This figure, from Wang and
Lehmann (1991), shows the maternally expressed nanos mRNA in Drosophila,which is
highly localised to the posterior region.
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NOTE: This figure is included on page 60 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.4. Wild-type expression of staufen protein. This figure, from St Johnston et
al. (1991), shows the wild-type expression of staufen protein in both a freshly-laid larva
(A) and a mid-cleavage stage larva (B).
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5.2.5 Hunchback

The expression of hunchback is clearly regulated by bicoid, as can be seen in Figure 5.5.

This expression is a positive feedback cycle, with both bicoid and hunchback itself
driving further up-regulation (higher expression) of hunchback (Houchmandzadeh et al.
2002,Wu et al. 2001). Wu et al. suggest that positive feedback is the only mechanism for
the second hunchback stripe in the posterior region. However, Houchmandzadeh et al.
show that mutations in staufen affect the boundaries of hunchback by a mechanism other
than by staufen changing regulation of bicoid expression. Further, staufen expression is
localised to both the poles (the ends of the larvae) (see Figure 5.4). Hunchback
expression is also repressed by nanos in the posterior region (Irish et al. 1985), and

possibly by knirps (Sauer and Jackle 1995).

NOTE: This figure is included on page 61 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.5. Expression of bicoid and hunchback proteins at different
temperatures. This figure, from Houchmandzadeh et al. (2002), shows the levels of
bicoid (a) and hunchback (b) as a function of normalised length, for various different
environmental temperatures at which the embryos were growing. Note the small spread
of hunchback levels for quite a large spread of bicoid levels, especially in the region
highlighted in Subfigure (b) where hunchback falls sharply. Subfigures (c)-(f) show all the
profiles for the boxed region in Subfigure (b) for temperatures of 9°C, 18°C, 25°C, and
29°C respectively.

5.2.6 Kru“ppel

Hoch et al. (1991) carried out a detailed study of Kr™ uppel activation and found that
bicoid activates expression of Kr” uppel, while hunchback represses it (Hoch et al. 1991).
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In other work, they also found that the Kr'uppel promoter contains binding sites for
activation by bicoid repression by knirps (Hoch et al. 1992). The typical pattern of
Kr uppel expression is shown in Figure 5.6.

NOTE: This figure is included on page 62 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.6. Expression of Kru“uppel. This figure, from Small et al. (1992), shows the
expression of Kr'uppel in the darker regions.

5.2.7 Knirps

Knirps expression is activated by bicoid in the anterior end of the Drosophila larva

(Rothe et al. 1994). Knirps expression in wild-type Drosophila is shown in Figure 5.7,

NOTE: This figure is included on page 62 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.7. Time evolution of knirps expression. This figure, from Pankratz et al.
(1990), illustrates the expression of knirps in early Drosophila development (a) and at a
later stage (b) where the anterior knirps stripe has fully formed.

5.2.8 Giant

Giant is activated by bicoid and repressed by hunchback (Eldon and Pirrotta 1991), and
its expression pattern is shown in Figure 5.8.
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5.2.9 Even-skipped

Even-skipped expression is controlled by activation by hunchback and bicoid (Small et
al. 1992, Frasch and Levine 1987). Knirps can act to repress bicoid-mediated activation
by binding to promoter sites near even-skipped sites (Arnosti et al. 1996). Pankratz et al.
(1990) detail the importance of Kr" uppel and knirps in regulating stripe formation but
acknowledge other gap genes may be involved. Small et al. describe the involvement of
Kr uppel, giant, bicoid, and hunchback in the regulation of even-skipped stripe two

(Small et al. 1992). The pattern of even-skipped expression is shown in Figure 5.9.

NOTE: This figure is included on page 63 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.8. Expression of giant and even-skipped. This figure, from Small et al.
(1992), shows the expression of giant in the darker region, and the position of even-
skipped stripe two in the narrow darkest region to the left of centre.

NOTE: This figure is included on page 63 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 5.9. Expression of even-skipped. This figure, from Small et al. (1992), shows
evenskipped expression in Drosophila, with stripe two, regulated by Kr'uppel, giant,
bicoid, and hunchback, shown in a darker colour.
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5.3 Cellular automaton modelling

5.3.1 Overview

In cellular automata, discrete locations in space (cells) are updated at (discrete) time
t based on the history of their own state and those of some set of the other cells. In
the model herein, cells are updated based on their state and the states of neighbouring
cells at the previous time step. The type of neighbourhood used is the Moore neigh-
bourhood given in Figure 4.1(b), since this seemed the most realistic. The rules for
updating are a set of expression level functions, defining the expression of a protein in
terms of the current state—expression of proteins—of the cell and (for some, but not

all proteins) the expression levels in the neighbouring cells.

For each of the expression level functions, as much of the biological information was
used as possible. Where this is unclear or uncertain, reasonable assumptions were
made about the biology and/or information was left out of the model. It is found that
in determining the overall position of the stripes, the unused information makes lit-
tle difference to the general trends when compared with the actual expression levels
shown in Figures 5.2 to 5.9. Expression levels are all functions of discrete cell position
(x,y,z) and discrete time t. The normalised position along the anterior-posterior axis
is denoted by x, where x = 0 corresponds to the most anterior position and x = 1 cor-
responds to the posterior. Similarly, y is the normalised position in the ventral-dorsal
axis, and z is the normalised position in the medial-lateral axis. Many of the formulae
used for computing the change in expression levels are based on simple thresholds. In
this chapter it is shown that this can produce results concordant with biological obser-
vations, but cannot explain the observed robustness to variations in expression levels
of the genes being thresholded, with much trial and error needed to find the settings
of the thresholds.

5.3.2 Bicoid model

The maternally expressed pattern of bicoid expression is a fixed pattern, with an expo-

nential decay function from the anterior end to the posterior end, and is of the form

Ey (x,y,z,t) = exp (—2|0.05 — x]), (5.1)
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where Ej, (x,v,2,t) is the bicoid level at normalised position (x,y,z) at time ¢, E, €
(0,1). Note that two exponential decays away from a normalised position of 0.05 are

used, to reflect better the true gradient as shown in Figures 5.2 and 5.5.

5.3.3 Nanos model

The maternal nanos expression is localised quite specifically and uniformly, in the pat-

tern

0.7, x>0.9,
E.(x,y,zt) = (5.2)

0, otherwise,

where E, is the level of nanos at position (x,y, z) at time t.

5.3.4 Staufen model

The maternally expressed pattern of staufen is treated as a pair of exponentially decay-
ing functions, starting at both ends, roughly in line with the general trends observed
by St Johnston et al. (1991) (see Figure 5.4). We can also make the assumption that
this has an exponential trend in line with diffusion equations and is similar to bicoid

expression. Thus the following function can be used for describing staufen expression,
3
Es (x,y,z,t) = 1 (exp (—3x) +exp (B(—1+x))), (5.3)

where E; (x,y,z,t) is the level of staufen at position (x,y,z) at time ¢, E; € (0,1).
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5.3.5 Hunchback model

For a cell at position (x,y,z,t), the level Ej, of hunchback is given by the following

equation,

(sig(Eh(t — 1)+ Ep(t—1

+Es(t—1) — Ex (t—1)), if sig(Ep(t—1) + Ep(t — 1)
En(x,y,z,t) = ¢ +Es(t—1) — Ex(t—1)) > 0675 (5.4)
and E,(t—1) < 0.1,

0, otherwise,

where 1

and Ej, (x,y,z,t) € [0,1] is the level of hunchback at position (x, y,z) at time ¢, and Ej is
defined below for knirps. Note that one can omit the position of the expression levels
to save space, as these are all (x, y,z), and thus show that the expression of hunchback
in a cell depends only on the levels of the other proteins in the cell at the previous time

step, t — 1.

5.3.6 Kriippel model

For a cell at position (x, y, z, t), the level of Kriippel, E,, is given by the following equa-

tion,
.

0.7, 05< Ey(x,y,z,t—1) <0.85

and Ey(x,y,z,t —1) > 0.4
E, (x,y,z,t) = (Y ) (5.6)

and Ex(x,y,z,t —1) < 0.65

0.1, otherwise,

Page 66



Chapter 5 Drosophila

5.3.7 Knirps model

For a cell at position (x,y,z,t), the level of knirps, Ey, is given by the following equa-
tion,

;

sig(Ep(x,y,2z,t—1)), Ep(x,y,z,t—1)> 0.8

0.8, Ey(x,y,z,t —1) > 04
Ex (x,y,2,t) = (5.7)
and Ej(x,y,z,t—1) < 0.55,

0.1, otherwise,

\

5.3.8 Giant model

For a cell at position (x, y, z, t), the level of giant, E,, is given by the following equation,

p

0.7, Eu(,x,y,z1t) > 075

and Ex(x,y,z,t—1) < 0.6
E¢ (x,y,2,t) = (5.8)
and E,;(x,y,z,t — 1) < 0.6,

0.1, otherwise.
\

5.3.9 Even-skipped model

Based on work by Small et al. (1992) and Pankratz et al. (1990), one can use the following

equation for E,, the level of even-skipped,

(sig(%Eh(x,y,z,t -1)

+%Eb(x,y,z,t —-1)), |/1/,—| Z E,(p,t) >02
Eo(x,y,2,t) = pel (5.9)
and W] Y E;(p,t) >02,
peN
0, otherwise,

\

where N is the neighborhood of points
N={y,2): |x —x| <1,y —y| <1, —z| <1,(x,y,7Z) # (x,y,z)} about the
point (x,v, z).
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5.4 Results

5.4.1 Gene expression in the Drosophila model

The results herein show the x-y plane in its usual Cartesian arrangement and the choice
of co-ordinates as detailed in Subsection 5.3.1 ensures the images produced by the soft-
ware are in the standard orientation used for displaying Drosophila expression levels,
with the anterior to the left and the dorsal to the top. The expression levels for each
gene lie in [0, 1], these are mapped linearly onto the range for each 8 bit ({0, ...,255})
RGB (red, green, blue) component, up to a maximum of three genes (one per compo-
nent). Figure 5.10 shows the simulated bicoid expression levels. They appear quite
similar to the actual levels of bicoid expression seen in real Drosophila as shown in
Figure 5.2, although the exponential tail off towards the anterior end is more clear. Fig-
ure 5.11 shows the nanos expression, set to be expressed at the most posterior region,
and not expressed elsewhere. With staufen, a fixed expression pattern was also used,

and this is shown Figure 5.12.

Figure 5.10. Modelled expression of bicoid. This figure shows the level of bicoid in a set of cells
representing a cross-section (fixed z) through a Drosophila larva, with the anterior to
the left and the dorsal to the top. The colour intensity represents the expression level:
darker for low levels of expression and lighter for high levels. Note the exponential
decay of intensity as we move away from a normalised x position of 0.05, which is

three cells from the left (anterior) side.

Figure 5.13, shows the level of hunchback after its expression has stabilised into a fixed
pattern, and Figure 5.14 shows both hunchback and bicoid simultaneously for the same
point in time. Note that hunchback has a well defined boundary in the middle region,
whereas bicoid has a continuous gradient. Experimentation (not shown here) revealed
that the position of this boundary varied little with changes in the bicoid gradient. This
suggests that the proposals, by Houchmandzadeh et al. regarding the effect of other
genes including positive feedback from hunchback itself in Houchmandzadeh et al.
(2002), are correct.
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Figure 5.11.

Figure 5.12.

Figure 5.13.

Figure 5.14.

Modelled expression of nanos. The level of nanos in a set of cells representing
a cross-section (fixed z) through a Drosophila larva is shown. The red band on the

right indicates high levels of expression and the darker region represents low expression

levels.

Modelled expression of staufen. The level of staufen in a set of cells representing a
cross-section (fixed z) through a Drosophila larva is shown in this figure. The colour
intensity represents the expression level: darker for low levels of expression and brighter

for high levels.

Modelled expression of hunchback. This figure shows the level of hunchback in
a set of cells representing a cross-section (fixed z) through a Drosophila larva. The
colour intensity represents the expression level: darker for low levels of expression and

lighter for high levels.

Modelled expression of hunchback and bicoid. This figure shows the expression
level of both hunchback and bicoid in a set of cells representing a cross-section (fixed z)
through a Drosophila larva. The pattern is simply an overlay of Figures 5.10 and 5.13,

with the lightest regions corresponding to regions where hunchback is expressed.

Page 69



5.4 Results

Figures 5.15, 5.16, and 5.17 show the expression levels for the gap class genes Kriippel,
knirps, and giant. These correspond well with the expression levels shown in Figures
5.6, 5.7, and 5.8, even though the set of interactions has been greatly simplified along
with the form these interactions take. The simplification has resulted in these stripes
being very sensitive to minor changes in bicoid and hunchback expression, with vari-
ations in the normalised expression levels of 0.05 in hunchback and bicoid resulting
in the absence of these stripes in some cases. This highlights the fact that context of
other genes as shown in the network in Figure 5.1 is important in adding robustness to
the gape gene expression against variations in maternal gene expression. Robustness
could also be gained by mechanisms other than the simple thresholding used (Houch-
mandzadeh et al. 2002, Holloway et al. 2003).

Figure 5.15. Modelled expression of Kriippel. The level of Kriippel in a set of cells representing
a cross-section (fixed z) through a Drosophila larva. The colour intensity represents

the expression level: darker for low levels of expression and lighter for high levels.

Figure 5.16. Modelled expression of knirps. This figure shows the expression level of knirps in
a set of cells representing a cross-section (fixed z) through a Drosophila larva. The
colour intensity represents the expression level: darker for low levels of expression and

lighter for high levels.

Figure 5.18 shows the expression of even-skipped stripe two in the virtual Drosophila

larva.
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Figure 5.17. Modelled expression of giant. The level of giant in a set of cells representing a
cross-section (fixed z) through a Drosophila larva. The colour intensity represents the

expression level: darker for low levels of expression and lighter for high levels.

Figure 5.18. Modelled expression of even-skipped. This figure shows the expression level of even-
skipped in a set of cells representing a cross-section (fixed z) through a Drosophila
larva. The colour intensity represents the expression level: darker for low levels of

expression and lighter for high levels.
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5.5 Conclusions

This chapter has presented a cellular automaton with a simplified set of genes and
mostly simple rules governing interaction between those genes. Despite this simpli-
city, the cellular automaton is able to generate realistic patterns of stripes, up to the
even-skipped stripe two. This suggests that Drosophila could be modelled quite ac-
curately using a simple yet more powerful model taking into account the other gene
interactions, and using interactions consisting of more than thresholding. This would
give added robustness to fluctuations in expression in genes higher in the hierarchy.
The results from the model indicate that further work is needed to refine the mecha-
nisms by which the gene promoters are acting, to give further clues as to how to best

model the interactions.

To summarise the novel contributions of this work: a cellular automaton that models
the Drosophila gene network was developed that generates some of the known seg-

ments in Drosophila larvae, and explores the robustness of this gene network.
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Chapter

The p53 gene

T is known that p53 is an important gene, involved in apoptosis (pro-
Igrammed cell death), DNA repair, and cell cycle progression. In this
chapter p53is considered from two angles: firstly as part of a gene network,
with external, environmental inputs into a complex network of interactions
between proteins and between proteins and genes, and secondly the effect
of mutations on p53 in a heterogeneous population of tumour cells is ex-

plored.

Gene networks are composed of many different interacting genes and gene
products (RNAs and proteins). They can be thought of as switching regions
in an n-dimensional space or as mass-balanced signalling networks. Both
approaches allow for describing gene networks with the limited quantita-

tive or even qualitative data available. This chapter shows how these ap-

proaches can be used in modelling a gene network involved in apoptosis

(programmed cell death) and DNA repair.

The selective advantages and disadvantages of mutations in the p53 gene
on tumour cells and the heterogeneity of tumour cell populations are ex-
plored. Based on an evolutionary computational approach, the model de-
veloped considers changes in mutation rate caused by lack of DNA repair
processes, and the lack of apoptosis caused by mutations in p53. In this
chapter it is found that the degree of robustness of p53 to mutations has a
significant effect on the tumour heterogeneity and “fitness”, with clinical

consequences for people who inherit p53 mutations.
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6.1 Introduction

One in three people are affected by cancer in their lifetime (Caspari 2000). Cancer is
caused by multiple DNA mutations that allow cells to proliferate without limit (Gold
and Sokolowski 2004). The p53 protein is a potent tumour suppressor, and plays a
major role in maintaining a healthy cell cycle. More information on the cell cycle can
be found in Appendix A. During the cell cycle, however, DNA inside cells experi-
ences spontaneous or environmentally induced mutations. Mutations occurring in vi-

tal parts of the DNA sequence can be deleterious for the cell.

One type of mutation that can alter DNA sequences is base pair substitution muta-
tions (Montelone 1998). As the name suggests, base pair substitution mutations occur
when one of the nucleotide bases is changed; this change is classified as either a tran-
sition or a transversion. A transition occurs when a purine (A or G) is changed to
another purine or a pyrimidine (C or T, or U in RNA) to another pyrimidine. For
example, consider a base pairing of guanine (a purine) and cytosine (a pyrimidine).
If during translation the guanine becomes adenine (another purine), the result is the
base pairing of adenine and cytosine in the new strand of DNA. If instead, the guanine
had been changed to cytosine or thymine (or uracil in RNA), the result would be a
base pairing of two pyrimidine’s, which is genetically unstable. This type of mutation,
when a purine is changed to a pyrimidine or a pyrimidine to a purine, is known as a
transversion (Elliott and Elliott 1997).

Because of the speed at which transcription occurs, there is a large window of oppor-

tunity for errors to occur. Some mutations, however, can be silent,

1. if the mutation results in a change of the codon, but not the amino acid it codes

for, or

2. if it alters the amino acid, but not the protein.

Conversely, mis-sense mutations alter the genes such that the amino acid coded for
is changed, or codons that originally coded for amino acids are transformed into stop
codons and vice-versa (Montelone 1998). Mutations to either the p53 gene itself, or the
pathways activated by p53 are the single most common mutations found in cancer and
have been implicated in over 50 per cent of cancer cases (Janus et al. 1999, Zhou and
Elledge 2000). Mutation of the p53 gene or its effector pathways results in malignant

tumours (Brodeur and Lowe 1999).
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In healthy cells, the p53 protein is present at very low concentrations, in an inactive
form. Levels of p53 in the cell are maintained by a negative feedback loop between
it and another protein Mdm2, (Sherr 1998, Vogelstein et al. 2000). There are several
checkpoints in the cell cycle which can prevent the cell from progressing through the
cell cycle if DNA damage is detected. Activation of the p53 protein can occur at two of
these checkpoints in the cell cycle. If DNA damage is detected, p53 is indirectly acti-
vated and stops cells in the G1 and G2 phase from progressing, slows down cells in the
S phase and induces transcription of repair genes (Elledge 1996). For more information

on the cell cycle, refer to Appendix A.

Forms of DNA damage shown to activate p53 include those caused by ultraviolet
(UV) light, other ionizing radiation, and exposure to radio-mimetic drugs (Lakin and
Jackson 1999). Activation of p53in response to DNA damage increases the ability of the
p53 protein to bind to DNA (Lakin and Jackson 1999) and causes a decrease in its affin-
ity for Mdm?2 and hence a decrease in degradation of itself (Alberts et al. 2002). The p53
protein can induce apoptosis! and can also initiate transcription of proteins involved
in DNA repair and cell cycle arrest (Zhou and Elledge 2000). Cell cycle arrest restricts
the cell from entering into the next phase in the cell cycle, until the DNA damage has
been repaired (Alberts et al. 2002). If the DNA damage is too severe, then the cell will
undergo programmed cell death, known as apoptosis. This can be mediated either by
p53 initiating transcription of proteins such as the Bax protein or directly, by stimula-
tion of the mitochondria to produce excess toxic reactive oxygen species (Vogelstein et
al. 2000). Table 6.1 identifies some of the mutations that can occur and their affects on

the activities of p53.

Repair mechanisms play a major role in maintaining the integrity of the genome (Elliott
and Elliott 1997). In cells, DNA repair is constantly occurring and is essential for their
survival. DNA damage reversal is the simplest form of repair; enzymatic action by
DNA ligase repairs simple breaks in one strand of the DNA (Montelone 1998). Another
form of DNA repair is damage removal (Wood et al. 2001). Although not truly a repair

mechanism, cells can also exhibit ways of coping with the damage (Montelone 1998).

