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Abstract 
A time-domain analytical solution for the transients in a pipeline with a small leak has been 
developed under variable boundary conditions. The solution shows that the presence of a small 
leak reduces the amplitudes of the resonant frequencies while its influence on the non-resonant 
frequencies is negligible.  The amplitudes of the resonant components are a function of input 
signal, measurement locations, damping factor of the pipeline and leak size and location. As pipe 
section in a water distribution network can be considered as a single pipe with two variable 
boundary conditions at both ends. A new leak detection technique, which is able to detect and 
locate leaks in pipe networks, has been developed based on the analytical solution. The application 
of the new leak detection method is similar to the widely used acoustic leak detection techniques 
involving two monitoring locations across a leak. The new leak detection technique uses fully 
controlled and purposely generated fluid transient signals—coded transients. Compared to the 
acoustic based leak detection methods, the proposed method may be applied with a much greater 
measurement interval and is less influenced by the background noises.  
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1. INTRODUCTION  

Increasing water demand the costs associated with water treatment and supply have been forcing water 
authorities to reduce leakage in the water distribution systems (WDS). Many leak detection methods have 
been proposed.  The leak detection methods based on fluid transients have shown some promise in terms 
of both quick response location (Liggett and Chen 1994, Liou and Tian 1995, Silva et al. 1996, Liou 
1998, Vítkovský et al. 1999, Mpesha et al. 2001, Wang et al. 2002, Ferrante and Brunone 2003, Kapelan 
et al 2003, Covas et al. 2005, Lee et al. 2005). However, most of the fluid transient based leak detection 
techniques are based on either numerical simulations or experimental results for simple single pipelines. 
Theoretically, the inverse transient method (ITM) can be used to detect and locate the leaks in a WDS 
given sufficient measurement data using the inverse transient method (Liggett and Chen, 1994). However, 
a number of field tests have shown that there are still some difficulties in applying this transient leak 
detection technique in a WDS with a reasonable scale (Stephens et al. 2004). The modelled transients are 
not accurate enough compared to the measured transients for the purpose of leak detection.  

In order to improve the performance of the leak detection in a WDS, the ITM was applied to a small 
section of a large WDS using the measured pressure transients at the boundaries of the selected section as 
shown in Fig 1. It was found that the modelled transient pressure heads using the measured transients as 
the boundary conditions are almost insensitive to the leak (Vítkovský 2002). As a result, it was suggested 
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that independent boundary conditions (e.g. valve conditions) be used as the boundary conditions in the 
ITM. This phenomenon has been further explored in this paper. A linear analytical solution is developed 
for the transients in a pipeline with a leak under a variable boundary condition. A sinusoidal input 
boundary perturbation has been applied and this enables an analytical solution expressed as a Fourier 
series solution to be obtained.  For a general transient perturbation, the signal can be decomposed into a 
series of sinusoidal functions. Based on the analytical solution, a new technique to detect leaks in WDS 
using coded transients is proposed. The proposed method has been applied in a small network used in 
Liggett and Chen (1994).   

 

Figure 1 Leak detection using measured transient pressures as the boundary condition 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

A dimensionless partial differential equation (PDE) for pressure transients in a pipeline including a small 
leak as shown in Figure 2 can be expressed as (Wang et al. 2002)  
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Assuming a constant upstream reservoir and a sinusoidal perturbation at the downstream reservoir as 
shown in Figure 2, the boundary conditions for the problem are  
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in which E* = E/H1 = dimensionless amplitude of the perturbation, E = amplitude of the perturbation, and 
ω = 2π/(L/a) = angular frequency of the perturbation. The assumed sinusoidal reservoir perturbation in 
Eq. (3) is for the derivation of the analytical solution.  A more practical transient generation method will 
be discussed in a later section.   

 

Figure 2 A pipeline connected to a constant reservoir and a downstream reservoir with a varying head  

Eq. (1) assumes that pipe friction during a transient event is described by a constant steady-state Darcy-
Weisbach friction factor. The main objective in considering the solution to this set of governing equations 
is to understand the influence of a leak on a transient event. The effects of the unsteady friction can be 
introduced into the solution once the governing equations have been developed based on the same 
approach as for the leaks by Wang et al. (2002). In addition, application of Dirac delta function has 
assumed that the leak size is small compared to the pipe size (CdAL/A < 0.01).  

