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Abstract: We describe a Hartmann sensor with a sensitivity ofλ/15,500
at λ = 820nm. We also demonstrate its application to the measurement of
an ultra small change in wavefront and show that the result agrees with that
expected to withinλ/3,300.

© 2007 Optical Society of America

OCIS codes: (120.4640) Optical instruments; (010.7350) Wave-front sensing; (350.4800) Op-
tical standards and testing

References and links
1. J. Hartmann, “Bemerkungen uber den Bau und die Justirung vonSpektrographen,” Zt. Instrumentenkd.20, 47

(1900).
2. T. L. Kelly, P. J. Veitch, A. F. Brooks and J. Munch, “A differential Hartmann wavefront sensor for accurate and

precise optical testing,” Appl. Opt.46, 861–866 (2007).
3. C. Castellini, F. Francini and B. Tiribilli, “Hartmann test modification for measuring ophthalmic progressive

lenses,” Appl. Opt.33, 4120 (1994).
4. F. Roddier, ed.,Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, England, 1999).
5. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida and D. H. Reitze,

“Evaluating the effect of transmissive optic thermal lensingon laser beam quality with a Shack-Hartmann wave-
front sensor,” Appl. Opt.40, 366–374 (2001).

6. R. Lawrence, D. Ottaway, M. Zucker and P. Fritchel, “Active correction of thermal lensing through external
radiative thermal actuation,” Opt. Lett.22, 2635-2637 (2004).

7. M. Smith and P. Willems, “Auxiliary Optics Support System Conceptual Design Document, Vol. 1: Thermal
Compensation System,” (2006),http://www.ligo.caltech.edu/docs/T/T060083-00/T060083-00.pdf.

8. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke and J. Pfund,“Calibration of a Shack-Hartmann sensor for abso-
lute measurements of wavefronts,” Appl. Opt.44, 6419–6425 (2005).

9. J. L. Rayces, “Exact Relation between Wave Aberration andRay Aberration,” Opt. Acta.11, 85–88 (1964).
10. W. H. Southwell, “Wave-front estimation from wave-frontslope measurements,” J. Opt. Soc. Am.70, 998–1006

(1980).
11. P. Mercere, P. Zeitoun, M. Idir, S. Le Pape, D. Douillet, X. Levecq, G. Dovillaire, S. Boucourt, K. A. Goldberg,

P. P. Naullleau and S. Rekawa, “Hartmann wave-front measurement at 13.4 nm withλEUV/120 accuracy,” Opt.
Lett. 28, 1534–1536 (2003).

12. A. Poteomkin, N. Andreev, I. Ivanov, E. Khazanov, A. Shaykin, and V. Zelenogorsky, “Use of a scanning Hart-
mann sensor for measurement of thermal lensing in TGG crystal,” Proc. SPIE4970, 10–21 (2003).

13. M. Kasper, D. Looze, S. Hippler, R. Davies and A. Glindemann, “Increasing the sensitivity of a Shack-Hartmann
sensor,” in Proceedings of the Canterbury Conference on Wavefront sensing and its applications, Canterbury
(1999),http://mpia-hd.mpg.de/ALFA/PAPERS/canterbury99MEK.pdf.

1. Introduction

Hartmann wavefront sensors, first described in 1904 [1], andparticularly the Shack-Hartmann
derivatives, have enjoyed a recent surge of popularity due to improvements in the speed, quality
and size of CCD arrays. They are currently used for a variety of applications, including lens
metrology [2], ophthalmology [3], adaptive optics [4] and the measurement of thermal lensing
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[5] [6]. The measurement of wavefront distortion induced byabsorption in the optics of ad-
vanced gravitational wave interferometers is a particularly demanding application, requiring a
sensitivity equivalent to at leastλ/600 atλ = 820nm [7].

The type of Hartmann sensor used for an application is usually dictated by the intensity of the
available light source. Shack-Hartmann sensors use micro-lens arrays to sample the wavefront
and thus optimize the light collection efficiency but they are susceptible to imperfections in
the micro-lens array [8]. While the effect of these imperfections can be partially reduced by
calibration of the system, they can’t be fully removed [8] asthe resulting aberration of the
calibrating wavefront by the imperfection is, in general, different from that imposed on an
unknown wavefront. A Hartmann wavefront sensor, by contrast, samples the wavefront,W,
using an opaque plate containing an array of holes, the Hartmann plate, as shown schematically
in part of Fig. 1. It is therefore less light efficient, but it is simple to optimize and, as shown
here, has ultra-high sensitivity and accuracy when measuring wavefront changes.