Evidence, from both mouse and human models, has shown direct or indirect involve-
ment of p53 in nucleotide excision repair (Yuan et al. 1995, Goukassian et al. 2000).
Lesions that distort the double helix, such as a T-dimer, are repaired by NER (Elliott

!For definitions of key terms, refer to the thesis conventions and glossary in the front matter and

Appendix A.
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Table 6.1. Effect of mutations on p53. From Vogelstein et al. (2000), this table shows
the effect of mutations on p53 and the many ways it may malfunction in tumours.

NOTE: This table is included on page 76 of the print copy of the thesis
held in the University of Adelaide Library.

and Elliott 1997). NER involves the excision of an oligonucleotide—this comprises the
breaking of phosphodiester bonds, on the same strand, on either side of the lesion—the
subsequent gap is filled with the aid of DNA ligase during repair synthesis (Griffths et al.
1996).

When p53 function is reduced due to mutations, the DNA repair capabilities of the cell
are reduced (Gold and Sokolowski 2004). The cell is unable to cease cell cycle
progression at DNA checkpoints and perform DNA repair, so the cell will continue
through the cell cycle and the daughter cells will receive mutated DNA, or incomplete or
broken sets of chromosomes (Alberts et al. 2002). Ordinarily, DNA damage, or telomere
malfunction would trigger apoptosis through p53 to remove these cells (Lowe and Lin
2000), however, mutations to p53 or its effectors can prevent programmed cell death
occurring. The lack of apoptosis causes uncontrolled cell proliferation despite DNA
damage and has been shown to promote oncogenic transformations and tumour

development in mouse model systems (Gold and Sokolowski 2004, Lowe and
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Lin 2000). Attardi and Jacks (1999) performed studies on both homozygous and het-
erozygous mice for a deletion in the p53 gene. Their results showed that both groups of
mice developed tumours at a high frequency; however the homozygotes had a signifi-
cantly shorter average time to develop tumours and a shorter life span. Their studies of
differences between the two sets of mice also indicated that the affects of p53 inhibition

vary in different tissue types.

The revelation that checkpoint function has been strongly implicated in the preven-
tion of cancer (Elledge 1996), has provided significant breakthroughs in research to de-
veloping alternative cancer treatments. Such treatments include the reintroduction of
wild type p53 to p53 mutant tumour lines, which has been shown to induce apoptosis
and tumour regression, when performed in conjunction with chemotherapy (Lowe and
Lin 2000). Other suggested therapeutic strategies involving p53 include the restoration
of p53 function to mutant p53 tumours by p53 gene therapy; also, drugs that are able
to mimic the effects of p53 or modity its effector pathways may be useful (Brodeur and
Lowe 1999). Detection of p53 mutations has proven to be a useful diagnostic tool. Poly-
merase chain reaction (PCR)-based techniques have been used to detect mutant p53 in
exfoliated cells in bladder and lung cancers (Brodeur and Lowe 1999). This would be

a useful strategy in early detection of cancers, or identifying potential cancer patients.

While cancer is understood in very broad terms (Spencer et al. 2004, Hanahan and
Weinberg 2000) and many of the key proteins involved are very well understood (Fut-
real et al. 2004, Arends 2000, Knudson 2002), more research is needed at the gene net-
work level to understand interactions between genes, proteins, and the environment.
It is well known that p53 is an important protein involved in a number of key cell
processes (Vogelstein et al. 2000), which if disturbed can lead to cancer (Spencer et
al. 2004, Hanahan and Weinberg 2000). By modelling the p53 gene network, one can

gain a better understanding of its interactions, with implications for cancer treatment.

6.1.1 Novel contributions
The novel contributions of this work are:

1. Casting the p53 gene network of human cells into the mathematical (switching

network) framework proposed by de Jong et al. (2004b).

2. Exploration of the effect of UV-specific and general DNA damage to cells on the

interactions in this p53 network, and the end result effected.
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The novel contributions made in collaboration with Melissa Ryan were:

1. Exploration of the rate of mutation acquisition in a model p53 gene, as its DNA

repair functions are progressively disabled.

2. Exploration of the effects of p53 mutations on the time to onset of cancer.

6.2 Gene networks

6.2.1 Background

Modelling gene networks gives us a broad, yet important view of vital cell regulatory
functions (de Jong et al. 2004a, Kauffman 1993). Two techniques that have been de-
veloped are mass-balanced signalling networks (Meza et al. 2004, Kurata et al. 2001,
Keern et al. 2003)—of which the Michaelis-Menten kinetics are a particular form (Mu-
rray 2002)—and piecewise-linear differential equations (DEs) (de Jong et al. 2004b, de
Jong et al. 2004a, Edwards and Glass 2000), a generalisation on the work in Boolean NK
switching networks (Glass 1975, Edwards 2000, Edwards and Glass 2000). Although
enzyme kinematics are a useful tool (Murray 2002, Meza et al. 2004), the ODEs involved
are typically quite stiff which increases the computation time (Kurata et al. 2001). Also,
the piecewise-linear DE approach gives a better picture of the qualitative nature of the
behaviour (de Jong et al. 2004a), since they are quick and accurate to integrate (Edwards
and Glass 2000) and effective analytical tools exist for their qualitative behaviour (de
Jong et al. 2004b).

6.2.2 Switching networks

Gene networks present several problems for any sort of quantitative analysis (de Jong et
al. 2004b, de Jong et al. 2004a). Many of the interacting proteins may be unknown,
and even between the known interacting proteins, some of the interactions occur only
under unknown conditions (de Jong et al. 2004a). Furthermore, although techniques
such as microarrays and reverse transcriptase-polymerase chain reaction (RT-PCR)
give gene expression levels (Shoemaker et al. 2001), there is a high variance and mea-
surement error, and they do not typically provide enough detail about the complex

interactions to establish any strict rules of behaviour in the gene networks (Moreau et
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al. 2002). Even in well-established gene networks, such as the p53 network, the de-
tails of many interactions are still being discovered (Vogelstein et al. 2000). Some of
the key ones, such as the feedback loop that exists between p53 and another protein,
Mdm?2, are lacking clear quantitative values (Vogelstein et al. 2000). Consequently, one
is left with an incomplete picture of protein interactions, with imprecise, qualitative
rules—for example, protein A binds to protein B, or protein C activates transcription

of protein D. Basing my analysis on logical switching systems is useful, because:

logical switching systems capture major features of a homologous class of non-
linear dynamical systems governed by sigmoidal functions because such systems
tend to sharpen their responses to extremal values of the variables. (Kauffman
1993)

If one considers a typical sigmoidal function,

x?’l

- 6.1
Y on + xn 6.1)
then it is trivial to show that
g—Z 1, x>0
lim y = lim - = (6.2)
noet e lt e o, x <,

where 6 # 0. Thus in the extreme case, as 1 — oo, we have a simple switching, or step
function. Piecewise-linear (PL) differential equation (DE) models, originally developed
by Glass (1975) and Edwards (2000), offer a way around the problem of a lack of clear
quantitative values, in that they can successfully model systems in a qualitative sense,
including quantitative data where available. Filippov successfully introduced step-
functions, which are important for modelling the switch-like regulatory interactions in

gene networks (Filippov 1988).

6.2.3 Methods
As described by de Jong et al. (2004b), the rates of change of proteins can be written as

£=f(x) - g(x)x (63)

where x = (xq, .. .,xn)T, x € RZ;, the set of vectors with n non-negative elements,

is the vector containing expression levels (copy number divided by cell volume) of
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the n proteins, f = (fi,..., fx) consists of the rates of synthesis of each proteins, and
g (x) = diag(g1,...,4n) is the rate of degradation (de Jong et al. 2004b). The rate of
synthesis of the protein i, f; : R>g — {0, 1} depends on the levels of the proteins, x in

some fashion,

x) =) Kibi (x), (6.4)

lel
for rate parameter x; > 0, and b; : R}, — {0,1} a regulation function, and £ a

possibly empty set of indices of requlation functions. The g; are defined similarly to the
fi, except it is required that g; > 0Vi. The requlation functions b;; are defined in terms of

step functions s, s~ : R> — {0,1} defined as

1, x;>0;

S+ (x]', 9]) = x] J (6.5)
0, X; < 9]

s (x]-, 9]) =1-— SJr (x]', 9]) , (66)

where 6; € R>.

A generalised view of the p53 network, as shown in Figure 6.1, is considered here.
Based on Figure 6.1, one can abstract over the proteins apart from p53 and Mdm?2, and
instead consider x = (xd, Xu, Xp, Xm, XA, XC, xD)’ where x; is the level of DNA damage
kinases, x, the level of UV stress kinases, x,, the expression level of p53, x;, the level of
Mdm?2, xp the combined level of apoptosis (programmed cell death) proteins, x4 for
the angiogenesis proteins, and x¢ for the cell cycle proteins. The network of interac-

tions is shown in Figure 6.2. The following set of equations is used to model the p53

network:
Xp =5pqS" (%4,04) + Spus™ (%, 0u) + Spm ST (Xm, Om) s~ (xp,0p) — gpXp (6.7)
Xm =SmS" (X, Om) s~ (xp,0p) — gmXm (6.8)
xa =sast (xp,04) —gaxa (6.9)
xc =scst (xp,0c) — gcxc (6.10)
xp =sps* (xp,0p) — gpXD, (6.11)

where 0, for some protein (or protein group) a is the level at which the protein b in the
term s st (xc,0,) signals for the synthesis of the protein c at rate s.;,. No equations for
x4 and x, are given as these are input variables. The inequality 6c < 64 < 0p is used,
which has the interpretation that as a first response the cell stops the cell cycle and
signals for angiogenisis, and with the highest levels of damage and stress undergoes

apoptosis (programmed cell death).
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NOTE: This figure is included on page 81 of the print copy of the
thesis held in the University of Adelaide Library.

Figure 6.1. p53-Mdm2 feedback loop. This figure, by Nakade (2004), shows some of
the key players in the p53 network, including the p53-Mdm?2 feedback loop. DNA breaks
and UV stress cause changes in such kinase proteins as ATM kinase and Casein kinase
Il. A kinase is a protein that adds a phosphor atom to a protein. In this case, a phosphor
atom is added to p53. p53 is then termed phosphorylated, and this affects its binding to
Mdm2, altering the feedback loop. The increased levels of p53 then can signal for
inhibition of angiogenesis, cell cycle arrest (to allow DNA repair to occur), and/or
apoptosis. The actual response, simply halting or undergoing apoptosis, is a function of
the input.

For each output variable, there is a target equilibrium position, which exists in some
regulatory domain. Switching domains exist on the boundaries between regulatory
domains. This can be seen in the representation of the domains for p53 and Mdm2 in

Figure 6.3.
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Figure 6.2.

Figure 6.3.

-
|

Influences on p53-Mdm2 network. This network shows with directed arrows the
influences of various inputs and proteins on other proteins. UV stress (denoted by u)
and DNA damage (d) signal for production of p53, which is in a feedback loop with the
Mdm2 protein. Downstream targets of p53 include proteins that signal for angiogeneis
(A), halting of the cell cycle (C), and apoptosis (programmed cell death, denoted by
D).

xm
mm
0,
—» X
o o, 6. 0, 0, m,

Diagram of protein expression values and regulatory domains. The set of protein
expression values for 0 < xp < my and 0 < x,; < my, can be drawn as a 2D plane,
with points lying either in switching domains, the lines at critical values (0's), and the
regulatory domains (lying between critical values). As the level of p53 (x,) increases,
it shifts in to different signalling domains. For example if x; lies in the range (6¢,64)

it means that cell-cycle halting is being signaled for, but not angiogenesis or apoptosis.
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The equilibrium positions and the domains are shown in Table 6.2. Note that m, is the
maximum value of expression of protein a, denoted by x,. For the output protein levels
of interest, one defines critical values—if the protein level x4 lies above the critical
value cg4, this has the interpretation that protein group A is activated, that is the cell
would then be signalling for angiogenesis. These are the primary domains used for the
analysis. An alternate set is used to see what happens if the level of p53 produced in

response to various stress levels is reduce. This set is shown in Table 6.3.

There also needs to be a set of initial conditions. Because this is a qualitative model, it
is sufficient to simply specify regulatory domains for the initial conditions. Of interest

are four different cases,

—_

- (xa,x0) €[0,64) x [0,64) = {(xg,x4) €E R0 < xg <0y, 0 <x, <Oy},

N

(xg, xu) € [0,0q) < (Ou,m.],
3. (xd, xu) S (Qd, md] X [O, gu]/ and
4. (x4,xy) € (64, mg] x (0,,my],
corresponding to varying stresses on the cell; the first one corresponding to no DNA

damage or UV stress. In addition, the initial conditions for the other variables must

also be specified. These are kept constant as shown in Table 6.4.

Page 83



6.2 Gene networks

Table 6.2. Protein equilibrium positions. The equilibrium position(s) for each output protein

level, and the regulatory domains that have been specified for these to occur in. There
are several p53 equilibrium positions—one for each combination of synthesis/binding
rates, the others have only one synthesis rate so only one equilibrium position occurs,

according to the theorems in de Jong et al. (2004b).

Variable | Equilibrium position | Regulatory Domain
Xp (Spa +5pu) /8p (Op, M)
Xp (Spd + Spu+ Spm) /8p (8p, 1]
Xp Spd/ &p (64,0p)
Xp (Spa + 5pm) /8p (6p, 1]
Xp Spu/ &p (04,6p)
Xp (Spu + 5pm) /8 (6, 112m]
Xp Spm/ 8p (04,60Dp)
Xm Sm/m (O, ]
xc sc/gc (cc,mc]
XA SA/8A (ca,ma]
Xp sp/8p (cp,mp]
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Table 6.3. Lowered protein equilibrium positions. Similar to Table 6.2, the lowered equilibrium
position(s) for each output protein level are listed, and the regulatory domains that have
been specified for these to occur in. As discussed previously, p53 has several equilibrium
positions—one for each combination of synthesis/binding rates, the others have only one
synthesis rate so only one equilibrium position occurs, according to the theorems in de
Jong et al. (2004b).

Variable | Equilibrium position | Regulatory Domain
Xp (Spa +5pu) /8p (64,6p)
Xp (Spa =+ Spu +5pm) /8p (Op, M)
Xp Spa/ §p (6c,04)
Xp (Spa +5pm) /8 (64,6p)
Xp Spu/ Sp (6c,04)
Xp (Spu + spm) /8p (64,6p)
Xp Spm/ 8p (6c,04)
Xm Sm/ gm (O, My ]
xc sc/gc (cc,mc]
Xa sa/ga (ca,mal
Xp sp/8p (cp,mp]

Table 6.4. Initial regulatory domains. Initial regulatory domains for p53 (x,), Mdm2 (x,), and

output signals for the halting of cell cycle (x¢), angiogenesis (x4), and apoptosis (xp).

Variable | Initial domain
Xp [0,04]
Xm [0, m1,,]
xXc [0, cc]
XA [0,cal
XD [0, cp]
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Figure 6.4. Graph of states for no external stress on the cell. This graph shows the final set
of states for the input set one, (x4,x,) € [0,04) x [0,6,), representing no external
stress on the cell. States denote the proteins being in particular domains, for example
Tables 6.5 denotes the final state S1. The numbering of the states bears no relation
to the the domains in which the states lie (not given). From the initial equilibrium
state, the cell can transition through a number of regulatory (boxed) and switching
(not boxed) states and lying in an attractor basis with the final equilibrium state in

Table 6.5 as the attractor. Arrow directions denote allowed state transitions.

6.2.4 Results

Each set of initial conditions run through the model produces a set of states that the
cell moves through. It was found that in each case there is a single attractor state that
the system settles into, representing the decision of the cell to either continue normally,
halt the cell cycle, signal for angiogenesis, or undergo apoptosis. An example of the
transition diagram is shown in Figure 6.4. The set of four states, corresponding to
the final states for each input 1-4, and the normal equilibrium positions in Table 6.2
are shown in Tables 6.5 through 6.8. For the alternate set of equilibrium positions

in Table 6.3, the results are the same, except that when a single input is present, the
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Table 6.5. Final state for no external stress on the cell. Final state for input set one: (x4, x,) €
[0,64) % [0,60,). This represents no external stress on the cell. As expected, none of its

responses are triggered, represented by x,; < ca, xc < ¢c and xp < ¢p.

Variable | Final domain
XA [0,ca)
Xc [0, cc)
XD [0,cp)
Xm [0,6)
Xp [0,6,)

Table 6.6. Final state for UV stress on the cell. Final state for input set two: 0 < x; < 6; and
0, < x, < my. This represents one external stress on the cell, in this case UV stress.
Two of its responses are triggered, represented by c4 < x, < my, cc < xc < mc and
cp < xp < mp. In words, this means the cell is signalling for angiogenesis, and has
halted the cell cycle in order to prevent DNA damage, but the cell is not under enough

pressure to undergo apoptosis.

Variable | Final domain
XA (ca,ma]
xc (cc,mc]
XD [0,cp)
X O
Xp (64,6p)

system only signals for the cell cycle to be halted and not angiogensis, and making
ca < cc reverses that. Also, for both inputs being present, the output is that both the
cell cycle and angiogenesis are signaled for, but not apoptosis. This allows potentially

harmful mutations to be passed on to daughter cells.
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Table 6.7. Final state for DNA damage. Final state for input set three: 6; < x; < my and

0 < x, < 0,. This represents one external stress on the cell, in this case DNA damage.
Two of its responses are triggered, represented by c4 < x, < my, cc < x¢c < m¢ and
cp < xp < mp. In words, this means the cell is signalling for angiogenesis, and has
halted the cell cycle to repair DNA damage, but the cell is not under enough pressure to

undergo apoptosis.

Variable | Final domain
XA (ca,ma]
xc (cc,mc]
XD [0,cp)
Xim 0,
Xp (64,6p)

Table 6.8. Final state for DNA damage and UV stress. Final state for input set four: 6; < x; <

my and 6, < x, < m,. This represents two external stresses on the cell, DNA damage
and UV stress. Two of its responses are triggered, represented by ca < x; < my,
cc < xc <mc and cp < xp < mp. In words, this means the cell is so stressed and
damaged that it would be too risky for cell division to occur, which would fix in the

genetic changes to its descendants, so it undergoes apoptosis.

Variable | Final domain
XA (ca,ma
Xc (cc,mc]
XD [cp, mp)
Xm 0,
Xp (0460p)
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6.3 Mutations in p53

6.3.1 Methods

A binary string of given length, G, was used to represent each individual; each bit
could be interpreted as being an allele or a base pair etc. A “0” was defined as being a
healthy bit/allelle and a “1” a mutated bit/allelle. The phenotype of each genome was

expressed as the number of mutations it contained (ie. the sum of “1” bits):
G
Ix = Z xil (6.12)
i=1

where x; is the it bit of the string x.

The fitness function for each individual was simply the sum of “0” bits and could be

expressed in terms of I, as:

F(x) =G — I,. (6.13)

The initial progeny were randomly created, where each bit of the array was set with a

90% probability of being healthy and 10% probability of being mutated.

A portion, g, of each genome was used to represent the p53 gene. The size of ¢ was
set with respect to G. As discussed previously, the p53 gene has numerous roles in
maintaining a healthy cell cycle, such as cell cycle arrest, apoptosis and DNA re-
pair (Vogelstein et al. 2000). In the model, the region representing the p53 gene was
designed such that 60 percent coded for apoptosis, g1, and the other 40 percent for
DNA repair, g».

The evolution of the progeny was studied over fifty cell cycles. During each cell cy-
cle, all individuals underwent conditional spontaneous mutation and DNA repair (if
still functioning). Cells underwent apoptosis if they were sufficiently mutated but the
apoptosis part of the p53 gene was still functioning. All of this is described in more

detail below.

The model considered both silent and missense base pair substitution mutations. The
virtual cells were mutated with mutation rate m per bit per cell cycle. The rate of
spontaneous mutations for E. coli was stated by Elliott to be one error in every 10® nu-
cleotides replicated (Elliott and Elliott 1997). Other rates of mutation have been found

to be in the order of one nucleotide change per 10° nucleotides per cell generation for
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other bacteria (Alberts ef al. 2002) and somewhere in the order of one in 10° or 10° nu-
cleotides replicated for humans (Elliott and Elliott 1997). Since the model considered
only genomes of one hundred bits and the number of generations it considered was
limited due to the time required to perform the computations, using mutation rates of
1/10° over a limited number of generations would have produced little or no effect on
the population. To compensate for this, much larger mutation rates, in the range of
0.05 to 0.50, were used.