3. A FOURIER SERIES SOLUTION  

The general solution for the problem expressed by Eqs. (1), (2) and (3) is (Wang 2002)   
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where RnL = FLsin2(nπxL
*) = leak-induced damping coefficient, and the Fourier coefficients in  (4) are 
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Eq. (4) shows that a transient h*(x*,t*) induced by a sinusoidal boundary condition is composed of three 
parts in the right hand side of (4).  The first part is independent of the boundary forcing function (noted by 

 



parameters of E* and ω), and is only related to the initial transients. Without the variable boundary 
condition, the second and the third parts at the right-hand side of (4) become zero and (4) is reduced to an 
exponential damping function, which was investigated in Wang et al. (2002).  On the other hand, if the 
perturbation lasts long enough, the first part approaches zero, and Eq. (4) is simplified to a steady 
oscillation as 

[ ]

[ ]

[ ]

[ ] )sin()sin(

)sin()sin()()cos(

)sin()sin()cos()sin()sin()cos(2

)sin()sin()cos()sin(),(

*

1

**

*

1

**

*

1

****

1

*

*

1

********
0

xntE

xntCBtA

xntBtAtxn
n

nE

xntBtAtExtxh

n
np

n
npnpnp

n
npnp

n

n
npnp

πδω

πωω

πωωωπ
π

π

πωωω

∑

∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=

+=

++=

++−=

++=

(6) 

where  
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steady oscillations.  Therefore, after a sufficiently long time, the output corresponding to a sinusoidal 
input is a summation of a series of harmonic oscillations.  The frequency of any of the harmonic 
oscillations is that of the input, and the amplitude of each of the harmonic component is defined by (7).  

The value of the amplitude of each component expressed in (7) depends on the amplitude (E*) and 
angular frequency of the input signal (ω*) and the parameters of the pipeline and the leak, which may be 
characterised by parameters R, FL and xL

*.  Because the amplitude and the frequency of the input signal 
are known, and the frictional parameter R can be calculated from the steady state conditions, the 
feasibility to detect the leaks is investigated in the following sections. 

4. COMPARISON WITH NUMERICAL SOLUTION BASED ON MOC 

The governing equation (1) is a linear equation (Wang et al. 2002).  The analytical solution expressed in 
(4) is now compared with the nonlinear numerical results obtained from the method of characteristic 
(MOC).  For the pipeline as shown in Figure 2 where H1 = 25 m, H2 = 15 + Esin(ω t) in units of meters, 
and E = 0.25 m, two perturbation frequencies of ω = 1.0π and ω = 1.5π are considered.  A leak of CdAL/A 
= 0.001 is located at 250 m (xL

* = 0.25) downstream of the upstream reservoir.  Based on the steady-state 
flow conditions, the friction damping parameter is calculated as R = 0.0606. A small transient is needed to 
keep the linearization error of the analytical solution at a low level.  
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Figure 3 Comparison of the analytical solution and the numerical results based on the MOC 

The transients measured 750 m downstream from the upstream reservoir (x* = 0.75) based on the 
analytical solution and the MOC are presented in Figure 3.  For all cases, with and without a leak and two 
input frequencies, the transients calculated based on the analytical solution of (4) agree very well with the 
numerical results from the MOC.  In the analytical solution, components of n ≤ 20 are considered. When 
ω is close to 1.0π, the frequency of the boundary perturbation approaches the natural frequency of the 
pipeline, a resonance condition is created with a significantly larger amplitude than the input signal.  For 
the case without a leak, the transient stops growing and a steady oscillation appears after about 25 periods 
(t* > 50.0). When a leak is present, the steady oscillation establishes after about 20 periods (t* > 40.0).  A 
steady oscillation is defined here in such a way that the increase of transient amplitudes over 10 periods is 
less than 0.1%.  The presence of the leak reduces the amplitude of the steady oscillation by about 40%, 
but it has no influence on the frequency of the transient.  When ω = 1.5π, a transient with a fundamental 
period of T* = 1.33, is observed for both cases of with and without a leak.  However, the presence of the 
leak has little influence on the amplitude of the steady oscillation for non-resonance inputs.  

