Chapter 5

Numerical models of horn loaded

loudspeakers

The accurate and timely prediction of far field acoustic pues is important in the design
of horns. This chapter compares results from experimentsvorrepresentative horn

loaded loudspeakers with the numerical techniques destibthe last chapter.

It has been found that the source superposition techniqoapiable of modelling these
horns accurately over a wide range of frequencies, and t®fesigh to become a com-

ponent of a further optimisation technique.

5.1 Introduction

The source superposition technique of Koopmann and Fah(li®97), when combined
with a number of calculation speed enhancing modificatialesgribed and verified in
Chapter 4), is an ideal candidate for calculations of thervadth of acoustic horns. It
is able to accurately model the far-field pressure from a gdiecap mounted on the

surface of a sphere. The technique is not limited to a one mBioaal approximation
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128 Chapter 5. Numerical models of horn loaded loudspeakers

such as those traditionally used to model horns (Holland.et1891, McLean et al.,
1992, Mapes-Riordan, 1993), which has been shown to bedrsfabve a certain limiting
frequency in Chapter 3.

This chapter aims to validate (Babuska and Oden, 2004) trescsuperposition numer-
ical model by comparison to experiment, and to alternatiwaerical methods, such as
the direct BEM of Wu (2000). First, the experimental setupdus described and the
result obtained reported. These results are then compatédge obtained by the direct
BEM and the standard source superposition boundary elemetttod over a frequency
range limited by computational time of the direct BEM. Expental results over a larger
frequency range are then compared to the source supegposigthod with the modifi-

cations described in the previous chapter. Finally comghssare drawn as to the utility
of numerical modelling of horn loaded loudspeakers usiegstiurce superposition tech-

nique.

5.2 Experiments

The unbaffled horns described in Section 3.2.2 were placexhandexed rotating plat-
form (turntable) on an elevated tower inside a large openespaéhe sensitivity, or pres-
sure frequency response for 2.828 Volt rms input (1 W rms 89, of each horn was
measured at a distance of 3 m from the centre of the mouth didhe in 5 intervals
ranging from on-axis (0 to 90° off-axis. Figure 5.1 shows a diagram of both side and

plan views of the setup.

At each frequency of interest, a polar plot of the magnitutiéhe measured acoustic
pressure, normalised by the maximum pressure, was produeggre 5.2 shows the
sound field of the two step conical horn at three differerdiencies: 550 Hz, which is a
low frequency for this size horn and shows a wide beam of sae@@D Hz, which shows

a narrowing of the sound field; and 4600 Hz, which shows a beaitenn with an on
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5.2. Experiments 129

axis null, and is evidence that a velocity distribution otthean that corresponding to the
plane wave mode exists at the horn mouth. These experintestats give impetus for

the development of accurate numerical models of horn lo&mletbpeakers.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 5.1: Experimental setup for measuring beamwidthre fidrn sits on an indexed turntable
on a large tower. The sound pressure is measured at a latgaadisrom the horn while the horn
is rotated irb° intervals.
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Figure 5.2: Polar plot of the magnitude of the measured pressiormalised by the maximum
pressure at that frequency, for a two step conical horn aettiifferent frequencies.
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Figure 5.3: Experimental measurements of the variationeafwidth with frequency for expo-
nential and two step conical horns.
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5.3 Comparison to standard numerical methods

Simulations of both the exponential and two step conicahfidrave been undertaken
for both the direct BEM and the standard source superpasi@ohniques. Figure 5.4
shows the surface mesh used to discretise the exponentrgldtca nominal 6 elements
per wavelength. Figure 5.5 shows the same for the two stejgalomorn. Note the

quarter symmetry, to reduce computation time, and the neethé& horn to be placed
in an artificial cylindrical volume for the direct BEM. Thigquirement is discussed in
Section 4.2.3 in detail (see Figure 4.6). A small volume &pt over the rear of the horn
throat in the source superposition mesh to stop sound nagliatit the rear of the horn.
A unit velocity was placed at the throat of the horn, représeoy the darker areas in

Figures 5.4 and 5.5.

As found in Chapter 4, the number of variables to be solvediical for the perfor-
mance of the numerical methods based on boundary eleméniqees. The direct BEM
method discretises each element with a linear variatiowdx each node and the num-
ber of variables is the number of nodes in the mesh. The seuerposition technique
places a discrete source at the centroid of each elementhamaimber of variables to be
solved is the number of elements. Table 5.2 compares theenwhbariables to be solved
for the direct BEM and the source superposition techniqudéth the exponential and
two step conical meshes. Matrix inversion is an old@operation (Golob and Van Loan,
1996), and a speedup of between 3 and 5 would be expected taghd reduction in
mesh size alone (i.e. excluding matrix assembly time). T significant advantage
of the source superposition technique in modelling thindtires such as horns. The
number of elements used in the direct BEM method could becestiby decreasing the
size of the exterior volume. How to do this automatically & nlear, as the obvious
solution of a “thin” surface that conforms to the shape oftiben introduces numerical
issues (Martinez, 1991), see Section 4.2.3. Of course oiln@erical techniques such

as the direct mixed method of Wu (1995) and the variationdiréct method of Hamdi
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and Ville (1986), and Vlahopoulos and Raveendra (1998)ccbalused. Availability of
source code, along with no clear speed advantage, exclhddidt choice and the need

for a time consuming double integration excluded the secoetthod.

| Method | Exponential] Two step conical

Direct BEM 1216 1105
Source Superpositio 849 631

=)

Table 5.1: Comparison of matrix size produced by the dirdetBand source superposition tech-
nique.

The beamwidth of the horns was calculated for frequencm@® 800 to 5000 Hz at 50
Hz intervals. The upper frequency was chosen to limit thetime required for the direct
BEM method. Figure 5.6 shows a comparison with experimeegallts for both direct
BEM and the source superposition method. The agreemenebatiwoth methods and
experiment is excellent. The trends exhibited by the expental results are captured
by both numerical methods. Both horns exhibit differentrb@adth behaviour above a
certain frequency, and this difference gives confidencethiese techniques are capable
of modelling the far field response from a horn of arbitrarpmetry. There is a larger
difference between the beamwidth calculated by the numeechniques here than was
found in the previous chapter (see, for example Figure 4.43) reason for this dif-
ference is the different meshing strategies needed for m&thod when modelling thin

structures such as these horns.

The standard source superposition technique was founatupe results approximately
13 to 20 times faster than the direct BEM, with the simulatioen on an Intel P4 1500

MHz with 512 Mb of RAM running Windows XP.

In conclusion, this section has shown that numerical modedscapable of reproduc-
ing the sound field generated by horn loaded loudspeakems &rgpecification of the
horn geometry. The accuracy of the reproduction is adedoatiesign purposes within

the given frequency range. Both the direct BEM and the stahsiaurce superposition

Horn Loaded Loudspeakers. Richard C. Morgans.
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Method Total Time / Freq| Factor
[seconds] [seconds]
Direct BEM 27096 285 13
Source Superposition 1984 21 1

(a) Exponential

Method Total Time / Freq| Factor
[seconds] [seconds]
Direct BEM 21137 222 20
Source Superposition 1055 11 1

(b) Two step conical

Table 5.2: Comparison of computational time using the diBfEM and source superposition
techniquest elements per wavelengths000Hz.

technique are capable of reproducing the experimental Wéitim however the source
superposition technique is considerably faster. A catmrdaime of 5 to 7 hours for 95
frequencies, such as that required for the direct BEM, ideetible for inclusion in any

sort of practical optimisation routine.
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Figure 5.4: Surface mesh of the exponential h6ralements per wavelength 3000 Hz.
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5.4 Comparison at higher frequencies

The upper frequency considered in the previous sectior)(6l2) was limited by practical
consideration of the computational time required for thectiBEM. Using the techniques
developed in Chapter 4 for the source superposition tedenig more useful limit of
12000 Hz is investigated. This corresponds tkaa~ 36, with a the radius of the horn
mouth including the flange. Previous numerical studies of hmaded loudspeakers that
model beamwidth appear to have been limited in their uppguiency range to below

ka= 15 (Section 2.3).

In this section, the source superposition technique is tsaimulate the horns with a
linear variation in frequency between 300 Hz and 12000 Hzfréquencies higher than
the cut on of the first mode at the throat 610 Hz, see Table 2.1), the assumption of
a plane wave produced at the horn throat by the compressiogr dan be questioned,
and experimental evidence of this has been found by BehtkMakarski (2003). The
GMRES iterative solver with a loose §1102) tolerance (Section 4.4.2) is used for all
simulations. Three different meshes are used, with vanneshing strategies. Figure
5.7 shows a mesh for each horn at a nominal mesh density ofrteats per wavelength,
Figure 5.8 shows a 3 elements per wavelength mesh and Figushéws a 3 elements
per wavelength mesh, with 12 rotationally symmetric settartake advantage of the in-
crease in assembly speed available with this symmetryi(®et#.3). For shapes that are
not rotationally symmetric, this last meshing strategyasapplicable. Horns used in the
cinema industry are not generally rotationally symmethey are generally quarter sym-
metric), and the numerical methods used in this thesis arergeand hence applicable
to these horns. This is, in fact, a theme that runs throughtki@sis, that any optimisa-
tion method developed should be generally applicable, sittteireason an axisymmetric

BEM was not used.

The results obtained show a general excellent agreemenebéetthe numerical results

and the experimental results, as shown in Figure 5.10. Tpereential horn shows good
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5.4. Comparison at higher frequencies 139

agreement to above 10000 Hz, where the experimental andrinaineethods diverge
slightly. The results for the two step conical horn show #ro¢ agreement over the

entire frequency range.

The reason for the disagreement between results in the erpiahhorn above 10000 Hz
is unclear. Figure 5.11 compares the measured and caldwdagztivity at a frequency
of 11000 Hz, where there is some disagreement. Both nuneesalts give a slightly
wider beamwidth than experiment. It is possible that highreler modes generated by
the compression driver at these frequencies are able tagabe down the smooth vari-
ation in cross section of the exponential horn. This phemamevould not be modelled
by the numerical method, because only a plane wave is ingheanouth of the horn.
This behaviour is not exhibited by the two-step conical hamd it is hypothesised that
the abrupt junction between the steps is already generhigiger order modes, hence
the good agreement between experimental and numericdlseJine degree of agree-
ment between the results is extremely good, given the resenaf the diaphragm in the
compression driver is probably below 10000 Hz, and the wiffee in path length of the

phasing plug (see Figure 2.4) is in the order &f 8m.

The time taken to compute the solutions is shown in Tablesh&ying the 3 elements per
wavelength, rotationally symmetric method is very compatally efficient, whilst still
giving sufficient accuracy for comparison to experimergalits, at least to a frequency of
10000 Hz, above which deficiencies in modelling boundaryd@wns at the horn throat

may become a factor.

The total time required for simulation of these horns ushegfastest method is still about
17 minutes. This time is a significant saving over the eswhdit5 hours required by
the direct BEM for this same frequency range, however itiistsb long for inclusion in

an optimisation method.

The frequency resolution of these simulation is quite fing) &50 Hz frequency spacing.

This can be reduced whilst still retaining information abie performance of the horn.

Horn Loaded Loudspeakers. Richard C. Morgans.
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Method Total Time / Freq| Factor
[seconds] [seconds]
6EPW 14172 60 15
3EPW 1537 7 1.8
3EPW, rotational symmetry 992 4 1

(a) Exponential

Method Total | Time/Freq| Factor
[seconds]| [seconds]
6EPW 14870 63 158
3EPW 1908 8 2
3EPW, rotational symmetry 1056 4 1

(b) Two step conical

Table 5.3: Comparison of computational time taken for diffgé meshing strategies.

Figure 5.12 shows the results at different frequency reéwwis. The results at the lowest
frequency resolution give the same broad trends as the fiasslution, whilst losing
some of the fine details; however in comparison to the exparial results, the agreement
is excellent. The estimated time required by the method el frequency resolution
of 400 Hz is 2 minutes, making this technique suitable foirofsation of these horns

over this frequency range.

In summary, the source superposition technique, using a EMBblver with a loose
(1 x 10-3) tolerance, 3 elements per wavelength, reducing asserinidylty taking ad-
vantage of rotational symmetry and using a linear frequepacing of 400 Hz can sig-
nificantly reduce the time required to simulate horn loadedispeakers. It gives results
for beamwidths that are suitable for design purposes, adthaesults above 10000 Hz

may not be accurate due to inadequacies of modelling the i@ssipn driver.
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5.5 Conclusions

The aim of this chapter was to validate the source superposiumerical model by

comparison to experiment, and to alternative numericahoug, such as the direct BEM.
It has been shown that such models are capable of reprodingrspund field generated
by horn loaded loudspeakers from a specification of the heamgtry. The accuracy of
the reproduction was found to be adequate for design puspaisiegin the given frequency
range. Both the direct BEM and the standard source supdéigotechnique are capable
of reproducing the experimental beamwidth, however thecgosuperposition technique

is considerably faster.

Techniques to speed up the solution times the source sugeopdechnique, reported in
Chapter 4, have been applied to the modelling of horn loadledispeakers. It was found

that using:

e a GMRES solver with a loose 110-3) tolerance;

e a mesh with 3 elements per wavelength;

reducing assembly time by taking advantage of rotationalsgtry;

a linear frequency spacing of 400 Hz

can significantly reduce the time required to simulate hoauéd loudspeakers. It gives
results for beamwidth that are suitable for design purpoge® frequencies of about
10000 Hz for these horns. These numerical models are noabdeiitor use in optimisa-

tion techniques to be developed in further chapters.

Horn Loaded Loudspeakers. Richard C. Morgans.






Chapter 6

Frequency independent beamwidth

transducers

The “holy grail” of horn design is twofold; an easily spedifirequency independent
beamwidth, and a smooth frequency response. Work perfoané&ibnstant Beamwidth
Transducers (CBT) for sonar applications both theordyioc@ogers and Van Buren,

1978) and experimentally (Van Buren et al., 1983) has bothede desirable features.

The concept used in the development of CBTs is explored m ¢hapter in relation
to horn design, giving cues as to how to design an optimum.hém efficient semi-
analytical model of the transducer is used to develop methardobust beamwidth opti-

misation.

6.1 Introduction

The concept of a Constant Beamwidth Transducer (CBT) wagesigd by Rogers and
Van Buren (1978) with the primary aim of developing a sonaultrasonic projector

that has a theoretically unlimited frequency independeantwidth. The uses suggested
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150 Chapter 6. Frequency independent beamwidth transglucer

for the transducer included broadband echo ranging, hitgnrdée communications and
highly directive ultrasonic transducers. The claimed ativges for CBTs are extensive;
uniform acoustic loading, extremely low side-lobes, \atty no near-field, and an es-
sentially constant beam pattern for all frequencies aba&rtain cutoff frequency. The
CBT concept is not just theoretical, as a comprehensiverpage published (Van Buren
et al., 1983) on the design and implementation of such a devAo experimental CBT

sonar projector was constructed and results presentechonv@te range of frequencies,

exemplifying the CBT advantages.

Further evidence that the CBT theory could be fruitful in design of horns lies with the
work of Keele (2000), who brought CBT theory to the noticehsd fudio community by
applying it to arrays of discrete sources on a spherical tap.theory has been applied
to two dimensional arrays, such as those used in stadiundgéeele, 2003), and also to
flat panel arrays by the use of signal delays (Keele, 2002} fldt panel implementation
is of interest to horn designers because it shows that theedegelocity profile can be

achieved by shapes other than spherical surfaces.

Of very great interest to practical horn designs is the @tid independently control the
two axes of beamwidth. Keele (2000) shows evidence thatishgossible with CBT

theory by showing the results of a calculation of a shadea/aon the surface of a toroid,
giving the desired beamwidth control in each axis. A morenagis solution could be
derived using spheroidal (Falloon et al., 2003) or ellipabfunctions (Abramov et al.,

1995, Levitina, 1995) although that approach would not bréveat exercise.

The work described in this chapter aims to examine the agulity of the concept used
in the development of constant beamwidth transducers todesign using the numerical
methods developed in previous chapters, and to develomigatiion techniques to be

used in future chapters.

First, the theory of constant beamwidth transducers, wisiblased on the sound radiated

by a specific velocity distribution on the surface of a sphé&seeviewed. The CBT
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velocity distribution, as well as similar velocity distutions suggested by Jarzynski and
Trott (1978) and Geddes (2002) is examined. This is done bgneing the numerical
technique developed in Section 4.2.1 to calculate arlitralocity distributions. Results
calculated using the semi-analytical method are comparddresults calculated using
the source superposition technique (Section 4.2.4) to mathe effect of removing part
of the spherical surface of the CBT. Then various optimisatechniques are utilised to
find the optimum velocity distribution of a CBT. This is doreaprecursor to finding an
optimum horn geometry, which is discussed in future chaptéinally conclusions as to

the utility of CBT theory and its application in horn optiratgon are drawn.