For individuals in the model to be eligible for DNA repair, a minimum fitness was
required of the g, region. Each individual that satisfied this minimum fitness level
underwent DNA repair, with a repair rate m;. Again, this rate had no reflection on
the actual rate of repair occurring in cells. The range of values used for m; was the
same as those used for m. Various relationships between m and m; were used, such as
my = m, my = 2m, my = 10m, etc. When cells underwent DNA mutation or repair,

each bit/allelle in its genome had an equal likelihood of experiencing a mutation.

If an individual did not meet the minimum fitness requirement then apoptosis of the
cell was required. For apoptosis to occur, however, a minimum fitness of the g; region
was also essential. Individuals, which required apoptosis because F(x) < f, and that
had a g region with minimum fitness, F(g1) > p1, were then selected for apoptosis. If
the g1 region was too mutated, then apoptosis would not occur and the severely mu-
tated cell would survive and could then undergo cell division to produce two daughter

cells with extremely mutated genomes.

Cell division occurred at the end of each cell cycle, so that each successive generation
had twice the population size of its parent generation. To ensure the cells did not
proliferate out of control, random individuals were killed off directly after cell division

so that the population size was kept to a maximum of ten thousand.

6.3.2 Results

The genome size was set to G = 100, with ¢ = 8 and the initial population size set to
N = 50. For cells to survive, it is essential that the rate of repair exceeds the rate of
mutation, so initially the mutation rate was kept constant at m = 0.05 and the following
repair rates were used: m; = m = 0.05; m; = 2m = 0.1, m; = 4m = 0.2 and m; =

10m = 0.5. Due to the random element within our model, ten trials were run for
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each of these repair rates, recording the mean phenotype (number of mutations) of the

progeny at each generation.

The mean phenotype I,(t) was then plotted against time ¢ (in cell cycles), for each
repair rate considered, and the resultant plot in Figure 6.5 shows a second order poly-

nomial relationship between the mean phenotype I, (t) and time ¢.

Mean Phenotype Vs Cell cycles (mutation rate = 0.5)

100 1

Repair rate = 0.05
904 |----- Repair rate = 0.1 | =-0.0173t% + 2.3359t+ 12.118
— - - —Repair rate = 0.2 R? = 0.997

80 4 — — — Repair rate =0.5

Poly. fit (Repair rate = 0.05)
= = = Poly. fit (Repair rate = 0.1)

| = -0.0074t° + 1.6155t + 12.703
R? = 0.9962

—~ 70 4 (

(2] . .

o === Poly. fit (Repair rate = 0.2)

'% = =—Poly. fit (Repair rate = 0.5)

5 60 1

1S

° 5 I= 0.0018t% + 0.8957t + 11.206
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< R® =0.9986
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Time (cell cycles)

Figure 6.5. Mean phenotype (number of mutations) of cells against generations. The muta-
tion rate m = 0.05. Repair rates considered: m = 0.05 m = 0.1 m = 0.2 and m = 0.5.
The actual curves are represented by the four different line types. A cubic polynomial
was fitted to each of the curves and these are shown in bold. The equations for each
of the fitted polynomials appears to the right of the respective curve, along with the

corresponding RZ.

From these plots, one can see that the phenotype of the population continues to in-
crease with time, for all the repair rates. In other words, if one continued to observe
the genomic activity of the cells, all the cells in the progeny would eventually acquire a
phenotype of 100 (i.e. 100 mutations); the difference between the curves, however, is a
function of the rates of mutation acquisition. The latency to reach this level of mutation

would be different for the different repair rates.
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Table 6.9. Mean phenotype and its derivative for different repair rates. This table shows the

mean phenotype I(#) and its derivative I.(t) for various repair rates (mutation rate =

0.05).
Repair rate L(t) corresponding R? L(t) ‘
0.05 —0.0173t% + 2.3359¢ + 12.118 R? =0.997 —0.346t + 2.3359
0.1 —0.0074#% + 1.6155¢ + 12.703 R? = 0.9962 —0.148t + 1.6155
0.2 0.0018¢% + 0.8957t + 11.206 R? = 0.9986 0.0036t + 0.8957
0.5 0.0052t% 4 0.3179t + 6.187 R? = 0.9943 0.0104t + 0.3179

Differentiating I, (t) with respect to t one can see the rate of mutation acquisition per
cell division. Table 6.9 shows the mean phenotype I, (t) and its derivative I} (¢) for each

curve in Figure 6.5.

Plotting the derivative I} () for each mutation rate in Figure 6.6, we see that the curves
for my = 0.05 and m; = 0.1 both have a decreasing mutation acquisition rate, but the

curves for my = 0.2 and m; = 0.5 both have an increasing rate of mutation acquisition.

From these results, one can hypothesize that the rate of mutation acquisition is of the
form: ax? + bx + ¢ (and concave therefore a < 0). Integrating this back with respect to
t, to give the expression for the mean phenotype, would infer that the curves represent-
ing the behaviour of the phenotype over time are in fact of the form: ax® + bx? + cx + 4,
rather than ax? + bx + c. The rate of mutation acquisition is at first slow and increas-
ing, up to a threshold point; after this point, the cell continues to gain mutations, but
the rate of acquisition decreases. If this theory is correct, then it would follow that the
tirst two curves are in fact past the threshold point at time t = 0. The turning point at
which the mutation acquisition rate goes from increasing to decreasing occurs at some
point ¢t < 0 and hence does not appear. Since the second two curves (m; = 0.2 and
myp = 0.5) still have an increasing rate of mutation acquisition, it would suggest that
this “threshold” point has not yet been reached. If one was to continue to observe the
behavior of the two curves m; = 0.2 and m; = 0.5, they would reach their “threshold
point” and the rate of mutation acquisition would decrease until the entire genome
was mutated (i.e. I,(t) = 100).

To test this theory, the case m = 0.05, m; = 0.5 was considered, and the evolution of

the cell population through 200 cell cycles was followed. The resultant plot is shown
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Rate of mutation acquisition (m = 0.05)

254

——m_1=005
----- m_1=0.1
—--—m_1=02
——m 1=05

Mutations acquired per cell cycle

0.5 4

0 10 20 30 4 50 60
Time (cell cycle)
Figure 6.6. Rate of mutation acquisition per cell cycle. The mutation rate m = 0.05. Repair
rates considered are mqy = 0.05, my = 2m = 0.1, my = 4m = 0.2, and m1 = 10m =
0.5. The equations from Figure 6.5, for the fitted polynomials, were differentiated with
respect to t and plotted. Each line shown displays the mean rate of mutation acquisition

at time t for the respective repair rates considered.

in Figure 6.7. As can be seen from the plot, the function for this curve is a cubic poly-
nomial (with R? = 0.9984), which supports the theory that the rate of mutation would
continue increasing to a point and then begin to decrease. Differentiating this and solv-
ing for I,(t) = 0 will give the cell cycle at which the turning point occurs. Note that
this doesn’t make sense on an individual cell basis, but does when one is considering
the population mean. A different function fitted (such as the logistic function below)
may not have such a turning point, however the cubic polynomial curve seems a good

approximation.

This procedure was repeated, this time keeping the repair rate constant at m; = 0.05
and considering mutation rates m = 0.05, m = 0.01 and m = 0.5. The mean phenotype
was then plotted against time ¢ (in cell cycles), for the three different mutation rates
considered (Figure 6.8). Once again one can see large rates of mutation acquisition
at the beginning, which decrease with time. Once the entire population has a fully
mutated genome the individuals in the population can no longer acquire mutations

and consequently the mutation acquisition rate will be zero.
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Mean phenotype (m = 0.05; m_1=0.5)
100 +
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Figure 6.7. Plot of genomic activity. The genomic activity of the case with mutation rate m =
0.05 and repair rate mq = 0.5 was observed over 200 cell cycles. The actual curve is
the fine line and the bold line over the top is the fitted polynomial. The equation for
the polynomial is shown, with its R? value. Watching the evolution over a longer time
period showed that the shape of the curve changes from convex to concave. The point
of inflection is the threshold point where the rate of mutation acquisition changes from

increasing to decreasing.

The curves representing the mean phenotype of the population may be better ex-
pressed using the logistic differential equation (Boccara 2003). This model is based
on the assumption that a population grows at a rate proportional to the size of the

population and is expressed as:

dI - I
o =Kk (1 - E) ) (6.14)

where [ is the mean phenotype /number of mutations, k is the proportionality constant,

and K is the carrying capacity.

For the model, the carrying capacity K would be 100—the length of the genome, G—
and the proportionality constant k would be determined by the ratio between the mu-

tation and repair rates, (m and m; respectively).
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120 1

100 1

80 4

60 4

40 4

Phenotype (no. of mutations)

204 [/

Mean Phenotype Vs Cell cycles (Repair rate = 0.05)

Mutation rate = 0.05
Mutation rate = 0.5
Mutation rate = 0.1

10 20 30 40 50 60
Time (cell cycles)

Figure 6.8. Mean phenotype (number of mutations) of cells against generations (cell cycles).

Repair rate m = 0.05. Mutation rates considered are m = 0.05, m = 0.1, and m = 0.5.

The concave shape of the curves indicates that the rate of mutatio

decreasing, and hence the inflection points would have occurred at tim

n acquisition is

et <0. For all

curves, mutations are acquired at a decreasing rate until a maximum phenotype of 100

is obtained.
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6.3.3 Discussion

The results obtained suggest that the mean phenotype I, (t) with respect to time is de-
termined by a cubic polynomial of t. The rate of mutation acquisition increases to a
point, before decreasing as the mean phenotype of the progeny approaches a maxi-

mum.

In healthy cells, the acquisition of mutations is kept in check by the repair mechanisms
of the cell. This is best represented by the curve in Figure 6.5 where the rate of repair
is ten times the rate of mutation (m; = 0.5, m = 0.05). There is a greater latency in
obtaining mutations, when compared to all the other cases (i.e. a significantly lower
rate of mutation acquisition). Over time, however, more and more mutations are ac-
quired and the repair mechanisms of the cell become less efficient, allowing the rate
at which these mutations are acquired to increase, up to a point. Past this point, as
the cell becomes more and more mutated, it is no longer able to sustain this increasing
rate of mutation. Consequently, this rate drops off, until the entire genome is mutated.
This process varies stochastically, and this was modelled, resulting in a heterogeneous
population, however since cell division and cell-cell interactions were not modelled,

no conclusions can be drawn as to the spatial nature of tumour progression.

Cells in the human body behave in a similar manner. Over time, they acquire muta-
tions, which are ordinarily kept in check by repair mechanisms, such as those initiated
by the p53 gene. As cells age, however, the efficiency of the repair mechanisms de-
creases and they develop more and more mutations. As the mutations in a cell accu-
mulate, the cell can become malignant, and a tumour will result. In Figure 6.8, with
the mutation rate ten times the repair rate, the repair rate of the cell has virtually no
impact on keeping the mutation rate in check and the progeny of cells accumulate a

mean phenotype of 100 after only 10 cell cycles.

Future research should consider using more realistic mutation and repair rates, and
the interactions of gene and drug therapies on these, to determine their usefulness
and efficacy. Another interesting question is: given the mutations in p53, what are the
benefits and drawbacks in using radiotherapy, which while killing off some cells will

further mutate others?
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6.4 Conclusions

6.4.1 Gene networks

Given a qualitative model of the interactions of the p53 protein in the cell, a simplified
gene network was designed to represent this information. In a qualitative sense this
gives the output that is observed in in vivo and in vitro cells, namely that if not stressed
or damaged, the cell undergoes a normal cell cycle and divides. If there is some dam-
age or stress the cell cycle is halted, and for a significant amount of damage and stress
the cell does not divide and pass on its mutations but instead undergoes apoptosis
(programmed cell death). Shifting the equilibrium positions is equivalent to altering
the response of the cell; for example, moving the equilibrium positions lower means
the cell is less likely to signal for appropriate responses, in particular never undergoing
apoptosis. This would mean that potentially harmful mutations, from the perspective
of the organism, are carried forward into daughter cells upon division of the stressed
and damaged cell. Shifting the equilibrium positions higher means the cell is more
likely to halt and repair DNA and undergo apoptosis for higher (yet lower than nor-
mal) levels of DNA damage. This could be a useful response to have in tumors that
have not lost the capability of apoptosis and suggests future treatments could target
these equilibrium positions through drugs altering the chemical balance and thus the

threshold values in signalling networks.

In future work on the p53 gene network, the angiogenesis, cell cycle, and apoptosis
pathways could be studied in more detail. The use of quantitative data where available
would allow one to build testable models of cell outputs, although the existing model
presented herein agrees with observed qualitative descriptions of cell processes. In
addition to exploring more equilibrium positions and inputs, changes to the network
could be explored. Since many drugs alter the pathways, this research could possibly

impact upon drug selection, dosage, and development of new drugs for treating cancer.

6.4.2 Modeling p53 mutations

The model of p53 mutations offers a simplistic view of the effects of mutation on a pop-
ulation of cells. The model considers the role of p53 in maintaining genomic integrity,

and investigates how mutations to this gene affect the evolution of a population of
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cells. It is observed that the repair mechanisms of the cell are not able to prevent mu-
tations of the cell indefinitely, but instead increase the latency of mutation acquisition.
Because the efficiency of the repair mechanism in cells decreases with age, all replicat-
ing cells are predisposed to potentially developing into a tumour with further muta-
tions fixed in upon replication (Spencer et al. 2004). Methods that can prolong the time
that mutation of the cell is kept in check will reduce the potential of tumour develop-
ment. The results show that increasing the ratio between the repair and mutation rates
increases the ability of the cell to keep mutations in check for longer. Any future gene
therapies or drug treatments could potentially alter these rates in order to prolong life

or possibly even prevent tumours progressing through to cancer.

6.4.3 General conclusions

The p53 gene plays an important role in preventing the accumulation of genetic dam-
age. Loss of its functionality can have a drastic impact on the mutation rate in cells, and
this is explored in the following chapter on cancer. The cell fate (apoptosis or repair)
that p53 selects for is dependent on the types of damage. It was repaired if only one of
UV or general (for example, chemical) damage occurs, but if multiple causes of damage
occur then apoptosis is signalled for. There could be more research done on combining

these two models to look at mutations in the presence of various carcinogens.

To summarise the novel contributions of this work: a switching network model of
the p53 gene network was developed, and the output of this network was explored,
given such inputs as UV-induced and general DNA damage. Mutations in p53 and
their effect on DNA repair processes, and hence on the time to onset of cancer, were

explored.
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Chapter

Cancer

ANCER is viewed as a multistep process whereby a normal cell lineage
Cis transformed into a cancer cell lineage through the acquisition of mu-
tations. In this chapter, the complexities of cancer progression are reduced
to a simple set of underlying rules that govern the transformation of nor-
mal cells through to malignant cells. In doing so, an ordinary differential
equation model is derived that explores how the balance of angiogenesis,
cell death rates, genetic instability, and replication rates give rise to differ-
ent kinetics in the development of cancer. The key predictions of the model
are that cancer develops fastest through a particular ordering of mutations
and that mutations in genes that maintain genomic integrity would be the
most deleterious type of mutations to inherit. In addition, a sensitivity anal-
ysis is performed on the parameters included in the model to determine the

probable contribution of each. This chapter presents a novel approach to

viewing the genetic basis of cancer from a systems biology perspective and
provides the groundwork for other models that can be directly tied to clin-

ical and molecular data.
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7.1 Introduction

The standard perspective on cancer progression is that it is a form of somatic evolution
where certain mutations give one cell a selective growth advantage (Cahill ef al. 1999).
Oncogenesis? is thought to require several independent, rare mutation events to oc-
cur in the lineage of one cell (Nowell 1976). Kinetic analyses have shown that four
to six rate-limiting stochastic mutational events are required for the formation of a tu-
mour (Armitage and Doll 1954, Renan 1993). Hanahan and Weinberg (2000) proposed
the following six hallmark capabilities that normal cells must acquire to become a can-
cerous: (i) self-sufficiency in growth signals, (ii) insensitivity to anti-growth signals,
(iii) evasion of apoptosis, (iv) limitless replicative potential, (v) sustained angiogene-
sis, and (vi) tissue invasion and metastasis. They define genetic instability as an “en-
abling characteristic” that facilitates the acquisition of other mutations due to defects
in DNA repair processes. These characteristics are simplified for the purposes of mod-
elling to the following four: angiogenesis (A), immortality, including evasion of cell
death (D), genetic instability, a function of mutation rates (G), and increased replica-
tion rate (R). Invasion and metastasis (M) is considered as a final step that allows the
spread of a localized tumour. In line with the views of Hanahan and Weinberg (2000),
cancer research is developing into a logical science where the molecular and clinical
complexities of the disease will be understood in terms of a few underlying principles.
The multistep progression to cancer is explored using an ordinary differential equa-
tion (ODE) model, which, despite the apparent complexity of the equations, is based

on basic principles and a minimal set of parameters.

7.1.1 Novel contributions

The novel contributions of this work, carried out in collaboration with Sabrina L.

Spencer and José A. Garcia are:

1. Development of a mathematical model describing, in a general sense, the pro-

gression of normal to cancerous tissue.

2. Exploration of various parameters (such as mutation rates) on the average time

to development of cancer.

2For definitions of key terms, refer to the thesis conventions and glossary in the front matter and also

Appendix A.
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3. Exploration of the kinetics of various genetic pathways to cancer, for example,
do more cells encounter genetic instability before loss of programmed cell death

functionality, or after?

4. The affect of inheriting mutations on the mean age at which cancer occurs.

My key contributions to this work were in:

Helping develop the equations.

Development of the general form of the equations and numerical software solu-

tions to this.

Assisting with the interpretation of results.

Deriving formulae for establishing the range of cell birth and death rates to be

explored in the sensitivity analysis.

7.2 Structure and parameters of the model

Although the model applies to the process of oncogenesis in general, the parameters
are loosely based on breast cancer data. The following cell populations are considered:
a population of 10® normal cells (N), cells which have acquired the ability to induce
angiogenesis (A), cells with mutations which allow them to avoid death (D), cells with
mutations that lead to genetic instability (G), cells with mutations which increase their
replication rate (R), and cells with two or more of these mutations. Cell populations
that have acquired two or three mutations are denoted by listing the mutations to-
gether in alphabetical order (state DRA would be listed as state ADR, for example). A
cell which has acquired all four mutations is labelled a primary tumour cell (T). Al-
though the model only addresses the development in genetic detail, the migration of
tumour cells to other locations in the body and subsequent site invasion is considered

a rate-limited step in the model, with such metastatic cells labelled M.

The spontaneous mutation rate in human cells has been estimated to be in the range
of 1077 to 10~® mutations / gene / cell division (Jackson and Loeb 1998). A sponta-
neous mutation rate of of k; = 1077 mutations / gene / cell division is assumed. The

loss of DNA repair genes can increase the mutation rate by a factor ranging from 10!
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to 10* (Tomlinson et al. 1996). It is assumed that the mutation rate after a genetic in-
stability mutation increases 1000-fold to k» = 10~% mutations / gene / cell division.
Successful invasion and metastasis depend upon acquisition of the other hallmark ca-
pabilities, as well as several new capabilities (Hanahan and Weinberg 2000). To sim-
plify the model, the multistep progression of a tumour cell to a metastatic cell, this
complex process is considered as a single step. It has been estimated that the rate of
successful metastasis is in the range of 107 to 107 per cell division (Luebeck and
Moolgavkar 2002), and so a conservative estimate of k3 = 10~? was used for the rate

of transition from a primary tumour cell to a metastatic cell.

A tumour cannot grow past about 10° cells without angiogenesis supplying blood to
the tumour (Folkman 1990). Thus the size of the tumour is capped at 106 cells until
greater than 10% of the population of non-normal, non-metastatic cells have acquired
a mutation in an A gene. This accounts for the fact that only a fraction of the cells
in a tumour need to send angiogenesis signals in order to develop an adequate blood
supply for the tumour. In addition, populations of non-normal, non-metastatic cells are
always capped by a lethal tumour burden limit of 10'3 cells (Friberg and Mattson 1997),

irrespective of the angiogenesis cap.

