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Appendix A

Experimental Results

Results from the experiments performed in Chapter 3 areepted here.

A.1 Exponential Horn
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A.2 Conical Horn
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Appendix B

Optimisation technigues

This appendix describes the optimisation techniques umstiiki thesis. It discusses global
verses local optimisation, gradient based, non-gradiased global optimisation tech-
niques, surrogate modelling, space filling sampling and@l@ptimisation techniques

for expensive objective function evaluations.

B.1 Global optimisation

Global optimisation strives to find the global minimum of anjextive function, i.e. to
minimise a functionf (x), you must find a value of = x* such thatf (x*) < f (x) for all
X. Most optimisation techniques strive to find a local minimunpointx = xX* such that
f(x*) < f(x) for [x—x*| <&, whered > 0 (i.e. for allx in a bounded region neat).
In many real world problems both local and global minima ditaneously exist. As an

example, consider the simple function (from Sasena 2002)

f (x) = —sin(x) _eXp<1LOO> +10 (B.1)
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11

I
—— function
local minimum start
local minimum H
global minimum start
global minimum

10.5f

®@ O @O

f(x)

7.5 : ;
0 2 4 6 8 10

Figure B.1: Plot showing both local and global minimum of Btjon (B.1).

Figure B.1 shows a plot of this function, which contains tladg! minimum &= 7.86,f (x) =

7.92) and a local minimumx(= 1.58,f (x) = 7.98).

B.2 Gradient based techniques

There are many different types of optimisation methodslalks to solve many different
types of problems. A good overview of different optimisatitechniques is given in
the introductory textbook by Belegundu and Chandrupa®®9). A popular method of
optimisation makes use of both the objective function valne derivatives with respect
to optimisation parameters. These gradient based optiomsanethods search for local
minima in objective function space, starting from an inigaess. There are many types
of gradient based optimisation, and all methods answer ag@lmuestions in their search
for a minima: which is the best direction to find a minima?; &od far do | travel in this

direction?
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Sequential Quadratic Programming (SQP) is a popular gnadiased technique that
solves a locally quadratic approximation to the objectivaction surface to find the best
direction (the Quadratic Programming algorithm), and therforms a line search to find
out how far to move. The quadratic approximation is then magkan around the new
point and the operation is performed repeatedly until cagemrece (the Sequential part
of the algorithm). The method is able to handle both lineal mon-linear constraints.
Belegundu and Chandrupatla (1999) Section 5.10 has a gtdurction to Sequential
Quadratic Programming. A robust implementation of SQPe8a® the work of Schit-
tkowski (1985), is found in the MTLAB optimisation toolbox functiofm ncon and used

in this thesis.

When applied to optimisation of Equation B.1, SQP will finther the local minimum
or the global minimum depending on which side of the local imaxn (x = 4.70) the
minimisation technique is started. The inability to find gebal minimum from any
starting point is a major failing of gradient methods sucls@#. They often have to be
run many times from different starting positions, and a glyboptimum solution is not

guaranteed.

Gradient based methods also require the gradient of theifumim be minimised. For
analytic functions such as Equation B.1, calculation ofdhedient is not difficult. For
real engineering problems, such as those formulated ithbgss, the analytic gradient is
not generally available. A number of approaches are usedierioal approximations to

the gradient, automatic differentiation programs andiatifjormulations.

The gradient is generally evaluated numerically by eitloewéard or central differences.

A forward difference can be calculated thus

of (x%)  F(88,....x0+¢,....x0) — f(x0) .
= Jd=1...,n
0% €

wherex? = {x9,X3,...,%%,...,x3} is a vector of input parameters, ands the step size.
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This approximation to the true gradient requires an adagiéunction evaluation for each
dimension considered, in addition to the original evahmtitx® . The value of the gradi-
ent is also dependent on the choice of step siaddost mesh based numerical techniques,
such as those used in this thesis, can produce relativglg dranges in function value

for a small change in input, which makes numerically evadagradients problematic.

Automatic differentiation (Bischof et al., 1998) is an atitive scheme that provides
source code for analytic gradients from the source code efuhction itself. It does
this by parsing the function source code and applying thenatuide automatically to the
individual operations contained within. As can be imagittad is a significant task and
these programs are not robust, not generally available endinaited to a single pro-
gramming language. They are a topic of current researchaoiddromising for future

optimisation methods.