6.2 CBT Theory

Acoustic radiation from the surface of a sphere can be catiedlanalytically using an
infinite sum of orthogonal functions (Morse and Ingard, 198%he derivation of the
pressure field produced by an arbitrary velocity profile angbrface of a sphere (a ve-
locity profile that varies with angular position, and given U (r,0)|,_,) was given in
Section 4.2.1, with Equation 4.21 for pressure and Equatidf for velocity coefficient

reproduced here for reference as Equations 6.1 and 6.2.

2 h@ (kr)
p=—jpc ) UnP(cosB) ——— (6.1)
2,0 h® (ka)
1 T
U, = (”ﬁ) / U (r,8)],_, Pn(cosd) sinBd® 6.2)
0

CBT theory recognises that if the velocity profilér, 8)|,_,, on the surface of the sphere
is a single complete Legendre polynomigl, thenUy,., = 0 due to the orthogonality
of Legendre polynomials, and the pressure prgfileontains only a single term in the
summation. The angular variation in pressure is the samleeashtosen velocity profile

at all frequencies. In fact, any other velocity profile wakld to a frequency dependent

Horn Loaded Loudspeakers. Richard C. Morgans.
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far-field response. Figure 6.1 shows the angular variatiotwo orders of Legendre

polynomials.

(@) P5(Cog6)) (b) P1o(Cog6))

Figure 6.1: Angular variation of Legendre polynomials ader(a) 5 and (b) 10.

Using these profiles to produce a far-field pressure digtabus not desirable because
of their lobed nature. Rogers and Van Buren (1978) have shbatby truncating the
velocity profile atfp, the angle made by the first zero of the Legendre funétjoire.
R/ (cos(Bp)) = 0, and setting the velocity to be zero for all angles gredtan 6, an

asymptotic form of frequency independent far-field resparen be achieved.

The velocity profile for a CBT can be represented by Equati8n 6

UoR (cosB) , 0<B< 6
Ueht = v (6.3)

0 , Bo<B<m

where the ordev must be found for eacBy. Figure 6.2 shows these responses for the

same orders as Figure 6.1.

LIt can now be a Legendre function of non-integer ord®) ¢(ather a Legendre polynomial of integer
order ¢,), because the restriction of single valued pressure arthensphere is relaxed.

The University of Adelaide. Department of Mechanical Emrggring.
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(a) Ps(Cog8)),08 < 60;0,6 > 6; (b) P1p(C096)),0 < 60;0,6 > 6,

Figure 6.2: Constant Beamwidth Transducer velocity prééitd_egendre polynomial order (a) 5
and (b) 10.

This velocity profile was shown in Rogers and Van Buren (19@8pncentrate the energy
in the lower order terms of the Legendre expansion, achietvia asymptotic (frequency
independent) form quickly. This is the region of “geomettoustics” as described by
Morse and Ingard (1986, Page 340), and the ratio of surfaesspre to applied velocity
(specific acoustic radiation impedancepig over the entire surface of the sphere. One
consequence of this, since the velocity is prescribed toeloe aver the surface of the
sphere at angles greater tHyy is that the physical surface of the sphere can be removed
at these angles, leaving a spherical cap as the active pémt dfansducer. This reduces
the size of the transducer, and gives hope to the design oshging this theory by
applying these boundary conditions over an imaginary sedlecap represented by the
mouth of the horn. The problem then becomes how to shape tinephafile to give the

required velocity distribution.

The velocity profile for a CBT in Equation 6.3 is cumbersomeise. Rogers and Van
Buren (1978) give approximations feras a function 0Bp, and Keele (2000) gives a

third order polynomial approximation to the velocity prefilThis third order polynomial
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approximation does not have the same slope as a Legendmeopai (% oo™ 0) at

0 = 0 . Following the example of Keele, a fourth order polynonaipbroximation was

found. Using boundary conditiongy (0) = Ug, Ucpt (Bp) = 0 as well as% oo

this approximation follows the same boundary conditiongh@sunderlying Legendre
function. The Legendre functioR, was calculated using a hypergeometric sérias
%(1—c056) truncated at 100 terms, and the zeros found using thgLkB function
fzero. There was a small variation in the shape of the function wiemalised b8,
over a range 06y from 1°to 50°. A least squared fit between the normalised Legendre

functions and the 4th order polynomial gives Equation 6.4.

2 3 4
Uo (1—1.471 8) +01951(2) +0.2756( & ) ., 0<8<6
(8)" vossa(g)"+ozrss(4)
0 , Bp<B<180C
(6.4)
The nominal design angl®{.) is the angle at which the velocity profile reachesug.

For the CBT velocity profile, 06,om= 0.6460.

6.3 Other methods for obtaining a frequency indepen-

dent beamwidth

A review of the literature has found that methods other thasé¢ described in the previ-
ous section have been used to produce frequency indepdyaantvidths. The frequency
independence of arrays has been addressed before (Ch&uy Vagder Wal et al., 1996,
and references contained within) by utilising a series eted sub-arrays”. One array is
optimised for a single frequendy and the next is optimised for a frequency d§2The
size of the second array is half the first and the arrays aeeddtso that the first is oper-

ating fully at frequencyfg and is off at frequency 3, and vice versa for the second array.

2The hypergeometric series f& can be written ag; = —v, ap =v+1,z= % (1—cosB), andR, =

1+ agapz+ ﬁal(a1+1)a2(a2+1)zz+ ﬁal(ayr1)(a1+2)a2(a2+1)(a2+2)z3+...
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Constant beamwidth is then achieved over an octave rangs.tyjje of constant beam-
width control would be very difficult to implement in a sindiern, and is not considered

further here.

Molloy (1968) describes a way to produce a prescribed féa-fieessure pattern. The
pressure profile is specified as a Chebychev polynomial,iwhi&s a single main lobe
and many secondary lobes of the same height. The width of the lobe and the ra-
tio between the primary and secondary lobes can be speaifiegpeéndently. The surface
velocity required to produce the far-field pressure can beecalculated. There is no com-
ment in this paper as to the frequency dependence of thereglgurface velocity, and it
is suspected that there is frequency dependence, unlesartteeasymptotic assumptions
as the CBT can be made. It is not known how quickly the Chebypb&/nomial reaches
the asymptotic regime as compared with the CBT. It would bésdifficult to specify the
required side lobes when implemented as a horn, and agaskinia of transducer is not

considered further.

The work of Jarzynski and Trott (1978) applies a similar ozasg to Section 6.2 in the
design of a broadband constant beamwidth transducer aftegy consider an acousti-
cally transparent surface, presumably for the design d@ivewy arrays, but the velocity
profile used should be equally applicable to a solid CBT. Timy a velocity profile that

is a linear combination of differing powers of ¢

n 1 n+1
Ut = ——cos'0+ = cod" 1o+ +

+-2
2(2n+ 1) 2 20D ° (6-5)

wheren is an integer. If a non-integeris used in Equation 6.%;7 becomes complex,
and the absolute value should be used to describe the welaciation. It was found that

n = 3.80 would give a good approximation égom = 30°.

Geddes (2002, Section 6.6), in the context of horn (or wadegwesign, says that “it is

possible, and reasonable, to do a waveguide design baclwyasgecifying the desired
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polar response pattern, calculating the required moutbcitgt...”, and goes on to show
some very impressive results (Geddes, 2002, Figure 6.21timizpd velocity profile
and Geddes, 2002, Figure 6.22 - A Polar pattern with smoaogulan variations) that
show a wide band constant beamwidth. The velocity profileckvhas presumably been
calculated by some form of numerical optimisation, is samib the Jarzynski and Trott
profile. The Geddes velocity profile has been digitised framfigure, and fitted using

least squares giving,

B uo(l—cos(<l—e%)1.16n)) , 0<B0<6g 66)

Ug =
0 , Bo<B<T

andBpom = 0.4509. The main difference between the CBT and the Geddes / J&izyns

and Trott profiles is the smooth decay as the profile appr(s;zﬁzh(é.e.% oo 0).
0

Figure 6.4 shows the uniformly vibrating cap, CBT, GeddaesJarzynski and Trott veloc-
ity profiles, all for the same nominal beamwidth {(66r a 30 half-angle). By definition,
the value of the velocity profile at the half angle is one hélfh@ value on the axis (or
—6 dB down in SPL). It can be seen that the CBT, Geddes and Jakizgnd Trott veloc-
ity profiles extend beyond the nominal beamwidth angle dubeo gradually decaying
profiles. It is interesting to note that the first half of thed@es and Jarzynski and Trott

profiles are remarkably similar to the CBT profile, with muchaother “tails”.

6.4 Semi-analytical calculation technique

Simulations using Equation 6.2 can be performed easilyaftdrmU, (Equation 6.1)
can be calculated. In Section 4.2.1 these terms have beemlated analytically for a

uniformly vibrating spherical cap on the surface of a spl{&@uation 4.23), where the
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Figure 6.3: Comparison of velocity profiles for the same mahhalf-angle 0°).

velocity of the vibrating cap is given by Equation 4.22, euced below as Equation 6.7.

uw , 0<6<6
=1 ° ° (6.7)

0 , BB

Other velocity profiles do not have analytical solutions] aaimerical techniques must
be used to integrate Equation 6.1. A robust numerical iategr routine, capable of
integrating up to at least order= 400, has been written to calculate these values for
velocity profiles that may vary arbitrarily with angle. Asthumerical integration can be
computationally expensive, an adaptive routine is usedlmte terms in the series to a

given tolerance, and a caching method used to avoid readilcnlof expensive functions.

As a check of the semi-analytical numerical integratiomiggue, a comparison between
the beamwidth calculated using the semi-analytical metiratithat calculated using the
analytical method described in Equation 4.23 was made. €amkvidth is defined as the

“angle formed by the -6dB points (referred to the on-axislneg) and the source center”
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(Davis and Davis, 1997), and is a measure of the distribugficsound in the specified
plane (see Section 2.1.2). The calculations were undertakérequencies ranging from
300 to 20000 Hz for a 30spherical cap with a uniform velocity distribution mountau

the surface of a sphere with radiud65 m. The general size and frequency range are
similar to those of the horn loaded loudspeakers analystdshesis. Figure 6.4 shows

no difference between the two solutions.

180 ‘
— Analytical
- = - Numerical
160F - - - Nominal beamwidth ||

140

=
N
o

Beamwidth [Deg]
'_\
o o
o o

[e2]
o

N
o

20 1 1 1
0 5000 10000 15000 20000

Frequency [Hz]

Figure 6.4: Comparison of analytical and numerical beartiwgdIculations foBO° spherical cap
on the surface of a sphere with a uniform velocity distribati

At very high frequencies, the angular variation in the ndrsea pressure field should
have the same angular variation as the underlying veloeily (Morse and Ingard, 1986,
Page 340). In other words the beamwidth at high frequenbiesld have the same under-
lying angular variation as the prescribed velocity profiléis is not the case for the 30
spherical cap mounted on the surface of the sphere (whiaidhave a 66beamwidth),
even at 20000 Hz (ka of over 60). The reason behind this is the slow decay in magni-
tude of the velocity coefficients with increasing order (Begure 6.7 for a comparison of
velocity coefficient magnitude for different velocity pief, and the discussion in Rogers

and Van Buren (1978) and Van Buren et al. (1983)).
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In summary this section shows that the semi-analyticalutaiion technique developed
for calculating velocity coefficients (Equation 6.1) gitege same results for beamwidth
as an analytical solution (Equation 4.23), and can be useddigulations where the

velocity profile has an arbitrary angular variation.
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6.5 Full sphere simulations

Simulations of the beamwidth produced by the four diffenegibcity profiles shown in
Figure 6.3 are compared using the semi-analytical methogbrdvide a fair comparison
between each profile, the overall width of the spherical bapjas fixed at B30 m, the
same dimension as used in the experimental horns in Chapteorhe same nominal
half-angle, in this case 3PQeach profile has a different finishing ang), The radius
of curvature of the each sphem,was calculated by = b/2sinBy. The spherical cap
profiles are illustrated in Figure 6.5 and the sphericaliyaggiven in Table 6.1. It should
be noted that the numerical integration technique willgné¢e over the entire sphere,
however for most profiles the velocity is zero outside the. c@pe Jarzynski and Trott
profile is designed to fully cover the surface of the sphene, mever reaches zero. For
this case, the radius of curvature is chosen to be the sanmaiasftthe Geddes profile,

and a direct comparison of the change in velocity profild™tzn be made.

Cap CBT Geddes /
Jarzynski and Trott
0.165 A i

Cap width

-0.165 v 1

Figure 6.5: Comparison of spherical cap profiles for a cantstap width.

Calculations of the beamwidth generated by each profile werrmed using the semi-

analytical integration scheme up to 20000 Hz, and appeaiguar& 6.6 in both linear
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Profile Radiusa
[m]
Piston 0.330
CBT 0.225
Geddes 0.180
Jarzynski and Trott 0.180

Table 6.1: Radius of curvature to keep a constant cap width.

and logarithmic form. The piston beamwidth does not reaehribminal angle as the
frequency increases. The CBT beamwidth overshoots themagpes from below with
rising frequency and reaches the nominal angle at high &ecjes. The Geddes and
Jarzynski and Trott profiles smoothly approach the nomingleafrom above at low fre-
guencies, and are superior in constant beamwidth perfarenanthe CBT profile. The
Geddes profile reaches the nominal beamwidth at a lower érexyuthan the Jarzynski
and Trott profile. The low frequency performance of each sigfoprofile is different.
The frequency at which the beamwidth starts narrowing isskiwor the piston profile
(~ 1400 Hz), next highest for the CBT profile-(2000 Hz) and highest for the Geddes
(~ 3000 Hz) and Jarzynski and Trott G000 Hz) profiles. This implies that there may
be a trade off in low frequency performance for smooth beaitiwiand that the size of

the velocity profile “tail” also has an affect on low frequgmEerformance.

Figure 6.7 shows the rate of decay of the Legendre mode strédg) with increasing

ordern, calculated using the semi-analytical integration teghai The Geddes profile
decays most rapidly, followed by the CBT, then the pistonis®mows that the energy
is contained in the lower order terms of the Legendre expansichieving asymptotic
(frequency independent) form with a rapid decay of the higaems (Rogers and Van
Buren, 1978). The Jarzynski and Trott profile initially rdlyidecays to levels below the
Geddes profile, but then the rate of decay decreases. Thissshby due to the profile
not decaying to zero velocity at extreme angles, or mordylidee to a “non optimal”

velocity profile.
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The Jarzynski and Trott profile is not further consideredia thesis because the Geddes
profile is able to provide superior performance, and the ifipaton of the Jarzynski
and Trott profile using Equation 6.5 is difficult, as new valwén are required for each
nominal design angle. It may be possible to analytically findelocity profile that is
“more optimal” than the Geddes profile but that is not consden this thesis; instead
robust numerical optimisation methods are needed to findopt shapes of horn loaded

loudspeakers, not velocity profiles over spherical caps.

This section compared the full sphere calculations of a sgdlecap on the surface of
a sphere with CBT, Geddes and Jarzynski and Trott velocitfilps. The frequency
independent beamwidth performance of each profile wassss$esith the Geddes profile

giving superior smoothness, possibly at the expense ofleguency performance.
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Figure 6.6: Beamwidth comparison for different velocitpfiles.
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Figure 6.7: Legendre mode energy decay for different valquiofiles.
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6.6 Spherical cap simulations

One of the noted advantages of a CBT is the ability to remogestinface of the sphere
over which the velocity is zero. This cannot be tested ugiegemi-analytical integration
technigue (Section 6.4), as this implicitly assumes a saliflace over the entire sphere.
The source superposition technique (Chapter 4.2.4) is argenumerical technique and
can be applied in this situation. The source superposigohrtique was applied to sim-
ulating the uniformly vibrating spherical cap, CBT and Gesldelocity profiles, up to
12000 Hz in the absence of the part of the sphere that has resoriibed velocity. A
rigid plate covers the rear of the spherical cap to stop seadihting from the back of
the spherical surface. The mesh used for the spherical ckqured with normal velocity,
appears in Figure 6.8 (a). In this case, the red surfacegepi®the uniform velocity over
the surface of a spherical cap, and the blue surface repsetbenplate covering the rear
of the spherical cap, with zero velocity. A comparison otaédted beamwidth with the
full sphere numerical simulation beamwidth appears in FEdgu8 (b). There appears to

be little difference in beamwidth over the entire frequeranyge considered.

The mesh used for the CBT velocity profile, coloured with narwelocity, appears in
Figure 6.9 (a) and the calculated beamwidth compared touthsghere numerical sim-
ulation beamwidth appears in Figure 6.9 (b). There is a sdifilrence between the
beamwidths at low frequencies, and virtually no differenger the rest of the frequency

range considered.