5. EFFECTS OF A LEAK ON STEADY OSCILLATION  

The above example indicated that a leak has an influence on the amplitude of a steady oscillation and that 
the amplitude is a function of the frequency of the input signals.  The amplitude values of the components 
of n < 11 defined in (7) are plotted in Figure 4 for the cases given in Figure 3.  When ω = 1.0π, in cases 
with and without a leak, the component of n = 1 is dominant, as the amplitudes of other components are 
negligible.  When a linear system is excited at one of the resonant frequencies, the output contains only 
that frequency with other frequencies being zero.  As a result, the summation sign in the response 
function defined in (6) for a sinusoidal input signal with a resonant frequency can be dropped out and (6) 
is reduced to one component as 

 [ ] )sin()sin(),( ******
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Figure 4 shows that when ω = 1.0π the presence of a leak decreases the amplitude of the dominant 
component n = 1 significantly (from Enp = 0.17 to Enp = 0.12).  As a result, the amplitude of the whole 
transient is decreased by the presence of the leak as shown in Figure 3(b) compared to Figure 3(a).  On 
the contrary, for the input signal whose frequency is not resonant, the presence of the leak has no obvious 
influence on the amplitude of the components as shown in Figure 3(c) and Figure 3(d).  In addition, when 
compared to the case of resonance, there is no obvious dominant component in the response signal if the 
dimensionless frequency of the input signal is not resonant. 
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Figure 4 Magnitude of the Fourier components 

Substituting ω = nπ into (8) gives the resonance amplitude as 
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Since the value of leak parameter RnL is positive, Eq. (9) indicates that the presence of a leak in a pipeline 
decreases the amplitude of the component whose frequency is that of the input signal.  Substituting (9) 
into (8) gives  
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= amplitude of the steady oscillation.  Therefore, the transient in a pipeline 

under a resonant sinusoidal input signal is a sinusoidal function, and the amplitude of the transient is a 
function of the amplitude of the input signal E*, friction damping parameter of the pipeline R, leak 
damping parameter RnL and measurement location x*. 

For the example as shown in Figure 2, the transient responses under different input frequencies (0.0 ~ 
10π) are plotted in Figure 5.  As discussed in the above analysis, Figure 5 shows that under a sinusoidal 
perturbation, the presence of a leak reduces the amplitude of the transient if the input signal is that of the 
resonant frequency of the pipeline.  For an input signal that has a non-resonant frequency, the presence of 
a leak has little influence on the transient.  In addition, the transients measured at different locations along 
the pipeline (x* = 0.5, and x* = 0.75 in Figure 5), the transient responses are different for both cases of 
with and without a leak.  
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Figure 5 Transient response (measured at x* = 0.75 and x* = 0.5) of a leak under different input 
frequencies 

Previous studies (Vítkovský 2001) have found that the transient pressure heads measured from a pipeline 
cannot be used as boundary conditions in the inverse transient leak detection analysis because under such 
a boundary condition, the transients measured from the pipeline are very insensitive to the leak.  The 
analytical solution in (6) gives the reason for this observed phenomenon. If a measured transient is used 
as a boundary condition in a transient simulation modelling, the measured transient is a variable boundary 
condition. The example given in the previous section has shown that presence of a leak has little influence 
on the transients in a pipeline if the variable boundary condition is not resonant. In another word, 
transients initiated by a non-resonant boundary condition don’t have enough response with leaks. Under a 
normal condition, a transient initiated by the common methods (e.g. a valve disturbance) are not likely a 
resonant transient. As a result, if such a non-resonant transient event is applied into a transient simulation 
model as a boundary condition, different leak sizes (including no leak) will produce similar transient 
responses, which means the transients fails to tell the information about the leak. Therefore, normally 
generated transients can not be used as boundary conditions in the inverse transient leak detection 
analysis. However, because the presence of a leak has significant influence on the resonant frequencies, 
the resonant components will be a good media for leak detection.   