Futreal et al. (2004) state that 291 genes have been reported to be implicated in the
causation of human cancer and note that many more cancer genes remain to be iden-
tified. Thus an estimate of 400 genes involved in the development of a primary tu-
mour was used. The number has It is assumed there are 100 genes involved transi-
tions where only one mutation is acquired (e.g. N — A, D — DR, AG — AGR, or
ADG — ADGR), 10 genes involved in transitions where two mutations are acquired in
one step (e.g. N — AD, G — ADG, or AR — ADGR), and 1 gene involved in transi-
tions where three mutations are acquired in one step (e.g. N — ADG or G — ADGR).
This feature accounts for a mutational hit in p53, for example, which could take a cell
directly from N to DGR, as p53 is involved in apoptosis, DNA repair, and cell cycle
progression (Vogelstein et al. 2000). More information on the cell cycle can be found in

Appendix A and the biology of mutation was discussed in Chapter Six.

An estimate that the relative contribution to increased net proliferation for mutations
in the D and R categories is 7 and 3, respectively, an inference made from work by
Tomlinson and Bodmer (1995). Using this D:R ratio of 7:3, a tumour volume doubling

time for breast cancer of 500 days (Friberg and Mattson 1997), and a cell division rate
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Table 7.1. Cancer model parameters. Parameters appearing in the ODE model. The default

value is that used in the ODEs, unless otherwise specified.

Characteristic ‘ Parameter ‘ Range in literature ‘ Default value ‘ Reference ‘
Mutation rate without a G mutation ky 10-7-10"% mut./gene/cell div. 107 Jackson and Loeb (1998)
Mutation rate with a G mutation ko 1070-10"2 mut./gene/cell div. 104 Tomlinson et al. (1996)
Metastasis rate ks 1079-107 /cell division 10~ Luebeck and Moolgavkar (2002)
Number of genes involved in cancer 291+ genes 400 Futreal et al. (2004)

Genes per single, double, triple transitions unknown 100, 10, 1 N/A

Tumour volume doubling time 88-523 (sometimes ;5000) days 500 Friberg and Mattson (1997)
Relative contribution of D:R 7:3-8:2 (inferred) 7:3 Tomlinson and Bodmer (1995)
Cell division rate without an R mutation 1/b once every 1.8-47.5 days 1/10.00 days~! Rew and Wilson (2000)

Cell division rate with an R mutation 1/bg 1/9.92 days’l see section 7.4

Cell death rate without a D mutation 1/d once every 1.8-47.5 days 1/10.00 days ™! Rew and Wilson (2000)

Cell death rate with a D mutation 1/dp 1/10.11 days’l see section 7.4

% of cells needed to signal for A unknown 10% N/A

Angiogenesis cap 10° cells 100 Folkman (1990)

Lethal tumour burden cap 1013 cells 1013 Friberg and Mattson (1997)

for breast cancer of 1/10.00 days~! (Rew and Wilson 2000), the following are calcu-
lated (see Section 7.4 for formulae): cells without a mutation in an R gene divide every
b = 10.00 days, cells with a mutation in an R gene divide every bg = 9.92 days, the
lifetime of cells without a mutation in a D gene is d = 10.00 days, and the lifetime of
cells with a mutation in a D gene is dp = 10.11 days. The birth and death rates are

equal for normal cells and for all cells without a mutation in D or R.

The above information is depicted in a unified fashion in Figure 7.1 and the parameters

appearing in the ODE model are given in Table 7.1.

In the next section, an ODE model is presented that was used to explore the following

areas:

1. The kinetics of various paths to cancer.
2. The effect of inherited mutations on cancer development.

3. A sensitivity analysis of variations in the parameters.

7.3 Construction of the ODE model

Although the development of cancer has inherent stochasticity and several previous
cancer models include stochastic components (Speer et al. 1984, Koscielny et al. 1985),
ordinary differential equations can model the mean of the processes associated with

cancer progression. The goal was to create one “generic” model to better understand
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— k=107 mut/gene/cell div

O b=10.00,d =10.00
@ b=9.89,d=10.00
® b=10.00,d =10.16

wi k,=10" mut/gene/cell div ' b=9.89 d=10.16
—» k,=10° mut/gene/cell div

Figure 7.1.

State diagram of the cancer model. Normal cells (N) can acquire mutations which
give the cell the capability to induce angiogenesis (A), mutations which give the cell
the capability to avoid death (D), mutations which lead to genetic instability (G),
or mutations which increase the proliferation rate (R). These mutations are acquired
at rate k;. After a mutation in G, the mutation rate increases to kp. Cells with
one mutation go on to acquire two, three, and four mutations, denoted by listing the
mutations together in alphabetical order for the cases of two and three mutations.
When a cell has acquired all four mutations, it becomes a primary tumour cell (T).
Finally, tumour cells become metastatic cells (M) at rate k3. Double and triple state
transitions are also allowed, as detailed in the text, but are not shown in this diagram

for simplification. Cell birth rates (1/b) and cell death rates (1/d) have units days .
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the kinetics of cancer progression, not to create a model that captures the variability of

many different types of cancer all at once.

Based on the basic rules outlined in the state diagram in Figure 7.1, 17 ODEs are con-
structed to model a heterogeneous population of cells undergoing the multistep pro-
cess of tumourigenesis. Each equation represents one of the 17 populations of cells
depicted in the state diagram and has the following format: the population of cells in
a state is increased by cells gaining mutations and entering that state from previous
states, is increased by cells replicating and remaining in that state, and is decreased by
cells gaining new mutations and leaving that state for a new state. The populations are

capped by two logistic terms, as detailed below.

The ODEs can be condensed into vector format as follows:

= (e (g (o7%) ) -+ (10— ") )5 (1=t 35 71)

P+
NM
( ‘W) s

where y is the row vector of cell populations; y; is the population of normal cells,
Y2,Y3,...,Y15 are the populations of cells with single, double, and triple mutations, y14
is the number of primary tumour cells (cells with all four mutations), and yy7 is the
number of metastatic cells. Here, diag (-) is the operator which forms the row vector
of the main diagonal of the matrix. The corresponding rate (row) vector is k, with mu-
tation rates k; (mutations / gene / cell division) corresponding to the mutation rate for
element y; in y. The same applies to the birth rates b (day ~!) and death rates d (day !).
The metastasis rate vector is m,, = (0,0,...,0,1077 x y14) + (1/br — 1/dp)y17, corre-
sponding to cells leaving 14 for y;7 at rate 10~%,and a doubling of metastatic cells at
rate (1/bg —1/dp) for 1/bg and 1/dp as given in Table 7.1. The 17 x 17 upper tri-
angular matrix M consists of elements M; ; (j # i) for the number of genes associated

with going from state i to state j, and

M =—Y M, (7.2)
j#i
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is the main diagonal containing the number of genes for leaving each of the states. S is
the 17 x 17 matrix

S=1: : (7.3)

used to apply the cell population caps to the non-normal, non-metastatic cells. Non-

normal, non-metastatic cells are denoted by Py, where

16
Pyt = <22y> : (7.4)

The system is capped at 10° cells using a logistic term if 10% or fewer of the non-
normal, non-metastatic cells are in states with angiogenesis mutations, otherwise this

term is removed. This is expressed in the term a (y), defined as

0, Pl;_% > 10%

a(y) = (7.5)

1, otherwise,

where P4 is the number of non-metastatic cells with mutations in A category genes.
The populations of non-normal, non-metastatic cells are also capped by a lethal tumour
burden limit of 10! cells (Friberg and Mattson 1997), irrespective of the angiogenesis
cap. The ODEs are solved using the Runge-Kutta method of order 5 (Press et al. 1986),
with a variable step size between 1 and 107, to guarantee the errors in calculating the

populations remain within 107,

Below, the normal cell and four single state ODEs are unpacked from the compact
vector form for ease of comprehension. Note that the equations assume a constant,

renewing population of normal cells, since it is assumed that cells leaving state N for
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other states are few enough in number so as not to affect the population of N cells.

dPN

0, (7.6a)

100Pyky (3 x100+3 x 10+ 1) Paky 1_ Pyt PNM
b 106 1013

100PNk1 1 1 cPpk; Pyt Pt
(5‘@)‘ p )70 J\Imqem ) 769

(5
W
(100ka1 CPck2> < B pN_M) ( Pw)/ (7.6d)
("

dPA

> , (7.6b)

b BETE

0Pk, (1 1) cPiky j - Pyt
(bR d) br 106 1013 )/ (7.6¢)

Note that ¢ = (3 x 100 + 3 x 10 + 1) denotes the number of ways of getting into that

state from mutations in any of the genes in any of the previous set of states.

The equations for the other populations follow the same format and can be derived
from the state diagram and from the vector form of the ODEs. In words, Equation 7.6c,
for example, says that the population of cells with a mutation in D is increased by
normal cells gaining a mutation in one of 100 genes in D at a rate of k; every b days.
The population is also increased by cells in state D replicating (but not mutating) every
b days and dying every dp days. The population is decreased by cells leaving state D
and gaining a single mutation in one of 3 other categories (AD, DG, DR) each with
100 genes, by gaining a double mutation in one of 3 ways (DGR, ADG, ADR), with
10 genes being involved in each transition, or by gaining a triple mutation to go to
state ADGR with 1 gene being involved in the transition. The logistic term caps the
total population of non-normal, non-metastatic cells at 10° cells. What is not visible
in this standard form of the ODEs but is present in the vector form is the fact that the
logistic angiogenesis cap is only imposed when 10% or fewer of the non-normal, non-
metastatic cells have a mutation in the A category. Finally, populations of non-normal,

non-metastatic cells are always capped by a lethal tumour burden limit of 10! cells.

7.4 Calculation of cell division and cell death rates

In order to calculate the change in cell division and cell death rates for mutations in R
and D, start with the assumption that birth and death rates are equal for normal cells,
that is, the cell division rate = 1/b = cell death rate =1/d = 1/10 days ™!
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The ODEs are then approximated by equations where the rate of cells entering and
leaving the state are considered as negligible compared with the tumour volume dou-
bling time, since they are several orders of magnitude different. Thus, for cells with

mutations in D but not R, say, consider

dD 1 1

Solving this gives D = Dgexp ((1/b—1/dp)t). A doubling corresponds to 2 =
exp ((1/b—1/dp) Tp). Similarly, for cells with mutations in R and not D, one arrives
at R = Roexp ((1/bg —1/d)t). Taking the natural logarithm of both sides leads to
Eq’s 7.8a and 7.8b,
In2 B
1/br —1/d
In2 B
1/b—1/dp

where T is tumour volume doubling time for cells with a mutation in R but not D

TR ’ (786)

Tp, (7.8b)

and equals T + 50 x 3, where Tp is the tumour volume doubling time for cells with
a mutation in D but not R and equals T + 50 x 7, and where the D:R importance ra-
tio is 7:3. The base tumour volume doubling time is T when the growing tumour has
mutations in both D and R (500 days). The value 50 is chosen to give realistic dou-
bling times for cells with mutations in D (but not R) and R (but not D), on the upper
bound of observed tumour volume doubling times, where the cells typically have both

mutations.

7.5 Kinetics of various paths to cancer

Given that multiple mutations are necessary to form a tumour, we are interested in
whether the specific order of mutations is important. It is currently believed that
the temporal sequence of mutations determines the propensity of tumour develop-
ment (Arends 2000). The extent to which genetic instability (G) determines the timing
of tumourigenesis has been a controversial issue in cancer biology. Some have argued
that an increased premalignant mutation rate (that is, acquiring a mutation in G early)
is necessary for tumour development (Loeb 1991, Rajagopalan et al. 2003). Others have
argued that an increased cell division rate, offering more opportunities to accumulate
mutations, is sufficient for tumourigenesis (Tomlinson and Bodmer 1995, Tomlinson

and Bodmer 1999, Sieber et al. 2003). Although the extent to which angiogenesis (A),
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decreased apoptosis (D), genetic instability (G), and increased replication rate (R) con-
tribute to the development of cancer depends on the type of cancer involved, a better
general understanding of the kinetics of various paths to cancer would be more infor-

mative about their relative importance.

The kinetics of various pathways to cancer were considered by analyzing the dynam-
ics of the different cell populations. By plotting different sets of cell populations, one
is able to identify the individual contribution of each mutation to the development of
cancer. The growing populations of cells plateau at various points in the graphs due
to the imposed 103 cell population cap. In this model, the fastest pathway for tumour
progression starts with a mutation in D, Figure 7.2(a), which increases the population
of potential tumour cells. Next, a mutation in R is acquired, further increasing the
population of cells by clonal expansion, Figure 7.2(b). After acquiring these two muta-
tions, the tumour is sufficiently large to be inhibited by the angiogenesis cap imposed
by the model. For this reason, a mutation in the angiogenesis category occurs next in
the fastest path, Figure 7.2(c). Finally, a mutation in G follows. Figure 7.2(d) shows the
populations of tumour cells, T, and metastatic cells, M. Although the rate k3 = 10~?
is very low, the large increase in population of T cells guarantees that eventually some

cells successfully metastasise.

The model predicts that genetic instability is more likely to be a feature of later-stage
sporadic tumours, in accordance with the view of Tomlinson and Bodmer (1999). This
is because a mutation in G has no direct selective advantage, only an indirect advan-
tage through increasing the mutation rates in other genes. Although genetic instability
can aid tumourigenesis, selection and clonal expansion are the main driving force for
tumour progression in this model, a conclusion which has been proposed previously
by Sieber et al. (2003).
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of various paths to cancer
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Figure 7.2. Fastest path to cancer. (a) Dynamics of cell populations with one type of mutation.

(b) Dynamics of cell populations with two types of mutations. (c) Dynamics of cell

populations with three types of mutations. (d) Dynamics of cell populations with four

types of mutations (T), and those that have metastasised (M). (e) The fastest path to

cancer is by acquiring a mutation in D, then R, then A, then G.

Page 110



Chapter 7 Cancer

7.6 Effect of inherited mutations on cancer development

Here the effect of different inherited mutations on cancer development by varying the
initial conditions was examined. Since most inherited cancers are the result of muta-
tions in tumour suppressors (Knudson 2002), this situation is modelled by increasing
the rate of transition from a normal cell to the appropriate mutated cell to 10> muta-
tions / gene / cell division. This models a case where a person inherits an inactivating
mutation in one copy of the gene. These cells are still functionally “normal” (thus they
begin in state N), but the chance of acquiring the second “hit” and losing functionality

of the protein (moving into the mutated state) is much increased.

As expected, inheriting a mutation in a cancer-critical gene decreases the time to cancer
onset. The effects of inheriting a mutation in each category on time to reach 10° pri-
mary tumour cells, 10'2 primary tumour cells, and 10'? metastatic cells are shown in
Figure 7.3. A tumour volume of 1 cubic centimeter weighs about 1 gram and represents
about 107 cells (Friberg and Mattson 1997). This tumour size is regarded as relatively
small in a clinical setting and it is at this size that a tumour may give rise to the first
symptoms and may first become detectable by palpation (Friberg and Mattson 1997),
that is, by being physically felt by a physician. A tumour that weighs about 1 kilo-
gram (10'? cells) is approaching the lethal tumour burden for a patient (Friberg and
Mattson 1997). The 10'? metastatic cells plotted in Figure 7.3 are not necessarily lo-
calised to one site in the body; they could represent 10'? cells present in one location

or 10!! cells present in each of 10 different locations, for example.

In contrast to the results obtained in Figure 7.2 where the increased population of cells
caused by mutations in D and R dominates the fastest path to sporadic cancer, inherit-
ing amutation in a G gene causes cancer onset at the earliest age. There is no observable
difference between inheriting a mutation in one of the other categories (A, D, or R) and
inheriting no mutations at all (N), partly due to the robustness of the model to changes
in parameters, discussed in the Figure 7.3 caption and in Section 7.7. In the fastest path
plots (Figure 7.2), there is equal probability of acquiring a mutation in A, D, G or R.
D will dominate over G due to the fact that the transition from one state to another is
a function not only of the mutation rates k; and k; but also the cell population size.
Both D and G are equally likely to begin with, but since D increases the net cell pop-
ulation very quickly, it soon dominates over the rate k, associated with G. Therefore,

the fastest path to sporadic cancer is through a mutation in D first.
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In comparison, when a mutation in G is inherited, the cell has already surpassed the ini-
tial probability hurdle of acquiring a mutation in G. The rate of subsequent mutation
is now 1000-fold higher and once a mutation in D or R is obtained, the cell population
will begin to increase. For this reason, an inherited mutation in G has the greatest effect.
This result is consistent with the stochastic model of Nowak et al. (2004). The result is
also consistent with the fact that many inherited cancer syndromes are the result of a
mutation in the G category. These include xeroderma pigmentosum, ataxia telangiec-
tasia, Nijmegen breakage syndrome, hereditary non-polyposis colorectal cancer, and

Bloom syndrome (Sieber et al. 2003).

The time to develop a palpable primary tumour (10 cells) in this model is 16.25 years if
no mutations are inherited (Figure 7.3). Even taking into account the fact that detection
of the tumour would not occur until several years later (Friberg and Mattson 1997), this
age of cancer onset is significantly earlier than the average age of cancer onset in the
human population (Depinho 2000). This is an indication of the need for more accurate
information on cell division, cell death, and tumour doubling rates. Importantly, this
may also be an indication that acquisition of mutations in more than four categories is
necessary for development of a primary tumour. Adding two more steps to the multi-
step model would certainly delay the time to cancer, however to add those as detailed
in (Hanahan and Weinberg 2000) would be better left for an agent-based model. This
has been considered by Spencer et al. (2006). Consideration of the role of the immune
system in curbing the growth of a tumour would also slow the time to cancer onset.
The model here does not directly consider this factor, although category D does al-
low for apoptosis initiated by the immune system. Consideration of these three factors

would allow the model to be more appropriately scaled to the timing of human cancer.

Although it is somewhat inelegant to consider the time to onset of cancer in terms of
time to reach a particular level using a deterministic model, the intent of the model
was to consider the mean time to reach clinically significant numbers of cancer cells.
The model could be extended to use stochastic differential equations. The use of an
ordinary differential approach allows us to quickly explore the parameter space, which

is done in the following section.
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Figure 7.3. Inherited mutations in cancer-critical genes. Age at which a person may acquire
10° primary tumour cells, 10'? primary tumour cells, and 10'> metastatic cells with
different inherited mutations. For reference, the case where no mutations are inherited
is also shown (N). An inherited mutation in G is the only case which produces an earlier
onset of cancer than the case where no mutations are inherited. Inheriting a mutation
in G has a large effect because it allows the cell to surpass the initial probability hurdle
of acquiring a mutation in G which then confers a 1000-fold increase in the rate of
subsequent mutation. Increasing the initial probability of getting into state A, D, or
R (that is, inheriting a mutation in A, D, or R) does not increase the time to cancer
onset due to the number of cells that normally already build up in states D and R and

due to the fact that mutations in A confer no benefit until 10° cells are obtained.

7.7 Sensitivity analysis of variations in the parameters

In order to determine the relative contributions of the parameters to the model, each
parameter in Table 7.2 was varied while holding all others constant at the default value.
The default values chosen are a best estimate from the literature. Except for the “D:R
importance ratio” where 3:7 was used to determine the effect on the fastest path, and
“% A cells needed to remove cap” where the range tested was from 0% to 100%, the
other values were chosen to be near the upper and lower bounds of the range given in
the literature. The contribution of each set of parameters was examined by examining
their effect on time to reach 1012 M cells and on the fastest pathway to cancer, and the

results are given in Table 7.2.

The most salient result of the sensitivity analysis is the robustness of the model. Despite

trials with very high values for k, the fastest path to somatic cancer is always via a
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mutation in D then R then A then G, except in the case where the D:R importance ratio
is flipped. As expected, a ratio of 3:7 flips the roles of D and R in the fastest path to
give RDAG, but does not change the time to 10’2 M cells from the default value of
51.75 years. Using a D:R ratio of 8:2 decreases the time to reach 10'2 M cells due to the

increased weight given to D.