Interferometer
read−out

Optical fibre
from SLD

L

HeNe laser
Hartmann plate

Translation stage

z0

W

CCD

Hartmann sensor

Fig. 1. A schematic of the Hartmann wavefront sensor and the system used to test it. The
sensor consists of a Hartmann plate mounted a distance L from a CCD. It was illuminated
by a wavefrontW emitted from a fiber-coupled super luminescent diode (SLD), the free
end of the which was mounted on a micrometer-controlled translation stage.

The rays created by the Hartmann plate propagate normal to the incident wavefrontW to the
active surface of a CCD where they produce an array of spots. If the local slope of the wave-
front changes then the positions of the spots will change. Dividing the transverse displacement
of each spot by the ’lever-arm’ propagation length L yields the gradient of the wavefront change
at each hole (see [9] for example), and the wavefront change,∆W , can be determined by numer-
ically integrating this gradient field [10]. While knowledgeof the initial wavefront would then
enable the new wavefront to be calculated, in this paper we donot make any assumptions about
the initial wavefront but rather consider only the change,∆W , in the wavefront as required for
the measurement of thermal lensing in gravitational wave interferometers.

The position of each spot is specified by its centroid, the precision of which is maximized by
ensuring that each spot consists of a large number of pixels and that each pixel acquires a large
number of photoelectrons in the available integration time. This minimizes the effects of dark
current, CCD read-out noise, non-uniformity in pixel response and photoelectron shot noise.
Since Hartmann wavefront sensors naturally provide large spot sizes, they should be able to
provide high sensitivity measurements of wavefront changes. Indeed, a Hartmann sensor that
has a reproducibility (sensitivity) ofλ/1500 atλ = 13.4nm [11] and a scanning Hartmann
sensor that has a sensitivity ofλ/500 atλ = 1064nm [12] have been reported. The accuracy
of the scanning Hartmann sensor was estimated to beλ/50 atλ = 1064nm. In this paper, we
describe an investigation of the optimization of a Hartmannwavefront sensor (H-WFS) and
demonstrate significant improvements in the sensitivity and accuracy of this type of sensor.
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2. Hartmann wavefront sensor

The camera used in our sensor is a 12-bit digitized, 1024×1024 pixel CCD camera that has a
nominal dynamic range of 66 dB (11 bits) and a nominal pixel spacing of 12µm. The actual
average pixel spacing was measured by translating the camera sideways using a micrometer-
controlled translation stage and observing the displacement on the CCD of a fixed diffraction
pattern, yielding a value of 11.975±0.005µm.

The Hartmann plate was made from 50µm thick brass plate into which 150µm diameter
holes in a uniform hexagonal-close-packed array spaced 430µm apart were laser drilled, yield-
ing about 900 holes over the 12.2 mm× 12.2 mm CCD. It was mounted on the body of the
camera and the distance between the plate and the active surface of the CCD, the lever arm
L, was calibrated by illuminating the sensor with two laser beams separated by a precisely
measured angle and measuring the average displacement between the two spot patterns, giving
L = 10.43±0.02mm. The hole diameter, pitch, pattern and value of L were optimized to ensure
that cross-talk between neighbouring spots was negligiblewhile maintaining sensitivity.

A weighted centroiding algorithm was used to determine the spot positions [13]:
xc = ∑i p2

i xi/∑i p2
i andyc = ∑i p2

i yi/∑i p2
i wherepi is the digital number, directly proportional

to the number of photoelectrons, andxi andyi are the coordinates of theith pixel. The summa-
tion range of the algorithm was adjusted to minimize the variance in the centroids. In practice,
this meant using only pixels within a box that was 15 pixels square, which is 10% larger than
the hole diameter. Simulations indicate that cross-talk due to diffraction should introduce a
systematic error of less than 0.1% for the defocus measurement discussed in this paper.