6. LEAK DETECTION USING RESONANT FLUID TRANSIENTS IN PIPE NETWORKS 

As indicated in the previous section, the amplitude of the resonant steady oscillation is a function of 
magnitude of the input signal E*, friction damping parameter of the pipeline R, leak damping parameter 
RnL and measurement location x*.  Since the values of E*, R, and x* are known or can be calculated from 
the flow conditions in the pipeline, the value of a leak damping parameter RnL can be obtained from the 
amplitude of a steady oscillation defined in (16).  The leak location (xL

*) and leak size (CdAL) can be 
obtained from the ratio of two leak damping coefficients (Wang et al. 2002).  
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The technique for detecting and quantifying a leak based on leak-induced damping coefficients has been 
discussed in Wang et al. (2002) in which the damping coefficients were obtained by measuring the 
decayed transient components using an exponential fitting function.  In this paper, the focus is on how to 
obtain the leak-induced damping coefficients (RnL) from the amplitude of the steady oscillation for the 
case of a pipe network.  A small network as shown in Figure 6, which is similar to that in Liggett and 

 



Chen (1994) has been used as an example to illustrate the detailed procedures. The major parameters of 
the small network are:  

 Node number:   46 
 Pipe number:    50   
 Pipe diameter:   200 mm 
 Single pipe length (m): 50 m 
 Wave speed:   1000 m/s 
 Pipe friction factor:  0.02  
 Leak location:    node 8 
 Relative leak size (CdAL/A):  0.1% 
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Figure 6 A small network with a leak (flow injection at node 6 and node 10)   

For the purpose of leak detection, two flow injections are applied at node 6 and node 10 with the 
magnitudes as shown in Figure 7. Given the distance of two boundary perturbations, the character length 
of the pipe (from node 6 to node 10) is 200m. The magnitude of the perturbation pressure is 
approximately 0.05m (E* = 0.001). The steady flow velocity in the pipe section from node 6 to node 10 is 
0.22m/s and the friction damping factor based on the steady flow conditions is approximately R = 0.0022. 
The transient head variation calculated using the MOC are plotted in Figure 8.  A state of steady 
oscillation forms for all the cases when t* > 200, so only transients in the period of 230 < t* < 240 are 
shown in Figure 8, and are used for the leak detection analysis.  The decrease of the amplitude of the 
steady oscillation caused by the leak is obvious as shown in Figure 8.  The amplitude of the steady 
oscillation is Ep = 0.00748 for no leak case and Ep = 0.00441 for the case of with a leak (Ep was defined in 
Eq. 10).  Substituting these values into (10) and considering E* = 0.001, n =1 and x* = 0.5 gives R1L = 
0.0118.  Applying the ratio of R2L/R1L = 0.00 into (11) gives the leak location of xL

* = 0.5.  Applying R1L = 
0.0118 and xL

* = 0.5 gives the size of the leak of CdAL/A = 0.00101.  Both leak location and leak size are 
almost the same as the real leak location xL

* = 0.5 and size of CdAL/A = 0.001.  
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Figure 7 Flow injections at node 6 and node 10  
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Figure 8 Transients at node 8  

7. CONCLUSIONS 

Transients in a pipeline under variable boundary conditions have been studied analytically, and an 
analytical solution expressed as a Fourier series has been developed under a sinusoidal boundary 
condition.  By comparison to the numerical solution based on the method of characteristics (MOC) in 
which the non-linear effects are included, the analytical solution based on a linearised governing equation 
shows a high degree of accuracy for both cases of with and without a leak in a pipeline. 

The analytical solution shows that a steady oscillation forms in a pipeline under a continuously varying 
boundary perturbation, and the formation time and the amplitude of the steady oscillation depends on the 
pipe friction, the leaks in the pipeline and input signals.  The analytical solution also shows that the 
presence of a leak in a pipeline only influences the amplitude of a resonant transient, and almost has no 
influence on the amplitude of a non-resonant transient.  An analytical relationship between the leak and 
the resonant amplitude has been obtained.  Because the influence of the leak on the resonant amplitude is 
frequency dependent, and depends on the leak location and size, a new leak detection technique that are 
able to detect the presence, location and magnitude, have been developed by examining the magnitudes of 
resonant amplitudes of different frequencies.  

 



Considering that a pipe section in a pipe network is a single pipe with two variable boundary conditions, 
the new leak detection technique proposed for single pipeline can be applied into a pipe network as tested 
in a numerical example.  

The analytical solution and the leak detection method proposed in this paper has assumed that the leak is 
small (CdAL/A < 0.01). A larger leak will not only reduce the resonant transient amplitudes, but also 
change the system frequency. In addition, the effect of the unsteady friction, which is important for the 
fast transient event, has not been included in the current study and should be considered in the 
experimental verifications.    
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