The parameter that has the largest effect on time to reach 10'2 M cells is the tumour
volume doubling time. A tumour volume doubling time of 300 days decreases the
time to reach 10'2 M cells by 13.50 years relative to the default of 500 days, and a
tumour volume doubling time of 700 days increases the time to reach 10'? M cells by
13.00 years. This effect is seen in Figure 7.4(a) as well as in Table 7.2. The large effect
of this parameter on the model is due to its impact on the (% — %) term; when cells
have mutations in R and/or D, the terms become 1/br and/or 1/dp, allowing the cell

populations to increase at a rate that reflects the tumour volume doubling time chosen.

Variations in the birth and death rates to 1 every 5 days and 1 every 30 days also have
an effect on time to reach 102 M cells. This can be seen in row one of Table 7.2, but the

effect is small when compared with the effect of tumour volume doubling time.

The time (51.75 years) to reach 1012 M cells does not change in varying the percentage
of A cells needed to remove the angiogenesis cap from 0% to 31%. Between 31% and
35%, the time to reach 10'2 M cells increases rapidly. The time (57.50 years) to reach
10'2 M cells does not change in varying the percentage from 35% to 100%. This effect
can be seen in Figure 7.4(b). At 31%, the requirement for mutations in the A category
begins to have an effect on the growing cell populations. At 35% and above, the per-
centage of A cells required is so large that the sum of the populations of non-normal,
non-metastatic cells never goes above 10° because there are never at least 35% with A
mutations. Thus the time to reach 10'> M cells depends only on a fixed number of T

cells in each case, and remains constant at 57.50 years for percentages 35% and above.

A ten-fold change (from 1077 to 10~® mutations/gene/cell division) in mutation rate
without a G mutation (k1) has a larger effect on time to reach 10'> M cells than a ten-
fold change (from 10~* to 10~3 mutations / gene / cell division) in mutation rate with
a G mutation (k). This is due to the fact that the effect of k; only becomes important
later in tumourigenesis since G is last in the fastest path to cancer, whereas the effect
of k1 occurs at the beginning. There is no change in time to reach 10'> M cells when
ky is increased from 103 to 10~2 mutations / gene / cell division because the effect of

mutation rate has already saturated the system at a k, value of 107°.
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Table 7.2. Sensitivity of the cancer model to changes in changes in parameters. Cell birth

and death rates have units days— 1.

Tumour volume doubling times are measured in
days. Mutation rates are measured as mutations / gene / cell division. Number of genes
involved in transitions are listed as number involved in single, double, triple transitions.
“Other" refers to different values tested in the sensitivity analysis. “Time" refers to age
at acquisition of 10'2 M cells for a variation in that parameter, measured in years. “Path”
refers to the fastest path to cancer for a variation in that parameter. S; denotes the
number of genes involved in transitions is {100,10,1} for the single, double, and triple
mutations; S, denotes {500, 100,10}. The blank boxes in the bottom right indicate only

one alternative value was tried.

Parameter H Default ‘ Time ‘ Path H Other ‘ Time ‘ Path H Other ‘ Time ‘ Path ‘

Cell birth and death rates 1/10 51.75 | DRAG 1/5 50.25 | DRAG 1/30 | 54.75 | DRAG

Tumour volume doubling time 500 51.75 | DRAG 300 38.25 | DRAG 700 64.75 | DRAG

% A cells needed to remove cap 10% 51.75 | DRAG 30% 51.75 | DRAG 40% 57.50 | DRAG

D:R importance ratio 73 51.75 | DRAG 8:2 50.50 | DRAG 3:7 51.75 | RDAG

Mut. rate with a G mutation 107* | 51.75 | DRAG || 1073 | 50.50 | DRAG || 102 | 50.50 | DRAG
Mut. rate without a G mutation 1077 51.75 | DRAG 10-° 48.50 | DRAG
# of genes involved in transitions S 51.75 | DRAG S 48.25 | DRAG

Since the parameter “number of genes involved in transitions” is located in the nu-
merator of the differential equations, increasing the number of genes involved in the

transitions decreases time to reach 10'? M cells simply by making the numerator larger.

To determine whether or not a more realistic age of cancer onset could be obtained,
the model was run using all parameter values that would push back the time to cancer
onset, but that are still in the biologically valid range. The parameters that were varied
from the default settings are a tumour volume doubling time of 700 days, a cell birth
and death rate of one every 30 days, and an angiogensis cap removal percentage of
40%. Running the model with these parameter adjustments results in a time to 10°
tumour cells of 20.75 years, a time to 10'2 tumour cells of 33.75 years, and a time to
10'2 metastatic cells of 65.5 years. Although this time to cancer onset is more realistic,

it does not represent the best estimates of parameter values from the current literature.

7.8 Conclusions

This chapter explores facets of the multistep model of oncogenesis. The key findings

of this work are:
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Figure 7.4.
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1. The fastest path to somatic cancer is predicted to be through gaining mutations

in D (evasion of cell death), then R (increased replication rate), then A (angiogen-

esis), then G (increased mutation rate).

2. Of the four categories of mutations, inheriting a mutation in G is predicted to

produce cancer at the earliest age, in line with known cancer epidemiology and

other models of cancer progression (Nowak et al. 2004).
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3. The fastest path to somatic cancer is robust to realistic changes in parameters,
with the model being most affected by variations in tumour volume doubling

time.

The strength of the model lies not in its utility for predicting any one individual’s time
to cancer onset per se, but rather in the fact that it presents a novel approach to under-
standing the genetic basis of cancer from a systems biology perspective. Although a
thorough testing of this model is not currently possible due to the “generic” nature of
the model, in that specific types of cancer and specific genes are not considered, this
model establishes the groundwork for future models that can be directly tied to clinical

and molecular data pertaining to a specific type of cancer.

It is hoped that the creation of this model for the multistep progression to cancer will
encourage biologists to gather quantitative data and will suggest which experiments
should be performed with highest priority. The only parameter values which are rea-
sonably agreed upon in the literature are the spontaneous mutation rate and the size to
which a tumour can grow before angiogenesis is required. All other parameter values
could use experimental refinement. In particular, experimental data that would help
include direct measurement of tumour volume doubling time and measurement of the
number of mutations in various gene categories in heterogeneous cancer cell popula-
tions. The experimental data on mutations should consider the ordering of acquisition
of key genes in each of the categories and include a study of inherited mutations in
these key genes. A number of genes that could be categorised and tracked include
those in the Wellcome Trust Sanger Institute database (Futreal et al. 2004). Tracking
mutations in A category genes along with a study of the timing of angiogenesis would
allow an estimate of the percentage of A cells required to signal for successful angio-
genesis and tumour growth past 10° cells. Estimates of cell division and death rates in
cells with these mutations would also be useful. The model is kept as general as possi-
ble; to make use of much of this experimental data the model would need to focus on
a particular type of cancer, as many of these parameters are highly dependent on the

originating tissue type.

To push back the time to cancer onset, a six step ODE model more like the one proposed
by Hanahan and Weinberg was constructed, with the same four gene categories as the
ODE model (A, D, G, R) and two additional ones: L (limitless replicative potential, e.g.
turning on telomerase) and M (invasion and metastasis, e.g. loss of E-cadherin). The

main problem was that L or M could not accurately modelled using ODEs. To properly
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model the effect of a beneficial mutation in L, one would need to store how many times
each individual cell divides. A population-based ODE model ignores individual cells
and their cell divisions, and only aggregate cell populations could be modelled. To
properly model invasion, one would need to consider the cells existing in 3D space.
The ODEs can only model change in population over time, not through space, and
thus it was not possible to create equations that could reflect invasion by just using a

rate change.

Better estimates of parameter values, inclusion of two additional categories to give a
total of six steps in the multistep model, and consideration of the role of the immune
system in curbing the growth of a tumour will allow future models to be more ap-
propriately scaled to human cancers. Modelling the multistep accumulation of genetic
mutations in cancer will give insight into topical questions about the progression of
a normal cell to a cancerous cell, enabling cancer treatments to be better targeted to
various stages of cancer progression, and suggesting the most important directions for

future experimental research.

To summarise the novel contributions of this work: a mathematical model of the pro-
gression to cancer was developed and used to explore the pathways to cancer, the
effect of various biological parameters, the average age at which cancer develops, and

the affect of inherited mutations on this age.
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Chapter

The human brain during
sleep

Lectroencephalograph (EEG) analysis enables the neuronal behaviour
Eof a section of the brain to be examined. If the behaviour is nonlinear
then nonlinear analysis tools can be used to glean information on brain be-
haviour, and aid in the diagnosis of sleep abnormalities such as obstructive
sleep apnea syndrome (OSAS). In this chapter the sleep EEGs of a set of

normal and mild OSAS children are evaluated for nonlinear behaviour.

Noise is present in the wide variety of signals obtained from sleeping pa-
tients. This noise comes from a number of sources: from presence of extra-
neous signals to adjustments in signal amplification and shot noise in the
circuits used for data collection. The noise needs to be removed in order
to maximize the information gained about the patient using both manual
and automatic analysis of the signals. In this chapter a number of new tech-
niques for removal of that noise are explored, along with techniques for the

associated problem of separating the original signal sources.
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8.1 Introduction

This chapter deals with two important issues in the analysis of EEG files:

1. There is a high degree of systematic and measurement noise present in recorded
EEG signals.

2. If nonlinear tools are to be used, it first needs to be established if the EEG signals
show significant nonlinearities. That is, can it be established if there is a possi-
bility that a nonlinear model can generate the observed brain signal? In many
papers, such as Fell et al. (2002) and Hwa and Ferree (2001), this is completely ig-
nored or done very poorly. This chapter shows that while there are some sections
of sleep EEGs that are significantly nonlinear, up to 40% of the time, the sleep-
ing brain is not producing any signals that are significantly nonlinear! This has
strong implications for the research being done, showing that traditional tools
that assume linearity (or near-linearity) such as the Fast Fourier Transform are

definitely valuable.

A linear time series is one where a model can be built that predicts the future samples
based on the past samples (in general, in n-dimensional space), that is, there is a linear

function
F(xt,xt—1,..., %) =Axt +Bx; 1+ ...+ Txc+5=xp1 (8.1)

where A,...,Z are n x n matrices for samples x (column vectors) in n-dimensional
space (n channels of input) and # € R” represents random measurement noise, inde-
pendent on the n channels of input at each time step. If a time series can be assumed
to be linear, or close to linear, then it is amenable to linear methods that exploit the lin-
ear relationships, for example autocorrelation functions or related Fourier transform
methods. If for example, the time series can be represented by a model that contains
nonlinear terms like xT Ax then it is said that the time series is nonlinear, and there
are a number of nonlinear time series analysis techniques that could then be used. A

couple of important points can be made:

e Reduction of the noise term # is important in both model construction and time

series analysis.
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e If it can be said that the model is a nonlinear model, then it suggests that the un-
derlying dynamics of the system being modelled are also described by nonlinear

equations.

It is for the latter point that establishing nonlinear behaviour (or its absence) in EEG
time series is indicative of underlying nonlinear brain behaviour (or absence thereof),
and the first point is the reason why a large part of this chapter is on noise removal

techniques.

8.1.1 Novel contributions

The novel contributions of this work are:

1. Development of a methodology to firstly estimate the original, noisy, biological
sources (in sleep patients) that have been mixed into several signals, then to clean

them.

2. Analysis of the linearity (or nonlinearity) of brain systems as observed in their
EEG signals, with the finding that a large portion of sleep does not show any

significant nonlinearities.

8.2 Noise removal

8.2.1 Introduction

Electroencephalograph (EEG) and electrooculograph (EOG) measurement techniques
provide valuable information on sleep disorders (Kaeming et al. 2003, Sforza et al. 2002).
Recent studies looking at memory and learning during sleep have used these tech-
niques as predictors of waking performance (Kaeming et al. 2003, Muzur et al. 2002, An-
derer et al. 2002). Comparison of thoracic and abdominal movements associated with
breathing can reveal important information about breathing disorders and events such
as apneas and hypopneas during sleep (Brown et al. 2002, Prisk et al. 2002, Menon and
Agrawal 2003).

The process by which the EEG and EOG signals are recorded is described by Teplan
(2002), but a brief summary is given here. The EEG and EOG signals are recorded
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by placing electrodes on the patient’s scalp. These detect electric potentials generated
by the flow of ions in neural cells that set up electric dipoles between the body of the
neuron (soma) and the neural branches (apical dendrites). For the data used, these
signals were amplified, then digitised at 250 Hz for the EEG and 50 Hz for the EOG
signal, using a signed 8 bit digital format. The mutual information between the sec-
ond EEG channel with the left EOG channel is estimated. The second EEG channel is
measured from the left anterior position E1 to just below the opposite ear, with the left
EOG channel measured from just to the side of the left eye to the position just above
the nose between the eyes. The signals are broken down into (typically) 30 second long
epochs, the combined set of signals is then classified by a human operator into various

stages of sleep and wakefulness.

The main problems with analyzing the EEG and EOG signal are:

¢ Notch filtering of the the 50 Hz interference ripple (caused by power supply in-

terference) from the signals also removes useful information.

e Skin conductances can vary over time in different ways in different locations,
however the gel used to stick electrodes to scalp locations helps prevent this prob-

lem.

e Due to conductances across the skin, the signal received by an electrode is a mix-

ture of the true signals one is trying to measure.

The most significant problem is the mixing of signals, which can be reduced by blind
signal separation techniques using higher order statistics (Gorodnitsky and Belouchrani
2001, Belouchrani et al. 1997). The noise can then be removed using wavelet trans-
forms (Matalgah and Knopp 1994, Bertrand et al. 1994, Lim et al. 1995). These tech-
niques are also considered for the thoracic and abdominal movements, for which sim-

ilar problems may arise (Menon and Agrawal 2003).

Time and power spectra plots for one of the EOG and EEG sets of data is shown in
Figure 8.1. Those for one of the thoracic and abdominal sets of data are shown in

Figure 8.2.
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(a) The time and power spectrum plots for the first
eight seconds of the EEG data. Note there are many
higher frequency signals superimposed on lower fre-
quency signals, giving the appearance of noise, how-
ever this is important signal information that needs
to be preserved. Note that some of the EOG signal is
present on this signal.
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(b) The time and power spectrum plots for the first
eight seconds of the EOG data. Note the lack of high
frequency signals present in the EEG signal, since
here we are concerned with low frequency muscle
movement signals. The sampling rate used was cor-
respondingly lower (50 Hz as opposed to 250 Hz for
the EEG).

Figure 8.1. Time and power spectra plots for eye and brain wave data. The time and power
spectra plots for the first eight seconds of the EEG and EOG data. Note the spectral

differences between the two, with the EEG having many higher frequency components.
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(a) Time and power spectrum plots for the first eight
seconds of the thoracic breathing data.
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(b) Time and power spectrum plots for the first eight

seconds of the abdominal breathing data.

Figure 8.2. Time and power spectra plots for thoracic and abdominal breathing data. The
sampling rate was 25 Hz, allowing the capture of relatively slow breathing signals. Note

the thoracic signal has a slight phase lead over the abdominal breathing signal.
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8.2.2 Methods

There are several problems to solve in eliminating noise from the signals. For the prob-
lem of the EOG and EEG signals, one must first ensure the EOG and EEG signals have
the same number of data points. To do this a Gaussian smoothing procedure can be
used, that is detailed in Subsection 8.2.3. While other related smoothing procedures
could be used, here one can assume the distribution of the signal data is Gaussian—
which is reasonably true for the data used—and thus a Gaussian smoothing procedure
could be used. The problem of separating the sources from the observed signals, which
contained a mixture of both, can be dealt with. Three algorithms are evaluated for this,
detailed in Subsections 8.2.6 to 8.2.8. The noise was removed from both of the sources
using wavelet transforms as elaborated on in Subsection 8.2.9. A flowchart of the pro-

cess is shown in Figure 8.3.

To evaluate the performance of the blind signal separation used to separate the source
data, and to evaluate the noise removal, an efficient algorithm, given in Subsection
8.2.10, was used to estimate the mutual information between two signals. One would
expect this measure to decrease when comparing the original signals with the sepa-
rated signals, assuming greater independence between the separated signals, and to re-
main the same when comparing the noisy signals with those where the noise has been
removed, assuming the noise is uncorrelated between the two signals. This is largely
true for the signals of interest, although there may be some information at certain fre-
quencies that is correlated due to extraneous electromagnetic signals being received
by the leads, as they act as antennas. This is kept to a minimum through appropriate

grounding.

8.2.3 Gaussian smoothing

The EEG signal has a sampling rate five times higher than the EOG (250 Hz to 50 Hz).
These are recorded simultaneously, so every fifth time point in the EEG corresponds to
a time point of the EOG signal. Gaussian smoothing is used to reduce the number of

data points in the EEG by a factor of five:

i+m
2 X (xj,xi)
o j=i—m

s (i) = P , (8.2)

Y, w(xj,x)

j=i—m
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Figure 8.3. Flowchart of signal processing steps. Flowchart showing the general steps involved

Gaussian smoothing step is not shown.

in going from the original sources to the cleaned, estimated sources.

The optional
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where the weights w (x;, x;) are
2,00
w (x]’ xl) = e_(xi_xj) /(202), (8,3)

i is the discrete time point the smoothed average is being calculated for, and 62 is the
estimate of variance for the entire set of samples in the EEG signal. To the two sets
of data, which can be written as x (£) = [x; (£),x2 (£)]", one can apply blind signal

separation, using the following model of the data.

8.2.4 Data model for blind signal separation

One can write the original, m-dimensional source dataas s (£) = [s1 (£),52 (£,), ..., sm ()] .

It is assumed that the sources are independent. One then considers an unknown lin-
ear model A, ., as generating the observed signals, where A, ., is written as an n-

dimensional vector x (£) = [x1 (£),x2 () ..., x, (£)]" by
x(t) = As (1), (8.4)

where A is referred to as the mixing matrix. Note that an arbitrary swap of columns of
A, and scaling a source by a scaling change in a row of A, means there is an ambigu-
ity in both the permutation (of labeling) of the sources and the scaling of the sources
respectively. With this model of the data, one can then apply blind signal separation

techniques.

8.2.5 Blind signal separation

There are two key blind signal separation approaches that are combined to form the
joint cumulant and correlation (JCC) algorithm in Subsection 8.2.8. They are the second
order blind identification (SOBI) algorithm, discussed in Subsection 8.2.6, and the joint
approximate decomposition of eigenmatrices (JADE), discussed in Subsection 8.2.7.
Both approaches have a common first step, in which the data is whitened using a spher-
ing matrix W, which transforms the mixing matrix A into a unitary matrix U, which
is a matrix for which Uu’ = I (Gorodnitsky and Belouchrani 2001, Belouchrani et
al. 1997). The next step of estimating A is dependent on the choice of algorithm and
detailed below.
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8.2.6 SOBI algorithm

Given a hypothesis of sources with different spectra and the linear model of Eq. 8.4,

one can calculate time-delayed, cross-correlation matrices,

th:EP@xU—ﬂq

= AR, (1) A, &)
where T # 0 and
E [s1 (t) 51 (t — 7)] 0 0 .- 0
R, 0 E[s (t)S;(t -7 0 86)
6 .. 0 Ehmgﬂf—ﬂ]

with E[-] the expectation operator. The correlation matrices can then be whitened,
R =WR (1) = UR, (1) U7, (8.7)

Vt # 0. The joint diagonalization of the set of p whitened correlation matrices
{R(7;)|li=1,...,p} gives the matrix U (Gorodnitsky and Belouchrani 2001). The ma-
trix U can only be uniquely determined iff for any (i, j), there exists at least one lag 7
such that E [s; (t) s; (t — 7)] # E [sj (t) s (t — T)] (Gorodnitsky and Belouchrani 2001).
The mixing matrix is then estimated by A = WU. An alternative to the SOBI algorithm
is the JADE algorithm.

8.2.7 JADE algorithm

Here the linear model of Eq. 8.4 is assumed, as is independence of sources. To each
n-dimensional vector x is associated a quadicovariance matrix Q : M — N defined by
N = QM such that

Nij =Y Cum (x;, xj, xi, 1) My, (8.8)
(k1)

where Cum (-) is defined as

Cum (xl-, x]', Xk, xl) =E [fixjxkxl] —E [xl-f]-] E [fkfl] —E [fifk] E [f]'fl} —E [fifl] E [fjfk} ’
(8.9)
and where X; = x; — E [x;], etcetera (Cardoso 1999). As the set of n x 1 matrices is an n?-

dimensional linear space, it can be shown that there exist n? real eigenvalues A, and n?
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orthonormal eigenmatrices M, satisfying QM, = A, M, (Gorodnitsky and Belouchrani
2001). It can be proved that only n of the eigenvalues are non-zero (Cardoso and
Souloumiac 1993), and that joint diagonalizaton of the n corresponding eigenmatri-
ces, labelled M,, gives the unitary matrix U (Gorodnitsky and Belouchrani 2001). As
with the SOBI algorithm, the mixing matrix is estimated by A = WU. Combining the
two algorithms gives us the JCC algorithm.