All measurements reported here were recorded after a 3 hour warm-up period to reduce the
effects of thermal expansion of the sensor. However, there was a residual 0.5 mHz oscillation
in the output of the H-WFS due to a periodic variation in the temperature of the sensor with
an amplitude of 150 mK, caused by the cycling of the room temperature. The magnitude of the
oscillation is consistent with thermal expansion of the Hartmann plate.

The H-WFS was tested using the system shown in Fig. 1, in which it was illuminated by
light emitted from an optical fiber with a 50µm core and 0.36 NA that was coupled to an 820
nm super-luminescent diode, which had a full-width-half-maximum coherence length of about
5µm. The optical table on which the H-WFS and its test system weremounted was enclosed to
reduced air currents A Michelson interferometer was used tomeasure changes in the distance,
z0, between the light source and the H-WFS with a precision of 50 nm.

3. Results

The statistics of the noise in the H-WFS were investigated by illuminating the CCD with the
output from the fiber at three different intensity levels. A short integration time was used to
ensure that the dark current was negligible. We observed that the fluctuation,∆p, in the dig-
ital number,p, in a pixel was well described by∆p ∝ p0.5, proving the noise has Poissonian
statistics. A relative fluctuation of 0.25% was obtained forthe maximum digital number (4095),
indicating a maximum photoelectron count of approximately1.6×105, which is similar to the
specified electron well depth of each pixel, confirming that the dominant noise is photoelectron
shot noise.

Numerical simulation predicts that the RMS uncertainty in the centroid position due to pho-
toelectron shot noise in a single Hartmann image should be about 0.25% of a pixel, or about 30
nm, if the brightest pixel in each spot is full. If the noise insequential Hartmann images is uncor-
related then the RMS error in the displacement of a centroid,σ∆y, will be a factor of 21/2 larger.
The RMS wavefront difference betweenadjacent holes, σ∆W , is given byσ∆W = σ∆y hp/L,
wherehp is the spacing between adjacent holes in the Hartmann plate.If the noise in neighbour-
ing centroids is not spatially correlated then the RMS wavefront error acrossall holes can be
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determined usingC1/2
pd ×σ∆W , whereCpd is the noise coefficient developed by Southwell [10],

which is dependent on the number,Nholes, and arrangement of holes. More generally, however,
the RMS wavefront error is determined from the map produced by numerically integrating the
gradient field [10].

The RMS wavefront error was measured using the system shown in Fig. 1 while keepingz0

constant. Spot centroids were calculated for consecutive Hartmann images separated in time by
15 s and the average prism in each image was removed. These zero-prism centroids were used
to calculate the error in the wavefront change. A typical mapof the wavefront change, which
has an RMS error ofλ/1450, is shown in Fig. 2. The RMS error for these maps varied between
λ/1000 andλ/2000 which is consistent with the shot noise limit andCpd = 0.2, calculated for
Nholes= 263 used in this example.

Fig. 2. Measured single-frame wavefront error map over a 7.2mm×7.2mm region.

If the statistical characteristics of the noise do not vary with time then the wavefront error
should be reduced by averaging over multiple Hartmann images. To test this, we recorded a
sequence of 2000 Hartmann images at 30 images/second and removed the global prism from
each image. A set of reference centroids was then calculatedby averaging overNref = 1000
images, consisting of the first and last 500 images. The central 1000 images were used to
calculate sets of centroids averaged overNavg images, whereNavg = 1, . . . ,990. This process
ensured that the reference and average centroids were statistically independent. The resulting
σ∆W are plotted in Fig. 3, showing that the minimumσ∆W ≈ λ/15,500.

The result of a numerical simulation that assumes stationary random noise and in which the
only free parameter is theNavg = 1 error is also plotted in Fig. 3. For smallNavg, the error

decreases asN1/2
avg, as expected, and it asymptotically approaches a value thatis a factorNref

times smaller than theNavg = 1, the limit due to the noise in the reference centroids. Notethe
good agreement between the measurement and the numerical simulation except forNavg > 200
where the measured error is slightly larger than that predicted.