The mesh used for the Geddes velocity profile, coloured wattml velocity, appears
in Figure 6.10 (a) and the calculated beamwidth comparetedull sphere numerical
simulation beamwidth appears in Figure 6.10 (a). Againghgma small difference be-
tween the beamwidths at low frequencies, and virtually ril@icince over the rest of the

frequency range considered.

This section has shown numerically that constant beamwvitiatbry does not apply ex-
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clusively to spheres. As suggested in Rogers and Van Bui@r8jlthe surface over
which the velocity is zero can essentially be removed withass of performance. This
gives hope that a horn profile can be found that generatesathe selocity profile over
an imaginary spherical surface that covers the mouth of ¢ine, lproducing a frequency

independent beamwidth above a certain limiting frequency.
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Figure 6.8: Comparison between the full sphere semi-analydolution and the cap only source
superposition technique for the spherical cap velocityijgro
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6.7 Optimised Geddes velocity profile

From the previous sections it has been shown that the fornelotity profile described
by Equation 6.6 has characteristics that allow an “optirb@&mwidth response. A gen-

eralised version of this profile can be described by,

Uo (1—003((1—6%>nn)) , 0<0<6g

0 , Bo<B<T

qut — (68)

wheren is now a parameter that changes the shape of the profile asegpmpreviously

being a constant. This velocity profile now has two variajaesnd6,.

Figure 6.11 shows the variation of the profile shape with gr@ameten varied from 02
to 2, whilst holding nominal design anglé,6m the angle at which the velocity profile
reaches (bug) constant. There is a large variation in normalised profiiten no tail for

n= 0.2 to a very large tail fon = 2.
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Figure 6.11: Comparison of velocity profilesmshanges from.2 to 2, 6,,om constant.
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The obvious choice for optimisation of this profile, wouldtbeset8,om = Bnom the de-
sired beamwidth, as we know that the far field pressure pr@fild hence the beamwidth)
will be proportional to the velocity profile in the asymptotimit. Optimisation on the
parameten until a smoothness criterion is minimum would then ensuesasymptotic
limit is reached at the lowest possible frequency. Howesgest enore general test of the

optimisation routines to be used in future chapters, bbahd6q will be varied.

6.7.1 Objective functions

For any optimisation, an objective function describing tektive merit of the current
solution must be calculated. The stated objective for aesgghorn loaded loudspeakers
Is a smooth, frequency independent beamwidth. One type jette function that is

commonly used is a least squares objective function (Glgefinction #1),

min®,

(6.9)
®1 =3 (B(f> fmin) — Brom)”

where B (f) is a vector of beamwidths calculated using the semi-arcalytiumerical
method over a range of frequencies described by the véctdihe operatolf > fnin
selects only those frequencies abdwg, Bnom IS the nominal (or desired) beamwidth.
Examination of Figure 6.6 shows that for the “optimal” sadatof Geddes, the beamwidth
is smooth only above a certain limiting frequendy(), in this case approximately 3000

Hz.

The reason for selecting frequencies above a lower lifgi}) is that at low frequencies
the beamwidth is very wide. The inclusion of low frequencatoevidths would shift the
mean value of the beamwidth up, and increase the standaratiday and the resulting
metrics would not represent “constant beamwidth behatioQurrently the lower fre-
guency limit is arbitrarily defined to b&nin, = 3100, based on experimental evidence of

the low frequency performance of horns with the same mouath (&iigure 5.10).
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Objective function #1 is attractive because it concisedyest the objective for designing
horn loaded loudspeakers; that is, over the range of frezi@econsidered, any deviation
away from the nominal beamwidth is penalised. ConverséBbll values of the beam-
width are equal to the nominal beamwidth, then the objedtivetion is exactly zero.
The objective function also does not require any conssdiother than perhaps an up-
per and lower bound), which may be an advantage in implertientaf the optimisation

algorithm.

To examine the potential performance this objective fumgtvalues ofd; were calcu-
lated for a range of profile parametersyarying from 02 to 2 andBg from 20° to 9C°.
Each parameter was calculated at 25 evenly spaced pointsdtal of 625 samples. In
all cases, the diameter of the spherical cap on the surfattee@phere is held the same,
so the curvature is allowed to change (as exemplified in Eigus). The variation of
@, is very large, and it may be preferable for both visualisaaad optimisation to use
the natural logarithm of,. This value is contoured in Figure 6.12, and shows multiple

minima, pointed to by black arrows. The global minimum isresggnted as a red dot.

90 12

80

10

Figure 6.12: Contours o @4, the logarithmic least squared objective function.
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The presence of multiple local minima in the same vicinityw@ helpful in finding a
global minimum using gradient methods, and alternativeabje functions are sought.

In returning to the original stated objective for designimogn loaded loudspeakers; that is
a “smooth, frequency independent beamwidth”, the standevéation of the beamwidth
calculated over a desired frequency range is a measure aftsmess (the lower the bet-
ter), and the mean value of the beamwidth calculated ovesisedefrequency range will
give the target value for desigmB{om). Some combination of the above measures may

lead to a smoother objective function. Defining,

®; = mean(B(f> fmin)) (6.10)

®3 = std(B(f > fmin) (6.11)

wheremean (X) andstd (x) are the mean and standard deviation of vegtoespectively.
Figure 6.13 shows the variation df, and ®3 over the same range of parameters used
to generate Figure 6.12. There is a very smooth variatichyiand a relatively smooth

“optimal basin” for®s.

An ideal approach to finding an optimal solution would be ativabjective optimisation
(Belegundu and Chandrupatla, 1999, Deb, 2001) where ®gtand ®3 would be opti-
mised simultaneously to obtain a set of solutions that wbel@ble to trade off smooth-
ness for a mean beamwidth angle. The designer could thersel@solution from this
set that was able to best meet their needs. However, fuli+olojéctive optimisation is a

topic of current research and beyond the scope of this thesis

A simple form of multi-objective optimisation is to turn timeultiple objective functions
into a minimisation function and a secondary constraintis T possible when there is
a known (and achievable) target function value. In this cHs® smoothness parameter
(P3) is used as the minimiser, and the mean beamwidth vabgié used to constrain

the function to the required value. This objective funct{@iojective function #2) can be
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written as,

min®d3 (6.12)

with equality constraint

®2 = Bnom (6.13)

In some cases, it may be necessary to relax the equalityraorigb a bounded or pseudo-

equality constraint such as,

Brom— € < P2 < Brom+€ (6.14)

whereg is a tolerance parameter that describes how close to thenabbeamwidth the

optimisation is constrained.

Equation 6.14 can be reformulated as two inequality comis;a

Q;nom— ‘Dz

IA
™

(6.15)
q)2 - gnom < €

Figure 6.14 shows the natural logarithm of the smoothnesdtifon, @3, overlaid with a
contour of®, = 60° (the black line). The red dot shows the minimum of this fuoicti
and the black arrows show local minima of the smoothnesgifum®s. The intersection
of the black line and the minimum value of the contoured fiorcis a graphical solution
to objective function #2 wittB,om = 60°. The use of the natural logarithm in this case is
for visual acuity, as the range of variation of this functismot as severe as parameter

®s.
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Figure 6.13: Contours @b, and®3, the mean and standard deviation of the beamwidth.
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Figure 6.14: Contours @b3, overlaid with with a contour o, = 60°.
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6.7.2 Optimisation

There are many different optimisation techniques that @aunded to minimise the objec-
tive functions given in Section 6.7.1. Belegundu and Chapatla (1999) give a good
introduction to optimisation and Appendix B contains anreiev of the optimisation

techniques used in this thesis.

All optimisation methods evaluate the objective functiomsny times during the search
for an optimal solution. Even though the semi-analyticaheucal method is a relatively
fast way to calculate the beamwidth, and hence functinand®,, it is still time con-
suming. Because the solutions had already been calculegéed oelatively fine rectangu-
lar grid to visualise the functions in Figures 6.12 and 6ak8interpolation method called
Kriging (See Appendix B.4) was used approximate the fumstioetween the known val-
ues. This was done using theAvLAB DACE toolkit (Lophaven et al., 2002b,a). This
technique effectively interpolates the function valued gradients between known val-
ues, and can be effective in reducing overall computatitmed when objective function

or constraint function evaluations are expensive to cateul

It was found that the MTLAB optimisation toolbox functiorf m ncon, a Sequential
Quadratic Programming (SQP, see Appendix B.2) optimisaéehnique, was able to
find the optimal solutions for objective function #2 with edjty constraints (Equation
6.13) for all initial starting positions tested. Dependorgthe starting position, between
30 to 60 function evaluations were required. SQP optimosadif objective function #2
with inequality constraints (Equation 6.15) would convespme of the time, depending
on the constraint tolerance paramet@nd the initial starting position. The robustness of
objective function #2 can be attributed to the fact that @dyngle minima is encountered
when the optimisation is moves along the constrained paém though functiorbs does

contain local minima.

Finding the optimal solution for objective function #1 wasma difficult due to the mul-
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tiple local minima, and SQP would not converge robustly taglobal minimum. A solu-
tion to the problem of robust convergence is to use a glob@inigation technique, such
as DIRECT (See Appendix B.3). This technique found a globaimum for both ob-
jective functions. It could robustly find a global minimunr fabjective function #1 with
approximately 250 objective function evaluations. It wakedo find the global minimum
for objective function #2 with the constraint tolerancegraetere = 1 in approximately
500 iterations. If the constraint tolerance parameter wasighter,e = 0.1, the solution
was still changing after 1000 iterations, and the DIRECThudtappears inefficient for
pseudo-equality constrained optimisation. These refutsoth SQP and DIRECT are

summarised in Table 6.2.

| | Equality constrained SQP | DIRECT |
OF #1| Would not robustly converge. 250
OF #2| 30— 60, depending on start point500— 1000

Table 6.2: Number of objective function evaluations reedifor robust optimisation.

These results imply that the DIRECT global optimisatiortaque is best for solving the
unconstrained minimisation of objective function #1, amat tSQP would provide a robust
optimisation technique for the equality constrained misation of objective function #2.
The SQP algorithm performs well because, as can be seen fguer6.14, the minimi-
sation problem along the constraint is a smooth functiom aisingle local minimum.
It has been found that the DIRECT algorithm’s behaviour figjeotive function #2 is to
rapidly find a solution close to the global minimum, then lertiterations gradually im-
prove on this approximation. For more general optimisgpiailems, it is suggested that
a few iterations of the DIRECT algorithm with a looseb/= 1) inequality constrained
objective function #2 will provide a good starting guessttoe SQP algorithm, solving
the equality constrained objective function #2. The nuntb&IRECT iterations that are

needed will be problem dependent.

The previous optimisation results were obtained usingpati@tion methods (Kriging) to
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obtain objective function values between those pre-catedlon a rectangular grid. This
approach is untenable for general problems, especiallyginein dimensions due to the
large number of objective function evaluations requireke interpolation method was
used in this case to rapidly evaluate different objectivections. To examine the per-
formance of these chosen algorithms on exact objectivetifurg; the DIRECT solution
for unconstrained minimisation of objective function #& {ae SQP algorithm would not
converge to a global minimum due to multiple local minima) éhe SQP algorithm solv-
ing the equality constrained objective function #2, witreavfinitial DIRECT iterations,
were calculated. The SQP algorithm used a finite differepgecximation to the gradi-
ent, automatically calculated by MLAB. The optimal values of the inputs,and 6o,
along with the outputsp;, ®, and®d3 and number of function evaluationd) required
appear in Table 6.3 for both objective function #1 and #2. Jdrae parameters are given
for the Geddes profile (Equation 6.6). These show that opétians performed with both
objective functions are able to find (marginally) betteusioins than the original profile,
with measures of the “smoothness” of the beamwidttlp) and®3 having lower values
than the Geddes profile, and the average value of the beam#igltloser to the nominal

design beamwidth.

‘ ‘ n ‘ Bo ‘ In(Pq) ‘ (OB ‘ (0% ‘ N ‘
Geddes 116|665 | 192 | 602|028 | n/a

DIRECT, OF #1 112|651 | 075 |60.0]|0.22| 1538
Equality constrained SQP, OF #2..13 | 652 | 0.83 | 60.0| 0.22| 61

Table 6.3: Parameter values found using optimisation ¢t objective functions.

There is an increase in the number of function evaluaticoms fabout 250 (Table 6.2) to
about 1500 (Table 6.3) when using exact rather than intatgdlobjective functions for
objective function #1. This is possibly because this olbjediunction has many more
local minima than shown in Figure 6.12, and the interpotatimction used was not able

to capture the fine detalil.

Figure 6.15 (a) shows the velocity profiles obtained by thewpation techniques, com-
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pared with the original Geddes profile, and Figure 6.15 (lowshthe beamwidths ob-
tained. Both the profiles and beamwidths are virtually itidgglishable. Given the sim-
ilarity of results obtained, and the difficulty that mulglocal minima entail in finding
a global optimum, and the efficiency of the equality consedi SQP algorithm, it is
suggested that objective function #2 with equality conséa SQP be used for further

optimisations.

In summary, two objective functions for finding an optimahbevidth have been com-
pared. Gradient based techniques (eg SQP) are not robusbjemtive function #1 and
it requires a global optimisation techniques such as DIRBC$ able to find a smooth
beamwidth at a desired nominal value, however at the expEreseincrease in the num-
ber of objective function evaluations. Objective functié? with equality constrained
SQP is able to find the best solution robustly for this simplgbfem. It is suggested
that for more complicated problems that a hybrid technigegeised, with the DIRECT
global optimisation technique used for a few iterations tal fa location close to the
global minimum, and the SQP gradient based technique tcertéfamsolution. The prob-
lem considered in this section is very simple, and more caatgd problems with more
variables must be examined before moving to optimisatiamooh loaded loudspeakers.
The use of SQP also requires the evaluation of the objeativetion gradient, as well as
the objective function itself. The semi-analytical nursatimethod used in this section
produces stable finite difference approximations to thdigrd, as shown by the efficient
performance of equality constrained SQP. Other numeriedhads, such as the source
superposition technique, may produce “noisy” numericabd@nts (See Appendix B.2),

hence the development of efficient gradient free optinuseatgchniques are required.
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Figure 6.15: Comparison between original Geddes velocitfilp and the results found by opti-
mising 2 different objective functions.
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6.8 EGO optimisation

Objective function #2 developed in Section 6.7 is able taceasfully find the optimal
solution for a relatively simple problem using a gradiergdzhSequential Quadratic Pro-
gramming (SQP) optimisation routine. Whether this is abléé¢ scaled to more com-
plicated and larger dimensional problems, possibly witlsywgradient information, is
another question. For the current application, the calicraimes for each objective
function are large, and there has been much research intoisation of problems where
the evaluation of the objective function is computatiopeitpensive (Booker et al., 1998).
The main thrust of many of these techniques is to use a sugagameta-modelling tech-
nique (Appendix B.4) where an expensive objective funcaealuation is replaced with
a technique that interpolates between sparse samplesamitbdmputational overhead.
In this thesis, the DACE surrogate modelling technique apéed. DACE, or Design and
Analysis of Computer Experiments, takes its name from asahpiaper by Sacks et al.
(1989), and has become widely adopted. DACE uses a statistierpolation technique
called Kriging, and the two names are used interchangealtlyis thesis. It is used for
computer simulations where the results are determiniséc, for the same inputs the
simulation gives the same output, which is a different @ojahy from that of Design of
Experiments (Myers and Montgomery, 1995), where repetibidnput conditions is used
to reduce random error. The Kriging method is described irendetail in Appendix B.4
but for the purposes of this thesis, Kriging can be consilasean efficient interpolating
technique that provides both a prediction of the mean vahgethe mean square error

between the known sample results.

Since the Kriging interpolation technique is computatibnaexpensive to evaluate, the
question then becomes how best to sample the expensivdiebjiemctions, to allow ef-
ficient interpolation without sacrificing accuracy, and smg the global minimum. One
approach is to sample the function on a rectangular grid opomisations involving di-

mensions greater than 2, the cost of directly sampling thiesevbjective function space
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becomes prohibitively expensive. For example, to fit a Kiggmodel using a rectan-
gular grid spacing of 25 points varied linearly between thedr and upper bounds for
each dimension, the total number of points in two dimensisi® = 625. Given the
results found in Section 6.7, it would have been more prutiemiot use any form of
Kriging model and directly optimise the cost functions. Hmer for the purposes of in-
vestigating different objective and constraint functiote Kriging model allows rapid
evaluation. The Kriging model was also used to overcomecdities in applying the
constraint function using the MLAB SQP implementatiorf,m ncon. In three dimen-
sions, which would be required if there were three pararadéteoptimise, the number of

samples jumps to 25= 15625, which is prohibitively expensive.

An alternative solution would be to try to sample the pointzenefficiently. The Latin
Hypercube Sampling (LHS) strategy of McKay et al. (1979)nie such approach. Itis a
constrained Monte-Carlo sampling technique that improkresampling efficiency over
purely random (Monte-Carlo) sampling. Other techniquatdban this approach, and
the one used in this thesis is the space filling Improved Disted Hypercube Sampling
(IHS) of Beachkofski and Grandhi (2002). For a more compdietecription of LHS and
IHS see Appendix B.5.