The adjoint technique (Noreland, 2002, Jameson, 1995, Zal@your and Baysal, 2000,
Belegundu and Chandrupatla, 1999) can be used in certeifepns to efficiently evaluate
the gradient of the objective function. It uses a matherahtechnique that forms an
“adjoint” problem that calculates the gradient with the satost as a single extra function
evaluation, no matter the dimension of the minimisationg@brformed. This technique
has not been applied to the source superposition methodehefed will not be considered

further in this thesis.

B.3 Non-gradient based global optimisation techniques

The issues associated with gradient based methods sucbahsiimimisation and diffi-
cult evaluation of the function gradient have been overcbyneon-gradient based, non-
deterministic global methods such as genetic algorithnoddiéerg, 1989, Deb, 2001) or

simulated annealing (Ingber, 1993). It has been found theth $echniques can require
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many thousands (or even tens of thousands) of objectiveéifumevaluations. For expen-
sive cost function evaluations, non-deterministic meghcah lead to intractable solution
times. One solution for the efficient calculation of suchipjems is parallel computing

(Howard et al., 2004).

An alternative to non-deterministic global optimisatigrtiie deterministic sampling DI-
RECT algorithm (Jones et al., 1993). This method requirdgwwledge of the objective
function gradient. It samples points in the domain, and s these points to decide
where to sample next, with equal merit given to both local gludbal searches. For a
proof of convergence of the algorithm in the dense sampimg kee Finkel and Kelley

(2004).

The implementation of DIRECT used in this thesis is theTMAB implementation of
Finkel (2003), which allows constrained minimisation. Whapplied to minimising
Equation B.1, the DIRECT algorithm finds an acceptable dloaimum within 333
function evaluations. This is a much larger than the 20 foncévaluations required to
reach a global optimum for SQP (this is, of course, providhed the starting point of the
SQP procedure is already near the global minimum). The DIREGorithm does find
the global minimum basin in a small number of function evabres, and this suggests a
hybrid strategy where a small number of DIRECT iteratiorsp@erformed to find a point
near a global optimum and the SQP engaged to efficiently fiag@kbbal minimum. The
success at finding a true global minimum using this strateijydepend on the function
optimised. Sasena (2002, Appendix A.3.4) describes areimg@htation of DIRECT that
contains a local search option, using SQP but embedded DIRECT algorithm, which

seems a promising augmentation to the DIRECT algorithm.
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B.4 Surrogate modelling techniques

The idea of surrogate modelling techniques (or meta-miodglis to replace the ex-

pensive cost function evaluation with a model that is botbaghto construct and eval-
uate. There are many such techniques available, includibgnpmial response sur-
face methods (Myers and Montgomery, 1995), artificial neneéwvorks (MacKay, 1992,

Belegundu and Chandrupatla, 1999), Multivariate Adapiegression Spline (MARS)

(Friedman, 1991), and the one used in this thesis, Krigirgg§le, 1991, Santner et al.,
2003).

Kriging techniques, developed in the geostatistics antdasatistics fields, fits a surface
to values from a set of data points. It models the variationhef unknown function
y(X) as a constant value plus the variation of a normally disteithistochastic variable.
The Kriging model used in this thesis is from theaMAB DACE toolkit (Lophaven
et al., 2002b), and allows the simple creation of a Krigingdedawith a wide variety of
regression and correlation functions, with predictionshef mean function valusgy(X),
mean square error of the functio@? (x), the gradient of the function"f’%, and also
the gradient of the erro@, from this model. This thesis uses a constant regression
function and a general exponential correlation functioopthaven et al., 2002b). The
details of the modelling process are beyond the scope othkss, as there are many
references to the derivation of the Kriging interpolationgess (Cressie, 1991, Santner

et al., 2003, Lophaven et al., 2002b, Jones, 2001, Jones £988).