8.2.8 JCC algorithm

In the JCC algorithm, both the correlation information provided by the SOBI algorithm
of Subsection 8.2.6, R (7;), and the cumulant quadricovariance eigenmatrices, M,, pro-
vided by the JADE algorithm, are used. Joint diagonalization gives the unitary matrix
U, which again acts to give an estimator A = WU. Using A, one can then separate the
signals into estimates of the original source data. The noise can be removed from this

data using wavelet techniques.

8.2.9 Wavelet noise removal

The mathematical description of the continuous wavelet transform (CWT) of f € L? (R)
is described by Mallat (1999) as

WF) (ws) = [ £ (09 (0, .10

where

S

1 t—u
Pus (1) = $q> ( > , (8.11)
is a family of orthogonal wavelets, ||, s|| = 1, (Yus, P s) = 0 for (u,s) # (u',s’), and

+o0
Yus (t)dt = 0. (8.12)

The scale of the wavelet may conceptually be considered the inverse of the frequency.

The CWT reveals much detail about a signal, however due to the continuous nature
it cannot be computed for real signals on a digital computer. Therefore, the discrete
wavelet transform (DWT) is normally used. The DWT calculates the wavelet coeffi-
cients at discrete intervals of time and scale instead of at all scales. With the DWT, a

fast version of the algorithm is possible, analogous to the fast Fourier transform. This
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version of the algorithm makes use of the fact that if scales and positions are chosen
based on powers of two (dyadic scales and positions) the analysis is very efficient. In
1988, Mallat developed an efficient way to implement this algorithm, which is known
as a two-channel sub-band coder (Mallat 1989). For a single level of decomposition,
this algorithm passes the signal through two complementary (high-pass and low-pass)
filters resulting in approximations which are high-scale, low-frequency components of
the signal, and details, which are low-scale, high-frequency components of the signal.
This results in twice as many data-points so the data is down-sampled. For further lev-
els of decomposition, successive approximations may be iteratively broken down into
details and approximations as shown in Figure 8.4. Coefficients below a certain level
are regarded as noise and thresholded out. Thresholding may be soft or hard. Hard
thresholding is defined as

x for|x| >,
Y= (8.13)
0 for|x| <6,

and soft thresholding as

y— sign(x)(|x| — @) for|x| > 6, (8.14)
0 for |x| <0,

where x is the original signal, y is the thresholded signal, and 6 is the threshold. Hard
thresholding tends to create discontinuities at x = +6 because any values of the signal
less than the threshold are immediately set to zero. With soft thresholding, the thresh-
olded values are shrunk towards zero without creating the discontinuities. The signal
is then reconstructed without significant loss of information. Then the signal may be
reconstructed by up-sampling, passing the approximations and details through the ap-
propriate reconstruction filters and combining the results. Based on SNR measures of
wavelet performance, Daubechies wavelets of order 5 were used, with soft threshold-
ing and a decomposition level of 5; although this is not the best for noise removal, it is
more important to preserve information when going from the estimated sources to the

denoised estimated sources.

To evaluate the performance of the above techniques a particular measure of mutual

information was used.
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8.2.10 Ml estimation algorithm

The following is an outline of the method used in calculating the mutual information
between the EEG and EOG signals, as given in Kraskov et al. (2003).

The mutual information for two signals X and Y is defined in Eq. 8.15

I(X,Y)= /_0:0 /_o:o 1 (x,y)log dedy, (8.15)

mxﬁﬂw

where p, py and py, are probability measures. One then takes the set of points z; =
(x;,y;) for the EEG x; and EOG y;,i = 1,... N . Then one finds the kth closest neighbor

of each z; according to the metric
Iz = 2"l = max{{lx = 'l|, ly = ¥/II}- (8.16)

The kth nearest neighbor is then projected onto the x and y axes giving the distances

€x (1) /2 and €y (i) /2 respectively. The mutual information is estimated by:

e (X, Y) = 9 (k) = 1/k = (y (n2) + ¢ (ny)) + ¢ (N), (8.17)

where ¢ (-) is the digamma function given by

P (z) = %lnr (z), (8.18)
and
1 N
{(...) :ﬁxE[...(i)]. (8.19)

8.2.11 Results

Blind signal separation

The blind signal separation abilities of the three algorithms were tested, across four
sets of data, two of thoracic and abdomen (TA) breathing data, and two of EEG and
EOG (EE) data. The differences in mutual information between the signal data and the
estimated source data are shown in Table 8.1. The higher the mutual information, the
better the algorithm is for separating the original sources, given the assumptions of

that algorithm.
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removal

Table 8.1.

Table 8.2.

Figure 8.4

Mutual information differences between estimates sources and original signals.
The difference in mutual information (in nats/sample) between the two estimated sources
and the two signals, i (est. sources) — I (signals), for the two sets of thoracic-abdominal
(TA) data and the two sets of EEG and EOG (EE) data. Nats are units of information,
when a natural logarithm is used. This is computed for all three (SOBI, JADE, and JCC)

algorithms
TA1 TA2 EE1 EE2
SOBI 1.0319 0.4539 0.4522 0.6101
JADE || < 0.0001 | < 0.0001 | < 0.0001 | < 0.0001
jccC 0.3640 0.4292 0.4032 0.5342

Mutual information differences between JADE estimated sources and wavelet
denoised estimated sources. The difference in mutual information (in nats/sample)
between the JADE estimated sources and the wavelet denoised estimated sources is
computed for the two sets of thoracic-abdominal (TA) data and the two sets of EEG
and EOG (EE) data, [; (est. denoised sources) — [; (est. sources). Nats are units of

information, when a natural logarithm is used.
TA1 TA2 EE1

< 0.0001 | < 0.0001 | < 0.0001

EE2
0.0001

(a) g (b)
A{ \f)l Al/ S\Dl
\]3 AN ¥ N

2 AA, DA, AD, DD,

e

Ay

. Wavelet decomposition. This figure illustrates (a) how the discrete wavelet transform

decomposes a signal into details and approximations iteratively decomposing the approx-
imations, and (b) how the wavelet packets iteratively decompose the approximations

and details.
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Wavelet denoising

For each of the generated estimates of the sources (three blind signal separation algo-
rithms applied to four pairs of signals) the mutual information between the estimates
of the sources was calculated, and the denoised estimates of the sources. These are
given in Table 8.2. No difference was observed in mutual information between the

estimates and denoised estimates, indicating little lost of information.

8.3 Nonlinear analysis

8.3.1 Overview

Electroencephalograph (EEG) analysis enables the neuronal behaviour of a section of
the brain to be examined (Teplan 2002). As neurons themselves display nonlinear be-
haviour, it is suspected that the overall behaviour of groups of neurons is also non-
linear (Elbert ef al. 1994). If the behaviour is nonlinear, it allows the use of nonlinear
statistics to describe the behaviour of the brain (Kantz and Schreiber 1997).

Measurement and analysis of the EEG is an integral part of the evaluation of sleep dis-
orders in both adults and children. It is used in the classification of sleep architecture,
a cyclic progression of sleep that is tightly controlled such that in adults a new cy-
cle of REM (rapid eye movement) and Non-REM sleep occurs approximately every 90
minutes. A common respiratory sleep disorder is obstructive sleep apnea syndrome
(OSAS). In OSAS the upper airway experiences repetitive periods of partial or com-
plete occlusion during sleep. The disruption of sleep architecture by OSAS leads to
well described daytime sequelae including reduced neurocognitive functioning, in-
creased problematic behaviour, daytime sleepiness, impaired mood, and an increased
risk of accidents. EEG parameters in combination with respiratory data are used to as-
sess OSAS severity and these have been correlated with deficits in daytime functioning.
EEG parameters can be derived through linear and nonlinear analyses. Evidence of
linear and nonlinear brain activity has been demonstrated in adults (Stepieri 2002, Das
and Das 2004) but very little research has been done in children; in particular there
are conflicting results with different measures (Ferri et al. 2002, Ferri et al. 2003) and
between children and young adults. It also remains to be demonstrated whether any
observed nonlinearity reflects brain processes rather than nonlinearity of the ampli-

fiers and other equipment used to collect the EEG data. Given the central role of sleep
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in neuronal development and plasticity it is imperative to establish in children the re-
lationship of linearity and nonlinearity in brain behaviour during sleep. This may also
provide novel insights into the mechanism and effects of sleep architecture disruption
caused by OSAS. In particular, it is important to test whether nonlinear parameters

distinguish normal children from those with OSAS.

8.3.2 Participants

Thirteen children with a history of snoring and suspicion of OSAS participated in this
study. These children had been referred to a paediatric sleep disorders unit for eval-
uation of upper airway obstruction prior to adenotonsillectomy. In addition, 13 non-
snoring controls of a similar age range were also recruited into this study from friends
of the snoring group or through newspaper advertisements. All children underwent
an overnight polysomnogram (PSG) to evaluate the degree of upper airway obstruc-
tion and to collect EEG data. Other than a history of snoring in the former group, all
children were otherwise healthy and not taking any medication that may influence
EEG dynamics. Informed consent was obtained from all parents of the children and,
where age appropriate, from the children themselves. This study was approved by the
South Australian Women'’s and Children’s Hospital Research Ethics Board.

8.3.3 Overnight polysomnography

Overnight polysomnography (PSG) was conducted without sedation or sleep depri-
vation and began at each child’s usual bedtime utilising standard protocols for chil-
dren (American Thoracic Society, 1994). A parent accompanied each child through-
out the procedure. The following standard parameters were measured and recorded
continuously: electroencephalogram (EEG; C3-A2 or C4-A1l), left and right electroocu-
logram (EOG), sub-mental and intercostal electromyogram (EMG) with skin surface
electrodes, leg movements by piezoelectric motion detection, heart rate by electro-
cardiogram (ECG), oro-nasal airflow by thermistor and/or nasal pressure, respiratory
movements of the chest and abdominal wall using uncalibrated respiratory inductive
plethysmography (RIP), arterial oxygen saturation (5a02) by pulse oximetry (three
second averaging time) and transcutaneous CO2 (TcCO2) using a heated (314 K) tran-

scutaneous electrode.
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All polysomnograms were analysed and scored manually by a sleep technician expe-
rienced and trained in analysing paediatric sleep studies. Sleep stages were scored
in 30-second epochs according to the standardised EEG, EOG and EMG criteria of
Rechtschaffen and Kales (1968) and included rapid eye movement (REM) sleep and
the four stages (1-4) of non-rapid eye movement (NREM) sleep. As stage 3 NREM
sleep comprises only a small proportion of children’s sleep it was combined with stage
4 NREM sleep and termed slow wave sleep (SWS) as is common practice. Respiratory
variables were scored according to standard guidelines recommended for paediatric
sleep studies (Marcus et al. 1992, Society 1996). Obstructive apnoeas were defined as
the absence of airflow associated with continued chest and abdominal wall movement
for a duration of two or more respiratory cycles. Obstructive hypopnoeas were defined
as a 50-80% reduction in the amplitude of the RIP and / or airflow signal associated with
paradoxical chest/abdominal wall movement for a duration two or more respiratory

cycles associated with either a 4% oxygen desaturation and or EEG arousal.

8.3.4 EEG recordings

The EEG data was recorded from the C3-A2 or C4-A1 position in the international 10-
20 electrode placement system, with a reference point behind the mastoid. The signal
was notch filtered to remove as much of the 50 Hz AC ripple as possible and amplified
by an analog amplifier. The analog signal was sampled at 125 Hz and digitised using a
linear digitizer. Artifact contamination of the EEG signals included extraneous signals
from muscular movement (Drinnan et al. 1996), digitization noise, and also signals
from the environment being picked up by unshielded EEG leads. Of particular concern
is the nonlinear nature of filters and amplifiers used to process the analogue signal
before digitization, as what is of interest is the nonlinearities in the underlying brain

processes and not those of the equipment used.

8.3.5 EEG data analysis

As discussed by Schreiber and Schmitz (1997), there are a number of methods for de-

termining whether signals originate from nonlinear models or not.

There are a number of caveats with using these; many of them require assumptions
about the data and have varying power of rejection of the null hypotheses of linearity.

Of these, the best one overall seems to be the simple time reversibility test, which
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only requires assymetry of the data under visual inspection. The time reversibility test
computes a simple time reversal statistic on the data under test, and a set of linear
surrogate data chosen carefully with the same general statistical properties (Schreiber

and Schmitz 1996). The particular statistic is given by

N

Y. (el —x[n—ig))?
=" , (8.20)
Y, (x[n]—x[n—iy))?
n=iz+1

where i; is a delay. Typically i; = 1 is sufficient, and is used in this work. The test
works by computing a value based on powers of the sample points - if the system
has a linear model, then this statistic will be significantly different (in fact less) than
if the system had a nonlinear model, that is, if future values could be predicted us-
ing nonlinear powers of the past samples. As Schreiber and Schmitz (1997) note, this
measure works best when there are only a few data sets with clear asymmetry under
time reversal. Windows of length 10000 from the EEG files that have significant end
effects are used, and from this 19 sets of surrogate data of the same length are gen-
erated that have the same Fourier amplitudes and distribution; this provides a better
null hypothesis than using a Gaussian linear process (Schreiber and Schmitz 1996). If
the value of ¢, for the original data is not the least out of the set of surrogate data, then
the null hypothesis is rejected at the 95% significance level, and hence shows nonlin-
earity. The reason why end effects—or that the variance of the signal changes through
the time window across which samples are taken—is important, is that this means that
there is a greater likelihood of ¢, being different in nonlinear samples, since the top line
will increase much more than the bottom line would due to the different powers of an

increasing signal variance (or magnitude).

It would be prudent to also use another measure of nonlinearity, and here the Higuchi
fractal measure is used as it gives a number representative of the amount of nonlin-
earity in each individual window. The Higuchi fractal metric gives us a measure of
the underlying nonlinear dynamics of a signal without trying to reconstruct a strange
attractor (Kantz and Schreiber 1997, Higuchi 1988, Accardo et al. 1997). The Higuchi
measure provides a reliable measure of the fractal dimension when working with short
time series segments, that is, those with sample length N < 125 (Accardo et al. 1997).

It is also relatively insensitive to nonlinearities in noise or in amplification (Accardo et
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al. 1997) so is useful for establishing that the nonlinear behaviour comes from the un-

derlying system, in this case the brain. For the Higuchi fractal metric, one first calcu-

lates
k-1 N — k
Lk)y=Y E=np ka Z x(m+jk)—x(m+ (j—1)k)|, (8.21)
m=0 j=1

where N = f; x 8s for an eight second window (hence N = 1000 for f; = 125 Hz,
or N = 2000 for f; = 250 Hz), and k = 1,2,...,2f;. Using a least squares fit of
y = log (L (k)) against x = log k gives the Higuchi fractal measure dpj,

cov (x,v)

A == Var (x)

(8.22)

The Higuchi fractal measure lies between 1 and 2 in theory; in practice because it is
only an estimate it may lie slightly outside this range. The lower the value the “less
complex” and linear the signal is. Higher values indicate signals that look more com-

plicated and are nonlinear.

To compare results between the two groups and between sleep stages, the unpaired
Student’s t-test is used, which first computes a t-value,
.X_:a - xb
52 s
VN +wm

where X denotes the mean and s denotes the standard deviation for the two groups a

t= (8.23)

and b with sizes N and M respectively. The t-value from Eq. 8.23 is then compared with
a two-tailed Student’s t-distribution of N + M — 2 degrees of freedom to determine a
significance level. This requires the data be approximately normal, and in the central
limit theorem if there is enough data in both sets of data under consideration then the
t-test can be safely used. This was checked, along with a check of the significance value

by manually computing the probability distributions involved.

8.4 Time reversal results

8.4.1 Participants and PSG findings

The thirteen snoring children, six males and seven females, had a mean age of 6.8
years (range 5.1 — 8.7 years). The control group, also comprised of six males and seven

females, had a mean age of 7.6 years (range 5.2 — 10.9 years). Overnight PSG analysis
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demonstrated that the snoring children had a higher number of obstructive apnoeas
and hypopnoeas per hour of sleep (mean (£ SD) 0.6 (0.90)) than the non snoring control
group (mean (= SD) 0.03 (0.06)) and this difference was statistically different (P = 0.01,
Mann Whitney U analysis). However as the number of obstructive breathing events
was less than one per hour of sleep in the snoring children, this is considered as having
only very mild OSAS, or snoring. There was no significant difference in the amount of
time that each group of children slept (7.84 hours for the snoring group vs 7.17 hours
for the control group). Similarly there was no significant difference in the amount of

time spent in each sleep stage by both groups of children.

8.4.2 Verifying time reversal test

Visual verification was performed to check that the data has significant end effects, in
order that the time reversal test can be used, and also that the surrogate data generated
has the same power spectra as the original data. Figures 8.5 and 8.6 show that the data
contains end effects, so the time reversal test can be safely used; furthermore they show
that the surrogate method is correctly generating data with the same power spectra as

the input data (the original time series) to the surrogate generation process.
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(a) Time domain plot of the EEG data that the time
reversal test indicates comes from the hypothesis of
a linear model. Note the significant end effects — the
variance of the signal varies visibly throughout the

plot. The time reversed signal is also shown.
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(b) The power spectrum of the EEG data fitting the
linear hypothesis as shown in Subfigure (a). Surro-
gate data generated by a linear model with the same
power spectra as the linear EEG has been generated
and is plotted along with its power spectra to check

they are identical.

Figure 8.5. Time plots of EEG data fitting the linear hypothesis. The time plots of the EEG
data fitting the linear hypothesis, its time reversal, and the surrogate data. Power

spectra are also shown.

Page 139



8.4 Time reversal results

x10™ EEG signal satisfying nonlinear hypothesis
T T

EEG signal

0 5 10 15 20 25

Time (s)
x10™ EEG signal satisfying nonlinear hypothesis, time reversed
T T

EEG signal

0 5 10 15 20 25
Time (s)

(a) Time domain plot of the EEG data that the time
reversal test indicates comes from the hypothesis of
anonlinear model. Note the significant end effects —
the variance of the signal varies visibly throughout
the plot. The time reversed signal is also shown.
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(b) The power spectrum of the EEG data fitting
the nonlinear hypothesis as shown in Subfigure (a).
Surrogate data generated by a linear model with the
same power spectra as the nonlinear EEG has been
generated and is plotted along with its power spec-

tra to check they are identical.

Figure 8.6. Time plots of EEG data fitting the nonlinear hypothesis. The time plots of the
EEG data fitting the nonlinear hypothesis, its time reversal, and the surrogate data.

Power spectra are also shown.
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Table 8.3. Mean percent of time the EEG shows significant behaviour. Mean percent of time
(with standard deviation) the EEG was significantly nonlinear during different sleep/wake
states computed from the time reversal statistic. Data are presented for clinical children,

normal children, and for both groups combined.

Sleep stage Patient group Control group Both groups

Non-REM 1  75.4 (12.7) 68.0 (16.3) 71.7 (14.8)
Non-REM 2 72.1 (8.7) 69.5 (9.1) 70.8 (8.8)
SWS 68.7 (14.1) 65.8 (12.6) 67.3 (13.2)
Wake 66.9 (9.9) 52.8 (11.3) 59.8 (12.7)
REM 74.8 (6.7) 67.5 (10.9) 71.1 (9.6)

Table 8.4. T-statistic comparing nonlinearity between sleep stages. Student's t-values com-
paring the amount of nonlinearity between sleep states, for the combined data set of

control and mild OSAS children. Significance values: * = 95%, **=99%, ***=09.9%.
Sleep stage REM 1 Non-REM 2 Non-REM  SWS

Wake 3.62%**  3.10%* 3.63%** 2.07*
REM 0.163 -0.121 -1.21
Non-REM 1 0.259 1.14
Non-REM 2 1.14

8.4.3 Time reversal test results

For each sleep stage (including wake time after sleep onset), the percentage of the time
is shown for which the time reversal test indicated significant nonlinear behaviour (at
the 95% level of significance). The results are shown for all the children combined
and for the control and mild OSAS group separately, in Table 8.3. Table 8.4 shows
the differences (using the unpaired Student’s t-test) in amount of nonlinear behaviour

between different sleep states.