Whilst IHS will find a distribution of initial points that is ore efficient at sampling higher
dimensions than a hyper-rectangular grid, once samplésisttll not known how accu-

rately the Kriging meta-model represents the objectivetions. Approaches such as
cross validation (Schonlau, 1997, Section 4.3) and bagiptng (den Hertog et al., 2004)
go some way to ascertaining the accuracy of the Kriging mduabhever an automated

approach would be helpful.

The EGO and SuperEGO algorithms of Schonlau (1997) and 848602) respectively
go one step further than automatically improving the acoud a Kriging meta-model.
They search for a global minimum by using information abdat érror in the Kriging

approximation away from the sample points. They do this byopming a secondary
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optimisation on an auxiliary problem, defined as “find thetrmest point”. This is called
the Infill Selection Criterion (ISC) from the geostatistiteerature and these techniques
use a statistical approach to find the next point that is nmikelylto improve the current
solution. Various forms of ISC are available with differearhphasis on global and lo-
cal searching. A simple example of EGO appears in Appenddx &ong with further

explanation.

6.8.1 Kriging interpolation of objective function values

As an illustration of the process of the Kriging interpatetused in the EGO optimisation
method, the objective function #1 of Section 6.9 is used axample. The IHS sampling
method was used to generate 20 initial points, and the fomeb, was calculated at
these points. A Kriging model was calculated for this vergrsp point spacing for each
function, and both the full model and the approximation &ppa Figure 6.16. The

points sampled using the IHS method are shown as cyan daKiiding approximation

initially appears to be a poor approximation to the origifugction, however on further

observation, it can be seen that the same general trendeideae

Figure 6.17 shows contours df, , the mean value of the beamwidth, for both the full
function, and the sparse Kriging approximation. The spaaseple points are shown as
cyan dots. Figure 6.18 shows similar contoursdgy the standard deviation of the beam-
width. Both ®, and®, are used in objective function #2. Again the sparsely sathple
results show similar trends to the full approximation, giyhope that the EGO algorithm

will be able to find an appropriate solution.

By design, the values of the Kriging surrogate model at thepda points are equal to the
values at the sample points and Kriging is a true interpmtathethod. The advantage of
EGO is that the Kriging approximation only has to be good ghoto indicate where to

sample next.
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Figure 6.16: Contours dif @3, logarithmic least squared objective function. Cyan dbtssthe
position of the initial sample points.
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Figure 6.17: Contours a@b,, mean value of the beamwidth.
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Figure 6.18: Contours @b3, standard deviation of the beamwidth.
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6.8.2 Objective function#1

The application of the EGO algorithm with the Expected Inye@rment (EI) Infill Sam-
pling Criterion (ISC) for 80 iterations (for a total of 100rfation evaluations) to Objective

function #1 is now examined.

The Expected Improvement (EI) function, given in Equatiad B Appendix B.6 and
repeated here as Equation 6.16, is able to find the next sgroplethat is most likely
to be an improvement over all previous samples. The El IS@imed as the expected
value of the improvement in the current prediction at a pawér the minimum value of

the current set of samples and is given as

El = E[I] = (fmin— (X)) CDF, ( fmin) + S(X) PDFa ( fmin) (6.16)

wherey(x) ands(x) are the mean and estimated standard deviation of the predift
variable®s at pointx, PDFy, is the probability density function of variabies andCDFg,

is the cumulative density function of varialsds,.

Unlike other ISC described in the literature (Jones, 200ik) Expected Improvement (El)
function is able to search implicitly for points likely tosfd a local improvement where
uncertainty is low, but the objective function is also neaniaimum, while retaining the

ability to search for global improvement where uncertaintthe sampling is high.

In Figure 6.19, the cyan dots show the position of the ing&@hple points, the green dots
show the position of the samples chosen by the EGO algoriginguhe EI ISC, and the
red dot shows the location of the best sample. Figure 6.1@shwue results of two runs

of the optimisation.

Table 6.4 gives the position of the best solutions found leyttto runs of the EGO op-
timisation, and compares it to the values found by the DIRB@fimisation technique

used in Section 6.7 for objective function #1. The valuestbhy the EGO optimisation

The University of Adelaide. Department of Mechanical Emrggring.



6.8. EGO optimisation 189

highlight the multiple local minima nature of the least seasaobjective function because
each of the two EGO optimisation runs have reached diffdagal minima. The DI-
RECT method gives the best solution, measured by the lovaést of In(®1) . The EGO
technique is sensitive to the choice of initial sampledyalgh the method will find the
optimum given enough iterations (in the limit of dense santplsee Jones 2001, Section

7).

| | n [ 60 [In(@) | P | P53 [ N |
DIRECT |112|651| 075 | 60.0 | 0.22| 1538
EGOrun#1| 1.11| 647 | 084 | 60.28| 0.24| 100
EGOrun#2/ 119|674 | 091 | 60.0 | 0.39| 100

Table 6.4: Optimal parameter values for EGO optimisatiomkgéctive functior#tl using EXx-
pected Improvement (El) Infill Sampling Criterion (ISC).
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Figure 6.19: Contours & @, the logarithmic least squared objective function afterigppion of
EGO algorithm. The cyan dots show the position of the ing&hple points, the green dots show
the position of the samples chosen by the EGO algorithm uieél ISC, and the red dot shows
the location of the best sample.
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6.8.3 Objective function#2

Objective function #2, a constrained minimisation, wasnbto be very efficient when
used to directly optimise the cost function. This sectioames the behaviour of ob-
jective function #2 with EGO optimisation. There are a numifedifferent methods of
applying constraints to the EGO algorithm, including a @obstic constraint method
(Schonlau, 1997) and a constrained ISC subproblem (Sa2@823). These methods are

examined in this section.

Probabilistic constrained Expected Improvement (EI) ISC

The method of Schonlau (1997) turns a constrained optimoisatto an unconstrained
optimisation by multiplying the expected improvementamibn by the probability of the
constraint being active. The constraint used is Equati@4 6nd the probability of this

constraint occurring ifp, is a random variable is given by

whereCDFy, is the cumulative density function of variabsie.

Figure 6.20 shows the results of EGO inequality constram@imisation of objective
function #2 withB,,m= 60° ande = 1° using Schonlau’s probabilistic constraint method.
The expected improvement infill selection criterion is ysed! the optimisation is run for
80 iterations, for a total of 100 objective function evaloas. Figure 6.20 shows initial
samples with cyan dots, the ISC samples with green dots anlde$t sample with a red
dot. The optimisation has performed poorly, with many fisrtevaluations outside the
constrained area, and no convergence to a final solution.b@&kesolution obtained is

reported in Table 6.6 with the label “Probabilistic consteal EI ISC”.
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Figure 6.20: EGO optimisation of objective functi¢@ using probabilistic constraint method.
Initial samples are shown with cyan dots, ISC samples wiglegrdots and the best sample with a
red dot. The yellow lines represent the constraint bounds.

Constrained Expected Improvement (El) ISC

Sasena (2002) has developed a constrained EGO optimisagtrod by using a con-
strained ISC technique. This method applies constrainestly to the ISC subproblem,
and uses the mean value of a Kriging approximation to thetcaings when the evaluation
of the constraint function is expensive. It has been fourizkteffective with the “regional
extreme” criterion of Sasena. This criterion is not usedhis thesis for reasons described
in Appendix C. The expected improvement criterion was nantbto perform well by
Sasena with constrained optimisation using the DIRECT otktand this is confirmed in
Figure 6.21. The initial samples are shown with cyan dots,|8C samples with green
dots and the best sample with a red dot. This minimum pointegn Table 6.6, “Con-
strained EI ISC”. The points sampled by the ISC mainly falihini the constraints, but
there is no convergence or repeated sampling of resultgimeaninimum. The arrow in

Figure 6.21 shows where repeated sampling has occurreldawesy from the minimum.
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Figure 6.21: EGO optimisation of objective functi#@ using ISC constraint method with ex-

pected improvement ISC. Initial samples are shown with @eats, ISC samples with green dots
and the best sample with a red dot. The yellow lines repréBerdonstraint bounds, and the arrow
shows where repeated sampling occurs.

Both these methods of constraint appear to have found a ¢hldae to the minimum by
essentially random sampling rather than some form of syeiersearch. Due to the poor
performance of both the Probabilistic constrained Expktteprovement (El) and the
Constrained Expected Improvement (EI) Infill Sampling €énian (ISC), alternative ISC

were sought.

Constrained Minimum Objective Function (MOF) (ISC)

Figure 6.22 shows the results of 20 initial sample with ahfert20 iterations of the ISC
constrained EGO algorithm with a Minimum Objective Funot{dOF) infill sampling
criterion. This criterion does not try to do any kind of glbsaarching and simply min-

imises the mean value of the Kriging predictor, i.e.

MOF = §(x) (6.18)
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wherey(x) is the mean value of the Kriging predictor.

For this example, the results are very impressive, with tiremum value being found
in under 40 total objective function evaluations. The alisample positions appear as
cyan dots, the green dots represent the minimum objectivaiftn sampling and the red
dot the optimum. This compares well with the performanceraflgent based methods in
the previous sections. The best result from the optimisas@iven in Table 6.6 ,“Con-
strained MOF ISC”. It is presumed that the results will betgsensitive to the choice of
initial sample points, and that there would be no chance lieaing a global minimum

if the problem was not as simple as that posed in this section.

90

Figure 6.22: EGO optimisation of objective functié using ISC constraint method with min-
imum objective function ISC. The initial sample positiongoaar as cyan dots, the green dots
represent the minimum objective function sampling and 8tk dot the optimum. The yellow
lines represent the constraint bounds.
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Constrained MAXimum VARiance (MAXVAR) / Minimum Objective Function (MOF)
ISC

A solution to the potential lack of global optimum robusta&s the Constrained Mini-
mum Objective Function (MOF) ISC is to first focus the samgplin the feasible regions
within the constraints, and then to perform an optimisaboce the feasible region is
sufficiently sampled. This is essentially a one step “sviitghcriterion as described by
Sasena (2002). For the current problem, the global seaydain be done efficiently be-
cause the constrained area is a small subset of the totahssaace. The optimisation
proceeds in two stages. First, a constrained optimisatitmam infill sampling criterion
that finds the MAXimum VARiance (MAXVAR) efficiently sampldbe feasible space
for 20 iterations. The MAXVAR criterion is

MAXVAR= —s(X) (6.19)

wheres(x) is the estimated standard deviation of the prediction attpoi Minimising

the negative of the standard deviation is the same as marunlse standard deviation.

Once the MAXVAR sampling is completed, a further optimisatusing the Minimum
Objective Function (MOF) efficiently finds the minimum witra further 20 iterations, for
a total of 60 objective function evaluations. The resulthaf simulation appear in Figure
6.23 and in Table 6.6 ,“Constrained MAXVAR/MOF ISC”. Thetial sample positions
appear as cyan dots, the points selected by the constraiaeidhom variance sampling
phase appear as yellow dots, the green dots represent tli@umnobjective function
sampling, and the red dot the optimum. Most of the final stggerisation (the green
dots) are tightly clustered around the optimal solutioe (#d dot), indicating a converged
solution. The optimum result is the same as the minimum dilkgetunction criterion, but

have added robustness because the entire feasible regificiently scanned.

For higher dimensional problems, the initial sampling maywery sparse. The perfor-
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Figure 6.23: EGO optimisation of objective functig@ using ISC constraint method with MAX-
VAR ISC followed by MOF ISC. The initial sample positions @&aw as cyan dots, the points
selected by the constrained maximum variance samplingeptiasear as yellow dots, the green
dots represent the minimum objective function sampling, tae red dot the optimum. The yellow
lines represent the constraint bounds.

mance of the optimisation algorithm with a limited numbeiafial sample points (5)
is examined in Figure 6.24. The colouring of the sample gamthe same as in Figure
6.23, and the optimum result found is the same as previousigation (“Constrained

MAXVAR/MOF ISC” in Table 6.6).

Table 6.6 summarises the results obtained by various methiodonstrained optimisa-
tion of objective function #2 using the EGO method. Resulitamed by the equality
constrained SQP from Table 6.3 are also presented agaiefmence. It can be seen
that the MAXVAR/MOF and MOF results have achieved the lowedtie of®3, and by
this measure have the best performance. However, due toatiieenof the inequality
constraint used, the nominal beamwid®h is not exactly 60, and the measure (®;)

is higher than that of equality constrained SQP. This issuebe resolved by decreasing
the constraint tolerance parametgralthough if this is too small, the DIRECT method

used to find the minimum of the Infill Sampling Criterion (IS@j)ll have convergence
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Figure 6.24: EGO optimisation of objective functig@ using ISC constraint method with maxi-
mum variance ISC followed by minimum objective function ISIis optimisation has a limited
number of initial sample point$). The initial sample positions appear as cyan dots, thetpoin
selected by the constrained maximum variance samplingepdyasear as yellow dots, the green
dots represent the minimum objective function sampling,tae red dot the optimum. The yellow
lines represent the constraint bounds.

problems. The degree of constraint compliance is probattlyan issue when comparing

the accuracy of the model with experimental measuremeriisarhwidth.

‘ ‘ n ‘ 0o ‘ |n(¢1) ‘ (OB ‘ ®3 ‘ N ‘
Equality constrained SQP | 1.13| 652 | 0.83 | 60.0 | 0.22| 61
Probabilistic constrained EI ISC 1.11 | 64.9 1.3 60.4 | 0.23 | 100
Constrained EI ISC 1.09|648| 235 |607|0.26| 100
Constrained MOF ISC 1121661 287 |610|021| 40
Constrained MAXVAR/MOF ISC 1.12| 66.1| 287 | 610|0.21| 60

Table 6.5: Optimal parameter values for constrained EG@nigdtion of objective functiomt2
using different Infill Sampling Criterion (ISC).

In summary, a number of techniques that can efficiently abdsty find the global opti-
mum of expensive objective functions have been investijdtéas been found EGO op-
timisation of objective function #2, the constrained mirgation of the “smoothness” of

the beamwidth is the most efficient. When a constrained M@Fi$used, the technique
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can be made robust by additional sampling of the feasiblie@mnagsing a MAXVAR ISC.
However the amount of additional sampling required for gtbass is not knowa priori
and is quite problem dependent. Further research is refjianmake the constrained ISC
subproblem a robust general global optimisation technidtl@s current technique for
the problem considered in this thesis should be investigaeher with more difficult

optimisation problems.
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6.9 Optimised Beézier velocity profile

A velocity profile described by a Beézier curve (See Appemigives a much greater
control over the shape than Equation 6.8. This control is $ed-igure 6.25 with an
independent, two parameter, control of the upper profilevature and the lower tail.
Each profile has been normalised to & 8dminal design angle, the angle at which the
velocity profile reaches/2 of the on-axis value.
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Figure 6.25: Comparison of velocity profiles for differerirameters of the Bézier profile.

To test the optimisation method, the parameterisationeffometry profile must be able
to reproduce an optimal, or near optimal, profile such asdh&eddes (Equation 6.6).
These optimal parameters, b, 09} = {0.33,0.47,66.5}, found using a numerical fitting
procedure, make the Bézier profile as close as possible Betdes profile, as shown in

Figure 6.26.

Because the Bézier profile has more freedom to define theitsefmofile, it is a more
difficult problem to optimise. Conversely, as it has moreeffem it has more potential

to find a better solution. For problems where the gradientosaoalculated, Section 6.7
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Figure 6.26: Comparison of Bézier and Geddes profiles, stpwiat the Bézier profile has the
ability to approximate the Geddes profile very well.

found that the Sequential Quadratic Programming (SQP)righgo with equality con-
strained objective function #2, after an initial searchvtie DIRECT algorithm is an
efficient method. For the 3 parameter Bézier profile, equabinstrained SQP produces
an optimal solution ifN = 120 objective function evaluations, with results given able
6.6 with the label “SQP optimum”. The original Geddes prafitenbers are included for

reference.

‘ ‘ a ‘ b ‘ 90 ‘ In(CDl) ‘ CDZ ‘ CDg ‘ N ‘

Geddes 0.33|047|665| 165 |601| 057 n/a
SQP optimum| 0.36| 0.46 | 652 | 0.56 | 600 | 0.19| 120
EGO optimum| 0.36 | 0.45| 656 | 1.63 | 605 | 0.18| 100

Table 6.6: Optimal parameter values for Bézier profile ofstion.

For optimisations when the gradient is not easily calcdlatiee Enhanced Global Opti-

misation (EGO) technique with objective function #2, déssd in Section 6.8, can be
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used. A slight modification of the algorithm uses Adaptiven@iated Annealing (ASA)
(Ingber, 1993) as the optimiser for the ISC. This method wasd to be more robust than

the DIRECT method for this problem.