As example of Kriging, Equation B.1 is predicted by a subdetaints evaluated at =
{0,3.4,5.9,6.7,7.6,10}. The Kriging approximation is shown in Figure B.2, the true
value is shown in black, the blue dots are the points at whehfanction is calculated
exactly. The red line is the Kriging approximation to the mealue of the prediction.
Kriging also gives information about the error in prediatizetween the known values (at
which the true function is known and the error goes to zerg the orange envelope gives

95% confidence intervals for the prediction. It should beddhat the variance calculated
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by the Kriging function is only a prediction of the true varee, and is underestimated by
the usual Kriging techniques such as those found in the l#tl@lbox DACE (Lophaven
et al., 2002b). The reasons behind this and a descriptiommira sophisticated statistical
technique (bootstrapping) may be found in den Hertog e2@D4). This underestimation
may explain why the true value of the function plotted in FegB.2 is actually outside
the lower bound at ~ 1.5. For the purpose of this thesis, the standard Kriging ptiat

of variance is deemed acceptable, as it is generally only tesBnd the next most likely

position to sample.

105 T T T T
— true value

— predicted value
e prediction points

f(x)

2 4 6 8 10

Figure B.2: Kriging approximation to Equation (B.1) wBb% confidence interval for prediction
from a subset of points.

Kriging has been found to be a very useful tool for Design andlgsis of Computer Ex-
periments (DACE), and for optimisation of expensive obyectunctions. The technique

can become computationally expensive for a large numbeataf goints i, > 1000).
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B.5 Improved Distributed Latin Hypercube Sampling

When producing a Kriging model, it is imperative for the a@my of the predictions
made that the underlying points evenly sample the paranspere. A simple choice
would be a regular grid of points, however this soon becomesibitively expensive as
the number of dimensions increase. To find an even distabuif sample points im
dimensional space is not a trivial task, and is the topic ofesu research (Cioppa, 2002,

Romero et al., 2003).

The technique of Latin Hypercube Sampling (LHS) was intastl by McKay et al.
(1979) and is commonly used in DACE. A purely random (Mont@) sampling tech-
nique samples directly from the joint probability distritmn of the input variables. For
all cases considered in this thesis, the input variablexa@ansidered uniformly distrib-
uted (equally likely). This method is not very efficient whemall numbers of samples
are used to find the distribution of the output variables, lad& was developed to over-
come these shortcomings. LHS is a constrained Monte-Cartgpbng technique, that
divides the input space up into a number of equally likelyn4ji These bins are then
sampled without replacement (Matlab functrandper m) in each dimension and a point
chosen within each bin. While this technique produces bs#mpling distributions that
the Monte-Carlo sampling, it has been found to produce imrfatistributions when a
one dimensional uniform random distribution is projectetbanore than one dimension

(Beachkofski and Grandhi, 2002).

The Improved Distributed Latin Hypercube Sampling techieiqf Beachkofski and Grandhi
(2002) overcomes this issue by trying to sample points shahthe distance between
them is close to the optimal spacing for the number of poifités technique can become
computationally expensive for a large number of sampletpdir, > 1000). Figure B.3
shows a comparison between LHS and IHS for 21 sampled pdinssevident from vi-
sual inspection that the IHS has “less space” than LHS. Tigrté¢thod is used in this

thesis to evenly sample points for the Kriging meta-models.
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Figure B.3: Comparison between space filling sampling teghes with 21 points sampled.

B.6 Enhanced Global Optimisation (EGO)

There has been much research into finding a method of effigigptimising functions in
which the evaluation of the cost function is extremely exgda where they are typically
expensive numerical methods such as Computational FluithBycs, FEA simulations
or a combination of both (Booker et al., 1998). The work ofekoet al. (1998), refined by
Sasena (2002) into the algoritreaper EGO, has developed an efficient method for global

optimisation, called Enhanced Global Optimisation

This technique uses a Kriging meta-model to predict theasbf the objective function
at a few, sparsely distributed sample points. Instead aidgrio optimise the value of the
mean prediction directly, information about the error ie ghrediction from the Kriging
meta-model is utilised, and a optimisation performed onwadiliary subproblem to pick
the next position for the (expensive) function evaluati®alving the Infill Selection Cri-

teria (ISC) subproblem finds a position that is “most liketg”obtain a better function

LOriginally called SPACE in Schonlau (1997).
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evaluation, taking into account the error in the meta-mod®atect optimisation of the
Kriging meta-model implicitly assumes that the meta-maaeurately represents the ob-
jective function. Sasena (2002) developed the ideas ofr8abdy examining a variety
of ISC, as well as extending the algorithm to constrainedpation. He used the DI-
RECT method (Finkel, 2003) to optimise the ISC subprobleomed (2001) also gives a
good overview of various ISC, including more sophisticatthniques that look ahead

to include the potential error of the Kriging model in finditige next best sample.