The RMS wavefront error across all holes forNavg= 990 wasλ/15,500, which is larger than

the valueC1/2
pd ×σ∆W = λ/21,000 predicted using the simulated data and the Southwell noise

coefficient appropriate for this measurement. These discrepancies are probably due to the effect
of the low-frequency temperature fluctuation described above.

The ability of the H-WFS to measure a small known (modal) change in the wavefront,∆W ,
was demonstrated by translating the fiber light source. As shown in Fig. 4, translating the source
a distance∆z from an initial positionz0 displaces the spot on the CCD by∆y(h), assuming that
the change in the slope of each wavefront across the hole is small. The expected local gradient
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Fig. 3. The improvement in H-WFS sensitivity due to averaging overNavg Hartmann im-
ages. The solid curve shows the improvement predicted by a numericalsimulation assum-
ing only random, stationary noise in the spot centroids.

of the wavefront change can then be calculated using

∂ (∆W )

∂h
=

∆y
L

=
∆zy0

(z0−∆z) (z0 +L)
=

∆zh
(z0−∆z) z0

= Sh (1)

whereh is the position of the hole in the Hartmann plate,S is the primary aberration defocus
and we have considered only one dimension for clarity.

Fig. 4. Schematic diagram showing the displacement of the Hartmann spoton the CCD due
to a change in the distance between the fiber end and the H-WFS.

Unfortunately, the 0.5 mHz oscillation in the output of the H-WFS resulted in a synchronous
oscillation in the calculated defocus. We therefore recorded Hartmann images continuously at
40 Hz and translated the fibre by about 10µm every 5-10 minutes. The translation that occurred
nearest a turning point of the 0.5 mHz oscillation was then selected for analysis, as this ensured
that the average temperature of the H-WFS was the same before and after the translation. Plots
of the local gradient of the wavefront change for∆z = 9.60±0.05µm, versus the transverse
position,y0, of each spot are shown in Fig. 5. They show a linear relationship between the local
gradient and transverse position as predicted by Eq. 1, and the improvement in sensitivity due
to averaging.

The defocus due to the source translation can be calculated using the slope,m, of the line-of-
best-fit to this data andS = m(z0 +L)/z0. The defocus for the 1-image and 5000-image aver-
ages are−1.3±0.2×10−3m−1 and−1.159±0.007×10−3m−1 at 95% confidence level. The
uncertainty inS when averaged over 5000 images is equivalent to an uncertainty in the wave-
front sag of 0.1 nm(λ/9300) over the CCD aperture (≈ 10 mm), which is roughly twice the
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Fig. 5. Measured local gradient of the wavefront change versus spot position at the CCD,y0,
due to translation of the fiber light source, averaged over (left) 1 and (right) 5000 Hartmann
images.

previously measuredλ/15,500 due probably to the non-stationary noise during the extended
acquistion time.

The accuracy of the defocus measurement can be determined bycomparing the measured
defocus with that predicted using Eq. 1, but this comparisonrequires an accurate measurement
of z0. The distance between the source and the H-WFS was determinedby exploiting the non-
linear dependence of the local gradient on∆z: analyzing Hartmann images recorded with large
∆z and determining the value ofz0 that would produce the best agreement between the measured
local gradient and that predicted by Eq. 1. With this approach, we foundz0 = 91.7±0.2 mm,
giving an expected defocus of−1.14±0.01×10−3m−1, which differs from the measurement
by about 1.7%. This error is equivalent toλ/3,300 and could be explained by a change in
average temperature of the H-WFS of order 10 mK.

4. Conclusion

We have demonstrated that the H-WFS can measure changes in a wavefront with a single-frame
sensitivity ofλ/1450, which is primarily limited by shot noise. We have also shown that the
sensitivity can be improved toλ/15,500 by averaging multiple Hartmann images. Finally, we
demonstrated its application to the measurement of a small wavefront change due to defocus
with a precision of 7× 10−6m−1 and established that the sensor is accurate to within about
2.0×10−5m−1.

Together with the simplicity of the H-WFS, these results showthat it is ideal for high preci-
sion and high accuracy measurement of wavefront changes, and represent a large improvement
in the state-of-the-art. The H-WFS clearly exceeds the requirement for the measurement of
absorption-induced wavefront distortion in advanced gravitational wave interferometers.
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