A visualisation of the sample points chosen by the optinosaiechnique after 100 ob-
jective function calculations is given in Figure 6.27 in 3néinsions. The calculation of
30 initial samples, shown by the cyan dots, was followed leyctilculation of 50 samples
selected by the constrained MAXVAR (yellow dots), and thénsamples using MOF
(green dots). The optimum is shown by the red dot, with reggbaampling near the op-
timum indicating some sort of convergence. A surface of tantsb; = 60° appears in

blue. The optimum results appear in Table 6.6 with the laB&O optimum”.

Examination of Table 6.6 shows that both the SQP and EGO ¢g&trans are able to find
a Bézier parameterisation of the velocity profile with masdlly better performance than
the Geddes parameterisation. This is most probably duestimtineased variability in the
velocity profile allowed by the Bézier curves. More impottgrthis section has shown
that both the SQP and EGO optimisation techniques work getgsroblems with more

that 2 dimensions.
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(c)a—6g (da-b

Figure 6.27: Sampling of parameter space during EGO oiinis.
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6.10 Conclusions

A “Constant Beamwidth Transducer (CBT)” has been introdyeéhich is able to pro-
duce, with a special velocity profile over the surface of aespha frequency independent
beamwidth with a smooth frequency response. These areatiEsitharacteristics for a
horn used to produce sound in cinemas. The theory and literah the CBT and also on
other methods of producing frequency independent bearhsjidticluding the velocity

profile of Geddes (2002) was reviewed.

Next, a semi-analytical calculation technique to caleuthe beamwidth for a given ve-
locity profile was developed. This was used to calculate fhifferent velocity profiles: a
constant velocity over a spherical cap mounted on the seidaa sphere; a CBT profile;
the profile of Jarzynski and Trott; and the Geddes velocitile: This simulation showed
that the Geddes velocity profile produces the smoothestweatimresponse, possibly at
the expense of low frequency performance. The performahdeeodifferent velocity
profiles was examined in the context of CBT theory, with thetlgerforming profiles

showing the highest rate of energy decay in the sphericatheg modes.

CBT theory also suggests that the performance of CBT traresdus unaffected by the
removal of the inactive part of the sphere, i.e. the part evleich the velocity profile
is zero. This is confirmed numerically by simulations usihg source superposition

technique.

Finally, the optimisation of the velocity profile is considd. Two different objective
functions are described, one that uses least squares ®ttiewelocity profile to find
the best beamwdith performance, and the other that usesstraioied optimisation of a
smoothness parameter. For simulations where gradienniaton is readily available,
it was found that equality constrained Sequential QuadRxtbgramming (SQP), with an
initial search using the DIRECT global optimisation metipedformed best, and was able

to find an optimal solution in an acceptable number of objedtinction evaluations.
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For simulations where gradient information is unavailasl&oisy”, the Enhanced Global
Optimisation technique was able to find an optimal solutioan acceptable number of
objective function evaluations. It does this by samplingplrameter space using a space
filling method, then fitting a Kriging meta-model to descridmh a prediction of the mean
and the error of the objective function between the samplasauxiliary optimisation is
then performed using this efficient approximation to the wbjective function to find the
next best point to sample. A number of different auxiliaryaative functions, called the
Infill Sampling Criterion (ISC), have been tested with the wifferent primary objective
functions. For constrained optimisation it was found thatrategy that firstly reduces
the maximum error around the constraint, the MAXimum VARi@aifMAXVAR) ISC,
followed by minimising the mean value of the predictor (Mimim Objective Function or
MOF) is an efficient method. For unconstrained problemsas found that the Expected

Improvement (EI) algorithm gave a good balance betweer &whglobal searching.

Two different parameterisations of the velocity profile eevestigated. One parameter-
isation was similar to the Geddes velocity profile was désctiby 2 parameters, and the
other, which allowed a more variable velocity profile, wasa@ed by Bézier curves and
contained 3 parameters. Both equality constrained SQPhand®&O optimisation meth-
ods were able to find solutions that were better than theiegi§&eddes profile, although
the improvements were marginal. More importantly, it shakat robust optimisation
techniques are able to find global minima of expensive objeéinctions in a relatively

small number of evaluations with larger dimensional protde

The idea behind constant beamwidth transducers, as wéleasibust optimisation tech-
niques that have been developed, are now able to be applibe toptimisation of the

profiles of horn loaded loudspeakers.
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Chapter 7

Horn geometry optimisation

The work described in this chapter draws together the wonre¥ious chapters to de-
velop a method to optimise the geometry of a horn to give aityegsecified frequency
independent beamwidth and to provide a smooth frequenppnsg over a large band-

width, provided it is physically possible to do so.

The geometry of the horn is parameterised, and the sourasmagtion technique that
was verified in Chapter 4 and validated in Chapter 5 is usedltutate the beamwidth.
Robust optimisation techniques, developed in Chapter éhae used to systematically

modify the geometric parameters to find the optimum horn ggom

7.1 Introduction

The Constant Beamwidth Transducer (CBT) investigated iap@#r 6 gives a frequency
independent beamwidth. The sound field is produced by aftpedai phase, velocity

profile defined over a small part of the surface of a spheretide6.6 shows that the
surface of the sphere over which the velocity is not defingdakevant to the performance

of the transducer. This implies that if the mouth of a horn ganerate the same velocity
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206 Chapter 7. Horn geometry optimisation

field as that of the CBT over the surface of an imaginary sphEgap then the same,

frequency independent, sound field will result.

Examination of the typical velocity profile required by a GBlch as that shown in Fig-
ure 6.3, shows a gradual shading of the velocity profile an@y the axis. Geddes (2002,
Section 6.6) suggests that by flaring the exit of the horn,aangh in the velocity profile,
and hence beamwidth, will result. The tools to modify theeflaf the horn in a system-
atic way have been developed, using the techniques ouilr@evious chapters. Hence,
the aim of the work described in this chapter is to use robpsBbhusation techniques to
produce an optimal horn geometry that achieves constamwedh performance. It is
also intended to investigate whether constant beamwidfonpeance can be achieved at
a desired nominal beamwidth. To achieve this aim, the sosuwperposition technique,
which has been verified and validated in Chapters 4 and 5c¢tgply and is able to repro-
duce the sound field of a horn loaded loudspeaker, is couptbdive EGO optimisation
technique, developed in Chapter 6, to find the smoothesg@gth constant beamwidth

performance.

The original aims of this thesis were to provide a horn depigcedure characterised by:
an easily specified frequency independent beamwidth; antbath frequency response
over a large bandwidth. If constant beamwidth performaseehieved, then CBT theory
suggests that the second aim is automatically satisfieckifitht is achieved, hence the
focus on constant beamwidth behaviour in this thesis. Timothesis will have to be

tested either numerically or experimentally once a condteamwidth horn design is

achieved.

This chapter begins with an investigation of a geometrnycathple horn profile consisting
essentially of a conical horn, with a radiused entry at tha tloroat and a radiused flare
at the horn mouth. The ability of this geometry to achievedésired nominal beamwidth

is investigated, as is the the effect of throat radius on gréopmance of the system.

More complicated geometry parameterisations are thersiigaged, and a Bézier spline
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based geometry is found to be flexible enough to find a shapprh@duces approximately
constant beamwidth behaviour, although it may not be ablintba desired nominal
beamwidth. This geometry parameterisation is then solepdatedly for a wide range
of lengths and throat dimensions, and the results used &ajea method that is able to

quickly find an optimum horn design.

7.2 Optimisation method

The optimisation techniques developed in Chapter 6 can e wgh the source super-
position technique to calculate the optimum geometry prdéit a given nominal beam-
width. It was found that objective function #2 provided ausbway of finding the op-
timum using constrained minimisation. This objective fume is adopted here for the

current problem, and is repeated here for clarity.

Objective function #2 (Equation 6.12) can be written as,
min®d3 (7.1)
with equality constraint (Equation 6.13)
D2 = Brom (7.2)
where®, and®3 are defined as (Equations 7.3 and 7.4),

®; = mean(B(f> fmin) (7.3)

D3 = std(B(f> fmin)) (7.4)

wheremean (X) andstd (x) are the mean and standard deviation of vextoespectively,

B(f) is a vector of beamwidths calculated using the source sopgign technique over
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a range of frequencies described by the vettdihe operatof > fni, selects only those

frequencies abovénin andBhomis the nominal (or desired) beamwidth.

In some cases, it may be necessary to relax the equalityraortgb a bounded or pseudo-

equality constraint such as,

Brom— € < P < Brom+£€ (7.5)

wheree is a tolerance parameter that describes how close to thenabbeamwidth the

optimisation is constrained.

Equation 7.5 can be reformulated as two inequality conmgai

ﬁnom— cDZ

IA
™

(7.6)
CDZ - Q;nom

A\
™

The objective function #2 (Equation 7.1) requires that tleam¢b,) and standard devi-
ation @3) of the beamwidth be calculated over a range of frequenirdhjs case from

3100 to 10000 Hz in steps of 400Hz, §@n = 3100.

The definition of what constant beamwidth behaviour cossi$tis, however, not well
defined. In this chapter, a horn shows constant beamwidtavioalr if the beamwidth
approaches a constant nominal value smoothly from aboeef@seexample the beam-
widths shown in Figure 6.15 (b), produced by the Geddes itglpmofile over the surface
of a sphere). A more complete definition of what constitutesstant beamwidth be-
haviour should be investigated, and is recommended fordutork (Section 8.3) in the

context of defining more relevant objective functions.

It was suggested in Chapter 6 that a useful optimisationegfyawould involve the use
of the minimisation technique called Sequential Quadratmgramming (SQP). It was

found that this technique was not suitable for the curreablem because of difficulties
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in calculating the gradient using finite differences (Se2)B.The source superposition
technique requires discretisation of a given geometrydeoto calculate the beamwidth,
and small changes in the mesh distribution or density cae igalatively large changes
in the beamwidth. This would be the case if a small change imature led to a change
in the length of a line, which led to a step change in the nurobetements used in the
mesh. A small change of input can lead to a large change irutufjine perturbation in
parameters required by the finite different method was vemngisive to these changes and
was not able to provide a sensible approximation to the gradif the solution, hence
a gradient free method such as DIRECT or EGO is required. hEuresearch on an
efficient method to calculate the gradient of the source gs&ion solution would be

very valuable, and should be considered for future workt{Se®.3).

It was found in Chapter 6 that the DIRECT technique is notadlé for a constrained
minimisation problem. It is, however, probably quite a gabdice for an unconstrained
minimisation of functions with a small number of local miramit was found in Section
6.8.2 that the method required a large number of iteratiatistive many local minima of

objective function #1.

The EGO optimisation technique (Chapter 6) is the best ehfmic constrained minimi-
sation of the horn geometry problem because it was able tastlybfind a constrained
global minimum of objective function #2 with an acceptablember of objective func-
tion calculations, without requiring gradient informaticA brief outline of the technique
used here follows. The parameter space is sampled usingweghiHypercube Sampling
(Beachkofski and Grandhi, 2002), the objective functioaleated at each sample point
and then a Kriging method used to interpolate the data, dsaggive an approximation
to the error in the prediction. This information is then ugedalculate the next best place
to sample, by solving the Infill Sample Criteria (ISC) awxiyi problem. The interpo-
lated surface is updated using the objective function ¢aied at the sample point, and

the sampling process continued until a stopping critersoreached (usually a maximum
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number of samples).

The original EGO algorithm of Schonlau (1997) used an Exgédinprovement ISC;
however, this was found to be difficult to solve for a consteal minimisation (Sasena,
2002). A simple approach is adopted here. A number of itmatof solving a MAXi-
mum VARiance (MAXVAR) ISC, with constrained minimisatiogificiently samples the
feasible region of the objective function. This processsimreduce the uncertainty in
the interpolation of the objective function, but only withihe constraint boundaries. A
Minimum Objective Function (MOF) constrained minimisatisamples the mean value
of the interpolated objective function and then searches fminimum value of the ob-
jective function within the constrained region. This teicfug can find a global minimum,
provided that the sampling along the constraint is suffici@he amount of sampling,

which is problem dependent and cannot be determined a ps@et by trial and error.

In Section 6.9 both the DIRECT technique and Adaptive SiteglaAnnealing (ASA)
were used to solve the constrained ISC auxiliary problemthBloese techniques can
require many thousands of function evaluations, and hemeced suitable for solving the
objective function directly. When solving the ISC subpeghl| the objective function is
efficiently evaluated using Kriging interpolation, and tiest is minimal. For the problem
described in Section 6.9, the DIRECT technique was founditatde and ASA was used.
However, for general problems, neither technique has bmerdfto be superior, and here
a pragmatic approach is taken. Both the DIRECT techniqueAs& are used to find a
minimum of the ISC, using an inequality constrained appnodtien equality constrained
SQP is used, starting with the solution of each global misation technique, to both
enforce the equality constraint and improve the solutiopo$sible. The best result is
then used find the next sample position. There are no probdaioslating the gradient

numerically of the ISC using SGPThis may seem complex, but the overhead required is

L1t should be possible to derive an analytical gradient foiS(€ objective functions as the MLAB
DACE toolbox predictor function supplies the gradient fottbthe mean prediction and the mean square
error. It was found that numerical gradient estimationsaenefficient enough for the current problem.
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minimal for small dimensions compared to the cost of caloudgthe objective function

and it was found to provide a very robust search restrictédedeasible region.

7.3 Simple flared horn

A very simple horn profile is considered in this section. Femparison with the available
existing small horns, the radius of the mouth of the horn Id henstant R, = 82.5 mm)
for all the simulations performed in this chapter. Keepihg tmouth radius constant
simplifies the construction of the cost function, and doeslinut the analysis in any
way as results can simply be scaled for different frequenclde performance of horns
with alternate mouth dimensions can be readily scaled fitogrekisting results. Figure
7.1 shows a schematic of the geometry parameterisationangie of the conical horn,
8, and the length of the flang&) govern the overall length of the horn as the mouth
dimension is constant. A simple fillet of constant radiuat th tangent to both the conical
horn and the end of the flange, flares the conical horn andgeewome control over the
horn mouth velocity profile. The radius of this curve is a fiioe of the flange length.
Finally, the horn is attached to the compression driver diusR; using another constant

radius fillet.

7.3.1 Two inch throat

An optimisation of the geometry was undertaken for a condtann throat diameter,
Dt = 2R = 50 mm (2 inches), a standard dimension for compressioemiv he desired
nominal beamwidth wa®,om = 60°. The two free variable®) andF (expressed as a
percentage of the mouth radius), were normalised to lie &etvd and 1 using the upper

and lower bounds given in Table 7.1.

Figure 7.2 shows the variation in geometry achieved by tmarpaterisation used. The
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Figure 7.1: Simple horn geometry parameterisation. Ctingief a conical horn of anglé with
a flange of lengthr with fillets of constant radius.

| Name| Variable| Lower | Upper|
x(1) 6 200 | 40°
x(2) 5% | 40%

F
Rm

Table 7.1: Upper and lower bounds of parameters used toibesbe simple flared horn geometry.

parametersx(1) andx(2), representin@ andF) are both systematically varied between
the lower limit k = 0), the mid range valu & 0.5) and the upper limit(= 1), and the

resulting horn profile shown.
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(x(1)=0.00,x(2)=0.00)

(6=20",F= 8mm)

(x(1)=0.00,x(2)=0.50)

(6=20",F=37mm)

(x(1)=0.00,x(2)=1.00)

(6=20",F=66mm)

(x(1)=0.50,x(2)=0.00)

(6=30",F= 8mm)

(x(1)=0.50,x(2)=0.50)

(6=30",F=37mm)

(x(1)=0.50,x(2)=1.00)

(6=30",F=66mm)

(x(1)=1.00,%(2)=0.00)

(6=40",F= 8mm)

(x(1)=1.00,%(2)=0.50)

(6=40",F=37mm)

(x(1)=1.00,%(2)=1.00)

(6=40",F=66mm)

Figure 7.2: Variation in simple horn geometry with a 2 inctott. Parameters vary between upper
and lower bounds) < x(1) <1 and0 < x(2) < 1.

Figure 7.3 shows the optimisation trajectory of an EGO oation. The filled contour
is ®3, and the black line a contour of the constraid, = 60°. The cyan dots are the
positions of the initial samples (50) that initially chatiextse the objective function space.

The yellow dots (50) show the MAXVAR sampling, used to redtioe uncertainty in
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predictions, but only when the mean beamwidth constraiatigeved. The minimum
objective function method is then used, and shown by thengde¢s (50). This finds
the minimum, given by the red dot. It was found that the metlepeatedly sampled the
same position, which caused problems with robust fittindpef€riging model (Lophaven
et al., 2002b, Eldred et al., 2003). The solution to this fEwbis to merge the data set
based on sample proximity before fitting the Kriging modé¢ie MATLAB Dace toolbox

functiondsner ge was used with a coarse tolerance<(10-2).