To examine the performance of the EGO technique, the Krigpgroximation to Equa-
tion B.1 shown in Figure B.2 will be optimised using the lowenfidence bounding ISC
(Sasena, 2002),

LCB=Yy—bd (B.2)

wherey’is the mean value andf is the mean squared error of the prediction, arisl a
user defined parameter describing the emphasis betwediidec&) and globallp = 2.5)

search.

Figure B.4 shows the results of 4 iterations for the locatd®aand Figure B.5 shows the
global search results. The ISC minimum, used to select tkecamdidate for updating

the Kriging meta-model, is shown as a red dot.

As the iteration proceeds for the search for the best neatilag, the ISC does not sample
near the local minimum, and all selected points are nearti@mbminimum. If the search
Is terminated at 4 iterations, then a total of 9 function eatibns have been completed,

compared to 20 for SQP and 333 for DIRECT.

Whenb = 2.5 (Figure B.5), the search proceeds more globally. Figuke(B) shows
the second ISC selection near the local minimum. By Figube(8) the ISC selection is
back near the global minimum, having removed uncertairayttie local minimum could
have been a global one. To reach the same point as the locadlgdosearch, the globally

biased search required 12 function evaluations.
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Figure B.4: EGO optimisation of Equation (B.1) using a lowenfidence bounds ISC, with em-

phasis on local search & 2).

It should be clear that the optimisation procedure will gihd to a global minimum with

a locally biased search, however if the initial samplingois sparse, a potential global

minimum may be missed. Jones (2001) states that a there isarargee of finding a

global minimum if the lower confidence bound ISC is used wittoastant parametéx.

It may be prudent to focus on strategies that include a glséatch component, such as

starting with largeb early in the search, later transitioning to a local one wittal b to

speed up convergence, similar to the “cooling” scheduleaske8a (2002, Table 4.1). Al-

ternatively cycling between various valuesxahroughout the optimisation process would
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Figure B.5: EGO optimisation of Equation (B.1) using a lowenfidence bounds ISC, with em-
phasis on global search € 2.5).

allow both a local and global search. Questions could these as to which values df
should be used. Adopting a technique similar to Jones (2004is “Enhanced Method
4", where in a single iteration a number of different valuéa@re tried, producing a
number of potential sample sites. Many of these sample paviit be the similar, and
they can then be clustered into a number of distinct groupsyues statistical technique
such as the k-means test. A representative of each groupnstmpled, leading to both

local and global searching.
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Alternative ISC are given in Schonlau (1997), Jones (200t) &asena (2002). One
important criteria is the Expected Improvement (EIl) fuantias this contains both local
and global search components. The improvement functioefiset as the improvement
of the current predictiony (X), at pointx over the minimum value of the current set of
samplesfmin, i.€.

| = max( fmin—Y(x),0) (B.3)

The expected improvement ISC, defined as the expectatidreafitprovement, is given
by

£l = £l = (- 900)® (2T ) st M T) ey
Where @ (x) is the standard normal cumulative density functigix) is the standard
normal probability density function ang(x) is the estimated standard deviation of the
prediction at poink. This criteria contains two terms, a local term related &odtiference
between the current smallest value and the prediction andkalgterm related to the
standard deviation. When the expected improvement hagifomamy local values and
the difference between the current smallest value and grigiion is small, the standard
deviation will dominate and a global search will ensue. Tahaviour is exemplified in

Jones (2001, Figure 20).

Appendix C compares the interpretation by Sasena (2002edRegional Extreme (RE)
criteria with the criteria originally proposed by Watsorda®arnes (1995). It finds this
new interpretation different, and that the original imptartation, the minimisation of a
“regional minimum extreme” is equivalent to Schonlau’s esfed improvement. It also
finds that an alternative implementation of Sasena’s @if{grhich cannot be called a re-
gional extreme criteria) may not find the global optimum. #@se reasons the Regional

Extreme Infill Sampling Criteria is not used in this thesis.