8.4.4 Higuchi fractal results

For each sleep stage (including wake after sleep onset) Higuchi fractal measures were
calculated for all epochs in all subjects. These results are shown for the control and pa-
tient groups separately and for both groups combined in Table 8.5. Table 8.6 shows the
differences (using the unpaired Student’s t-test) for Higuchi fractal measures between

different sleep states.
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Table 8.5. Higuchi fract measure applied to EEG data. Higuchi fractal measures (mean =+ SD)
calculated for each 30 second epoch of data across the group of clinical children, the
group of normal children, and both groups combined. The Higuchi fractal measure here
indicates that the data is generally linear across all sleep stages and groups, including
periods of waking between periods of sleep. The values for the patient group are typically

higher, although this is not significant.

Sleep stage Patient group Control group Both groups

Non-REM 1 1.113 (0.084)  1.079 (0.095)  1.099 (0.090)
Non-REM 2  1.113 (0.052)  1.097 (0.069)  1.105 (0.061)
SWS 1.099 (0.038)  1.067 (0.081)  1.083 (0.066)
Wake 1.103 (0.140)  1.095 (0.095)  1.098 (0.116)
REM 1.127 (0.041)  1.115 (0.061)  1.121 (0.051)

Table 8.6. T-statistic comparing Higuchi fractal measure between sleep states. This table
shows the Student’s t-values for sets of Higuchi fractal measures between sleep states,
with the total set of data from both (control and patient) groups. Significance values:
* = 95%, **=99%, ***=99.9%

Sleep stage REM 1 Non-REM 2 Non-REM  SWS

Waking 13.3***  0.200 4 H3¥** -8.4T*x*
REM -10.4%** -17.2%%% -35. 3%k
1 Non-REM -2.60%* 6.53***
2 Non-REM 21.9%**

8.4.5 Discussion

For the particular set of thoracic and abdominal breathing data used, the SOBI al-
gorithm works well, with an increase in the mutual information, probably because
the sources have reasonably distinct spectra. Since the JCC combines information
from both the SOBI and JADE algorithms by way of joint diagonalization, it intro-
duces the problems associated with using the JADE algorithm for this data, namely
that the sources are not independent. The two sources have a high level of depen-
dence, being almost synchronous during regular breathing, tending to differ only for
compliant chests in young children or when a breathing obstruction occurs (Brown et
al. 2002, Menon and Agrawal 2003). Similarly, for the EEG and EOG data, although
these are more independent, the SOBI algorithm performs best at separating the origi-

nal sources from the observed signals.
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The wavelet denoising performs well, in that it preserves (as far as was determined)
the information present in the signals. Further work will consider wavelet packet and
matching pursuit denoising algorithms (Mallat 1989, Mallat and Zhang 1993, Krishnan
and Rangayyan 2000), and how these effect mutual information between two different
channels. One could also consider the effect of swapping the denoising and blind
signal separation techniques. In theory this should have little to no difference on the

results.

Comparing the same sleep states between patient and control groups reveals no signif-
icant difference in percent nonlinearity for all sleep states. Comparing Higuchi fractal
measures however, a significant difference between patient and control groups was
found, but in REM sleep only (t-value 9.45). This sleep state has been shown to be
associated with learning (Huber et al. 2004, Ficca and Salzarulo 2004), and disruptions

to this sleep, as occurs in OSAS children, affects learning (Drummond et al. 2000).

The typically low values of the Higuchi fractal measure, being close to one, confirm the
general linear trend indicated by the time reversal test. It also reveals that the nonlin-
earity is due to underlying brain behaviour and not instrument noise. The Higuchi
fractal measure is insensitive to ergodic noise. The amount of nonlinear brain be-
haviour is highest in NonREM stages 1 and 2 in addition to REM sleep, and lowest
during wake (after sleep onset) and slow wave sleep. This is not a surprising finding
for slow wave sleep, with relatively predictable, low frequency waveforms present. It
is somewhat surprising for wake after sleep onset, however it may represent simply
the presence of linear muscle signals, transmitted across the skin, contaminating the
EEG signal. More advanced techniques than those discussed could be used to remove

this noise.

Given that this work has established nonlinearity in sleep stages of interest, in partic-
ular those associated with memory, it would make sense to use nonlinear measures to
try and capture the brain behaviour. Linear measures (such as the often-used Fourier
transform) should not be discounted however, since there is clear linearity throughout
all sleep stages, and the signal may still be considered to be relatively stationary over
local regions even when nonlinearity is present, as indicated by the low Higuchi fractal
measures. Using the Higuchi fractal measure reveals a significant difference between
control and patient groups in REM sleep, and this will be explored further in future
work. It remains to be seen whether nonlinear measures are useful in classifying sleep

stages. This work has highlighted the fact that the Higuchi fractal measure does not
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appear useful for classification in children, who present difficulties even for highly

trained technicians in classifying sleep stages.

8.4.6 Conclusions

The work presented in this chapter has established some nonlinearity in the processes
generating the EEG data using the time reversal and Higuchi tests, however there are
considerable amounts of data that do not appear to be generated by nonlinear pro-
cesses, in line with Stepieni (2002). Due to the significant changes in nonlinearity be-
tween sleep stages, and the Higuchi fractal measure, one can be certain that the non-
linearity process arises in the brain and not as a result of any nonlinear processes in the
recording equipment. In the process of determining this, a method was developed for

cleaning up noise from sources including the recording equipment

This work highlights the need to test for nonlinearity before using nonlinear measures
in evaluating EEG measure, in particular in distinguishing different brain states. Fu-
ture work should focus on both linear and nonlinear measures for detecting local sleep
events, such as apneas, as these may affect memory consolidation during sleep. The

Higuchi fractal measure may be useful for this.

To summarise the novel contributions of this work:

¢ a methodology for cleaning up biological (sleep) signals was developed, and

e it was shown that there is a large amount of sleep (in children) that is significantly

nonlinear, and that this amount varies with the scored sleep stage.
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Metabolomics

Etabolomics is about performing data analysis on samples from com-
Mplex systems such as cells, organs, and whole human beings, and is
thus clearly in the field of complex systems research. In this chapter, two
problems are considered: firstly distinguishing cancer cells grown in cell
culture media, and secondly, on distinguishing urine samples from autistic
children and their non-autistic siblings. Although these are noisy, compli-
cated sources of biological data, and the mass spectroscopy can add further
noise and systematic biases to the samples, some statistical separation be-
tween groups of samples can be shown to exist, and a statistical model was

successfully built to distinguish between groups of samples.
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9.1 Introduction

To repeat the definition from Chapter One, metabolomics is the study of metabolic
output of biological systems to analyse their inner workings. In this chapter, some

methods are developed for tackling these two main questions using metabolomics:

e Can autistic children be distinguished from their matched, non-autistic siblings,

using only the metabolic output in their urine?

e Can different types of cancer cells be distinguished from each other, using their

metabolic output as captured in the growth media that they are grown in?

Both sets of samples were run through a quadrupole liquid chromatography / mass
spectroscopy unit. Basically this breaks molecules into fragments, ionizes them, and
then they pass through sets of metal plates that have an electric field between them.
Depending on the use of these electric fields, various things can be done based on the
atomic mass to electronic charge ratio; in the case of these experiments, the quadrupoles
are used to restrict the range of mass/charge ratios analysed, and to scan over this
range for each retention time, or time taken for the sample to pass through the system.
This gives a set of intensities: a count of how many particles hit the detector, over a
scan of mass / charge ratios, which takes an interval of approximately one second of
retention times. This is a very data-rich set of samples, that needs various steps to clean
up the data, and then some processing steps to distinguish firstly if there are statisti-
cally significant differences, and then attempt to use these in grouping and classifying

samples.

To use the data, one first needs to do some pre-processing steps to clean the data and
then use basic statistics to assess if it contains any useful information. Then a number
of statistical methods can be applied to glean information about, and use, statistical
relationships between samples. This list includes (unsupervised) k-means clustering

analysis, principal components analysis (PCA), and support vector machines (SVMs).

0.1.1 Novel contributions
The novel contributions of this work are:

1. Development of an algorithm that cleans, normalises, and then processes (using

existing machine learning algorithms) mass spectroscopy data into a variety of
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forms to show differences between groups of data and to build a model to recog-

nise these differences.

2. Use of the t-statistic as a distance measure to feed into the neighbour-joining
algorithm, as opposed to a statistical measure of the significance of the branch
lengths (Pinto et al. 2003, Susko et al. 2002).

3. Use of machine learning techniques to identify unclassified urine samples as ei-

ther from autistic or non-autistic children.

4. Use of machine learning techniques to identify unclassified cell metabolite sam-

ples as from either Huh7, HepG2, or HeLa cell lines.

9.2 Autism study participants

A group of children with autism and their matched siblings was recruited. At the
closing date, 22 autistic children and 22 matched, non-autistic siblings had been suc-
cessfully recruited. To be used in the study, these needed to meet careful criteria for
both autism and also to establish the non-autistic controls. Ethical clearance was ob-
tained as detailed below (subsection 9.2.2). Samples were collected appropriately—a
minimum of two, first-void samples per patient, to assess intra-individual variation—
and stored at appropriate temperatures and thawed before use. There were a number
of procedures in place to ensure that samples were labelled and processed without any

mixup.

9.2.1 Inclusion and exclusion criteria

The austim inclusion criteria were: children who have received a diagnosis of autism
using standard diagnostic tools by a multi-disciplinary team and who are on the wait-
ing list for or who are enrolled in the South Australian Early Intervention Research
Program (EIRP) for children with autism. To find a group of matched non-autistic sib-
lings, siblings of autistic children were chosen, making sure to exclude those siblings

who have:

e deficits in communication, socialisation and/or stereotypic/repetitive behaviours,

e intellectual disability,
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e one or more co-morbidities (for example, epilepsy), or

e a chromosomal abnormality.

0.2.2 Ethical clearance

The autism research was carried out with the authorisation of both the University
of South Australia Ethics Committee and The Flinders University of South Australia
Ethics Committee. All children with autism who enrolled in or are on the waiting list
of the Early Intervention Research Program (EIRP) for children with autism at Flinders

University were screened for potential study participants.

0.2.3 Cancer cells used

Huh? and HepG2 liver cell lines, and the Hela cervical cancer line were grown in
standard growth media, grown to 50% confluence, then the media replaced and the
cells grown to 80% confluence. The second round of growth media was run through
an Applied Biosystems API 3000 LC/MS/MS (liquid chromatography and dual mass
spectroscopy) machine. Standard degradation of the growth media was controlled for
by including control data where the growth media was set without cells present, and
also run through the mass spectroscopy machine. Statistical testing revealed significant
differences (p=0.01) between all three cell lines; in particular there were generally more
differences between the HeLa cervical cancer cell line growth media and growth media

with liver cell lines growing in them.
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0.3 Methods

9.3.1 Pre-processing and preliminary analysis

Before data were analysed, all LC-MS data were first standardised for intensity I(x, f)
(count of particles per second) at various mass/charge ratios {x} and retention times
{t}. Note that although each scan over mass / charge ratios takes a segment of reten-
tion times, this segment is of fixed duration and only the starting time of each scan is

given in the set {¢}.

The two (or three) spectral data of each subject were averaged (some subjects may
have three spectral data because one of their urine samples was analysed twice for
intraday-variation monitoring). The data were analysed both with and without a total
ion count step. Normalizing the data by the total ion count aims to offset differences
due to variation in dilution volume. The final spectra then had the square root of
each intensity component taken, having verified that the data comes from a roughly
Poisson point process, in line with Purohit and Rocke (2003). Various PR approaches
were then adopted in an attempt to identify any patterns existing in the spectral data

and to classify samples based on the spectral properties.

Students paired t-test (Kullback 1968) was used to determine if there was significant
variation between each set of LC-MS data. Given two sets of paired data, of values
measured at n = |{x}||{t}| points I(x,t), the paired t-test determines whether they
are significantly different, under the assumption that the paired differences are in-
dependent and the data are normally distributed (hence, the Central Limit Theorem
applies (Feller 1945, Trotter 1959)). Then define

X = xi—X%, 9.1)
y\i = Vi~ (92)

where the x; and y; are the paired samples I;(x,t) and I)(x, t) for a particular x and f,

and ¥ and i the respective means. The t-value was calculated using the formula

=y >\/ ‘z;?:(réf? S ©3

The absolute value of the calculated t-value was then used to represent graphically

the relationships between samples or groups of samples using the neighbour-joining

algorithm (Saitou and Nei 1987, Studier and Keppler 1988). The neighbour-joining
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algorithm describes these relationships using a distance which was in this case the ab-
solute value of the t-value. A larger distance between samples or groups of samples
signifies greater differences. This would hopefully allow us to establish if there were
any significant general differences between samples. Dendograms represent graphi-
cally the relationships between samples, and are generated by the neighbour-joining

algorithm using Student’s paired t-test as a statistical distance between samples.

9.3.2 k-means clustering analysis

The k-means clustering method was used to classify samples together into k groups
based on the spectral properties (Bishop 1995, Jain and Dubes 1990, Kaufman and
Rousseeuw 1990). The grouping was done by minimizing the sum of squares of dis-
tances between data and the corresponding cluster centroid, in line with Kanungo et
al. (2002). The raw data (in this case just the set of I(x,t) values of the urine spectra)
and the number of clusters, k (k = 2 as the samples comprised of both autistic and non-
autistic categories), were input into the computer algorithm, which then attempted to
group the samples into k clusters. This was to hopefully separate out the autistic and
non-autistic samples from one another, and also the types of cancer cells. The k clusters
were subsequently compared with the actual assignment of samples to each respective

category to determine the accuracy rate.

Note that k-means clustering analysis has several limitations that may render success-
tul identification of clusters difficult in the context of this study. First, to identify two
clusters, the representative sample for each cluster will have to be predefined. As it is
impossible to tell the differences in attributes of each sample, one assumes that each
attribute has the same weight and thus the extent to which it contributes to the group-
ing process is neither known nor predictable. Secondly, selecting a different sample
may affect the location of the centroid and hence the outcome of the clusters. Thirdly,
the algorithm is highly sensitive to outliers thus resulting in possible deviations from
the shape of the true cluster to accommodate data too distant from the true centroid.
Given the small sample size of this study, even the order in which the data is fed into
the computer may produce different clusters. Therefore, the k-means clustering al-
gorithm may not be sufficiently robust, and thus lack the sensitivity in detecting true

clusters from the perspective of this study.

Page 150



Chapter 9 Metabolomics

9.3.3 Principal components analysis

Principal components analysis (PCA), in line with Yeung and Ruzzo (2001), was used
to extract latent biochemical information, or principal components (PCs) from the com-
plex spectral data sets. This would, hopefully, facilitate the visualisation of the patterns
that lie in the data by segregating out the samples and displaying the sample groups

in different clusters in either a 2-dimensional or 3-dimensional PCA scores plot.

9.3.4 Support vector machines

Support Vector Machines (SVM) are one form of machine learning (Christianini and
Taylor 2000, Burges 1998) that is used to classify some set of data into two or more
categories based on a learned model of the data from a training set consisting of data
vectors x (one for each sample) with a known label (or category) y. The model is then
tested on a different test set over which the model predicts a set of labels, which are
then compared with known labels. Of interest is the success rate of prediction of the
model. The goal of SVM learning is to find the optimal boundary that separates the
clusters of vectors (in this case, each vector is formed from the set of intensity values
I(x,t) for all mass/charge (m/z) values {x} and all retention times {¢} for each indi-
vidual sample) in such a way that features of one group of samples are on one side
of the boundary (or hyper-plane) and features of a different group of data are on the
other side. The vectors near the boundary are known as the support vectors and these
are used to construct the boundary, which is then formulated as a classifier function.
Figure 9.1 helps illustrate this further. Appendix B provides more information on the
optimisation mathematics behind construction of this classifier function. In most cases,
however, the vectors are not easily separated by a linear plane. Instead, they may be
better represented by a nonlinear surface (in general, these are n-dimensional problems
with a high n). The beauty of SVM is that such complex boundaries can still be con-
structed by using the same algorithm with a different kernel function. It can take on
many mapping functions with some of the most common types being the linear, poly-
nomial, radial basis function (RBF), and sigmoid types. Therefore, the kernel function

allows SVM to perform separations even in the presence of complex boundaries.
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SVM
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Figure 9.1. Sample SVM boundary. SVMs construct a boundary or hyper-plane that separates
two classes (this can be extended to multi-class problems) in a 3D space. The hyper-

plane is oriented so that the margin between the support vectors is maximised and points

misclassified is minimised.
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9.4 Cancer cell results

9.4.1 Pre-processing and preliminary analysis

The following algorithm was used to establish significant differences between the sam-

ples:

1. Firstly, normalize each individual run by the total ion count, controlling for dif-

ferences in injection volume in the mass spectroscopy machine.
2. Establish no significant intra-run variation.

3. Integrate over a set of 30 second retention time intervals to control for peak shifts

with retention time, in line with Jonsson et al. (2004).

4. Take the square root of the data, having verified it is roughly a Poisson point

process, and in line with Purohit and Rocke (2003).

5. Compute the set of absolute values of the differences between the means of each
category, and test if any are significant using the threshold test below. Ignore

those that are significantly different between the controls.

Comparing the t-value with Students t-distribution gives a significance value. The
Kolmogorov-Smirnoff test (Conover 1971) allows us to check if the intensity values
come from a Poisson point process. There were no significant differences (p = 0.05)
between the runs, once they were normalized by the total ion count. The Kolmogorov-
Smirnoff test (Conover 1971) and stem plots were used to verify the intensity values

come from a roughly (p = 0.1) Poisson point process.

Setting a threshold at the mean + 3 standard deviations (of the set of absolute differ-
ences between the sets of data) identifies those differences at the 99.7% significance
level, assuming the differences come from a normal distribution (Kullback 1968). The
central limit theorem applies, however it is still important to check the significance

level, which was found to be p ~ 0.01. The formula for the threshold is given by:

1 1 & -
GZEinJr?) —— Y (% — %)%, (9.4)
i=1

1/1—11':1

where the x; are the set of absolute differences across the range of mass/charge ratios.

Table 9.1 shows the significant differences (p = 0.01) between the pairs of cell line
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Table 9.1. Mass/charge ratios at which differences are significant. This shows mass/charge
ratios for which the difference between the means of each group is significant (p=0.01),
excluding those differences caused by general media degradation. This list was calculated
for a variety of retention time intervals, summing up the ion count within that interval.

Generally, HeLA shows up as being quite distinct from Huh7 and HepG2 (in particular

HepG2).

Retention times | HuH7, HepG2 Huh7, Hela HepG2, Hela
0-30's 38.4, 44.9, 53.2 36.8, 37.8, 44.9 36.8, 37.0, 37.5, 37.6, 37.8
30-60 s (none) (none) 36.9, 37.4, 375
60-90 s 36.5, 36.8 36.5-37.3 (inclusive) 36.6, 36.7, 36.8, 36.9
90-120 s (none) (none) 36.9,37.0

120-150 s 40.0, 52.1, 46.8 38.6 41.1
150-180 s 46.4 54.9 57.1, 58.7
180-210 s 55.9 (none) (none)

growth media, for 30 second intervals of retention time. Figure 9.2 shows a typical
spectrum obtained for the Huh?7 cells, and Figure 9.3 shows a comparison between

spectra of samples taken at different time points.