1

X(2)

x(1)

Figure 7.3: Optimisation trajectory for the simple horn gary with a 2 inch throat. The cyan
dots show the initial samples, yellow dots show the MAXVARrg#ding, green dots the MOF
sampling and the red dot shows the global minimum. The blaekshows the constraint.

The numerical values of the optimal solution ad) = 0.67 (0 = 33°) andx(2) = 0.72

(F =50 mm). The mean value of the beamwidih = 60°. The paramete$, defined as

_ P

g— 3
)

(7.7)

is an objective measure of how smooth the function is, whegestnaller the value &,

the smoother the beamwidth over the range of frequenciesidened. For the current
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optimal solution, the value ddis 4%. The beamwidth produced by the optimisation is
shown in Figure 7.4 (a) where the red line is the beamwidthueted over a full frequency
range from 300 to 12000 Hz, the blue crosses are the freqeeeacer which the objective
function is calculated, and the dashed line is the nomiraityedth achieved (in this case
60°). The horn profile that generates this beamwidth is shownigarg 7.4 (b). Even
with this very simple geometry parameterisation, a reaslergpproximation to constant
beamwidth behaviour is achieved, if only over a limited baith. The high frequency
performance of this design decays with frequency above #0)Qand this shows that

true CBT behaviour has not been achieved.
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(a) Beamwidth

(x(1)=0.67,%(2)=0.72)

(6=33",F=50mm)

(b) Horn profile

Figure 7.4: Results of the constrained optimisatiombgffor the simple horn geometry with a 2
inch throat.

Referring to Figure 7.3, we can see that while the solutiogsfia minimum, if the con-
straint were removed the solution would most probably ckeagl a smoother solution
would be found. Relaxing the constraint, and using the DIRB@timisation technique
to find an unconstrained minimum &%, leads tax(1) = 0.59 (6 = 32°) andx(2) = 0.68
(F = 48 mm). The mean value of the beamwidthy) is 57 and the parametes is
3.9%, only marginally smoother than the results for the canséd optimisation (4%).

The beamwidth produced is shown in Figure 7.5 (a), and the pofile in Figure 7.5
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(b). This profile generates a beamwidth than is only marbjirsshoother than the pre-

vious constrained minimisation, and there is still a 'drompbeamwidth at the higher

frequencies.

Beamwidth [Degrees]

180 I
— Full Frequency
= Objective function
160 == Nominal (570) i
S (3.9%)

140

120

100

80

60

40 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000
Frequency [Hz]

(a) Beamwidth

(x(1)=0.59,x(2)=0.68)
(6=32" F=48mm)

(b) Horn profile

Figure 7.5: Results of the unconstrained optimisatiofp-ofor the simple horn geometry with a 2

inch throat.

Experimental evidence from Figure 5.10 suggests that defie@s in the compression

driver may be blamed for poor experimental correlation &b000 Hz. Notwithstand-

ing the limitations of the numerical model when comparedxegiment, this poor per-
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formance is inherent to the design of the horn and shouldvestigated further.

To try to find a solution that reduced the high frequency “@fodhe frequency range
over which the minimisation is performed is increased toPAz. The optimal solution
for unconstrained minimisation with the new cost functisx (1) = 0.48 (8 = 30°) and
X(2) =0.69 (F = 48 mm), the mean value of the beamwidth = 53" and the parameter
Sis 4.8%. The beamwidth produced is shown in Figure 7.6 (a), andhdine profile in
Figure 7.6 (b). This profile generates a beamwidth that s $@sooth than the previous
constrained minimisation and does not achieve the deswednal beamwidth. It does,
however, minimise the high frequency “droop”, and it is segfgd that this cost function

be implemented for future calculations wanting to achied @erformance.

In summary, this section shows that near constant beamattormance for horn loaded
loudspeakers can be achieved using the optimisation tggbsideveloped in this thesis,
even with a very simple horn geometry parameterisationlsti éinds that, in order to
minimise a high frequency “droop”, the frequencies overchitthe objective function is

calculated should be extended to the highest possibledreyuof interest.
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180 I
— Full Frequency
»  Objective function
160} - - Nominal (52°) 8
S (4.8%)
& 140
o)
g
o
a 120
=
S
S 100
IS
I
o)
m

80

60

40 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

Frequency [Hz]

(a) Beamwidth

(x(1)=0.59,x(2)=0.76)

(6=30",F=48mm)

(b) Horn profile

Figure 7.6: Results of the unconstrained optimisatiofp-ofor the simple horn geometry with a 2
inch throat. The objective function function upper freqeyefimit is now 12000Hz, minimising
high frequency “droop”.
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7.3.2 One inch throat

The geometry described in the previous section has a fixedtinadius. In this section
the same method of geometry parameterisation is investghtit with a smaller 25 mm
(1 inch) throat diameter, another standard dimension forpression drivers. Figure 7.7
shows that variation in geometry achieved by changing eachnpeter systematically

between the lower limits, a mid range value and the uppet.limi

The EGO optimisation technique is used to find the optimunmggtoy. Figure 7.8 shows
the results of the optimisation. In this case, only 25 ihgemples (cyan dots) are calcu-
lated, then 25 MAXVAR samples along the constraint (yellats) and 25 MOF samples
(green dots). The minimum solution to the constrained ogation is shown by the red
dot. In Section 7.3.1 the DIRECT minimisation technique wasd to find the uncon-
strained minimum function value. A simple modification t@ tbbjective functions to
remove constraints in EGO allows for an efficient way to find thinimum of®3, as
shown by the black dot. Examination of the range of valuegeael by this geometry, as
shown in Figure 7.8, in comparison with Figure 7.3 showstihatl inch horn results are

nowhere near as smooth as the 2 inch horn.

The optimal solution ix(1) = 0.56 (0 = 31°) andx(2) = 0.46 (F = 35 mm), the mean

value of the beamwidtkb, = 60.3 and the parameteéis 125%. Figure 7.9 (a) shows
the beamwidth of the constrained minimisation resultirgrfrthe geometry shown in
Figure 7.9 (b). The desired value of nominal beamwidth isamletd at the expense of

smoothness, and this design is not as smooth as the 2 inchdsuits.

Relaxing the constraint on nominal beamwidth to invesédghé smoothest solution pos-
sible shown by the black dot on Figure 7x81) = 1.00 (0 = 40°) andx(2) =0.43 (F =33
mm), the mean value of the beamwidth = 80° and the paramete3 is 6.9%. Figure
7.10 (a) shows the beamwidth of the unconstrained minimisaésult, and the profile is

shown in Figure 7.10 (b). The resulting nominal beamwidtreiy large, with a large dip

The University of Adelaide. Department of Mechanical Emrggring.
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below the nominal beamwidth at low frequencies. This pentomce in horns has been
documented in the literature (Henricksen and Ureda, 19f&he lowest frequency at
which the objective function is calculated were raised @000 Hz, then this technique
and geometry parameterisation could be used to design Hmahperform well at very
wide angles, at the expense of low frequency performancey Would not exhibit the
characteristic CBT behaviour, and may have large variatinracoustic impedance due

to reflections from the horn mouth.

The conclusions that can be drawn from this section are b®ahorn throat dimension
with a simple flare into a conical horn is not an independentbe, and that a simple
parameterisation is limited in its ability to generate opl solutions. A parameterisation

that includes the throat radius as a variable in the optitmisas required.

Horn Loaded Loudspeakers. Richard C. Morgans.
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(x(1)=0.00,x(2)=0.00)
(6=20",F= 8mm)

(x(1)=0.00,x(2)=0.50)
(6=20",F=37mm)

(x(1)=0.00,x(2)=1.00)

(6=20",F=66mm)

(x(1)=0.50,%(2)=0.00)
(6=30",F= 8mm)

(x(1)=0.50,x(2)=0.50)
(6=30",F=37mm)

(x(1)=0.50,%(2)=1.00)

(6=30",F=66mm)

(x(1)=1.00,x(2)=0.00)

(6=40",F= 8mm)

(x(1)=1.00,x(2)=0.50)

(6=40,F=37mm)

(x(1)=1.00,x(2)=1.00)

(6=40",F=66mm)

Figure 7.7: Variation in simple horn geometry with a 1 incfott. Parameters vary between upper

and lower boundg$) < x(1) <1 and0 < x(2) < 1.
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X(2)

x(1)

Figure 7.8: Optimisation trajectory for the simple horn getry with a 1 inch throat. The cyan
dots show the initial samples, yellow dots show the MAXVARngding, green dots the MOF
sampling, the red dot shows the constrained global minimuth the black line showing the
constraint. The black dot shows the unconstrained globaimuim.
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Figure 7.9: Results of the constrained optimisatiombgffor the simple horn geometry with a 1

inch throat.
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Figure 7.10: Results of the unconstrained optimisatio®pfor the simple horn geometry with a

1 inch throat.
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7.3.3 Variable throat

Optimisation of the simple flared horn with a variable threatius is now investigated.
Table 7.2 shows the upper and lower bounds of the variabtss 0he constrained EGO
method finds an optimal solutiof(1) = 0.66 0 = 33°), x(2) = 0.69 (F = 48 mm) and
x(3) =0.39 (D1 = 22 mm), the mean value of the beamwidih= 60° and the parameter
Sis 5.7%. Figure 7.11 (a) shows the beamwidth of the constrainedhmsation result
resulting from the geometry shown in Figure 7.11 (b). Thengetoy found is similar to
that of Figure 7.4 (b). This horn design appears to have aofiry” beamwidth at high
frequencies, and does not appear to achieve constant bddmivaéhaviour. The horn
geometry shown in Figure 7.4 (b) whilst not achieving conslbeeamwidth behaviour has

achieved the aim of being as smooth as possible for a givermabireamwidth.

| Name| Variable| Lower | Upper |

X (1) 200 40°
X(2) 5% 40%
X(3) 125 mm| 37.5 mm

Table 7.2: Upper and lower bounds of parameters used toiblesbe simple flared horn geometry
with a variable throat radius.

Performing an unconstrained minimisation@g finds the optimal solutiom (1) = 0.14

(6 =23), x(2) =0.52 (F = 38 mm) andx(3) = 0.94 (D1 = 72 mm), with the mean
value of the beamwidthd, = 37° and the paramet&= 3.4%. The beamwidth is shown
in Figure 7.12 (a), and the profile in Figure 7.12 (b). Thisfiecappears to closely ap-
proach constant beamwidth behaviour; however, the norbeainwidth achieved is not
that specified (60. This suggests that either constant beamwidth behaviayr anly
occur over a limited range of nominal beamwidths, and thatgmal of achieving con-
stant beamwidth behaviour at a nominal angle di$@ot possible, or that the geometry
parameterisation used is too restrictive. Hence invetstiganto more flexible parame-
terisation is required for further progress toward conskeamwidth behaviour with a

specified nominal beamwidth.

The University of Adelaide. Department of Mechanical Emrggring.
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In summary, this section has used optimisation of a relgtisenple 3 parameter horn
geometry to find the horn shape that produces a relativelyp#mmeamwidth with a 60
nominal angle. However, this result, shown in Figure 7.1dwsha distinct “droop” at
high frequencies, and cannot be considered to show corstantwidth behaviour. It has
also found a horn geometry that closely approached conseamiwidth behaviour at the

expense of achieving a 3nominal beamwidth instead of the specified @@igure 7.12).

Horn Loaded Loudspeakers. Richard C. Morgans.
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Figure 7.11: Results of the constrained optimisatiomgffor the simple horn geometry with a
variable throat dimension.
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Figure 7.12: Results of the unconstrained optimisatiofr-pfor the simple horn geometry with a
variable throat dimension.
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7.4 Bézier horn

Bézier curves were introduced in Section 6.9 to provide riexgbility in specifying the
velocity profile over the surface of a sphere. The Béziensgh specified by two vectors,
with the curve tangent to the head of each vector, and therfgth” of attachment to the
vector determined by the length of the vector. They are destin detail in Appendix
D.

The horn geometry has been parameterised using Bézierscuitee length I = 235
mm), mouth radiusRy, = 82.5 mm) and throat radiu®(= 25 mm) are held constant.
The head of one Bézier vector is(&;, 0), with the tail placed at fractior(1) between the
head andRny,L). Similarly the head of the second Bézier vector is placddRat ), with
the tail placed at fractiom(2) between the head ari@mn,L). The parameters(1) and
X(2) control the shape of the horn. Figure 7.13 shows the variatigeometry achieved

by changing the parameters systematically.

The EGO constrained minimisation technique was unable tbafisolution with a nom-
inal beamwidthB,om = 60°. This is because the current geometry parameterisation is
physically unable to produce a beamwidth of this magnitutlee EGO unconstrained
minimisation of®3 was able to find a smooth solution with a nominal beamwidth35f 5
and the parameté&is 5.7%, shown in Figure 7.14 (a), from the profi¢l) = 0.28 and

X(2) = 0.29, shown in Figure 7.14 (b). This geometry profile does notipce a partic-
ularly smooth beamwidth compared to the unconstrainedmigaition of a simple flared
horn. This parameterisation does not appear to exhibittanh®eamwidth behaviour,
with a large undershoot of the nominal beamwidth at low festuies. Other parame-
terisations with different control over the geometry pesilare investigated in the next

section.

The University of Adelaide. Department of Mechanical Emrggring.
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(x(1)=0.00,x(2)=0.00)

(x(1)=0.00,x(2)=0.50)

(x(1)=0.00,x(2)=1.00)

(x(1)=0.50,x(2)=0.00)

(x(1)=0.50,x(2)=0.50)

(x(1)=0.50,x(2)=1.00)

(x(1)=1.00,x(2)=0.00)

(x(1)=1.00,x(2)=0.50)

[

(x(1)=1.00,x(2)=1.00)

Figure 7.13: Variation in Bézier horn geometry with a 2 inblhoat and horn lengt@35 mm.
Parameters vary between upper and lower boubdsx(1) < 1 and0 < x(2) < 1.
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Figure 7.14: Results of the unconstrained optimisatio®pfor the Bézier horn geometry with a
2 inch throat and horn leng@85 mm.
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7.5 Spline based horns

As a simple Bézier curve is unable to produce fine enough abower the shape of the
geometry profile, the use of Bézier splines to describe thie geometry is investigated.
Bézier splines, as implemented in theigys (Kohnke, 2001) APDL commantkpl i ne,

allow any number of points to control the curve, as well agéaty conditions at each
end point. Much greater variation in geometry can be ackli¢hran was possible using

the simple parameterisations described in previous sectio

7.5.1 Simple spline horn

This section investigates a relatively simple spline patamsation. The horn throat ra-
dius was held constant &; = 2R, = 50 mm (2 inches), the length of the horn fixed at
L =235 mm and the radius of the mouth fixedDgt = 2Ry, = 165 mm.

The start and end points of a parametric cubic spline arendiyethe pointgR;, 0) and
(Rm,L) respectively. Tangency is enforced at the start and end9wirthe directions
(0,1) and(—1,0) respectively. A point in the spline curve is allowed to moneairec-
tangular box aligned along the start and end points. Onerpesa, x(1), controls the
major axis position, the other paramexé®) controls the minor axis. Figure 7.15 shows
the range of geometries possible with this parameterisasilmng with the position and

shape of the box.

Figure 7.16 shows the results of the optimisation, with 2Bahsamples (cyan dots), 25
MAXVAR samples along the constraint (yellow dots) and 25 M&fples (green dots).
The solution to the constrained optimisationdf is shown by the red dok(1) = 0.01
andx(2) = 0.81, and the solution of the unconstrained optimisatio®gthown by the

black dot,x(1) = 1 andx(2) = 1.

Horn Loaded Loudspeakers. Richard C. Morgans.
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(x(1)=0.00,x(2)=0.00) (x(1)=0.00,(2)=0.50) (x(1)=0.00,x(2)=1.00)
(x(1)=0.50,x(2)=0.00) (x(1)=0.50,(2)=0.50) (x(1)=0.50,x(2)=1.00)
(x(1)=1.00,x(2)=0.00) (x(1)=1.00,x(2)=0.50) (x(1)=1.00,x(2)=1.00)

Figure 7.15: Variation in simple spline horn geometry wit@ &ch throat and horn leng2B35
mm. Parameters vary between upper and lower boinds¢(1) <1 and0 < x(2) < 1.

Figure 7.17 shows the beamwidth and geometry profile of timstcained minimisation
of ®3, and Figure 7.9 shows the same for the unconstrained miaiimims Neither beam-

width is particularly smooth, and this geometry paramstgion is not particularly useful.