One good reason for Sasena’s adoption of his “regionaledieriteria is that its smooth

variation helps the constrained minimisation techniquelythe DIRECT global optimi-
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sation technique) find a suitable solution easily. ISC sisctha expected improvement
have large plateaus with values close to zero, making ainstt minimisation difficult
Sasena (2002, Page 101). The RE of Sasena is not a good cboioedfng a global
optimum. The LCB criteria (Equation B.2) has a relativelyogth variation, although
with points of inflection at the sample positions. Althought nsed in this thesis, it is
suggested that the LCB criteria with multigderalues (similar to Jones (2001) in his “En-
hanced Method 4”) be tested for problems with constraimid,that constrained EGO is

still very much a current research topic.

The use of surrogate models with probabilistic ISC has themi@l to reduce the number
of objective function evaluations significantly, providdee evaluation of the objective
function is expensive. However the cost of fitting the Krggimodel and the DIRECT
optimisation of the ISC subproblem may not warrant the esterhead if the cost func-
tion evaluation is cheap. The crossover point between UsB@ and DIRECT will be

problem dependent.
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Regional Extreme Infill Sampling

Criteria

The Regional Extreme (RE) Infill Sampling Criteria (ISC) @&fs&na (2002) is quoted as,

REs = §()+(frin—y()) @ (m-I0) o
+s(x) (p(%) .
Wherey(x) is the current prediction at poirt fmin is the minimum value of the current set
of samples (x) is the standard normal cumulative density functip(x) is the standard
normal probability density function ang(x) is the estimated standard deviation of the
prediction. This criteria can be written in terms of the emtrpredictiony(x), at pointx

plus the expected improvement (Equation B.4) at that point,

REs=y(x) +El (C.2)

For a minimisation problem, this form of ISC is inconsistead the El term is generally

positive, and large when either the probability of a poinihgebetter than the current
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minimum point is large, or the standard deviation is highe @lddition of a positive term
that describes the improvement to the mean value of the girediin a minimisation

problem will not find a value near the best expected value.

Sasena (2002) reports that the RE criteria performs wetlemptoblems considered. One
hypothesis for this is that the RE ISC in effect minimisesualeie of the predictoy (X) as
the magnitude of the EI may be many times smaller. The reatiagnitudes of the mean
value and EI depends on the function to be minimised, and biigyato find a global
minimum depends on the initial sampling and the accurach®initial Kriging model.
For the example given in Sasena Figure 4.5, (and reprodadédure (B.2) of this thesis)
the El is very small in comparison to the mean value of theipted A minimisation of
the mean value of the predictor may not find a global optimunte same reasons that
Jones (2001) found the LCB criteria may not, because mimagithe predictor is the

same as minimising the LCB criteria for= 0.

Further evidence of the anomalous performance of the RE $S§iven in Siah et al.
(2004) where the RE criteria fails to find improvement aftauenber of iterations, and the
value of the predictor is then optimised directly. The reedmehind this poor performance

need to be further investigated, but is beyond the scopesafulrent study.

Referring to the original paper of Watson and Barnes (199&)r second criteria, a re-
gional extreme, is derived for finding a regional maximunrexte. The derivation is
repeated here. Given a known constarand a normally distributed continuous random

variableZ with meany, standard deviatioa and probability density function

1 —xw?
e 207 (C.3)

f(x) =

oV 2T

find the expected value of the maximumabr 3, i.e.

E[max(Z,p)] = / 0; max(t, B) f (t)dt (C.4)
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Following the definition of the max function, and thiatis a constant, the integral in

Equation C.4 can be patrtitioned into two integrals,

/w max(t,B) f (t)dt — /:tf(t)dt+/B Bf (1) dt (C.5)

Next, using

/wtf(t)dt - /Btf(t)dt—i—/:tf(t)dt (C.6)

we can write,

E[max(Z,B)] — /th(t)dt—/ztf(tmw/isf(t)dt (C.7)

The first integral term is just the mean valuef the random variabl&. We want to

express the second two integrals in terms of the standandaiq@robability density func-

tion,
1 - ca
X)=——€e2 :
?(x) N (C.8)
and the standard normal cumulative density function,
® QS C.9
X) = ezdt .
0=/, 7= (c.9)

where the standard normal distribution has a mean of 0 anahaaitd distribution of 1.