The t-statistic is then used as a distance that can be fed into the neighbour-joining
algorithm. This produces the graphs shown in Figures 9.5 and 9.4. Apologies for the
overlap, it is difficult to avoid using the otherwise excellent phylip software package.
The results indicate a good clustering on the non-normalised data, which is somewhat
surprising given that the t-statistic and neighbour-joining algorithm do not implicitly
handle these differences. However, it is clear there must be some base-line differences
in the samples that are occuring. This is unlikely to be due to some sort of systematic
error, as even the controls cluster together, and repeated experiments on the same types

of cells also cluster together.
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HUAT-3gdih

Figure 9.2. Mass spectral plot of Huh7 cell growth medium. Plot of the intensity on the z, or
vertical axis (in counts per second), over mass/charge ratio (y, or right hand side axis)
and time (x, or left hand side access) for a sample of the Huh7 cell growth media. The

time at sampling was 24 hours after the Huh7 cells started growing.
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(a) Plot of the difference in intensity (counts per second) over mass/charge
ratio and time for two samples of the Huh7 cell growth media, the one at 24

hours subtracted from that at 12 hours.
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(b) Plot of the difference in intensity (counts per second) over mass/charge
ratio and time for two samples of the Huh? cell growth media, the one at 48

hours subtracted from that at 12 hours.

Figure 9.3. Mass spectra plots of changes in growth media over time. Plot of the difference
in intensity on the z, or vertical axis (in counts per second), over mass/charge ratio (v,
or right hand side axis) and time (x, or left hand side access) for samples of the Huh7

cell growth media at three time points.
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Figure 9.4. Grouping of non-normalised cancer data using t-statistic and neighbour joining
algorithm. Dendogram using the t-statistic combined with the neighbour-joining algo-
rithm, on the non-normalised cancer data. No general pattern is observed in terms of

similar samples clustering together.
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Figure 9.5. Grouping of normalised cancer data using t-statistic and neighbour joining algo-
rithm. Dendogram using the t-statistic combined with the neighbour-joining algorithm,
on the normalised cancer data. Good clustering is obtained for all groups (three types

of cells, and the three sets of their controls.
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9.4.2 k-means clustering analysis

k-means clustering analysis did not produce any interesting clustering results for the
data, although when using three clusters, the normalised data, and a Manhattan dis-
tance metric, the HepG2 clustered together in a single group along with the controls,
whereas the Huh” and HeLa cells and Huh? controls formed a second group, and the
third group consisted entirely of HeLa controls. So in general one can say that k-means
clustering analysis is not that useful on this data, and in the case of the particular result

mentioned, the following conclusions can be drawn:

e The HepG2's show little variation from the controls, so perhaps the cells aren’t

producing many metabolites (that the mass spectroscopy can pick up).

e The HeLa cells are quite distinct from their controls.

9.4.3 Principle components analysis

Two-dimensional PCA plots failed to show any clear separation of samples in two di-
mensions. To ascertain if adding a dimensions helps separate the data, three-dimensional
graphs were made (Figure 9.6). Again, neither graph shows anything like a clear sep-
aration of samples. Although higher-dimensional graphs cannot easily be made, it
would seem unlikely that in any case they wouldn’t show any clear separation of the
data, except at very high dimensions, since the support vector machine can separate
the data, although this may be using a nonlinear kernel which is difficult to visualise

at higher dimensions.

9.4.4 Support vector machines

For the cell line media data, the x mentioned in the methods subsection on SVMs is
the vector formed from the set of I(x,t) mass spectroscopy intensity values for all
mass/charge ratios x and all times ¢, and this is done consistently for all samples.
As there were more than two categories, a variant on the simple two-class SVM men-
tioned in the methods must be used. The multi-class SVM method chosen uses a set of
two-class SVMs, with labels y € {0,1}, to first distinguish whether a sample is in one

group from both of the other classes (in this case of three classes) and then if it is in the
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Plot of samples by principal components
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(a) Three-dimensional PCA plot for non-normalised cancer cell data.
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(b) Three-dimensional PCA plot for normalised cancer cell data.

Figure 9.6. Three-dimensional PCA plots for the cancer cell data. No clear separation is shown

in these 3D PCA plots between the three groups.

Page 160



Chapter 9 Metabolomics

class of two classes combined, to decide which of those two classes it is in. To be ro-
bustly tested, the original set of 20x3 categories of samples were taken, and ten in each
category were randomly selected for the training set and remaining ten were used for
the test set. This was repeated ten times, using mutually unique training sets. For each
repetition, 100% accuracy was obtained (ie no false positives and no false negatives),
the support vector variable p is on the order of +5 (the sign being irrelevant), indicat-
ing a clear separation of the classes. If this seems a little too good to be true, then take
it “with a grain of salt”, since this is only very limited data (10 training samples + 10
test samples = 20 samples). However the experience with the autism study as detailed
below shows that SVMs perform surprisingly well even when there is no clear visual

separation of data in low-dimensional spaces.

0.5 Autism results

9.5.1 Pre-processing and preliminary analysis

The dendogram generated for the non-normalised spectra generally shows no signifi-
cant grouping of autistic and non-autistic samples. Samples of autistic and non-autistic
children were randomly scattered on the dendograms. However, it is interesting to
observe that close relationships exist between the urine spectra of matched siblings.
As revealed in Figure 9.7, samples A-24CM and N-24DM and samples A-70LH and
N-70MH are both from two matched siblings respectively. It is noteworthy that the
distance between the siblings of the same family is closer to each other compared to
siblings from different families. Although consistency in this aspect is not observed in
this study, the close relationships between the urine spectra of some matched siblings
may suggest that urinary metabolic profile is strongly dependent on both genetic and

environmental factors.

For the dendogram produced from the analysis of normalised spectra, close inspection
of the data reveals some grouping of autistic samples into two separate clusters with
a cluster of non-autistic samples also being separated out (Figure 9.8). Although there
is some overlapping of sample points, it is clear that significant number of autistic
and non-autistic samples does group up at certain areas on the dendograms. This
observation may suggest that significant differences exists between the urine spectra
of autistic and non-autistic children. Also, given that such separation is only visible

after the spectra have been normalised, this may indicate that normalization of the data
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Figure 9.7. Dendogram of the non-normalised autism study data. Dendogram using the t-
statistic combined with the neighbour-joining algorithm, on the non-normalised autism
study data. The distance between samples is a measure of how distinct they are, as

ascertained using the t-statistic.

prior to analysis is an important step. As shown in Figures 9.7 and 9.8, overlapping of
sample points are prominent for both non-normalised and normalised spectra and this
renders visual inspection of the data rather difficult. Given that the sample size of this
study is relatively small and the fact that interpretation of data is already problematical
owing to poor presentation of results using dendograms, researchers should err on the
side of caution when using this method, should the current study be expanded to a
larger population. However, this is not to say that the Students pair-t test and the

neighbour-joining algorithm method did not provide us with useful data.
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Figure 9.8. Dendogram of the normalised study data. Dendogram using the t-statistic combined
with the neighbour-joining algorithm, on the normalised autism study data. The distance

between samples is a measure of how distinct they are, as ascertained using the t-

statistic.
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Table 9.2. Sample classification using k-means clustering algorithm..

Number of subjects

Category - .
Cluster one (non-autistic) | Cluster two (autistic)
Non-normalised

Autistic 16* 6
Non-autistic 13 9%
Normalised

Autistic 17* 5
Non-autistic 17 5*

9.5.2 k-means clustering analysis

k-means clustering algorithm was used to group the urine samples of autistic children
and non-autistic children into two clusters where cluster one and two were denoted as
non-autistic and autistic populations, respectively. Findings revealed that there is no
clear differentiation between the two clusters. In other words, it is impossible (at least
for this data set) to differentiate between the non-autistic children from the autistic
children based on this method (Table 9.2).

To put things into perspective, first consider the results yielded from the non-normalised
spectra. Noting that cluster 1 shows a population of non-autistic children, 17 autistic
children also fall into this category. There are 9 non-autistic children that fall into clus-
ter 2, which denotes the population of autistic children. This is also true for the normal-
ised data where 17 autistic children fall into the cluster of non-autistic children and 5
non-autistic children fall into those of autistic children. Ideally, the samples of autistic
children and non-autistic children should be grouped into their respective cluster with
minimal overlapping in each cluster. Therefore, the result does not clearly demonstrate
to us that there is a distinct difference between the urinary metabolic profiles of both

groups of children using k-means clustering algorithm.

9.5.3 Principal components analysis

Sample classification using the PCA is widely employed in the field of metabolomics
study. The principal component (PC) scores plot is an efficient way to enable the visu-

alization of any inherent pattern or clusters that may exist in the urine spectral profiles
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of autistic and non-autistic children. Any separation of data points can be attributed to

differences between the urinary metabolic patterns of both groups.

Two-dimensional PCA failed to demonstrate any significant segregation of data points
into different clusters. Urines from autistic children did not reveal a urinary metabolic
profile which is distinct from those of non-autistic children. In addition, the plots
reveal that samples from the autistic group overlapped with samples from the non-
autistic group. However, bear in mind that it will be difficult to determine with con-
fidence that significant clusters, if any, do exists based on a 2D PCA. Any significant
separation of data points which has not been revealed in the 2D PCA does not nec-
essarily imply that there will not be significant clusters observed in 3 dimensions, as
when plotted in space, data points may take different arrangements which will pro-
vide us with a clearer overview of the pattern that exists in the urine metabolic profile
of autistic and non-autistic children. Hence, an additional third principal component
was considered to generate a 3D PC scores plot for both non-normalised and normal-
ized spectra as illustrated in Figure 9.9 In the case of this study, the resulting 3D PC
scores plots did not show any clear separation either. This finding suggests that classi-
fication of samples into autistic and non-autistic groups have not been successful using
the PCA.

9.5.4 Support vector machines

Although significant groupings were not observed with the above pattern recognition
methods, a trial was performed using the SVM method. The SVM method was used
in an attempt to distinguish between samples from autistic and non-autistic subjects,
using the particular SVM methodology as detailed by Guermuer (2002). In this case,
the data vectors were formed from the set of intensity values I(x, f) for all mass/charge
(m/z) values {x} and all retention times {t} and this was done consistently for all

samples. The labels were denoted as

1, Autistic,
y= (9.5)
—1, Non-autistic.

To ensure the robustness of the learned model, 11 samples in each category were ran-
domly selected for the training set and remaining samples (11 autistic and non-autistic

samples respectively) for the test set. The machine learning was then performed 10
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(a) Three-dimensional PCA plot for the non-normalised autism study data.
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(b) Three-dimensional PCA plot for the normalised autism study data.

Figure 9.9. Three-dimensional PCA plots for the autism study data. Three-dimensional PCA

plots for the autism study data. No clear separation is shown between the two groups.
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Table 9.3. Success of SVM at distinguishing non-autistic from autistic children based on
urine samples. This table shows the success rate at distinguishing autistic from non-
autistic groups over 10 randomised choices of which 11 of the 22 autistic children are
chosen, along with 11 of the 22 non-autistic children. The mean and standard deviation

(SD) are also shown. These are very promising results.

Run Non-normalised, linear kernel | normalised, polynomial kernel
1 90.91 95.45
2 95.45 68.18
3 81.82 90.91
4 86.36 68.18
5 90.91 77.27
6 86.36 86.36
7 90.91 77.27
8 05.45 68.18
9 90.91 59.09
10 100 90.91
Mean + 1 SD % 90.914+5.25 78.184 12.27

times using the same number of randomly selected training and test sets for each indi-
vidual run. With each run of SVM learning using a set of randomly selected training
samples, a learned prediction model was established. Ideally, this prediction model
will be able to accurately assign an unknown sample to its true category, whether it is
an autistic or non-autistic sample. The accuracy of this prediction model which was
tested by the remaining samples yielded a mean success rate of 90.91 & 5.25% (1 SD)
using the non-normalised spectra and 78.18 & 12.27% using the normalised spectra
respectively. In the case of this study, prior to any SVM learning, training samples
were first randomly selected from autistic and non-autistic groups to identify the best
kernel type for both the non-normalised and normalised spectra. It was found that
non-normalised spectra of autistic and non-autistic children were best separated using
a linear kernel type as compared to a polynomial kernel when using the normalised
spectra of both groups of children. Sample classification using SVM was subsequently
performed for both non-normalised and normalised spectra based on the best kernel
type that had been identified. The mean success rate was determined by taking the
average of the individual success rates generated from 10 consecutive runs where each

run was performed independently (Table 9.3).
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The small SD of the success rate of the prediction model constructed using the non-
normalised spectra suggests that this learned model is relatively more robust com-
pared to that of the normalised spectra, the success rates of which tend to fluctuate
between runs. Although the learned prediction model of the non-normalised spectra
shows a high mean success rate and thus looks promising, this may be misleading as
variations in dilution volume, which is a confounding factor, were not taken into ac-
count. Therefore, it is fair to say that the learned prediction model that was designed
based on the normalised spectra is a better representative of the true value of SVM in
classifying autistic and non-autistic children. Although the mean success rate of cor-
rect class prediction by SVM dropped after the spectra were normalised, the accuracy

rate is still encouraging given that it is close to 80%.

9.6 Conclusions

With the exception of SVM, and in some cases the combination of the t-statistic with
the neighbour-joining algorithm, the various pattern recognition methods used in this
study failed to demonstrate clear separation of autistic and non-autistic children, and
of the cancer cell data. With the combination of Students paired-t test and neighbour-
joining algorithm approach, a close relationship between the urine metabolic profiles of
some autistic and non-autistic matched siblings was prominent, and the non-normalised
cell data was well-clustered. In the case of the autism data, although there is a lack
of consistency in this observation across families, this result may indicate that urine
metabolic profile is highly dictated by genetic and environmental factors. The k-means
clustering algorithm and PCA were unsuccessful in differentiating urine samples of
autistic from non-autistic children, and differentiating the cancer cell data. Both pattern
recognition methods revealed a consistent overlap in the grouping of samples from the
two populations. With the SVM approach, a high success rate of correct sample class
prediction was achieved for both sets of data. The ability of SVM to correctly assign
autistic and non-autistic samples despite the small number of samples used in this
study indicates metabolomics is capable of discriminating autistic from non-autistic
children based on the analysis of urinary metabolic profiles using SVM. A larger sam-
ple size in future studies may further enhance the accuracy rate of class prediction by
SVM. As the cancer data shows, a large sample size dramatically improves the SVM
success rate. Overall, this research shows that metabolomics has clinical utility in the

diagnosis of autism, cancer, and other diseases.
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To summarise the novel contributions of this work: algorithms and methods for pro-
cessing (mass spectroscopy) metabolomic data were developed, some of these were
used to ascertain if there are any statistical differences, and others were used in classi-

tying samples from different sources.
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IN this thesis, analytical and modelling of complex systems for a large
number of biological systems is developed. This chapter summarises the

work, and draws some general conclusions.
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10.1 Overview

This thesis tackles the following complex biological systems:

1. The evolution and analysis of DNA sequences.
2. The human brain during sleep.

3. Analysis of metabolites from various biological systems under different condi-

tions (metabolomics).
4. Modelling of the development of tumors and cancer.

5. Transmission of viruses.

Topics 1,4, and 5 all involved computer simulation and mathematical modelling of bio-
logical systems, exploring the overall behaviour of the system from the rules governing
the interacting parts. Topics 1 through 3 involved statistical analysis of data from real

biological systems. The following sections summarise the conclusions of each chapter.

10.2 Analysis of DNA sequences

In Chapter Two some existing methods for analysing DNA were reviewed, and showed
some interesting microsatellite repeat patterns in S. aureus. The multifractal measure
was combined with the minimal-span tree in a novel way to successfully classify bac-
teria. The Higuchi fractal measure (a complex systems tool) was extended to DNA
sequences. Along with a measure of mutual information, this was applied to the anal-

ysis of correlations in DNA sequences generated in Chapter Three.

10.3 Mutations in DNA sequences

In Chapter Three the Higuchi fractal measure and mutual information measure of
Chapter Two were then applied in order to study long-range correlations that can be
found in short sequences of real DNA, “virtual” DNA, and throughout whole chro-
mosomes. Genetic mutations were simulated for “junk” DNA sequences, with fill,
copy, and mutate operations found to produce long range-correlations approaching

1024 bases in length. A negative test, with computer generated random sequences,
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succeeds in that no significant long-range correlations were found in these sequences.
These results confirm that mutational events in non-conserved regions of DNA can

give rise to long-range correlations.

10.4 Viruses and memes

In Chapter Four, two complex systems models were presented: one to capture the
spread of viruses in a social network in a school, the other to capture the spread of
memes in a social network of share market traders. Cycling patterns were found in
both the model and the actual school data, strongly suggestive of successful capture of
network structure and its impact on viral spread dynamics. In the share market model,
it was similarly found that network structure impacts on the spread of memes through

different groups of traders, and that this results in boom-bust cycles.

10.5 Drosophila

In Chapter Five, the focus was on modelling part of the gene network of Drosophila
involved in setting up stripes in the larvae that regulate the future body plan. It was
found that a cellular automaton is able to generate realistic patterns of stripes. This
shows both the power of cellular automata in modelling complex systems, and in this
specific case some of the robustness that has been evolved over countless generations

of Drosophila.

10.6 p53

In Chapter Six, attention was paid to another gene network, that of the p53 network in
humans. p53is an important gene that (among other things) regulates cell repair and
programmed cell death in cells. It was found a switching network based on a portion
of the p53 gene network allows for a good exploration of the choice between repair and
cell death that cells face when encountering DNA damage. In related work looking at
a model of mutations in p53, it was found that the number of inherited mutations in

the p53 gene plays a key role in early development of cancer.
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10.7 Cancer

Chapter Seven then took a step up and looked at cancer as a whole, and explored facets

of the multistep model of oncogenesis. The key findings of this work were:

1. The fastest path to somatic cancer is predicted to be through gaining mutations
in D (evasion of cell death), then R (increased replication rate), then A (angiogen-

esis), then G (increased mutation rate).

2. Of the four categories of mutations, inheriting a mutation in G is predicted to

produce cancer at the earliest age.

3. The fastest path to somatic cancer is robust to realistic changes in parameters,
with the model that was developed being most affected by variations in tumour

volume doubling time.

10.8 The human brain during sleep

In Chapter Eight, some procedures were established for cleaning data generated by
a messy, biological, complex system: sleeping children. Some nonlinearity in (brain)
processes generating EEG data was found, using both a time-reversal test and a fractal-
based test. It was found, however that a significant portion of sleep EEG data can be
considered to come from a linear process. This shows that both linear tools, such as the
tast Fourier transform, and newer nonlinear time series analysis tools should be used.
Due to the significant changes in nonlinearity between sleep stages, and the Higuchi
fractal measure, one can be fairly certain that the nonlinearity process arises in the

brain and not as a result of any nonlinear processes in the recording equipment.

10.9 Metabolomics

Chapter Nine detailed work in the field of metabolomics, looking (using mass spec-
troscopy) at the metabolic output of complex systems such as cancer and the human
brain, and ascertaining useful data about these systems, even if it is unclear which of
the metabolites is providing this information. Of all the tools tested, some (such as the
t-statistic combined with the neighbour-joining algorithm) showed a little success at

grouping samples from different sources, but none were as successful as the support
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vector machine (SVM) technique. SVMs had a high success rate of correct sample class
prediction for both sets of data. The ability of SVM to correctly assign autistic and non-
autistic samples despite the small sample size of this study indicates metabolomics is
capable of discriminating autistic from non-autistic children based on the analysis of
urinary metabolic profiles using SVM. A larger sample size in future studies may fur-
ther enhance the accuracy rate of class prediction by SVM. Strong results were also
found when applying SVMs to the problem of distinguishing cancer cell lines, based

on (mass spectra of) samples of growth media in which they were growing.

10.10 Overall conclusions

It is not surprising that complex systems science enables a generic modelling and
analysis paradigms for a large set of problems, and that these tools are highly use-
ful; once one formalises the terms, it is really just applied mathematics. And mathe-
matics is that most magical of tools that has unreasonable effectiveness in the natural

sciences (Wigner 1960).

My thesis wouldn’t be complete without quoting 7t (the movie) by Darren Aronofsky,

Restate my assumptions:

1. Mathematics is the language of nature.

2. Everything around us can be represented and understood through numbers.

3. If you graph the numbers of any system, patterns emerge. Therefore, there
are patterns everywhere in nature.

Evidence:

e The cycling of disease epidemics.
e The wax and wane of caribou populations.
e Sun spot cycles.

e The rise and fall of the Nile.

So, what about the stock market? The universe of numbers that represents the
global economy. Millions of hands at work, billions of minds. A vast network,
screaming with life. An organism. A natural organism. My hypothesis: Within the
stock market, there is a pattern as well... Right in front of me... hiding behind the

numbers. Always has been.
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