The University of Adelaide. Department of Mechanical Emrggring.
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Figure 7.16: Optimisation trajectory for the simple splimn geometry with a 2 inch throat and
horn length235 mm. The cyan dots show the initial samples, yellow dots shevMAXVAR

sampling, green dots the MOF sampling and the red dot shasveahstrained global minimum
with the black line showing the constraint. The black dotvgéithe constrained global minimum.
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Figure 7.17: Results of the constrained optimisatiompgffor the simple spline horn geometry
with a 2 inch throat and horn leng#85 mm.
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Figure 7.18: Results of the unconstrained optimisatio®-pfor the simple spline horn geometry
with a 2 inch throat and horn leng#85 mm.
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7.5.2 Complex spline horn

A more complex spline based horn geometry is considereddrséttion. The horn throat
radius was held constantB = 2R, = 50 mm (2 inches), the length of the horn fixed at
L =235 mm and the radius of the mouth fixedta = 2Ry, = 165 mm. A spline is fit
using the same start, end and tangency conditions as th&setion 7.5 and two control
points also control the shape of the curve. The position ohgmint is controlled by
lines starting% and% of the distance between the start and end point, and exigi@din
mm vertically from each point. The fractio{1) controls the position of the first control
point between its start and end points, aii@) the position of the second control point.
Figure 7.19 shows the range of geometries possible withptlmiameterisation, with the

control points shown as red dots and the start and end pajriikib dots.
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(x(1)=0.00,x(2)=0.00) (x(1)=0.00,x(2)=0.50) (x(1)=0.00,x(2)=1.00)
(x(1)=0.50,x(2)=0.00) (x(1)=0.50,x(2)=0.50) (x(1)=0.50,x(2)=1.00)
(x(1)=1.00,x(2)=0.00) (x(1)=1.00,x(2)=0.50) (x(1)=1.00,x(2)=1.00)

Figure 7.19: Variation in complex spline horn geometry fattwa 2 inch throat and horn length
235mm. Parameters vary between upper and lower bounds¢(1) <1 and0 < x(2) < 1.

EGO optimisation of this geometry is not able to find a comsé@ solution with nominal
beamwidthB,,m = 60°. Figure 7.20 (a) shows the beamwidth found by minimising
without imposing beamwidth constraints. This horn has arepiable constant beam-
width behaviour, although it does not reach the desired nahfieamwidth. To change
the nominal beamwidth it appears as though both the lengtheohorn and the throat
radius are required as parameters. The horn profile that@esehis beamwidth is given
in Figure 7.20 (b), withx(1) = 0.58 andx(2) = 0.69, the nominal beamwidth 4% with
parameteiS= 3.9%. The profile appears similar to the simple flared horn chess(g.f.

Figure 7.6 (b)), with the spline points controlling the grand exit flare rates.

Horn Loaded Loudspeakers. Richard C. Morgans.
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To examine the hypothesis that the horn length has an effettteonominal beamwidth,
a number of unconstrained optimisationsiafwere performed using the complex spline
horn geometry using different values of horn lendthFigures 7.21,7.22 and 7.23 show
the results fot. = 260 mm L = 285 mm and. = 210 mm respectively. Varying the length
does not seem to have a consistent effect on the nominal bieémwith the 260 mm
and 280 mm horns having almost identical nominal beamwjdttisough they both have
different values of the smoothness param&efrhelL = 210 mm horn profile, shown in
Figure 7.23 (b), has an optimum with both control points aselto the limits. This forces
the flange to curve over, or become re-entrant. This phenanseaxamined further in

Section 7.5.4.

The University of Adelaide. Department of Mechanical Emrggring.
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Figure 7.20: Results of the unconstrained optimisatiohpfor the complex spline horn geometry
with a 2 inch throat and horn leng#85 mm.
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Figure 7.21: Results of the unconstrained optimisatiohgfor the complex spline horn geometry
with a 2 inch throat and horn leng8®0 mm.
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Figure 7.22: Results of the unconstrained optimisatiohgfor the complex spline horn geometry
with a 2 inch throat and horn leng#85 mm.
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Figure 7.23: Results of the unconstrained optimisatiohgfor the complex spline horn geometry
with a 2 inch throat and horn leng#i.0 mm.
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7.5.3 4 parameter optimisation

The complex spline based parameterisation appears to loeragomg approach to finding
an optimum horn shape. The existing parameterisation islexable enough to find a
optimum that is constrained to the nominal beamwidth. Toerthle shape more flexi-
ble, both the horn lengthiL} and throat radiusR;) are made parameters, along with the
existing spline control points. The length of the controkl is increased from 80 mm to
100 mm to allow greater movement. Table 7.3 gives the uppatamer bounds on the

variables used in this simulation.

| Name| Variable | Lower | Upper |
x(1) | Spline control point 1 0 1
x(2) | Spline control point 2 0 1
X(3) R 127 mm| 825 mm
X(4) L 200 mm | 400 mm

Table 7.3: Upper and lower bounds of parameters used toibesbe 4 parameter horn geometry.

The application of the constrained EGO optimisation teghaiis able to find an optimum
solution, although with the MAXVAR / MOF sampling ISC thergerio way of deciding if
a global optimum has been found. It is possible that some ffreampling regime (the
auxiliary optimisation performed by the EGO optimisatioethrod, see Section 7.2) that
switches automatically between MAXVAR and MOF could be iempknted, although
it may be preferable to work on improving the constrainedrogation of the EI ISC

(Section 8.3).

Figure 7.24 (a) shows the optimum beamwidth.g8pwith a smoothness 0f3%. Thisis
generated by the profile shown in Figure 7.24 (b) with) = 0.40,x(2) =0.47,Re =12.7
mm andL = 218 mm. This design has the smallest possil@ndL, making the in-
cluded angle of the horn as wide as possible. The beamwigthlineath the nominal
beamwidth at low frequencies, indicating that this desigmle reasonably smooth, only

exhibits marginally constant beamwidth behaviour. A sste@ area of future research is

Horn Loaded Loudspeakers. Richard C. Morgans.
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the development of cost functions that do not choose a logufacy cut off, instead re-

warding constant beamwidth behaviour that smoothly appresthe nominal beamwidth

and penalising other behaviour (Section 8.3).
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(Rt:12.7mm,L:218mm)

(b) Horn profile

Figure 7.24: Results of the constrained optimisatio®@gffor the complex spline horn geometry
with a variable throat dimension and horn length.

Optimising ®3 and removing the constant beamwidth constraint producesemtrant

flange condition, although this solution may not be the triso@ minimum because

the Infill Sampling Criteria (ISC) used is the Minimum ObjeetFunction (MOF), and

The University of Adelaide. Department of Mechanical Emrggring.
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this does not guarantee that a global minimum will be founslitéhing to the Expected
Improvement (EI) ISC (Equation B.4) will make the solutiooma robust, and is recom-
mended for future unconstrained optimisations. The reaahflange is obtained when
the control line is pushed out beyond the mouth of the hord,the geometry is able
to form a smooth curve. It appears to effectively make the timodi the horn smaller.
This condition requires further investigation to decideettter it is a true optimum, or

attributed to poor geometry parameterisation.
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Figure 7.25: Results of the unconstrained optimisatiohfor the complex spline horn geometry
with a variable throat dimension and horn length.
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7.5.4 Re-entrant flange

The re-entrant flange is an interesting phenomena whicheis sethe previous section
in Figure 7.25 (b) as well as in tHe= 210 mm horn in Figure 7.23 (b). The flange
is curved over (re-entrant) outside the horn mouth, effettichanging the horn mouth
dimension. To see if the flange is important to the perforreari¢he horn, the re-entrant
part of the flange was removed from the model used to geneiguesr7.23 (b), leaving
the mouth dimensio®,, = 2Ry, = 251 mm. The horn geometry is shown in Figure 7.26
(b) and resulting the beamwidth shown in Figure 7.26 (a). Jungerior performance of
this configuration$= 5.5% overS= 6.3%) , without any extra optimisation, implies that

the re-entrant flange should be suppressed from future georparameterisations.
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Figure 7.26: Results of the unconstrained optimisatiobhgfor the complex spline horn geometry
with a 2 inch throat and horn leng#1.0 mm. The re-entrant part of the flange has been removed,
which results in superior performancg £ 5.5%) to that seem with the flange in Figure 7.23
(S=6.3%).
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7.5.5 Smooth Expected Improvement optimisation

An issue with the previous unconstrained optimisationta the standard deviation of
the beamwidth®3) has been optimised, instead of a measure of variance neaddly
the mean value of the beamwidtir{), such as the paramet8(Equation 7.7). For the
original, constrained optimisation, finding a minimumd®jJ is equivalent to minimising
the parametef, as®, , which S depends on, is held fixed by the constraint. However
for an unconstrained optimisation, the minimumdaf is not necessarily the minimum
of S, as®, can now vary. The differences in the minima found by optingss instead

of ®3 are not expected to be great, but param&tgives a better measure of constant

beamwidth horn behaviour, and should be adopted for futaliitations.

Another issue involves the optimisation technique used.cbastrained EGO optimisa-
tion it was found in Section 6.8 that it was necessary to usenvgber of iterations using the
constrained MAXVAR ISC to efficiently search the constraimdjective function space,
followed by more iterations using the constrained MOF 1S@rd the global minimum.
Using this method to find a global minimum for an unconstrdipeoblem is inefficient
as the search for a global optimum performed with two sepasaarches. It was found
in Section 6.8 that the Expected Improvement (El) ISC is &bkdfficiently balance local

and global searches for unconstrained minimisation, aisdaffproach is adopted here.

Changing the parameterisation of the horn, so that the eimd pbthe lines that govern
the position of the spline control points are now made a fonatf the horn length rather
than being fixed, eliminates the potential of a re-entramiga The fractionx(1) and
X(2) control the position of the control points between the stad end points of the
control lines. The positions of the lines are s%ilhnd% of the distance between the start
and end points, but the end point of the first control Iiné of the axial distance between
the start point and the horn mouth, which can be seen in Figa&(b). The end point of
the second control line is in line with the horn mouth. Thialss the control lines with

the length of the horn.
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The results of the EGO EI optimisation 8ffor a horn with fixed lengti. = 260 mm
and 2 inch throat appear in Figure 7.27. The 25 cyan dots shuoeventhe initial points
are sampled, and the 25 green dots show the sample pointsrchgghe EI ISC, bal-
ancing both local and global optimisation. A convergencthé&oglobal minimum can be
seen with repeated sampling (many green dots) around thalgioinimum (red dot) at
X(1) = 0.49 andx(2) = 0.69. We can now be reasonably certain that the global mini-
mum of an unconstrained 2 parameter optimisatio8 cén be found within 50 function
evaluations. The beamwidth is shown in Figure 7.28 (a) wittominal beamwidth of
47.1° with paramete6= 3.1%. The profile is shown in Figure 7.28 (b). This calculations
should compare directly with that in Figure 7.21. Both pastenisations are capable
of producing the same geometry, but the EGO optimisatioh Wit ISC finds a better

solution, and should be adopted for future unconstrain¢idggations.

Extending the geometry to include a third control point betw the two existing points
gives finer control over the shape of the horn. The fractioiis, x(2) andx(3) control

the positions of the three control points between the stattend points of the control
lines. The unconstrained EGO with EI ISC is able to find a dlafiaimum,x (1) = 0.48,

X(2) = 0.43 andx(3) = 0.70, shown as the red dot in Figure 7.29. The 35 cyan dots show
the initial samples, and the 65 green dots show the samptsenlby the El ISC. There

is a large amount of sampling around the red dot, showingedsampling and likely

convergence to a global minimum.

The beamwidth produced by this optimal solution is shownigufe 7.30 (a). The nomi-
nal beamwidth is 48° with a parametet= 2.8%. The profile, shown in Figure 7.30b is
remarkably similar to the 2 parameter version shown in Egu28 (b). The smoothness
of the beamwidth indicates that constant beamwidth behavikely to be achieved with

this design.

Figure 7.31 (a) and (b) show the absolute and percentaggehifes between the radial

profiles of the 2 and 3 parameter complex spline horns, asrsiowigure 7.28 (b) and
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Figure 7.27: Optimisation trajectory for the 2 parametenptex spline horn geometry with a 2
inch throat and. = 260 mm. The cyan dots show the initial samples, green dots thaiapbng
and the red dot shows the unconstrained global minimum.

Figure 7.30 (b) respectively. This very small differencgg@ometry is probably smaller
then the manufacturing tolerances of production horns,thediny improvement in the
predictions of the numerical model probably do not warrletéxtra computation effort

required.

7.5.6 Conclusions

In summary, for a fixed set of general parameters (such aattradius and horn length),
it is possible to find simple 2 and 3 parameter horn geomettnigtsare able to produce
nearly constant beamwidth behaviour, at least over theisénecy range studied. Efficient

optimisation of parametes, with approximately 50 objective function evaluationgy&s-
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formed with the Expected Improvement (EI) Infill Samplingt€ra (ISC) and the EGO
optimisation algorithm, and the results are superior taitih@nstrained optimisation per-

formed in previous sections.

With the fixed parameters and unconstrained optimisatied usthis section, the beam-
widths found were unable to satisfy the nominal beamwidthst@int. This is most
probably because the horn length and throat dimensiomriathat control the overall
angle of the horn, were fixed, and further investigation ¢urneed into ways to achieve

constant beamwidth behaviour at the desired nominal bedthwi
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Figure 7.28: Results of the unconstrained El optimisatioh-ofor the 2 parameter complex spline
horn geometry with a 2 inch throat and horn lengf® mm.
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Figure 7.29: Optimisation trajectory for the 3 parametenptex spline horn geometry with a 2
inch throat and. = 260 mm. The cyan dots show the initial samples, green dots tharphng
and the red dot shows the unconstrained global minimum.
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Figure 7.31: Difference between the 2 parameter and 3 paeamaglial profiles shown in Figure
7.28 (b) and Figure 7.30 (b) respectively.
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7.6 Constant beamwidth horns

The work described in this section considers the design ahge of constant beamwidth
horns. The work described in section 7.5.5 found that for edfithroat radius and horn
length, a 2 parameter Bézier spline based horn geometry las@produce approxi-
mately constant beamwidth behaviour using EGO with an ustcamed El ISC but the
nominal beamwidth was not achieved. Unlike Section 7.3 wie specification of a de-
sign angle, it is not clear how the nominal beamwidth produe this optimisation is

controlled by the throat radius and horn length.

The technique described in Section 7.5.3 uses the constk&®O approach to find the
smoothest beamwidth possible for the geometry by varyingrémpeters including the
throat radius and horn length. As can be seen from the beamsldwn in Figure 7.24,
the solution found is not particularly smooth. It is not kmowhether this is limited by
the geometry (likely because one parameter is at the minhaurby the optimisation
procedure. Using a large multi-dimensional optimisatitso dimits possible insight into

the visualisation and nature of the optimisation landscape

One possible approach to this problem would be to embed amigption that found the
smoothest possible geometry for a given throat radius amd lemgth as an objective
function for a second optimisation. This optimisation wbthen vary the throat radius
and horn length until it found the desired nhominal beamwiddim unconstrained EGO
optimisation would be able to perform the optimisation g@itmply, provided that the de-
sired nominal beamwidth is physically realisable for theegiranges of throat radii and
horn lengths. The cost of a single objective function eviamefor the second optimisa-
tion is extremely large (in the order of 1 hour for a Pentium8&@Hz running Windows
XP). If an optimisation was performed using this approadkh wp to 50 objective func-
tion evaluations would be used to find a single solution. ffedent value of nominal

beamwidth was required, then another expensive optirisatust be performed.
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The solution adopted in this thesis does not perform a seoptithisation. Instead the
results of a series of constant beamwidth optimisationsrairaber of different throat
radii and horn length parameters are interpolated usingdhee technique as used in the
EGO optimisation method (Kriging). The entire range of #dtreadii and horn length
parameters is sampled, with parameters chosen using spexgesampling techniques
(Appendix B.5). This solution is possible because the dsrnis small (2 parameters),
and the Kriging interpolator is very efficient. This solutieffectively produces a “design
chart” for axisymmetric constant beamwidth horns wherentbre designer can “look up”

designs and make trade offs between horn dimensions andhabb@&amwidths.

The upper and lower bounds of the variables, the mouth tathealius ratio%, and the
horn lengthL, are givenin Table 7.4. A set of 50 parameters between thergmal lower
bounds has been selected with using the space samplingvuatpkypercube Sampling
(IHS) method. At each of these parameters, a second optionda find the smoothest
possible beamwidth with the throat radius and horn lengtd benstant is performed.
Kriging models were fit to the results of the second optinngalparametefs, nominal
beamwidth®,, as well as the values of the constant beamwidth optimisatidl) and
X(2)) and the mean square error of the resulting approximatixersmed by hand to find
appropriate places to sample next, because the dimensiba ofirrent problem is small,
and visualisation is easy. For more complicated problem&raa more automatic way
of finding new places to sample, the MAXVAR ISC could be usednuimber of new

sample points was chosen, and further constant beamwiditimiegtions performed, to

reduce the error in the interpolation. Overall 81 constaatbwidth optimisations were

performed.
| Variable | Description | Lower | Upper |
o Mouth to throat ratio] 2 13
L Horn length 200 mm| 400 mm

Table 7.4: Upper and lower bounds of parameters used toiblesbe constant beamwidth horn
geometry.
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Results for the paramet& are shown in Figure 7.32 as a contour plot. Low values
of the paramete means that the standard deviation of the beamwidth noretaby
the mean value of the beamwidth is low, and close to consteamividth behaviour

is achieved. The 50 cyan dots represent the initial sampddipos, and the 31 green
dots represent additional samples chosen to improve thggrgrinterpolation. The value
of the paramete6 is low, across most of the plot, except for low vaIuesBFgf The
reason for these large values &f and non-constant beamwidth behaviour, is evident
when examining typical geometries produced for low valu‘e%ﬂcsuch as those shownin
Figure 7.33. The smoothest profile found by the optimisateartine for the low values

of % is one where the value of the parameter that controls thesfitgte control point,
x(1), is small, and the horn profile has a point of inflection neathinoat. To suppress this
anomalous behaviour, only the valuesSdielow 4 are to be considered, the approximate
boundary between the red (bad) and blue (good) areas oreFIgBR. It is suggested that
future studies examine different objective functions imelate this behaviour (Section

8.3).