To do this, we will introduce the transformations

_ t-u
X = 5 (C.10)
dt
dx = (C.11)
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and defing, the value of3 normalised by the distribution mean and standard deviason

g P (C.12)

Substituting transformation C.12, as well as the definitibtihe probability density func-

tion (C.3) into C.7 gives

——e =i dxo C.13
o 0\/_11 0./21n ( )

— pio (/ /m ctj(p(x)dx) (C.14)

- u-l—o(/_wﬁ—“(p()dx /_Zt%“cp(x)dx) (C.15)

= P40 (/_wécp(x)dx— /_Zxcp(x)dx) (C.16)

Knowing thaté is a constant, the first integral becomes a standard cuwrildénsity

E[max(Z,B)] = p-— / ——e dx0+/
g

function. The second integral can be shown to be

[ xotax = o) (€17)

This gives
E[max(Z,B)] = u+0(EP(&)+0()) (C.18)
= H+B-WP(E)+00(E) (C.19)

Replacing the general random variallevith the random variabl¥ that describes the

Kriging prediction, ang3 with the maximum value of the current sample &gixleads to

. . fmax—Y fmax—V
REnax = y+(fmax—)/)q3( ma; y)—i-S(P( ma; y) (C.20)

4 Y+El (C.21)

The University of Adelaide. Department of Mechanical Emrggring.



335

+ REs (C.22)

which is the same as Equation C.1 withi, replaced byfmax but not equal to the predic-
tion added to the expected improvement, which is Sasengisnal extreme (Equation
C.2) as the expected improvement involves the minimum iegstample value, not the

maximum.

Similarly, we can work out the regional minimum extreme, aggested by Watson and

Barnes (1995),

Emin(Z,p) = [ min(&.B)e(E)dE (€.23)
. / " to)dt + / " Bo(t)dt (C.24)

00 . B .
~ - /B to(t)dt+ /B Bo(t)dt (C.25)
= |1+0(/E E(p(x)dx—/E xcp(x)dx) (C.26)
= P+0(E(1-P(&))—0(&)) (C.27)
= B-0EP(E)+0()) (C.28)
= B—(B-W®P(&) +09(g)) (C.29)

This gives

REnin = fmin— ((fmin—y) ® < fmins— )7) +S(P< fmins— 9)) (C.30)
—  fmin—ElI (C.31)

So the regional minimum extreme is equal to the negative®ettpected improvement
criteria, plus a constant valuéy{,). Minimisation of this function will lead to the same

minimum as maximising the expected improvement.

In conclusion, the interpretation by Sasena (2002) of thgidal Extreme (RE) criteria
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has been compared with the criteria originally proposed bysédh and Barnes (1995). It
finds this new interpretation different, and that the ordgjimplementation, the minimisa-
tion of a “regional minimum extreme” is equivalent to Schewris expected improvement.
It also finds that an alternative implementation of Sasesréisria (which cannot be called

a regional extreme criteria) may not find the global optimum.

The University of Adelaide. Department of Mechanical Emrggring.



Appendix D

Bézier curves

The Béezier spline is specified by two vectors, with the ctawngent to the head of each

vector, and the “strength” of attachment to the vector detteed by the length of the
vector.

(X,,)
25F (Xl,yl)

0.5

I I I
0.5 1 15

2 25 3 35
x[m]

Figure D.1: Bézier curve (black line) with control vectobsug lines).

The position of the curve is given by the cubic polynomiels) = axt®+ byt + cxt + Xo

andy (t) = ayt3+byt? + ¢yt +yo, wheret varies between 0 and 1 between the stayiyo)
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Appendix D. Bézier curves

and end(xs, y3) points. (Plant, 1996). The coefficient values can be caledl&om the

given points as;

and

Cx

ax

3(x1—X0) (D.1)

3(x2—Xx1) —Cx

X3 — Xg — Cx — by

3(y1—Yo)

3(y2—y1) — ¢ (D.2)
y3—Yo—Cy—by

The University of Adelaide.

Department of Mechanical Emrggring.
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