Figure 7.34 shows contours of paramedéor varying throat radius and horn length, with
the black mask covering the anomalous horn shapes. Thisghtwtg with Figure 7.35,
a contour of the nominal beamwidth, can be considered the neaults of this thesis.
They provide a method to design a horn that is as smooth agfpoks a given nominal
beamwidth. Figure 7.36 overlays a contour line plot of nahbeamwidth over a plot of
smoothness. Picking a particular contour of nominal beatthwvand moving along it un-
til the minimum smoothness is chosen gives the vaIu%oind L. These design charts
have been generated by a Kriging interpolator, a computeleirtbat can easily be inter-
faced with optimisation techniques to find a minimum solutgutomatically. However,
visualisation of the search space allows the designer tonsew potential solutions and
pick the best one. These can then be used with the plots imé=i§87 to find the optimal
value ofx(1) andx(2). These values can then be used to construct the horn profile. N

expensive optimisation using the EGO and the source sugiéigpotechnique is needed.
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Figure 7.32: Contour of paramet8r The cyan dots show the initial samples and the green dots
additional sampling to reduce uncertainty in the interppofa The red contours show anomalous
behaviour and should be suppressed.

The MATLAB DACE Kriging interpolation system (Lophaven et al., 2002&bjable to
calculate vector interpolations, and the beamwidth of ffstesn can also be stored. To
check the validity of the optimum interpolation system, &ige for a 60 beamwidth
horn is undertaken. Figure 7.36 is used to estimate thenpeaftce of a 60horn. A point

% = 1245 andL = 220 mm is selected as a good design. The Kriging approximatio
then givesx(1) = 0.43 andx(2) = 0.68 as predictions of optimal solutions. The horn
profile calculated using these values is shown in Figure {38 The true solution is
calculated using this profile and shown in Figure 7.38 (ajitptl with non-dimensional
frequencykRy, (wherek = 2rtf /c), along with the Kriging prediction of the beamwidth.
As can be seen, the Kriging approximation to the beamwidththe true beamwidth
are very similar. The performance of the horn is good enooglié¢sign purposes, and
because all parameters are scaled by the horn mouth dimeRgjathe results can be

easily scaled to any frequency range.
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(0.03,0.74,0.09,0.33) (0.02,0.81,0.06,0.11)
(Rt:55.0mm,L:265mm) (Rt:61.2mm,L:223mm)

Figure 7.33: Typical optimum horn profile for small value@f

Another use of the design tools is presented. Suppose a érgthl of horn is required of
L =260 mm. By fixing this dimension, then picking a good dimengar % from Figure
7.36 (in this cas% =10.8, givingx(1) = 0.50 andx(2) = 0.69), an optimal solution is

found. This is shown in Figure 7.39, a good design for a hostricted toL = 260 mm.
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Figure 7.34: Contour of the parame@&rwhere small values imply better “constant beamwidth
behaviour”. The black contour masks anomalous behaviour.
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Figure 7.35: Contour of the nominal beamwidd, showing the range of constant beamwidth
horns achieved. The black contour masks anomalous bemaviou
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Figure 7.36: Constant beamwidth horn “design chart”. A oantof the parametes is overlaid
with contour of the nominal beamwidth,. The black contour masks anomalous behaviour.
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Figure 7.37: Contours of the paramete(3) andx(2) that define the shape of the constant beam-
width horns.
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Figure 7.38: Results of the Kriging approximation compaied calculation for &0° constant

beamwidth horn calculated using the design chart.
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Figure 7.39: Results of the Kriging approximation compared calculation for a constant beam-
width horn of length. = 260 mm calculated using the design chart.
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7.7 Conclusions

Optimisation techniques have been developed that can fensitioothest possible beam-
width response as a function of frequency for a given hormupaterisation, and often
this behaviour can be considered to approach “constant wedimbehaviour”. If the

horns are exhibiting true constant beamwidth behavioun the frequency response of
the horn will be smooth (Rogers and Van Buren, 1978). Thisaiemto be tested both

numerically and experimentally (Section 8.3).

If the geometry is physically able to create the desired mambeamwidth, then opti-
misation techniques are available that will find the smaositpessible beamwidth. One
approach is to use the constrained EGO technique to find Eegomt in space that both
satisfies the beamwidth constraint and is as smooth as passiis technique, while it
does find an optimum solution, is time consuming and tell&ingtabout how the para-
meters vary. A more satisfying approach is to calculate th@xthest possible beamwidth
for a range of horn throat dimensions and lengths, and thenKiiging interpolator to
find the values in between. This way, the information cakedacan be reused, and new

designs calculated without further expensive optimigatio

There is much more that can be done with the optimisation of leaded loudspeakers:

e Objective functions that better capture constant beanmbehaviour would pro-
vide more robust optimisation. One possible approach wbaltb fit a function
that describes constant beamwidth behaviour with a nunfgarameters, such as
nominal beamwidth and low frequency beamwidth performamedeast squares
fit to the beamwidth data would give the parameters, and theletion coeffi-
cient (Weisstien, 2004) would be a non-dimensional measiunew close constant

beamwidth behaviour was achieved.

e More general horn geometry parameterisations may allowosimeo horn beam-

widths.
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e The horns investigated had uniform velocity distributiapplied at the throat,
however this is known not to be the case above a certain freyu@ehler and

Makarski, 2003). The effect of real compression driversusdhbe investigated.

e It should be possible to tailor the compression driver raspdo help achieve con-

stant beamwidth behaviour (Geddes, 2002) or to design lbaded tweeters.

e Horns with different beamwidths for different axes (3D h®rwould be more in-

dustrially relevant.

However, these problems are beyond the scope of the cuttelhyt See Section 8.3).
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Chapter 8

Conclusions and recommendations

This chapter reiterates the aims given in the first chaptérsammarises the work com-
pleted in this thesis. It clearly states the contributiansurrent knowledge in the optimi-

sation of horn loaded loudspeakers, and gives recommengdtr future work.

8.1 Introduction

The introductory chapter describes the aims of horn desiggihema loudspeakers: to
produce an easily specified frequency independent beamvadtl to provide a smooth
frequency response over as large a bandwidth as possibéeovinall aim of this thesis

was to develop fast and reliable optimisation techniquesidon loaded loudspeakers to

achieve a good horn design method for cinema loudspeakers.

This aim was achieved by first examining the literature to ot what techniques had
been used previously. It was found that there are no analyticsemi-analytical tech-
niques suitable for the design of horns for cinema loudspesakhat fast numerical tech-

nigues are necessary and that the numerical method chossrbmable to include the
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effects of higher order modes propagating within the hotnwads also found that al-
though studies had previously attempted to optimise haaddd loudspeakers, none of

these techniques were suitable for cinema loudspeakearsgst

The specific aims of this thesis were to;

e Examine experimentally the nature of the sound field at the math of repre-
sentative axisymmetric horns (near field) and the horn beamvdth (far field).
The experimental results for the near field sound pressumergted by a horn found
that above a certain limiting frequency, plane waves cetseslist at the mouth of
the horn, and the sound field is quite complex. This implieg #ny numerical
method used must be able to model this complex field implickar field experi-
mental results have been used to validate the numericaba&t his aim has been

achieved.

e Develop fast and accurate numerical models of horn loaded l@ispeakers.
Of the many numerical techniques available, the sourcerpapition technique of
Koopmann and Fahnline (1997) is a good choice for modellwegsound field ra-
diated by horns. Work described in this thesis demonstriatedbe significantly
faster than traditional BEM techniques and also suitablerfodelling thin struc-
tures such as horns. The technique is capable of reprodtiegngpund field gen-
erated by a horn loaded loudspeaker from a specificatiorediidhn geometry, and
the accuracy of the reproduction is adequate for designgsepwithin the speci-

fied frequency range. This aim has been achieved.

e Develop fast and reliable optimisation techniques for hornoaded loudspeak-
ers.
A theory used to design a Constant Beamwidth Transducer J@BBonar appli-
cations has been examined in the context of horn design. hggsshown that a

frequency independent beamwidth is physically realisalblee theory also states

The University of Adelaide. Department of Mechanical Emrggring.
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that the frequency response of such a transducer, once dchaésved a frequency
independent beamwidth, will be smooth. This implies thabanlhat has achieved
a frequency independent beamwidth in the same manner atBfet@nsducer

will also have a smooth frequency response, and that therra@joof horn design

should be to produce a frequency independent beamwidth.

Fast and reliable gradient free optimisation techniquesxpensive objective func-
tion evaluation have been developed, along with objectivetions that quantify
the aims of a horn designer. These have been applied to hadedoloudspeak-
ers and horn geometry based on a 2 parameter Bézier splifeebasdeveloped.
The optimisation techniques have been used to develop grdesthod for horn

loaded loudspeakers. The optimum beamwidth for a wide rahgees have been
pre-calculated and a series of design graphs created,jiafjaptimal designs to be

quickly and easily created. This aim has been achieved.

8.2 Contributions to current knowledge

The work in this thesis makes the following contributionhe state of current knowledge

in acoustic horn theory:

e Foremost from an industrial perspective, the work desdribehis thesis provides
an optimisation method for the design of constant beamwhdtim loaded loud-
speakers. This provides smooth control of the beamwidth avange of frequen-
cies governed by the size of the horn. A design method thatvallan optimal
design to be chosen quickly and easily from a series of grapasimple computer

programme has been developed.

e Fast numerical methods have been developed and validateah&dysing horn

geometries. This has been done using the source supeoposiithod, a numerical
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technique that is similar to traditional BEM but is signifitly faster. Comparisons
have been made with experimentally measured sound predstarén the far field
and other numerically based sound pressure predictioos,asiboundary element
techniques, to find the limits of validity for this approachn extensive literature
search failed to find any evidence that this technique hasquely been applied to

the numerical modelling of horns.

e Constant Beamwidth Transducer (CBT) theory has been redédw the context
of acoustic horns, and an optimum velocity profile developsithg an optimisa-
tion technique. This shows that the aim of a frequency inddpet beamwidth is

physically realisable under some circumstances.

e The nature of the near field of the horn has been examined. Xisierece of higher
order modes above a limiting frequency has been demondtratech has impli-

cations for the technique chosen to model the horn.

The work in this thesis makes the following contributiontie state of current knowledge

in numerical methods in acoustics:

e For both the source superposition technique and the taditiBEM, it has been
found that accurate far field sound pressure results can taéned with a much
reduced mesh density than has been reported previouslgilit¢nature, at least
for the cases considered here. This is a significant findmtheefficiency of both

techniques decreases rapidly with increasing model size.

e The source superposition technique has been found to denegdrices that are
extremely diagonally dominant, and hence are well suitesbtotion with an itera-
tive technique such as GMRES. Traditional BEM has had to yge@onditioning
technique (Migeot et al., 2000, Chen, 1999) to effectivaly iterative solution tech-

niques. The advantage of this finding will become more apypase the problem
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size becomes larger. For the problems considered in thissthrelement assembly

time is as dominant as solution time.

The work in this thesis makes the following contributionhe state of current knowledge

in global optimisation methods:

e The Regional Extreme (RE) Infill Sampling Criteria (ISC) adsena (2002) has
been compared with the criteria originally proposed by Watsnd Barnes (1995).
Sasena’s interpretation was found to be different to thaheforiginal implemen-
tation of the Regional Extreme criteria. The original ipt@tation is found to be
exactly equivalent to Schonlau’s (1997) Expected Improxeimit was also found
here that an alternative implementation of Sasena’s @ifehich cannot be called

a regional extreme criteria) may not find the global optimum.

8.3 Recommendations for future work

From an industrial perspective, there are a number of tésksmould be very useful:

e The most pressing need would be the construction and measotef horn designs

given in Chapter 7 to experimentally verify constant beadtiwbehaviour.

e A procedure directed at the design of horns that allow inddpet control of the
beamwidth in different axes. This is not possible with arsgimetric geometric
specification described in Chapter 7. However an extendidthi®geometry to a
second axis should be relatively simple. CBT theory has lséewn to be extend
in a simple manner to the second axis (Keele, 2000), so imikgre axis control
is physically realistic. A question remains as to the efficieof the optimisation

technique, as the number of variables to be optimised deuble
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e The development of a simple computer program that embode&tesign chart”
given in Section 7.6 would be very useful for the design osgximetric horn

loaded loudspeakers.

¢ Modifications to the boundary conditions at the throat oftiben, by changing the
design of the compression driver, may help achieve conbgarhwidth behaviour.
This was first suggested by Geddes (2002). The design ofartristamwidth horn

loaded tweeters is a related problem.

From an academic perspective, much work can be done withptiiraigation technique.

e The objective function can be improved to better represenstant beamwidth
behaviour. By fitting a suitable parameterised curve thinoihg calculated beam-
width points, the correlation coefficient (Weisstien, 2D0dn be used as a scale free
measure of the smoothness of the beamwidth. This would gecimore robust

optimisation.

e The constrained EGO algorithm is not robust. The methodldped here for con-
strained optimisation works well for the applications désed in this thesis, as the
MAXVAR sampling of the constrained area is generally reséa to a small subset
of the whole parameter space. A more general Infill Samplingg@a (ISC) such
as Schonlau’s (1997) Expected Improvement (El) is not atvlerfar constrained
optimisation with either DIRECT or Adaptive Simulated Amafiag. Research into
optimisation methods able to perform constrained optitideaf the Expected Im-

provement ISC would be most valuable.

e Alternatively, as the equality constrained SQP algorittas bheen found to be very
efficient when robust gradient information is availablettier research on an effi-
cient method to calculate the gradient of the source supéipo solution would

be very valuable.
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Modelling horn loaded loudspeakers can be improved in a rummbways.

¢ A simple modification to the acoustic power calculation ailipon in the source su-
perposition code to include 1/4 symmetry planes would atluswrapid calculation
of the power response of horn loaded loudspeakers. Thedneguesponse of a

constant beamwidth horn could then be investigated.

e The choice of boundary conditions can be questioned. It Bas bbund that above
a certain frequency, plane waves do not exist at the throtiteofhorn (Behler and
Makarski, 2003). The plane wave boundary condition did ffieicé the results of
the conical horn model when compared to experimental bedthwesults, possibly
due to the sharp interface at the step generating higher orddes. However the
exponential horn shows a discrepancy above a certain fnegud he inclusion of

a more accurate model of the compression driver should rertios discrepancy.

The source superposition technique is an efficient teclenfioupredicting the power out-
put from radiating structures, and in this thesis it has lfeend to be an excellent tool for
modelling the far field pressure distribution of horn load®adspeakers. There is much
potential for the technique to be extended and investigatito similar boundary element

like techniques may result in better numerical methods.

e The source superposition technique can be extended imtegdiapredicting scat-
tering from rigid structures (see Ochmann 1999, Sectionnil)the technique in
combination with the GMRES iterative solver would be verfyoggnt. Further work

would be necessary to extend the technique to general impedeundaries.

e To further increase the efficiency of the source supermosigchnique for multiple
frequency calculations, a matrix interpolation technigueh as described in Sec-
tion (4.4.4) should be investigated further, especiallyght of the Kriging (Appen-
dix B.4) interpolation method, which is a fast and efficiarterpolation technique

used as a component of the global optimisation method deedlbere.
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e The choice of linear elements in the source superpositicmigue is also an issue
in accurately resolving the surface area at low elementitiengKoopmann and
Fahnline, 1997). The use of quadratic elements and shap&dos would elimi-

nate this problem.

e An “element agglomeration” technique (Fahnline, 1995) lsarused to reduce the
size of the matrix generated by the source superpositidmigae, especially at
low frequencies. This process does not eliminate the expemgegration of the
singular functions on the surface, but does reduce the xrane. A problem with
this is the automatic selection of these larger agglomeérsuper-elements. Tech-
niques such as those used in multigrid solvers (Moulitsaskarypis, 2001) and
graph partitioning (Karypis and Kumar, 1998) may go soméefway to providing

an automatic solution.
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